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ABSTRACT: Six of 20 loci expressed in liver and muscle tissue from Kenai Peninsula moose (Alces 
alces gigas) were polymorphic. Average heterozygosity was 7. 7%, which represents an unprecedented 
level of genetic diversity for moose. This level of diversity was not expected because empirical evidence 
from other moose populations, as well as theoretical considerations, indicated that moose exhibited low 
levels of heterozygosity. We propose that moose populations with low diversity reside in areas that were 
glaciated during the last Ice Age and that the recolonization process reduced heterozygosity, while high
diversity populations reside in areas in the proximity of glacial refugia. 

Analysis of genetic heterogeneity within 
and among wildlife populations can yield a 
better understanding of popula~on processes 
(Smith et al. 1984) which can be relevant in a 
management context (Smith et al. 1976). For 
instance, spatial differences in allele frequen
cies can be used to detect breeding structure 
and delineate functional populations (Manlove 
et al. 1976). These delineations can then be 
used to define management area boundaries. 
Furthermore, incidence of phenotypic char
acteristics related to increased fitness have 
been associated with the degree of 
heterozygosity (H) in individuals (Johns et al. 
1977, Smith et al. 1982, Cothran et al. 1983, 
1987, Chesser and Smith 1987, Scribner et al. 
1989). However, population heterozygosity 
can be diminished to varying degrees by dif
ferent hunting regimes (Ryman et al. 1981); 
thus, maintenance of genetic variability of 
game species is an important management 
consideration. 

Electrophoretic studies of proteins iso
lated from moose indicated a paucity of de
tectable genetic variability. Nadler et al. 
( 1967) and Wilhelmson eta/. ( 1978) found no 
polymorphisms in serum proteins from 
populations of moose in Scandinavia (A. a. 
alces), Canada (A. a. andersoni), and Alaska 
(A. a. gigas). Ryman et al. (1977) examined 
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23loci and detected only one polymorphism 
in Swedish moose. Subsequent studies have 
revealed multilocus variability in A. a. alces 
(Rymanetal.1980,Baccusetal. 1983)andA. 
a. americana (Reuterwall and Ryman 1979), 
but not to the extent reported for other cervids 
(Breshearsetal. 1988,Smithetal.1990). Our 
objective was to determine the level of genetic 
variability in a population of moose from the 
Kenai Peninsula, Alaska. 

METHODS 

Samples ofliver and skeletal muscle were 
obtained from moose killed by highway vehi
cles. Thirty-one samples were collected dur
ing November 1989-March 1990 and repre
sented 29 adults and 2 fetuses. Seven samples 
were obtained from fetuses collected during 
March-June 1988 and kept frozen until 
analyzed. Fetuses were sampled only when 
samples from the mother were not available. 
No samples were collected from individuals 
known to be a sibling, parent, or offspring of 
another collected individual. 

The following thirteen enzyme systems 
representing 20 presumptive loci were exam
ined: malate dehydrogenase (MDH-1, MDH-
2), phosphoglucomutase (PGM-1, PGM-2), 
mannose phosphate isomerase (MPI), 
peptidase (PEP-1, PEP-2, PEP-3, 
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leucylglycylglycine substrate), malic enzyme 
(MOD-1, MOD-2), glucosephosphate 
isomerase (GPI-2), esterase (EST, 8-
napthylproprionate substrate), aconitase 
(ACON), sorbitol dehydrogenase (SORDH), 
lactate dehydrogenase (LDH-1, LDH-2), 
amino aspartatetransaminase (AAT-1, AAT-
2), a.-glycerophosphate dehydrogenase (a
GPD), and adenosine deaminase (ADA). 
Preparation of extracts, electrophoretic pro
cedures and staining followed Selander et al. 
(1971) and Manlove et al. (1975). Allele 
frequencies, estimates of H, alleles per locus 
(A), proportion of polymorphic loci (P), and 
Chi-square testing of conformance to Hardy
Weinberg expectations were performed using 
BIOSYS (Swofford and Selander 1981 ). Loci 
were considered polymorphic if the frequency 
of occurrence of the most common allele did 
not exceed 0.99. 

RESULTS 

Sixof20(P=30%)loci(MDH-1,PGM-1, 
PGM-2,MPI,PEP-2,andMOD-2)werepoly
morphic (Table 1). These loci, with the ex
ception of MOD-2, have been reported to be 
polymorphic in other moose populations 
(Ryman et al. 1980, Baccus et al. 1983); 
however, no single population heretofore ex
hibited more than 3 polymorphic loci. Ryman 
et al. (1980), in a study of 18 Scandinavian 
moose populations, reported estimates of P 

ranging from 4.3-13%. Baccus et al. (1983) 
reported P=15.8% for Scandinavian moose. 
Smith et al. (1990) estimated average P for 
cervids as 17.4%. 

One locus (PEP-2) in the present study 
exhibited 3 alleles, whereas the remaining 
polymorphic loci exhibited 2 alleles each (Ta
ble 1), yielding an estimate of A of 1.35 (SE 
0.13), which is within the range exhibited by 
other cervids (Baccus et al. 1983, Smith et al. 
1990). Direct-count estimates of 
heterozygosity for polymorphic loci (h) ranged 
from 2.6-47.2% (Table 1). Mean 
heterozygosity (H), including 14 
monomorphic loci, was 7.7% (SE 3.4%), 
which was considerably greater than the inter
population mean of 2% (range 0.6-4. 7%) re
ported by Ryman et al. (1980) and the value 
reported by Baccus et al. (1983) (H = 1.7%) 
for Scandinavian moose. Smith et al. (1990) 
estimated H = 3.5% for cervids in general. 
Frequency of occurrence ofheterozygotes did 
not deviate significantly from Hardy
Weinberg expectations (X2=0.16, d. f.= 1, 
p=0.69). 

DISCUSSION 

Our data represent an unprecedented level 
of genetic diversity for moose and the only 
reported variability for A. a. gigas. Previous 
reports characterizing moose as a species ex
hibiting low to moderate levels of variability 

Table 1. Allele (A, B, and C) frequencies and a measure of heterozygosity (h) for 6 polymorphic loci 
from a Kenai Peninsula, Alaska moose population. 

Locus• 

Allele MDH-1 PGM-1 MPI PEP-2 PGM-2 MOD-2 

N 38 38 38 38 32 38 

A 0.000 0.000 0.368 0.250 0.031 0.263 

B 0.987 0.895 0.632 0.737 0.969 0.737 

c 0.013 0.105 0.000 0.013 0.000 0.000 

h 0.026 0.211 0.368 0.395 0.063 0.472 

1 Abbreviations defined in text. 
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were based primarily on data from 
Scandinavian populations or from North 
American populations from which only a few 
loci were examined. It is now apparent that 
indices of variability in moose can vary dra
matically on a large geographic scale. We 
believe that moose populations potentially 
could express even greater variability as loci 
not examined in this study were polymorphic 
in other populations (Gyllensten et al. 1980, 
Ryman et al. 1977). 

The dramatic differences in genetic di
versity between the Kenai population and 
others may stem from the origin of populations 
following the retreat of the Wisconsin ice 
sheet. Alces alces gigas originated in refugia 
in Beringia (interior Alaska and what is now 
the Bering Sea). The origin of all other North 
American subspecies is debatable, but whether 
they were derived from stocks located south 
of the Wisconson glacial maximum (Klein 
1965, Peterson 1955:14) or from Beringia 
(Cronin 1992, Geist 1985) it remains that their 
present range was once entirely glaciated. 
Recent populations residing in or near refugia 
likely would retain more genetic diversity 
than populations established at great distances 
from refugia through a series of founding 
events. Prior reports oflow genetic diversity 
in moose dealt with populations residing in 
previously glaciated areas. Thus, these 
populations possibly experienced a loss of 
diversity due to genetic drift during the proc
ess of recolonizing new habitat following 
glacial retreat (Sage and Wolff 1986). 

Moose inhabiting the Kenai Peninsula 
are isolated both spatially and temporally 
fromneighboringpopulations. A 16-kmwide 
mountainous isthmus connects the peninsula 
with the remainder of Alaska, and most moose 
habitat on the peninsula is not contiguous 
with the isthmus. Thus, any interchange of 
individuals likely is minimal. Had the penin
sula been colonized by moose in the late 19th 
century, as was the commonly held belief of 
early explorers of the area (Lutz 1960), we 
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would predict low genetic diversity in the 
population due to founder effect and inbreed
ing. Our data support the contention of Lutz 
( 1960) that moose populations increased as a 
result of 3 documented forest fires between 
1870 and 1910, prior to which they had ex
isted at low densities in late-successional for
est. This claim is supported by archaeological 
evidence that indicates that moose were present 
on the peninsula at least 2000 years ago 
(deLaguna 1934:13). Theoretically, such a 
period of relative isolation from other moose 
populations characterized by fluctuations in 
population size could lead to reduced genetic 
variability through drift and bottleneck ef
fects. However, it is possible that the effec
tive population size, even at low densities, 
was adequate to maintain diversity. Further
more, Nei et al. (1975) demonstrated that 
reductions in heterozygosity after a bottle
neck could be small if the population in
creased rapidly thereafter. Such rapid in
creases in moose populations are typical in 
southcentral Alaska because these populations 
are irruptive in nature, depending upon wild
fire for creation of suitable habitat. 

These data offer some insight toward pre
vailing theories concerning patterns of ge
netic variability among taxa. For instance, 
Harrington ( 1985) proposed that, among 
cervids, r-strategists were less variable ge
netically than K-strategists. However, our 
data lend support to the conclusion reached by 
Hartl and Reimoser (1988) that r-strategists 
can display substantial amounts of variation. 
Selander and Kaufman (1973) hypothesized 
that large, highly mobile mammals would 
exhibit low heterozygosity while small, sed
entary types would exhibit high degrees of 
variation. Ryman et al. ( 1980) provided data 
for moose which seemed to discount this 
theory, at least at the species level, and our 
data further demonstrate that large, highly
mobile species can exhibit relatively great 
amounts of heterogeneity. Smith et al. (1990), 
in reviewing heterogeneity of cervids, ob-
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served that boreal species exhibited the low
est average H. This observation may be true 
in a general sense, but it should not be inter
preted as meaning that boreal species cannot 
exhibit high heterogeneity at the population 
level. 

Recent studies in wildlife population ge
netics have examined relationships between 
expressions of fitness and genetic structure. 
Pemberton et al. ( 1988, 1991) demonstrated a 
relationship between juvenile survival, fe
male fecundity and genotypes at specific loci 
in red deer (Cervus elaphus). Relationships 
between heterozygosity and male body size 
and antler characteristics (Scribner and Smith 
1990), body condition of over-wintering fe
males (Cothran et al. 1983), and conception 
timing (Chesser and Smith 1987) among other 
characteristics have been reported for white
tailed deer ( Odocoileus virginianus ). Hartl et 
al. ( 1990) reported an apparent association 
between genotypes at specific loci and the 
number of antler points in red deer, and Harmel 
( 1983) provided evidence that antler size in 
white-tailed deer is genetically controlled. 
A lees alces gigas is characterized by the larg
est body and antler size of all moose subspe
cies (see Franzmann 1978, Geist 1987), which 
may be a result of the high genetic diversity 
we observed. These characteristics contrib
ute to the fitness of indivduals, and can affect 
an individual's liklihood of being harvested 
by a hunter; therefore, they should be consid
ered in a management context. 
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