HABITAT INVENTORY OF THE YUKON FLATS AS POTENTIAL WOOD BISON RANGE

Alaska Department of Fish and Game Division of Wildlife Conservation March 1995

Photo by C. Gates

Maria Berger Alaska Cooperative Fisheries and Wildlife Research Unit University of Alaska Fairbanks

Robert O. Stephenson Alaska Department of Fish and Game Fairbanks, Alaska

Paul Karczmarczyk Alaska Department of Fish and Game Delta Junction, Alaska

C. Cormack Gates Government of the Northwest Territories Fort Smith, NWT

STATE OF ALASKA Tony Knowles, Governor

DEPARTMENT OF FISH AND GAME Frank Rue, Commissioner

DIVISION OF WILDLIFE CONSERVATION Wayne L. Regelin, Acting Director

Persons intending to cite this material should obtain permission from the author(s) and/or the Alaska Department of Fish and Game. Because most reports deal with preliminary results of continuing studies, conclusions are tentative and should be identified as such. Due credit will be appreciated.

This report was prepared by:

Alaska Department of Fish and Game 1300 College Road Fairbanks, Alaska 99701-1599 (907) 459-7213

The Alaska Department of Fish and Game conducts all programs and activities free from discrimination on the basis of race, color, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats for this and other department publications, please contact the department ADA Coordinator at (voice) 907-465-4120, (TDD) 1-800-478-3648, or FAX 907-586-6595. Any person who believes she/he has been discriminated against should write to: Alaska Department of Fish and Game, P.O. Box 25526, Juneau, AK 99802-5526 or O.E.O., U.S. Department of Interior, Washington, DC 20240.

TABLE OF CONTENTS

INTRODUCTIO	DN	į.
STUDY AREA		2
METHODS		2
RESULTS ANI	DISCUSSION	ŧ
General	Description of Study Areas	ŧ
I	Birch Creek	ŧ
I	Black River	5
5	Scotty Lake	5
5	Shovun Lake	5
I	Bearman Lake	5
Extent o	f Meadow Plant Communities	5
Estimate	s of Cover by Species	7
	I Forage Production and Stocking Levels	
CONCLUSION	S	8
LITERATURE	CITED	9
TABLES		1
APPENDIX A.	Table 1. Data form for recording plant species composition	0
	Table 2. Data form for recording meadow characteristics	1
	Table 3. Simplified data form for recording plant species composition	
	from the air	2
APPENDIX B.	Table 1. Plant species recorded in Birch Creek study area, June 1994	3
	Table 2. Plant species recorded in Black River study area, June 1994	5
	Table 3. Plant species recorded in the Shovun Lake, Bearman Lake and	
	Chalkyitsik study areas, June 1994	7

1

HABITAT INVENTORY OF THE YUKON FLATS

AS POTENTIAL WOOD BISON RANGE

SUMMARY

A habitat inventory of meadows on the Yukon Flats identified several large areas suitable for year-round use by wood bison (<u>Bison bison athabascae</u>). Extensive areas of wet and dry meadows support plant communities that are similar to existing wood bison range in northern Canada, including substantial amounts of preferred forage species.

In the Birch Creek intensive study area southwest of Fort Yukon, a combination of wet and dry graminoid meadows interspersed with white spruce and mixed forest would provide excellent year-round habitat for wood bison, with good summer and winter forage availability. Similar habitat was found in less intensively studied areas north of Chalkyitsik and in the Bearman Lake area northwest of Venetie Landing.

Bison forage is also abundant adjacent to the Black River east of Fort Yukon and in a less intensively studied area north of Fort Yukon, but relatively wet conditions could limit summer foraging by bison in some parts of these two study areas.

Conventional forage models and a qualitative comparison with other wood bison habitat indicate that the two intensively studied areas could support at least 2,000 wood bison. Substantial additional bison habitat exists in three less intensively studied areas as well as on lands adjacent to the western boundary of the Birch Creek area.

INTRODUCTION

A preliminary evaluation of the Yukon Flats for suitability as wood bison habitat was conducted in August 1992 by Cormack Gates, a bison ecologist with the Northwest Territories Department of Renewable Resources and chairman of the Wood Bison Recovery Team. He found that floristic composition of meadows in the Yukon Flats strongly resembled meadows used by the Mackenzie and Slave River lowlands wood bison herds and also bison habitat in Wood Buffalo National Park (Gates 1992). He suggested more intensive studies to quantify plant species composition and forage availability. In 1994 the Alaska Department of Fish and Game (ADF&G) undertook a detailed habitat inventory in two areas on the Yukon Flats and examined three other areas more extensively for potential as wood bison range. This study was supported by Alaska Federal Aid in Wildlife Restoration Project W-23 and by ADF&G, the University of Alaska, and Government of the Northwest Territories. We are grateful to the Fish and Wildlife Service, Doyon Limited and the villages of Beaver and Birch Creek for permission to conduct studies on their lands.

STUDY AREA

Two intensively studied areas were located southwest and east of Fort Yukon, respectively (Fig. 1). The Birch Creek study area is bounded by the Yukon River on the north, the lower mouth of Birch Creek on the south, and the winter trail between Birch Creek and Fort Yukon on the east. It encompasses 410 mi² (1,066 km² or 262,400 acres). The Black River study area is bounded by the Black River and lower Porcupine River on the north, and the Sucker River on the south. Tiinkdhul Lake is at the eastern boundary. This area totals 633 mi² (1,646 km² or 405,120 acres).

Figure 1 shows three additional areas in which we conducted preliminary surveys for potential bison range. The Scotty Lake study area is located between the Black River and the Porcupine River north of Chalkyitsik, south of Shuman House and Joe Ward camp. The Shovun Lake study area is between the Porcupine, lower Sheenjek and Chandalar Rivers. The Bearman Lake study area is north of the Yukon River, between the lower Hadweenzic and Chandalar Rivers.

The Yukon Flats is a level plain covering several thousand km² adjacent to the Yukon River. The area is a Holocene floodplain made up of 5-6 m of horizontally interbedded calcareous sands and silts with commonly redeposited organic layers and occasionally underlain by river gravels. Soils throughout much of the area are pedocal, containing many alkaline, calcium compounds. Potential evapotranspiration is 38 cm, exceeding the mean annual precipitation of 16.5 cm of water equivalent per year. Because of this deficit, no leaching occurs and alkali flats are found in some dry areas (Farjon and Bogaers 1985).

Thermokarst lakes (formed by local thawing of permafrost) in varying stages of development are common in a large area which is slightly elevated above the active floodplain (Farjon and Bogaers 1985). Meadows are usually associated with thermokarst lakes or with oxbow lakes and meander scars formed by riverine disturbance. Alkali flats are commonly associated with drying thermokarst lake beds.

METHODS

The general distribution of potential wood bison habitat on the Yukon Flats was determined by examining high altitude infrared photos combined with our familiarity with the locations of major meadow systems. The most extensive meadow habitat is located at low elevation in an area of about 4,000 mi², encompassing the flats north and south of the Yukon River from the vicinity of Beaver on the west to Chalkyitsik on the east. Aerial and ground reconnaissance in August 1992 showed that meadow habitat at higher elevation outside this general area was limited and of poor quality for bison, while plant species composition and other characteristics of low elevation meadow habitat were suitable for wood bison (Gates 1992).

The first step in this habitat inventory was to map all meadows 5 acres or larger on 1:63,360 topographical maps produced in the late 1950s. NASA color-infrared high altitude photographs taken between 1978 and 1980 were used to map more recent changes in lake beds and meadows.

Because many meadows, especially those associated with thermokarst lake beds, show a drying trend, mapping the changes in their extent gave a more accurate estimate of their current area and simplified locating them in the field. The size of each meadow was calculated using a dot grid.

We could not visit all meadows mapped within the two main study areas. Therefore, we attempted to visit all large meadows (200 acres or larger) and randomly sampled one-eighth of the remaining smaller meadows (<200 acres) in each study area. By incorporating random sampling into our study design and sampling enough meadows, we could extrapolate from the meadows visited to all meadows in each study area.

A total of 431 meadows were mapped in the Birch Creek area southwest of Fort Yukon. Of these, 21 were large (200 acres or greater), and 410 were smaller than 200 acres. We were able to sample 14 (17 locations) of 21 large meadows and 43 of 51 randomly chosen small meadows.

A total of 463 meadows were mapped in the Black River area east of Fort Yukon. Sixteen of these were large and 447 were small. We visited all 16 large meadows (18 locations) and 45 of 56 randomly selected small meadows.

Fieldwork occurred from June 25 to June 30, 1994. A Robinson R-22 helicopter was used to access meadows. To allow field sampling on a large scale, vegetation was classified using a simple logarithmic cover scale consisting of 4 categories. Category 4 represented dominant plant species, with cover values >10 to 100%. Category 3 included common plant species, with cover values >1 to 10%. Plant species in categories 2 and 1 were rarer, with cover values >0.1 to 1% and >0.01 to 0.1%, respectively. Percent cover was obtained by translating the cover category recorded for each plant species into a percent value. The percent value used was the geometric midpoint of the category. This is the number midway between the log of the upper and the log of the lower category boundaries. Thus, the category 4 value was 31.623%, category 3 was 3.162%, category 2 was 0.316% and category 1 was 0.032% (J. Ver Hoef, ADF&G Biometrician, pers. commun.).

Initial sampling was done by walking from the edge to center of each meadow, crossing as many different vegetation zones as possible. All species encountered and characteristics of the meadow were recorded on standard forms (Appendix A, Tables 1 and 2). The percent cover for each species was then estimated and the appropriate cover category was marked. One or more color photographs were taken from the air and ground at most meadows. Lists of Latin, common, and abbreviated names of plant species found in each study area are given in Appendix A, Tables 1-3.

After becoming familiar with vegetation patterns, much of the cover estimation was done from the air by flying low (3-20 ft above ground level) at 0-15 mph and recording cover categories on a simplified data form (Appendix A, Table 3). Floral heads of grasses and sedges could usually be recognized from this height. When floral heads were not visible, we landed to positively identify plants. Fewer rare species were recorded during aerial sampling and less attention was paid to tree and shrub species than had been done initially. However, our major objective was to assess the more abundant grasses and sedges used as bison forage.

Percent cover is the sum of cover for a species in all locations in which it was found divided by the number of locations in the study area. Calibrated percent cover is percent cover adjusted so that total cover of grasslike and herbaceous plants equals 100%. Area occupied by a plant species was calculated by multiplying percent cover by the sample area. Calibrated area is the area adjusted so that total area of grasslike and herbaceous plants equals the size of the sample area.

We estimated the area of each plant species for 26,562 acres of meadows in the Birch Creek area and 26,864 acres in the Black River area. We extrapolated to all small meadows from our random sample of 14% of them (2,607 acres) in the Birch Creek area, and 12% (1,807 acres) in the Black River area. This yielded an estimate of acreage covered by each species in 18,792 and 15,024 acres of small meadows, respectively.

We then added areas estimated for these species in 7,770 and 11,840 acres of large meadows in Birch Creek and Black River study areas, respectively, to arrive at estimates of total. These calculations are summarized in Table 1.

Total minimum and maximum areas for each species (Tables 13-16) were calculated as follows. The minimum estimate is the sum of uncalibrated total area estimates for small and large meadows in that study area. The maximum estimate is the sum of calibrated total area estimates for small and large meadows in that study area. A summary of the steps used to calculate values in Tables 2-16 is shown in Table 17.

We used estimates of forage species cover to calculate potential forage production (Tables 18 and 19). First, forage species were categorized as wet or dry meadow species. We assumed average annual productivity of 4,000 kilograms of dry matter per hectare (3,570 lbs/acre) for wet meadows and 2,000 kilograms of dry matter per hectare (1,785 lbs/acre) for dry meadows, as reported in a study of the Slave River bison range (Reynolds and Peden 1987). The Slave River lowlands are characterized by wet and dry meadow habitat with plant species composition similar to that of the Yukon Flats. Finally, a forage intake value of 10 kilograms (22 lbs) of dry matter per day for an average bison (Telfer and Scotter 1975) was used to estimate an 8 month (241 day) winter forage requirement of 2,410 kg/bison and a 4 month (124 day) summer forage requirement of 1,240 kg/bison (2,734 lbs/bison). We calculated summer and winter stocking rates by assuming a moderate grazing intensity of 33% of forage biomass.

RESULTS AND DISCUSSION

General Description of Study Areas

Birch Creek:

The Birch Creek study area southwest of Fort Yukon is characterized by an abundance of thermokarst lakes, many of which are diminishing in size. However, several lakes and meadows adjacent to the upper and lower mouths of Birch Creek had been flooded prior to the fieldwork, probably during floods in the late 1980s and early 1990s. Meadows are often extensive, rather than being limited to margins of lakes and rivers as is common in the Black River area east of Fort

Yukon. In most cases, bluegrass, narrow reedgrass, wheatgrass and other grasses and forbs used as summer forage by bison are found along meadow edges where shrubs are encroaching. Rushes, foxtail barley and reedgrass often occur downslope in moist soil, while water sedge, slough sedge and beaked sedge dominate saturated soils at lake edges. Slough sedge and beaked sedge are important winter forage for wood bison in other areas (Reynolds and Peden 1987). Wetland grasses such as manna grass are abundant in some areas. The ground is generally firm except where soil is saturated. There are some bogs and marshes dominated by horsetails, cottongrass and buckbean, but these are rare.

Forage biomass is highest in wet areas surrounding pothole lakes, where sedges are often 3 ft (1 m) or more in height. Mesic and dry areas produce medium to low forage biomass. Dead grasses are often densely matted along dry meadow edges. This shades new growth and retards plant phenology. Encroaching shrubs are dominated by barren ground and park willow. Other common shrubs include diamondleaf willow, grayleaf willow, dwarf birch and prickly rose. Succession is increasing canopy cover of balsam poplar, aspen and ultimately white spruce. The forest surrounding the meadows, especially at the east end of this region, is dominated primarily by tall, widely spaced white spruce. There are signs of old burns in many areas.

Black River:

Meadows in this area are generally associated with riverine features such as oxbows and meander scars. Some areas were flooded in 1992, especially near the Grass and Sucker Rivers, and the water table was still high in these areas. Most meadows are marshes or occur along the edges of lakes and are dominated by slough sedge, water sedge and beaked sedge. The greater abundance of horsetails also reflects wetter conditions. These marshes support a high biomass of these species, many of which are good winter forage for bison. Another common meadow type is a post-fire reedgrass-marsh cinquefoil meadow. Diamondleaf and barren ground willow are common along meadow edges.

Spruce forest is generally denser than in the Birch Creek study area. There is considerable growth of shrubs and saplings as a result of frequent burns (the Porcupine-Black River area has the shortest fire cycle in Interior Alaska). Bison movements could be limited in summer by soft footing and dense tree and shrub growth. However, there are some large meadows, especially at the east end of this study area near Chalkyitsik, that are similar to those predominating in the Birch Creek area. These meadows include dry alkali flats as well as mesic and wet vegetation types. Soils here are firm and would provide good footing for bison.

Scotty Lake:

The area north of Chalkyitsik includes several thousand acres of alkali and dry meadows interspersed with pothole lakes. Species composition is similar to the Birch Creek area. Potholes are fringed with wetland sedges and grasses suitable as bison winter forage, while the dry meadows support summer forage types. Some oxbows and meander scars adjacent to the Porcupine River support pure stands of slough sedge, the preferred winter forage for wood bison.

Shovun Lake:

Meadows in the Shovun Lake area are generally associated with large lakes and rivers. Wet meadows are common between the Yukon River and Shovun Lake, with the highest biomass in winter forage species (wetland sedges and horsetails). Some summer forages (bluegrasses, rushes and foxtail barley) are found only occasionally along margins of wet meadows. A pure stand of slough sedge is found in the southern portion of the area northwest of Fort Yukon. The northern and eastern parts of the Shovun Lake area include a variety of meadow habitats, with numerous dry meadows that would provide summer range.

Bearman Lake:

The area northwest of Venetie Landing supports a mixture of wet and dry meadows. Extensive stands of wetland sedges and horsetails are found along meander scars and oxbows in the southeast part of the area. These are often surrounded by dry meadows supporting bluegrass and other summer forage. To the northwest are large open meadows associated with extensive drying lake beds. Both summer and winter forage is abundant. Further to the northwest in the area around Cache Lake, the terrain is wetter, but low ridges bordering some lakes would provide good footing for bison. Some dry meadows were encountered here also. These were dominated by tufted hairgrass and field oxytrope which are used by bison in summer. This area appears to provide good summer and winter habitat for bison.

Extent of Meadow Plant Communities

The number and total area of meadows sampled in the 2 intensive study areas and calculations used to extrapolate from the random samples to all small meadows are shown in Table 1. Fourteen large meadows in the Birch Creek area totaled 7,770 acres and 43 random small meadows totaled 2,607 acres for a grand total of 10,377 acres sampled. This represents 40% of the meadow acreage suitable for bison. In the Black River area, 16 large meadows totaled 11,840 acres and 45 small meadows totaled 1,807 acres for a grand total of 13,647 acres sampled. This represents just over 50% of meadow habitat suitable for bison. Meadows larger than 5 acres covered between 10 and 11% of the Birch Creek area and approximately 7% of the Black River area. Although meadows in three additional areas (Scotty Lake, Shovun Lake, and Bearman Lake) have not yet been mapped using infrared photographs, the extent of meadow habitat in these areas is substantial.

We sampled only 7,770 of the 10,060 acres of large meadows in the Birch Creek area. An additional 2,290 acres of known meadow habitat were not included in the grand total for this area. There are many forest openings smaller than 5 acres that would further increase the actual amount of available meadow habitat, especially in the Birch Creek area where the forest canopy is relatively open. Therefore, estimates of available meadow habitat are conservative. In addition, aerial reconnaissance and examination of IR photographs indicate the high quality habitat identified in the Birch Creek area extends westward well beyond the study area boundary. This area is west of the lower mouth of Birch Creek, between Beaver Creek and the Yukon River. Suitable bison habitat appears to extend west at least as far as the Mud Lakes area.

Estimates of Cover by Species

Tables 2 through 12 show the estimates of percent cover and total area occupied by each plant species in the two main study areas and percent cover only in the three additional study areas. Two additional estimates are shown for the random sample of small meadows. These represent extrapolations from sampled meadows to all small meadows in the study area.

It is evident that graminoids (grasses and sedges) dominate meadow communities in all study areas, with several species accounting for most of the herbaceous cover. In wet areas, dominant species are slough sedge, water sedge, beaked sedge and reedgrass. Each of these species consistently comprises between 4 and 20% of the total cover in each study area. Horsetails are also common in large meadows in all areas studied. Most of these species provide winter forage for bison and some are also used in summer, especially before they mature.

Dry meadows generally show greater species diversity, so percent cover of each species is usually less than in wet meadows. Dominant species often include bluegrasses, alkali grasses, rushes and reed grasses. These species are common in all study areas and usually make up from 1 to 10% of the total cover. Alkali grasses dominate cover in several large alkali flats.

Throughout the year, wood bison show a marked affinity for wet and mesic meadows characterized by the presence of slough sedge, a key forage species, in association with other grasses and sedges (Larter and Gates 1991). Slough sedge was present in 60% of the small meadows and 76% of the large meadows in the Birch Creek area, and in 42% of the small meadows and 61% of the large meadows in the Black River area. This species was also common in the three less intensively studied areas.

Although grasses and sedges dominate meadow ground cover, a variety of forbs occur in each study area. None is widely abundant in all study areas, but some are codominants with graminoids in local areas. Arrowgrass is common in alkali flats in the Birch Creek area. Marsh cinquefoil is a codominant with several graminoids in the post-burn reedgrass meadows in the Black River area. In the Shovun Lake area, the south slope of Shovun Hill is dominated by the forb sagewort. The Bearman Lake area has local areas with abundant fireweed and field oxytrope. Based on observations of Delta River bison, some of the forbs found in dry meadows are known to be used by bison. These include fireweed, swamp willow-herb, goldenrod, common burnet and oxytrope (M. Berger, personal observation).

The total acreage of all plants and of forage plants in the Birch Creek area is shown in Tables 13 and 14, respectively. As discussed earlier, graminoids far exceed forbs in area covered. The eight groups of plants providing greatest cover include reedgrasses, water sedge, rushes, slough sedge, manna grass, bluegrass, beaked sedge and horsetails.

Tables 15 and 16 show total plant and forage plant acreage respectively for the Black River area. Reedgrasses cover the greatest area, followed by water sedge. Horsetails rank third in total area covered, followed by slough sedge, beaked sedge, rushes, slough grass and bluegrass.

Potential Forage Production and Stocking Levels

The results of habitat inventory and forage abundance studies done to date indicate the Yukon Flats could support a substantial population of wood bison. Our conservative estimates suggest that wet meadows in the Birch Creek area could support approximately 1,999-2,219 bison. Dry meadows could support approximately 1,189-1,328 bison (Table 18). Estimates for the Black River area are 1,747-2,622 bison for wet meadows and 768-1,195 for dry meadows (Table 19).

Although many summer forage plants occur in dry meadows, while winter forage species are found primarily in wet meadows, there is some overlap between summer and winter forages. Several wetland sedges are attractive to bison during early summer when they are more palatable than later in the growing season. Similarly, dry meadow grasses such as wheatgrass and red fescue are often used in late winter, before new growth emerges.

In addition to forage production, the suitability of terrain in allowing bison access to forage must also be considered. The mosaic of wet and dry terrain in the Birch Creek, Bearman Lake and Scotty Lake areas and parts of the Shovun Lake area should provide good year-round travel conditions for bison. Wet terrain and dense shrubs in parts of the Black River and Shovun Lake areas could limit bison movements during summer. Winter foraging conditions in these areas should be favorable, however.

CONCLUSIONS

Our study indicates the Birch Creek area southwest of Fort Yukon offers excellent year-round habitat for a large population of bison. Substantial habitat also exists in the other areas studied, although large areas of uniformly wet terrain may limit summer foraging in some areas, particularly in the western portion of the Black River area. Estimates of forage production indicate that at least 1,100 bison could be supported year-round in the Birch Creek area. Forage availability in the Black River area is somewhat less, with carrying capacity being estimated conservatively at 800 bison.

The characteristics of potential bison habitat on the Yukon Flats compares favorably with the Slave River lowlands and Mackenzie Bison Sanctuary in Canada, where wood bison have existed for many years. While a strict comparison is difficult, the amount of forage and suitable habitat on the Yukon Flats appears to exceed the amount found in any of the existing or potential wood bison ranges in northern Canada. Both conventional forage modeling and our familiarity with other northern bison habitat indicate that several different areas on the Yukon Flats could easily sustain a population of 400-500 wood bison, currently regarded as a minimum viable population. The actual number of wood bison that could be sustained in at least 2 of the 5 areas surveyed is considerably greater than the minimum viable population, and the carrying capacity of the Yukon Flats as a whole appears to be in excess of 2,000 bison.

Additional assessment of meadow habitat in areas that have not yet been intensively sampled would be useful in the future if managing agencies and the public support a reintroduction and proceed to develop a cooperative management plan. These areas include the Scotty Lake, Shovun Lake and Bearman Lake areas, the southern portion of the Venetie Reservation and the lowlands west of the lower mouth of Birch Creek.

LITERATURE CITED

- Farjon, A., and P. Bogaers. 1985. Vegetation zonation and primary succession along the Porcupine River in Interior Alaska. Phytocoenologia. 13(4):465-504.
- Gates, C. C. 1992. Cursory evaluation of the habitat potential of the Yukon River Flats, Alaska, for a reintroduction of wood bison. Unpublished report 7pp. text + 9pp. figures and tables.
- Larter, N. C., and C. C. Gates. 1991. Diet and habitat selection of wood bison in relation to seasonal changes in forage quantity and quality. Can. J. Zool. 69:2677-2685.
- Reynolds, H. W., and D. G. Peden. 1987. Vegetation, bison diets and snow cover. Pages 39-44 in H. W., Reynolds and A. W. L. Hawley. 1987. Bison ecology in relation to agricultural development in the Slave River lowlands, NWT. Canadian Wildlife Service Occasional Paper Number 63. 74pp.
- Reynolds, H. W., R. Hansen, and D. Peden. 1978. Diets of the Slave River lowland bison herd, Northwest Territories, Canada. J. Wildl. Manage. 42:581-590.
- Telfer, E. S., and G. W. Scotter. 1975. Potential of game ranching in boreal aspen forests of Western Canada. J. Range Manage. 28:172-180.

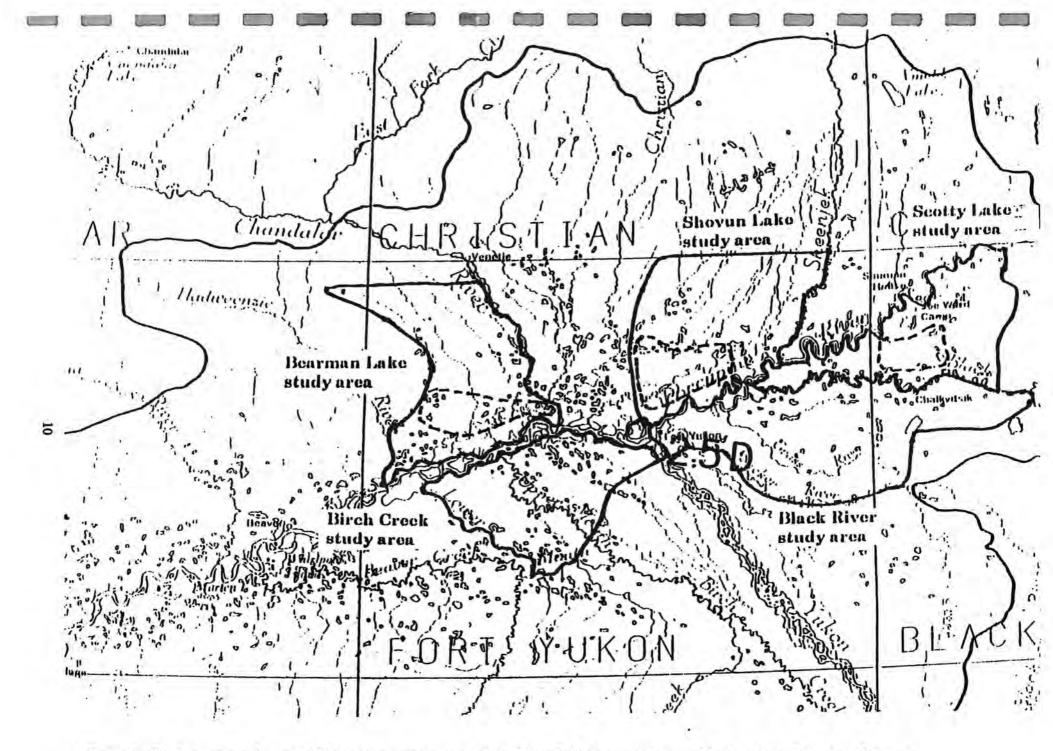


Figure 1. Study areas used in wood bison range assessment. Dotted lines indicate areas surveyed by helicopter in 3 areas that were extensively surveyed.

Table 1. Summary of number and area of meadows sampled in the Birch Creek and Black River study areas.

			Birch Creek	Black River
		Total	21	16
Large meadows (·200 acres)	Number	Sampled	14 (17 locations)	16 (18 locations)
	Acreage	Total Sampled Not sampled	10,060 7,770 2,290	11,840 11,840 0
Random small meadows (<200 acres)	Number	Randomly selected Attempted Unsuitable [*] Sampled	1/8 or 51 46 3 43	1/8 or 56 51 6 45
	Acreage	Attempted Unsuitable Sampled	2,717 110 (4% of total attempted) 2,607	1,967 160 (8% of total attempted) 1,807
Calculations to obtain total small meadow area usable by bison	Acreage	Total meadow area mapped Subtract large (·200 ac) Total small (<200 ac) Unsuitable Total suitable Percent of total suitable sampled	29,644.50 10,060 19,584,50 4% or 793 18,792 14%	28,194 11,840 16,354 8% or 1,330 15,024 12%
	Grand Totals	Suitable large and small	18,792+7,770 = 26,562	15,024+11,840 =26,864
		Sampled large and small	7,770+2,607 =10,377	11,840+1,807 =13,647
		Percent of suitable area sampled	39.1%	50.8%

* Flooded or overgrown by shrubs.

Species	# of locations	% cover	Calibrated % cover	Area (acres)	Calibrated area (acres)
CXAT	13	13.97	14.835	1085	1152
- C.					
CXAQ	14	12.649	13.432	983	1044
CACA	12	8.929	9.482	694	737
JUAR	7	7.999	8.494	622	661
CXRO	5	5.953	6.321	463	492
CCNE	4	5.767	6.124	448	476
POSP	10	5.208	5.53	405	430
EQFL	5	4.278	4.543	332	353
GLST	5	4.111	4.365	319	339
EQAR	4	4.092	4.345	318	338
JUFI	6	2.79	2.963	216	229
HOJU	8	0.802	0.852	62	66
SCVA	5	0.763	0.81	59	63
FERU	4	0.744	0.79	58	62
CXSR	7	0.632	0.671	49	52
ELPA	5	0.595	0.632	46	49
PUCC	3	0.558	0.593	43	46
AGSP	5	0.428	0.454	33	35
ARFU	3	0.374	0.397	29	31
CANE	2	0.205	0.218	16	17
ERVA	2	0.205	0.218	16	17
SCFE	2	0.037	0.039	3	3.2
DECA	1	0.019		1.5	
BEER	1	0.002		0.2	
TOTAL	8	81.11	86.131	6300.7	6694.01

Table 2.Occurrence of grasses, sedges, rushes, and horsetails in17 large meadows in the Birch Creek study area.

Species	# of locations	% cover	Calibrated % cover	Area (acres)	Calibrated area (acres)
TRMA	8	4.502	4.781	350	372
TYLA	6	2.455	2.607	191	203
METR	1	1.86	1.975	145	154
PTSP	9	0.67	0.711	52	55
PTAN	10	0.655	0.696	51	54
EPAN	4	0.577	0.613	45	48
STSP	6	0.446	0.474	35	37
PTPA	5	0.428	0.454	33	35
HIVU	4	0.392	0.416	30	32
ACHI	6	0.279	0.296	22	23.4
EPPA	2	0.205	0.218	16	17
GLMA	1	0.186	0.198	14	15
SAOF	5	0.076	0.081	5.9	6.3
ARTI	2	0.037	0.039	3	3.2
CAPA	2	0.037	0.039	3	3.2
RMAR	3	0.039	0.041	3	3.2
SOSP	4	0.041	0.044	3	3.3
AQBR	1	0.019	0.02	1.5	1.0
CSCA	2	0.02	0.021	1.5	1.0
ERCH	1	0.019	0.02	1.5	1.0
ERSP	1	0.019	0.02	1.5	1.0
PEFR	1	0.019	0.02	1.5	1.0
RASP	1	0.019	0.02	1.5	1.0
RUAR	2	0.02	0.021	1.5	1.0
SESP	1	0.019	0.02	1.5	1.
PRST	6	0.011	0.012	0.9	0.9
CNCN	3	0.006	0.008	0.5	0.5
CIMA	2	0.004	0.0042	0.3	0.3
SECO	1	0.002	0.002	0.2	0.2
TOTALS	5	13.062	13.8712	1015.8	1079.3

Table 3. Occurrence of herbaceous plants, including aquatics, in 17 large meadows in the Birch Creek study area.

- 55	# of		Calibrated	Min area	Calibrated max area	Total area	Calibrated total area
Species	locations	% cover	% cover	(acres)	(acres)	(acres)	(acres)
AGSP	12	1.28	1.452	33	37	241	273
ARFU	6	1.03	1.168	27	31	194	220
BEER	4	1.545	1.753	40	45	290	329
CACA	27	11.053	12.539	288	327	2077	2356
CANE	6	1.765	2.002	46	52	332	377
CCNE	15	9.708	11.013	253	287	1824	2069
CXAQ	38	17.356	19.689	452	512	3262	3700
CXAT	26	8.531	9.678	222	252	1603	1818
CXAU	2	0.001	0.0011	0.03	0.034	0.2	0.23
CXRO	16	3.626	4.113	95	108	681	773
CXSR	8	0.251	0.285	7	8	47	5:
DECA	1	0.007	0.008	0.2	0.22	1.3	1.
ELPA	3	0.154	0.175	4	5	29	3
EQAR	2	0.147	0.167	4	5	28	3
EQFL	2	0.743	0.843	19	22	140	15
ERAN	1	0.074	0.839	1.9	2.2	14	1
ERVA	1	0.735	0.834	19	22	138	15
FERU	7	0.382	0.433	10	11	72	8
GLST	28	5.17	5.865	135	153	972	110
HOJU	11	1.934	2.194	50	57	363	41
JUAR	16	5.082	5.765	132	150	955	108
JUFI	6	3.023	3.429	79	90	568	64
JUSP	4	2.28	2,586	59	67	428	48
POSP	16	4.354	4.939	114	129	818	92
PUCC	3	0.882	1.001	23	26	166	18
SCFE	17	0.913	1.036	24	27	172	19
SCVA	14	0.831	0.943	22	25	156	17
TOTALS	5	82.857	94.7501	2159.13	2450.454	15571.5	17664.7

Table 4. Occurrence of grasses, sedges, rushes and horsetails in a random sample of 43 small meadows and estimated occurrence in all small meadows in the Birch Creek study area.

Species	# of locations	% cover	Calibrated % cover	Min area (acres)	Calibrated max area (acres)	Total area (acres)	Calibrated total area (acres)
ACHI	20	0.941	1.067	25	28	177	201
PTSP	28	0.854	0.969	22	25	160	182
RUAR	11	0.677	0.768	18	20	127	182
EPAN	11	0.626	0.70		18	118	134
HIVU	13	0.426	0.026		12.5	80	91
PTPA	8	0.420	0.368		9.5	61	69
STSP	17	0.304	0.308		9.5	57	65
TRMA	9	0.304	0.343	° 7	8	50	5
TYLA	8	0.203	0.301		7.4	47	53
	6					30	34
ARTI		0.157	0.178				
PEFR	5	0.156	0.177			29	
PTAN		0.096	0.109		2.8	18	
AQBR	6	0.031	0.0352			6	
EPPA	4	0.023	0.026			4	4.:
SAOF	9	0.02	0.023			4	
SECO	3	0.022	0.025			4	
PRST	4		0.0182			3	3.
RAGM	3	0.015	0.017			3	
SESP	3	0.015	0.017			3	
UTVU	2	0.015	0.017			3	
RMAR	3	0.009	0.01			2	
SOSP	10	0.12				2	
CNCN	2		0.0091			1.5	
PMSP	1	0.007	0.008	0.2	0.23	1.3	1.
POAM	1	0.007	0.008	0.2	0.23	1.3	1.
PLHY	1	0.001	0.0011	0.02	0.022	0.2	0.2
RASP	1	0.001	0.0011	0.02	0.022	0.2	0.2
TOTALS	5 197	5.387	5.6547	140.34	158.364	992.5	1126.6

Table 5. Occurrence of herbaceous plants, including aquatics, in a random sample of 43 small meadows and estimated occurrence in all small meadows in the Birch Creek study area.

Species	# of locations	% cover	Calibrated % cover	Area (acres)	Calibrated area (acres)
CCNE	18	12.649	6.167	1498	2779
CXAO	18	9.266	4.23	1097	2035
EQFL	11	5.31	0.683	629	1167
JUSP	11	3,456	0.273	409	759
CXAT	11	3.324	3.276	394	731
BEER	4	2.28	6.412	270	501
POSP	7	1.766	0.15	209	388
ERAN	3	1.472	0.358	174	323
HOJU	12	1.412	0.286	167	310
AGSP	1	0.735	23.466	87	161
CXRO	8	0.522	2.62	62	115
PUCC	5	0.368	0.013	44	82
SCVA	2	0.193	0.013	23	43
ALAE	4	0.162	17.19	19	35
GLST	4	0.162	0.301	19	35
ARFU	3	0.154	9.851	18	33
CXSR	2	0.147	1.364	17	32
ELPA	2	0.081	0.968	10	19
CXAU	1	0.007	2.731	0.8	1.5
FERU	1	0.007	0.301	0.8	1.5
TOTAL	s	43.473	80.653	5147.6	955

Table 6.Occurrence of grasses, sedges, rushes, and horsetails in 18large meadows, Black River study area.

Species	# of locations	% cover	Calibrated % cover	Area (acres)	Calibrated area (acres)
PTPA	5	3.709	6.881	439	814
POAM	1	1.757	3.26	208	386
POSU	1	1.757	3.26	208	386
METR	4	0.703	1.304	83	154
PEFR	7	0.581	1.078	69	128
HIVU	4	0.545	1.011	65	121
TYLA	7	0.423	0.785	50	93
TRMA	2	0.351	0.651	42	78
EPAN	7	0.249	0.462	29	54
ACHI	6	0.09	0.167	11	20
PTSP	10	0.097	0.18	11	20
STSP	6	0.042	0.078	5	9
SUDE	2	0.035	0.065	4	
ARTI	3	0.021	0.039	2.5	N. 18
EPPA	2	0.019	0.035	2	e
LEMN	1	0.018	0.033	2	4
RUAR	1	0.018	0.033	2	4
RMAR	3	0.005	0.009	0.6	1
SECO	2	0.004	0.007	0.5	1
CNCN	1	0.002	0.004	0.2	0.4
RAGM	1	0.002	0.004	0.2	0.4
TOTALS	1	10.428	19.346	1234	2289.8

F

 Table 7. Occurrence of herbaceous plants, including aquatics, in 18

 large meadows, Black River study area.

Species	# of locations	% cover	Calibrated % cover	Min area (acres)	Calibrated max area (acres)	Total area (acres)	Calibrated total area (acres)
CCNE	35	21.433	29.432	387	531	3220	4423
CXAQ	27	12.017	16.502	217	298	1805	2479
CXAT	19	10.822	14.861	196	269	1626	2233
EQFL	16	9.979	13.703	177	243	1499	205
CXRO	16	4.287	5.887	77	106	644	884
ARFU	3	1.476	2.027	27	37	222	30
JUSP	6	0.991	1.361	18	25	149	20:
POSP	5	0.984	1.351	18	25	148	20
CXDI	5	0.921	1.265	17	23	138	19
ELPA	4	0.914	1.255	17	23	137	18
ERAN	4	0.914	1.255	17	23	137	18
ALAE	6	0.864	1.186	16	22	130	17
EQAR	3	0.843	1.158	15	21	127	17
BEER	3	0.717	0.985	13	18	108	14
HOJU	9	0.443	0.608	8	11	67	9
GLST	4	0.281	0.386	. 5	7	42	5
CXSR	2	0.141	0.194	2.5	3.4	21	2
FERU	2	0.077	0.106	1.4	2	12	1
TOTAL	S	68.104	93.522	1228.9	1687.4	10232	1405

Table 8. Occurrence of grasses, sedges, rushes, and horsetails in a sample of 45 small meadows and estimated occurrence in all small meadows in the Black River study area.

Species	# of locations	% cover	Calibrated % cover	Min area (acres)	Calibrated max area (acres)	Total area (acres)	Calibrated total area (acres)
PEFR	15	1.56	2.142	28	38	234	32
POAM	3	1.476	2.027	27	37		30
METR	4	0.281	0.386	5	7		58
EPAN	5	0.225	0.309		5.5	34	4
PTSP	13	0.205	0.282	4	5.5	31	4
PTPA	4	0.155	0.213	3	4	23	3:
TYLA	4	0.155	0.213	3	4	23	3
HIVU	5	0.098	0.135	2	2.7	15	2
LEMN	5	0.098	0.135	2	2.7	15	2
PTAN	2	0.077	0.106	1.4	1.9	12	1
CALL	1	0.07	0.096	1.3	1.8	11	1
CAPA	1	0.07	0.096	1.3	1.8	11	1
ERCH	1	0.07	0.096	1.3	1.8	11	1
STSP	6	0.03	0.0041	0.5	0.7	4.5	2
RAGM	4	0.028	0.038	0.5	0.7	4	5.
ACHI	2	0.014	0.019	0.3	0.4	2	2.
RMAR	3	0.015	0.021	0.3	0.4	2	2.
CIMA	1	0.007	0.01	0.1	0.14	1	1.
CNCN	1	0.007	0.01	0.1	0.14	1	1.
SECO	1	0.001	0.0014	0.02	0.03	0.2	0.
TOTALS		4.642	6.3395	85.12	116.21	698.7	96

Table 9. Occurrence of herbaceous plants, including aquatics, in 45 randomly sampled small meadows and estimated occurrence in all small meadows in the Black River study area.

Species	# of locations	% cover	Calibrated % cover
CACA	8	22,452	24.895
CXAQ	6	16.128	17.883
CXAT	6	13.282	14.727
EQFL	3	6.641	7.364
PUCC	2	6.325	7.013
SCFE	5	4.427	4.909
CXRO	4	4.111	4.558
ARFU	3	3.795	4.208
JUSP	2	3.479	3.858
BEER	2	0.632	0.701
POSP	2	0.632	0.7
ALAE	2	0.348	0.386
ELPA	2	0.348	0.386
HOJU	2	0.348	0.386
CXSR	1	0.316	0.35
ERVA	1	0.316	0.35
SCVA	1	0.032	0.035
TOTAL	s	83.612	92.709

Table 10. Occurrence of plant species in 10 meadows in the Scotty Lake study area.

of Calibrated % % cover locations Species cover SCFE 5 4.427 4.909 HIVU 4 0.456 0.411 TYLA 3 0.379 0.42 CALL 1 0.316 0.35 CAPA 0.35 1 0.316 EPAN 0.35 1 0.316 TRMA 1 0.316 0.35 PEFR 2 0.063 0.07 SESP 1 0.032 0.035 TOTALS 6.576 7.29

Grasses, sed	ges, rushes	and	horsetails
--------------	-------------	-----	------------

Herbaceous plants, including aquatics

Species	# of locations	% cover	Calibrated % cover	Species	# of locations	% cover	Calibrated % cover
CACA	10	23.981	27.88	ARFR	2	2.662	3.095
CXAT	9	9.487	11.03	TRMA	5	0.843	0.98
CXAQ	5	8.433	9.804	POAM	3	0.553	0.643
HOJU	8	6.614	7.689	SECO	3	0.316	0.367
POSP .	6	6.325	7.353	PTAN	2	0.29	0.333
EQFL	4	5.56	6.464	METR	1	0.264	0.30
ARFU	6	3.953	4.596	PTSP	5	0.132	0.153
JUSP	6	3.953	4.596	EPAN	3	0.079	0.093
BEER	5	3.689	4.289	HIVU	2	0.053	0.063
AGSP	2	2.899	3.37	ACHI	1	0.026	0.03
SCFE	1	2.635	3.063	POSU	1	0.026	0.0
CXRO	7	1.607	1.868	RMAR	1	0.026	0.0
ELPA	3	0.553	0.643	SPAN	1	0.026	0.0
ERVA	2	0.29	0.337	STSP	1	0.026	0.0
ERAN	1	0.264	0.307	TYLA	1	0.026	0.0
GLST	1	0.264	0.307	UMBL	1	0.026	0.0
SCVA	4	0.082	0.095				
CXDI	2	0.053	0.062	TOTAL	S	5.374	6.24

Table 11. Occurrence of plant species in 12 meadows in the Shovun Lake study area.

Table 12. Occurrence of plant species in 5 meadows in the Bearman Lake study area.

species	# of locations	% cover	Calibrated % cover	Species	# of locations	% cover	Calibrated % cover
EQFL	3	18.974	21.723	EPAN	4	1.391	1.59
CACA	4	13.914	15.93	METR	2	1.265	1.44
XAQ	5	8.854	10.137	OXCA	2	1.265	1.44
XAT	4	8.222	9.413	PTAN	2	0.696	0.79
XRO	3	7.589	8.689	PTSP	2	0.696	0.79
OSP	3	7.589	8.689	HIVU	1	0.632	0.72
UCC	3	1.897	2.172	SESP	1	0.632	0.72
CVA	3	1.328	1.52	SPAN	1	0.632	0.72
EER	2	1.265	1.448	STSP	1	0.632	0.72
JSP	2	1.265	1.448	TRMA	1	0.632	0.72
CFE	2	1.265	1.448	ACHI	3	0.19	0.21
OJU	2	0.696	0.797	PEFR	2	0.126	0.14
GSP	1	0.632	0.724	AQBR	1	0.063	0.07
ECA	1	0.632	0.724	ARFR	1	0.063	0.07
LPA	1	0.632	0.724	ERCH	1	0.063	0.07
QAR	1	0.632	0.724	PAPA	1	0.063	0.07
RAN	1	0.632	0.724	PRST	1	0.063	0.07
RVA	1	0.632	0.724	RAGM	1	0.063	0.07
LST	1	0.632	0.724	RMAR	1	0.063	0.07
UAL	1	0.632	0.724	RUAR	1	0.063	0.07
XAU	1	0.063	0.072	SODE	1	0.063	0.07
				ARAL	1	0.006	0.00
OTAL		77.977	89.278	SAOF	1	0.006	0.00

Grasses, sedges, rushes and horsetails

Herbaceous plants, including aquatics

22

TOTAL

9.368

10.727

Table 13. Minimum and maximum estimates of coverage for all plant species in the Birch Creek study area, extrapolated from 43 small and 17 large meadow locations.

Herbaceous plants, including aquatics

	Area (area (acres) Ar		Area	a (acres)		
Species	Minimum	Maximum	Species	Minimum	Maximum		
CHI	199	224	AGSP	274	308		
QBR	7.5	8	ARFU	223	251		
RTI	33	37	BEER	290	329		
APA	3	3.2	CACA	2771	3093		
IMA	0.3	0.32	CANE	348	394		
NCN	2	2.2	CCNE	2272	254		
SCA	1.5	2	CXAQ	4245	4744		
PAN	163	182	CXAT	2688	2970		
PPA	20	22	CXAU	0.2	0.23		
RCH	1.5	2	CXRO	1144	126		
RSP	1.5	2	CXSR	96	10		
LMA	14	15	DECA	3	3.1		
IVU	110	123	ELPA	75	82		
ÆTR	145	154	EQAR	346	37		
EFR	31	35	EQFL	472	51		
LHY	0.23	0.23	ERAN	14	1		
MSP	1.3	1.5	ERVA	154	17		
DAM	1.3	1.5	FERU	130	14		
ST	4	4.4	GLST	1291	144		
TAN	69	74	HOJU	425	47		
IPA	94	104	JUAR	1577	174		
TSP	212	237	JUFI	784	87		
AGM	3.3	3.4	JUSP	428	48		
ASP	1.7	2	POSP	1223	135		
MAR	5	6	PUCC	209	234		
UAR	129	146	SCFE	175	19		
AOF	10	11	SCVA	215	24		
ECO	4.2	5	SCVA	215	24		
ESP	4.5	5	TOTALS	21872.2	24358.		
OSP	4.5	6	IOTALS	210/2.2	24338.		
	92	102					
TSP RMA	400	429					
TYLA	238	256					
TVU	3.3	3.4	MANDAD	GRAND TOTA	AT		
OTALS	2010.13	2209.15		2209 = 26567 A			
IOINTS	2010.15	2209.15	24338 + .	2009 - 2000/ A	CICS.		

Grasses, sedges, rushes and horsetails

* This number corresponds approximately with the total suitable large and small meadows in Table 1 (26,562). Differences in these values are due to rounding error.

Summer forage Estimated area (acres)			Winter forage Estimated area (acres)			Summer and winter forage Estimated area (acres)		
Species	Min	Max	Species	Min	Max	Species	Min	Max
Grasses, s	edges, rush	es and horse	tails					
JUSP	2847	3103	CXRO	1144	1265	CCNE	5391	6032
POSP	1223	1358	EQFL	472	512	CXAT	2688	2970
HOJU	425	478	EQAR	346	370	GLST	1291	1442
BEER	290	329				1. Sec. 1.		1.1
AGSP	274	308	TOTAL	1962	2147	TOTAL	9370	10444
PUCC	209	234						
FERU	130	144						
CXSR	96	105						
CXAU	0.2	0.23						
TOTAL	2647	2956						
Herbaceo	us plants							
PTSP	212	237						
EPAN	163	182						
PTPA	94	104						
EPPA	20	22						
SAOF	10	11						
SOSP	5	6						
TOTAL	573	636						
Total acro	age summ	er	Total ac	reage wint	er	Total acro	age both	summer
for	rage		fo	rage		and w	inter fora	ge
3,220 - 3	592 acres		1,962 -	2,147 acre	s	9,370	- 10,444 a	cres
5.0 - 5.6	mi ²		3.1 - 3.	4 mi ²		14.6 -	16.3 mi ²	
13.0 - 14	.6 km²		8.0 - 8	.7 km ²		38.1 -	42.4 km ²	
		Grand to	al acreage of bi	ison forage	plant species			

Table 14. Minimum and maximum estimates of the occurrence of bison forage species in the Birch Creek study area, extrapolated from 43 small and 17 large meadows.

14,552 - 16,183 acres 22.7 - 25.3 mi² 59.0 - 65.8 km²

Table 15. Minimum and maximum estimates of occurrence of plant species in the Black River study area, extrapolated from 45 small and 18 large meadow locations.

Grasses	, sedges,	rushes	and	horsetai	ls
---------	-----------	--------	-----	----------	----

Herbaceous plants, including aquatics

Area (acres)		(acres)		Area (acres)		
Species	Minimum	Maximum	Species	Minimum	Maximum	
CCNE	4718	7201	PTPA	462	846	
CXAQ	2902	4514	POAM	430	691	
EQFL	2128	3225	PEFR	303	44	
CXAT	2020	2964	POSU	208	380	
CXRO	706	999	METR	125	213	
JUSP	558	964	HIVU	80	142	
BEER	378	649	TYLA	73	125	
POSP	357	591	EPAN	63	10	
ERAN	311	511	TRMA	42	78	
HOJU	234	402	PTSP	42	63	
ARFU	240	338	LEMN	17	2	
ALAE	149	214	ACHI	13	23	
ELPA	147	207	PTAN	12	10	
CXDI	138	190	CALL	11	1	
EQAR	127	174	CAPA	11	1:	
AGSP	87	161	ERCH	11	1	
GLST	61	93	STSP	9.5	1:	
PUCC	44	82	SUDE	-4	3	
CXSR	38	61	RAGM	4.2		
SCVA	23	43	ARTI	2.5	4	
FERU	13	18	EPPA	2	1	
CXAU	0.8	1.5	RMAR	2.6		
2000			RUAR	2	3	
TOTALS	15379.8	23602.5	CNCN	1.2	3	
			CIMA	1	1.	
			SECO	0.7	1.	
			TOTALS	1932.7	3251.	

MAXIMUM GRAND TOTAL 23602.5 + 3251.7 = 26854 acres*

 This number corresponds approximately with the total suitable large and small meadows in Table 1 (26,864). Differences in these values are due to rounding errors.

Summer forage Estimated area (acres)			Winter forage Estimated area (acres)			Summer and winter forage Estimated area (acres)		
Species	Min	Max	Species	Min	Max	Species	Min	Max
Grasses, se	dges, rush	es and horseta	ils					
JUSP	558	964	EQFL	2128	3225	CCNE	4718	7201
BEER	378	649	CXRO	706	999	CXAT	2020	2964
POSP	357	591	EQAR	127	174	GLST	61	93
HOJU	234	402	1000	1.0				
ALAE	149	214	TOTAL	2961	4398	TOTAL	6799	10258
CXDI	138	190						
AGSP	87	161						
PUCC	44	82						
CXSR	38	61						
FERU	13	18						
CXAU	0.8	1.5						
TOTAL	1439	2370						
Herbaceou	ıs plants							
PTPA	462	846						
EPAN	63	101						
PTSP	42	63						
EPPA	2	4						
TOTAL	569	1014						
Total acre fora		er	Total a	creage win forage	ter		eage both winter for	
2.008 - 3	,384 acres		2.961	- 4,398 acr	es.	6 799	- 10,258 ac	tes
3.1 - 5.3			and the second sec	13.9 mi ²	1		16.0 mi ²	
8.1 - 13.				36.2 km ²			42.0 km ²	
		Gra	nd total acreage	of bison fo	orage plant sp	ecies		

Table 16. Minimum and maximum estimates of the occurrence of bison forage species in the Black River study area, extrapolated from 45 small and 18 large meadows.

11,768 - 18,040 acres 18.4 - 28.2 mi² 47.8 - 73.3 km² Table 17. Summary of procedures used to estimate plant cover.

<u>Number of Locations:</u> Number of meadow locations in which that species occurred. The maximum possible number of locations for each study area follows:

Birch Creek large	= 17 locations
Birch Creek random	= 43 locations
Black River large	= 18 locations
Black River random	= 45 locations

Percent Cover: Total cover/number of locations in study area.

/alues used:	Category 4	(10-100%)	= 31.623% cover
	Category 3		= 3.162% cover
	Category 2		= .316% cover
	Category 1		= .032% cover

<u>Calibrated Percent Cover</u>: Percent cover adjusted so that total percent cover (herbaceous and grasslike) = 100% - calculated separately for random and large meadows.

Values used:	Birch Creek large	x 1.0619
	Birch Creek random	x 1.1344
	Black River large	x 1.8552
	Black River random	x 1.3732

Area: Percent cover x sample area (acres).

V

Values used:	Birch Creek large	x 7770
	Birch Creek random	x 2607
	Black River large	x 11840
	Black River random	x 1807

Total Area: (Used only for random meadows) Percent cover x total area (acres).

Values used:	Birch Creek	х	18,792	
	Black River	x	15,024	

Calibrated Sample Areas and Total Areas: As per calibrated percent cover.

Minimum and maximum total area estimates for all meadows in each study area. <u>Minimum estimate:</u> Sum of uncalibrated total areas for random and large (acres). <u>Maximum estimate:</u> Sum of calibrated total areas for random and large (acres). Table 18. Total estimated forage production in wet and dry meadows in the Birch Creek study area, and number of bison that could be supported in each meadow type.

Species	Minimum Estimate	Maximum Estimate		
BEER	290	329		
CXRO	1,144	1,265		
EQAR	346	370		
EQFL	472	512		
CXAT	2,688	2,970		
GLST	1,291	1,442		
TOTAL	6,231	6,888		

ACREAGE OF WET MEADOW SPECIES

plus 1/2 of CCNE to wet meadows*

1/2 of CCNE to dry meadows

= 5,391 - 6,032 - 2

= 2,696 - 3,016 acres

WET MEADOW GRAND TOTAL

- = 6,231+2,696 & 6,888+3,016
- = 8,927 & 9,904 acres
- 2.47 acres/hectare
- = 3,614 4,010 hectares
- x 4,000 kg/ha (3,570 lbs/acre)** forage produced in wet meadows (Reynolds and Peden, 1987)
- = 14,456,000 16,040,000 kg forage produced (31,869,987 - 35,362,105 lbs) average use of 10 kg (22 lbs) forage/bison/day (Telfer and Scotter, 1975)
- = 2,410 kg (5,313 lbs) forage/bison/8 month winter period (=241 days) assuming desirable moderate forage removal of 1/3 of total forage production
- = 4,818,667 5,346,667 kg of forage available for removal
 - (10,623,330 11,787,369 lbs)
- = 1,999 2,219 bison supported by Birch Creek wet meadows annually

ACREAGE OF DRY MEADOW SPECIES

Species	Minimum Estimate	Maximum Estimate		
AGSP	274	308		
CXAV	.2	.23		
CXSR	96	105		
FERV	130	144		
HOJU	425	478		
POSP	1,223	1,358		
PUCC	209	234		
EPAN	163	182		
EPPA	20	22		
PTSP	212	237		
SAOF	10	11		
SOSP	5	6		
TOTAL	2,767	3,085		

DRY MEADOW GRAND TOTAL

- = 2,767+2,696 & 3,085+3,016
- = 5,463 & 6,101 acres
- 2.47 acres/hectare
- = 2,212 2,470 hectares
- x 2,000 kg/ha (1,785 lbs/acre) forage produced in dry meadows (Reynolds and Peden, 1987)
- = 4,424,000 4,940,000 kg forage produced (9,753,239 - 10,890,823 lbs) average use of 10 kg (22 lbs) forage/bison/day (Telfer and Scotter, 1975)
- = 1,240 kg (2,734 lbs) forage/bison/4 month summer period (=124 days) assuming desirable moderate forage removal of 1/3 of total forage production
- = 1,474,667 1,646,667 kg of forage available for removal (3,251,080 - 3,630,274 lbs)
- = 1,189 1,328 bison supported by Birch Creek dry meadows annually

CCNE includes CANE and CACA which occur in dry and wet meadows.

** Conversion factors are 1 kg = 2.20462 lbs and kg/ha x .89256 = lbs/acre.

of CCNE to each wet and dry meadows

Table 19. Total estimated forage production in wet and dry meadows in the Black River area, and number of bison that could be supported in each meadow type.

ACREAGE OF WET MEADOW SPECIES

ACREAGE OF DRY MEADOW SPECIES

Species	Minimum Estimate	Maximun Estimate	
BEER	378	649	
CXRO	706	999	
EQAR	127	174	
EQFL	2,128	3,225	
CXAT	2,020	2,964	
GLST	61	93	
TOTAL	5,420	8,104	

plus ¹/₂ of CCNE to wet meadows ¹/₂ of CCNE to dry meadows

=4,718-7,201-2

= 2,359 - 3,601 acres

of CCNE to each wet and dry meadows

WET MEADOW GRAND TOTAL

- = 5,420+2,359 & 8,104+3,601
- = 7,779 & 11,705 acres
- 2.47 acres/hectare
- = 3,149 4,739 hectares
- x 4,000 kg/ha (3,570 lbs/acre)** forage produced in wet meadows (Reynolds and Peden, 1987)
- = 12,596,000 18,956,000 kg forage produced (27,769,394 - 41,790,777 lbs) average use of 10 kg (22 lbs) forage/bison/day (Telfer and Scotter, 1975)
- = 2,410 kg (5,313 lbs) forage/bison/8 month winter period (=241 days) (wet meadow forage required annually)

assuming desirable moderate forage removal of 1/3 of total forage production

= 4,198,667 - 6,318,667 kg of forage available for removal

(9,256,465 - 13,930,260 lbs)

= 1,742 - 2,622 bison supported by Black River wet meadows annually

Species	Minimum Estimate	Maximum Estimate
AGSP	87	161
ALAE	149	214
CXAV	.8	1.5
CXDI	138	190
CXSR	38	61
FERV	13	18
HOJU	234	402
POSP	357	591
PUCC	44	82
EPAN	63	101
EPPA	2	4
PTSP	42	63
TOTAL	1,168	1,889

DRY MEADOW GRAND TOTAL

- = 1,168+2,359 & 1,889+3,601
- = 3,527 & 5,490 acres
- 2.47 acres/hectare
- = 1,428 2,223 hectares
- x 2,000 kg/ha (1,785 lbs/acre) forage produced in dry meadows (Reynolds and Peden, 1987)
- = 2,855,870 4,446,000 kg forage produced (6,296,108 - 9,801,741 lbs) average use of 10 kg (22 lbs) forage/bison/day (Telfer and Scotter, 1975
- = 1,240 kg (2,734 lbs) forage/bison/4 month summer period (=124 days) (dry meadow forage required annually) assuming desirable moderate forage removal of 1/3 of total forage production
- = 951,957 1,482,000 kg of forage available for removal (2,098,703 - 3,267,247 lbs)
- = 768 1,195 bison supported by Black River dry meadows annually

CCNE includes CANE and CACA which occur in dry and wet meadows.

Conversion factors are 1 kg = 2.20462 lbs and kg/ha x .89256 = lbs/acre.

APPENDIX A

Table 1. Data form for recording plant species composition.

ate:	P1 P2 P3							D: 1=01/ 2=.1-		P2					07	100	00	DIC
	the second s			PO	PI	170	173		_	PZ	Pa	174	100	10	1	100	Pa	PI
losses/L	ichens ht(cm)	-		1	-	-		Forbs(contd)	-	-	-				<u> </u>	1		-
	+ + +	-	-		1	<u></u>	1	MENYTRI	-		1		-	1	1	1	-	-
	1	1			<u> </u>	1	1	TRIGLMARI			-	1	1	1		-	1	1
		<u> </u>		-	-	1	-		-	1	-	-	-	-	1	1	-	1
	1 <u>1</u>		<u> </u>	-	-	1	-		1	-		-	1	-	1	1	-	-
	ds ht(cm):	1	1	1	<u>}</u>	1	1		1	-	1	1	1	î.	-	1	+	1
XAQ	1 1 1	1		-	-	1	-		-	1	-	-	1	1	-	1	1	-
XAT		-		1	-		-		-	-			1	-	-	-	1	1
XRO	1	-	i	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1
XSA		1	1	1	1	1	1	<u> </u>	1	1	1	1	1	1	1	1	1	1
×		1	1	1	1	1	1		1	1	1		1		1	1	1	
×			1	1	1	1	1				1	1			1		1	1
ERAN		1	1	1	1	1	1	Ericaceous/c	-	fshr	sdu	ht(c	m):_	-	1	1		1
ERVA	III	1	£.	1				CHAMCALY	-	1	1	1	1		1	1	1	4
SCRPVA		i	1		1	1.	1.	ANDRMPOL		1		1		1	1	1	1	1
JU			!	1	1	1	1	ARUV	1	1	1	1	1	1		1	1	
EL		1	1	1	1		1	AR_		1	1	1	1	1	1		1	1
BCKERU			1	1		1	1	VAVI	1	1			1	1		1	1	1
PUCC		1	1				1	VAUL	1	1	1	1			i	1	1	1
GLYCMA		1-	1		1		1	EMNI	1	1		1					1	1
CA	1 1	1	1	I	i		1	LEDUM			1	1	1	1	1	1	1	1
ARLA	i	1			i	1	1	RUCHAMAE					1		i			1
ARFU		1	1	1	1	1	1	SALIX_	1	1		1	1	1	1	1		1
ELYM_	_ 1 1 1	1	1	1	1	1	1	BENA	1			1	1	1		1	Ĩ	1
AGRO_		î	1	1	1	1	1	ROAC	1		1			1	1	1	1	1
ALOAE/	AL !!!	1	1	1	1	1	1		1	1			1	1	1	1	i	1
HORDJU	JIII	1	1	1	1	T	1		T		1	1	T	1	1		1	1
DECA	1	1	1	1	1	1	ł		1	1	1	1	1	1	1	i	Ĩ	1
		1	1	1	1	1	1		1		1	1	1	1	1	- E	1	1
	. 1		1	Ţ	1		121	1	1	1	1	1	i	i	1	1	1	
	1 1		1	1	1	1	1	1.1		1		1	1	T	1	1	1	Ĩ
		1	1	1	1	1	1		1		1	1		1	1			1
	111	1	1	1	1	1	1	1.	1	1	1	i		1	1	1	1	1
1.000	1 1 1	1	1	ĩ	1	1	1	i Taller shrul	os l	nt(cm):	_	1	1	1	1	1	1
	1 1 1	1	1	1	1		1	SAAL	1	1	1	1	1	1	1	!	1	1
	1. 1. 1.	1	1	1	1	-	1	SAAR	1	T	1	1	1	1	1	Ĩ	1	1
	1 1 1	1	1	i	1	1	Ì	I ISAPU	1	1	1	1		1	1	1	1	1
P		1	1	1	1	T	1	SA	1	1	T	T	1		1	1	1	1
		1	1	T	T	Ì	1	I SA	T		1	1	T	i	İ	1	t	I
Forbs	ht(cm):	1	1	1	Ĩ	i	1	ALN_	1	İ	1	1	Í	Ì	1	i	1	1
EPILOE		-	-	1	1	31	1	BEGL	1	1	.1	. 1	1	i	1	1	1	1
SOUDO		1	1		1	i	1		1		1	1	1	1		1	1	1
SAOFF		1	i	1	T	1	- 5-	1	1	1	1	1	1	Ì	Î	1	1	1
POTPA		1	1	1	1	1	-		1	1	1	1	1	;	1.1			
ACHILL		1	4	1	1	-	1	1 1	1	1	i	1	1	. 1	+	1		i
EQUIS		1	1	1	T	1	1			1	3	;	1	i	1			1
EQUIS		ī	ĩ	1	-	1	10	Trees ht(cm):		1	1		1				1
RUAR/S		1		1		1	-	POBA			i	1	1				1.	1
CALLA		1			-	1	4	-	-	1		1	_					1
TYPHL								11.00							-			

APPENDIX A

...

Table 2. Data form for recording meadow characteristics.

DATE:_____ TIME:____ PLOT#:___ SITE#:____ GPS:__ PHOTO #'S: AERIAL___ PROFILE___ OTHER SOIL: DRY, MOIST, SAT'D, FLCOD (KG/HA) 500-1000 1000-2200 220 GRAMIN BIOMASS: LOW_ 2200÷ PROFILE DIAGRAM: SAME/DIFF THAN MAPPED? HOW? N S COMMENTS (ZONES, SUCCSN, BRWS POT'L, UNG, WTRFL USE) SAMPLE #'S, NAMES: _____ -DATE:_____ TIME:_____ PLOT#:____ SITE#:_____ GPS:___ PHOTO #'S: AERIAL___ PROFILE___ OTHER SOIL: DRY, MOIST, SAT'D, FLCOD GRAMIN BIOMASS: LOW_ HI. MED 500-1000 1000-2200 2200+ (KG/HA) PROFILE DIAGRAM: SAME/DIFF THAN MAPPED? N S HOW? COMMENTS (ZONES, SUCCSN, BRWS POT'L, UNG, WTRFL USE) SAMPLE ='S. NAMES: ____ 1.4 S. 11 (2)

APPENDIX A

Table 3. Simplified data form for recording plant species composition from the air.

Plot #:	Date:	a secondaria	GPS:				
Photo No's:	Time:						
Plant Species		Percent C	Cover				
SPP.	10-100	1-10	.1-1	.011			
CXAQ							
CXAT							
CXRO	2			1.5.5.5.5			
CACA							
JUSP							
HOJU							
POSP				1			
EQSP							
PTSP			1000				
GLST							
SCFE			1000				
BEER							
				· · · · · ·			
		12.010.000	1				

Nutrient Samples:

8

APPENDIX B

1

1

Table 1: Plant species recorded in Birch Creek study area, June 1994.

name	Latin name	Common name
Grasses, sedg	ges, rushes and horsetails*	
AGSP	Agropyron spp.	wheatgrasses
ARFU	Arctophila fulva	pendent grass, mud grass
BEER	Beckmannia erucaeformis	slough grass
CACA	Calamagrostis canadensis	bluejoint reedgrass
CANE	Calamagrostis neglecta	narrow reedgrass
CCNE	the above two species combined	reedgrasses
CXAQ	Carex aquatilus	water sedge
CXAT	Carex atherodes	slough sedge, awned sedge
CXAU	Carex aurea	golden sedge
CXRO	Carex rostrata	beaked sedge
CXSR	Carex sartwelli	Sartwell's sedge
DECA	Deschampsia caespitosa	tufted hairgrass
ELPA		spike rush
	Eleocharis palustris	field/meadow horsetail
EQAR	Equisetum arvense	and the set of a first the set of a first of the set of the set of the
EQFL	Equisetum fluviatile	swamp horsetail
EQSP	the above two species combined	horsetail
ERAN	Eriophorum angustifolium	tall cottongrass
ERVA	Eriophorum vaginatum	tussock cottongrass
FERU	Festuca rubra	red fescue
GLST	Glyceria striata/maxima	manna grass
HOJU	Hordeum jubatum	foxtail barley
JUAR	Juncus arcticus	Arctic rush
JUFI	Juncus filiformis	filiform rush
JUSP	the above two species combined	rush
POSP	Poa spp.	bluegrasses
PUCC	Puccinellia spp.	alkali grasses
SCFE	Scolochloa festucacea	common river grass
SCVA	Scirpus validus	great bulrush
Herbaceous	plants, including aquatics*	
ACHI	Achillea spp.	yarrows
AQBR	aquatic Brassica	Carlo De Mar.
ARTI	Artemisia tilesii	common wormwood sage
CAPA	Caltha palustris	yellow marsh marigold
CIMA	Cicuta mackenziana	poison water hemlock
CNCN	Cnidium cnidiifolium	northern hemlock-parsley
CSCA	Castilleja caudata	pale paintbrush
EPAN	Epilobium angustifolium	fireweed
EPPA	Epilobium palustre	swamp willow-herb
ERCH	Erysimum cheiranthoides	yellow wallflower, mustard
ERSP	Erigeron spp.	fleabanes
	Changebuphne cainculate	

33

Birch Creek study area (continued)

Abbreviated		72 co. that 10 to 10
name	Latin name	Common name
GLMA	Glaux maritima	sea milkwort
HIVU	Hippuris vulgaris	common mare's tail
METR	Menyanthes trifoliata	buckbean
PEFR	Petasites frigidus	Arctic sweet coltsfoot
PLHY	Platanthera hypereborea	northern green bog orchid
PMSP	Potamogeton spp.	pondweeds
POAM	Polygonum amphibium	water smartweed
PRST	Primula stricta	primrose
PTAN	Potentilla anserina	silverweed
PTPA	Potentilla palustris	marsh cinquefoil
PTSP	Potentilla spp.	other cinquefoil species
RAGM	Ranunculus gmelini	creeping crowfoot
RASP	Raminculus spp.	buttercups
RMAR	Raminculus spp. Rumex arcticus Rubus arcticus 2 perbus due doubleorny Sanguisorba officionalis Sanguisorba officionalis	Arctic dock
RUAR	Rubus arcticus 2 publis dander o	nagoon berry
SAOF	Sanguisorba officionalis	common burnet
SECO	Senecio congestus	mastodon weed, marsh fleaband
SESP	Senecio spp.	groundsels
SOSP	Solidago spp.	goldenrods
STSP	Stellaria spp.	chickweeds
TRMA	Triglochin maritimum/ palustris	maritime/marsh arrowgrass
TYLA	Typha latifolia	cattail
UMBL	CNCN, CIMA and other parsley family pla	
	Utricularia and other parsicy failing pla	common bladderwort
UTVU	Utricularia vulgaris	common bladderwort
Dwarf Shrubs	s, shrubs and trees**	
ARUV	Arctostaphylos uva-ursi	bearberry, kinnikinnick
BEGL	Betula glandulosa	resin birch
BENA	Betula nama	dwarf arctic birch
PIGL	Betula nana redum	
	Picea glauca	white spruce
PIMA	Picea mariana	black spruce
POBA	Populus balsamifera 🦟	balsam poplar
POTR	Populus tremuloides	trembling aspen
ROAC	Rosa acicularis	prickly rose
SAAL	Salix alaxensis	feltleaf willow
SAAR	Salix arbusculoides	littletree willow
SABR	Salix brachycarpa	barren ground willow
SACA	Salix candida	silver willow
SAGL	Salix glauca	grayleaf willow
SAIN	Salix interior	sandbar willow
SAMO	Salix monticola	park willow
ST MILLO		diamondleaf willow

Lists of herbaceous plants include all species encountered during sampling and are fairly complete lists of all species present.

** Lists only the most common trees and shrubs found along meadow edges and is not a complete list of woody plants.

APPENDIX B

Table 2: Plant species recorded in Black River study area, June 1994.

Abbreviated		
name	Latin name	Common name
Grasses, sedg	ges, rushes and horsetails*	
AGSP	Agropyron spp.	wheatgrasses
ALAE	Aloecurus aequalis	squirreltail grass
ARFU	Arctophila fulva	pendent grass, mud grass
BEER	Beckmannia erucaeformis	slough grass
CACA	Calamagrostis canadensis	bluejoint reedgrass
CANE	Calamagrostis neglecta	narrow reedgrass
CCNE	the above two species combined	reedgrasses
CXAQ	Carex aquatilus	water sedge
CXAT	Carex atherodes	slough sedge, awned sedge
CXAU	Carex aurea	golden sedge
CXDI	Carex diandra	Forden sende
CXRO	Carex rostrata	beaked sedge
CXSR	Carex sartwelli	Sartwell's sedge
ELPA		spike rush
	Eleocharis palustris	field/meadow horsetail
EQAR	Equisetum arvense	
EQFL	Equisetum fluviatile	swamp horsetail
EQSP	the above two species combined	horsetail
ERAN	Eriophorum angustifolium	tall cottongrass
FERU	Festuca rubra	red fescue
GLST	Glyceria striata/maxima	manna grass
HOJU	Hordeum jubatum	foxtail barley
JUSP	Juncus spp.	rushes
POSP	Poa spp.	bluegrasses
PUCC	Puccinellia spp.	alkali grasses
SCFE	Scolochloa festucacea	common river grass
SCVA	Scirpus validus	great bulrush
Herbaceous	plants, including aquatics*	
ACHI	Achillea spp.	yarrows
ARTI	Artemisia tilesii	common wormwood sage
CALL	Calla palustris	wild calla lily
CAPA	Caltha palustris	yellow marsh marigold
CIMA	Cicuta mackenziana	poison water hemlock
CNCN	Cnidium cnidiifolium	northern hemlock-parsley
EPAN	Epilobium angustifolium	fireweed
EPPA	Epilobium palustre	swamp willow-herb
ERCH	Erysimum cheiranthoides	yellow wallflower, mustard
HIVU	Hippuris vulgaris	common mare's tail
LEMN	Lemna sp.	duckweed
METR		buckbean
MULTIN	Menyanthes trifoliata	Unchocan

Black River study area (continued)

Abbreviated name	Latin name	Common name
PEFR	Petasites frigidus	Arctic sweet coltsfoot
POAM	Polygomum amphibium	water smartweed
POSU	Potamogeton subsibiricus	subsiberian pondweed
PTAN	Potentilla anserina	silverweed
PTPA	Potentilla palustris	marsh cinquefoil
PTSP	Potentilla spp.	other cinquefoil species
RAGM	Ramunculus gmelini	creeping crowfoot
RMAR	Rumex arcticus	Arctic dock
RUAR	Rubus arcticus	nagoon berry
SECO	Senecio congestus	mastodon weed, marsh fleabane
STSP	Stellaria spp.	chickweeds
SUDE	Suaeda depressa	sea-blite
TRMA	Triglochin maritimum/ palustris	maritime/marsh arrowgrass
TYLA	Typha latifolia	cattail
UMBL	CNCN, CIMA and other parsley family	y plants combined
Dwarf Shrubs,	shrubs and trees**	
ROAC	Rosa acicularis	prickly rose
SABR	Salix brachycarpa	barren ground willow
SAOF	Sanguisorba officionalis	common burnet
SAPU	Salix pulchra	diamondleaf willow

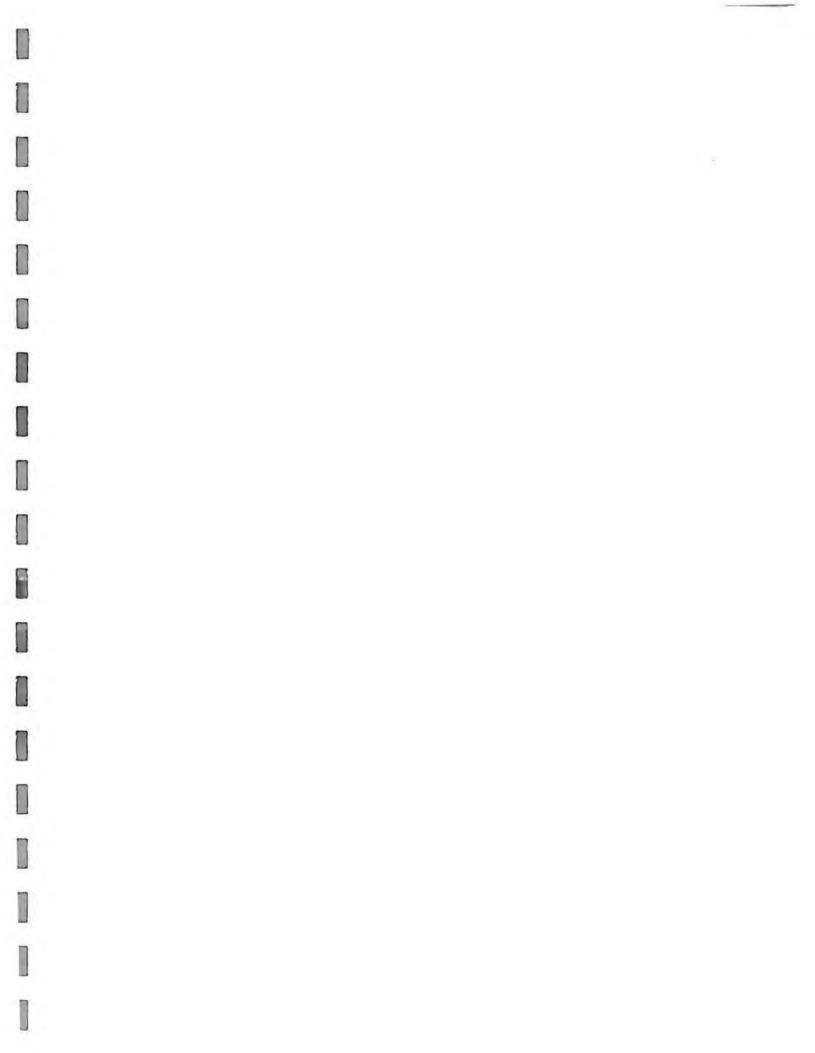
Lists of herbaceous plants include all species encountered during sampling and are fairly complete lists of all species present.

** Lists only the most common trees and shrubs found along meadow edges and is not a complete list of woody plants.

APPENDIX B

Table 3: Plant species^{*} recorded in the Shovun Lake, Bearman Lake and Chalkyitsik study areas, June 1994.

Abbre viated			Shovun		Chalk
name	Latin name	Common name	Lake	Lake	yitsil
Grasses,	sedges, rushes and horsetails**				
AGSP	Agropyron spp.	wheatgrasses	x	x	
ALAE		squirreltail grass			X
ARFU	Arctophila fulva	pendent grass, mud grass	X		x
BEER	Beckmannia erucaeformis	slough grass	X		
CACA	Calamagrostis canadensis	bluejoint reedgrass	XX	x	X X X
CXAO	Carex aquatilus	water sedge	X	х	X
	Carex atherodes	slough sedge	X	х	X
	Carex aurea	golden sedge		x	20.1
	Carex diandra	Borren seeBe	x	12	
	Carex rostrata	beaked sedge	x	X	x
	Carex sartwelli	Sartwell's sedge	A	a	XX
				v	A
DECA	Deschampsia caespitosa	tufted hair grass	x	X	x
ELPA	Eleocharis palustris	spike rush	А	X X	Λ
EQAR		field/meadow horsetail		A	
EQFL	Equisetum fluviatile	swamp horsetail	x	X	х
EQSP	the above two species combined	horsetail			
ERAN	Eriophorum angustifolium	tall cottongrass	X	X	
ERVA	Eriophorum vaginatum	tussock cottongrass	X	X	х
GLST	Glyceria striata/maxima	manna grass	х	x	
HOJU	Hordeum jubatum	foxtail barley	X	X	x
JUSP	Juncus sp.	rushes	х	X	X
POSP	Poa spp.	bluegrasses	X	x	X
PUCC	Puccinellia spp.	alkali grasses		X	X
SCFE	Scolochloa festucacea	common river grass	х	x	X
SCVA	Scirpus validus	great bulrush	x	x	x
Herbace	ous plants, including aquatics**				
ACHI	Achillea spp.	yarrows	x	x	
AQBR	aquatic Brassica	alaina Amira		v	
ARAL	Arnica alpina	alpine Arnica	v	Å	
ARFR	Artemisia frigida	prairie/fringed sagewort	x	A	
CALL	Calla palustris	wild calla lily		X X X X	
CAPA	Caltha palustris	yellow marsh marigold		X	
EPAN	Epilobium angustifolium	fireweed	X	X	X
ERCH	Erysimum cheiranthoides	yellow wallflower, must		X X X	X X X
HIVU	Hippuris vulgaris	common mare's tail	х	X	X
METR	Menyanthes trifoliata	buckbean	X	x	


Abbre viated Shovun Bearman Chalk Lake Lake vitsik name Latin name Common name х OXCA Oxytropis campestris field oxytrope XX PAPA Parnassia palustris grass-of-Parnussus PEFR Petasites frigidus Arctic sweet coltsfoot х XX POAM Polygonum amphibium water smartweed POSU Potamogeton subsibiricus subsiberian pondweed XXXXXXXX PRST Primula stricta primrose XX PTAN Potentilla anserina silverweed PTSP Potentilla spp. other cinquefoil species RAGM Ramunculus gmelini creeping crowfoot х RMAR Rumex arcticus Arctic dock RUAR Rubus arcticus nagoon berry х SAOF Sanguisorba officionalis common burnet х SECO Senecio congestus mastodon weed XXXXXX SESP Senecio spp. groundsels х SODE Solidago decumbens decumbent goldenrod XXX SPAN Sparganium angustifolium bur-reed STSP chickweeds Stellaria spp. XX TRMA Triglochin maritimum/palustris maritime/marsh arrowgrass х TYLA Typha latifolia cattail х UMBL CNCN, CIMA and other parsley family plants combined

Shovun, Bearman and Chalkyitsik study areas (continued)

Woody plant species were not recorded for these study areas.

Lists of herbaceous plants include all species encountered during sampling and are fairly complete lists of all species present.

