Alaska Department of Fish and Game
 Wildlife Restoration Grant

Grant Number: AKW-B-R1-2020 Amendment \#1 SFY21
Project Number: 1.70
Project Title: Moose population dynamics in southeastern Alaska
Period of Performance: 1 July 2020-30 June 2021
Report Due Date: 1 September 2021
Principal Investigator: Kevin S. White
Cooperators: Glacier Bay National Park

I. PROGRESS ON PROJECT OBJECTIVES DURING PERIOD OF PERFORMANCE

Objective 1: Condduct 1 investigation by 06-30-2021

ACTIVITY 1A: Estimate reproductive performance of radio-marked adult female moose
ACCOMPLISHMENTS: During May-June 2021, we conducted aerial (Gustavus, $\mathrm{n}=2$; Berners Bay, $\mathrm{n}=2$) surveys to determine calf status of radio-marked adult female moose. Ground-based surveys were not conducted. We determined that $62 \%(16 / 26)$ of radio-marked female moose in Gustavus had calves at heel during the late-May parturition season; 31% of parous females had twins. In Berners Bay, $38 \%(6 / 16)$ of adult females had calves. Of the 8 calves observed in Berners Bay, 38% were twins. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

ACTIVITY 1B: Estimate survival of radio-marked adult female moose.
Accomplishments: We monitored survival of radio-marked adult female moose (Gustavus, $\mathrm{n}=33$; Berners Bay, $\mathrm{n}=28$) each month via ground- or air-based radio- telemetry surveys, weather permitting. During 2020-2021, we investigated 16 mortality events involving radiomarked moose (Gustavus, $n=6$; Berners Bay, $n=10$). Estimated annual survival for adult female moose in Gustavus during the 2020/2021 biological year was low (annual survival, $2020 / 21=0.87 \pm 0.07, \mathrm{n}=33$), relative to the long-term average (annual survival, 2003-2021 $=$ $0.88 \pm 0.01, \mathrm{n}=620$; Table 1). In Berners Bay, annual survival of adult females during

2020/2021 was very low (annual survival, 2020/21 $=0.64 \pm 0.08, \mathrm{n}=28$), relative to the longterm average (annual survival, 2006-2021 $=0.86 \pm 0.02, \mathrm{n}=458$; Table 1). We attribute the low adult female survival rates during 2020/2021 to severe late-winter snow conditions; predation (wolf and bear) and population age structure may also be important factors. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

ACTIVITY 1c: Estimate survival of calves associated with radio-marked adult female moose
ACCOMPLISHMENTS: We monitored survival of calves associated with radio-marked adult female moose (Gustavus, $\mathrm{n}=32$; Berners Bay, $\mathrm{n}=10$) during May-June 2020, November 2020 and April 2021 via ground- or air-based radio-telemetry surveys, weather permitting. Estimated annual survival for calves in Gustavus during 2020/2021 was very low (annual survival, $2020=0.00 \pm 0.00, \mathrm{n}=32$) to the long-term average (annual survival, 2004-2021 $=$ $0.25 \pm 0.02, \mathrm{n}=440$; Table 2). In Berners Bay, annual survival of calves during 2020/2021 (annual survival, $2020=0.00 \pm 0.00, \mathrm{n}=10$) was very low relative to long-term estimates (annual survival, 2007-2021 $=0.25 \pm 0.02, \mathrm{n}=299$; Table 2); most calf mortality occurred during summer yet causes are unknown. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

ACTIVITY 1D: Estimate moose population size and composition.
ACCOMPLISHMENTS: We conducted two aerial surveys during fall/winter in order to estimate moose population size and composition (Gustavus, $\mathrm{n}=1$; Berners Bay, $\mathrm{n}=1$). During surveys, moose sighting probabilities were estimated using mark-resight techniques based on data collected from radio-marked adult female moose. In Gustavus, we observed 148 total moose (25 bulls, 100 cows, 23 calves) and 63% (17/27) of the radio-collared adult females resulting in a mark-resight population estimate of 231 ± 58 moose. In Berners Bay, we observed 42 total moose (0 bulls, 5 cow, 1 calf, 36 unknown sex adults) and 33% (4/12) radio-collared females (that could be accounted for; sightability status was not determined for 7 radio-collared females). Since the survey was conducted after antler drop (January 2021) it was not possible to distinguish adult sex status of adults. The mark-resight population estimate for the Berners moose population was 111 ± 66 moose. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

ACTIVITY 1E: Capture and radio-mark adult female moose
ACCOMPLISHMENTS: We conducted moose capture activities during this reporting period in the Berners Bay area during March 2021; captures were not conducted in Gustavus because existing sample size of radio-marked animals was deemed sufficient. In Berners Bay, we captured 6 adult females using helicopter darting methods. Following capture, we collected biological samples (i.e., blood, tissue, fecal pellets, hair), recorded body condition (via ultrasonography) and morphological characteristics. Biological samples were analyzed and/or archived for this (i.e., pregnancy, age, nutrition) and other related projects (i.e., genetics, health/disease assessment). We successfully accomplished all activities associated with this objective that were planned for this reporting period.

Activity 1F: Prepare final report.
ACCOMPLISHMENTS: We prepared a progress report detailing activities conducted in the Gustavus and Berners Bay areas, to satisfy ADF\&G Federal Aid reporting requirements.

Activity 1G: Synthesize population-specific demographic data.

Accomplishments: We synthesized annual and seasonal survival (adult female and calf) and reproductive (calving, twinning and fecundity) rates for radio-marked adult female moose and associated calves monitored in Gustavus (adult females, 2003-2021, $\mathrm{n}=121,620$ moose years; calves, 2004-2021, $\mathrm{n}=440$) and Berners Bay (adult females, 2006-2021, $\mathrm{n}=103,458$ moose years; calves, 2007-2021, $\mathrm{n}=299$). We also estimated reproductive rates for each population (Gustavus, 2004-2021, calving $=0.58 \pm 0.02$, twinning $=0.37 \pm 0.02$, fecundity $=0.80 \pm 0.02, \mathrm{n}=$ 575; Berners Bay, 2007-2021, calving $=0.55 \pm 0.03$, twinning $=0.47 \pm 0.03$, fecundity $=$ $0.81 \pm 0.02, \mathrm{n}=394)$. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

ACTIVITY 1H: Develop a moose population model for management applications

ACCOMPLISHMENTS: We developed and validated a 2 -stage matrix population model parameterized using vital rate data summarized in Objective 2a. In 2015, the model was extended to estimate the proportion of legal (spike/fork and 3-brow tine/50 inch) and nonlegal bulls in the population. In 2019-2020, in collaboration with Dan Eacker (ADFG/DWC, Douglas), we developed an integrated population model. This model builds on the existing matrix population model and involves further synthesis and explicit integration of multiple sources of demographic data. This model is completed but further computer programming is planned to facilitate use more easily for routine management applications, as well as expand its utility for other regional moose populations. Development of this model represents a promising advance in our ability to monitor moose populations and evaluate routine harvest management scenarios. We successfully accomplished all activities associated with this objective that were planned for this reporting period.

II. SUMMARY OF WORK COMPLETED ON PROJECT TO DATE.

Since 2010, we have captured and handled 241 moose in the Gustavus ($\mathrm{n}=174$) and Berners Bay ($n=67$) study areas. In each area, we have annually conducted aerial surveys to derive population estimates via mark-resight analytical techniques, weather permitting. In addition, we have conducted monthly, and seasonally, monitored survival and reproduction of radio-collared moose in order to derive estimates of survival and fecundity. Vital rate estimates (i.e., survival and reproduction) along with population estimates have enabled development of population models that have been routinely used
to project population trajectories into the future and evaluate harvest scenarios in management and research contexts.

III. SIGNIFICANT DEVELOPMENT REPORTS AND/OR AMENDMENTS.

None.
IV. PUBLICATIONS

None.

V. RECOMMENDATIONS FOR THIS PROJECT

This project is completed however continued data analyses and final reporting is planned for FY22.

Prepared by: Kevin White
Date: 1 September 2021

Table 1. Estimated annual survival for radio-collared adult female moose in Berners Bay and Gustavus, Alaska during 2003-2021. "At Risk" sample sizes reflect maximum number of animals monitored during the period of interest. Staggered-entry statistical design includes animals that were not monitored the entire year for annual estimates.

Table 2. Estimated annual survival for calves associated with radio-collared adult female moose in Berners Bay and Gustavus, Alaska during 2003-2021. "At Risk" sample sizes reflect maximum number of animals monitored during the period of interest. Staggered-entry statistical design includes animals that were not monitored the entire year for annual estimates.

