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EXECUTIVE SUMMARY

1. At a workshop in January 2018, the Aleutian Tern Technical Committee and other workshop
participants recommended pilot testing two direct and one indirect method for estimating
Aleutian Tern (ALTE; Onychoprion aleuticus) nesting colony abundance. One recommended
method involved low-altitude photography obtained by unmanned aerial vehicles (UAV).
Another method involved counts in ground-based photographs. The third method involved
relating counts to call rates derived from acoustic recorders. In early June 2018, three teams
of researchers pilot tested these methods at a total of 16 ALTE colonies in Alaska.

2. UAVs: Automated and semi-automated photo recognition routines counted ALTE and Arctic
Tern (ARTE, Sterna paradisaea) in UAV photography and estimated combined species
density. Terns proved relatively easy to identify in UAV photographs, but we could not reliably
differentiate ALTE and ARTE from photos alone and hence relied on direct count species
ratios. The UAV method estimated densities ranging from 0 to 2.75 ALTE per hectare across
six single and mixed-species colonies. We estimated ALTE abundances of 231 (95% CI =
156 to 322) at Black Sand Spit near Yakutat, 2 (95% CI = 0 to 3) at the Kenai Headquarters
colony, 0 at the Burton Ranch colony on Kodiak Island, 47 (95% CI = 37 to 57) at the Kalsin
Bay colony on Kodiak Island, 14 (95% CI =9 to 19) at the Middle Bay colony on Kodiak Island,
and 17 (95% CI = 12 to 22) at the Women’s Bay colony on Kodiak Island. Estimates of
abundance at the small colonies derived from UAV photography were lower but generally
agreed with contemporaneous direct counts. UAV estimates of abundance at Black Sand Spit,
the largest colony we surveyed, were 50% of the direct counts taken the same week, but
equaled direct counts taken 3 days before and 9 days after UAV surveys.

3. Photo counts: A strong relationship existed between ground-based photo counts and
maximum direct counts. We estimated that maximum direct count increased by 0.58 birds for
every additional bird counted in photos (R? = 0.85). This high correlation makes direct counts
and photo counts more or less equivocal in usage because it is possible to convert from one
count to the other. The advantages of photo counts relative to direct counts include ease of
implementation in the field and creation of a permanent photo record.

4. Song meters: We recorded and detected ALTE vocalizations at all 16 deployment sites.
Colony specific call rates peaked during different parts of the summer. We estimated that adult
direct counts increased by 11% for every one-unit increase in calls per minute when measured
during the £ 7 days surrounding the count date. We found positive but statistically insignificant
relationships between call rate and nest density.

INTRODUCTION

The Aleutian Tern (ALTE; Onychoprion aleuticus) is an uncommon seabird that nests in coastal
areas of Alaska and Russia (North 2013). Renner et al. (2015) estimated the number of ALTE at
known colonies in Alaska to be declining 8.1% annually since 1960. In 2015, a multi-stakeholder
group coalesced to identify information needs and research priorities in an effort to understand
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the conservation status and needs of the species (summarized in McDonald and Carlisle 2018).
The multi-stakeholder group focuses broadly on designing a statewide monitoring program that
generates unbiased estimates of ALTE abundance in Alaska. An important part of any future
statewide effort will be estimation of the number of individuals at a single nesting colony in a given
year. This single-colony estimate has been identified as a critical first hurdle to implementation
of future statewide efforts (McDonald and Carlisle 2018).

Certain past ALTE survey methods have centered on human observers flushing birds at nesting
colonies and counting birds in flight (Pyare et al. 2013). Other surveys, especially those on Kodiak
Island, take advantage of “natural” flush events to count birds in the air. Biologists and others
have raised concerns over these types of direct counts, specifically that the proportion of terns
that flush is variable, that flying terns are difficult to count accurately, that human-induced flushing
may have adverse effects on nesting productivity, and that reliable species identification is difficult
where Arctic Terns (ARTE; Sterna paradisaea) are present (McDonald and Carlisle 2018).

With a goal toward alleviating some of the concerns over direct counts, the Aleutian Tern
Technical Committee and other participants at a 2018 workshop discussed pilot testing three
methods for estimating colony abundance. Workshop participants recommended pilot testing
low-altitude aerial imagery taken from small unmanned aerial vehicles (UAV, or “drone” method),
ground-based photos of flying birds (photo count method), and audio call monitoring (song meter
method). In addition, workshop participants emphasized the importance of continuing to apply the
direct count method for comparability to previous years. If, for example, one of the pilot methods
proves to be highly correlated with direct counts, it may be possible to make past counts
comparable to those from the pilot method or the Technical Committee may opt for direct counts
only because they are less expensive.

Magness et al. (2019) tested and successfully estimated nest density using a UAV method during
summer 2017 at a single mixed-species colony near Kenai AK. Magness et al. (2019) used
human observers to count nesting terns in collected photographs and to differentiate between
ALTE and ARTE. Importantly, they also found that presence of a drone overhead did not influence
nest attendance or tern activity.

Ground-based photo-counts attempted to standardize and reduce variability inherent in traditional
visual ground-based direct counts by using multiple photographs in quick succession in an
attempt to “freeze” the action and capture flying individuals (McDonald and Carlisle 2018). Photo-
counts should reduce the potential for over counting flying birds if multiple photos do not capture
the same bird or if duplicates can be identified. Photo-counts still rely on anthropogenic or natural
flushes and thus are dependent on the proportion of flushing individuals and estimation of the
species ratio at mixed colonies.

The song-meter method deployed acoustic sensors at nesting colonies to record ALTE calling
activity over most of the nesting season. During deployment, field technicians intermittently visited
the colonies to make visual counts and to assess nest density near the sensors. The song-meter
method sought to relate acoustic call rates to concurrent measures of abundance from traditional
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survey methodologies and hence estimate phenology and relative abundance. Similar song-
meter approaches have successfully estimated adult or nest abundance of Forster’s Tern (Sterna
forsteri) (Borker et al. 2014), Leach’s Storm-Petrel (Hydrobates leucorhoa) (Orben et al. 2019),
and Cory’s Shearwater (Calonectris borealis) (Oppel et al. 2014).

Following recommendations from the Aleutian Tern Technical committee, four teams of
researchers conducted pilot-tests of single-colony estimation methods during June 2018 at six
mixed-species colonies in southeast and southcentral Alaska. Our objectives were to refine both
the in-field and post-field procedures of all four methods. In particular, UAV, photo counts, and
song meter methods all require substantial post-field processing in order to produce a colony size
estimate. The UAV-based method requires development of a photo-recognition algorithm to
identify and count terns in UAV-collected photographs. The photo count method requires counting
terns in derived photographs and accounting for duplicates, possibly by stitching photos into a
mosaic. The song meter method requires analysis of audio recordings to identify and count ALTE
songs and to relate the number of such calls to surrounding nest density or direct counts.

This document is a summary of all four pilot colony-sampling efforts conducted in June 2018.
This report contains methodological descriptions and results of the three test methods (UAV,
photo count, and song meter), as well as comparisons to the fourth traditional method (direct
counts). At the end, we provide a summary of recommendations for future surveys.

STUDY AREAS

For testing of the UAV method, we non-randomly selected single species and mixed ALTE/ARTE
colonies in coastal areas of southcentral and southeastern Alaska for study (Figure 1). We tested
the photo count method at seven colonies both on and off Kodiak Island’s road system (Kalsin
Bay, Middle Bay, Alligator Island, Foul Bay, SE Viekoda, Women’s Bay, and Three Spruce Island).
The song meter team applied their method at sixteen colonies located throughout southern Alaska
(Appendix C Figure 3).

METHODS

This section contains one subsection for each of the three primary sampling methods. We provide
a summary here and refer to detailed methods in Appendices A, B, and C. A description of the
direct count method appears in McDonald and Carlisle (2018).

Un-manned Aerial Vehicle Sampling Methods

We deployed three UAV’s at six ALTE colonies in southcentral and southeast Alaska. Four UAV
colonies were located on Kodiak Island’s road system (Women’s Bay, Middle Bay, Kalsin Bay,
Burton Ranch), one colony was on the Alaskan road system (Kenai NWR Head Quarters) and
one was a remote colony (e.g., Black Sand Spit near Yakutak). The aerial extents of all UAV
colonies on Kodiak were approximately the same, while the Black Sand Spit colony was
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appreciably larger (Table 1). We visited colonies for UAV surveys once between 6 Jun 2018 and
13 Jun 2018 during the anticipated peak of nesting activity.

We conducted all UAV flight missions during daylight hours using high-resolution standard red-
green-blue (RGB) imagery. We tested both a census and sample UAYV flight patterns over ALTE
colonies depending on colony size. At smaller colonies, we employed the census mode wherein
UAV photographs overlapped to cover the entire colony. At larger colonies, we employed a
spatially balanced sampling method wherein the UAVs flew to pre-determined points and obtained
non-overlapping photographs. The spatially balanced method selected 99 points within each
colony using the BAS spatially balanced sample algorithm (Robertson et al. 2013, 2017) and
applied the travelling salesman algorithm (Kruskal 1956, Garfinkel 1985) to order the points in an
efficient survey order (least distance flown, approximately). We photographed colonies at above-
ground altitudes of 15 meters, 20 meters, and 30 meters (Appendix A Table 2).

Photo-Recognition

Following photo collection, we trained a customized neural network to search for and detect terns
in UAV-derived photographs. During training and afterward, we tolerated a higher than normal
number of false positives (not actual terns) due to difficulties distinguishing ALTE and ARTE at
the resolutions of our photographs. Later, we verified and determined the species of all putative
detections. This allowed us to compare density estimates from a fully-automated method (no
verification) to those produced by a computer-assisted method (human verification).

To construct the tern detector’s training data set, human observers initially found and marked
terns and gulls in a subsample of all images and outlined (“painted”) the targets when identified.
Those observers initially found terns and gulls in approximately 2,000 of the 11,000 images
collected during all surveys at the six colonies. Our initial round of detector training consisted of
passing these “painted” images through the detector’s neural network which allowed the network
to “learn” characteristic differences between the “painted” areas the non-“painted” areas. In other
words, by comparing “painted” and non-“painted” areas, the network “learned” what was, and
what was not, a tern or gull. Following initial training, we applied the detector to all photos in an
effort to find additional terns. Observers again “painted” previously un-detected terns and we
completed a second round of training to improve the network’s sensitivity and specificity. At the
end of the second round of training, we again applied the network to all photos and we labeled
the resulting total number of terns the “automated” counts.

Despite two rounds of training and efforts to reduce the number of false-positive detections, we
became aware of a substantial number of false-positives in the automated detections. Hence,
human observers inspected all detections and classified them as either a tern (ALTE or ARTE),
gull, or neither. We labeled this verified count after the second round of detector training as the
“‘computer-assisted” counts because human observers verified all putative detections. During
computer-assisted counting, human observers only verified putative detections and did not search
photos where the automated detector count was zero. Additional details behind the tern detector,
its training, as well as example images, are in Appendix A.
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Density and Abundance Estimation

We computed density and abundance of ALTE in a colony from the ground area that photographs
covered, the count of terns in each photo, the area of sampled polygons, and the total area of
each colony. Using the count and footprint areas from all photographs taken during a mission, we
computed average density during the mission as total count over total area sampled by the
mission (Appendix A Equation 1). To compute average density at the colony over multiple
missions, we multiplied mission density by area of the polygon each mission sampled and divided
by total area sampled over all missions (Appendix A Equation 2). We computed colony abundance
by multiplying colony density by colony area (Appendix A Equation 3). Finally, we obtained
species ratios (ALTE/ARTE) from concurrent direct counts and multiplied it into colony abundance
to estimate total ALTE at the colony. We computed standard errors and confidence intervals by
bootstrap resampling raw photo counts. Additional details behind the UAV abundance methods
appear in Appendix A.

Photo Counts Methods

The general field protocol for photo-counts was largely the same as the protocol for direct counts
except for the presence of a photographer and images. During natural flush events, the
photographer attempted to cover the entire colony with a single burst of photos lasting 3-5
seconds. The goal was to take multiple photos with overlap so that all in-flight birds appear in the
final photo mosaic. Ideally, the photographer captured the entire colony in a single photo or only
2-5 images.

We conducted photo-counts at the following eight Aleutian tern colonies in the Kodiak
Archipelago: Kalsin Bay, Middle Bay, Alligator Island, Foul Bay Island 9, Foul Bay Island 9NW,
SE Viekoda Bay Islands, Women’s Bay Barge, and Three Spruce Island. We visited the first six
colonies in the order given between 1 June 2018 and 28 June 2018. We visited the Women'’s
Bay Barge colony on 19 July 2018. We visited Three Spruce Island on 15 August 2018. Some
colonies contained nesting ARTE terns alongside nesting ALTE. We could not differentiate ARTE
from ARTE in photos and present counts of both tern species together. We surveyed two colonies
(Alligator Island and SE Viekoda Bay Islands) from the same location twice during the season for
comparison. For analysis, each photo pan contained approximately 1-65 images, and for colonies
with multiple images, we examined the degree of photographic overlap and composited only 2-9
of the images to conduct the counts. We manually stitched together some photographs using
Microsoft Paint. We digitally stitched together other photographs using Microsoft Image
Composite Editor (ICE) and manually counted terns in the composite after importing into Microsoft
Paint.

Song Meter Methods

We deployed 16 Song Meter 4 (SM4) sensors and 8 Song Meter 2 (SM2) sensors, both
manufactured by Wildlife Acoustics, at 19 ALTE colonies in Southeast Alaska starting 1 May 2018.
Field crews retrieved data from 24 deployments at 16 colonies for analysis. We programmed the
SM4 units to record 1-minute out of every 6-minutes and the SM2 to record 1 minute out of every
5 minutes 24 hours a day. We collected direct counts at various points in the season at 13 colonies
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containing one or more acoustic sensors. We also collected counts of nests within 5-, 10-, 15-,

and 20-m radii around sensors at 6 colonies (Middle Bay, Women’s Bay, Italio, Akhiok, Kalsin
count
nr2 ’

Bay, and Black Sand Spit). We computed nest density from these counts as, Density =

where r was the radius of the circle in which each count was conducted.

We detected and counted ALTE calls by training a Deep Neural Network (DNN) to classify 2-
second segments of audio recordings as either having an ALTE call or not. The DNN was a
software algorithm that attempted to learn the combinations of spectro-temporal features that best
differentiated target sounds from other sounds. We trained the detector to find three call types: a
long trill, a short trill, and a buzz. Calls we targeted contained peak energies between 2,500 and
5,000 hz. In the end, the detector was not able to distinguish among call types and the metrics of
ALTE activity presented here represent all calls regardless of type. The detector also did not
effectively reject single-note alarm calls, and some alarm calls are included in results.

We trained the DNN on a dataset of 28,567 manually labeled 2-second sound clips with examples
of 59 distinct sounds (classes). We evaluated model performance using ROC curves that plotted
the True Positive Rate (# clips with Aleutian Tern calls divided by total number of clips) and False
Positive Rate (# clips that did not have Aleutian Tern calls divided by the total clips the DNN
flagged as containing Aleutian Tern calls). We built three DNN models from this dataset, using
different class combinations for each, and chose the model that best predicted ALTE calls in a
hold-out set of audio clips. The hold-out test dataset was manually reviewed and contained 1,185
2-second clips with Aleutian Tern among 7,411 randomly selected clips. The best DNN model
(AK_Wetlands_Multi_6Feb19 V8) returned 91.6% of known ALTE calls in the test dataset with a
false positive rate of 0.57%. In total, we classified 1,193,893 sounds as ALTE calls across all 22
deployments. We confirmed at least one Aleutian Tern call at each site through manual review.

We computed peak ALTE call rate (#/minute) each day between 90 and 270 minutes after sunrise.
We choose this summary period because visual inspection of diel activity patterns indicated peak
ALTE activity during this time of day (Appendix C Figure 5). We computed a general activity metric
as the average daily peak call rate over 15 May to 15 August (3 months). For comparison to direct
counts and nest density, we calculated call rates from a subset of 7 randomly selected days in a
15-day window centered on the date of the direct count. This random subset of days allowed us
to use the same number of days of recording for each sensor-count pair and include data from
sites that had acoustic data from only before or after direct counts. No recordings occurred on the
days immediately prior, or following, the direct count when we moved sensors on the count date.
Direct counts with fewer than 7 associated days of data within the 15-day buffer were excluded
from the analysis (n=8). Some direct counts covered an area encompassing two acoustic Sensors.
In these cases, we averaged the call rates for the two sensors.

We investigated the relationship between vocal activity and colony counts using two models. First,
we used the entire dataset with observations from all stages of the breeding season to fit a zero-
inflated negative binomial model with log-link. Second, we used observations made during
incubation to fit a regular negative binomial model with log-link. Data from the incubation period
contained fewer zeros and hence a regular, non-zero-inflated, model adequately fitted these data.
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We also related call rates to nest density within 5-, 10-, 15-, and 20-m of each recorder measured
during each visit to the site. Nest density data were sparse (n=12) and did not lend themselves to
complex modeling. We related call rates to nest density using linear regression (ordinary least
squares) restricted to the incubation period (n=8). We fitted separate models for each radius.

RESULTS

UAV Results

As anticipated, our automated detector flagged a substantial number of false positives (i.e.,
objects visually similar to but not terns). Most false positives were wood debris of similar color
and general shape as nesting terns. Assuming the computer-assisted counts are correct, 58% of
our detector’s detections across all missions were ultimately deemed false-positives. Examples
of true positive, false positive, and false negative detections appear in Appendix A Addendum B.
We rely on the computer-assisted counts below and only plot automated counts for reference.

Colony-wide density from the computer assisted method varied from 0 (Burton Ranch) to 2.75
(95% CI 2.18 to 3.35; Kalsin) individuals per hectare (Table 1; Figure 2). Colony abundance from
the computer-assisted counts varied from 0 (Burton Ranch) to 231 individuals (95% CI = 156 to
322; Black Sand Spit) (Table 1; Figure 2).

At smaller colonies, we found that abundance derived from the computer-assisted method
generally matched contemporaneous direct counts (Figure 3a). At Women’s Bay, UAV estimates
and contemporaneous direct counts were virtually identical. At Kalsin and Middle Bay, UAV
estimates were 32% (47 vs 62) and 64% (14 vs 23) lower, respectively, than the closest direct
count in time.

At Black Sand Spit, the largest colony we sampled, UAV-based estimates were practically
identical to a formal direct count conducted 9 days later (230 UAV vs 240 direct count; Figure 3b).
Other direct counts at Black Sand Spit, both before and during UAV surveys, were less formal
and should be considered rough estimates. Nonetheless, most informal counts prior to the UAV
surveys agreed with the general magnitude of UAV estimates.

Photo Count Results

We observed ground-based direct counts ranging from 7 to 129 terns (Appendix B Table 2). The
ordinary regression relationship we fitted to these data indicated that maximum direct count
increased by an average of 0.58 birds for every additional bird counted in photos (R? = 0.85,
Figure 4, Appendix B Figure 1). Hence, on average photo counts exceeded direct counts despite
the fact that direct counts numerically exceeded the associated photo count in 5 of 11 cases.
Photo counts tended to exceed direct counts by substantial numbers at large colonies (counts >
75 approximately) which in turned cause slope of the regression to differ substantially from 1.0.
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In four cases, we obtained counts by both manual stitching (Microsoft Paint method) and digital
stitching (Microsoft ICE + Paint method). We observed reasonably similar counts among these
methods except at Kalsin Bay, one of the larger colonies (Appendix B Table 2). These
methodological differences did not appear directional, but this observation is tentative because
the number of test cases was low (i.e., 4).

Song Meter Results

We report details on song meter deployments, recording periods, and location in Appendix C —
Song Meters. Here, we report song meter results related to phenology, density, and abundance.

Song meters detected ALTE calls at all deployment sites with usable data. In general, we
observed two activity peaks; the first from mid-May to mid-June and a second peak from early-
July to late-July (Appendix C Figure 7). At Black Sand Spit, the later peak ended slightly sooner
than at other sites. Mean daily call rates during 15 May to 15 Aug varied among sites from 0.04
+ 0.08 at Kenai SM4 to 10.43 + 8.45 calls per minute at Naknek2 (Appendix C Figure 8; Appendix
C Table 3; Appendix C Figure 9).

We completed 67 direct ALTE counts during the season. Of these, 66 counts were available for
modeling because they occurred during an active acoustic survey window with at least 7 days of
acoustic data temporally near the count date. The number of direct counts varied from one (ltalio
and Three Spruce Island) to 16 (Middle Bay), largely mimicking ease of access. We observed the
highest direct counts at Black Sand Spit (80 + 34.6 sd) and Naknek (78.4 + 50.9 sd), followed by
the single count at Italio (45; Appendix C Figure 10). Average ALTE direct counts at the remaining
colonies varied from 0 (Pasagshak River) to 21 (Three Spruce Island).

We obtained nest density at six colonies. We obtained only a single nest count at four of these
six (Akhiok, Italio, Kalsin Bay, Womens Bay). We obtained three nest counts at the other two
colonies (Black Sand Spit and Middle Bay). Nest searches found few nests within 20-m of the
sensors, with a maximum of 6 nests found within 20m of the sensor at Black Sand Spitl. Nest
density in the 20m circle ranged from 0.00 to 0.026 nests mZ.

The zero-inflated negative binomial model we fitted to direct counts obtained over the entire
season suggested that call rates were inversely related to the probability of detecting a false zero
count (i.e. zero count when birds were actually present; odds ratio: 0.26, p = 0.14). This part of
the model implied that the probability of counting at least ALTE rose as call rates increased. The
structural part of the model indicated that direct colony counts increased by an average of 11.6%
+ 3.5 se (95% CI: 4.3-19.5%) for every one unit increase in calls per minute (Figure 5, Appendix
C Figure 12). According to predictions from the negative binomial model, one count at Naknek 1
and one count at Black Sand Spit 3 represented extreme outliers (i.e., abnormally high direct
counts) among observations in the full dataset.

We conducted 24 of the 66 usable direct counts during the associated colony’s incubation stage.
The regular negative binomial model we fitted to this incubation stage data indicated that direct
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counts increased on average by 17.7% + 3.5 se (95% CI: 9.2-28.7%) for every one unit increase
in calls per minute (Figure 6, Appendix C Figure 13). Compared to model results from the full
season, the rate of increase observed during incubation was higher and overall the model better
fit the observed data.

We conducted 12 nest count surveys during acoustic survey periods. Of these, 8 nest surveys
occurred during the incubation period. We did not observe enough nests within 5-m of the sensor
to model using ordinary regression. At other survey radii, the ordinary regression model indicated
a positive but statistically insignificant relationship between call rates and nest density (R?>=0.006
- 0.10, p=0.44-0.84; Appendix C Figure 14). We hypothesize that the small number of observed
nests, inconsistency in nest counting methods, difficulty finding nests near sensors, and the
dispersed nature of Aleutian Tern nest sites contributed to the lack of statistical significance in
these linear regressions. We also hypothesize that the positive relationships we observed
between nest density and call rate will become more apparent after additional data collection.

DISCUSSION

UAV Counts

Sampling tern colonies using UAVs proved efficient and consistent. For colonies on the Kodiak
road system, we were able to mobilize the UAVs and associated equipment, conduct multiple
missions, de-mobilize, and return to base within three-quarters of a workday. The UAV method
required additional mobilization and de-mobolization logistics relative to direct counts at remote
colonies (e.g., Black Sand Spit) because the UAV method required more hardware than direct
counts (e.g., the UAV, controller, batteries, helipad, etc.) Clearly, most of the efficiency of the
UAV method depends on travel distance and survey mode, but when reasonable, the in-field
portion of UAV sampling was short and easily managed.

Manually counting terns in photos is prone to errors of omission. Our computer-assisted method
directed observers to likely tern targets in photographs and drastically sped up counting as well
as increased accuracy. Observers reported that it was much easier to inspect pre-identified
objects in photos than to scan entire photos for terns. Our computer- assisted method afforded
an approximate 10-fold reduction in photo processing time.

Our UAV-derived abundance estimates were always lower than the associated direct count. For
small colonies, the UAV and direct counts were comparable. The UAV produced comparable
estimates to the formal direct count taken at Black Sand Spit, the largest colony surveyed, one
week after. At small colonies, we surveyed in census mode (overlapping photos). At the single
large colony we surveyed, Black Sand Spit, we sampled some areas in census mode and other
areas in sample mode. We theorize that the lack of agreement between UAV and direct counts
is a function of colony size, over-counting by observers on the ground, or undercounting of birds
in the air by the UAV method. Even at small colonies, the UAV abundances were lower than
direct counts. Lower UAV counts could be a function of the fact that UAV photography does not
capture flying birds or some degree of double-counting by observers. Nonetheless, the general
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agreement between UAV and direct counts is surprising given that one technique surveys birds
on the ground while the other surveys birds in the air. If both UAV and direct counts are accurate,
at least at small colonies, this suggests that the natural flushes our observers counted contained
a large proportion of the birds associated with the colony and available to be counted. That is,
our results suggest either that the proportion of flushing ALTE during those events was nearly
100% of birds in the colony at the time or that observers are over-counting ALTE.

Photo Counts

Two substantial issues presented themselves during processing of the photo count images. First,
individual birds appeared in multiple images of the composite image and hence we counted them
twice. Second, we lost individual birds in composited images (“ghosting”) that caused some
undercounting of the actual number of birds at a colony. These two issues had less impact at
small colonies where we observed greater agreement between direct and photo counts.

The process of stitching images was time consuming. For small colonies (n < 75 terns), the extra
effort required to stitch photos appeared to be un-necessary because maximum direct count and
photo counts appeared equivocal and direct counts are faster and easier to collect overall. Direct
counts do not require post-processing.

The benefits of the photo-count method relative to direct counts are the creation of a permanent
record, a relatively tight relationship between direct- and photo-counts across a range of colony
sizes, and the method is relatively quick and easy to accomplish in the field. The downsides of
this method include the fact that it relies on anthropogenic or natural flushes and thus is dependent
on the proportion of flushing individuals and post processing of images is required. Additionally,
double counting and ghosting of birds in composited images affects accuracy and should be
guantified in subsequent research.

Song Meters

The relationship between colony counts and call rate, and the ability to detect subtle differences
in timing and duration of activity, make passive acoustic monitoring an effective method for
detecting and monitoring Aleutian terns in Alaska. However, several questions remain about how
best to design large scale acoustic surveys for the species. To fully realize the potential that
acoustic monitoring holds for Aleutian terns, future work must address the spatial scale at which
an acoustic sensor is monitoring, the most effective arrangement of sensors within a breeding
aggregation, and if there is a relationship between nest density and vocal activity at scales larger
than 20-meter radius around the sensor. While guidance on some of these questions may be
available in the literature, the Aleutian Tern Technical Committee will need to focus thought and
resources to develop a robust framework and sampling design for statewide survey efforts.
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TABLES

Table 1: Final estimates of ALTE density and abundance at six nesting colonies
sampled by the UAV method in 2018. Estimates presented here derive from the
computer assisted count method. Species ratios derive from direct counts during visits
temporally close to UAV flights.

Species Density (#/ha) Abundance

Area Ratio Low High Low High
Colony (ha) (ALTE) Est 95%  95% Est 95%  95%
Black Sand Spit 226.87 0.8 1.017 0.687 1.418 231 156 322
Burton Ranch 10.51 1 0.000 0.000 0.000 0 0 0
Kalsin Bay 17.04 0.48 2.750 2.183 3.353 a7 37 57
Kenai HQ 5.37 1 0.315 0.079 0.632 2 0 3
Middle Bay 31.42 1 0.447 0.301 0.615 14 9 19
Women's Bay 6.62 0.94 2541 1.831 3.354 17 12 22
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Figure 1: Locations of six tern colonies surveyed by the UAV method in June 2018.
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Figure 2: Density and abundance at six colonies sampled by the UAV method in 2018.

Additional details in Appendix A.
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Figure 3: Comparison of abundance estimates derived from the UAV (gold diamonds, with
95% CI bars) method and direct counts (black circles). The only formal direct count at the

Large colony (panel b) was conducted on 22 Jun, 9 days after UAV flights. Direct counts at
the Large colony, both before and during UAV flights, were less formal and should be

considered rough estimates. Additional details in Appendix A.
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Figure 4: Estimated regression relationship between ground-based photo- and direct- counts
for tern colonies surveyed on the Kodiak Archipelago, June-August 2018. Additional details in

Appendix B.
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Figure 5: Estimated relationship between ALTE call rate and direct colony counts using the
full dataset collected over the entire season. Black line is the mean direct count predicted by
a zero-inflated negative binomial with a log link. The grey swath represents 95% confidence
interval estimated by bootstrapping 10,000 times. Additional details in Appendix C.
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Appendix A — UAVs

2018 Tern Colony Densities from UAV Photos

Trent McDonald, Jason Carlisle, and Jaime Thompson
15 Aug 2019

This appendix contains details and supplementary information on the UAV photo methods applied
in 2018.

METHODS

We employed three UAV’s at various times to sample six study colonies in south central and south
east Alaska (Table 1, Figure 1). At Kodiak Island and Kenai colonies we employed: (1) a DJI
Matric 210 quad-copter drone equipped with a 22 Meg sensor, (2) a DJI Phantom 4 quad-copter
drone equipped with a 20 Meg sensor, and (3) a 3DR Solo quad-copter drone equipped with a 16
Meg sensor. We conducted all UAV flight missions (hereafter, “missions”) during daylight hours
using high-resolution standard red-green-blue (RGB) imagery. The pilots of all three UAVs had
507 certification with the FAA that authorization them for commercial UAVs flight. No colonies
was within restricted airspace.

We tested two types of UAV-based photographic sampling methods (Figure 2). We employed a
census method similar to Magness et al. (2019) in which the UAVs flew a back-and-forth (“lawn
mower”) transect pattern over the colony. During the census method, UAVs collected overlapping
photographs of the entire outlined colony. At larger colonies, we tested a spatially balanced
sampling method in which the UAVs flew to pre-determined points and obtained non-overlapping
photographs. The spatially balanced method selected 99 points within each colony’s polygon
using the BAS spatially balanced sample algorithm (Robertson et al. 2013, 2017) and applied
the travelling salesman algorithm (Kruskal 1956, Garfinkel 1985) to order the points in an efficient
survey order (least distance flown). At each survey point, the UAV hovered for 3 seconds and
captured a simple image of the study area directly below. We photographed colonies at above-
ground altitudes of 15 meters, 20 meters, and 30 meters (Table 2).

Photo-Recognition

Following photo collection, we trained a customized neural network to search for and detect terns
in UAV-derived photographs. During training and afterward, we tolerated a higher than normal
number of false positives (not actual terns) due to difficulties distinguishing ALTE and ARTE at
the resolutions we used. Later, we verified and determined the species of all putative detections.
This allowed us to compare density estimates from a fully-automated method (no verification) to
those produced by a computer-assisted method (human verification).

Object detection in photographs is a field of active research, with neural networks currently
achieving human-level performance at a variety of recognition tasks. Pre-trained detection
networks available from a number of sources (see blog post
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https://www.analyticsvidhya.com/blog/2018/07/top-10-pretrained-models-get-started-deep-
learning-part-1-computer-vision/) are trained on thousands of images containing common items
(e.g., cars, people, dogs, etc). Pre-trained networks did not meet our needs because common
training data sets do not contain tern examples and the nesting terns in our UAV-derived
photographs were quite small in the image. In addition, gulls were common in our aerial
photography and we required our network to differentiate terns from gulls. Consequently, we
designed and trained a customized neural detection network to be trainable on novel targets (i.e.,
terns and gulls) when fewer than 1000 example photos are available.

We implemented our tern and gull detector using routines available from the MXnet project
(https://mxnet.incubator.apache.org). MXnet provided flexible tools (routines) for construction and
training of neural networks on servers that contained graphical processing units (GPUs). We
implemented a network architecture capable of generalizing to previously unseen images by using
a variety of data augmentation techniques. Data augmentation included randomized image
cropping, reflection, rotations and the addition of noise and color balance perturbation. More detalil
on structure of the tern and gull detector network appears in Addendum A.

To construct a detector training data set, human observers initially found and marked terns and
gulls in a subsample of all images and outlined (“painted”) the targets when identified (Figure 3a
and 3b). Those observers initially found terns and gulls in approximately 2,000 of the 11,000
images collected during all surveys at the six colonies. Our initial round of detector training
consisted of passing these tern and “painted” images through the detector’s neural network so
that the network “learned” to distinguish characteristics of the “painted” areas from those of non-
“painted” areas. In other words, by comparing “painted” and non-“painted” areas, the network
“‘learned” what was, and what was not, a tern or gull (Figure 3c). Following initial training, we
applied the detector to all photos in an effort to find additional terns. Observers “painted” all new
terns which went un-detected during the first round. After this second round of “painting”, we
completed a second round of training to improve the network’s sensitivity and specificity. At the
end of the second round of training, we again applied the network to all photos and we labeled
the resulting counts the “automated” counts.

Despite two rounds of training and efforts to reduce the number of false-positive detections, we
became aware of a substantial number of false-positives in the automated detections. Hence, we
inspected all detections and classified them as either an tern (ALTE or ARTE), gull, or neither.
We labeled this verified count after the second round of detector training as the “computer-
assisted” counts because human observers verified that all putative detections (Figure 3d). This
count was “computer-assisted” because human observers only verified putative detections and
did not search photos where the automated detector count was zero.

Following training, we applied the network to a small set (100) of hold-out images that included
both positive (with tern) and negative (without tern) images. We computed the automated
method’s positive detection rate as the proportion of known terns in hold-out photos detected by
the network. We computed the automated method’s false positive rates as the proportion of all
detections that were not a tern. Note that these rates use different denominators (i.e., known terns
and all detections) to accurately estimate the rates of both under-counting and over-counting. We
did not perform hold-out validation of the computer assisted counts.
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Density and Abundance Estimation

We recognized that the colony boundaries, and hence the polygons we sampled, were poorly
defined for some colonies and that they will likely vary through time. For the purpose of this study,
we obtained rough outlines of the colony’s extent from biologists familiar with the colony and
created colony polygons in GIS software. These rough outlines were later refined in the field, on
the day of sampling, based on perceived colony activity and local features (i.e., private land, large
trees, etc.).

Given a colony polygon, both the census and sample photographic methods are a type of plot-
sampling method (Borchers et al. 2002) designed to estimate tern density on the study areas. In
general, plot sampling entails selecting a spatially balanced or random sample of plots from the
region of interest, measuring the number of individuals in each plot, determining the area covered
by each plot, and computing density from these numbers. Here, we viewed each aerial
photograph as one searched plot. Contrary to classical plot-sampling, our plots were searched
after field operations, not during, which allowed us to minimize field time and disturbance to the
terns.

We computed density and abundance of ALTE in a colony as follows. Assume c;; is the count of
terns in photograph i of mission j, and q;; is the ground area (ha) covered by photograph i of
mission j. We computed a;; from meta-data embedded within each photo such as height (AGL),
focal length, image sensor size, pitch of the UAV gimbal, yaw of the UAV gimbal, GPS
coordinates, UAV heading, etc. Assuming no pitch or yaw of the UAV gimbal, we computed a;;
using the well-known relationship,

h
f
where x was horizontal dimension of the camera sensor, y was vertical dimension of the sensor,
h was height above ground (AGL) and f was focal length (all measurements in mm). When pitch
and yaw were present, we applied more complex formula to account for angle of the camera and
to accurately adjust are of the photograph on the ground.

a;; = - (xy),

We computed the average density of terns in photos during mission j as,

_ J ¢
dj:T1 Q)

Xi2q Gij

where n; was the number of photographs taken during mission j. Assuming 4; was the area (ha)

of the polygon sampled during mission j, we computed the average density of terns for colony k
as,
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where m is the number of missions in the colony. At smaller colonies (e.g., Womens Bay), the
polygon sampled by a single mission covered the entire colony. At larger colonies (e.g., Black
Sand Spit), the polygon sampled by a single mission was smaller than the colony and it took
several missions to cover the entire colony. At some times, the polygons sampled by different
missions on different days overlapped. This method of computing an average density for the
colony is equivalent to a weighted average of mission-specific densities, with the weight being
proportional to each area sampled by the missions associated with the colony.

Lastly, assuming A was the area (ha) of the entire colony we estimated total abundance of terns
for the colony as,

N =D A . (3

We calculated a 90% confidence interval (CI) for each mission-specific density ( d;) and each
colony-specific abundance (N) using a non-parametric bootstrap and the percentile method
(Borchers et al. 2002, Manly 2006). We applied the bootstrap by resampling the photos within
each colony with replacement, and recalculating D and N  for each of 5,000 bootstrap iterations.

RESULTS

As anticipated, our automated detector flagged a substantial number of false positives (i.e.,
objects similar to but not terns). Most false positives were wood debris of similar color and general
shape as nesting terns. We tolerated the high false-positive rate of the detector in order have
higher confidence that the final computer-assisted counts accurate. Assuming the computer-
assisted counts are correct, our network produces an average of 58% false-positives across all
missions. Examples of true positive, false positive, and false negative detections appear in
Addendum B.

Focusing on computer-assisted numbers, ALTE density and abundance varied by as much as
300% to 500% over multiple missions at the same colony depending on the specific area sampled
by the mission (Figure 4). Colony-wide density from the computer assisted method varied from 0
(Burton Ranch) to 2.75 (95% CI 2.18 to 3.35; Kalsin) individuals per hectare (Table 3; Figure 5).
Colony abundance from the computer-assisted counts varied from O (Burton Ranch) to 231
individuals (95% CI = 156 to 322; Black Sand Spit) (Table 3; Figure 5).

We found that abundance derived from the computer-assisted method for smaller colonies
(Womens Bay, Kalsin, Middle Bay, Burton Ranch) generally matched direct counts taken by
observers near the time of UAV flights (Figure 6a). At Womens Bay, UAV estimates and
contemporaneous direct counts were virtually identical. At Kalsin and Middle Bay, UAV estimates
were 32% (47 vs 62) and 64% (14 vs 23) lower, respectively, than the nearest direct count. At
Black Sand Spit, UAV-based abundance estimates were practically identical to a formal direct
count conducted 9 days later (230 UAV vs 240 direct count; Figure 6b). Other direct counts at
Black Sand Spit, both before and during UAV surveys, were less formal and should be considered
rough estimates. Nonetheless, our UAV-based abundance matched an informal direct count
taken three days prior to UAV flights (230 UAV vs 210 direct count).
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TABLES

Table 1: Six Aleutian Tern colonies surveyed using UAV-derived photographs in southern Alaska
during June, 2018. Additional flight mission details appear in Table 2.

Area Dominate Survey Number of Survey

Colony (ha) Location  Landcover Pilot* Missions* Method**
Black Sand Spit 226.9 Yakutat Sand W 13 S,C
Burton Ranch 10.5 Kodiak Is. Grazedgrass W 1 C

Kalsin Bay 17.0 Kodiak Is. Grass W 2 C

Middle Bay 31.4 Kodiak Is. Grass W, L 2,1 S,C
Womens Bay 6.6 Kodiak Is. Grass W, L 2,1 C

Kenai HQ 5.4 Kenai Bog W 1 C

*W=WEST (Mike Gerringer); L=Mark Laker
**S=Sampled with non-overlapping photographs; C=Census using overlapping photographs
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Table 2: Twenty-two UAV survey missions flown at six Aleutian Tern colonies in southern Alaska during June, 2018.

Area Mission
Flight Survey Number of  Photographed Area
Date Colony Mission Name Pilot*  Height (m) Method** Photos (ha) (ha)
6/4/2018 Kenai HQ Kenai HQ w 15 C 571 12.7 5.4
6/6/2018 Kalsin Bay Kalsin Bay - Inland w 15 C 656 15.5 10.6
6/6/2018 Kalsin Bay Kalsin Bay - Coastal w 15 C 338 7.2 6.4
6/7/2018 Middle Bay Middle Bay - North w 15 C 859 21.2 12.6
6/7/2018 Middle Bay Middle Bay - South w 15 C 682 16.1 9.7
6/7/2018 Middle Bay Middle Bay - Laker L 20 S 519 13 31.4
6/7/2018 Womens Bay Womens Bay w 15 C 400 8.8 6.6
6/7/2018 Womens Bay Womens Bay - Laker L 20 C 763 34.1 6.6
6/8/2018 Burton Ranch Burton Ranch w 20 C 363 14.9 10.5
6/12/2018 Black Sand Spit BSS - S5 - Small w 15 C 203 4.5 3.2
6/12/2018 Black Sand Spit BSS-S3-V1 w 15 S 88 2 52.6
6/12/2018 Black Sand Spit BSS-S4-V1 w 15 S 89 2.1 51.1
6/12/2018 Black Sand Spit BSS - S4 -Small w 15 C 216 4.8 33
6/13/2018 Black Sand Spit BSS - S1 w 15 S 88 2 46
6/13/2018 Black Sand Spit BSS - S2 w 15 S 95 2.2 54.9
6/13/2018 Black Sand Spit BSS - S3-V2 w 15 S 92 2.1 52.6
6/14/2018 Black Sand Spit BSS -S4 -V2 w 15 S 91 2.1 51.1
6/15/2018 Black Sand Spit BSS-S5-A w 15 C 687 16 10
6/15/2018 Black Sand Spit BSS-S5-B w 15 C 995 21.8 14.5
6/15/2018 Black Sand Spit BSS - S4 - Coastal w 15 C 277 5.8 4.2
6/15/2018 Black Sand Spit BSS-S4-A w 15 C 933 24 14
6/15/2018 Black Sand Spit BSS-S4-B w 15 C 701 17.1 104
*W=WEST (Mike Gerringer); L=Mark Laker
*S=Sampled with non-overlapping photographs; C=Census using overlapping photographs
WEST, Inc. 7 March 2019
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Table 3: Final estimates of ALTE density and abundance at six nesting colonies
sampled by the UAV method in 2018. Estimates derived from the computer assisted
count method. Species ratios derived from direct flush counts during visits temporally
close to UAYV flights.

Species Density (#/ha) Abundance

Area Ratio Low High Low High
Colony (ha) (%ALTE) Est 95%  95% Est 95%  95%
Black Sand Spit 226.87 0.8 1.017 0.687 1.418 231 156 322
Burton Ranch 10.51 1 0.000 0.000 0.000 0 0 0
Kalsin Bay 17.04 0.48 2.750 2.183 3.353 47 37 57
Kenai HQ 5.37 1 0.315 0.079 0.632 2 0 3
Middle Bay 31.42 1 0.447 0.301 0.615 14 9 19
Womens Bay 6.62 0.94 2541 1.831 3.354 17 12 22
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Figure 1: Locations of six tern colonies surveyed by the UAV method in June 2018.
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(b) Painted image

(a) Raw image

c) Predicted image

) (g0 ®

Q© Painters correct, NN correct (tern)
Painters correct, NN incorrect (tern)
Painters correct, NN incorrect (wood debris)
x Painters incorrect, NN correct (tern)
Figure 3: Example images of a raw photo (a), the “painted” version of the raw photo with terns outlined
in white (b), the “predicted” image with regions predicted to be terns shown in white (c), and the final
determination of terns, false-negatives, and false-positives (d). Human observers detected 5 of 6 terns
in this photo. The automated detector found a different set of 5 terns in this photo, and detected one

piece of wood debris the same color and general shape as a tern.
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Figure 4: Density and abuncance of ALTE for all UAV missions flown during 2018 field
season. “Automated” method uses counts produced by the tern detector, corrected for
species ratios. “Computer Assisted” method uses counts verifed as terns by human

observers, corrected for species ratios.

WEST, Inc.

12

March 2019



Appendix A — UAV Methods

(a) Density

Method

I computer Assisted
B Automated

Aleutian Tern density (birds/ha)

Kenal  Women's Middle Kalsin Burton Black
HQ Bay Bay Bay Ranch Sand
Spit

Colony

Aleutian Tern abundance

1250

1000

~
a
o

500

250

(b) Abundance

Kenai  Women's Middle Kalsin Burton Black

Bay Bay Ranch Sand
Spit
Colony

Method

I computer Assisted
B Automated

Figure 5: Colony specific density and abundance at six colonies sampled by the UAV method
in 2018. Numeric values for the computer assisted method appear in Table 3.
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Figure 6: Comparison of abundance estimates derived from the UAV (gold diamonds, with
95% CI bars) method and direct counts (black circles). The only formal direct count at the
Large colony (panel b) was conducted on 22 Jun, 9 days after UAV flights. Direct counts at
the Large colony, both before and during UAV flights, were less formal and should be

considered rough estimates.
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ADDENDUM A: Tern Detector Network Details

The architecture (i.e., structure) of the tern and gull detection network we implemented using tools
in MXnet was inspired by ResNet. Similarly, we trained the network using common protocols for
Data Augmentation. We chose to implement a ResNet-type architecture because it has
demonstrated state-of-the-art accuracy on a variety of image recognition tasks and is theoretically
appealing due to the identity mappings introduced by simple shortcut connections. Addendum A
Figure 1 illustrates the structure of foundational building blocks in the ResNet approach. Under
this ResNet approach, “weight layer” contain a collection of convolution filters and the “relu” node
is a standard activation function found in many neural networks.

ResNet’s use of the identity connection (“x identity” line in Addendum A Figure 1) enables the
overall network to learn an efficient model for targets (terns and gulls) by allowing target features
to be preserved as they pass through the network. This architecture spares the overall network
from learning salient identity mappings explicitly. Instead, this architecture preserves a variety of
input features, such as the distribution of colors on input targets, deep in the network where it can
be exploited. The architecture we implemented reflects the idea that the most common mapping
learned by individual network layers is the identity. By hard coding an identity representation,
training is extremely efficient because minor perturbations to the inputs can be used instead of
new, whole, identity-preserving representations.

The introduction of an identity connection across multiple layers also gives rise to nth order
mappings. This alleviates a typical limitation in the representations generated at each level
because individual layers typically produce first order mappings. With first order mappings, saddle
points and other stationary extremes in the loss function are difficult to escape during optimization.
The identity connection eases this problem by separating the convolutional layers from a copy of
the input before adding them back together, thus allowing higher order perturbations to the input
before remapping in another set of convolutional layers.

To deal with the constraints imposed by sparse targets and large images, several important
features were introduced to the basic ResNet design. To preserve information in the identity
connection while down sampling effectively, average pooling was used in place of subsampling.
To improve generalization, a novel form of dropout regularization was implemented where instead
of setting neural outputs to 0 with probability .5, values are resampled from an estimation of the
generative distribution induced by the neuron with probability .5. This serves to improve
robustness by forcing the network as a whole to rely on distributed representations while
simultaneously preserving the distribution of layer outputs as a signal moves through the network.
This allows for the combination of dropout and batch normalization as regularization methods.

To ensure that the features used to distinguish terns and gulls still shared features to distinguish
a “bird” from empty ground, a hierarchical softmax was implemented where the decision hash
was hand coded to ensure a grouping between birds in general before distinguishing species.
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Data augmentation was an important step during training. Perturbation and distortion helps
ensure that the representations learned by the network possess the same invariance properties
as a human representation. For instance, many targets look the same when reflected in a mirror.
Under minor distortion, most humans can still recognize an object. The perturbations used during
training of our tern and gull model included the following:

Reflections across the x and y axes

Rotation

Color balance perturbations

Random stretches and contractions along the x and y axes
Gaussian noise

X

L

r

weight layer
F[x} L relu

weight layer

X
identity

Addendum A Figure 1: Schematic structure of the
neural network building blocks used in the ResNet
approach to image recognition.
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ADDENDUM B: Detection Examples

This addendum contains example images of positive, false-positive, and false-negative tern and
gull detections. In this addendum, red outlines signify a putative tern detection and gold outlines
signify a putative gull detection.

False Negative Examples

Terns undetected by the network

False Positive Examples

Putative tern detections that are not terns.
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True Positive Examples

Confirmed tern and gull detections.

WEST, Inc. 18 March 2019



Appendix A — UAV Methods

WEST, Inc. 19 March 2019



Appendix B — Photo Counts

Ground-based photo-counts for 2018 Aleutian tern field season,
Kodiak Archipelago Alaska

Robin Corcoran, John Skinner, Kelly Nesvacil
21 June 2019

This appendix contains details and supplementary information on the photo count method
applied in 2018.

METHODS

Ground-based photo-counts (photo-counts) were one method recommended from the 2018
Aleutian Tern Conservation Planning meeting. This method attempts to standardize and reduce
variability inherent in visual ground-based direct counts by using multiple photographs in quick
succession in an attempt to “freeze” the action and capture flying individuals (McDonald and
Carlisle 2018). One advantage of photo-counts compared to direct counts is a reduction in the
potential for over counting flying birds, but this benefit can be limited if individual birds are
captured in multiple frames. Additionally, photo-counts, like direct counts, still rely on
anthropogenic or natural flushes and thus are dependent on the proportion of flushing
individuals and the species ratio at mixed colonies.

The general protocol for photo-counts is largely the same as the protocol for direct counts and
the photographer should attempt to cover the entire statistical colony with a single burst of
photos lasting 3-5 seconds (McDonald and Carlisle 2018). The goal is to take multiple photos
with overlap so that all in-flight birds appear in the final photo mosaic only once. At small
colonies, it is useful to attempt to minimize overlap between images and target only 2-5 images
per panto get the entire colony in a single photo. Please see below for a detailed field protocol
developed in 2018 for use during the 2019 field season.

Photo-counts were conducted at 8 Aleutian tern colonies on the Kodiak Archipelago from 1 June
— 15 August 2018 (Table 1). All counts represent total terns because some of these colonies
contained nesting Arctic terns as well which could not typically be distinguished from Aleutian
terns in photographs. Two colonies were surveyed at the same location twice during the season
using photo-counts. For analysis, each pan had approximately 1-65 images and for colonies
with multiple images, photographs were examined for degree of overlap and only 2-9 of the
images were composited to conduct the counts. Photographs were manually stitched and
counted in Microsoft Paint and/or digitally stitched with Microsoft Image Composite Editor (ICE)
and then manually counted in Paint. Results for mixed Aleutian tern and Arctic colonies are
presented as total terns.

USFWS & ADF&G 1 June 2019
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Table 1. Aleutian tern colony names, dates, and times for ground-based photo-counts
during the field season 2018.

Colony Name Date Start Time | End Time
Kalsin Bay 6/1/2018 11:20 14:07
Kalsin Bay Olds River subcolony (ALTE

only) 6/1/2018 13:32 13:42
Middle Bay 6/7/2018 11:48 13:47
Alligator Island 6/12/2018 8:58 8:59
Alligator Island 6/27/2018 10:36 10:37
Foul Bay 9 6/13/2018 13:05 13:10
Foul Bay 9 NW 6/14/2018 9:35 9:39
SE Viekoda Bay Islands 6/16/2018 13:21 13:40
SE Viekoda Bay Islands 6/28/2018 16:30 17:12
Womens Bay Barge 7/19/2018 8:08 8:16
Three Spruce Island 8/15/2018 10:31 11:02

Photo-count Protocol 2018
The general protocol for photo-counts is largely the same as the protocol for direct-counts.
Differences are highlighted in bold, below.

e Colonies should be visited at least once at a time when nesting activity is anticipated to
be high. Nesting activity and colony residency varies from late April to mid-July.

e Visits can be conducted anytime during daylight hours.

e Colonies with easy access can and should be visited multiple times in a single season.
Multiple visits will provide information on nesting phenology and seasonal variation in
colony attendance.

e A colony should only be intentionally flushed once per visit. Other “opportunistic” flush
counts can be conducted during a visit with the presumed reason for flush recorded
(e.g., Bald Eagle flyover, hiker with dog on beach, dreading behavior, etc.).

e Teams of 2-3 people should conduct surveys. Two observers to make independent
direct counts and estimate species ratio, and one photographer (If only two observers
than photographer can also count and estimate species ratio).

o Atotal of 3-6 flush counts will be made per colony visit if possible.

e If counting a new colony, observers should pre-scan the colony from a reasonable
distance (50 meters) for 10 Minutes to determine whether it is a mixed colony.

o At all mixed species colonies, observers should pre-scan the colony from a reasonable
distance (50 meters) for 10 minutes and record independent estimates of the proportion
of ALTE at the colony.

USFWS & ADF&G 2 June 2019
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¢ Following pre-scan, the photographer should position him/herself at a suitable
vantage point around the colony.

o When ready, the flusher should approach the colony to flush birds.

e The photographer should attempt to cover the entire statistical colony with a
single photo or a series of overlapping photos lasting 3-5 seconds. That is,
multiple photos with overlap should be taken so that all in-flight birds appear in
the final photo mosaic once.

e The photographer should attempt to minimize overlap between images (10-20%
overlap maximum).

o “Bookending” by taking a distinctive identifying photograph at the start and end
of the photo count sequence is recommended to aid in later photo processing.

¢ All people should move away from the colony as quickly as possible after the flushing
event and otherwise seek to minimize disturbance.

e Photographs can be manually stitched and counted in Microsoft Paint and/or
digitally stitched with Microsoft Image Composite Editor (ICE) and then manually
counted in Paint.

RESULTS

Ground-based direct-counts of total terns ranged from 7 to 129 terns (Table 2). For 5 out of the
11 surveys, direct-counts did over estimate as compared to photo-counts and these all were at
smaller colonies. When comparing the two methods, agreement was good with an adjusted R?
of 0.85 (Figure 1). For those surveys where it was possible to get Microsoft ICE and Paint
estimates, differences appeared to exist between the two analysis techniques, although they did
not seem directional. Due to the small sample size, no statistical tests were run and inference
for this conclusion is low.

Two substantial issues presented themselves during processing of the colony images. The first
was having an individual bird in multiple images that made up the composited image, thus
resulting in double counting during the manual counting phase of processing. Additionally,
ghosting (loss of individual birds in composited images) was an issue as well and resulted in
undercounts of actual birds at the colony.

Table 2. Ground-based direct count and photo-count estimates from the 2018 tern
field season, Kodiak Archipelago.

Direct | Photo Photo Photo Photo
Count | High High High High
High Count1 | Count1 | Count 2 | Count 2
Colony Name Date Count | Paint ICE Paint ICE
Kalsin Bay 6/1/2018 124 84 197 216
Kalsin Bay Olds
River subcolony
(ALTE only) 6/1/2018 38 36
Middle Bay 6/7/2018 56 25 15
USFWS & ADF&G 3 June 2019



Appendix B — Photo Counts

Alligator Island 6/12/2018 21 19
Alligator Island 6/27/2018 22 16
Foul Bay 9 6/13/2018 36 55
Foul Bay 9 NW 6/14/2018 7 5
SE Viekoda Bay
Islands 6/16/2018 70 98
SE Viekoda Bay
Islands 6/28/2018 129 160 130
Womens Bay
Barge 7/19/2018 80 97
Three Spruce
Island 8/15/2018 76 89 96
3
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Figure 1. Comparison of ground-based photo- and direct- counts for tern colonies surveyed on

the Kodiak Archipelago, June-August 2018.
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It was possible to discern Aleutian versus Arctic terns in some photos. Table 3 is a summary of
comments for all photo-counts during the 2018 field season.

Table 3. Comments from photo-count surveys during the 2018 field season, Kodiak
Archipelago.

Colony Name Date Comments
Kalsin Bay 6/1/2018

Without flushing observed 15-21 ALTE over Olds River
marsh, with flush to nest search & place cameras = 33
6/1/2018 | (Observer 1) and 38 (Observer 2)

Kalsin Bay Olds River
subcolony (ALTE only)

Middle Bay 6/7/2018
Alligator Island 6/12/2018 | Photo-count tern species - 19 at least 5 ALTE
Alligator Island 6/27/2018 | Photo-count - all appear to be ALTE

Photo-count = Tern only, too far to ID species, majority
Foul Bay 9 6/13/2018 | ARTE, counts from above nest habitat & dread

Foul Bay 9 NW 6/14/2018 | Photo-count high count = 5 ALTE flying above habitat
SE Viekoda Bay Islands | 6/16/2018 | Flying high & near constant dreading

Photo count while crew nest searching, minimum count
SE Viekoda Bay Islands | 6/28/2018 | could not get entire flock in single shot

High count on skiff survey 67 Adult + 13 HY; high count
Womens Bay Barge 7/19/2018 | from 3 separate photos of flying adults = 97,94, & 89 (vs 67)

Three Spruce Island 8/15/2018

DISCUSSION

The benefits to the photo-count method as compared to direct counts are that there is a
permanent record of the count, there seems to be a relatively good relationship between direct-
and photo-counts, and the method is relatively quick and easy. The downsides to this method
include the fact it relies on anthropogenic or natural flushes and thus is dependent on the
proportion of flushing individuals and the species ratio at mixed colonies. Additionally, double
counting of birds in composited images is an issue as is ghosting. — loss of individual birds in
composited images.
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Automated acoustic surveys for Aleutian Tern (Onychoprion

aleuticus) in Alaska
Abram Fleishman and Matthew McKown

6 June 2019

This appendix contains details and supplementary information on the song meter method
applied in 2018.
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Summary

Automated acoustic sensors were deployed at twenty-two survey sites within 17 Aleutian Tern
(Onychoprion aleuticus) colonies in coastal Alaska during the summer of 2018. The goals of these
deployments were to evaluate the efficacy of passive acoustic surveys to monitor Aleutian Tern
phenology and relative abundance. The study design paired season-long sensor deployments with
traditional survey methods, including visual tern counts and nest searches near the sensors by field
personnel.

Aleutian Tern vocalizations were detected at all survey sites. Different colonies peaked during
different parts of the summer. Adult counts were correlated with mean call rates calculated from + 7
days around the count date, while there was no relationship with nest density. The nest density result
is not unexpected because the low sample size, low nest densities, and low confidence in the quality
of the counts around the sensors. There were strong seasonal and diel patterns present at every site
monitored, but large differences were seen among colonies. These strong patterns and stark
differences likely represent variation in success, synchrony, and/or phenology among colonies.

The relationship between colony counts and call rate, and the clear ability to detect subtle differences
in timing and duration of activity, may make passive acoustic monitoring an effective method for
detecting and monitoring Aleutian Terns in Alaska. However, several questions remain about how best
to design large scale acoustic surveys for the species. To fully realize the potential that acoustic
monitoring holds for Aleutian Terns, future work must address the spatial scale at which an acoustic
sensor is monitoring, the most effective arrangements of sensors within a breeding aggregation, and
if there is a relationship between nest density and vocal activity at large scales than 20-meter radius
around the sensor. While guidance on some of these questions may be available in the literature, the
Aleutian Tern Technical Committee will need to focus thought and resources to develop a robust
framework and sampling design for statewide survey efforts.

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.



3 of 36

Introduction

The Aleutian Tern (Onychoprion aleuticus) has a small global population and its breeding range is
restricted to Alaska and the Russian Far East. Known breeding populations in Alaska are thought to
have declined since the 1960's (Renner et al., 2015). Population trends are difficult to assess, however,
due to lack of breeding site fidelity, breeding habitat plasticity, gaps in colony counts, variability in
colony attendance within and among years, and potential for high rates of inter-colony movement
(Pyare et al., 2013). Moreover, monitoring methods are still being developed and implemented in
Alaska. Inconsistent methods among sites have prevented range-wide comparisons and estimates of
abundance. Given the unique ecology of the species, and the associated data gaps, Aleutian Tern is
listed as a priority Species of Greatest Conservation Need in the 2015 Alaska Wildlife Action Plan
(Alaska Department of Fish and Game, 2015).

This report summarizes data collected with acoustic recorders to test their efficacy for monitoring the
phenology and relative abundance of Aleutian Tern at colony sites in coastal Alaska. Specifically,
acoustic sensors were deployed at sites that have been used by Aleutian Tern for breeding in the past.
These sites were also visited by field workers to make visual counts of adult Aleutian Tern and assess
nest density near the sensors. The strategy of analyzing acoustic data collected concurrently with
measures of abundance from traditional survey methodologies can be used to investigate
relationships between the abundance of birds and/or nests and call rate metrics derived from acoustic
sensor data. This type of comparison has been used to determine whether or not a functional
relationship exists between call rates and adult or nest abundance for several other ground or burrow-
nesting seabird species [e.g. Forster’s Tern Sterna forsteri (Borker et al., 2014), Leach’s Storm-Petrel
Hydrobates leucorhoa (Orben et al., 2019), Cory’s Shearwater Calonectris borealis (Oppel et al., 2014)].
One important caveat to consider when making these comparisons is that often, traditional methods
for making counts are rife with un-quantified error. Poor detection rates due to secretive nesting
habits (e.g. burrow nesting, nesting in tall grass) and other counting difficulties (e.g. mixed species
flocks, counting birds in flight, difficult weather conditions) are common when surveying seabird
breeding aggregations.

Automated acoustic sensors for ecological monitoring

Acoustic cues have long been an important part of bird monitoring projects (Sauer, Peterjohn, & Link,
1994). Technological innovations now make it possible to deploy weatherproof acoustic sensors that
can reliably sample the acoustic environment for months at a time without maintenance. Hundreds
of hours of field recordings can then be processed with pattern recognition software using deep
learning and artificial neural network techniques to derive measures of acoustic activity rates for
species of interest. This combination of passive acoustic sensors and automated call detection is
especially powerful for monitoring rare/elusive species and species in remote locations (Acevedo &
Villanueva-Rivera, 2006; Agranat, 2007; Brandes, 2008a, 2008b).

This survey method takes advantage of the social behavior that occurs at and around breeding
aggregations, including frequent vocalizations. Automated acoustic sensors and automated acoustic
classification techniques now make it possible to efficiently detect and quantify vocalizations in large
datasets. This technology enables researchers to greatly increase the spatial and temporal scale of
acoustic surveys - improving detection probabilities for rare and elusive species. The increased survey
effort enabled by passive acoustic monitoring is particularly helpful for identifying previously-
unknown breeding sites, as well as improving the statistical power of long-term monitoring projects

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.
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when compared to less intensive monitoring methods (MacKenzie, Nichols, & Lachman, 2002;
MacKenzie, Nichols, & Sutton, 2005).

Passive acoustic sensors and automated classification techniques have increasingly been employed to
search for rare bird species including many seabirds (McKown 2008; Buxton & Jones 2012; Buxton et
al. 2013; Oppel et al. 2014; Borker et al. 2014 ). In addition, specifically for terns, acoustics have been
used as an index for colony size, suggesting that it could be an effective method for monitoring
Aleutian Tern (Borker et al., 2014).

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.
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Methods

Acoustic sensor hardware and survey design

Sixteen Song Meter 4 (SM4) and 8 Song Meter 2 (SM2) sensors, manufactured by Wildlife Acoustics,
were used to collect recordings for this survey. SM4s were programmed to record 1-minute out of
every 6-minutes and SM2s were programmed to record 1 minute out of every 5 minutes 24 hours a
day.

Traditional colony monitoring methods were paired with acoustic sensors at 13 colonies. Adults were
counted using two methods, flush counts and direct counts. Direct counts only occurred at Burton
ranch, Pasagshak River, and Naknek. These counts were considered equivalent in this report. Nest
counts within 5-, 10-, 15-, and 20-m radii around sensors were undertaken at 6 colonies (Middle Bay,

Womens Bay, ltalio, Akhiok, Kalsin Bay, and Black Sand Spit). Nest density was calculated from these

n where r is the radius of the circle in which each count was conducted.

. cou
counts as: Density = —2
Automated call detection
Automated acoustic analysis of all field recordings was carried out with custom detection and
classification software created by Conservation Metrics (CMI). We apply a machine learning technique
known as a Deep Neural Network, which detects sounds on field recordings that have spectro-
temporal properties similar to those measured from signals produced by target species. Deep Neural
Networks (DNNs) are a powerful classification tool used in many fields to perform speech recognition,
image recognition, and computer vision tasks (Cichy, Khosla, Pantazis, & Torralba, 2016; Deng, Hinton,
& Kingsbury, 2013; Min, Lee, & Yoon, 2016; Schmidhuber, 2015).

Our approach to acoustic analysis splits field recordings into 2-second clips and extracts
measurements of 10 spectro-temporal features typically found in animal sounds. A DNN classification
model is then trained for each species of interest using training and cross-validation datasets
containing examples of vocalizations from target species and a representative sample of other sounds
from the study region. The DNN learns which combination of spectro-temporal features best
differentiates target sounds from other sounds in the environment. The trained DNN can then be
applied to new acoustic data from survey sites, returning a probability that a given 2-second window
of field recordings contains a sound produced by the target species (Figure 1).

Aleutian Tern vocalizations are diverse, and we chose to train the detector to identify three common
flight calls: a long trill, and short trill and a buzzy call all with peak energy between 2,500 and 5,000 hz
(Figure 1). These calls were not distinguished from each other by the detector, and the metrics of
Aleutian Tern activity presented in this report represent the sum of all three call types together. In
addition to the three focal calls, the detector did not effectively reject single-note alarm calls (Figure
1), and some of the calls detected were this call.

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.
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Figure 1. Long (a) and short (b) Aleutian Tern trill calls, (c) Aleutian tern buzz call, and (d) Aleutian Tern
alarm call.

We iteratively trained a multiclass DNN detection model using an “active learning” workflow. Active
learning uses successive rounds of data labeling and model training to develop neural network models.
Each round of labeling informs the following model training, which then enhances the next round of
labeling. This workflow accelerates the creation of training datasets by efficiently identifying and
labeling examples of target and non-target sounds from randomly selected recordings. After five
active learning cycles we had compiled a training dataset with 28,567 manually labeled 2-second
sound clips with examples of 59 distinct sounds (classes). We evaluated model performance with ROC
curves using True Positive Rate (# events with Aleutian Tern calls above a classification threshold
divided by total events predicted to have Aleutian Tern calls) and False Positive Rate (# events that did
not have Aleutian Tern calls above a classification threshold divided by the total events without
Aleutian Tern calls in the dataset). We built three models from this dataset, using different class
combinations for each, and chose the model that performed the best on the test dataset with a true
positive rate close to 50% on a manually reviewed independent test dataset containing 1,185 2-second
clips with Aleutian Tern and 7,411 other randomly selected clips from the soundscape. The selected
model (AK_Wetlands_Multi_6Feb19_V8) returned 49.8% of Aleutian Tern flight vocalizations above
the chosen DNN classification score threshold (0.75) with a False Positive Rate of 0.57% (Figure 2).

The high accuracy (91.6%) of our model, and the abundance of Aleutian Tern signal in the acoustic
dataset allowed us to use the raw model output to inform patterns of seasonal, diel and relative
abundance among sites. While we acknowledge that there are false positive detections in the data,
they are too infrequent to substantially influence our analysis results. In total, there were 1,193,893
events classified as Aleutian Tern across the entire acoustic dataset. We confirmed at least one
Aleutian Tern call at each site through manual review.

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.
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Figure 2: Receiver Operator Curve for the Aleutian Tern «class in model version
AK_Wetlands_Multi_6Feb19 V8. The red cross indicates the chosen DNN classification score threshold
with performance characteristics of a false positive rate of 0.57% and a true positive rate of 49.8%.

Statistical Analysis

Call rates were summarized by day during a peak activity time period based on an offset from sunrise.
This period, 90 - 270 minutes after sunrise, was chosen based on visual inspection of the diel activity
patterns shown in Figure 5. Daily peak period call rates were then averaged across a 3-month date
range from 15 May to 15 August to calculate an average calls per minute as an activity metric. The
seasonal peak date range was selected based on the general activity period from initial data
exploration. Most sensors did not collect data for this entire survey period. Call rates are presented as
mean calls per minute £ 1 sd.

For comparisons of call rates with traditional tern counts and nest density metrics, we calculated rates
using a subset of the recordings collected before and/or after the date of the traditional surveys. We
used recordings from 7 randomly selected days from a 15-day window centered on the date that each
count occurred at each site. The randomization allowed us to select the same number of days of
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recording from each sensor-count pair and include data from sites that had acoustic data from only
before or after traditional counts were conducted. This was required when sensors were moved on
the count date; and therefore, had no recordings on the days immediately prior, or following, the
count. Counts that had fewer than 7 days of data within the 15-day buffer were excluded from the
analysis (n=8). Some traditional colony counts covered an area encompassing two acoustic sensors. In
these cases, we averaged the call rates for the two sensors.

We investigated the relationship of vocal activity to colony counts with two models. First, we modeled
the entire dataset with counts from all stages of the breeding season. These data were over dispersed
with a large number of zeros in the counts, and we used a zero-inflated negative binomial GLM with a
log-link to model the full dataset. We also split out the counts that were made during incubation (n=8).
Although the data during incubation were still over dispersed, there were fewer zeros and we fit a
negative binomial model with a log-link.

We also modeled the relationship of call rates to nest density. These data were sparse (n=12) and did
not lend themselves to complex modeling. On each survey the number of nests within 5-, 10-, 15-, and
20-m radius were counted. We used linear regression (ordinary least squares) restricted to the
incubation period (n=8) to check for a relationship between nest density within each radius and call
rate. Each radius was modeled separately.

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.
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Results

Survey Effort

Acoustic sensors were deployed at 25 sites in Alaska between 1 May and 4 October ( for all recordings
and did not identify any microphone failures. Three sensors were deployed for which we did not
receive any data: ALTE13 at Kalsinl from 16 May to 3 July, ALTE 15 at Womens Bay2 from 13 June to
3 July ALTE 20 at Foul Bay NC from 28 June to 11 August. Additionally, we received acoustic recordings
from a sensor named ALTE1 with dates from 2017 that did not have deployment information and was
therefore removed from analysis.

The sensors at Naknekl and Naknek2 had a different recording schedule, recording up to 24 hours of
data per day (Figure 4). We subsampled these data to match the 1 minute every 6-minute recording
schedule for reporting, including the effort reporting.

Table 1, Figure 3, and Figure 4). They recorded 5,542.17 hours of audio across 1,412 sensor-days ( for
all recordings and did not identify any microphone failures. Three sensors were deployed for which
we did not receive any data: ALTE13 at Kalsinl from 16 May to 3 July, ALTE 15 at Womens Bay2 from
13 June to 3 July ALTE 20 at Foul Bay NC from 28 June to 11 August. Additionally, we received acoustic
recordings from a sensor named ALTE1l with dates from 2017 that did not have deployment
information and was therefore removed from analysis.

The sensors at Naknekl and Naknek2 had a different recording schedule, recording up to 24 hours of
data per day (Figure 4). We subsampled these data to match the 1 minute every 6-minute recording
schedule for reporting, including the effort reporting.

Table 1 and Table 2).

Over the course of an acoustic sensor deployment, exposure to the elements can degrade the
sensitivity of microphones. We evaluated sound quality for all recordings and did not identify any
microphone failures. Three sensors were deployed for which we did not receive any data: ALTE13 at
Kalsinl from 16 May to 3 July, ALTE 15 at Womens Bay2 from 13 June to 3 July ALTE 20 at Foul Bay NC
from 28 June to 11 August. Additionally, we received acoustic recordings from a sensor named ALTE1
with dates from 2017 that did not have deployment information and was therefore removed from
analysis.

The sensors at Naknek1 and Naknek2 had a different recording schedule, recording up to 24 hours of
data per day (Figure 4). We subsampled these data to match the 1 minute every 6-minute recording
schedule for reporting, including the effort reporting.

Table 1. Deployment Table

Recording
SPID Unit Latitude Longitude First Recording Last Recording

2018-05-22 2018-07-20

Akhiok ALTE3 56.94 -154.14 10:22:00 11:18:00
2018-05-24 2018-08-17

Black Sand Spitl ALTE6 59.45 -139.61 13:44:00 10:04:00
2018-05-24 2018-08-17

Black Sand Spit2 ALTE7 59.45 -139.61 11:50:00 11:04:00
2018-05-09 2018-08-17

Black Sand Spit3 ALTE9 59.44 -139.58 11:22:00 10:46:00
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Recording
SPID Unit Latitude Longitude First Recording Last Recording
2018-06-05 2018-07-08
Burton Ranch ALTE2 57.48 -152.33 13:05:00 14:07:00
2018-06-01 2018-06-13
Foul Bay 9 ALTE16 57.76 -152.50 17:37:00 14:15:00
2018-06-13 2018-08-11
Foul Bay 9 ALTE18 57.76 -152.50 13:21:00 17:38:00
2018-06-13 2018-06-27
Grassy Island ALTE20 58.45 -152.78 05:09:00 11:59:00
2018-05-26 2018-09-01
Italio ALTE8 SM4 59.32 -139.18 16:09:00 10:26:00
2018-07-03 2018-08-23
Kalsin2 ALTE8 SM2 57.59 -152.46 11:24:00 11:05:00
2018-05-11 2018-05-30
Kenai SM2 KENAISM2 60.46 -151.07 15:48:00 12:56:00
2018-06-08 2018-08-13
Kenai SM4 SAKENAI 60.46 -151.07 11:46:00 05:12:00
2018-05-08 2018-08-17
Lost River ALTE10 59.46 -139.61 15:13:00 13:10:00
2018-05-01 2018-07-11
Middle Bay1 ALTE4 57.65 -152.50 12:31:00 05:57:00
2018-07-12 2018-08-23
Middle Bay2 ALTE4 57.65 -152.51 11:40:00 09:58:00
2018-05-01 2018-07-09
Middle Bay3 ALTES 57.65 -152.50 13:07:00 00:05:00
2018-06-01 2018-06-27
Naknek1 ALTE12 58.74 -157.06 11:23:00 13:56:00
2018-06-27 2018-09-30
Naknek2 ALTE12 58.73 -157.06 14:20:00 09:07:00
2018-05-04 2018-07-09
Pasagshak1l ALTE1 57.48 -152.47 12:30:00 01:55:00
2018-05-04 2018-06-05
Pasagshak2 ALTE2 57.47 -152.47 12:54:00 11:59:00
2018-05-22 2018-06-09
Sheep ALTE14 57.22 -153.25 09:30:00 23:34:00
2018-06-11 2018-08-01
Sheep ALTE19 57.22 -153.25 09:40:00 09:35:00
Stonestep Lake 2018-05-02 2018-05-16
SM2 STPSTN2018 59.69 -151.35 09:57:00 07:14:00
Stonestep Lake ALTE18- 2018-05-26 2018-07-19
SM4 HOMER 59.69 -151.35 11:07:00 14:44:00
2018-06-24 2018-07-10
Three Spruce Island ALTE14 58.59 -152.51 04:10:00 02:39:00
2018-07-03 2018-08-23
Womens Bayl ALTE11 57.71 -152.57 16:35:00 09:04:00
Foul Bay NC ALTE20 58.34 -152.89 No Data
Kalsinl ALTE13 57.59 -152.46 No Data
Womens Bay2 ALTE15 57.70 -152.57 No Data
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SPID Total Nights Total Hours
Akhiok 60 236.13
Black Sand Spitl 86 339.18
Black Sand Spit2 86 339.12
Black Sand Spit3 101 399.78
Burton Ranch 34 132.08
Foul Bay 9 72 278.83
Grassy Island 15 68.58
Italio 99 362.37
Kalsin2 52 218.55
Kenai SM2 20 74.80
Kenai SM4 67 258.72
Lost River 102 403.53
Middle Bay1 72 283.00
Middle Bay2 43 167.50
Middle Bay3 70 273.95
Naknekl 27 104.47
Naknek2 96 378.58
Pasagshak1l 67 262.33
Pasagshak2 33 128.02
Sheep 71 287.40
Stonestep Lake SM2 15 53.37
Stonestep Lake SM4 55 216.58
Three Spruce Island 17 72.92
Womens Bayl 52 202.37
Total 1,412 5,542.17
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Figure 4. Survey effort. Blue bars show the number of hours of data received by day.
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Aleutian Tern Phenology and Relative Abundance

Aleutian Tern calls were detected at all 25 survey sites (Figure 7). Daily activity patterns generally
showed a peak in vocal activity in the morning from 90 to 360 minutes after sunrise, with a steady
decline throughout the day and very low level of calling at night (Figure 5). This pattern was generally
consistent, with some variation within each site as the season progressed and some inter-site variation
(Figure 6, See Appendix B for larger scale figures by site). We chose a 2-hour morning period between
90 to 270 minutes after sunrise to compare mean activity patterns over the season. In general, there
were two peaks in activity; the first from mid-May to mid-June and a second later peak from early-July
to late-July (Figure 7). At Black Sand Spit sites, the later peak ended a little sooner than other sites
(Figure 7).

Mean call rates during the comparison period (15 May to 15 Aug) varied among sites from 0.04 + 0.08
at Kenai SM4 to 10.43 + 8.45 calls per minute at Naknek2 (Figure 8, Table 3, Figure 9, See Appendix A
for larger maps).
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Figure 5. Species activity as a function of time from sunrise. Each bar is a 30-minute bin.
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Figure 6: Phenological patterns of Aleutian Tern activity in relation to sunrise at each survey site. Each
cell in these raster graphs represents the mean call rate for non-overlapping 30-minute time bins (y-
axis) and 2-day date bins (x-axis). Warmer colors indicate higher rates of acoustic activity. NOTE:
Survey effort varied considerably across sites.
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Figure 7. Aleutian Tern acoustic activity rates by date and site during the peak calling hour (90-270
minutes after sunrise).
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Table 3. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and

acoustic comparison period (15 May - 15 August).

SPID Rate Min™ N sd se
Akhiok 8.05 59 6.84 0.89

Black Sand Spitl 4.65 83 5.07 0.56
Black Sand Spit2 9.51 83 7.90 0.87
Black Sand Spit3 9.43 93 8.73 0.91
Burton Ranch 0.41 33 0.39 0.07
Foul Bay 9 7.07 70 6.48 0.77
Grassy Island 0.91 15 0.91 0.24
Italio 4.80 79 5.77 0.65
Kalsin2 0.25 43 0.21 0.03

Kenai SM2 0.08 13 0.07 0.02
Kenai SM4 0.04 64 0.08 0.01

Lost River 2.31 93 2.18 0.23
Middle Bay1 5.80 57 4.37 0.58
Middle Bay2 8.81 34 8.62 1.48
Middle Bay3 3.90 55 3.82 0.51
Naknek1 8.66 26 6.97 1.37
Naknek?2 10.43 49 8.45 1.21
Pasagshak1 0.56 55 0.76 0.10
Pasagshak2 1.37 22 1.81 0.38
Sheep 2.90 69 3.30 0.40
Stonestep Lake SM2 1.72 2 0.07 0.05
Stonestep Lake SM4 0.39 54 0.83 0.11
Three Spruce Island 3.28 16 2.34 0.58
Womens bay1 0.52 43 1.23 0.19
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Figure 9. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August). See Appendix A for colony specific higher resolution
maps.
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Traditional Count Metrics

There were 67 traditional counts completed during this survey. Some colonies had a single count
(Italio, Three Spruce Island) while other sites had up to 16 counts (Middle Bay). Black Sand Spit (80 +
34.6) and Naknek (78.4 £ 50.9) had the highest mean counts, followed by the single count at Italio (45;
Figure 10).

Nest density was monitored at six colonies; four of which were only monitored on a single date
(Akhiok, Italio, Kalsin Bay, Womens Bay). The other two colonies (Black Sand Spit and Middle Bay)
were monitored three times each. Nest searches found few nests within 20-m of the sensors
monitored. The maximum number of nests found within 20m of a sensor was 6 nests (Black Sand
Spit1). Density ranged from 0.00 to 0.026 nests m™, the maximum nest density was recorded at Black
Sand Spit2 at a 5-m radius (2 nests within 5 meters).
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Colony

Figure 10: Summary of traditional adult Aleutian Tern colony counts. The black center line represents
the median, the box represents 25%-75% quartiles, and the whiskers represent 95% quantiles. Data
points outside the 95% quantile are represented as black dots.
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Figure 11: Aleutian Tern nest density at 5-,10-,15-,and 20-meter radii around acoustic sensors at 6
colonies in coastal Alaska. The black center line represents the median, the box represents 25%-75%
quartiles, and the whiskers represent 95% quantiles. Data points outside the 95% quantile are

represented as black dots.

Comparing Call Rates to Traditional Monitoring Metrics

Counts - full data set

There were 66 observations where colony counts occurred during an active acoustic survey window
with at least 7 days of data near the count date. The traditional colony count data in this dataset were
over-dispersed and there were many counts of zero terns. Thus we chose a Generalized Linear
Modeling approach with a zero-inflated negative binomial distribution and a log link function to
compare colony count data to call rates. This two-part mixture model suggests that call rate is

inversely related to the probability of detecting a false zero count (i.e. a zero generated when birds
were missed by counters; odds ratio: 0.26, p = 0.14). This means that the probability of counting at
least one tern rose as call rates increased. The second part of the model predicts the relationship of
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calls to counts, and the results indicate that colony counts increased by 11.6% + 3.5 se (95% Cl: 4.3-
19.5%) for each increase of 1 call minute® (df = 5, p = 0.002; Figure 12).
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Figure 12: Relationship between call rate and colony counts using the full dataset. Line is a model fit
from a zero-inflated negative binomial GLM with a log link. The grey swath represents 95%
confidence interval estimated by bootstrapping 10,000 times.

Counts - Incubation

There were 24 counts conducted during the incubation stage (colony status “nesting” or “active”) and
there were at least 7 days of acoustic survey data near the count date. The count data in this dataset
were over-dispersed and we used a GLM with a negative binomial distribution and a log link-function
to compare counts to call rates. Counts were positively correlated with call rates, and showed a 17.7%
+3.5se (95% Cl: 9.2-28.7%) increase for every increase of 1 call minute™ (deviance: 27.6%, p < 0.0001;
Figure 13).
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Figure 13: Relationship between call rate and colony counts during the incubation period. Line is a
model fit from a negative binomial GLM with a log link. The grey swath represents the standard error

around the prediction.

Nest density

There were 12 surveys for nest density conducted during acoustic survey periods. Of these, 8 nest
surveys occurred during the incubation period. We used linear regression (ordinary least squares) to
investigate the relationship between call rate and nest density. There were not enough samples within
5-m of the sensor to include in our analysis. At other survey radii, call rates were not related to nest
density within 10-, 15-, or 20-m radius of the acoustic sensor (i.e. at 15m; R?=0.006 - 0.10, p=0.44-
0.84; Figure 14). The small sample size, inconsistency in counting methods, difficulty of finding and
counting nests around each sensor, and dispersed nature of Aleutian Tern nest sites likely help to

explain why there was not a significant relationship between these two metrics.
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Discussion

Automated acoustic surveys show promise as a tool to monitor Aleutian Terns at breeding
aggregations in Alaska. First, results from the pilot surveys demonstrated that it was possible to
develop an effective acoustic classification model to automate the analysis of data from passive
acoustic surveys. Our classification model was able to process >5,000 hours of recordings quickly, and
with a reasonable levels of classification error. Second, acoustic detection data showed diel and
seasonal patterns that could help document general attendance patterns at each Aleutian Tern
breeding aggregation across an entire breeding season. Finally, although no clear correlation was
found between Aleutian Tern nest densities and acoustic activity rates within a 20-m radius of the
acoustic sensors, our analysis did find a statistical relationship between call rates and the number of
birds counted during traditional visual colony counts. This relationship, with further ground truthing,
could make passive acoustic monitoring an effective tool for monitoring relative abundance of
Aleutian Terns at scale.

Detection Model

Our analysis was based on the raw output of our Deep Neural Network classification algorithm for
Aleutian Terns. We chose a classification threshold that resulted in a low level of false positives. We
estimate that ~50,000 ( ~4.2%) of the 1,193,893 events classified as Aleutian Tern calls are false
detections. False positive classifications were generally calls from other bird species that were mis-
classified as Aleutian Tern calls. It is likely that model performance could be improved in the future
by increasing the number of training examples for the songbirds and other signal classes included in
the model (Total signal classes = 59). Also, separation and reclassification of the Aleutian Tern
training data to individual call types (e.g. long trill, short trill, alarm, buzz) may boost classification
performance. Creating more specific tern call classes may also help improve the fit of statistical
models of the relationship between visual colony counts/nest density counts and call rates by
focusing on calls that may be more likely near nest sites (if any). We plan to explore some of these
ideas once we receive the 2019 acoustic recordings.

Call Rates as an Index of Abundance
Aleutian Tern call rates were not correlated with nest counts within a 20m radius of the acoustic
sensors. Several factors may have influenced these results, including:

1. Variation in count methodology among study locations;
2. Small sample size of traditional nest counts vs. acoustic counts; and
3. The 20m radius limit to the spatial area surveyed for nests.

In future years, nest counts quantified from drone imagery could be used to compare call rates to nest
densities over larger spatial scales (i.e. > 20m radius around each sensor). This approach could also
help to standardize count methodologies and increase samples sizes, especially with replicate drone
flights during the breeding season.

Mean call rates were correlated with visual colony counts. This result is similar to previous research
on Forster’s Tern (Sterna forsteri) (Borker et al., 2014), which found a statistically significant
correlation between acoustic metrics and total nests in their study colonies.

The lack of a relationship between the density metrics for Aleutian Terns at the 20m radius scale, but
a relationship to colony wide counts suggest that acoustic sensors may be integrating information
over larger spatial scales. This would occur when local call rates at a monitoring site are influenced by
individuals from across the colony (spatial autocorrelation). The relationship we report is likely a result
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of individuals (breeders and non-breeders) calling in flight while leaving or returning to the colony,
general aerial social behavior over the colony, and periodic bursts of aerial activity from disturbance
events.

While this relationship between Aleutian Tern call rates and traditional visual counts of individuals is
an encouraging result, it would be preferable to establish a relationship between call rates and
numbers of nests (breeding pairs) at a known spatial scale. This would preclude the need to estimate
the percentage of breeders vs. non-breeders contributing to the acoustic activity through some other
means, and would offer guidance on how many sensors to deploy, and where to place them for large-
scale surveys. Thus, we think it would be valuable to explore ways to compare call rates and nest
counts over larger radii around each sensor.

In the absence of such a relationship, the fact that acoustic activity rates track colony abundance is
still a potential valuable metric, especially when coupled with the ability to use acoustic survey data
to track seasonal patterns at each site (See below). Large-scale passive acoustic surveys could
therefore track presence of Aleutian Terns at survey sites, provide information on the duration of
activity at each site, compare relative abundance across sites, and track changes in relative abundance
through time (statistical power still to be determined). A large-scale survey effort would likely involve
deployment of replicate acoustic sensors (N=3?) per survey area.

Predictive modeling

Modeling for both count datasets (full season and incubation) could likely be improved with the
addition of other explanatory variables. There are many covariates that may influence both call rates
and human counts that were not included here. These include:

1) weather - rain and wind can produce masking noise that will reduce call rates and potentially
change calling behavior. These same two variables can influence human counters as well;
2) co-occurring species - presence and abundance of other species such as Arctic Terns that may be

confused for Aleutian Terns in traditional counts and may mask Aleutian Tern acoustic signals,
3) factor correlated with nest-count errors - detection probabilities of traditional counts (nests

obscured by grass, areas out of view of the counter),
4) timing of traditional counts - diel patterns in calling activity showed a peak of Aleutian Tern calling

activity from 90 to 270 minutes after sunrise. This peak may be related to colony attendance, and
not all the traditional counts were conducted during the peaks in acoustic activity, so including a
time of day of the counts as a covariate may be important for improving model fit.

Phenological Patterns

Acoustic surveys can produce an extremely rich dataset for exploring questions about colony
attendance and breeding phenology at survey sites. Figure 6 shows some of the patterns available for
exploration. For example, many sites showed clear differences in the time of day when Aleutian Terns
called (e.g. Foul Bay 9 vs. Black Sand Spit sites). At some sites, vocal activity shifted within the season.
For example, Italio, had activity throughout the day early in the season, but only high activity during
the morning towards the end of the season. Similar pulses of activity late in the season were
documented at Black Sand Spit, Lost River, Akhiok, and Sheep. Could this be indicative of
staging/flocking behavior associated with post-breeding?

Alternatively, could the early season periods of all-day vocal activity (spanning most day-light hours)
be related to courtship activity? This pattern was visible at many sites for some part of the summer as
exemplified by Akhiok. Finally, are truncated (<3 week) periods of all-day vocal activity indicative of
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failed breeding attempts? For example, might the extended duration of activity at Foul Bay 9 or
Naknek2 be indicative of asynchronous courtship behavior leading in to a successful breeding season,
while the shorter pulses at Black Sand Spit, indicate more synchronous courtship or a failed breeding
attempt? At the moment these are speculative questions, but additional data from camera traps,
drones, and traditional surveys could aid with interpretation of these acoustic patterns and could
provide a useful method for monitoring Aleutian Tern breeding phenology at scale.

Considerations for future surveys

The acoustic survey results from the pilot season (2018) were encouraging. However, several
guestions remain about how best to design large scale acoustic surveys for the species. Within
breeding aggregations, Aleutian Tern nests appears to be patchily distributed and in low densities.
However, communication behavior of Aleutian Terns and individuals vocalizing over the colony appear
to allow acoustic sensors to gather meaningful information about tern abundance at breeding
aggregations. The question remains, what is the spatial scale of an acoustic sensor for this species,
and how can that be used to plan sampling strategies for Aleutian Terns, especially when surveys will
need to be carried out before the initiation of the breeding season, and in areas with no prior
knowledge of nest sites. In the absence of an observed correlation between nest densities and call
rates at larger spatial scales, the best strategy may be the deployment of replicate sensors in potential
breeding habitat at fixed distances. But some assumptions will need to be made about what that
distance should be, and how the sensors should be spatially distributed. It would be useful to try and
qguantify the total available breeding habitat at each of the breeding aggregations monitored in 2018
to explore this further. Finally, if the best acoustic index of abundance is tied to total birds, we will
need to estimate the ratio of breeding birds to non-breeding birds contributing to the acoustic call
rate in order to estimate breeding abundance at survey sites. While guidance on some of these
guestions can be gleaned from the literature, the Aleutian Tern Technical Committee will need to
focus some thought and resources to develop a robust framework and sampling design for statewide
survey efforts.

Data Issues from the 2018 survey
Several changes could improve future survey results. Below is a list of some of the challenges we
encountered while analyzing these data.

e Some sensors were programed with the wrong time. Aleutian Tern1l8 was programed to
Eastern Time. It is important to check the date and time on every visit to the acoustic sensor.

e Some sensors were programed with the wrong recording schedule. The sensor at Womens
Bay was initially programed to record hour long files, 24 hours per day. Additionally, the rest
of units were set to a 1 minute every 5- or 6-minute schedule. This was due to a programing
mistake that Conservation Metrics made when creating the Song Meter program for the
SM4s. We have corrected the schedule and for the 2019 season all units should be deployed
on a 1 minute every 5 minutes 24 hours a day schedule.

e Count and density data were not standardized in the data entry spreadsheets. For instance, if
the flock composition was estimated (80% Aleutian Tern, 20% Arctic Tern) with a total number
of terns, make a note that it was estimated with the composition, and also calculate the
number for each species. This season the counts were left blank.

e Two sensors were programed with the same prefix. This is the most difficult issue for us to
deal with at Conservation Metrics. Our data pipeline is built around each sensor having a
unique name and never having two sensors in the field at the same time with the same prefix.
The prefix ALTE8 was given to two sensors, one a Kalsin and one at Italio. This was not caught
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when we ingested the data and files became mixed. We were able to recover most of the data
(but there were some files that were overwritten and lost. If data from both ALTE8 sensors
could be sent with data from the 2019 survey season, we can recover the missing files. Please
avoid naming sensors with the same prefix in the future (even if they are SM2 vs SM4).
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Appendix A: Colony Specific Call Rate Maps
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Figure 16. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Stone Step Lake.
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Figure 17. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Kenai.
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Figure 18. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Sheep and Akhiok.
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Figure 19.Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Kalsin, Pasagshak, and Burton Ranch.
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Figure 20. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Middle Bay.
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Figure 21. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at North Kodiak colonies: Grassy Island, Three Spruce
Island, Foul Bay, and Womens Bay.
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Figure 22. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Naknek.

ADFG ALEUTIAN TERN SURVEYS - 2018 CONSERVATION METRICS, INC.



36 of 36

Calls Per Minute
® 00-21
® 21-4.2
® 42-63
© 6.3-83
© 8.3-104

Conservation Metrics

Figure 23. Aleutian Tern call rate estimates during peak calling hour (90-270 minutes after sunrise) and
acoustic comparison period (15 May - 15 August) at Lost River, Black Sand Spit, and Italio.
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- INC-20

- unC-G¢
- unp-gT
- unp-TT
- unC-10
ReN-8¢
- ReN-T2
- ReN-1T
- ReN-20
- Idy-0¢g

Date



Appendix B

Call Rate

LR

20
10

Sheep

- 100-T0
- des-1¢
- des-/T
- des-0T1
- des-€0
- bny-,¢
- Bny-0¢
- Bny-¢€1
Bny-90
- INC-0€¢

- INC-€2

- INC-9T

- INC-60

- INC-20

- unC-G¢
- unp-gT
- unp-TT
- unC-10
ReN-8¢
- ReN-T2
- ReN-1T
- ReN-20
- Idy-0¢g

1080 -

Date



Appendix B

Call Rate

W

20
10

0

Stonestep Lake SM2

rise

- —— = = == ==

- 100-T0
- des-v¢
- does-/T
- des-0T1
- des-€0
- bny-,¢
- Bny-0¢
- Bny-¢€1
Bny-90
- INC-0€¢

- INC-€2

- INC-9T

- INC-60

- INC-20

- unf-Gg
- unc-8T
- unc-TT
- unc-%0
ReN-8¢
- ReN-T2
- ReN-1T
- ReN-20
- Idy-0¢g

1080 -

Date



Call Rate

-30
-

Stonestep Lake SM4

Appendix B

- 100-T0
- des-1¢
- des-/T
- des-0T1
- des-€0
- bny-,¢
- Bny-0¢
- Bny-¢€1
Bny-90
- INC-0€¢
- INC-€2
- INC-9T
- INC-60
- INC-20
- unC-G¢
- unp-gT
- unp-TT
unc-+0
ReN-8¢
- ReN-T2
I - ReN-1T

- ReN-20
1 ldv-0¢g

]
(2}
=
[
=
73]

1080 -
1005 -
930 -
855 -
780 -
705 -
630 -
555 -
480 -
330 -
255 -
180 -

Date



Call Rate

Three Spruce Island

]
(2}
=
[
=
73]

Appendix B

- 100-T0
- des-1¢
- des-/T
- des-0T1
- des-€0
- bny-,¢
- Bny-0¢
- Bny-¢€1
Bny-90
- INC-0€¢

- INC-€2

- INC-9T

- INC-60

- INC-20

- unC-G¢
- unp-gT
- unp-TT
- unC-10
ReN-8¢
- ReN-T2
- ReN-1T
- ReN-20
- Idy-0¢g

1080 -

Date



Call Rate

Womens bayl

Appendix B

- 100-T0
- des-v¢
- does-/T
- des-0T1
- das-¢0
- bny-/2
- Bny-0¢
- bny-¢1
Bny-90
- INC-0¢g
- InC-£¢
- INC-97
- INC-60
- INC-20
- unp-6g
— - unf-8T
- unC-TT
|
|
|

- unC-10
ReN-8¢
- ReN-T2
- ReN-1T
- ReN-20
1 ldv-0¢g

Sunrise

1080 -
1005 -
930 -
855 -
780 -
705 -
630 -
555 -
480 -
330 -
255 -
180 -

Date



