RC050

RC by Paul Gronholdt 03/27/2022

NOAA Technical Report NMFS SSRF-735

History of the Fishery and Summary Statistics of the Sockeye Salmon, *Oncorhynchus nerka,* Runs to the Chignik Lakes, Alaska, 1888-1966

Michael L. Dahlberg

August 1979

Marine Biological Laboratory LIBRARY

OCT 14 1992

Woods Hole, Mass.

U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary National Oceanic and Atmospheric Administration Richard A. Frank, Administrator

National Marine Fisheries Service Terry L. Leitzell, Assistant Administrator for Fisheries

For Sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Stock No. 003-017-00459-7

RC050

CONTENTS

Page

Introduction	 	1
Sockeye salmon research at Chignik, Alaska	 	1
The watershed		2
The climate		3
History of the commercial fishery		3
Cannery operations		3
Fishing gear	 	3
Fishing regulations	 	6
Catch trend	 	6
Catches and escapements of the Chignik sockeye salmon runs, 1888-1966		7
Catches and escapements		7
Catch records		7
Escapement records		7
Catches, escapements, and total runs by stock	 	8
Estimated migration times and delays between fishery, lagoon, and weir	 	8
Travel time between Cape Kumlik and Chignik Lagoon	 	9
Travel time between Chignik Lagoon and Chignik weir	 	9
Separation of stocks by time of entry	 	10
Calculation of catches and escapements by stock	 	11
Summary	 	12
Literature cited	 	12

Figures

1.	. Map of the Chignik River watershed with inset of western Alaska.	2
	Percentages of catches of sockeye salmon taken by trap, seine, and gill net, 1932-66.	5
	Open-closed fishing periods, 1895-1966.	5
	Trends in fishing effort and catch of sockeye salmon per unit of effort at Chignik, 1900-66.	6
5.	Commercial catches of sockeye salmon at Chignik, 1895-1966.	6
6.	Commercial catches of sockeye salmon in the Nushagak district, 1893-1966.	7
7.	Trend in the ratio of escapement to catch for Chignik sockeye salmon, 1922-66.	8
8.	Numbers of tagged sockeye salmon recovered at Chignik from day 1 to 5 after release of fish tagged	
	at Aniakchak Bay	9
9.	Numbers of days between release and passage through the Chignik River weir for sockeye salmon	
	tagged and released immediately below the weir.	9
10.	Numbers of days between release and passage through the Chignik River weir for sockeye salmon	
	tagged and released at Chignik Lagoon.	10
	Patterns of time of entry for tagged Black Lake and Chignik Lake sockeye salmon, 1962-66	11
12.	Calculated catches of Chignik Lake and Black Lake sockeye salmon, 1895-1966, based on time of	
	entry of the stocks in recent years.	15
	Catch trends for Chignik Lake and Black Lake, 1895-1966, smoothed by a moving average of 5	15
14.	Escapement trends for Chignik Lake, Black Lake, and combined stocks, 1922-66, smoothed by a	
	moving average of 5	15
	Trends in total run for Chignik Lake. Black Lake, and combined stocks, 1922-66, smoothed by a	
	moving average of 5.	15

Tables

1.	Morphometric measurements of Chignik and Black lakes and Chignik Lagoon	3
2.	Recapitulation of types of fishing gear and catches of sockeye salmon by gear, fishing seasons, fishing	
	regulations, and numbers of days fished at Chignik, 1895-1966.	4
3.	Long-term changes in abundance of Chignik sockeye salmon	1
4.	Estimated escapements of sockeye salmon at Chignik, Alaska, for those years in which weir counts	
	either were not available or were unreliable	8

RC050

		Statement of the local division of the local
	5. Average duration of time from release to passage through the weir for sockeye salmon tagged in Chignik Lagoon and sockeye salmon tagged immediately below the Chignik River weir.	10
1	6. Summary of tagging experiments to determine time of entry of the sockeye salmon stocks of Chignik. Alaska, 1962-66	10
1	7. Estimates of a. b. and spit for tagging studies of time of entry of Chignik sockeye salmon, 1962-66	11
	8. Proportions of Black River spawners in the early sockeye salmon escapements, 1960-66	11
	9. Summary of catches of Chignik sockeye salmon by nursery lake, 1888-1921	12
	0. Summary of catches and escapements of Chignik sockeye salmon by nursery lake, 1922-66	13
1	1. Selected ratios of cetch and escapement statistics for Chignik Lake, Black Lake, and total runs, 1922-66.	14

3

History of the Fishery and Summary Statistics of the Sockeye Salmon, Oncorhynchus nerka, Runs to the Chignik Lakes, Alaska, 1888-1966

MICHAEL L. DAHLBERG¹

ABSTRACT

Annual runs of sockeye salmon to the Chignik Lakes. Maska, decreased from an average of 1.9 million during the period 1912-39 to an average of 0.9 million during the period 1919-66. In order to study the dynamics of the runs' historic catch, escapement and age structure data were compiled by spawning stock and brood year. The history of fishing and management of the runs from inception of the fishery until 1966 is described. The high seas and coastal distributions of Chignik sockeye salmon indicated significant interception by the fishery in only one area other than the Chignik Bay and Chignik Lagoon: the fishery at Cape Igyak started in the mid-1960's. Results of the study were used to construct parent-progeny relationships that formed (he hasis for a management strategy to restore the runs' to their former level of abundance.

INTRODUCTION

One approach to restoring sockeye salmon stocks² to their former levels of abundance is to precisely regulate the harvest of each major race (Royce 1964). According to Royce (1960), such a course requires that the management agency 1) can define and recognize each major race³ of salmon, 2) has accurate statistics on catch and escapement, 3) can forecast the returns' accurately, 4) knows the number of spawners needed for maintenance, and 5) is aware of the gear and time needed to harvest the desired number of salmon. The management agency does not have all this knowledge for any race of salmon in Alaska, but information has become available on the stocks of one sockeye salmon-producing system of western Alaska, the Chignik River system, from which it can formulate a management strategy based on precise regulation of the harvest.

In this paper, historic catch and escapement statistics are presented for each of the two major stocks of sockeye salmon in the Chignik River system. Current statistics have been routinely published and are later cited.

Sockeye Salmon Research at Chignik, Alaska

The potential of the Chignik watershed for controlled studies of the life history of sockeye salmon was recognized early in the development of salmon research in Alaska (Gilbert and O'Malley 1921). Parallel studies of the life history of sockeye salmon were started by the U.S. Bureau of Fisheries at Karluk in 1921 and at Chignik in 1922 with the main purpose of ascertaining "what relation exists between spawning colonies of varying size and the number of progeny that they furnish" (Gilbert 1929). The Karluk and Chignik Rivers were selected because it was believed the fishery operated solely on fish bound for these particular watersheds.

In 1928 the complexities of the life cycle and dynamics of the sockeye salmon populations of Chignik were brought to light, and intensive study of the freshwater life history of the Chignik sockeye salmon began (Higgins 1930). Considerable progress was made in determining the pattern of the life history of Chignik sockeye salmon and the relationship between the numbers of spawners and returning progeny (Holmes 1934). However, in 1934 research was drastically reduced because of budget restrictions, and the only activity was collection of scales. for later study (Higgins 1936). A fish-counting weir was first erected in Chignik River in 1922 to estimate the escapement. The counting weir was not maintained in 1938, from 1940 through 1948, and in 1951. Each year since 1952 a weir has been in operation to count the escapement; because of turbid water and lack of adequate sites, counting towers used in the Bristol Bay district are not feasible at Chignik.

Tagging studies were conducted at Chignik by the Fisheries Research Institute (FRI), University of Washington, in 1949 and 1952, and a research program funded by the Chignik salmon canning industry began in 1955. From 1955 to 1960 the research program consisted of studies of the age composition of the runs, annual enumeration of smolts, and an investigation of predation on juvenile salmon by Dolly Varden, Salvelinus malma,

Northwest and Alaska Fisheries Center Auke Bay Laboratory. Notional Marine Fisheries Service, NOAA, P.O. Box 155, Auke Bay, AK 99821

Stock refers to each aggregation that can be managed separately (Ricker 1966), run, as defined by Mathews (1966), signifies the total number of mature sockeys salmon entering the watershed in 1 yr (catch plus escapement).

Bace, the same as stock, see above,

Returns refers to the total number of mature progeny produced by one spawning, regardless of the time of return.

V)

5

and coho salmon, Oncorhynchus kisutch, (Roos^{5. e. 7}, 1959, 1960). Beginning in 1961 the FRI intensified ecological studies of the nursery takes. Results of those studies have been reported by Narver (1966), Phinney (1970), Parr (1972), and Burgner and Marshall⁸. Dahlberg (1973) analyzed the historical records of the fishery and reported on the dynamics of the sockeye salmon returns to Chignik from the inception of the fishery through 1966. Although all five species of Pacific salmon found in North America occur at Chignik, sockeye salmon are the most abundant and commercially important species. This report treats only sockeye salmon at Chignik. Narver (1966) and Parr (1972) described the life histories of fishes associated with sockeye salmon in the Chignik lakes.

The Watershed

The Chignik watershed is located on the Alaska Peninsula approximately halfway between the tip of the Alaska Peninsula and Kodiak Island (Fig. 1). Black and Chignik Lakes drain into the Pacific Ocean and form a natural northwest-southeast pass through the Aleutian Mountain Range. The watershed covers an area of approximately 1,520 km² including two lakes of 63.8 km² total surface area. Atwood (1911) and Knappen (1929)

Rons, J. F. 1960. Life history of red salmon. (Incorhynchus nerka (Walbaum), at Chignik, Alaska. Unpubl. manuscr., 56 p. Fish. Res. Inst., Univ. Washington, Seattle.

Burgner, R. L., and S. L. Marshall. 1974. Optimum escapement studies of Chignik sockeye salmon. Anadromous Fish Project Final Report for period ending June 30, 1973. Report No. FRI-UW-7401. Fish, Res. Inst., Univ. Washington, Seattle, 91 p. discussed in detail the geology of the region and briefly described the geography and vegetation; Murie (1959) detailed the fauna of the Alaska Peninsula.

Because the lakes are important as rearing areas for juvenile sockeye salmon, they have been closely studied; a complete description of the two lakes is presented by Narver (1966). Black Lake is shallow (44% of the area is <2 m deep), warms rapidly in the spring, and is usually turbid (typical Secchi disk reading is <1 m) throughout the summer. Chignik Lake, although smaller in area than Black Lake, is six times greater in volume and generally clearer. Although the lakes are different physically (Table 1), together they show a marked contrast in biological activity when compared with 24 other sockeye salmon-producing lakes in western Alaska (Burgner et al. 1969). The Chignik system ranked second in number of spawners per unit of lake surface area, first in rate of photosynthetic activity (area and volume), first in content of chlorophyl a per unit of lake volume, and second in content of total dissolved solids, and generally showed high concentrations of trace elements. Black Lake and Chignik Lake had the highest standing crops of phytoplankton among the lakes compared.

The lakes are connected by Black River (12 km long), which flows south along the edge of the Aleutian Mountain Range. Two major spawning tributaries enter Black River. West Fork, entering from the west, drains the northeast slope of Mount Veniaminoff (Fig. 1), a volcano which erupted as recently as 1956 (Roos see footnote 7). Chiaktuak Creek enters from the east and drains a valley parallel to Chignik Lake. Bearskin Creek also enters Black River but is of minor importance as a spawning stream; small numbers of spawners are found occasionally in the upper reaches (Phinney 1970).

The lower lake is drained by Chignik River (7.2 km long), which is normally influenced by tidal action for nearly one-half its length. The highest spring tides affect the river up to the lake outlet.

2

Figure 1.-Map of the Chignik River watershed with insot of western Alaska.

Roos, J. F. 1959. Report on Chignik adult red salmon studies, 1958. Unpubl. manuscr., 12 p. Fish. Res. Inst., Univ. Washington, Seattle.

Roos, J. F. 1959. Red salmon tagging at Chignik. Alaska during 1959. Unpubl. manuscr., 9 p. Fish. Res. Inst., Univ. Washington, Seattle

Table 1.--Morphonietric measurements of Chignik and Black Lakes and Chignik Lagoon (from Dahlberg

			12					
Marrieda			Water		S	horeithe		
	200			Volume			Flow at outlet	
(1117	alean	Maximum	(km)	1 k 123 * J	(km)	Development	(m 's)	Unte
13 5	3 29	64	41 1 22 7	010	27.0	1 19	17.0	25 June 1963
		100	-	-		1.354	35.8	23 June 1963 13 Aug. 1963
-	3	15			16.7	1.04	-	
	(m) 15 5	(m) Mean 15 3 5 29	(m) <u>Mean Maximum</u> 15 3 6 5 29 64	Altitude Depth m) Brea (m) Mean Mastinum (km ³) 15 3 6 41.1 5 29 64 22.7 63.4	Aititude (m) Depth (m) Mean Water (km/) Volume (km/) 15 3 6 41.1 0.10 5 29 64 22.7 0.64	Altitude (m) Depth (m) Mean Water Matinum S 15 3 6 41.1 0.10 27.0 5 29 64 22.7 0.64 27.7 63.3 0.74 - - - -	Mititude (m) Depth (m) Mean Water Maximum Shoreline area Shoreline Volume 15 3 6 41.1 0.10 27.0 1.49 5 29 64 22.7 0.64 27.7 1.64	Altitude (m) Depth (m) Mean area Maximum Volume (km') Length (km) Flow (m') 15 1 6 41.1 0.10 27.0 1.19 17.0 5 29 64 22.7 0.64 27.7 1.64 79.5

Chignik Lagoon (12 km long) is a nearly enclosed estuary having a sandy or muddy, flat bottom with scattered patches of algae and extensive areas of eel grass (Zostera). Water covers about 42 km² at high tide, and about half that at low tide. Low and high tide salinities range from 10 to 17% in the upper lagoon and from 30 to 32% at the sand spit near the outlet. The importance of the estuary as a secondary rearing area for juvenile sockeye salmon has been investigated by Phinney (1968); large catches of postsmolt sockeye salmon have been taken by beach seine and surface trawl in the lagoon during June and July (Narver and Dahlberg 1965; Phinney 1968).

The Climate

The climate of the region is strongly maritime because the Alaska Peninsula is a comparatively small body of land between two large water masses, the North Pacific Ocean and the Bering Sea. The weather conditions reported by Atwood (1911) and Knappen (1929) remain typical. The summers are short and cool; although there may be many days of wet weather, the rainfall is seldom excessive. A great many overcast days occur. Violent winds often exceeding 161 km/h (100 mph) have been recorded. Winter temperatures are more moderate than those in Bristol Bay; recording thermometers left in cabins over the winters of 1961-67 showed a low of -27°C (-17°F). Ice breakup on the lakes occurs in April or May, much earlier than in the lakes of the Bristol Bay district. Long-term weather records are not available for the immediate area; Kodiak Island (270 km to the northeast) is the nearest location with extensive weather records, although some data are available from nearby Port Heiden on the north side of the peninsula.

History of the Commercial Fishery

Cannery operations.—Commercial exploitation of Chignik sockeye salmon began in 1888 when the Fishermen's Packing Company of Astoria, Oreg., sent a crew to Chignik Bay to prospect for fish; they returned in the fall with 2,160 barrels of salted salmon. In 1889 canning operations were started in plants of the Fishermen's Packing Company, Chignik Bay Company of San Francisco, and the Shumagin Packing Company from Portland, Oreg. (Moser 1899). Operating agreements between the companies proved so successful in 1890 and 1891 that they joined the pool of canneries of the Alaska

Packing Association in 1892. In 1893 they all became members of the Alaska Packers Association, and only one cannery was operated as a result of increased operation efficiency (Moser 1899).

The ease with which fish were captured at Chignik attracted more investment into the fishery; in 1896 Hume Brothers and Hume, and the Pacific Steam Whaling Company each built a cannery (Cobb 1930). In 1901 these companies became part of the Pacific Packing and Navigation Company, which in turn became part of the Northwestern Fisheries Company in 1905. In 1910 the Columbia River Packers Association built yet another cannery in the area. Competition was intense until 1914 when the three companies then operating—Alaska Packers Association (APA), Columbia River Packers Association (CRPA), and Northwestern Fisheries Company (NFC)—agreed to an equal division of the catch (Rich and Ball 1930).

Industry relationships remained static until 1926 when H. W. Crosby operated a floating salmon cannery, Salmon King, for one season. In 1932 Crosby returned and built a land-based cannery; the same year, CRPA, NFC, and APA made a combined pack at the APA cannery. The following season, 1933, Pacific American Fisheries (PAF) acquired the Northwestern Fishenes Company, and the PAF, APA, and CRPA combined canning operations. The APA acquired the Chignik interests of PAF and CRPA during the ensuing years and continues to operate their cannery at Chignik (Pacific Fisherman Yearbook 1915-67; National Fisherman Yearbook 1968, 1969; Pacific Packers Report 1970-76).

Crosby changed the name of his operation to Chignik Lagoon Packing Company in 1936, and after two other changes gave it the name Chignik Fisheries Company in 1947, Beginning in 1953, APA and Chignik Fisheries Company entered into an agreement to can all fish in the APA cannery; the cannery of the Chignik Fisheries Company serves as a base of supply and operations for its fishing fleet (Roos see footnote 7). In 1968, Columbia-Wards Company purchased the Chignik Fisheries cannery and has continued operations under the same arrangements with the APA (Pacific Packers Report 1976).

Fishing gear.—Pile traps (Scudder 1970) were the principal fishing gear, and beach seines took a small part of the catch before 1900. The water at Chignik was too clear and the channel too narrow for effective gillnetting (Moser 1899). The number of units of gear operated in proaches are studded with traps, some with leads 3,500 feet long, and sometimes so interlaced that at a distance the channel appears completely blocked, and it hardly seems possible for a fish to pass." Dahlberg (1968) presented figures showing the location of traps fished in Chignik Lagoon during 1899 and 1902.

Because there is some question as to the effectiveness of the older types of gear, I calculated fishing effort from the data on gear (Table 2) and catch data. The unit of effort chosen was the trap-day, i.e., the number of traps fished, which yields the total trap days in season *i*. Total trap catch in season *i* divided by total trap days within season *i* yields catch per unit of effort.⁹

The fishing effort from 1905 to 1909 was low and the catch of sockeye salmon per unit of effort (CPUE) was exceedingly high (Fig. 4). The sharp drop in the CPUE

Figure t.-Trends in fishing effort (solid line) and catch (dotted line) of sockeye salmon per unit of effort at Chignik, 1900-66.

and the concomitant rise in units of gear between 1909 and 1913 indicate "keen competition" between companies during this period (Rich and Ball 1930). The agreement in 1914 to equally divide the catch among the three companies brought about much more efficient conduct of the fishery; however, its intensity was to no extent reduced in later years (Rich and Ball 1930), e.g., in 1922 more than 75% of the run was harvested (Alaska Fishery and Fur-Seal Industries 1922).¹⁰ While it appears from Figure 4 that the CPUE may have risen during the period 1950-65, this may be due to a change in the efficiency or catchability of the newer gear. With the introduction of powered seine blocks, synthetic fiber nets, and modern seine boats in recent years, one would expect greater efficiency per unit of gear.

Fishing regulations.—There was little, if any, enforcement of fishery regulations in the Chignik fishery before 1922. There were no statutory regulations prior to 1895, only a weekly closure of 30 h for the period 1895-1906, and one of 36 h for 1907-40 (Table 2). Cooley (1963) pointed out that starting in 1892 the U.S. Fish Commission had funds to support only one inspector and an assistant for the enforcement of fishing regulations in the entire territory of Alaska. They were forced to depend on industry transportation to make their rounds during the 3-mo season.

A fish-counting weir was first established in Chignik River in 1922 by the U.S. Bureau of Fisheries. The weir has not been installed every year since that time, but a management agent has been on duty to check the fishing area during closed periods. However, inspection of Figure 2 shows that until 1925 there had never been <40 days of fishing during the season. In 1924, with the passage of the White Act," which required 50% escapement in streams where counting weirs were maintained, the fishery was subjected to periodic closures by the management agent. In 1925 it was required that the minimum annual escapement at Chignik be set at 1 million fish (Rich and Ball 1930). This requirement was met nearly every year until 1938. Management of the Chignik fishery was based mainly on the rule of 50% escapement and 50% catch under the White Act until the time of its repeal in 1957.12 In recent years target escapements estimated from spawner-return relationships have been used as management guidelines to secure adequate spawning densities (Dahlberg 1973).

Catch trend.—The general trend of catch declining not long after the inception of the fishery is typical of many other salmon fisheries in Alaska (Fig. 5). Catches

Public Law 204, 68th Congress, 1924 (Cooley 1963).
Public Law 296, 85th Congress, 1957.

Figure 5. - Commercial catches of sockeye salmon at Chignik, 1895-1966; unsmoothed curve (broken line) and curve smoothed by a moving average of 5 (solid line).

Since beach series gradually replaced traps over the years (Fig. 3, Table 2), I chose to convert the effort by gill nets and series to trap effort in order to make all the fishing effort data comparable between years. I calculated relative fishing powers, by gear type, from the percentage of the catch of each type of gear and the number of units of each type of gear operating concurrently. I found that on the average, one trap was the equivalent of 5.9 beach series or 25.2 gill nets. These figures are to be used with caution since the selectivity of trap sites and the efficiency of beach series used during the period 1940 to 1954 and those used in the 1970° are probably not the same. However, these relative fishing powers can be used for gross comparisons of fishing effort.

[&]quot;The data for 1917 to 1950 were taken from the publication series Alaska Fishery and Fur-Soal Industries. This arrest was published annually as appendices to the Report of Commission of Fisherics until 1940, Beginning in that year, they were published in the U.S. Fish and Wildfife Service's Statistical Digest Series.

gradually increased as the fishery developed, leveled off until the White Act took effect in 1924 at which time they decreased, remained at an intermediate level for several years (1925-48), and then dropped sharply after 1949 to a low level. The catch data for the Nushagak district of Bristol Bay (Mathisen 1971), show a unique similarity in trend (Fig. 6) except for the timing of the fall from initial high production. The decline of sockeye salmon production in the Nushagak district preceded that at Chignik by a few years. It is noteworthy that these two independent sockeye salmon systems exhibit the same historical development and both show a decline in return per spawner.

Figure 6.— Commercial catches of sockeye salmon in the Nushagak district. Bristol Bay, 1893-1966 (after Mathisen 1967); unsmoothed curve (broken line) and curve smoothed by a moving average of 5 (solid line).

CATCHES AND ESCAPEMENTS OF THE CHIGNIK SOCKEYE SALMON RUNS, 1888-1966

Catch and escapement, age and size composition, sex ratio, timing of the run, and distribution of the escapement on the spawning grounds are among the important required statistics for setting management regulations for the establishment and maintenance of maximum sustained yield.

Catches and Escapements

Escapement records began accumulating after erection of a weir in Chignik River in 1922. Catch

RC050

statistics have been recorded from the beginning of the fishery in 1888; more detailed records have been kept since the Chignik canners joined the Alaska Packers Association in 1893 (Moser 1899). The long-term changes in abundance of Chignik sockeye salmon have been about twofold (Table 3).

Catch records .- Several sources of information were used to compile a complete record of the annual catches of Chignik sockeye salmon since 1888 (Moser 1899, 1902; Rich and Ball 1929, 1930; Alaska Fishery and Fur-Seal Industries 1917-50: Kasahara 1963: Pacific Fisherman Yearbook 1915-67; Pacific Salmon Inter-Agency Council 1966; Roos¹³, see footnotes 5, 7; Calkins¹⁴). The two most valuable sources were 1) annual reports of the Chignik cannery superintendents, Alaska Packers Association, over the years 1895-1955; and 2) various reports of the management agents for the U.S. Bureau of Fisheries (1922-39), the U.S. Fish and Wildlife Service (1940-59), and the Alaska Department of Fish and Game (1960-66) (microfilms of these documents are on file in the archives of the FRI). I resolved inconsistencies in the reports compiled and issued by various agencies and individuals by cross-checking several sources; in the event of a major disagreement, I accepted the daily catch figures compiled by either the management agency or canning industry. Many arithmetical errors were discovered in the historical records; in these instances, I used the summation of the daily catch figures (Dahlberg¹³). Catch records were complete for all the years covered in this study (1888-1966).

Escapement records.—Daily weir counts were used to compile annual escapement records for those years in which a weir was operated in the Chignik River. The counting weir was not maintained in Chignik River during 1938, from 1940 through 1948, and in 1951. Moreover, in some years (1924, 1931, 1933) the weir was

Roos, J. F. 1957 Report on Chignik adult red salmon studies, 1955-1956 Unpubli manuser, 58 p. Fish, Res. Inst., Univ. Washington, Seattle-

"Calkins, T. P. 1968. Report on Chignik adult red salmon studies, 1957. Unpubl. manuscr., 59 p. Fish, Res. Inst., Univ. Washington, Seattle

Duhlberg, M. L. 1967 Chignik catch escapement analysis Fish-Rev. Inst., Comput. Program FRD 295, Univ. Washington, Seattle, 4 p.

Table 3.-Long-term changes in abundance of Chignik tockeye salmon (Dahlberg 1968).

		Chignil	Luke	_	-	Hlack	Lake		Total run				
	Сысь 1,000'я	Escape- ment 1,000's	Total 1,000's	Rate of exploi- tation ¹	Catch 1,000's	Escape- ment 1,000's	Total 1,000's	Rate of explu- tation	Catch 1,000's	Escape- ment 1,000's	Total 1,00%/s	Rate of exploi- tation	
Mean 1922-39	504	563	1,067	0 472	290	497	787	0.368	794	1,060	1,654	0 435	
Mean 1949-66	240	726	566	0 423	115	201	346	0.419	385	527	912	0.423	
Percent change	-52.5	-42.1	- 17.0	-10.4	-19 8	-59.5	- 55.9	+139	-51.5	- 50 2	- 10.8		

Rate of exploitation an defined by Ricker (1958 20)

Expressed as a percentage of the mean for the period 1922-39

Table 10. Summary of estimated eatches and escapements of Chigaik suckeye salmon by stock, 1922-66 (Dahlberg 1968).

		atch		Esc	apement		Total run				
l car	Chignik Lake	oke Lake		Chignik Lake	Black	Total	Chignik Lake	Black			
10:22	90,823	346,011	1,246,834	352,807	56.421			Lake	Total		
1923	562,316	80,556	642.872	213,781	4.612	439,224	1,251,630	432,432	1,686,062		
1924	767 424	110,937	N.N. 361	910.521	121,9-3		776,147	65,195	861,295		
1925	436,985		697.984	677,166	JNG 30-1	1,032,504	1,677,045	232,920	1,910,865		
1926	173,161	242.054	415.215	695,314	289 (AFF	1,0+3,930	1,114,551	647.363	1,761,914		
1927	303,401	137,566	440,967	429,525	857,881	984,323	868,475	531,063	1,399.538		
19:29	774,667	8,595	33,262	1.020,520	507,353	1, 27, 873	732.926	995,447	1,728,373		
1929	1.89,123	359,861	1.048.984	914,307	995,532		1,795,157	515 948	2.311,135		
19.10	27.306	883	28,194	359,405	92,955	1,910,139	1,603,430	1,365 69	2,959,123		
1931	503,5=4	206,256	709,840	631,986	92,955	452,360	355.711	33,94	460,554		
1932	571,112	704,130	1,575,242	1,113,859	2,151,734	728,187 3,265,593	1,135,570	302,45	1,438,027		
1933	345,469	249,452	594,921	310,088	223.913		1.984,971	2,855,864	1,840,835		
1934	525,294	583,048	1,108,342	147,642		5.4.001	635,557	473, 165	1,128,922		
1935	409,893	209,449	619,342	462,469	866,890 194,636	1.314.532	972,9.36	1,449,938	2,422,874		
1956	453,914	526,811	980,725	376,838	548,039	657 105	872,362	404,085	1,276,447		
1937	422.251	207,064	629,318			924,877	830,752	1,074,860	1,905,602		
1938	260,879	150,111		406,618	205,613	612.231	828,872	412,677	1.241.549		
1939	652,750	827,580	410,990	305,827 512,754	175,972	481,799	566,706	326.083	892,789		
1940	116,336	134,098	250,434		1,142,852	1,655,606	1,165,534	1,970,432	3,135,966		
1941	383.764	270,145	653,909	152,957	176,307	329,264	269,293	310,405	579,698		
1942	354,518	303,987	658,505	531,904	374,420	906,324	915,668	644,565	1,560,233		
1943	788,636			516,621	442,981	959,602	871 139	746,968	1.618.107		
1943		459,182	1,247,818	1,205,418	701,859	1,907,277	1,994,054	1,161,041	3,155,095		
1945	219,545	182,431	401,976	351,212	291,844	643,056	570,757	474,275	1,045,032		
1945	90,563	130,390	220,953	151,326	217,882	369,208	241,869	348,272	590,161		
	424,0=2	444,337	869,019	739,884	774,130	1,514,014	1,164,566	1,218,467	2.353,033		
1947	768,694	1,316,128	2,084,822	1,393,990	2,386,733	3,780,723	2,162,684	3,702,861	5,865,545		
1948	166,244	204,085	370,329	313,319	384,637	697,956	479,563	588,722	1,065,285		
1949	418,156	124.390	542,546	574,715	213,269	787,984	992.871	337,659	1,330,530		
1950	318,450	34,742	353,192	861,070	206,270	1,067,340	1,179,520	241.012	1,420,532		
1951	143.521	115,494	259,015	490,899	125,126	616,025	634,420	240,620	875,040		
1952	20,393	106,675	127,068	260,540	34,155	294,695	280,933	140,830	421,763		
1953	109,450	185,738	295,188	221,408	168,375	389,783	330,858	354,113	684,971		
1954	19.232	72,334	91,566	277,912	184,953	462,865	297,144	257,287	554,431		
1955	168,987	179,539	348,526	201,409	256,757	458,166	370,396	436,296	806.692		
1956	421,251	246,442	667,693	483,024	289,096	772,120		535,538	1,439,813		
1957	224.757	77.123	302,180	328,779	192,479	521,258		269,902			
1958	179,949	141,180	321,129	212,594	120,862	333,456		262,042			
1959	251,547	165,000	116,517	308,645	112,226	420,871		277,226			
1960	418,356	274,048	692,404	357,230	251,567	608,797		-			
1961	278,609	53,852	332,461	254,970	140,714						
1962	292,525	71.562	364,090	324,860	167,602						
1963	323,080	80,258	403,338	200,314	332,536						
1964	427,940	125,950	556,890	166,625	137,073						
1965	152,521	477.032	629,553	163,151	307,192						
1960	143,098	79,696	222,794	183,525	383,545	567,070	326,623	463,24	1 789,864		

- 1974 Stock and recruitment relationships and optimilin escapements of sockeye salmon stocks of the Chignik lakes, Alaska, Rapp P. V. Reun Cons. Int. Explor Mer 161 98-105 FINNEY, D. J.
 - 1952. Probit analysis 2d ed Cambridge Univ Press, Cambr , 314 p

1964. Non-linear least squares parameter estimation, M.S. Thesis, Univ Washington, Seattle, 108 p.

GILBERT C. H.

1920. Quotation in E. Higgins, Progress in biological inquiries, 1927, p. 214. U.S. Bur, Fish., Rep. U.S. Comm. Fish., 1928, ap. pend 0

GH BERT, C. H., and H. O MALLEY.

1921 Special incestigation of salmon fishery in central and western Alaska U.S. Bur, Fish , Rep. U.S. Comm. Fish , 1919, append. 9 1 160

HARIT, A C

1966. Migrations of salmon in the North Pacific Ocean and Bering Sea as determined by seining and tagging, 1959-1960. Int. North Pac Fish Comm Bull 19, 141 p.

HIGGINS, E.

1950. Progress in biological inquiries 1928. U.S. Bur Fish, Rep. U 5 Comm Fish , 1929, append 10 627 660.

RC050

- 19.30 Progress in biological inquiries, 1934. U.S. Bur, Fish., Rep. U.S. Cumm. Fish., 1935, append. 3 331-399
- HOLMES IF H.
 - 1934 Natural propagation of salmon in Alaska. Proc. Filth Pac. Sci Congr 5 3581-1597

KASAHARA H

1963 Catch statistics for North Pacific salmon. Int North Pac. Fish Comm Bull 12, 82 p.

KNAPPEN R. S.

1929. Geology and mineral resources of the Aniakchak District, U.S. Geil Surv Bull 797 161 224

MATHEWS 5 B

1166 The economy consequences of forecasting sockeys salmon (Uncornentias neeka, Walbaum) run to Bristol Bay, Alasia, a computer simulation study of the potential benefits to a saltaon cumning industry from accurate forecasts of the runs. Ph D. Thesis, Univ Washington, Seattle, 238 p.

GALES L E

for the set of the set of the statistics for thigh	20.00	aka filock	Lake	and for it ru	U.s. 1.3
a sub and propriet statistics for Unight	1116 1	anc intern			

RC050

						itatistics I Black	Lake			Tota		
		0	h Luke		Cuit	Escape Rate ol	Excepte-	Catch	Excepe		Escapi	
	Catch	Escape	Kate of	Facabe	Carch	ment	explot	ment	escape-	ment	explon-	ment prop
	estabe	ment	esplot	ment ipripl	escape- ment	catch	tation	(prop)	ment	cetch	(atinn	prop
189	ment	catch	tation	rpropt			0.20	0.199	2 3 15	0.352	0 739	0 260
222	2.553	0.391	0 718	0 251	1003	0 249	0 300 0 945	0 054	2 943	0 39	U 746	0 253
923	2 630	0.3-0	0 724	0 275	17.353	0.057	0 476	0 523	0 × 50	1175	0 459	0.540
924	0 412	1.186	0 457	0 542	0.909		0.400	0 5:30	0 656	1.524	0 96	0.60%
925	0 644	1 5 10	0 392	0.607	0 675	1 450 1 190	0.455	0.544	0 421	2.370	0 296	0.703
926	0 249	4 015	0 199	0,800	0 37	6 236	0.135	0 -61	0 342	2.919	0	0.744
927	0 706	1.415	0 413	0 586	0.160	59 0:24	0.016	0 953	0 512	1.950	0.335	0 661
92	0 759	1 317	0 431	0 568	0.016	2 767	0 265	0.734	0.549	1 820	0.354	0 645
929	0.753	1 3.6	0 429	0 570	0 361	104 679	0 009	0.990	0 062	16 044	0.055	0.941
930	0 075	13 162	0.070	0.929	0 009	0.466	0 651	0 318	0 974	1 025	0 493	0.506
931	0 796	1 254	0 113	0 556	2 144 0 327	3.055	0.246	0 753	0 482	2 073	0.325	0 674
932	0 782	1 278	0 438	0.561		0.697	0 526	0.473	1 114	0.397	0.526	0 473
933	1114	0 #97	0 526	0.473	1.114	1 486	0.402	0 597	0 543	1 186	0.157	054.
934	1 173	0.52	0.539	0.460	0 672	0 929	0.518	0.481	0 9 42	1 060	0.485	0 514
935	0 846	1 128	0.469	0.530	1 076	1.040	0 490	0 509	1.060	0.943	0 514	0 485
936	1 204	0.630	0.546	0 453	0.961	0.992	0.501	0 494	1 027	0972	0 506	0 490
907	1.038	0 962	0.509	0.490	1.007	1,172	0.460	0 539	0 853	1.172	0.460	0 539
938	0,853	1.172	0.460	0.539	0.853	1.300	0.420	0.560	0 894	1.118	0,472	0.527
939	1 273	0745	0 560	0.439	0.724	1.314	0 +32	0.567	0.760	1.314	0 432	0567
940	0.760	1.314	0 432	0.567	0.721	1.386	0.419	0.580	0 721	1 366	0 419	0 5 40
941	0.721	1 386	0.419	0.580	0.686	1 457	0.406	0 593	0 686	1 457	0,406	0.593
9-12	0 686	1.457	0.406	0.593	0.654	1.528	0 395	0.604	0.654	1.528	0 395	0 604
943	0.654	1.528	0.395	0.604	0.625	1.599	0.384	0 615	0 625	1.599	0.354	0 615
944	0 625	1.599	0 384	0.615	0.625	1.671	0.374	0 625	0.598	1.670	0 374	0 625
945	0.598	1 670	0.374	0.625	0.573	1.742	0.364	0.635	0 573	1 742	0.364	0 635
946	0 573	1.7.42	0.364	0 635	0.575	1.813	0 355	0 644	0 551	1 913	0 355	0.644
947	0.551	1 813	0.355	0.644	0.530	1 884	0 346	0.653	0.530	1 884	0.346	0 653
948	0.530	1 844	0.346	0.653	0.563	1.714	0.368	0.631	0.688	1 452	0 407	0.592
9 49	0.727	1.374	0.421	0.578	0.168	5.937	0.144	0.855	0.330	3 021	0.245	0 751
950	0.369	2.703	0.269	0.730	0.923	1.083	0.479	0.520	0.420	2.378	0 296	0.704
951	0.292	3.420	0.226	0.773 0.927	3.123	0.320	0.757	0 2 12	0.431	2.319	0.301	0 69*
952	670 0	12.775	0 072	0.927	1.103	0.906	0.524	0.475	0.757	1.320	0.430	0.569
1953	0 494	2 022	0.330		0.391	2.556	0.281	0.718	0.197	5.054	0.165	0.834
954	0.069	14.450	0.064	0.935	0.699	1.430	0.411	0.588	0,760	1.314	0 432	0.567
1955	0,839	1.191	0.456	0.543	0.852	1.173	0.460	0 539	0.864	1.156	0 163	0.536
956	0.872	1 1 46	0.465	0.534	0.402	2 486	0.286	0.713	0.579	1.724	0.366	0.633
957	0.683	1 462	0.406	0.555	1.168	0.856	0.538	0.461	0.963	1.038	0.490	0 509
958	0.846	1.181	0.458	0.541	1.470	0.680	0.595	0 404	0.989	1.010	0.497	0.502
959	0.815	1.226	0.449	0.460	1 089	0.917	0.521	0.478	1 137	0.879	0 532	0 467
1960	1.171	0.853	0.539	0.400	0.382	2.612	0.276	0.723	0.840	1.190	0.456	0 543
961	1.092	0.915	0.522	0.526	0.426	2.342	0.299	0.700	0.739	1.352	0.425	0.574
1962	0.900	1.110	0.473 0.617	0.382	0.241	4.143	0.194	0 805	0.756	1.321	0.430	0.569
963	1.612	0.620	0.617	0.382	0.940	1.062	0.164	0.515	1.833	0.545	0,647	0.352
964	2.568	0.389	0.483	0.280	1.552	0.643	0.608	0.391	1.338	0.747	0.572	0 427
965	0.934	1,069	0.483	0.561	0.207	4.812	0.172	0 627	0 392	2 545	0.212	0.717
96 G	0 779	1 282	0 430	0.001	0.201							
922-19			0	0.505	1 9 4 4	10,456	0.431	0.569	0.965	2.163	0.438	0.561
lean	1.018	1.683	0.463	0.537	1.844	10,400	0.101	0 000				
5°r cor	nfidenc <mark>e</mark> li			0.010	1 000	23.966	0.551	0.689	1 3 40	3.918	0.518	0 641
pper	1.3 10	3 334	0.538	0,613	3.822	-3.053	0.311	0.448	0.589	0.409	0.358	0 4 81
Dwer	0.696	0.132	0,387	0.461	-0_132	-3 000	UJII	V 110	0,000		100	
949-19	66;					1.000	0	0.800	0 -0	1647	0.413	0.586
fean	0.641	2.733	0.411	0.588	0.873	1.982	0 411	0.588	0.779	1 687	0413	0.000
	nfidence li	nits					0		0.054	0.000	0.472	0.646
pier	1.127	4 736	0.495	0.671	1 223	2.763	0.495	0 672	0 974	2 220	0.473	0.526
ANN.61	0.555	0 727	0.328	0.504	0 523	1 201	0.327	0,504	0 583	1 153	0.353	0.520
ombir												
lean	0 930	2.308	0.437	0 562	1.359	6.219	0 421	0.578	0.372	1 925	0.426	0.574
	nfidence lu											
pper	1.136	J.492	0.491	0.616	2.326	12.802	0.490	0.648	1 075	2 799	0 473	0 621
ower	0.72.1	1 125	0.383	0.508	0.391	-0.364	0.351	0 509	0.668	1.051	0.378	0.526