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Abstract 

Classical sampling methods can be used to 
estimate the mean of _a finite or infinite popu­
lation. Block kriging also estimates the mean, 
but of an infinite population in a continuous 
spatial domain. In this paper, I consider a finite 
population version of block kriging. The data 
are assumed to come from a spatial stochastic 
process. Minimizing mean-squared-prediction 
errors yields best linear unbiased predictions 
that are a finite population version of block 
kriging. Block kriging of finite populations bas 
versions comparable tosimple random sampling 
and stratified sampling, and includes the gen­
eral linear model. This method bas been tested 
for several years for moose surveys in Alaska, 
and an example is given where results are com­
pared to stratified random sampling. 

1. INTRODUCTION 

Monitoring ecological populations is an 
important goal for both academic research and 
management of natural resources. Successful 
management of moose populations in Alaska 
depends on obtaining estimates of moose abun­
dance at regular intervals throughout the state. 
The Alaska Department of Fish and Game de­
veloped aerial survey methods to estimate and 
monitor moose populations (Gasaway et al. 
1986). The methods of Gasaway et al. (1986) 
use stratified random sampling and are based 
on classical sampling principles that rely on 
design-based inference, which are very robust. 
Very few assumptions are required because the 
distribution for inference oomes from the sam­
ple design, which is known and under our oon­
trol. In this paper we will be interested in es­
timating (predicting) the mean or total num­
ber of moose from a fixed geographic area. For 
design-based methods, sample plots are cho­
sen at random, moose are counted in these 
plots, and inference is derived from the inclu­
sion probability for sample units (i.e., Horwitz­
Thompsen estimation). For moose surveys 
there are a finite number of sample units and 
so finite population methods are used. 
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There are some problems with design­
based methods. Because few assumptions are 
required, they may lack power in cases where 
further assumptions are justified. This appears 
to be especially true in the case of "small area" 
estimation, which refers to making an estimate 
on a smaller geographic area within the over­
all study area. There may be few or no sam­
ples within that small area, so that design­
based estimation may not be possible or vari­
ances become exceedingly large. An alterna­
tive is to assume that the data were generated 
by a stochastic process and use model-based 
approaches (see, e.g., Fay and Harriot 1979, 
Ghosh and Meeden 1986, and Prasad and Rao 
1990}. 

The basic problem considered in this pa­
per is the estimation of some function of the 
sample units, call it T(z), where z is a vec­
tor or the realized \'Blues of a spatial stochastic 
process for all the sample units of a finite pop­
ulation. The function T(z) could be the popu­
lation mean, population total, or the mean or 
total of a subset of sample units that have few 
or no observed samples. The goal is to use a 
predictor based on the set or observed samples 
r(z.), where z. is a vector of observed values 
for sampled units (see e.g., Bolfarine and Zacks 
1992, pg. 6}. Geostatistical models and meth­
ods are used (for a review, see Cressie, 1993). 
Goostatistics has been developed for point sam­
ples. Because points are infinitesimally small, 
an infinite population is assumed. The average 
value over some area can be predicted using 
methods such as block kriging, ..yhich uses ag­
gregation. Thus it appears that this is closely 
related to small area estimation, but where 
samples come from point locations rather than 
a finite set of sample units. In ·this paper, I 
consider the case where we have a finite col­
lection of plots and we assume that the data 
were produced by a spatial stochastic process. 
It appears this has not been considered in de­
tail. I develop n finite population version of 
block kriging (FPDI() which bas ~cen success­
fully used for estimating and monitoring moose 
abundance in Alaska and the Yukon. 



1.1 	 Quick Review of Universal Block 
Kriging 

Kriging is a spatial prediction method that 
is formulated by minimizing the mean-squared­
prediction errors (MSPE), also known as the 
prediction variance. This treatment follows 
Cressie {1993, pg. 151). Kriging can be formu­
lated by using variograms or covariance. Here, 
we show the covariance results. Suppose the 
~ata follow some linear model, 

z=p+6, (1) 

where p = X{3 and X has dimensions n X p. 
Assume that the spatial random variable Z{s) 
is defined at each location s in some region 1J C 
'R.11• Define second-order stationarity for the 
random errors 6 as follows: E[5(s)J = Oso that 
E[Z(s}} =J.l(s) = x'(s),B for all s E 'D, and that 
the covariance, 

C(h) =cov[5(s),5(s +h)], {2) 

exists and depends only on h. For universal 
block kriging, define 

Z(B) =LZ(s)ds/IBI, (3) 

and 

J.l(~) =LJl(s)ds/IBI, 

for some area B C 'D where IBI is the area 
(volume) of B, assuming that the integrals ex­
ist for the ·process { Z{ s)} (see Cressie, 1993, 
pg. 106). Z(B) is a random variable for 
the average value within the block B, and 
Jl(B) is the expected value within tbe . block. 
Data are collected at n locations, and as­
sume the data are a realization of the random 
vector z =[Z(s1), Z(s2), ... , Z(sn)]. Let a'z 
be a linear predictor for the random variable 
Z(B), subject to the unbiasedness constraint 
E(a'z) =E[Z(B)]. Then universal block krig­
ing uses (2) to minimize the MSPE; that is, find 
a~ such that 

E[a'z-Z(B)]2 - E[~'z-Z(B)]2 ~ 0 (4) 

for all a such that a'zA: is unbiased. Minimizing 
E[~'z-Z{B)]2 in (4) in terms of covariances 
yields the set of equations, 

where cs = [c1 (B),c2(B), ... ,c,.(B)]' with 
co(B) =fs C(s- si)ds/IBI for i = 1,2, ..., n, 
and xs = [zt(B),:z:2(B), ... ,:z:p(B))' with 
:Z:j(B) = Is:z:;(s)ds/IBI for j =1,2, ... ,p. The 
solution of (5) for ~and m yields the block 
BLUP Z(B) =~'z, which can be written as 

Z(B) = c~E- 1 (z- j1) + fts, (6) 

where ji. := X~GLS and Jts E: X~~GLS with 
~GLS = (X'E- 1X)- 1X'E- 1 z. The block krig­
ing variance is given by, 

E[~'z-Z(B)J2 = a~.s- c~E- 1 cs (7)
+d~(X':E- 1 X)ds, 

where a~.s is Is Is C(s - u)dsdu/IBI2 and 
ds = (xs -X'E-1 cs). 

2. 	 BLOCK PREDICTION FOR FI­
NITE POPULATIONS 

One objective of finite population sam­
pling is to estimate the average or total of the 
values that are actually realized, rather than 
the mean of some superpopulation from with 
tbe data were drawn. The equivalent objec­
tive is prediction, not estimation, for spatial 
processes in model-based approaches. That is, 
tl1e goal is to predict a function of the actual 
values that occurred, not estimate unobseJ;"v­
able parameters of a model (see Cressi'e, 1993, 
pgs. 13-16 for more details). To formulate this 
more clearly, suppose that z is a vector of ran­
dom variables on a finite spatial lattice. The 
spatial lattice D is a set that can be indexed, 
each location denoted by i, i =1,2, ... ,N. The 
random variable Z;, is located at the ith site 
in the lattice. Let T(z) = B'z be a vector of 
random variables to be predicted, where B is 
theN X k matrix [b1Jb 2 J ... IbA:)· For example, 
bi = (1/N)(1, 1, ••• , 1)' would be the average of 
the realized values of z in D. Notice that here 
b'zacts as the finite version of Z(B) in (3). 
Other possibilities are bj = (1, 1, ... , 1)', which 
is the total of the realized values of z in D, and 
bj = (0,0, ... 0,1, 1, ... ,1,0, ...,0,0)' which is the 
total of the realized values of z for some subre­
gion (small area) in D. Data are collected from 
a subset of D, call it then X 1 vector z, and 
let the unsampled locations be denoted by the 
(N- n) x 1 vector Zu 1 and write z =(z:,z~). 
We want some linear combination of the data, 
call it r(z.) =A'z., in order to predict B'z. 
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Definition 1 Mean-Squared Prediction Error 
{MSPE) Matri:J: 

Let the MSPE matrix for any particular A 
be, 

MA = E(A'z.- B'z)(A'z.- B'z)'. (8} 

Definition 2 Be.st Linear Unbiased Predictor 
{BLUP} 

The matrix A is BLUP if, 
1) E(A'z.) = E(B'z), and 
2) MA-MA is non-negative definite for 

every A =FA. 
For the rest of this paper, assume that z 

follows the linear model, z =X/3 +6, or 

( :: ) = ( ~: ) 13+ ( :: ) 1 (9) 

where X is a matrix of fixed effects, J3 is a pa­
rameter vector, E(6) =0, and 

. var(6) = (E•• I:... ) . 
. E.._ E,.,. 

To find the BLUP, we need to establish 
the uniform unbiased conditions for the predic­
tor and then find the A that "minimizes" the 
MSPE matrix. 

2.1 . Uniform Unblasedness Conditions 

We need to consider all A such that 
E(A'z) = E(B'z) for all {3 in the linear model 
(9). Taking expectations, we see that A'X.{j = 
B'X{j for every J3, so that implies A'X.= B'X, 
or 

A'X.= B~X. +B~X,., (10} 

where B'= (B~I B~). 
2.2 Prediction for Flnlte Populations 

Similar to equations (4), the BLUP is 
found by finding A such that 

E(A'z.-B'z)(A'z.-B'z)­ (11)
(A'z.-B'z)(A'z.-B'z) 

is non-negative definite for all A such tl1at A'z. 
is unbiased. By minimizing the MSPE matrix, 
we obtain the prediction equations, 

E.. X. ) ( A ( _( X' 0 M ­ {12)
•( E.. I:.... ) B. ) 
X~ X~ B,. I 

95 

which can be compared to equations (5). When 
{12} are solved for A, the FPBK predictor is, 

...(B' ) A' I B'­r z = z. =B.z. + ...z,., {13} 

where, 

- ~ ~-1( -) ­z,. = ~....~.. z. -1-'. +1-'. (14} 

il.. = XuliaLS and il. = x.JjGLS with 
liaLs = {X~I:;.1 X.)-1 X~E;.•z•. The predic­
tor (14} can be compared to (6). The FPBK 
predictor {13} is now seen as multiplying the 
observed sample values times their correspond­
ing coefficients from B., and then using univer­
sal block kriging to predict all other unsampled 
units, and these predictions are multiplied by 
their corresponding coefficients in B,.. 

2.3 Prediction Variance (MSPE) 

Substituting the solution for A for A in 
{8), we obtain the MSPE {also called prediction 
variance) of FPBK, 

(15} 

where 

C = I:••B. + I:.,.B,., 
D =X'B- X~E;.1 C, and 
V =var@aLs) = (X~E;.1 x.)- 1 • 

Equation (15) can be compared to (7). In (15}, 
the quantity B'EB is the \-arlance of B'z, and 
assuming J3 is known, the prediction variance 
of B'z is B':EB- C':E;.1c. The additional 
term D'VD arises because we are estimating 
{j, where D is, in some sense, the distance 
between predicted points in the design matrix 
B'X and that of the observed design matrix 
C'E;}X.. Equation (15) can be simplified for 
computing purposes, 

MA= B~(l:uu- E,..:E;.1 E.,.+\V'~V)Bu, 

wbere \V = X~-X~:E;}E.,.. If B has more 
than one C'.Olumn, the prediction \'BrianC'eS or 
each b j are contained as diagonal elements of 
MA and prediction co\"Briances between bj and 
bj• are contained as tl1e off-diagonal elements 
ofMA· 
2.4 Connections to Sampling Theory 

Suppose we are interested in predicting the 
mean over a lattice of N sites. Then B =b = 
(1/N)(l,l, ...,l)'. Let E •• =o 21,. where I,. is 
thenx n identity matrix, :E,.u = o2IN_,. where 

http:B':EB-C':E;.1c


IN - n is the (N -n) x (N -n) identity matrix, 2.5 Modeling A utocorre1ation 

E,u = E~. = 0, and X = lN, where lN is 
a vector of N ones. Then from (13) A=..\= 
(1/n)I,. and the predictor is the sample mean 

(16) 

Likewise, from (15) the 

MSPE = (a2/n)(1- f), (17) 

. where I= (n/N) is the sampling fraction and 
1- I is the finite population correction factor. 
Of course, equation (16) is the same estima­
tor of the mean that is used in simple random 
sampling (e.g., Thompson, 1992, pg. 13) and 
equation (17) is the variance of the mean es­
timator used in simple random sampling (e.g., 
Thompson, pg. 15). 

Next, consider stratified sampling. Allow 
each stratum to be a separate random process, 
independent from each other, each with its own 
mean and variance. These are model-based as­
sumptions that are equivalent to stratified ran­
dom sampling (SRS}, 

ln1 

X- 0 (18) 
(- ~Nt-nl 

and 

E,. = ( ~~In 1 0 ).a~In2 

Euu = ( ~r1N1-n1 0 ).a~IN2_n2 

where z =(z,, 1,z,,2 ,zu,t•Zu,:!)'. Suppose that 
now we want to predict the total, B =b = 1,.. 
Then, from {13) we obtain the predictor, 

..\'z.=Nlz•,t + N2zo,2· (19) 

From (15), 

MSPE = (NfaVnt)(1- ld 
(20)

+(NlaVn2)(l- /2), 

where 11 = (n1/N1 ) and h = (n2/N2). Of 
course, equation {19) is the same estimator of 
the mean that is used in SR.S (e.g., Thompson, 
1992, pg. 103} and equation (20} is the vari­
ance of the mean estimator used in SR.S (e.g., 
Thompson, pg. 103). 

Equations (17) and {20) demonstrate that 
equation (15) is a version of block kriging that 
provides a reduction in variance when sampling 
finite populations. 

To make full use of model-based assump­
tions, we will need to estimate :E by model­
ing the spatial autocorrelation in the data. We 
need to estimate each of the (i,j) entries in E. 
One such model for spatial covariance (2) is the 
exponential model, 

(21) 

where h = s1 - s;. There are many others (see 
Cressie, 1993, pg. 61). It is possible to esti ­
mate the parameters of C(hiO) using method 
moments for variograms or covariances (see 
Cressie, 1993, pg. 69) and then weighted least 
squares (see Cressie, 1993, pg. 99), or by using 
restricted maximum likelihood (REML, Patter­
son and Thompson, 1971, 1974); see Cressie 
(1993, pg. 92) for spatial REML. In the exam­
ple below, l will use REML. As a visual diag­
nostic, I compute the empirical semivariogram, 

• 1 ~ ]2')'(h)= 2IN(h)l L- [z(sd- z{sj) , (22) 
N(h) 

where h =Sj- Si, N(h) ={(s;,Sj): si-s;= 
h} and IN(h)l is the number of distinct ele­
ments in N(h). The fitted model covariance 
(21) is readily converted to a semivariogram us­
ing the relationship, ')'(hiO) = C(OIO)-C(hiO). 

3. 	 EXAMPLES USING MOOSE SUR­
VEY DATA 

I give an example from a moose sur­
vey conducted in Alaska in the fall of 1999. 
The survey area was game management unit 
(GMU) 20A, shown as the darkened area 
within the state of Alaska in Figure 1. 

Fig. 1. Map of Alaska, GMU 20A 

The survey was Rown in November after there 
was sufficient snow cover to allow moose to be 
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readily observed. Moose surveys involve five 
basic elements that include, 1) defining the sur­
vey area, 2) stratifying the area, 3) selecting a 
sample, 4) surveying the sample of units within 
the area, and 5) analyzing the data. Within a 
survey area, sample units are laid out in a grid. 
The north-south boundaries are based on even 
increments of latitude {2 minutes, starting at 
0) and the east-west boundaries are based on 
increments of longitude (5 minutes, starting at 
0). At around 64 degrees latitude, sample unit 
size is approximately 15 square kilometers. The 
total area of the survey was 14878 square kilo­
meters. Figure 2 shows an enlarged view of the 
20A survey area. 

Fig. 2. GMU 20A stratification and samples 

The area was stratified into two strata: rela­
tively low moose density (shown as white in 
Fig. 2) and relatively high moose density 
(shown by grey in Fig 2), based on the biol­
ogist's knowledge of habitats, moose, and their 
distribution in previous years. The low stratum 
consisted of 338 sample units and the high stra­
tum consisted of 649 sample units. After the 
area was stratified, a random sample of 86 sam­
ples was drawn with 52 from the high stratum 
and 34 from the low stratum. The sample units 
were flown and all moose were c.ounted from 
the air within each sample. The sampled units 
are shown with a heavy border in Figure 2. All 
counts were first changed to density by dividing 
the counts by the area of each sample, which 
varied slightly due to the narrowing of longi­
tude as one moves north. An average of 0.973 
moose per square kilometer was counted in the 
high stratum, and an average of 0.398 moose 
per square kilometer was counted in the low 
stratum. The covariance between sample units 
was estimated using an exponential model (21) 
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and REML (see Cressie, pg. 92). The distance 
between sample units was computed in kilome­
ters from the center of one sample unit to the 
center of another. For the high stratum, the 
estimated parameters in (21) were 91 = 2.614, 
fJ2 = 0.670, and fJ3 = 23.26. The empirical 
semivariogram (22) and the fitted model (21) 
for the high stratum are given in Fig. 3. 
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Fig. 3. Semivariogram.s for high stratum. 

In Fig. 3, the size of the circle indicates the 
number of pairs of locations used for each dis­
tance class in the empirical semivariogram, and 
the line is the fitted model. For the low stra­
tum, the estimated parameters in (21) were 
91 = 0.000, 92 = 2.102, and 83 = 15.99. 
The empirical semivnriogram (22) and the fit­
ted model (21) for the low stratum are given in 
Fig. 4. 
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Fig. 4. Semivariograms for low stratum. 

All covariances between the two strata are as­
sumed to be 0. The fitted models, given 
above, arc used to fill in the (i,j) entries 
in I:. Using the estimated I: and B = b = 
(1/N)(1, 1, ... , 1)' and X as in (18}, the predic­
tor FPBI< (13) of the average moose density 
per sample was estimated to be 0.7613 moose 



per square kilometer, or a total of 11327 moose 
in the whole study area. The estimated stan­
dard error of the average moose denisty using 
{15) was 0.0043, yielding an estimated standard 
error of 978 for the total number of moose. 
For comparision, using SRS (e.g., Thompson, 
1992, pg. 103), the estimate of total moose 
abundance was 11535 with an estimated stan­
dard error of 985. It is generally true that 
if there is autocorrelation in the data, predic­
tion will be more precise when it uses informa­
tion about the autocorrelation; thus FPBK has 
slightly smaller variance than SRS. Using the 
same fitted variogram model, it is possible to 
make a prediction for any subset of samples; 
i.e., small area estimation. Fig. 2 also shows 
the Ferry Trail Managment Area (FTMA) out­
lined in bold on the left. FPBK yielded an 
estimate o£ 1437 moose in the FTMA with a 
standard error of 153. The SRS estimate us­
ing only the samples within the FTMA subset 
(13 highs and 4 lows) yielded an estimated 1535 
moose with an estimated standard error of 227. 
For small area estimation, the estimated stan­
dard error of FPBK was significantly smaller 
than that of.SRS. · . 

4. 	 DISCUSSION AND CONCLU­
SIONS 

Based on twen.ty different moose surveys 
over 3 years, the application of geostatisti­
cal ideas to finite population sampling gives 
three main advantages over classical sampling: 
1) FPBK is usually more precise than SRS, 
2) FPBK allows small area estimation, and 
3) FPBK allows nonrandom sampling designs, 
giving biologists greater flexibility. FPBI< also 
bas an advantage over block kriging because 
FPBK incorporates a finite population correc­
tion factor that reduces the prediction variance. 
In the example above, approximately 9% of the 
population was sampled, and it often gets as 
high as 30% for moose surveys in Alaska. 

SRS allows a separate variance for each 
stratum. The analogy for a model-based ap­
proach is to have a separate spatial process 
for each stratum. Geos'tatistical methods as­
sume a constant variance for a spatial process, 
and stratification helps meet that assumption. 
When considering multiple spatial processes 
induced by stratification, it is possible (even 
desirable) to model cross-correlation between 
strata processes. I have investigated this for 
moose surveys in Alaska and found little or no 

cross-correlation so that it did not affect the 
predictions or standard errors. An alternative 
to stratification is transforming the data to sta­
bilize variance. This is useful when continuous 
covariates (e.g., elevation) are used in the de­
sign matrix of the linear model. These methods 
require an unbiased backtransformation (simi­
lar to transgaussian kriging, Cressie, 1993, pg. 
137), and results will be presented later. 
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