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ABSTRACT:  Aerial surveys are the principal methods used to estimate populations of moose (Alces 
alces gigas) in Alaska.  Accounting for missed animals during aerial surveys is problematical, espe-
cially in forested habitats; incorporation of a visibility correction factor to account for the proportion 
of animals missed is known to improve accuracy of population estimates.  Our purpose was to study 
factors affecting visibility of radio-collared moose during aerial surveys in a temperate rainforest on 
the Yakutat Foreland, Alaska, USA.  Wildlife managers in the area typically assume they observe only 
50% of moose during surveys regardless of widely varying conditions.  We used logistic regression to 
examine factors that influenced visibility including vegetation, light conditions, snow cover, and sex, 
age, and group size of moose.  We then used logistic regression to develop a simpler model that only 
contained variables easily measured during aerial surveys: forest cover, snow cover, light, open versus 
vegetated habitat, and group size.  We used that model to estimate a visibility correction factor.  The 
mean correction factor was 1.304, ranging from1.005-2.138, yielding a population estimate of 699 
(90% CI = 671-724) moose from a survey count of 595 animals.  Our correction factor was within the 
range reported for other populations of moose, and lower than the correction factor (2.0) currently used 
in this area.  We conclude that application of site and time-specific visibility models is critical when 
estimating populations of large ungulates, especially in forested habitats.
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Population estimates of ungulates based 
on aerial surveys are subject to error associ-
ated with the inability to detect animals that 
are present (visibility bias; Timmerman 1993, 
Anderson and Lindzey 1996).  Environmental 
factors such as rugged terrain or dense cover 
may obscure visibility of animals, and differ-
ences in habitat selection and morphology by 
sex and age groups may make some animals 
more difficult to observe, thereby biasing 
their visibility (Peek et al. 1974, Thompson 
and Veukelich 1981, Bowyer et al. 2002, 
Bowyer 2004).  Grouping behavior, activ-
ity of individuals (i.e., lying or standing), 
weather, and ground conditions (e.g., snow 

cover) can measurably affect visibility of 
animals.  Many of these problems are manifest 
in aerial surveys of moose (Alces alces gigas) 
in temperate rainforests on the Yakutat Fore-
land of southeast Alaska, USA where snow 
conditions that facilitate detecting moose can 
be intermittent, weather conditions for flying 
are frequently poor, and forest cover is dense 
and widespread.  Ideally, population surveys 
should be conducted during the mating sea-
son when moose are more active and sexes 
aggregated (Miquelle et al. 1992, Oehlers et 
al. 2011).  Because Yakutat does not generally 
receive sufficient snowfall to enhance visibility 
before sexes spatially segregate after mating 
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and males cast antlers, identification of sex 
is difficult.  

Sightability (also referred to as detect-
ability or visibility) is the probability that an 
animal within the field of search for an observer 
will be seen by that observer (Caughley 1974).  
That probability can be expressed as a scalar, 
or correction factor for visibility bias, which 
is then multiplied by the number of moose 
observed to obtain a more accurate population 
estimate than an uncorrected count (Steinhorst 
and Samuel 1989).  Correction factors for vis-
ibility bias (commonly referred to as Sightabil-
ity Correction Factors or SCFs, and hereafter 
referred to as correction factors) that account 
for the proportion of animals undetected dur-
ing aerial surveys are known to improve the 
accuracy of population estimates (Timmerman 
1993), particularly for areas with extensive 
forest cover and variable weather conditions 
that occur on the Yakutat Foreland.  Survey 
precision incorporates both the variance of 
total moose sighted and the variance of the 
correction factor (Timmerman 1993).  Logistic 
regression is commonly used to develop cor-
rection factors for ungulates (McCorquodale 
2001, Quayle et al. 2001, McIntosh et al. 
2009); this method is designed for use with 
binomial dependent variables (observed or 
not), and can accommodate continuous and 
categorical independent variables (Hosmer 
and Lemeshow 2000).

We studied factors affecting visibility of 
moose on the Yakutat Foreland to improve 
population estimates from aerial surveys.  We 
derived a series of models predicting correc-
tion factors using data from visibility trials 
from aerial surveys involving radio-collared 
moose.  We examined the influence of temporal 
and weather-related variables such as month, 
time of day, cloud cover, light intensity, pre-
cipitation, and wind speed on visibility.  We 
considered effects of environmental variables 
such as snow, forest, and vegetation cover on 
visibility of moose.  In addition, we investi-
gated the influence of sex, age, group size, 

sex and age composition of groups, activity, 
and intensity of site use on visibility.  Logi-
cally, we expected that forest cover and lack 
of snow cover would reduce the probability 
of moose being observed, and that visibility 
would increase with increasing snow cover.  
We also hypothesized that visibility would 
decline with smaller group size or if moose 
were bedded.  Further, we postulated that 
age or sex would affect visibility, because of 
morphological differences or if age groups 
and sexes used different habitats.  

We derived a model containing all of the 
covariates that we determined were important 
predictors of visibility, and a second model 
that included only those variables for which 
information could be obtained from routine 
aerial surveys.  The full model was needed to 
consider all variables, including life-history 
characteristics such as sex and age and their 
potential influence on visibility, and would be 
useful in areas where sex and age composi-
tion is known or could be determined during 
surveys.  We considered the second model to 
be more appropriate for management purposes 
in our study area, because it did not require 
data that could only be obtained reliably from 
radio-collared animals, and is more appropri-
ate for late-winter surveys when sex cannot 
be accurately determined.  Finally, we applied 
the management model to a sample data set to 
estimate the density of moose within our study 
area.  Ours is one of few studies to examine 
factors influencing visibility of ungulates in a 
northern temperate rainforest, and our results 
should be useful to biologists managing ungu-
lates throughout the northern coastal forests 
of the Pacific Northwest. 

STUDY AREA
We conducted research on the Yakutat 

Foreland of the Tongass National Forest, lo-
cated along the southeast coastline of Alaska 
(Fig. 1).  Our study area of approximately 1,280 
km2 encompassed most of the Foreland, and 
included ~80 km of coastline extending from 
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Yakutat Bay to Dry Bay.  Distance between 
the coast and mountain ranges varies from 
8-24 km.  There are several large rivers as 
well as numerous smaller streams distributed 
throughout the study area (Fig 1).

The Yakutat Foreland (Lat. 59°20’ N, 
Long. 139°0’ W) falls within the humid tem-
perate domain, characterized by year-round 
cloudy, cool, and wet conditions (Shephard 
1995).  The mean annual temperature was 
4.1° C and the mean total precipitation was 
381 cm (combined snow and rain) from 1971-
2000 (NOAA 2005).  The mean temperature 
during this same time period was -3.4° C 
during January (the coldest month) and 12° 
C during July (the warmest month).  Total 
snowfall during the study was 345 cm; mean 
daily snowfall was 3.0 cm and the mean snow 
depth was 20 cm. 

Other than a few rolling bedrock hills, most 
of the Foreland is of low relief (average eleva-

tion 20 m; Shephard 1995), and is a mosaic of 
forests, wetlands, and shrublands (Shephard 
1995).  Forested areas are dominated by Sitka 
spruce (Picea sitchensis), and a small percent-
age of the upper canopy is composed of black 
cottonwood (Populus trichocarpa), western 
hemlock (Tsuga heterophylla), and mountain 
hemlock (T. mertensiana).  Shephard (1995) 
documented 20 different forest communities 
on the Foreland, with canopy cover ranging 
from 1-80% and averaging 60% for the com-
mon forest communities, with stand heights 
ranging from 15-47 m.  Nonforested areas 
include wetlands and shrublands composed 
primarily of graminoids, forbs, and shrubs 
including several species of tall and low willow 
(Salix spp.) ranging from 1-6 m in height, and 
Sitka alder (Alnus sinuata) up to 4 m.  Nonfor-
ested areas dominate the coastal areas on the 
western half of the study area, with patches of 
spruce dispersed on the heaths and adjacent 

Fig. 1.  Study area for developing a visibility model for moose on the Yakutat Foreland, Alaska, USA, 
2003-2004.
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to some riparian zones; contiguous forested 
stands predominate the remainder.

The most recent aerial surveys (2002) 
conducted in the Forelands by Alaska Depart-
ment of Fish and Game (ADFG) estimated a 
density of 0.5 moose/km2 with a composition 
ratio of 19 males:100 females:14 young (N. 
L. Barten, ADFG, pers. comm.).  Total count 
surveys by parallel transects set approximately 
0.4-0.5 km  apart are conducted in the non-
forested portions of the Foreland by ADFG 
in late autumn as soon as snow covers most 
of the ground, but often those conditions do 
not occur until well into winter.  The ADFG 
assumes that 50% of moose along transects are 
detected; consequently, the observed number 
of moose is doubled to estimate population 
size.  That correction factor, however, has 
never been empirically evaluated or assessed.  
In addition, ADFG does not survey forested 
portions of the Forelands because of low 
(unknown) visibility, which constitutes about 
one-half of the study area.  

Other large mammals that occur on the 
Forelands include brown bear (Ursus arctos), 
black bear (U. americanus), and gray wolves 
(Canis lupus).  Sitka black-tailed deer (Odo-
coileus hemionus sitkensis) occupy some of 
the islands offshore but are uncommon on the 
mainland.  In addition, moose are an important 
part of the subsistence economy (Ballew et al. 
2006, Schmidt et al. 2007).

METHODS
Capture and handling

Twenty-two female and 16 male moose 
were darted from a helicopter by ADFG per-
sonnel with Palmer CAP-CHUR equipment 
with the immobilizing drugs carfentanil and 
xylazine (Roffe et al. 2001) during March 
and November 2002, and March and Decem-
ber 2003.  Dosages ranged from 3.0-5.0 mg 
of carfentanil and 100-130 mg of xylazine 
depending on time of year, sex, and animal 
condition.  All capture and handling methods 
followed guidelines established by the Ameri-

can Society of Mammalogists Animal Care 
and Use Committee (1998) for research on 
wild mammals.  Our protocols were approved 
by independent Institutional Animal Care and 
Use committees at the University of Alaska 
Fairbanks (protocol # 04-26) and the ADFG 
(protocol # 03-0001).  

We fitted moose with GPS radio-collars 
(Model 4000, Lotek Wireless, Ontario, 
Canada) that  recorded locations 4 times 
daily, or standard VHF radio-collars (Model 
MP2-MPP4, AVM, Colfax, California and 
Model 600NH, Telonics, Mesa, Arizona).  We 
programmed both types of collars to release 
remotely relative to time of deployment (typi-
cally 1.5 yr).  A lower incisor was removed 
from each moose to determine age from cemen-
tum annuli (Gasaway et al. 1978).  Naltrexone 
(350-1300 mg) and tolazoline (400-800 mg) 
were subsequently administered and  moose 
were monitored until they recovered from the 
immediate effects of immobilization.  We also 
monitored each moose by aerial survey for 1 
month post-capture to assess capture-related 
mortality.  Three females died or their collars 
malfunctioned within 1 month of capture, and 
were not included in the visibility trials.    

Visibility trials
We flew surveys to locate collared moose 

between 24 November 2003 and 18 March 
2004 using a Cessna® 185 fixed-wing aircraft.  
Timing of sampling and type of aircraft were 
the same used by ADFG when conducting 
moose surveys.  We defined a visibility trial 
as the effort by the survey crew to count all 
moose within a 5 km2 sampling quadrat (square 
survey block) that included a radio-collared 
moose on a particular day.  The aerial-survey 
crew was composed of the pilot, the primary 
observer in the front seat, and a secondary 
observer in the back seat behind the pilot.  
We attempted to control as many factors as 
possible, such as using the same aircraft, pilot, 
and primary observers for all trials.  One pilot 
and 2 primary observers with >150 h of moose 
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survey experience were used in the trials, with 
8 secondary observers ranging in initial experi-
ence level of 6-8 (40-150 h of moose survey 
experience) on a Lickart scale of 1-10.  

Our trial procedure was similar to that of 
Quayle et al. (2001).  Trials to locate individual 
radio-collared moose were separated by ≥3 
days to reduce autocorrelation among loca-
tions.  The extremely large home ranges of 
moose on the Foreland (mean seasonal home 
ranges varied from 24.3-86.3 km2; Oehlers 
et al. 2011) made this interval a reasonable 
choice for attempting to achieve independence 
among locations.  Frequencies for the subset 
of moose to be sampled during a flight were 
programmed into a receiver (model R4000, 
ATS, Isanti, Minnesota) and scanned while 
flying at an altitude of 245-300 m above 
ground level.  Once a signal was received, the 
primary observer obtained the general posi-
tion of the moose without identifying an exact 
location.  We used a laptop computer equipped 
with Baker Geolink Sketchmapping software 
(Michael Baker Corporation, Moon Township, 
PA) to record our location and flight path so 
that the telemetry operator (primary observer) 
could identify the approximate location of the 
collared moose on the map without viewing 
the ground, thereby minimizing observer bias.  
The pilot and secondary observer also avoided 
scanning the ground in the immediate survey 
area to prevent detection of the target animal 
before beginning the survey.  The survey crew 
noted if the collared moose was accidentally 
spotted by either observer while obtaining 
the general location; those observations were 
eliminated from analyses.

The primary observer then delineated a 5 
km2 (2.23 km x 2.23 km) quadrat (Quayle et 
al. 2001) centered around the general location 
of the identified moose on the laptop computer 
using a 0.4 km grid overlay on the screen.  
Because the location of the moose was inex-
act, the actual location of the moose was not 
centered within the quadrat.  Consequently, 
observer bias was minimized because none 

of the observers knew where in the quadrat 
to expect to find the radio-collared moose.  
The pilot then flew over the quadrat along 
transects spaced 0.4 km apart, which were 
delineated by the grid overlaid on the screen.  
The laptop screen displayed our flight path, 
allowing the pilot to navigate and follow the 
specified transect lines.  The pilot flew the 
aircraft at an altitude of approximately 185 
m and speed of about 130 km/h, resulting in 
a search intensity of approximately 1.0 min/
km2.  We circled the location of each moose 
sighted in the quadrat to identify and record 
information on all of the variables included in 
the Appendix, and recorded the location of the 
moose using the Sketchmapper software.  If 
the targeted moose was not sighted during the 
survey, we located that animal via telemetry 
and recorded the same information.  

Forest cover was measured at 2 scales and 
recorded as “0” if the predominant  vegeta-
tion within both a 10 m and 250 m radius of 
the radio-collared moose was nonforested, 
and “1” if this same area was predominantly 
forested (including a range of canopy cov-
ers).  Vegetation cover was defined as “0” if 
the predominant vegetation was open habitat 
such as muskeg, meadow, sand, or gravel 
bar, or “1” if there was vegetation such as tall 
shrubs or forest that could obscure visibility of 
the moose.  Percent vegetation was recorded 
as a categorical variable (1-3) representing 
percentage of vegetative cover (shrubs or 
trees) within a 10 m and 250 m radius of the 
observed moose that could obscure visibility 
of that moose.

We defined a “group” as 1 or more moose 
within 50 m of each other (Siegfried 1979, 
Molvar and Bowyer 1994, Bowyer et al. 2001) 
to encompass the complete range of sociality 
for this species (Monteith et al. 2007).  We 
categorized age of non-collared animals as 
young (<1 year) or adult (≥1 years old) through 
visual observation.  We expected a high preg-
nancy rate of yearlings (Boer 1992), because 
preliminary data indicated a predator-limited 
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population (Bowyer et al. 2005, Oehlers et al. 
2011).  Consequently, we considered yearling 
females as adults (Monteith et al. 2007).  
Moreover, distinguishing between yearlings 
and adults during aerial surveys in winter was 
difficult, and further distinguishing of ages 
beyond yearling or adult was not possible 
during aerial surveys.   

We used ArcView 3.2 geographic informa-
tion software (ESRI, Redlands, CA, USA) to 
plot GPS locations for moose and determine 
elevation and distance to the coast for each 
moose.  Elevation was extracted from a raster 
data layer provided by the U.S. Forest Service 
(USFS), which was based on USGS digital 
elevation model with 20-m resolution.  Dis-
tance from shore was calculated with the USFS 
shoreline polygon layer for the study area.  

Statistical analyses
Detection of a radio-collared moose during 

visibility trials was coded 1 if detected and 0 
if not observed.  We used SAS 9.1 (SAS In-
stitute, Cary, NC) for all statistical tests, and 
adopted an α = 0.05.  We used multivariate 
logistic regression to model visibility.  Our 
suite of potential predictors of detection 
included parameters such as sex, age, group 
size, forest cover, snow cover, light conditions, 
aircraft speed, and experience of observers 
(Appendix).  Group size was squared because 
the untransformed covariate was not linear in 
the logit.  We included the identification of 
individual moose as a coded variable to control 
for making repeated measures of individual 
moose.  We reduced potential multicollinearity 
among independent variables by testing for 
strong correlations between pairs of covariates 
(│r│≥0.7) and preventing their simultane-
ous inclusion in logistic regression models.  
During initial model screening, we also ex-
amined variance inflation factors (VIF) and 
tolerance (Tol) of independent continuous and 
discrete variables to identify intercorrelated 
variables.  Values of VIF <10 and Tol >0.40 
were considered acceptable (Neter et al. 1996, 

Allison 2001).  We ultimately considered 16 
variables from the initial set of 27 candidate 
predictor variables.  We then screened these 
remaining covariates using forward step-wise 
logistic regression (PROC LOGISTIC; Agresti 
1990) with an alpha to enter of 0.15 (Hosmer 
and Lemeshow 2000, p. 118) and alpha to 
remove of 0.3, and backward logistic regres-
sion with alpha to remove of 0.3, to define 
a broad initial set of candidate models.  We 
restricted the number of covariates within any 
candidate model to ≤8, because our sample 
size of visibility trials was 88; our sample size 
precluded a global model.  Our sample size 
also precluded an all possible regressions ap-
proach.  We used Hosmer and Lemeshow tests 
for goodness-of-fit (Hosmer and Lemeshow 
2000) to determine the appropriateness of the 
logistic models.  

  Once we had established a large set of 
candidate models, we used Akaike’s Informa-
tion Criterion (AICc) (Burnham and Anderson 
2002) to select model variables.  Age and sex 
were included in most of the top candidate 
models.  Classifying moose into discrete 
age classes (i.e., beyond yearling or adult) is 
not possible from aerial surveys, and correct 
classification of sex is difficult once males 
have cast their antlers, so we repeated this 
same process omitting age and sex to allow 
development of models that did not rely on 
data from captured moose.  Accordingly, we 
developed overall explanatory models that 
included life-history characteristics, as well as 
management models which included variables 
that could be measured easily during aerial 
surveys alone.  We used model-averaging 
procedures to derive composite explanatory 
and management models (Burnham and An-
derson 2002, Giudice et al. 2012).  We only 
considered candidate models with AICc Δ 
values ≤4 for inclusion in composite models.  
We calculated relative effects (risk ratios) for 
covariates included in our composite models 
(Farmer et al. 2006).  Relative effects estimate 
the change in relative probability of detection 
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for an incremental change in magnitude of a 
predictor variable (Riggs and Pollock 1992).  
We evaluated relative effects to determine 
the comparative importance of independent 
variables in affecting the probability of de-
tection.  In general, relative effects >2.0 or 
<0.5 indicated large effects of covariates on 
detectability (Riggs and Pollock 1992).

For demonstrative purposes, we applied 
our composite management model to existing 
surveys of the moose population that were 
conducted by ADFG on the Yakutat Fore-
land from 30 November-4 December 2005 
using their survey methodology previously 
described in Study Area.  Model variables 
were assessed for each individual or group 
of moose observed during these surveys, and 
then the corresponding correction factor was 
calculated for each observation and multiplied 
by the number of animals in that observation.  
These corrected estimates were then totaled 
to derive a mean population estimate and the 
range of population estimates using the up-
per and lower correction factor based on the 
90% CI (Becker and Reed 1990, Anderson 
and Lindzey 1996, White 2005).  These data 
included 262 observations of single moose or 
groups and 595 total moose observed.       

RESULTS
The median age for both females (n = 22, 

range = 3-13 yr) and males (n = 16, range = 
1-10yr) was 6 years.  We conducted 88 trials 
involving 55 radio-collared females and 33 
males; each was surveyed 1-4 times (x = 2.3, 
SD = 0.70).  Snow conditions were generally 
adequate for aerial surveys from November-
January and during the last 20 surveys con-
ducted in March, but comparatively poor 
during February.  We observed 254 groups 
of moose.  

Radio-collared animals were sighted in 
71% of the surveys; males were observed in 
76% and females in 66% of the trials.  Radio-
collared animals were detected in 82% of tri-
als in nonforested areas, and in 27% of trials 

in forested cover.  Animals 1-3, 4-6, 7-10, 
and 11-13 years old were detected in 89, 55, 
75, and 100% of trials, respectively.  Mean  
(± SE) group size of collared animals was 3.7 
± 0.4.  Radio-collared animals were observed 
in open (31%), shrub (52%), and forested 
(17%) habitat during the trials.  The location of 
females and males in nonforested and forested 
habitat was similar; 82 and 85% and 18 and 
15%, respectively.  

Logistic regressions
Forest cover, vegetation cover, and percent 

cover were each correlated (│r│≥0.7) between 
the 2 scales of measurement (10 m and 250 
m).  We considered the 10-m scale more easily 
estimated and likely to be consistent between 
observers; consequently, we chose to include 
the 10-m scale for each of these variables for 
consideration in our models.  Following tests 
for collinearity, variance inflation factors, 
and tolerance, candidate models for overall 
visibility included the parameters age, group 
size, forest cover, light, snow cover, experi-
ence secondary, and wind speed start (Table 1).  
Age, group size2, forest cover, and snow cover 
were included in each of the top 3 candidate 
models.  Visibility increased by 38% for each 
additional year of the moose aged, and by 
75% for each additional (increasing) experi-
ence level of the secondary observer (Table 
2).  Overcast skies (versus sun) increased 
visibility by 175%.  Visibility increased with 
group size2 and speed of the plane (flight speed 
ranged from 129-145 km/h), but effects were 
small.  Visibility declined under forested cover 
(94%), snow cover of 0-33% (76%) or 34-66% 
(82%), and for females (23%).   

Candidate models derived for manage-
ment purposes (omitting sex and age) included 
group size2, forest cover, snow cover, light 
conditions, and vegetation cover (Table 3).  
Similar to the overall model, detectability in-
creased with group size, nonforested and open 
habitat, overcast skies, and higher snow cover 
in the composite management model (Table 
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4).  Application of the composite management 
model to our sample data yielded a range of 
correction factors from 1.005-2.138 for each 
observation.  The mean correction factor was 
1.304, and mean upper and lower (90% CI)  
correction factors were 1.215 and 1.390, yield-
ing a population estimate of 671-724 animals 
(x = 699 moose) from an uncorrected count 
of 595 animals.

DISCUSSION
Both our overall and management models 

included group size, forest cover, and snow 
cover as covariates of visibility.  Lack of snow 
cover strongly reduced visibility of moose 
and confirmed our hypothesis that visibility 
would be higher as snow cover increased.  

Nonetheless, that relationship was not linear 
because visibility was similar between snow 
cover of 0-33% and 34-66% (57% and 54%, 
respectively).  We believe that snow cover of 
34-66% did not improve visibility because 
snow was still sufficiently patchy to obscure 
many moose against a dark background.  We 
hypothesize that no snow cover actually may 
be preferable to patchy snow because patchy 
snow conditions may fatigue observers more 
quickly than uniform coverage.  

Forest cover has been included in visibility 
models for both North American elk (Cervus 
elaphus; Samuel et al. 1987, Bleich et al. 
2001) and moose (Peterson and Page 1993, 
Anderson and Lindzey 1996, Drummer and 
Aho 1998, Quayle et al. 2001).  In our study 
area, coniferous tree species predominate in 
the forested areas, obstructing visibility of 
moose year-round, whereas vegetation in non-
forested areas included alders and willows that 

Model k Parameters AICc∆i AICcwi

A 5 Age, group2a, 
forest cover, 
light, snow

0.000 0.4428

B 7 Age, sex, 
observer2b, 
speedc, group2, 
forest cover, 
snow

0.7520 0.3041

C 6 Age, sex, 
observer2, 
group2, forest 
cover, snow

1.8083 0.1793

D 4 Group2, forest 
cover, snow, 
light

3.5851 0.0738

E 16 Saturatedd 18.8200 0.0000

Table 1. Number of model parameters (k), differ-
ences in Akaike’s Information Criterion (AICc) 
scores (∆) and AICc weights (wi) for candidate 
visibility models for moose on the Yakutat 
Foreland, Alaska, 2003-2004. 

aGroup size2.
bExperience secondary.
cWind speed start.
dIncludes survey start time, temperature, group, sex, 

age, experience primary, experience secondary, 
wind speed start, flight speed, group size2, forest 
cover, vegetation cover, percent cover, activity, 
light, snow cover, and elevation.

Variable β SE RR RR 90% CI

Intercept -14.284 16.844 n/a         n/a
Age 0.325 0.169 1.384 1.047-1.829

Group size2 0.074 0.075 1.077 0.951-1.219

Forest cover -2.849 0.945 0.058 0.012- 0.275

Light 1.010 1.157 2.746 0.407-18.524

Snow cover 
1 (0-33%)a

-1.419 1.201 0.242 0.033-1.755

Snow cover 
2 (34-66%)a

-1.661 1.059 0.190 0.033-1.090

Sexb -0.256 0.352 0.774 0.433-1.384

Flight Speed 0.063 0.075 1.065 0.941-1.205

Experience 
Secondary

0.562 0.693 1.754 0.559-5.504

Table 2.  Regression coefficients and risk ratios 
(RR) for selected composite overall explanatory 
model for visibility of moose on the Yakutat Fore-
land, Alaska, 2003-2004. Confidence intervals 
did not overlap 1 in the individual models.

aSnow cover is relative to the reference variable 
of level 3, 67-100%.

bSex is relative to the reference variable of male.
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do not retain leaves during winter and have 
less effect on visibility.

Group size was less influential on visibility 
than either forest or snow cover.  Group size 
affects visibility of elk (Samuel et al. 1987, 
Bleich et al. 2001, McCorquodale 2001), feral 
horses (Equus caballus; Ransom 2012), and 
mule deer (Odocoileus hemionus; Ackerman 
1988); logically, larger groups are generally 
more visible.  Moose tend to aggregate in open 
areas in Alaska during rut (Miquelle et al. 1992, 
Molvar and Bowyer 1994); therefore, if snow 
conditions are adequate, visibility would be 
highest during the peak of rut.  Visibility did 
not differ when moose were standing or bed-
ded.  Light condition also was an important 
predictor of visibility as moose were more 
visible in overcast conditions when glare and 
shadows were minimized.  Fox (1977) noted 
similar issues with glare from snowfields 
during mountain goat (Oreamnos americana) 
surveys conducted in clear weather in south-
east Alaska.  

 Visibility increased with increasing age 

of moose, and was higher for males than for 
females, although the relative effect of sex 
was small.  Greater visibility of males could 
distort male:female ratios and result in the 
underestimation of the female population, 
unless a correction for differential visibility 
is incorporated.  Although several other stud-
ies of ungulate visibility reported that sex 
or group composition was accounted for in 
multivariate models because of correlation 
with other covariates such as group size or 
vegetation (Anderson and Lindzey 1996, 
Bleich et al. 2001, McCorquodale 2001), sex 
in our model was not correlated with any other 
variable.  The effect of sex on visibility prob-
ably occurred because of physical differences 
between the sexes; larger body size, darker 
color, and presence of antlers in early winter 
likely explain the higher visibility of males.  
Solberg et al. (2010) also reported that male 
moose were observed by hunters with a 1.26 
higher probability than females during the 
hunting season, and suggested that this dif-
ference was reflective of fundamental differ-
ences in antipredator behavior, including risk 
taking (such as use of open habitat), activity 
level, and space use.  Although age was not 

Model k Parameters AICc∆i AICcwi

A 4 Group2a, 
forest cover, 
snow, light

0.0000 0.5404

B 5 Group2, 
forest cover, 
vegetation 
cover, snow, 
light

1.0609 0.3180

C 3 Group2, forest 
cover, snow

2.6844 0.1442

D 14 Saturatedb 14.4800 0.0004

Table 3. Number of model parameters (k), differ-
ences in Akaike’s Information Criterion (AICc) 
scores (∆), and AICc weights (wi) for candidate 
visibility management models for moose on the 
Yakutat Foreland, Alaska, 2003-2004. 

aGroup size2.
bIncludes survey start time, temperature, group, 

experience primary, experience secondary, wind 
speed start, flight speed, group size2, forest cover, 
vegetation cover, percent cover, activity, light, 
snow cover, and elevation.

Variable β SE RR RR 90% CI

Intercept 0.048 0.905 n/a        n/a

Group size2 0.070 0.038 1.073 1.007-1.142

Forest cover -2.551 2.190 0.078 0.002-2.894

Light 1.441 0.920 4.225 0.926-19.279

Snow cover 1 
(0-33%)a

-1.028 0.935 0.358 0.076-1.673

Snow cover 2 
(34-66%)a

-1.377 0.897 0.252 0.057-1.109

Vegetation 
cover

-0.284 0.383 0.753 0.400-1.416

Table 4.  Regression coefficients and risk ratios 
(RR) for selected composite management model 
for visibility of moose on the Yakutat Foreland, 
Alaska, 2003-2004. Confidence intervals did not 
overlap 1 in the individual models.

aSnow cover is relative to the reference variable 
of level 3, 67-100%.
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significantly correlated with other variables, 
all observations of the oldest animals were in 
large groups in non-forested habitat; therefore, 
other covariates besides age were likely more 
influential on visibility.  We did not detect 
an influence of age and sex composition of 
groups on visibility.  

We attempted to standardize flight speed 
during surveys, and weather conditions 
resulted in a minimal range of speeds (130-
145 km/h).  Remarkably, visibility of moose 
increased with speed of the plane.  Nonethe-
less, flight speed was in only 1 of the top 4 
candidate overall explanatory models, its 
relative effect was small, and the 90% CI in-
cluded 0; within the range of speeds we flew, 
this variable was likely of minimal impor-
tance.  Experience level (1-10) of the second 
observer increased visibility by 75% in the 
explanatory model; however, the effect was 
highly variable, and was not included in the 
management model.  Although experienced 
observers have developed a search image, 
and therefore may be more likely to observe 
moose, observer experience is difficult to 
quantify, and experience level changes over 
the course of visibility trials.  Previous stud-
ies have documented differences in visibility 
related to observer experience (LeResche and 
Rausch 1974, Caughley et al. 1976); however, 
recent studies have noted little effect on vis-
ibility when observers were experienced 
(Ackerman 1998) or when observer experience 
correlated with other variables in the model 
(Samuel et al. 1987, Anderson and Lindzey 
1996).  All second observers in our study were 
experienced in moose surveys (i.e., 40-150 h of 
moose survey experience); consequently, our 
model will be most effectively applied when 
using experienced observers, a conclusion also 
reached by Quayle et al. (2001).  

Our overall visibility of moose was 
70.5% and similar to that in Quebec (Crête 
et al.1986; 73%), Alberta (Rolley and Keith 
1980; 64%), and Isle Royale, Michigan (Pe-
terson and Page 1993; 78%), and higher than 

in Minnesota (Giudice et al. 2012; 38-56%), 
Michigan (Drummer and Aho 1998; 39%), 
Wyoming (Anderson and Lindzey 1996; 
59%), and Alaska (LeResche and Rausch 
1974; 43-68%).  Correction factors for moose 
range from 1.03-3.2 (Oosenberg and Ferguson 
1992, Timmerman and Buss 1998) and are 
generally higher in areas of denser cover and 
higher moose density (Gasaway et al. 1986, 
Peterson and Page 1993).  Comparisons of 
visibility rates may be tenuous, however, be-
cause of differences in aircraft type (Crête et al. 
1986), number of observers, search intensity, 
and habitat (Anderson and Lindzey 1996).  
Our results are within the range of correction 
factors reported for moose, but emphasize the 
variability in visibility and the need to develop 
correction factors specific to a particular area 
and time frame.  

The use of a dynamic correction factor, 
such as that developed with a visibility model, 
is superior to the use of a static correction fac-
tor.  Our modeled correction factor is offered 
as an alternative to the use of both a calculated 
SCF (SCFc) and an observed SCF (SCFo) as 
described by Gasaway et al. (1986).  Observed 
SCFs must be calculated for each survey 
(preferable daily), and are cost prohibitive in 
areas dominated by dense coniferous forests 
and areas of low moose density (Gasaway et al. 
1986), both of which occur in our study area.  
Our results confirm that visibility of moose 
from aircraft varies with environmental factors 
and group size.  Therefore, application of the 
visibility model, combined with an appropri-
ate sampling strategy, and with sophisticated 
analytical methods such as machine learn-
ing (‘non-linear statistics’; Breiman 2001), 
may improve the accuracy and precision of 
population estimates over the use of a static 
correction factor. 

Our method could be extended to other 
areas of similar environmental conditions such 
as the remainder of coastal Alaska and British 
Columbia (and could be tested for applicability 
to interior Alaska) if protocols associated with 
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the chosen model are followed (McCorquodale 
2001).  Because visibility may differ among 
types of aircraft used (Crête et al 1986), surveys 
should be conducted using a Cessna® 185 or 
similar fixed-wing aircraft at approximately 
185 m above ground elevation, as used in 
model development (Samuel et al. 1987, 
Anderson and Lindzey 1996).  Additionally, 
observers should be experienced and their ob-
servation skills constantly calibrated in aerial 
surveys of moose.  Conducting surveys when 
moose are likely to be most visible (i.e., with 
nearly continuous snow cover and overcast 
light conditions) will provide the most precise 
population estimates.  Improved population 
estimates will allow for more knowledge-
based and effective management decisions 
by state and federal managers. 
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Variable Type Description Method/Time of 
Collection

Month Discrete Month of visibility trial Aerial Survey

Age Discrete Age of collared moose Capture

Sex Discrete Sex of collared moose Capture

Group Indicator 0 = single moose, 1 = ≥ 2 moose Aerial Survey

Group size Discrete Total number of moose seen within 50 m of collared 
moose

Aerial Survey

Composition Indicator 0 = single-sex group; 1 = both sexes in group Aerial Survey

Males Discrete Number of adult males in group Aerial Survey

Females Discrete Number of adult females in group Aerial Survey

Calves Discrete Number of calves in group Aerial Survey

Unknown Sex Discrete Number of unknown sex adults in group Aerial Survey

Forest Cover  
10 m

Indicator 0 = nonforested, 1 = forested, within 10 m of moose Aerial Survey

Forest Cover  
250 m

Indicator 0 = nonforested, 1 = forested, within 250 m of moose Aerial Survey

Vegetation Cover 
10 m

Indicator 0 = open habitat such as muskeg, 1= shrub or forested 
habitat within 10 m of moose

Aerial Survey

Vegetation Cover  
250 m

Indicator 0 = open habitat such as muskeg, 1= shrub or forested 
habitat within 250 m of moose

Aerial Survey

Percent Vegetation 
10 m

Indicator 1 = 0-33%, 2 = 34-66%, 3 = 67-100% vegetative cover 
within 10 m of moose

Aerial Survey

Percent Vegetation 
250 m

Indicator 1 = 0-33%, 2 = 34-66%, 3 = 67-100% vegetative cover 
within 250 m of moose

Aerial Survey

Elevation Continuous Elevation above sea level in meters GIS

Distance from 
coast

Continuous Straight-line distance from coastline to center of moose 
group in meters

GIS

Activity Indicator 0 = bedded, 1 = active (any moose in group) Aerial Survey

Site use Indicator 0 = no beds, few tracks, 1 = beds and multiple tracks Aerial Survey

Cloud cover Indicator 0 = clear, 1 = partly cloudy, 2 = overcast Aerial Survey

Precipitation Indicator 0 = none, 1 = mist, 2 = light rain, 3 = hard rain, 4 = snow Aerial Survey

Snow cover Indicator 1 = 0-33%, 2 = 34-66% ,3 = 67-100% Aerial Survey

Wind speed start Continuous Wind speed (km/h) at beginning of survey Aerial Survey

Wind speed end Continuous Wind speed (km/h) at end of survey Aerial Survey

Appendix
Candidate predictor variables considered during initial modeling for visibility of moose 

on the Yakutat Foreland, Alaska, 2003-2004. 
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Flight speed Continuous Average flight speed (km/h) during survey (excludes 
circling)

Aerial Survey 
(plane 
instrumentation)

Temperature Continuous Average temperature (Celsius) during survey Aerial Survey

Start Time Discrete Survey start time;  military time rounded to hour Aerial Survey

Light Indicator 0 = sunny, 2 = flat light/even shadows Aerial Survey

Experience 
primary

Continuous Previous experience level of primary observer, scale of 
1-10

Collected from 
each surveyor prior 
to visibility trials

Number flights 
primary

Discrete Number of previous visibility trials by primary observer Collected from 
each surveyor prior 
to visibility trials

Experience 
secondary

Continuous Previous experience level of secondary observer, scale of 
1-10

Collected from 
each surveyor prior 
to visibility trials

Number flights 
secondary

Discrete Number of previous visibility trials by secondary observer Tabulated 
throughout 
visibility trials


