Palmer Project Aquatic Studies, 2024

by Dylan Krull

March 2025

Alaska Department of Fish and Game

Habitat Section

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by Habitat Section and the Divisions of Sport Fish and Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted			
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
nanometer	nm	east	E	alternate hypothesis	H_A
		north	N	base of natural logarithm	e
Weights and measures (English)		south	S	catch per unit effort	CPUE
cubic feet per second	ft ³ /s	west	W	coefficient of variation	CV
foot	ft	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
gallon	gal	corporate suffixes:		confidence interval	CI
inch	in	Company	Co.	correlation coefficient	
mile	mi	Corporation	Corp.	(multiple)	R
nautical mile	nmi	Incorporated	Inc.	correlation coefficient	
ounce	oz	Limited	Ltd.	(simple)	r
pound	lb	District of Columbia	D.C.	covariance	cov
quart	qt	et alii (and others)	et al.	degree (angular)	0
yard	yd	et cetera (and so forth)	etc.	degrees of freedom	df
yara	yu	exempli gratia		expected value	E
Time and temperature		(for example)	e.g.	greater than	>
day	d	Federal Information	o.B.	greater than or equal to	≥
degrees Celsius	°C	Code	FIC	harvest per unit effort	HPUE
degrees Fahrenheit	°F	id est (that is)	i.e.	less than	< <
degrees kelvin	K	latitude or longitude	lat. or long.	less than or equal to	<u></u>
hour	h	monetary symbols	ide. of fong.	logarithm (natural)	in
minute	min	(U.S.)	\$,¢	logarithm (base 10)	log
second	S	months (tables and	Ψ, γ	logarithm (specify base)	log _{2.} etc.
second	3	figures): first three		minute (angular)	10g ₂ , etc.
Physics and chemistry		letters	Jan,,Dec	not detected	N
all atomic symbols		registered trademark	®	no data	ND
· · · · · · · · · · · · · · · · · · ·	AC	trademark	тм		NS
alternating current	AC A	United States		not significant null hypothesis	H _O
ampere calorie	cal	(adjective)	U.S.	* *	%
	DC	United States of	0.5.	percent	70 P
direct current		America (noun)	USA	probability	Ρ
hertz	Hz	U.S.C.	United States	probability of a type I error	
horsepower	hp	0.5.0.	Code	(rejection of the null	
hydrogen ion activity	pН	U.S. state	use two-letter	hypothesis when true)	α
(negative log of)	1 777	O.S. state	abbreviations	probability of a type II error	
kilowatt	kW		(e.g., AK, WA)	(acceptance of the null	0
Kilopascal	kPa		(-181,,)	hypothesis when false)	β
Nephelometric Turbidity Unit	NTU			second (angular)	
parts per million	ppm			standard deviation	SD
parts per thousand	ppt,			standard error	SE
_	‰			variance	
volts	V			population	Var
watts	W			sample	var

TECHNICAL REPORT NO. 25-07

PALMER PROJECT AQUATIC STUDIES, 2024

Ву

Dylan Krull

Alaska Department of Fish and Game Habitat Section, Region I P.O. Box 110024, Juneau, Alaska, 99811

March 2025

This investigation was fully financed by Constantine Mining, LLC.

Cover: Upper Sarah Creek sample site, photo taken from a helicopter, June 4, 2024.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Habitat Section P.O. Box 110024, Juneau, Alaska, USA

This document should be cited as:

Krull, D. 2025. Palmer Project aquatic studies, 2024. Alaska Department of Fish and Game, Technical Report No. 25-07, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Habitat Section, P.O. Box 110024, Juneau, Alaska 99811 (907) 465-4105

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	I
LIST OF TABLES	II
LIST OF FIGURES	III
LIST OF APPENDICES	IV
ACKNOWLEDGEMENTS	V
EXECUTIVE SUMMARY	1
INTRODUCTION	2
Purpose	2
Study Areas	
Lower Glacier Creek Site	7
Middle Glacier Creek Site	
Lower Sarah Creek Site	
Upper Sarah Creek SitePlateau Creek Site	
Aquatic Studies	
METHODS	
Water Quality	16
Periphyton: Chlorophyll Density and Composition	
Benthic Macroinvertebrate Density and Community Composition	
Resident Fish Condition	
Resident Fish Element Concentrations	
Sediment Element Concentrations	20
RESULTS	21
Lower Glacier Creek Site	21
Middle Glacier Creek Site	25
Lower Sarah Creek Site	29
Upper Sarah Creek Site	33
Plateau Creek Site	37
Comparisons Among Sites	41
REFERENCES CITED	46

LIST OF TABLES

Fable		Page
1.	2024 Lower Glacier Creek waypoints.	7
2.	2024 Middle Glacier Creek waypoints	8
3.	Lower Sarah Creek waypoints.	
4.	Upper Sarah Creek waypoints.	
5.	Plateau Creek waypoints.	
6.	2024 sediment tests, analytes, and methods.	
7.	Lower Glacier Creek water quality data.	
8.	Lower Glacier Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities.	
9.	Lower Glacier Creek benthic macroinvertebrate data summaries	
10.	Middle Glacier Creek water quality data	
11.	Middle Glacier Creek mean chlorophylls a, b, and c densities	
12.	Middle Glacier Creek benthic macroinvertebrate data summaries	
13.	Lower Sarah Creek water quality data.	
14.	Lower Sarah Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities	
15.	Lower Sarah Creek benthic macroinvertebrate data summaries	
16.	Lower Sarah Creek water quality data.	
17.	Upper Sarah Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities	33
18.	Upper Sarah Creek benthic macroinvertebrate data summaries	
19.	Plateau Creek water quality data.	
20.	Plateau Creek mean chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> densities	
21.	Plateau Creek benthic macroinvertebrate data summaries.	
22.	2024 benthic macroinvertebrate data	
23.	2024 Palmer Project mean fish sample condition	42

LIST OF FIGURES

Figur	e	Page
1.	Palmer Exploration Project area map.	3
2.	Palmer Project sample site map.	
3.	Lower Glacier Creek, looking upstream from lower extent of the sampling reach	
4.	Aerial view of the Middle Glacier Creek sampling site.	
5.	Southern braid, facing downstream.	9
6.	Aerial view of Upper Sarah Creek sample site, facing downstream.	10
7.	Upper extent of sampling reach, facing downstream.	
8.	Plateau Creek and Lower Glacier Creek site map.	12
9.	Lower and Upper Sarah Creek site map.	13
10.	Middle Glacier Creek site map	
11.	Lower Glacier Creek chlorophyll a densities.	
12.	Lower Glacier Creek mean proportions of chlorophylls a, b, and c	
13.	Lower Glacier Creek benthic macroinvertebrate densities.	
14.	Lower Glacier Creek mean benthic macroinvertebrate community compositions	
15.	Lower Glacier Creek whole body Dolly Varden element concentrations.	
16.	Lower Glacier Creek sediment element concentrations.	
17.	Middle Glacier Creek chlorophyll a densities.	
18.	Middle Glacier Creek mean proportions of chlorophylls a, b, and c	
19.	Middle Glacier Creek benthic macroinvertebrate densities	
20.	Middle Glacier Creek mean benthic macroinvertebrate community compositions	
21.	Middle Glacier Creek whole body Dolly Varden element concentrations.	
22.	Middle Glacier Creek sediment element concentrations.	
23.	Lower Sarah Creek chlorophyll a densities.	
24.	Lower Sarah Creek mean proportions of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i>	
25.	Lower Sarah Creek benthic macroinvertebrate densities.	
26.	Lower Sarah Creek mean benthic macroinvertebrate community compositions.	
27.	Lower Sarah Creek whole body fish element concentrations	
28.	Lower Sarah Creek sediment element concentrations.	
29.	Upper Sarah Creek chlorophyll a densities.	33
30.	Upper Sarah Creek mean proportions of chlorophylls a, b, and c	33
31.	Upper Sarah Creek benthic macroinvertebrate densities.	
32.	Upper Sarah Creek mean benthic macroinvertebrate community compositions.	
33.	Upper Sarah Creek whole body Dolly Varden element concentrations.	
34.	Upper Sarah Creek sediment element concentrations. Plateau Creek chlorophyll <i>a</i> densities.	
35.	Plateau Creek mean proportions of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> .	
36. 37.	Plateau Creek benthic macroinvertebrate densities.	
37. 38.	Plateau Creek mean benthic macroinvertebrate community compositions.	
36. 39.	Plateau Creek whole body fish element concentrations.	
40.	Plateau Creek sediment element concentrations.	
40. 41.	Mean Palmer Project chlorophyll-a densities.	
42.	Palmer Project Plateau Creek mean benthic macroinvertebrate community compositions	
44.	Palmer Project whole body fish element concentrations, 2024.	
45.	Palmer Project sediment element concentrations, 2024.	
	2 miles 2 region beaming to more continued by 202 in miles	13

LIST OF APPENDICES

APPENDIX A: WATER QUALITY DATA

- A.1. Lower Glacier Creek water quality, 2016–2024.
- A.2. Middle Glacier Creek water quality, 2016–2024.
- A.3. Lower Sarah Creek water quality data, 2024.
- A.4. Upper Sarah Creek water quality data, 2024.
- A.5. Plateau Creek water quality data, 2024.

APPENDIX B: CHLOROPHYLL DATA

- B.1. Lower Glacier Creek chlorophylls a, b, and c densities, 2016–2024.
- B.2. Middle Glacier Creek chlorophylls a, b, and c densities, 2016–2024.
- B.3. Lower Sarah Creek chlorophylls *a, b,* and *c* densities, 2024.
- B.4. Upper Sarah Creek chlorophylls *a, b,* and *c* densities, 2024.
- B.5. Plateau Creek chlorophylls a, b, and c densities, 2024.

APPENDIX C: BENTHIC MACROINVERTEBRATE DATA

- C.1. Lower Glacier Creek benthic macroinvertebrate sample data, 2024.
- C.2. Lower Glacier Creek benthic macroinvertebrate data summaries, 2016–2024.
- C.3. Middle Glacier Creek benthic macroinvertebrate sample data, 2024.
- C.4. Middle Glacier Creek benthic macroinvertebrate data summaries, 2016–2024.
- C.5. Lower Sarah Creek benthic macroinvertebrate sample data, 2024.
- C.6. Lower Sarah Creek benthic macroinvertebrate data summaries, 2024.
- C.7. Upper Sarah Creek benthic macroinvertebrate sample data, 2024.
- C.8. Upper Sarah Creek benthic macroinvertebrate data summaries, 2024.
- C.9. Plateau Creek benthic macroinvertebrate sample data, 2024.
- C.10. Plateau Creek benthic macroinvertebrate data summaries, 2024.

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

- D.1. Lower Glacier Creek whole body fish element concentrations, 2016–2024.
- D.2. Middle Glacier Creek whole body fish element concentrations, 2016–2024.
- D.3. Lower Sarah Creek whole body fish element concentrations, 2024.
- D.4. Upper Sarah Creek whole body fish element concentrations, 2024.
- D.5. Plateau Creek whole body fish element concentrations, 2024.
- D.6. 2024 Palmer Project whole body fish laboratory reports.

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

- E.1. Lower Glacier Creek sediment compositions, 2016–2024.
- E.2. Lower Glacier Creek sediment element concentrations, 2016–2024.
- E.3. Middle Glacier Creek sediment compositions, 2016–2024.
- E.4. Middle Glacier Creek sediment element concentrations, 2016–2024.E.5. Lower Sarah Creek sediment compositions, 2024.
- E.6. Lower Sarah Creek sediment element concentrations, 2024.
- E.7. Upper Sarah Creek sediment compositions, 2024.
- E.8. Upper Sarah Creek sediment element concentrations, 2024.
- E.9. Plateau Creek sediment element compositions, 2024.
- E.10. Plateau Creek sediment element concentrations, 2024.
- E.11. 2024 Glacier Creek sediment laboratory reports.

ACKNOWLEDGEMENTS

Constantine Mining, LLC., provided financial support for this project. Camp Manager Darsie Culbeck provided logistical support and former Environmental Manager Merlin Benner provided the available water quality and discharge data. Director of Environment and Sustainability Kris Benusa reviewed the report and provided edits.

Alaska Department of Fish and Game Habitat Section Southeast Regional Supervisor Kate Kanouse collaborated on study design and participated in sample collection with Habitat Biologists Erika King and Jesse Lindgren. Habitat Biologist Claire Delbecq verified data entry of all samples, assisted in periphyton analysis, and identified benthic macroinvertebrates. Fish and Wildlife Technician Ruth Roys sorted benthic macroinvertebrates. Habitat Biologist Greg Albrecht provided quality assurance and control of benthic macroinvertebrate identification and reviewed and edited the report. Habitat Section Operations Manager Dr. Al Ott and Kate Kanouse reviewed and edited the report. Thank you all for your contribution.

EXECUTIVE SUMMARY

Constantine Mining, LLC. (Constantine) began exploratory drilling at the Palmer Exploration Project in 2006, located near Haines in Southeast Alaska, and has identified barite, copper, gold, silver, and zinc deposits within the volcanogenic massive sulfide deposit that may support a hard rock mine. Constantine contracted with the Alaska Department of Fish and Game (ADF&G) Habitat Section to study aquatic resources in Glacier Creek, a glacial water body draining the potential mine area. With Constantine, Habitat Section biologists developed a plan to study periphyton, benthic macroinvertebrates, fish, and sediment at two sites in Glacier Creek (2016–2023) with the goal of documenting baseline aquatic productivity and sediment conditions, which will be useful if Constantine moves forward with a project. In 2024, we added three additional sample sites; one on Plateau Creek (a clear water tributary of Glacier Creek) and two on Sarah Creek (a nearby tributary to the Klehini River), to document conditions in water bodies proximal to the project area.

In 2024, we sampled all sites on June 3–4 and June 19–20. Mean chlorophyll *a* density was similar among Middle Glacier Creek and both Sarah Creek sites, while Plateau Creek had the greatest mean density observed on the Palmer Project. Lower Glacier Creek had the lowest observed chlorophyll *a* density of all sites in 2024, and the second lowest observed at the site.

The 2024 mean benthic macroinvertebrate (BMI) densities varied among sites, with Upper Sarah Creek samples containing the highest density. The BMI communities in Glacier Creek were dominated by Diptera: Chironomidae insects; which are generally fast colonizers, easily adapt to changing habitats, and can exercise more than one feeding strategy (Entrekin et al. 2007). The BMI community composition at both Sarah Creek sites and Plateau Creek contained a larger portion of Ephemeroptera and Plecoptera insects; as expected given the differences in water quality, bedload transport, and other factors contributing to aquatic productivity.

We captured and retained 42 fish throughout the five sites, which were analyzed for whole body concentrations of arsenic, cadmium, copper, lead, mercury, silver, selenium, and zinc. Mean concentrations were within the ranges observed in whole body fish samples collected from previous efforts at the Palmer Project and reference and mineral exploration sites elsewhere in Alaska (Legere and Timothy 2016).

We sampled fine sediment at each site for aluminum, arsenic, cadmium, copper, iron, lead, mercury, selenium, silver, and zinc. Mean element concentrations were generally similar among sites and within the ranges previously observed at the Glacier Creek sites. The cadmium, copper, and zinc concentrations at most sites were near or above the lower threshold for freshwater sediment guidelines suggested by Buchman (2008).

INTRODUCTION

The Palmer Exploration Project is in the Porcupine Mining District about 55 km northwest of Haines by air in the southeastern extent of the Saint Elias Mountains near the U.S./Canada border (Figure 1). At the site, placer gold mining in Glacier Creek and its tributaries occurred during the 20th century. In 1969, local prospector Merrill Palmer discovered base-metal sulfides and barite that initiated exploration drill programs by several different companies in the following years, including Constantine beginning in 2006 (Constantine 2015) which the American Pacific Mining Corp. acquired in 2022.

The Palmer Prospect consists of two primary deposits: the Palmer Deposit on the south wall of the mountainside on the west side of the valley and the AG Deposit at the head of the valley under the Saksaia Glacier (Figure 1). The project is located on the same volcanogenic massive sulfide belt as Greens Creek Mine on Admiralty Island, about 100 air miles south. Constantine has identified barite, copper, gold, silver, and zinc as potential mineable resources (Constantine 2015). From 2014–2018, Constantine constructed a 6.73 km single lane gravel road to support mineral exploration on the mountainside in the Glacier Creek valley while conducting exploration activities which continued through 2024.

Tetra Tech (2013) and ADF&G biologists documented Dolly Varden in Glacier Creek and three tributaries. In 2016, Constantine contracted with the ADF&G Habitat Section to conduct baseline studies in Glacier Creek. Following review of Constantine's water quality data, Habitat biologists developed a study plan to investigate and document aquatic resources in Glacier Creek. Methods and sampling design are similar to aquatic sampling programs at the Greens Creek Mine (Lindgren 2025) and Kensington Gold Mine (Timothy and Kanouse 2014), neighboring underground hard rock mines in Southeast Alaska. The study plan includes sampling periphyton, benthic macroinvertebrates, sediment, and fish—aquatic resources influenced by water and sediment quality through natural processes—to provide baseline information on aquatic productivity in Glacier Creek. We conducted these studies in spring 2016–2024; sampling results from previous years are presented in Kanouse and Legere (2016), Legere and Kanouse (2017–2018), and Krull (2019–2023). In addition, in 2024, we added three new sites in two streams that may be subject to development as part of the project, in Sarah Creek and Plateau Creek; sites Lower and Upper Sarah Creek and Plateau Creek.

PURPOSE

The purpose of this investigation and technical report is to document the baseline condition, abundance, and composition of biological communities and sediments in Glacier Creek and two nearby streams, Sarah and Plateau Creeks, that may be changed by development of the Palmer Project.

-

Matthew Kern, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Glacier Creek investigation trip report; dated 6/26/2014. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

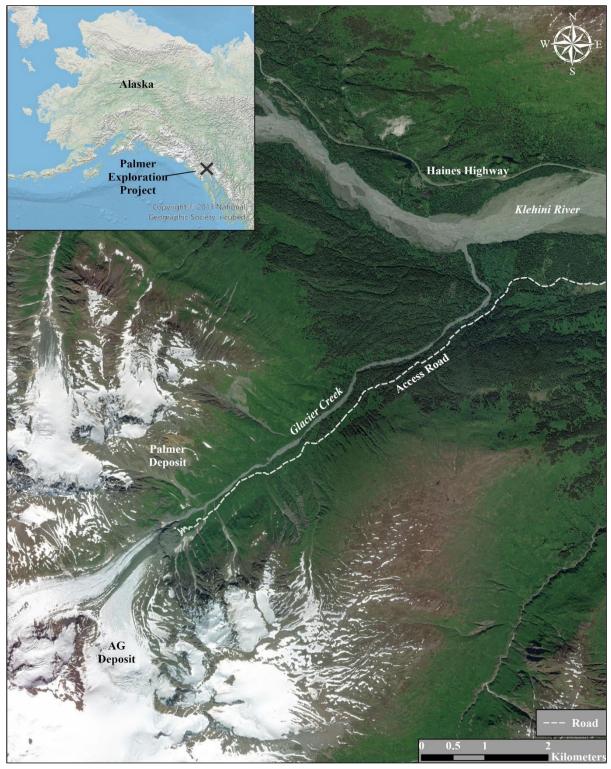


Figure 1.—Palmer Exploration Project area map.

STUDY AREAS

Glacier Creek

Glacier Creek is about 7.5 km long, drains a 39 km² watershed between its headwaters at the Saksaia Glacier and confluence with the Klehini River^b. It contributes about 5% of the total Klehini River drainage area, measured from the former U.S. Geological Survey gage at the Klehini River bridge—about 20 km downstream of the prospect.^c

Continuous discharge data do not exist for Glacier Creek; however, Integral Consulting, Inc.^d estimated mean Glacier Creek discharge between May and September at 150 ft³/s based on the relative size of Glacier Creek and Klehini River drainage areas. Field staff measured discharge opportunistically from 2015–2018 between June and September ranging 57–471 ft³/s, with the lowest discharge measured during September. During winter, spring, and fall of 2019 and 2020, Constantine staff collected discharge measurements, 3.36–71.66 ft³/s, about 2 km upstream of the Middle Glacier Creek sampling site (A. Cairns, former Environmental Manager, Constantine, Vancouver, personal communication).

Constantine's 2008–2014 and 2017–2023 Glacier Creek year-round basic water quality data documents total suspended solids ranging less than 3 mg/L to 2,470 mg/L, turbidity ranging 0.03–2,760 NTU, and pH ranging 6.59–8.33 (DOI 2016; A. Cairns, former Environmental Manager, Constantine, Vancouver, personal communication).

The lower 1 km of Glacier Creek (ADF&G Stream No. 115-32-10250-2077-3151) provides habitat for coho salmon *Oncorhynchus kisutch*, cutthroat trout *O. clarkii*, and Dolly Varden *Salvelinus malma* (Giefer and Graziano 2024). We captured Dolly Varden throughout Glacier Creek while sampling fish from 2016 to 2024 during aquatic biomonitoring; we also captured adult cutthroat trout and one rainbow trout in Lower Glacier Creek, near the Glacier Creek bridge.

Additionally, since 2019 we surveyed Lower Glacier Creek for adult fish presence in fall after water levels drop and clarity increases, observing in total three adult coho salmon within the cataloged reach and several adult Dolly Varden upstream of the Glacier Creek bridge.^e

In 2018, we captured Dolly Varden 0.1 km upstream of the Christmas Creek confluence, a nonglacial tributary located 4.5 km upstream of the Glacier Creek confluence with the Klehini

^b ADF&G Stream No. 115-32-10250-2077; cataloged for coho, chum, Chinook, pink, and sockeye salmon, cutthroat trout, and Dolly Varden.

Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary; dated 2/24/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

Marcia Greenblatt and Alice Conovitz, Integral Consulting, to Darwin Green and Allegra Cairns, Constantine North. Memorandum: Klehini River and Glacier Creek hydrologic data summary–fall 2016 update; dated 12/19/2016. Unpublished document, can be obtained from Constantine North, Inc., 800 W. Pender St. Ste. 320, Vancouver, BC, Canada.

Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: 2024 Glacier Creek Fish Survey; dated 4/4/2025. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

f Previously miscalculated and reported as 0.6 km upstream of the Christmas Creek confluence.

River that supports resident Dolly Varden. Later in 2018, we sampled near the upper extent of Glacier Creek and captured no fish.^g

We completed aquatic biomonitoring sampling at two locations in Glacier Creek: Lower Glacier Creek and Middle Glacier Creek (Figure 2). Site locations have been relatively similar since we began sampling in 2016. Fish sampling reach size varied due to fish abundance.

Sarah Creek

Sarah Creek^h is about 6.4 km long, drains a 10.4 km² watershed between its headwaters at an unnamed glacier east of the Little Jarvis Glacier and flows down a steep south facing slope where it joins the Klehini River floodplain (DOI 2016). While Sarah Creek is glacially fed in part, it runs clearer than neighboring glacial streams. The stream is accessible to anadromous fish for 1.85 km where the channel flows in the historical Klehini River floodplain, the main channel then turns uphill away from the floodplain to a cascade barrier that exceeds 39% gradient for 135 ft.ⁱ Upstream of the barrier, the stream supports resident Dolly Varden for at least 1.7 km; the full upstream extent of resident fish in Sarah Creek has not been investigated. Published water quality and discharge data do not exist for Sarah Creek.

We completed aquatic biomonitoring sampling at two locations in Sarah Creek for the first time in 2024: Lower Sarah Creek and Upper Sarah Creek which are both within the reach accessible by anadromous fish and within the historical Klehini River floodplain (Figure 2).

Plateau Creek

Plateau Creek^j originates from an unnamed mountainside on the east-facing slope of the Glacier Creek valley and flows through a moderate gradient plateau from about 457 m to 365 m elevation over 1.6 km (5.75% grade on average). At around 365 m elevation the gradient steepens to approximately 17% for 0.8 km then maintains 3–5% gradient channel parallel to Glacier Creek for 480 m until its confluence. There is little information about Plateau Creek discharge and water quality; Constantine's consultant Integral Consulting measured streamflow in Plateau Creek near the aquatic biomonitoring site on August 7, 2015 (0.25 ft³/s) and on July 1, 2016 (0.52 ft³/s).^c

For the first time, in 2024 we completed aquatic biomonitoring sampling at one location in the lower reach of Plateau Creek which is accessible by anadromous fish (Figure 2).

Dylan Krull, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Waterfall and Hangover Creeks fish investigations; dated 10/22/2018. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

h ADF&G Stream No. 115-32-10250-2077-3159; cataloged for coho salmon.

ⁱ Gordan Willson-Naranjo, Habitat Biologist, to Jackie Timothy, Southeast Regional Supervisor, Sarah Creek Survey Haines, dated May 5, 2015.

ADF&G Stream No. 115-32-10250-2077-3151-4010; cataloged for coho salmon, cutthroat trout, and Dolly Varden.

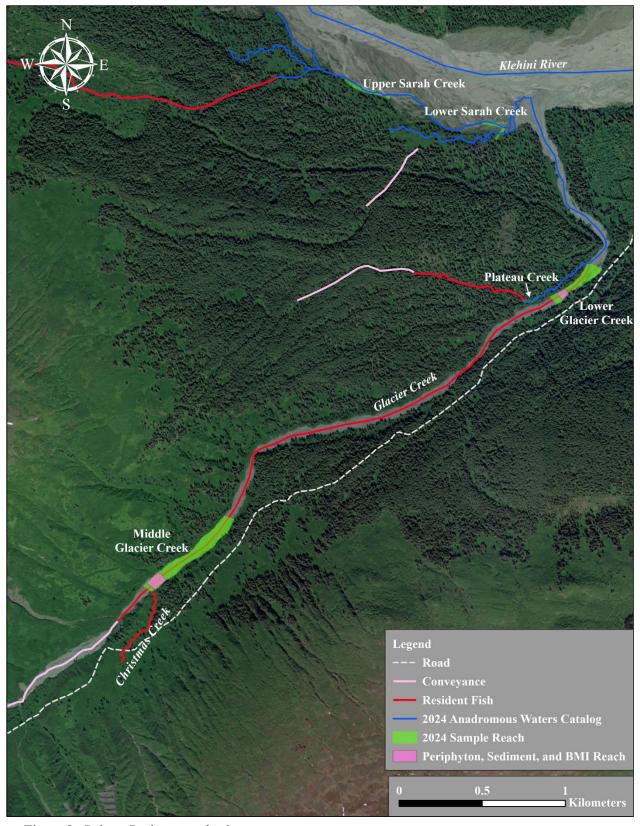


Figure 2.—Palmer Project sample site map.

Lower Glacier Creek Site

The Lower Glacier Creek Site is located at the Glacier Creek bridge near 230 m elevation, about 1.5 km upstream of the Klehini River (Table 1; Figures 3, 8). We accessed the site from the bridge crossing at the end of Porcupine Road.

Table 1.–2024 Lower Glacier Creek way

	Latitude	Longitude
Upper extent	59.4170	-136.3031
Lower extent	59.4187	-136.2982

Lower Glacier Creek is classified as a medium glacial outwash channel, which exhibits high rates of aggradation and scour resulting in active channels that move throughout the floodplain (Paustian 2010). In late 2023, the Department of Natural Resources Division of Forestry installed a bridge over Glacier Creek at the historic bridge location to facilitate the Baby Brown Timber Sale and provide public access.^k Comparing stream characteristics of the Lower Glacier Creek sample site 2016–2024, we observed different main channel courses and channel braids each year. During sampling in 2024, upstream of the bridge most of the flow was confined to a main channel which flowed on the river left side of the floodplain. Downstream of the bridge, the channel split into two braids, with one braid flowing along the river left bank with overhanging alders and the other flowing into the sediment basin excavated during bridge construction and then continued down the middle of the floodplain. Streambed gradient ranges 3–6% and the substrate is composed of cobble, gravel, sand, and silt.

In 2024, we collected periphyton, benthic macroinvertebrate, fish, and sediment samples in a 300 m reach of the dominant channel braid on river right and along the main channel margin upstream of the bridge. Due to improper sample preservation during shipping to Juneau, on June 19, we returned and collected ten periphyton samples and ten fish samples using minnow traps baited with disinfected salmon eggs and a backpack electrofisher.

Figure 3.—Lower Glacier Creek, looking upstream from lower extent of the sampling reach.

Dylan Krull, Habitat Biologist, to Kate Kanouse, Southeast Regional Supervisor, ADF&G Habitat Section. Memorandum: Glacier Creek bridge installation; dated 12/29/2023. Unpublished document, can be obtained from the Southeast Regional Supervisor, ADF&G Habitat Section, 802 3rd St, Douglas, AK.

Samples were shipped without ice packs and not stored in the freezer by the air carrier; two weeks later we resampled all five sites for periphyton and fish samples.

Middle Glacier Creek Site

The Middle Glacier Creek Site is located near 350 m elevation, about 4.5 km upstream of the Klehini River (Table 2; Figures 4, 10). We accessed the site by helicopter.

Table 2.–2024 Middle Glacier Creek waypoints.

	Latitude	Longitude
Upper extent	59.4005	-136.3448
Lower extent	59.4045	-136.3365

Middle Glacier Creek is characterized as a transitional zone between a cirque channel and a medium glacial outwash channel; both classifications are within the glacial outwash process group and contain high sediment loads causing lateral channel migration and stream braiding (Paustian 2010). Streambed gradient ranges 4–8% and the substrate is composed of cobble, gravel, sand, and silt, resulting in large amounts of bedload movement. We observe different main channel courses and channel braids each year at Middle Glacier Creek, a common trait in both channel classifications glacial outwash channels. In 2024, the main channel flowed largely in the center of the floodplain and then to the river left side of the floodplain. Christmas Creek flowed into the main channel after flowing about 50 m in the Glacier Creek floodplain.

On June 4, 2024, we collected periphyton, benthic macroinvertebrate, and sediment samples in channel braids and along the main channel margin near the Christmas Creek confluence and electrofished throughout the 648 m sample reach from the Christmas Creek confluence downstream; a much larger site than other years due to a lack of pools, back eddies and fish habitat features. On June 19, we returned and collected ten periphyton samples and used a backpack electrofisher to collect fish samples.

Figure 4.—Aerial view of the Middle Glacier Creek sampling site.

Lower Sarah Creek Site

The Lower Sarah Creek Site is located about 50 m upstream of the confluence with the Klehini River and Glacier Creek^m (Table 3; Figures 5, 9). We accessed the site by helicopter.

Table	3	-Lower	Sarah	Creek	waypoints.

	Latitude	Longitude
Upper Extent	59.4180	-136.3005
Lower Extent	59.4184	-136.2997

Lower Sarah Creek is characterized as a small floodplain channel (Paustian 2010). Within the sample reach, stream gradients range 1–2 % and the substrate is composed of gravel underlain with sand. While on site, we observed Glacier Creek flowing to the west of the large gravel delta where the creek flows into the Klehini River floodplain, intercepting Sarah Creek just downstream of our sampling reach.

At the upper extent of the sample reach, an unnamed streamⁿ enters Sarah Creek from the south. This stream contains a beaver pond complex just upstream of the confluence with Sarah Creek. Based on potential mine development plans, it is possible that the headwaters of this stream will be near infrastructure (Constantine North Inc. 2024). About 500 ft upstream of the sampling reach, Sarah Creek braids into two distinct channels; the southern channel intercepts Stream No. 115-32-10250-2077-3155, where we focused our sampling efforts.

We collected benthic macroinvertebrate and sediment samples on June 4, 2024, all within the southern braid. On June 19, we returned and collected ten periphyton samples and set minnow traps baited with disinfected salmon eggs, focusing on the southern braid and within Stream No. 115-32-10250-2077-3155. We returned the next day, pulled the traps and attempted to collect the remaining samples using a backpack electrofisher; we were unable to capture ten fish within the desired size range.

Figure 5.-Southern braid, facing downstream.

9

In some years Glacier Creek flows into Sarah Creek before both joining the Klehini River; other years they flow into the Klehini River individually.

ⁿ ADF&G Stream No. 115-32-10250-2077-3155; cataloged for coho salmon.

Upper Sarah Creek Site

The Upper Sarah Creek Site is located about 800 m upstream of the Lower Sarah Creek site near the portion of the stream that flows from the forest to the Klehini River floodplain (Table 4; Figures 6, 9). We accessed the site by helicopter.

Table 4.-Upper Sarah Creek waypoints.

	Latitude	Longitude
Upper Extent	59.4283	-136.3261
Lower Extent	59.4277	-136.3210

Like the Lower Sarah Creek Site, the Upper Sarah Creek Site is characterized as a small floodplain channel (Paustian 2010). Within the sample reach, stream gradients were 1–3% and the substrate was composed of gravel underlain with sand. We chose this site due to the proximity of the Lower Sarah Creek site and its location above potential project development influences, and its similarity in reach characteristics to the Lower Sarah Creek Site.

We collected benthic macroinvertebrate and sediment samples on June 4, 2024. On June 19, we returned and collected ten periphyton samples, deployed minnow traps, and collected remaining fish samples the following day and captured remaining fish samples using a backpack electrofisher.

Figure 6.-Aerial view of Upper Sarah Creek sample site, facing downstream.

Plateau Creek Site

The Plateau Creek Site is located about 450 m upstream of the confluence with the Glacier Creek (Table 5; Figures 7, 8). We accessed the site from the Glacier Creek bridge.

Table 5.—Plateau Creek waypoints.

	Latitude	Longitude
Upper Extent	59.4176	-136.3120
Lower Extent	59.4177	-136.3025

The sampling site on Plateau Creek is classified as a small flood plain channel; the reach is situated at the infliction point between the small flood plain channel and a small moderate gradient channel (Paustian 2010). Within the sample reach, stream gradients were 2–5% and the substrate was composed of gravel underlain with sand; wood was common throughout the reach and resulted in the formation of pools and riffles. We sampled this reach due to its stability on the landscape; about 40 m from the upstream extent of the reach, the stream flows within about 5 m from the active Glacier Creek floodplain which may erode and abandon the downstream channel.

We completed aquatic biomonitoring sampling at both sites on June 4, 2024. On June 19, we returned and collected ten periphyton samples and captured fish with a backpack electrofisher. All periphyton, benthic macroinvertebrate, and sediment samples we collected were within the upper 40 m of the sampling reach.

Figure 7.-Upper extent of sampling reach, facing downstream.

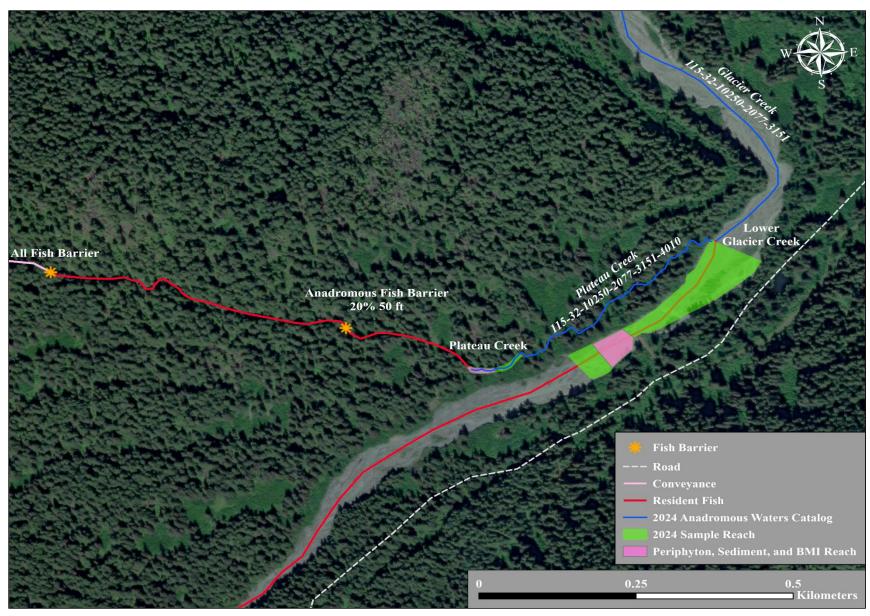


Figure 8.-Lower Glacier Creek and Plateau Creek sites map.

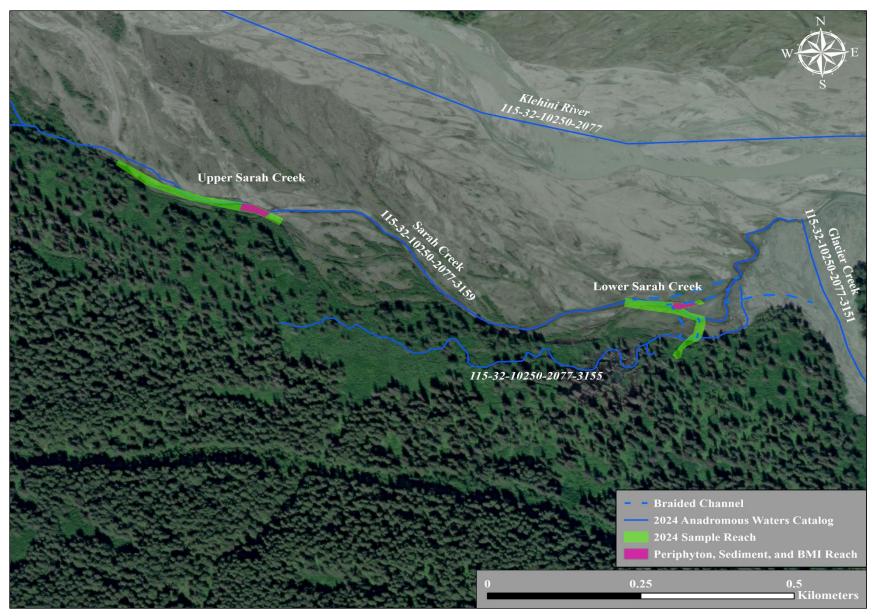


Figure 9.-Lower and Upper Sarah Creek sites map.

Figure 10.-Middle Glacier Creek Site map.

AQUATIC STUDIES

We completed the following studies at Lower Glacier Creek, Middle Glacier Creek, Lower Sarah Creek, Upper Sarah Creek, and Plateau Creek.

Chlorophyll Density and Composition

Periphyton is composed of primary producing organisms, such as algae, cyanobacteria, heterotrophic microbes, and detritus attached to the submerged surfaces of aquatic ecosystems. Algal density and community structure are influenced by water and sediment characteristics through physical, chemical, and biological factors, and disturbances that change throughout the year (Barbour et al. 1999).

Periphyton was collected at all sites to estimate algal density and community composition at each site, using concentrations of chlorophylls a, b, and c. The concentration of chlorophyll-a (Chl-a) pigment in periphyton samples provides an estimate of active algal biomass (density), while concentrations of chlorophyll-b (Chl-b) and chlorophyll-c (Chl-c) pigments estimate the composition of algal organisms present, such as green algae that produce Chl-b, and diatoms and brown algae that produce Chl-c. The chlorophyll data are used to document baseline primary productivity (e.g., live algal biomass).

Benthic Macroinvertebrate Density and Community Composition

Benthic macroinvertebrates classified in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT taxa, have complex life cycles and include genera sensitive to changes in water and sediment quality (Barbour et al. 1999). These organisms are secondary producers, feed on periphyton and other macroinvertebrates, and provide a food source for fish.

Fish Condition and Whole Body Element Concentrations

Element bioavailability and bioaccumulation depends on physical and chemical factors and interactions among biological communities (Tchounwou et al. 2012). Resident fish samples were analyzed for whole body concentrations of silver (Ag), arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) to document baseline concentrations and variability. These elements were selected based on Constantine's Glacier Creek water sample data and potential target elements identified in the ore body.

Sediment Composition and Element Concentrations

Sediment element concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development/disturbance (Tchounwou et al. 2012). Subsequently, sediment element concentrations influence aquatic productivity, and heavy metals in sediments can decrease BMI taxa richness and alter the composition of BMI communities (Qu et al. 2010). Fine sediments were sampled at all sample sites for total concentrations of Ag, aluminum (Al), As, Cd, Cu, iron (Fe), Hg, Pb, Se, and Zn to document baseline conditions and variability. These elements were selected based on Constantine's Glacier Creek water sample data and potential target elements identified in the ore body.

METHODS

We review data sets annually to ensure accuracy and consistency with modifications to methods; corrections and updates are reported in the document and appendices. The most recent technical report presents the current data sets and should be used to analyze data from previous years.

WATER QUALITY

Basic water quality data were collected with a YSI Pro 2030 and a Hach 2100P Portable Turbidimeter; both instruments were calibrated per the manufacturer's instructions prior to sampling. Data are provided in Appendix A.

PERIPHYTON: CHLOROPHYLL DENSITY AND COMPOSITION

Sample Collection and Analysis

Sampling methods are adapted from Barbour et al. (1999). Ten smooth, flat, undisturbed, and perennially wetted rocks were collected from submerged cobble in riffle habitats in less than 0.45 m water depth at each sample site, and submerged in the creek in the same orientation they were collected. To collect a sample from each rock, a 5×5 cm square of high-density foam was held on the sample area; the area around the foam was scrubbed with a toothbrush to remove algae and other organisms outside the sample area. The rock was rinsed by submerging it in the stream while holding the foam in place; the toothbrush also was rinsed in the stream, and between samples.

A 47 mm diameter Type A/E 1 µm glass fiber filter was placed into a Nalgene® filter receptacle attached to a vacuum pump with a gauge. The foam square was removed and the underside of the foam and the sample area were gently scrubbed in a circular pattern with the toothbrush into the filter receptacle. Stream water in a wash bottle was used to rinse loosened periphyton from the foam, sample area of the rock, toothbrush, and the inside of the filter receptacle onto the filter. The toothbrush was rinsed inside the receptacle, and the sample area was scrubbed a second time and the rinse cycle was repeated. With most of the water pumped through the filter, maintaining pressure less than 34 kPa, a few drops° of saturated magnesium carbonate solution was added to the filter before the sample was pumped dry. The glass fiber filter was removed from the receptacle, folded in half with the sample inside, and wrapped in a white coffee filter for additional moisture absorption. The samples were placed in a sealed, labeled plastic bag with desiccant and stored in a light-proof cooler containing frozen icepacks during transportation; samples were stored in a -20°C freezer in the ADF&G Douglas laboratory until processing.^q

U.S. Environmental Protection Agency (EPA; 1997) protocol was followed for chlorophyll extraction and measurement, determining instrument and estimated detection limits, and data analysis. Samples were removed from the freezer, cut into small pieces, and placed into individual 15 mL screw cap centrifuge tubes containing 10 mL of 90% buffered acetone. The centrifuge tubes were capped and shaken to ensure complete submersion of the sample. Secured in a vial rack

^o This measurement is not exact as the amount of water and MgCO₃ used to create a saturated solution varies and does not affect sample integrity; supernatant solution was used to avoid MgCO₃ solids.

P To prevent acidification and conversion of chlorophyll to phaeophytin.

^q Periphyton and fish samples collected on June 3–4 were accidently shipped without ice packs and were discarded, resulting in the need to return to the site on June 19–20.

^r Deviations from EPA (1997) include sample storage longer than 3.5 weeks, and cutting sample filters to reduce acetone exposure for laboratory staff (as opposed to homogenization).

covered with aluminum foil, to reduce the potential for light exposure, the samples were stored in a refrigerator for 12–24 hours to allow for saturation and chlorophyll extraction.

In a dimly-lit laboratory, we removed the samples from the refrigerator and centrifuged for 20 min at 500 relative centrifugal force. Prior to sample measurement, two cuvettes containing 90% buffered acetone were placed into a Shimadzu UV-1800 spectrophotometer to calibrate absorbance of the solvent at wavelengths 664 nm, 647 nm, 630 nm, and 750 nm. Each sample supernatant was decanted into an individual cuvette and absorbance was measured at each wavelength. Each sample was treated with $80~\mu L$ of 0.1~N hydrochloric acid for 90 seconds to convert the chlorophyll to phaeophytin, and absorbance was measured at wavelengths 665 nm and 750 nm. To minimize stray light and improve resolution, sample cuvettes were cleaned with a nonabrasive wipe prior to placement in the spectrophotometer.

Trichromatic equations were used to estimate Chl-a, Chl-b, and Chl-c concentrations, correcting for turbidity using the 750 nm absorbance value (APHA 2012, EPA 1997). Chl-a concentrations were corrected when phaeophytin was detected. When Chl-a was not detected in a sample, the concentration is reported as the spectrophotometer estimated detection limits and the values for Chl-b or Chl-c are excluded. When Chl-a exceeds the upper detection limit, the value is reported at the upper detection limit and the Chl-b or Chl-c are reported as calculated. The 2024 estimated detection limits for Chl-a concentration were 0.22 mg/m² and 27.37 mg/m². Additional information on periphyton methods and calculations can be found in Bradley (2017).

Data Presentation

For each site and by year, mean densities of Chl-a, Chl-b, and Chl-c are presented in a table. Chl-a sample densities and mean proportions of Chl-a, Chl-b, and Chl-c are presented in figures. A comparison of mean densities of Chl-a among sites is also presented in a figure. The 2016–2024 sample data are provided in Appendix B.

BENTHIC MACROINVERTEBRATE DENSITY AND COMMUNITY COMPOSITION

Sample Collection and Analysis

Six BMI samples were collected from each site using a Surber stream bottom sampler in riffles and runs with gravel and cobble substrate and varying flow velocities—habitats that support greater BMI densities and taxonomic richness (Barbour et al. 1999). Other habitat types (e.g., pools) were excluded to reduce data variability.

The Surber stream bottom sampler has a 0.093 m² sample area and material is captured in a 200 mL cod end, constructed with 300 µm mesh net. After securing the frame on the streambed with the opening facing upstream, rocks within the sample area were scoured with a scrub brush; gravel, sand, and silt were disturbed to about 10 cm depth to dislodge macroinvertebrates into the net. If the contents of the sample exceeded the capacity of the cod end, the sample was discarded and repeated at a new location. The net was rinsed in the stream to ensure all organisms drifted into the cod end, and each sample was transferred from the cod end to a labeled 500 mL plastic bottle. Samples were preserved in 95% ethanol at a ratio of three parts ethanol to one part sample.

We used an elutriator system with a 300 µm sieve to sort macroinvertebrates from debris^s and identified organisms to the lowest practical taxonomic level^t using Merritt and Cummins (1996) and Stewart and Oswood (2006). For quality control, other staff verifyied benthic macroinvertebrate enumeration for three sample results (more than 10% of the total number of samples).

The BMI density (per m²) was calculated for each sample by dividing the number of macroinvertebrates by 0.093 m²—the Surber sampling area. Mean density was estimated for each site by calculating the mean density among the six samples. Taxa richness is reported as the number of taxonomic groups identified to the lowest practical level; terrestrial^u organisms were excluded from all calculations.

Data Presentation

For each site and by year, a table is presented summarizing mean BMI density, total taxa, total EPT taxa, percent EPT insects, and percent Chironomidae insects. BMI densities and community composition are illustrated in figures and BMI density and taxa richness data comparisons among sites are also presented. The 2024 sample data and the 2016–2024 data summaries are provided in Appendix C.

RESIDENT FISH CONDITION

Age, sex, season, maturation, diet, stomach contents, fat reserve, and muscular development affect fish condition. Length and weight data were used to assess fish condition—an index of fish health.

Sample Collection and Analysis

Wearing nitrile gloves, we recorded sample fish FL to the nearest 1 mm and weight to the nearest 0.1 g. Fulton's condition factor (K) was calculated using the equation given in Anderson and Neumann (1996), where the weight (W) of each fish is divided by the cubed length (L), and the product multiplied by 100,000:

$$K = \frac{W}{I^3} \times 100,000$$

Data Presentation

For each site the mean fish condition factor of fish samples are presented and compared among sites; 2016–2024 data are provided in Appendix D.

Gordon Willson-Naranjo and Greg Albrecht, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Division of Habitat. Memorandum: Benthic macroinvertebrate elutriation trials amendment; dated 12/17/2013. Unpublished document can be obtained from the ADF&G Habitat Section, 802 3rd St, Douglas, AK

^t Insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera to genus, except nonbiting midges to family Chironomidae, and all others to class or order. Damaged and degraded organisms that cannot be identified are not reported.

^u Including adult terrestrial insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera.

RESIDENT FISH ELEMENT CONCENTRATIONS

Sample Collection and Analysis

Fish were collected using a Smithroot LR-24 backpack electrofisher. V,W The target size range for sample retention of whole-body fish was 85–130 mm FL, similar to other methods used in Southeast Alaska (Timothy and Kanouse 2014, Legere and Timothy 2016, Lindgren 2025). A 85 mm fish provides the minimum weight requirement for laboratory testing, while a 130 mm fish is 2–3 years old and young enough to reasonably conclude it is resident due to sampling timing and location—about 60 km upriver from Chilkat Inlet.

Due to general scarcity of fish at both Glacier Creek sample sites, all fish captured were retained as samples regardless of size between 2016 and 2019; the sampling reach extent also was contingent on capture efforts each year. In 2020, we discontinued submitting composite samples of two smaller fish due to dilution needed to process samples at the lab resulting in greater method reporting limits. In some years, we retained larger fish to obtain a minimum of five samples per site.

Wearing nitrile gloves, each fish was placed in an individually labeled plastic bag. During transport, samples were stored in a cooler with frozen icepacks and in a freezer while onsite. At the ADF&G Douglas laboratory, FL and weight were measured in the sample bags, correcting for bag weight. Samples were stored in a -20°C freezer in the lab until shipped to the lab for analysis.

Samples were shipped to the Alaska Department of Environmental Conservation Environmental Health Laboratory in Anchorage, AK, in a cooler with frozen icepacks via overnight freight, maintaining written chain of custody documentation.^x The lab measured total concentrations of Ag, As, Cd, Cu, Hg, Pb, Se, and Zn in each sample on a wet-weight basis, following EPA (1998) method 7473 for Hg, American Public Health Association (1992) method 2540 G for solids, and EPA (1998) method 6020A^y for the other elements. Wet-weight data was converted to dry-weight basis by dividing by precent solids and divided by 100:

Dry weight = wet weight / (precent solids/100)

The laboratory provided Tier IV quality control information including results for sample duplicates, matrix spikes, standard reference materials, and blanks.

Data Presentation

For each site and by year, fish whole body element concentrations are presented in a figure; comparisons of element concentrations data among sites are also presented. A table with the raw data, presenting the mean value for duplicate sample results and 2024 laboratory report are provided in Appendix D.

To avoid misrepresenting sample results below method reporting limits as whole body element concentrations data, element concentrations undetected are illustrated as an empty circle (°) at the method reporting limit, while measured element concentrations are illustrated as a solid circle (•).

19

v In 2016 and 2019, baited minnow traps also were used to capture fish in Lower Glacier Creek.

In 2017, 2018, 2020, and 2024 only six samples were retained from Middle Glacier Creek; in 2022 only one sample; in 2021 and 2023 only five samples and were retained due to scarcity of fish.

^x In previous years, we sent samples to ALS in Kelso, WA which used EPA (2002) method 1631E for Hg.

^y In 2016, 2018, and 2019, the same lab used EPA method 200.8 (EPA 1994).

SEDIMENT ELEMENT CONCENTRATIONS

Sample Collection and Analysis

Wearing nitrile gloves, five samples of submerged sand and silt were collected within actively flowing channels. For each sample, the top 4 cm of sediment was retained in glass jars provided by the laboratory for element analyses and plastic bags for particle size analyses. Samples were stored in a cooler with frozen icepacks in the field and in a camp refrigerator. On June 26, 2024, Constantine staff transported the sediment samples in coolers with ice packs via a courier to ALS Environmental in Whitehorse, Yukon.

ALS Environmental measured total Ag, Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn concentrations on a dry-weight basis using methods listed in Table 6.^z The laboratory provided quality control results for laboratory controls and blanks. Total organic carbon and acid volatile sulfide were not analyzed in 2024, which was a laboratory mistake.

Table 6.–2024 sediment tests, analytes, and methods.

Test Description	Analyte	Method
Particle size distribution	Particle size determination	ASTM D6913-17 (mod)/SSIR-51 Method 3.2.1
Mercury in soil by CVAAS	Hg	EPA 200.2 / 1631 Appendix (mod)
Metals in soil by CRC ICPMS	Ag, Al, As, Cd, Cu, Fe, Pb, Se, and Zn	EPA 6020B (mod)

Data Presentation

For each site and by year, sediment element concentrations data are presented in a figure; mean values are reported when sample duplicate data are available. Consistent with the whole body fish element concentration data presentations, sediment element concentrations undetected are illustrated as an empty circle (°) at the method reporting limit and a solid circle (•) for measured element concentrations.

The data are compared with the threshold effects concentrations (TEC) and the probable effects concentrations (PEC) for inorganics in freshwater sediment guidelines developed by the National Oceanic and Atmospheric Administration (Buchman 2008). The guidelines are based on results of controlled laboratory bioassays, where element concentrations below the TECs rarely affect aquatic life survival and growth, and element concentrations above the PECs can affect aquatic life survival and growth.

Sediment element concentration data are also compared among sites and presented as a figure. Appendix E contains the 2016–2024 composition and raw element data in a table and the 2024 laboratory reports.

_

The 2016 Glacier Creek sediment samples were processed by an ALS Environmental lab in Kelso, WA. In 2017—2024, Constantine sent the sediment samples to a different ALS lab in Whitehorse; though methods used by each lab were different, the results are comparable. The parameters analyzed were different between labs; data comparisons between years are presented where applicable.

RESULTS

LOWER GLACIER CREEK SITE

We sampled Lower Glacier Creek on June 3, 2024, and collected BMI samples and measured basic water quality at 1740 hours (Table 7). We collected periphyton and fish samples on June 19, 2024.

Table 7.-Lower Glacier Creek water quality data.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/3/2024	6.1	10.6	238.6	29.8	ND

Periphyton: Chlorophyll Density and Composition

The Lower Glacier Creek mean Chl-a density was 0.50 mg/m², the second lowest mean density recorded at this site (Table 8; Figure 11). The samples contained about 87% Chl-a, 13% Chl-c, and 0% Chl-b (Figure 12). Chl-b was not detected in any samples.

Table 8.–Lower Glacier Creek mean chlorophylls *a*, *b*, and *c* densities.

Sample Date	Chl- $a \text{ (mg/m}^2\text{)}$	Chl-b (mg/m ²)	Chl- c (mg/m ²)
6/7/2016	2.27 ± 1.07	0.00	0.35
6/8/2017	1.73 ± 0.89	0.00	0.26
5/30/2018	1.25 ± 1.09	0.02	0.24
6/6/2019	0.43 ± 0.56	0.01	0.04
6/3/2020	3.91 ± 3.03	0.00	0.47
6/16/2021	0.77 ± 0.83	0.02	0.24
6/13/2022	1.85 ± 1.63	0.00	0.39
6/7/2023	5.51 ± 1.75	0.00	0.69
6/19/2024	0.50 ± 0.55	0.00	0.06

Note: Chl-*a* mean density ± 1 SD.

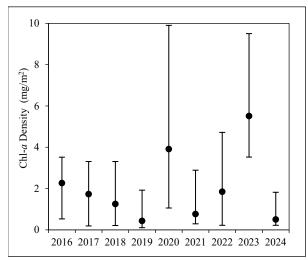
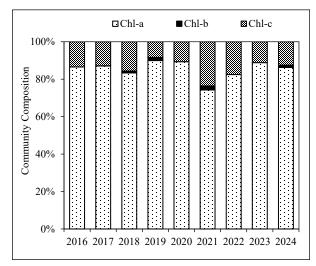
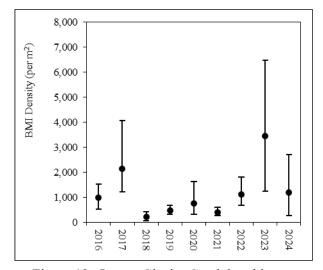


Figure 11.–Lower Glacier Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.




Figure 12.–Lower Glacier Creek mean proportions of chlorophylls *a*, *b*, and *c*.

Benthic Macroinvertebrate Density and Community Composition

Among the 2024 Lower Glacier Creek BMI samples, we identified 27 taxa and estimated mean density at 1,208 BMI/m², of which 30% were EPT insects (Table 9; Figures 13, 14). Like previous years, the dominant taxon was Diptera: Chironomidae, representing 67% of the samples.

Table 9.-Lower Glacier Creek benthic macroinvertebrate data summaries.

	6/7/2016	6/8/2017	5/30/2018	6/6/2019	6/3/2020	6/16/2021	6/13/2022	6/7/2023	6/3/2024
Mean BMI density (per m ²)	995	2,136	217	473	754	396	1,136	3,462	1,208
Total BMI taxa	17	30	16	12	25	26	30	12	27
Number of EPT taxa	9	13	10	5	12	12	14	9	11
Proportion of EPT insects	10%	17%	69%	30%	19%	27%	21%	15%	30%
Proportion of Chironomidae insects	85%	78%	26%	67%	74%	58%	71%	85%	67%

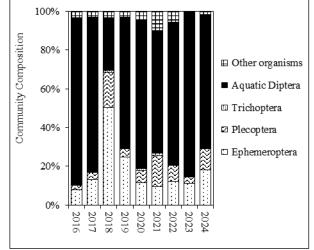


Figure 13.–Lower Glacier Creek benthic macroinvertebrate densities.

Figure 14.–Lower Glacier Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Of the ten individual whole body Dolly Varden (78–136 mm) samples we retained from Lower Glacier Creek in 2024, mean fish condition was 1.2. We captured several juvenile cutthroat trout (40–100 mm FL) throughout our sampling efforts. Among the Lower Glacier Creek whole body Dolly Varden samples in 2024 element concentrations were generally within the ranges of values previously observed (Figure 15).

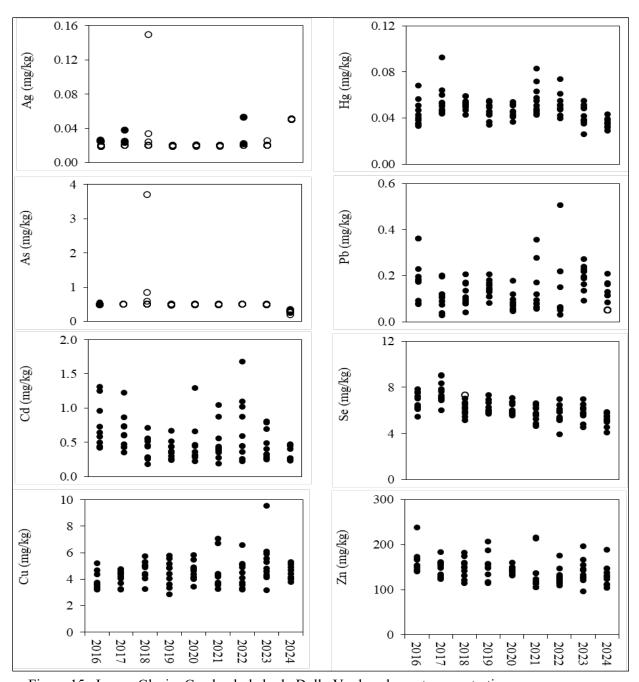


Figure 15.—Lower Glacier Creek whole body Dolly Varden element concentrations. *Note*: Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2024 Lower Glacier Creek sediment samples included particle sizes less than 9.5 mm, with the majority under 1 mm. The predominant elements were Fe and Al, and the 2024 element concentrations generally were like the 2016–2023 results (Figure 16).

We evaluated the 2024 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and—like the 2016–2023 results—we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values.

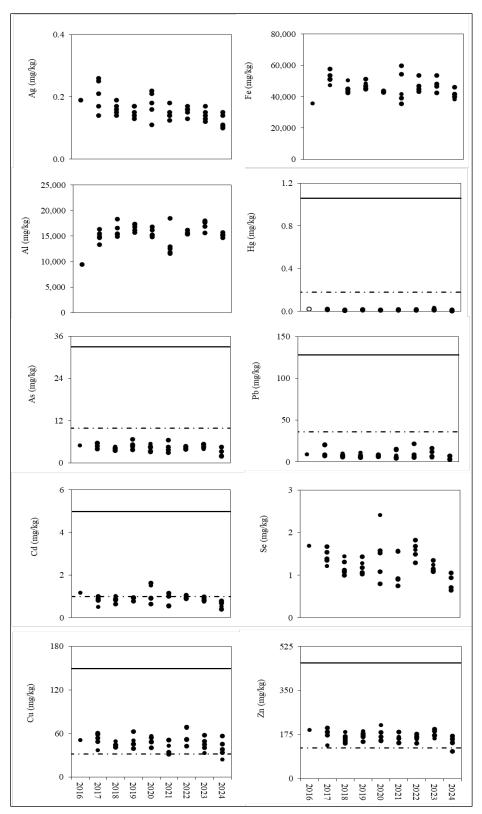


Figure 16.-Lower Glacier Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

MIDDLE GLACIER CREEK SITE

We sampled Middle Glacier Creek on June 3, 2024, and collected BMI samples and measured basic water quality at 1518 hours (Table 10). We collected periphyton and fish samples on June 19, 2024.

Table 10.-Middle Glacier Creek water quality data.

			-		
Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/3/2024	3.9	12.8	ND	31.6	ND

Periphyton: Chlorophyll Density and Composition

The 2024 Middle Glacier Creek mean Chl-a density was 3.70 mg/m², the second highest mean density measured at this site (Table 11; Figure 17). As in previous years, the samples contained about 89% Chl-a and 11% Chl-c; Chl-b was not detected in any samples (Figure 18).

Table 11.–Middle Glacier Creek mean chlorophylls a, b, and c densities.

Sample Date	Chl-a (mg/m ²)	Chl-b (mg/m ²)	Chl- $c \text{ (mg/m}^2\text{)}$
6/8/2016	1.50 ± 1.18	0.00	0.25
6/9/2017	0.81 ± 0.45	0.00	0.10
5/31/2018	1.76 ± 0.79	0.00	0.29
6/7/2019	0.33 ± 0.24	0.01	0.04
6/2/2020	1.19 ± 0.89	0.01	0.16
6/15/2021	2.03 ± 2.38	0.00	0.25
6/14/2022	0.97 ± 0.92	0.00	0.27
6/6/2023	4.26 ± 1.85	0.00	0.58
6/19/2024	3.70 ± 2.81	0.00	0.44

Note: Chl-*a* mean density \pm 1 SD.

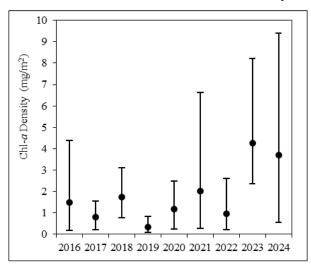


Figure 17.–Middle Glacier Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.

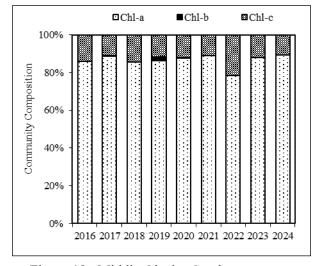


Figure 18.–Middle Glacier Creek mean proportions of chlorophylls *a*, *b*, and *c*.

Benthic Macroinvertebrate Density and Community Composition

Among the 2024 Middle Glacier Creek BMI samples, we identified 12 taxa and estimate mean density at 1,400 BMI/m², of which 8% were EPT insects (Table 12; Figures 19, 20). As in previous years, the dominant taxon was Diptera: Chironomidae, representing 88% of the samples.

Table 12.-Middle Glacier Creek benthic macroinvertebrate data summaries.

	6/8/2016	6/9/2017	5/31/2018	6/7/2019	6/2/2020	6/15/2021	6/14/2022	6/6/2023	6/3/2024
Mean BMI density (per m ²)	2,299	593	504	215	754	842	1,192	1,220	1,400
Total BMI taxa	22	14	12	11	25	27	25	17	12
Number of EPT taxa	12	6	5	8	13	11	13	10	6
Proportion of EPT insects	13%	12%	9%	28%	24%	33%	12%	29%	8%
Proportion of Chironomidae insects	85%	82%	87%	68%	69%	57%	79%	70%	88%

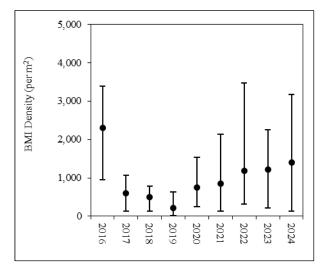


Figure 19.–Middle Glacier Creek benthic macroinvertebrate densities.

Figure 20.–Middle Glacier Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

We retained six Dolly Varden (76–140 mm) for whole body element analyses from Middle Glacier Creek in 2024, and mean fish condition was 1.2. We were unable to capture additional fish within the sample size range, and we did not capture other fish species. The 2024 whole body Dolly Varden element concentrations were within the range of concentrations observed in 2016–2023 (Figure 21).

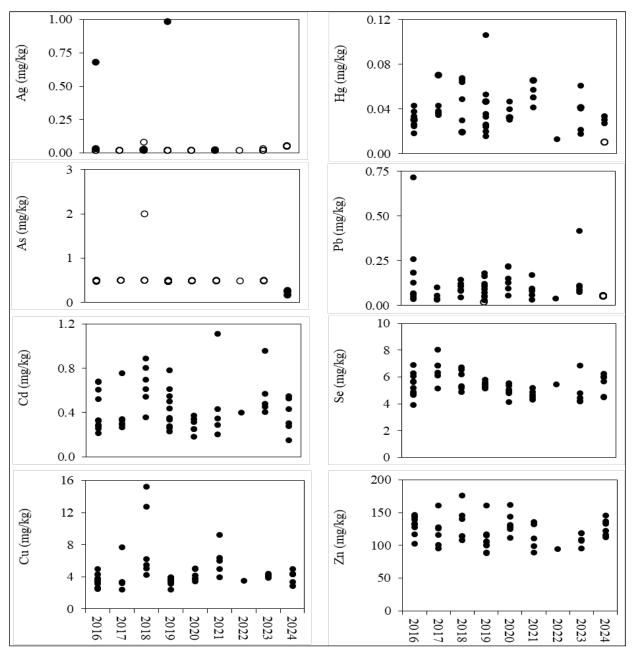


Figure 21.—Middle Glacier Creek whole body Dolly Varden element concentrations. *Note*: Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2024 Middle Glacier Creek sediment samples largely included particle sizes less than 9.5 mm with the majority under 1 mm. The predominant elements were Fe and Al, and the 2024 element concentrations generally were similar to the 2016–2023 results; however, Se concentrations were lower and less variable compared to prior sample years (Figure 22).

We evaluated the 2024 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and—like the 2016–2023 results—we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values.

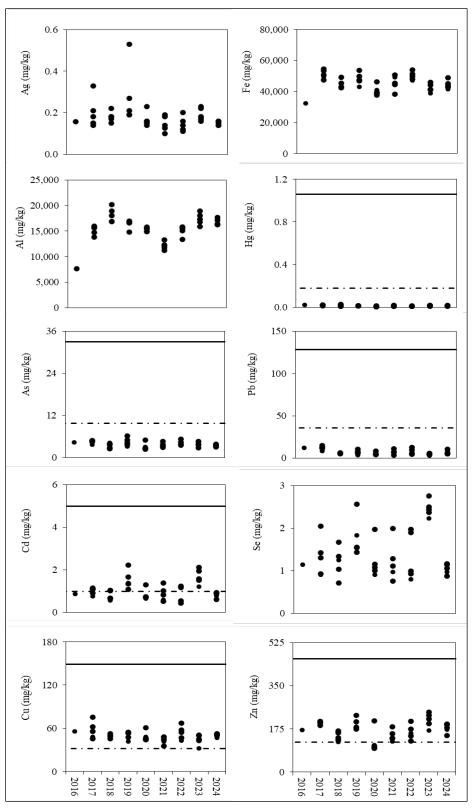


Figure 22.-Middle Glacier Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

LOWER SARAH CREEK SITE

We sampled Lower Sarah Creek on June 4, 2024, and collected BMI samples and measured basic water quality at 1220 hours (Table 13). We collected periphyton and fish samples on June 19, 2024.

Table 13.-Lower Sarah Creek water quality data.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	(µS/cm)	(NTU)	pН
6/4/2024	5.2	12.0	216.2	10.1	ND

Periphyton: Chlorophyll Density and Composition

The 2024 Lower Sarah Creek mean Chl-a density was 3.68 mg/m² (Table 14; Figures 23, 24). The samples contained about 91% Chl-a, 9% Chl-c, and 0% Chl-b (Figure 20). Chl-b was not detected in any sample.

Table 14.–Lower Sarah Creek mean chlorophylls *a*, *b*, and *c* densities.

Sample Date	Chl- $a \text{ (mg/m}^2\text{)}$	Chl-b (mg/m ²)	Chl- $c \text{ (mg/m}^2\text{)}$
6/19/2024	3.68 ± 3.37	0.00	0.36

Note: Chl-a mean density ± 1 SD.

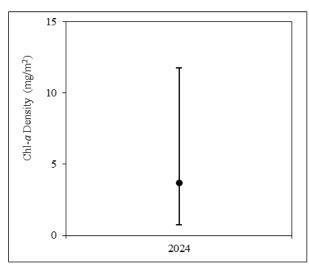
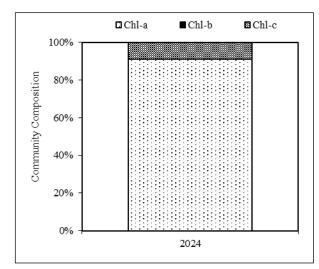
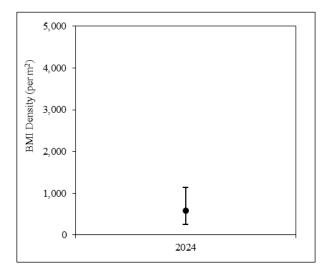


Figure 23.–Lower Sarah Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.




Figure 24.—Lower Sarah Creek mean proportions of chlorophylls *a*, *b*, and *c*.

Benthic Macroinvertebrate Density and Community Composition

Among the 2024 Lower Sarah Creek BMI samples, we identified 26 taxa and estimated mean density at 579 BMI/m², of which 50% were EPT insects (Table 15; Figures 25, 26). The dominant taxa were Ephemeroptera: *Baetis*, representing 33% and Diptera: Chironomidae, representing 25% of the samples.

Table 15.—Lower Sarah Creek benthic macroinvertebrate data summaries.

	6/4/2024
Mean BMI density (per m ²)	579
Total BMI taxa	26
Number of EPT taxa	13
Proportion of EPT insects	50%
Proportion of Chironomidae insects	25%

80% - B Other organisms Aquatic Diptera E Trichoptera Plecoptera
20% - 20% - 2024

Figure 25.—Lower Sarah Creek benthic macroinvertebrate densities.

Figure 26.–Lower Sarah Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Due to fish scarcity within the desired size range, we only retained five Dolly Varden and one juvenile coho salmon within the size range. A second sampling event yielded no additional fish within the target size range. Of the five whole body Dolly Varden (75–97 mm) samples and the one coho salmon (82 mm) sample we retained from Lower Sarah Creek in 2024, mean fish condition was 1.2 for both Dolly Varden and coho salmon. We captured several young-of-year juvenile coho salmon throughout our sampling efforts that were too small to retain. Element concentrations are presented in Figure 27.

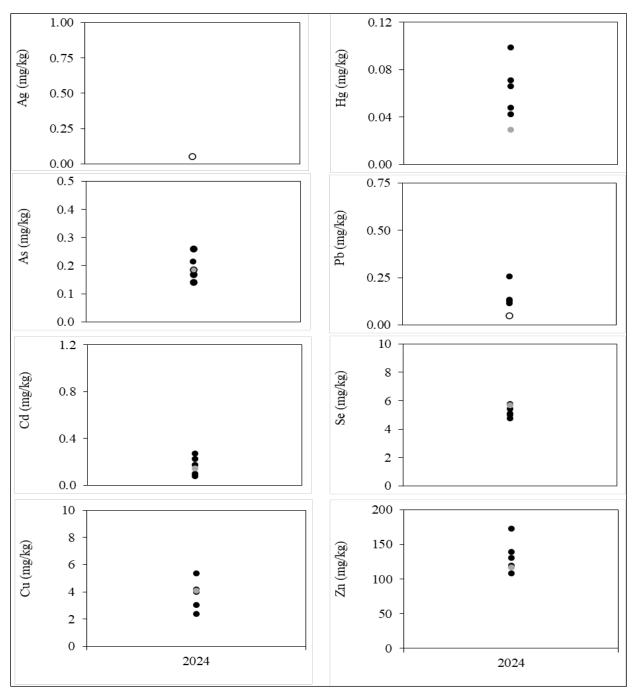


Figure 27.-Lower Sarah Creek whole body fish element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit.

Note: Element concentrations of juvenile coho salmon are represented by gray points.

Sediment Composition and Element Concentrations

The 2024 Lower Sarah Creek sediment samples included particle sizes less than 4.75 mm with the majority under 1 mm. The predominant elements were Fe and Al (Figure 28).

We evaluated the 2024 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values.

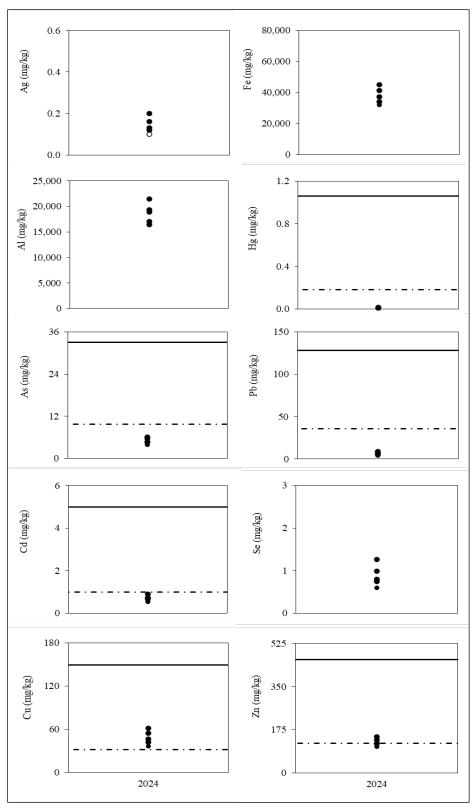


Figure 28.—Lower Sarah Creek sediment element concentrations. *Note*: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

UPPER SARAH CREEK SITE

We sampled Upper Sarah Creek on June 4, 2024, and collected BMI samples and measured basic water quality at 1330 hours (Table 16). We collected periphyton and fish samples on June 19, 2024.

Table 16.-Lower Sarah Creek water quality data.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/4/2024	5.1	13.3	213	17.6	ND

Periphyton: Chlorophyll Density and Composition

The 2024 Upper Sarah Creek mean Chl-*a* density was 4.12 mg/m² (Table 17; Figure 29). The samples contained about 90% Chl-*a*, 10% Chl-*c*, and <1% Chl-*b* (Figure 30). Chl-*b* was detected in 1 sample.

Table 17.–Upper Sarah Creek mean chlorophylls *a*, *b*, and *c* densities.

Sample Date	Chl- $a \text{ (mg/m}^2\text{)}$	Chl-b (mg/m ²)	Chl- $c \text{ (mg/m}^2\text{)}$
6/19/2024	4.12 ± 2.45	0.01	0.45

Note: Chl-a mean density ± 1 SD.

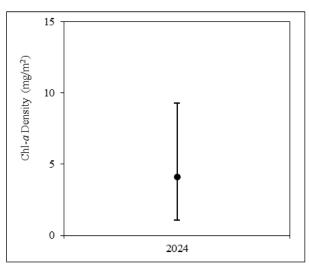


Figure 29.–Upper Sarah Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.

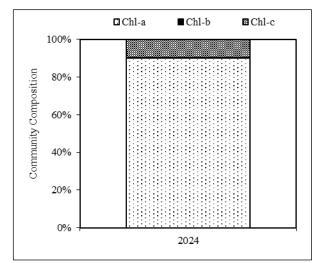


Figure 30.—Upper Sarah Creek mean proportions of chlorophylls *a*, *b*, and *c*.

Benthic Macroinvertebrate Density and Community Composition

Among the 2024 Upper Sarah Creek BMI samples, we identified 30 taxa and estimated mean density at 1,565 BMI/m², of which 75% were EPT insects (Table 18; Figures 31, 32). The dominant taxon was Ephemeroptera: *Baetis*, representing 55% of the samples.

Table 18.—Upper Sarah Creek benthic macroinvertebrate data summaries.

	6/4/2024
Mean BMI density (per m ²)	1,565
Total BMI taxa	30
Number of EPT taxa	16
Proportion of EPT insects	75%
Proportion of Chironomidae insects	13%

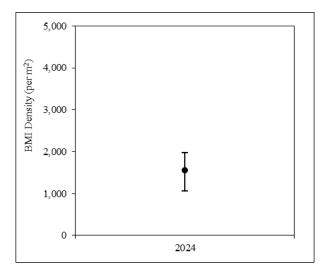


Figure 31.—Upper Sarah Creek benthic macroinvertebrate densities.

Figure 32.–Upper Sarah Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Of the ten whole body Dolly Varden (80–125 mm) samples we retained from Upper Sarah Creek in 2024, mean fish condition was 1.0. Of the elements, Se and Zn showed higher variability between samples than other elements (Figure 33).

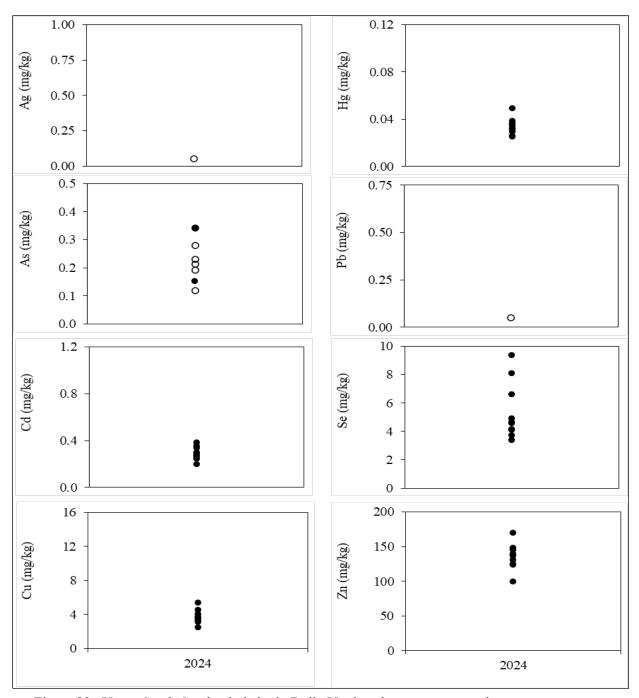


Figure 33.—Upper Sarah Creek whole body Dolly Varden element concentrations. *Note*: Element concentrations undetected (o) are presented at the method reporting limit.

Sediment Composition and Element Concentrations

The 2024 Upper Sarah Creek sediment samples included particle sizes less than 9.5 mm with the majority under 1 mm. The predominant elements were Fe and Al, (Figure 34).

We evaluated the 2024 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values.

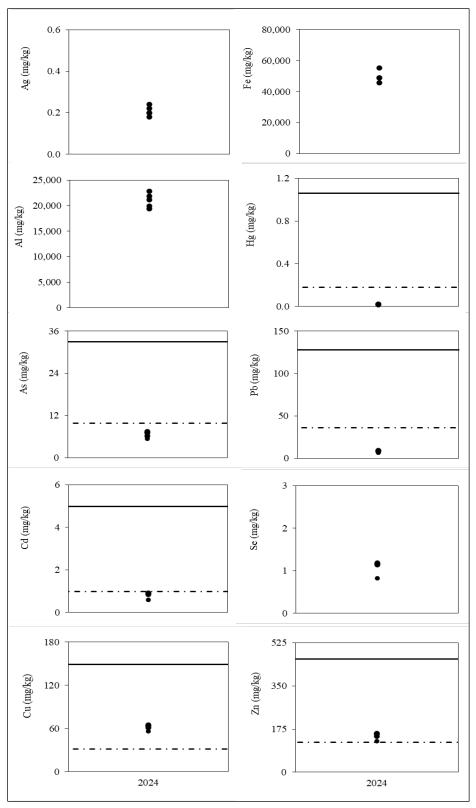


Figure 34.–Upper Sarah Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

PLATEAU CREEK SITE

We sampled Plateau Creek on June 4, 2024, and collected BMI samples and measured basic water quality at 1000 hours (Table 19). We collected periphyton and fish samples on June 19, 2024.

Table 19.-Plateau Creek water quality data.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/4/2024	3.8	11.7	117	3.09	ND

Periphyton: Chlorophyll Density and Composition

The 2024 Plateau Creek mean Chl-a density was 18.70 mg/m² (Table 20; Figure 35). The samples contained about 81% Chl-a, 19% Chl-c, and 0% Chl-b (Figure 36). Chl-b was not detected in any of the samples.

Table 20.–Plateau Creek mean chlorophylls *a*, *b*, and *c* densities.

Sample Date	Chl- $a \text{ (mg/m}^2\text{)}$	Chl- $b \text{ (mg/m}^2\text{)}$	Chl- $c \text{ (mg/m}^2\text{)}$
6/19/2024	18.70 ± 8.55	0.00	4.38

Note: Chl-*a* mean density \pm 1 SD.

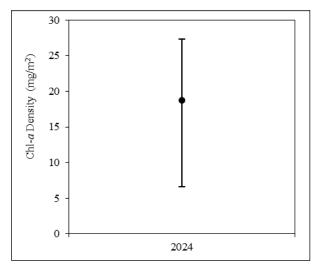
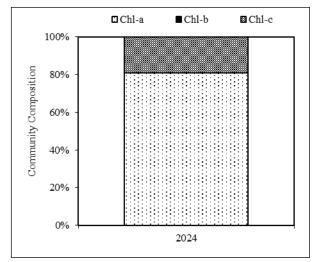
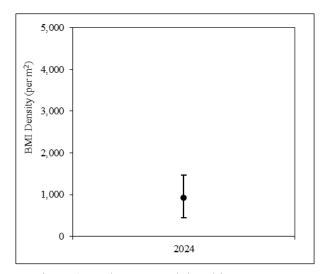


Figure 35.–Plateau Creek chlorophyll *a* densities.

Note: Minimum, mean, and maximum values shown.




Figure 36.–Plateau Creek mean proportions of chlorophylls *a*, *b*, and *c*.

Benthic Macroinvertebrate Density and Community Composition

Among the 2024 Plateau Creek BMI samples, we identified 25 taxa and estimated mean density at 934 BMI/m², of which 60% were EPT insects (Table 21; Figures 37, 38). The dominant taxa were Diptera: Chironomidae, representing 31% and Ephemeroptera: *Baetis*, representing 23% of the samples.

Table 21.—Plateau Creek benthic macroinvertebrate data summaries.

	6/4/2024
Mean BMI density (per m ²)	934
Total BMI taxa	25
Number of EPT taxa	14
Proportion of EPT insects	60%
Proportion of Chironomidae insects	31%

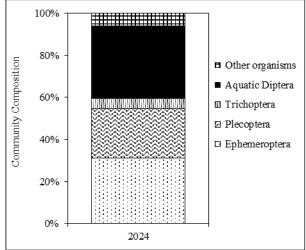


Figure 37.–Plateau Creek benthic macroinvertebrate densities.

Figure 38.—Plateau Creek mean benthic macroinvertebrate community compositions.

Note: Minimum, mean, and maximum values shown.

Resident Fish Condition and Element Concentrations

Of the ten whole body fish retained at Plateau Creek, seven were cutthroat trout (94–113 mm) and three were Dolly Varden (90–120), mean fish condition was 1.0 for both cutthroat trout and Dolly Varden. Cd, and Hg showed higher variability between samples than other elements (Figure 39).

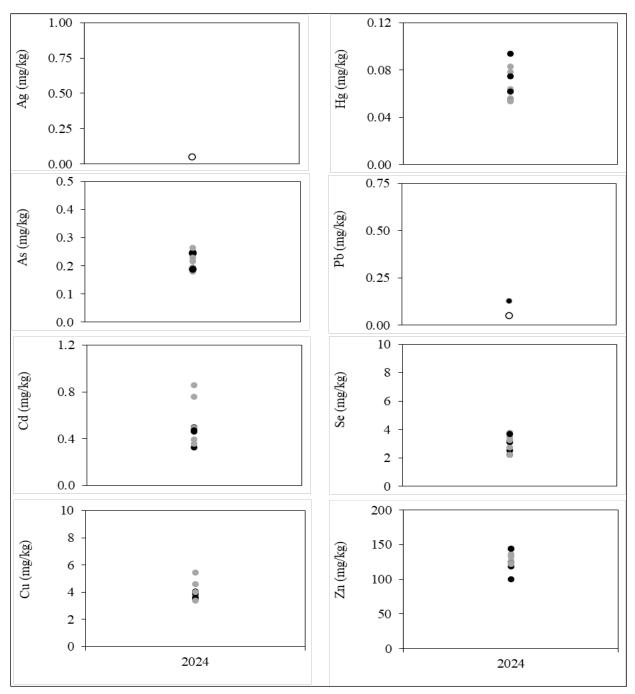


Figure 39.-Plateau Creek whole body fish element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit.

Note: Element concentrations of juvenile cutthroat trout are represented by gray points.

Sediment Composition and Element Concentrations

The 2024 Plateau Creek sediment samples included particle sizes less than 9.5 mm with the majority under 1 mm. The predominant elements were Fe and Al (Figure 40).

We evaluated the 2024 sediment sample element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and we found Cd, Cu, and Zn concentrations near or above the TEC values, and As, Hg, and Pb concentrations below the TEC values.

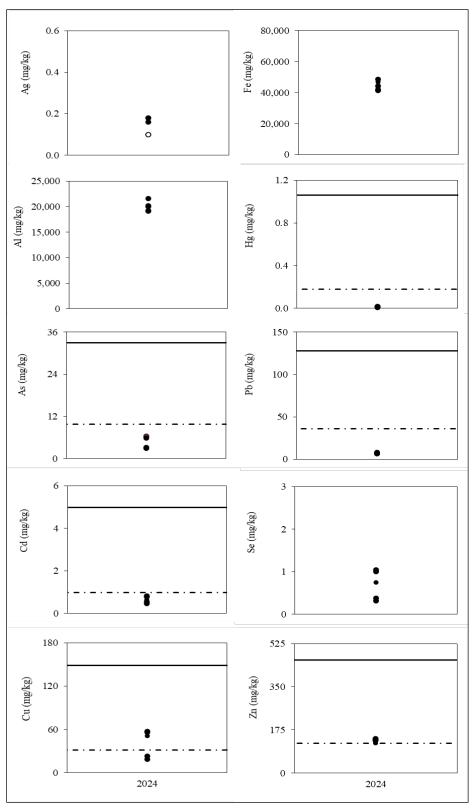


Figure 40.—Plateau Creek sediment element concentrations.

Note: Element concentrations undetected (o) are presented at the method reporting limit. The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

COMPARISONS AMONG SITES

Periphyton: Chlorophyll Density and Composition

Plateau Creek had the highest mean Chl-a density among sites, and the highest mean density compared to all sites in 2024 (Figure 41). Middle Glacier Creek, and Lower and Upper Sarah Creek have similar mean periphyton densities, all higher than Lower Glacier Creek.

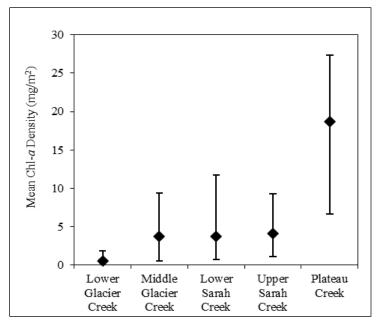


Figure 41.—Mean Palmer Project chlorophyll-*a* densities. *Note*: Minimum, mean, and maximum values shown.

Benthic Macroinvertebrate Density and Community Composition

In 2024, BMI density was similar between Lower and Middle Glacier Creek, however the composition of Lower Glacier Creek samples was more diverse than Middle Glacier Creek. Mean BMI density at Upper Sarah Creek was more than twice the BMI density at Lower Sarah Creek, and community composition was generally similar. Plateau Creek mean BMI density was the second lowest among sites, and community composition was similar to both Sarah Creek sites (Table 22; Figure 42).

Table 22.–2024 benthic macroinvertebrate data.

	Lower Glacier	Middle Glacier	Lower Sarah	Upper Sarah	Plateau
	Creek	Creek	Creek	Creek	Creek
Mean BMI density (per m ²)	1,208	1,400	579	1,565	934
Total BMI taxa	27	12	26	30	25
Number of EPT taxa	11	6	13	16	14
% EPT	30%	8%	50%	75%	60%

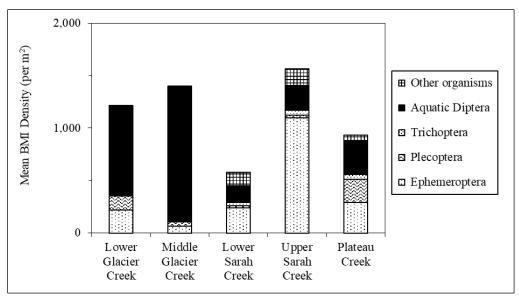


Figure 42.—Palmer Project Plateau Creek mean benthic macroinvertebrate community compositions.

Resident Fish Condition and Element Concentrations

Mean fish condition among the 2024 samples was similar at Lower and Middle Glacier Creek and Lower Sarah Creek, and condition was slightly lower at both Upper Sarah Creek and Plateau Creek; even so, the results suggest healthy fish (Table 23) and they are similar to 2016–2023 results for Glacier Creek and other fish condition data collected in Southeast Alaska (Lindgren 2025).

Table 23.–2024 Palmer Project mean fish sample condition.

Site	Condition
Lower Glacier Creek	1.2
Middle Glacier Creek	1.2
Lower Sarah Creek	1.2
Upper Sarah Creek	1.0
Plateau Creek	1.0

When we combined the fish element concentrations data for the 2024 Palmer Project by site, mean element concentrations were generally similar among sites (Figure 44). Mean Ag and As concentrations were low and similar at all sites, as those elements are often not detected. Plateau Creek samples contained the highest mean Hg and lowest mean Se concentrations; and Lower Sarah Creek samples contained the lowest mean Cd concentration. All element concentrations were within the ranges observed in whole body Dolly Varden samples collected from reference and exploration sites elsewhere in Alaska (Legere and Timothy 2016).

Mean element concentrations in fish samples between Lower Sarah Creek and Upper Sarah Creek varied with Lower Sarah Creek samples containing higher Hg and Pb compared to Upper Sarah Creek. In contrast, Upper Sarah Creek samples contained the higher Se concentrations and were more variable than Lower Sarah Creek samples.

Mean Dolly Varden element concentrations at Glacier Creek sites were generally similar, with the exceptions of higher Hg, Se, and Zn concentrations at Lower Glacier Creek compared to Middle Glacier Creek.

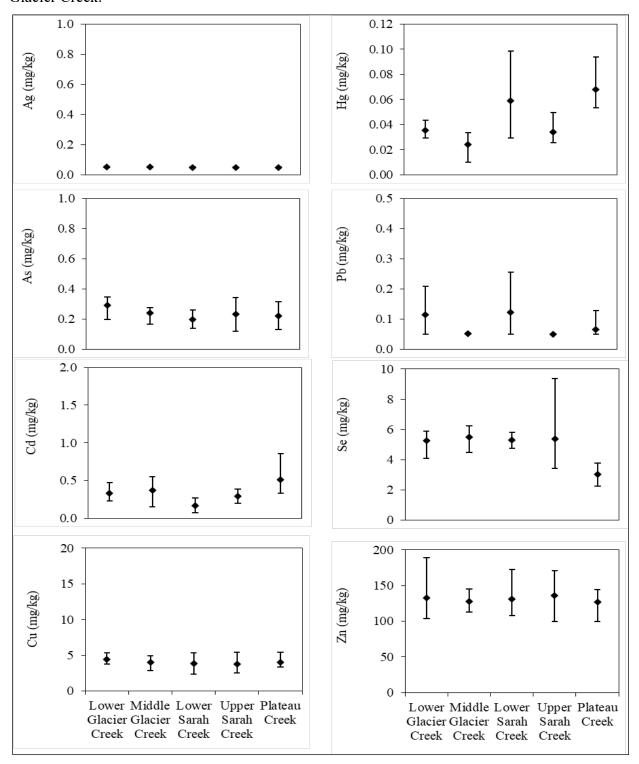


Figure 43.—Palmer Project whole body fish element concentrations, 2024.

Note: Mean (•), minimum, and maximum concentrations presented; element concentrations not detected are included at the method reporting limit.

Sediment Composition and Element Concentrations

The 2024 Palmer Project sediment samples were largely composed of sand and silt and mean element concentrations were generally similar at Glacier Creek sites 2016–2023 (Figure 45). In general, Upper Sarah Creek had higher concentrations for most elements compared to Lower Sarah Creek. Plateau Creek sediment element concentrations were mostly like Lower Sarah Creek. The Glacier Creek sites showed the highest variability for most elements.

We evaluated the element concentration data against the guidelines for freshwater sediments published in Buchman (2008) and found mean sediment concentrations of Cu and Zn above the TEC values at all sites; Cd concentrations near the TEC at both Glacier Creek sites and below at all other sites; and As, Hg, and Pb concentrations below the TEC values at all sites (Figure 45). Guidelines are not published for Ag, Al, Fe, or Se.

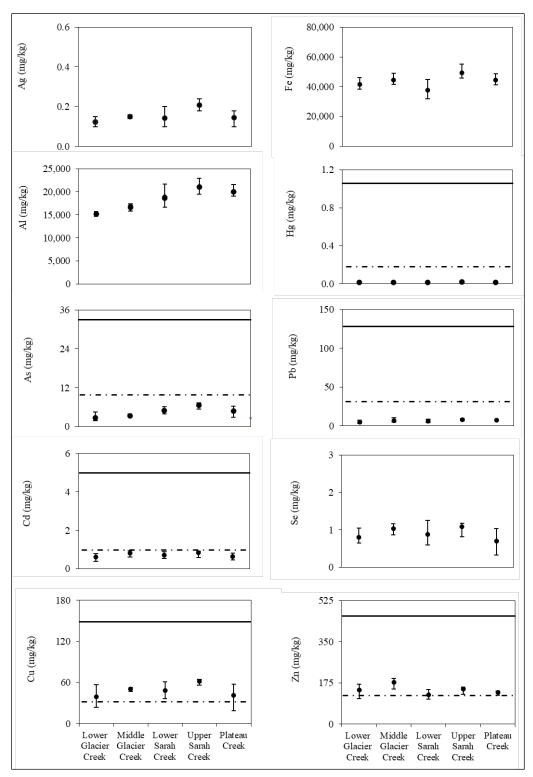


Figure 44.—Palmer Project sediment element concentrations, 2024.

Note: Mean (•), minimum, and maximum concentrations presented; element concentrations not detected are included at the at the method reporting limit.

Note: The dashed line represents the TEC and the solid line represents the PEC for freshwater sediments (Buchman 2008); guidelines are not published for Ag, Al, Fe, or Se.

REFERENCES CITED

- American Public Health Association. 1992. Standard Methods for the Examination of Water and Wastewater, 18th Edition. Washington, DC.
- Anderson, R. O. and R. M. Neumann. 1996. Length, weight, and associated structural indices. [*In*] B. R. Murphy and D. W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- APHA (American Public Health Association). 2012. Standard Methods for the examination of water and wastewater. Section 1020.H.2. 22nd Edition. American Public Health Association, Washington DC.
- ASTM. (American Society for Testing and Materials). 2004. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (D6913-04). ASTM International. West Conshohocken, PA.
- ASTM. 2016. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis (D7928-16). ASTM International. West Conshohocken, PA.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition. EPA 841-B-99-002. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Bradley, P. T. 2017. Methods for Aquatic Life Monitoring at the Red Dog Mine Site. Alaska Department of Fish and Game, Technical Report No. 17-09, Fairbanks, Alaska.
- Buchman, M. F. 2008. NOAA screening quick reference tables, National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- Constantine. 2015. Palmer Exploration Project plan of operations. Prepared for the Bureau of Land Management, Alaska Department of Environmental Conservation, and Alaska Department of Natural Resources, Vancouver, BC.
- Constantine North Inc. 2024. Plan of Operations Palmer Advanced Exploration Project Haines, Alaska Phase II Underground Exploration Upland Mining Lease No. 9100759. Prepared for Alaska Mental Health Trust Land Office, Alaska Department of Natural Resources, and Alaska Department of Environmental Conservation, Vancouver, BC.
- DOI (U.S. Department of the Interior). 2016. Environmental Assessment for the Palmer Exploration Project. Case File AA-094088, U.S. Department of the Interior, Bureau of Land Management, Glennallen Field Office, Glennallen, AK.
- Entrekin, S. A., J. B. Wallace, and S. L. Eggert. 2007. The response of Chironomidae (Diptera) to a long-term exclusion of terrestrial organic matter. Hydrobiologia 575(1):401-413.
- EPA. 1991. Draft analytical method for determination of acid volatile sulfide and selected simultaneously extractable metals in sediment. (EPA-821-R-91-100). U.S. Environmental Protection Agency, Washington, D.C.
- EPA. 1994. Method 200.8, Revision 5.4: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma Mass Spectrometry. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, OH.
- EPA. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c₁ + c₂ and pheopigments in marine and freshwater algae by visible spectrophotometry (Revision 1.2). Adapted by Elizabeth J. Arar, U. S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research of Development, Cincinnati, OH.
- EPA. 1998. Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry, Revision 0. U. S. Environmental Protection Agency, Washington, DC.
- EPA. 2002. Method 1631 Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. U. S. Environmental Protection Agency, Office of Water, Washington, D.C.
- EPA. 2014. Method 6020B (SW-846) Revision 2: Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Washington, D.C.

REFERENCES CITED, CONTINUED

- Giefer, J., and S. Graziano. 2024. Catalog of waters important for spawning, rearing, or migration of anadromous fishes Southeastern Region, effective June, 2024, Alaska Department of Fish and Game, Special Publication No. 24-04, Anchorage.
- Kanouse, K. M., and N. M. Legere. 2016. Glacier Creek aquatic studies, 2016. Alaska Department of Fish and Game, Technical Report No. 16-10, Douglas, AK.
- Krull, D. 2019. Glacier Creek aquatic studies, 2019. Alaska Department of Fish and Game, Technical Report No. 19-12, Douglas, AK.
- Krull, D. 2020. Glacier Creek aquatic studies, 2020. Alaska Department of Fish and Game, Technical Report No. 20-07, Douglas, AK.
- Krull, D. 2021. Glacier Creek aquatic studies, 2021. Alaska Department of Fish and Game, Technical Report No. 21-08, Douglas, AK.
- Krull, D. 2022. Glacier Creek aquatic studies, 2022. Alaska Department of Fish and Game, Technical Report No. 22-10, Douglas, AK.
- Krull, D. 2023. Glacier Creek aquatic studies, 2023. Alaska Department of Fish and Game, Technical Report No. 23-09, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2017. Glacier Creek aquatic studies, 2017. Alaska Department of Fish and Game, Technical Report No. 17-11, Douglas, AK.
- Legere, N. M. and K. M. Kanouse. 2018. Glacier Creek aquatic studies, 2018. Alaska Department of Fish and Game, Technical Report No. 18-09, Douglas, AK.
- Legere, N. M. and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.
- Lindgren, J. W. 2025. Aquatic biomonitoring at Greens Creek Mine, 2024. Alaska Department of Fish and Game, Technical Report No. 25-03, Douglas, AK.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Paustian, S. 2010. Channel type user guide revision 2010. U.S. Department of Agriculture, Forest Service, R-10-TP-26.
- Qu, X., N. Wu, T. Tang, Q. Cai, and Y. S. Park. 2010. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. International Journal of Limnology 46(4):291–302.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH.
- Tetra Tech. 2013. Palmer VMS Project preliminary aquatic investigation. Prepared for Constantine North, Inc., Anchorage, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133-164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.

APPENDIX A: WATER QUALITY DATA	

Appendix A.1.-Lower Glacier Creek water quality data, 2016-2024.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/7/2016	3.3	12.6	115	126	6 ^a
6/8/2017	6.5	13.6	129	306	8.32
5/30/2018	5.8	10.8	161	17	8.15 ^b
6/6/2019	6.6	12.4	133.6	11	6.76°
6/3/2020	5.74	12.02	233	17	7.85
6/16/2021	5.12	ND	207	ND	8.20
6/13/2022	4.06	10.86	215	52	8.10
6/7/2023	4.94	14.89	229	24.6	8.09
6/3/2024	6.1	10.6	238.6	29.8	ND

^a We used a colorpHast pH indicator strip with 0.5 unit sensitivity.

Appendix A.2.-Middle Glacier Creek water quality data, 2016–2024.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	(µS/cm)	(NTU)	pН
6/8/2016	3.1	14.1	129	57	6^{a}
6/9/2017	3.1	16.7	113	> 1000	8.38
5/31/2018	4.1	11.3	182	16	ND
6/7/2019	4.0	18.0	126	94	ND
6/2/2020	3.44	13.3	246	23	8.14
6/15/2021	2.59	ND	197	ND	7.98
6/14/2022	3.72	13.11	251	60	8.11
6/6/2023	4.01	14.22	258	42.6	8.09
6/3/2024	3.9	12.8	ND	31.6	ND

^a We used a colorpHast pH indicator strip with 0.5 unit sensitivity.

Appendix A.3.-Lower Sarah Creek water quality data, 2024.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/4/2024	5.2	12.0	216.2	10.1	ND

Appendix A.4.-Upper Sarah Creek water quality data, 2024.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/4/2024	5.1	13.3	213	17.6	ND

b Taken by Allegra Cairns on 6/2/2018.

Taken by Allegra Cairns on 6/8/2019.

Appendix A.5.-Plateau Creek water quality data, 2024.

Sample	Temperature	Dissolved Oxygen	Conductivity	Turbidity	
Date	(°C)	(mg/L)	$(\mu S/cm)$	(NTU)	pН
6/4/2024	3.8	11.7	117	3.09	ND

APPENDIX B: CHLOROPHYLL DATA	

Appendix B.1.–Lower Glacier Creek chlorophylls a, b, and c densities, 2016–2024.

_	6/7/2016				6/8/2017				5/30/2018		
mg/m²	Chl-a	Chl-b	Chl-c	_	Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c
	3.35	0.00	0.47	_	1.50	0.00	0.17		0.21	0.00	0.08
	3.31	0.00	0.51		1.28	0.00	0.25		1.23	0.00	0.20
	2.56	0.00	0.45		2.89	0.00	0.30		3.31	0.00	0.51
	1.28	0.00	0.29		1.82	0.00	0.20		0.53	0.00	0.08
	3.10	0.00	0.38		1.92	0.00	0.25		0.53	0.00	0.07
	1.97	0.00	0.29		3.31	0.00	0.46		0.96	0.00	0.22
	0.53	0.00	0.11		1.92	0.00	0.24		3.10	0.00	0.53
	2.03	0.00	0.30		0.19	ND	ND		1.28	0.00	0.24
	3.52	0.00	0.63		1.39	0.00	0.21		0.43	0.15	0.27
_	1.01	0.00	0.09	_	1.09	0.00	0.22		0.96	0.00	0.15
Mean	2.27	0.00	0.35	_	1.73	0.00	0.26		1.25	0.02	0.24
Minimum	0.53	0.00	0.09		0.19	0.00	0.17		0.21	0.00	0.07
Maximum	3.52	0.00	0.63		3.31	0.00	0.46		3.31	0.15	0.53

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

	(6/6/2019			6/3/2020				(6/16/2021			
mg/m²	Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c		
	0.43	0.00	0.03		5.23	0.00	0.58		0.29	ND	ND		
	0.10	ND	ND		6.19	0.00	0.86		0.63	0.06	0.24		
	0.53	0.00	0.00		3.66	0.00	0.52		0.36	0.05	0.15		
	0.14	0.00	0.00		2.20	0.00	0.23		0.29	ND	ND		
	0.22	0.05	0.00		1.06	0.00	0.09		2.89	0.00	0.50		
	0.10	ND	ND		1.34	0.00	0.11		1.39	0.00	0.32		
	0.11	0.01	0.05		1.06	0.00	0.09		0.29	ND	ND		
	1.92	0.00	0.18		9.90	0.00	1.10		0.32	0.02	0.14		
	0.64	0.00	0.01		1.65	0.00	0.20		0.92	0.00	0.11		
_	0.10	ND	ND	_	6.84	0.00	0.89		0.29	ND	ND		
Mean	0.43	0.01	0.04		3.91	0.00	0.47	-	0.77	0.02	0.24		
Minimum	0.10	0.00	0.00		1.06	0.00	0.09		0.29	0.00	0.11		
Maximum	1.92	0.05	0.18		9.90	0.00	1.10		2.89	0.06	0.50		

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

Appendix B.1.-Continued.

	6.	/13/2022			6/7/2023		6	6/19/2024		
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	
	1.17	0.00	0.19	5.32	0.00	0.73	0.22	0.00	0.00	
	0.55	0.00	0.12	4.40	0.00	0.52	0.22	0.00	0.00	
	4.72	0.00	0.81	4.91	0.00	0.69	0.22	0.00	0.00	
	1.64	0.00	0.34	3.76	0.00	0.51	0.96	0.00	0.17	
	0.22	ND	ND	9.51	0.00	0.82	0.22	0.00	0.00	
	0.22	ND	ND	6.84	0.00	1.01	1.82	0.00	0.30	
	3.80	0.00	0.70	4.81	0.00	0.60	ND	ND	ND	
	2.78	0.00	0.53	6.30	0.00	0.75	0.43	0.00	0.07	
	2.98	0.00	0.45	5.78	0.00	0.80	0.22	0.00	0.00	
	0.37	0.00	0.00	3.52	0.00	0.50	0.22	0.00	0.00	
Mean	1.85	0.00	0.39	5.51	0.00	0.69	0.50	0.00	0.06	
Minimum	0.22	0.00	0.00	3.52	0.00	0.50	0.22	0.00	0.00	
Maximum	4.72	0.00	0.81	9.51	0.00	1.01	1.82	0.00	0.30	

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

Appendix B.2.–Middle Glacier Creek chlorophylls a, b, and c densities, 2016–2024.

_	(6/8/2016			6/9/2017			5/31/2018			
mg/m²	Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	
	1.82	0.00	0.30		0.96	0.00	0.15	1.50	0.00	0.20	
	4.38	0.00	0.75		0.75	0.00	0.15	1.92	0.00	0.27	
	0.96	0.00	0.10		1.38	0.00	0.08	2.24	0.00	0.41	
	1.60	0.00	0.26		1.56	0.00	0.22	2.78	0.00	0.44	
	0.19	ND	ND		0.43	0.00	0.00	3.10	0.00	0.51	
	1.17	0.00	0.13		0.75	0.00	0.05	0.96	0.00	0.14	
	0.96	0.00	0.15		0.50	0.00	0.03	0.78	0.00	0.16	
	1.82	0.00	0.27		1.17	0.00	0.23	1.60	0.00	0.25	
	0.28	0.00	0.00		0.21	0.02	0.10	1.82	0.00	0.35	
_	1.82	0.00	0.27	_	0.43	0.00	0.02	0.85	0.00	0.20	
Mean	1.50	0.00	0.25	_	0.81	0.00	0.10	1.76	0.00	0.29	
Minimum	0.19	0.00	0.00		0.21	0.00	0.00	0.78	0.00	0.14	
Maximum	4.38	0.00	0.75		1.56	0.02	0.23	3.10	0.00	0.51	

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

Appendix B.2.-Continued.

	(5/7/2019			6/2/2020				6/15/2021			
mg/m²	Chl-a	Chl-b	Chl-c	•	Chl-a	Chl-b	Chl-c		Chl-a	Chl-b	Chl-c	
	0.83	0.00	0.05		0.25	ND	ND		6.19	0.00	0.70	
	0.18	0.00	0.04		2.43	0.00	0.33		0.64	0.00	0.10	
	0.55	0.00	0.02		1.70	0.00	0.17		1.11	0.00	0.08	
	0.10	ND	ND		0.28	0.00	0.03		0.85	0.00	0.01	
	0.21	0.00	0.02		0.73	0.00	0.07		1.19	0.00	0.13	
	0.14	0.01	0.05		0.55	0.00	0.02		2.34	0.00	0.28	
	0.18	0.06	0.11		0.96	0.00	0.10		0.64	0.03	0.13	
	0.21	0.00	0.00		0.50	0.06	0.20		0.43	0.00	0.00	
	0.53	0.00	0.02		2.48	0.00	0.32		0.29	ND	ND	
	0.32	0.00	0.09		2.06	0.00	0.25		6.62	0.00	0.84	
Mean	0.33	0.01	0.04		1.19	0.01	0.16		2.03	0.00	0.25	
Minimum	0.10	0.00	0.00		0.25	0.00	0.02		0.29	0.00	0.00	
Maximum	0.83	0.06	0.11		2.48	0.06	0.33		6.62	0.03	0.84	

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

	6.	/14/2022		(6/6/2023		6.	/19/2024	
mg/m ²	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c	Chl-a	Chl-b	Chl-c
	0.22	ND	ND	5.45	0.00	0.74	0.55	0.00	0.12
	1.92	0.00	0.28	3.76	0.00	0.54	2.46	0.00	0.36
	0.64	0.00	0.11	8.22	0.00	1.13	1.92	0.00	0.25
	2.62	0.00	0.30	2.39	0.00	0.37	6.41	0.00	0.56
	0.22	ND	ND	5.83	0.00	0.79	2.14	0.00	0.28
	0.22	ND	ND	4.68	0.00	0.65	4.27	0.00	0.57
	0.22	ND	ND	2.75	0.00	0.35	9.40	0.00	1.10
	0.22	ND	ND	4.13	0.00	0.53	0.96	0.00	0.16
	1.69	0.00	0.33	2.35	0.00	0.31	6.09	0.00	0.72
	1.71	0.00	0.31	3.03	0.00	0.35	2.78	0.00	0.31
Mean	0.97	0.00	0.27	4.26	0.00	0.58	3.70	0.00	0.44
Minimum	0.22	0.00	0.00	0.22	0.00	0.00	2.00	3.00	4.00
Maximum	2.62	0.00	0.33	8.22	0.00	1.13	9.40	0.00	1.10

Note: Bold value is the spectrophotometer estimated detection limit, Chl-a not detected.

Appendix B.3.—Lower Sarah Creek chlorophylls a, b, and c densities, 2024.

_	6/19/2024							
mg/m ²	Chl-a	Chl-b	Chl-c					
	2.03	0.00	0.23					
	1.07	0.00	0.14					
	3.20	0.00	0.42					
	0.75	0.00	0.15					
	5.98	0.00	0.39					
	2.24	0.00	0.23					
	2.46	0.00	0.24					
	11.75	0.00	1.06					
	1.50	0.00	0.21					
_	5.87	0.00	0.52					
Mean	3.68	0.00	0.36					
Minimum	0.75	0.00	0.14					
Maximum	11.75	0.00	1.06					

Appendix B.4.–Upper Sarah Creek chlorophylls a, b, and c densities, 2024.

_	6/19/2024							
mg/m ²	Chl-a	Chl-b	Chl-c					
	9.29	0.12	0.74					
	4.81	0.00	0.62					
	6.19	0.00	0.64					
	2.46	0.00	0.26					
	4.38	0.00	0.55					
	1.17	0.00	0.10					
	3.42	0.00	0.42					
	3.42	0.00	0.36					
	1.07	0.00	0.10					
	5.02	0.00	0.69					
Mean	4.12	0.01	0.45					
Minimum	1.07	0.00	0.10					
Maximum	9.29	0.12	0.74					

Appendix B.5.—Plateau Creek chlorophylls *a*, *b*, and *c* densities, 2024.

_	6/19/2024						
mg/m ²	Chl-a	Chl-b	Chl-c				
	27.37	0.00	9.99				
	15.91	0.00	2.59				
	10.25	0.00	3.49				
	27.37	0.00	8.66				
	27.37	0.00	5.76				
	10.68	0.00	1.67				
	6.62	0.00	0.97				
	27.37	0.00	4.69				
	22.64	0.00	4.36				
	11.43	0.00	1.65				
Mean	18.70	0.00	4.38				
Minimum	6.62	0.00	0.97				
Maximum	27.37	0.00	9.99				

Note: Bold value is the spectrophotometer estimated detection limit.

Appendix C.1.-Lower Glacier Creek benthic macroinvertebrate sample data, 2024.

	Sample Number									
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	10	31	36	4	0	9	90
		Ephemerellidae	Drunella	1	2	2	1	0	1	7
		Heptageniidae	Cinygmula	2	2	1	0	0	2	7
			Epeorus	1	3	3	0	1	1	9
			Rhithrogena	1	0	0	3	1	4	9
	Plecoptera	Chloroperlidae	Suwallia	2	9	4	3	0	9	27
		Nemouridae	Shipsa	3	14	6	0	0	7	30
			Zapada	1	4	8	0	0	2	15
		Taeniopterygidae	Taeniopteryx	1	1	1	0	0	0	3
	Trichoptera	Limnephilidae	Apatania		1	0	0	0	0	1
		Rhyacophilidae	Rhyacophila		1	0	0	0	0	1
	Diptera	Ceratopogonidae	Ceratopogon	0	0	0	1	0	0	1
		Chironomidae	unidentified	40	67	187	56	24	77	451
		Dixidae	unidentified	0	0	0	0	0	1	1
		Empididae	Clinocera	0	0	0	0	0	1	1
		Limoniidae	Gonomyodes	0	2	1	0	0	1	4
		Simuliidae	Prosimulium	0	0	0	1	0	0	1
			Simulium	0	0	1	0	0	0	1
			Antocha	0	0	0	1	0	0	1
		Tipulidae	Molophilus	1	0	0	0	0	0	1
			Tipula	2	0	0	0	0	0	2
	Lepidoptera	Crambidae	unidentified	0	1	0	1	0	0	2
Arachnida (mites)	unidentified	unidentified	unidentified	1	0	0	1	0	0	2
Entognatha	Collembola	unidentified	unidentified	1	0	0	0	1	0	2
Gastropoda	unidentified	unidentified	unidentified	0	0	1	0	0	0	1
Oligochaeta	unidentified	unidentified	unidentified	1	1	0	0	0	1	3
Ostracoda	unidentified	unidentified	unidentified	0	0	0	1	0	0	1
Arachnida (spiders		unidentified	unidentified	0	0	0	1	0	0	1
Misc Terrestrial	unidentified	unidentified	unidentified	4	6	9	8	1	15	43
		Total Ac	quatic Organisms	68	139	251	73	27	116	675

Appendix C.2.-Lower Glacier Creek benthic macroinvertebrate data summaries, 2016-2024.

1 1							,		
	2016	2017	2018	2019	2020	2021	2022	2023	2024
Total BMI taxa	17	30	16	12	25	26	30	12	27
Number of EPT taxa	9	13	10	5	12	12	14	9	11
Total counts									
Ephemeroptera	44	158	61	65	49	21	77	214	122
Plecoptera	13	41	22	12	26	35	52	66	75
Trichoptera	1	3	1	1	4	3	3	1	2
Aquatic Diptera	478	955	33	178	322	140	467	1,643	464
Other organisms	19	35	4	8	20	22	35	8	11
% Ephemeroptera	7.9%	13.3%	50.4%	24.6%	11.6%	9.5%	12.2%	11.1%	18.1%
% Plecoptera	2.3%	3.4%	18.2%	4.5%	6.2%	15.8%	8.1%	3.4%	11.1%
% Trichoptera	0.2%	0.3%	0.8%	0.4%	1.0%	1.4%	0.5%	0.1%	0.3%
% Aquatic Diptera	86.1%	80.1%	27.3%	67.4%	76.5%	63.3%	73.8%	85.0%	68.8%
% Other organisms	3.0%	2.9%	3.0%	3.0%	4.8%	10.0%	5.5%	0.4%	1.6%
% EPT	10.0%	17.0%	69.4%	29.5%	18.8%	26.7%	20.7%	14.5%	29.5%
% Chironomidae	85.0%	78.4%	26.4%	67.0%	74.1%	58.4%	70.9%	85.0%	66.9%
Total aquatic invertebrates	555	1,192	121	264	421	221	634	1,932	674
Total terrestrial invertebrates	17	18	13	17	4	29	23	19	43
Total invertebrates	572	1,210	134	281	425	250	657	1,951	717
% Sample aquatic	97.0%	98.5%	90.3%	94.0%	99.1%	88.4%	96.5%	99.0%	94.0%
% Sample terrestrial	3.0%	1.5%	0.0%	6.0%	0.9%	11.6%	3.5%	1.0%	6.0%
Total sample area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI density (per m ²)	995	2,136	217	473	754	396	1,136	3,462	1,208
±1 SD	373	1,015	151	148	463	150	439	2322	843

Appendix C.3.-Middle Glacier Creek benthic macroinvertebrate sample data, 2024.

				Sample Number						
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	0	4	3	12	6	12	37
	Plecoptera	Chloroperlidae	Suwallia	1	0	1	2	0	1	5
		Nemouridae	Podmosta	0	2	0	0	0	0	2
			Shipsa	0	1	0	9	3	1	14
			Zapada	0	0	0	0	1	0	1
	Trichoptera	Rhyacophilidae	Rhyacophila	0	1	0	0	1	0	2
	Diptera	Chironomidae	unidentified	10	57	19	265	155	179	685
		Empididae	Oreogeton	0	0	1	0	0	0	1
		Limoniidae	Gonomyodes	0	0	0	6	21	2	29
		Tipulidae	Molophilus	0	0	0	0	0	2	2
Arachnida (mites)	unidentified	unidentified	unidentified	1	0	0	0	0	0	1
Entognatha	Collembola	unidentified	unidentified	0	1	0	1	0	0	2
Misc. Terrestrial	unidentified	unidentified	unidentified	0	0	0	1	1	1	3
		Total A	unidentified unidentified Total Aquatic Organisms				295	187	197	781

Appendix C.4.-Middle Glacier Creek benthic macroinvertebrate data summaries, 2016-2024.

1.1									
	2016	2017	2018	2019	2020	2021	2022	2023	2024
Total BMI taxa	22	14	12	11	25	27	25	17	12
Number of EPT taxa	12	6	5	8	13	11	13	10	6
Total counts									
Ephemeroptera	119	25	18	22	43	76	45	116	37
Plecoptera	45	14	7	10	52	70	35	77	22
Trichoptera	4	1	0	2	6	8	3	2	2
Aquatic Diptera	1,107	276	254	85	306	282	534	484	717
Other organisms	8	15	2	1	14	34	48	2	3
% Ephemeroptera	9.3%	7.6%	6.4%	18.3%	10.2%	16.2%	6.8%	17.0%	4.7%
% Plecoptera	3.5%	4.2%	2.5%	8.3%	12.4%	14.9%	5.3%	11.3%	2.8%
% Trichoptera	0.3%	0.3%	0.0%	1.7%	1.4%	1.7%	0.5%	0.3%	0.3%
% Aquatic Diptera	86.3%	83.4%	90.4%	70.8%	72.7%	60.0%	80.3%	71.1%	91.8%
% Other organisms	1.0%	4.5%	0.7%	0.8%	3.3%	7.2%	7.2%	0.3%	0.4%
% EPT	13.0%	12.1%	8.9%	28.3%	24.0%	32.8%	12.5%	28.6%	7.8%
% Chironomidae	85.0%	82.5%	87.2%	68.3%	68.6%	56.6%	78.8%	69.6%	87.7%
Total aquatic invertebrates	1,283	331	281	120	421	470	665	681	781
Total terrestrial invertebrates	19	7	1	4	7	13	59	12	2
Total invertebrates	1,302	338	282	124	428	483	724	693	783
% Sample aquatic	98.5%	97.9%	99.6%	96.8%	98.4%	97.3%	91.9%	98.3%	99.7%
% Sample terrestrial	1.5%	2.1%	0.4%	3.2%	1.6%	2.7%	8.1%	1.7%	0.26%
Total sample area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI density (per m ²)	2,299	593	504	215	754	842	1,192	1,220	1,400
±1 SD	976	392	249	249	484	743	1,261	743	1,219

Appendix C.5.-Lower Sarah Creek benthic macroinvertebrate sample data, 2024.

•		Sample Number											
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total			
Insecta	Ephemeroptera	Baetidae	Baetis	10	11	39	14	15	18	107			
		Ephemerellidae	Drunella	1	5	5	2	1	5	19			
		Heptageniidae	Cinygmula	0	0	4	0	0	1	5			
			Epeorus	0	0	1	0	0	0	1			
			Rhithrogena	0	1	1	0	0	0	2			
	Plecoptera	Capniidae	Capnia	0	0	0	0	0	1	1			
		Chloroperlidae	Suwallia	0	0	2	0	0	0	2			
		Leuctridae	Despaxia	0	1	2	0	0	0	3			
		Nemouridae	Ostrocerca	0	0	0	0	2	0	2			
			Zapada	0	0	1	1	2	0	4			
	Trichoptera	Glossosomatidae	Glossosoma	0	1	0	0	0	0	1			
		Limnephilidae	Moselyana	3	3	0	1	3	1	11			
		Rhyacophilidae	Rhyacophila	1	1	0	0	0	2	4			
	Diptera	Chironomidae	unidentified	6	10	27	15	8	16	82			
		Empididae	Chelifera	0	0	0	0	2	0	2			
			Oreogeton	0	1	1	1	0	0	3			
		Simuliidae	Prosimulium	0	2	0	0	0	0	2			
		Tipulidae	Hexatoma	0	1	0	0	0	0	1			
	Lepidoptera	Crambidae	unidentified	0	0	1	0	0	1	2			
Arachnida (mites)	unidentified	unidentified	unidentified	1	4	0	1	1	1	8			
Entognatha	Collembola	unidentified	unidentified	2	4	7	5	8	8	34			
Gastropoda	unidentified	unidentified	unidentified	0	0	0	0	1	0	1			
Nematoda	unidentified	unidentified	unidentified	0	0	1	0	0	0	1			
Oligochaeta	unidentified	unidentified	unidentified	0	0	11	3	3	2	19			
Ostracoda	unidentified	unidentified	unidentified	0	0	3	0	2	1	6			
Juvenile fish	unidentified	unidentified	unidentified	0	1	0	0	0	0	1			
Misc. Terrestrial	unidentified	unidentified	unidentified	2	6	7	2	3	7	27			
		Total Ac	quatic Organisms	24	46	106	43	48	57	324			

Appendix C.6.–Lower Sarah Creek benthic macroinvertebrate sample summaries, 2024.

	2024
Total BMI taxa	26
Number of EPT taxa	13
Total counts	
Ephemeroptera	134
Plecoptera	12
Trichoptera	16
Aquatic Diptera	90
Other organisms	71
% Ephemeroptera	41.5%
% Plecoptera	3.7%
% Trichoptera	5.0%
% Aquatic Diptera	27.9%
% Other organisms	22.0%
% EPT	50.2%
% Chironomidae	25.4%
Total aquatic invertebrates	323
Total terrestrial invertebrates	27
Total invertebrates	350
% Sample aquatic	92.3%
% Sample terrestrial	7.7%
-	
Total sample area (m ²)	0.558
Mean BMI density (per m ²)	579
±1 SD	298

Appendix C.7.-Upper Sarah Creek benthic macroinvertebrate sample data, 2024.

	1.1									
						Sample 1	Number			
Class or Subclass	Order	Family	Genus	1	2	3	4	5	6	Total
Insecta	Ephemeroptera	Baetidae	Baetis	78	98	42	90	66	110	484
		Ephemerellidae	Drunella	18	13	9	14	3	12	69
		Heptageniidae	Cinygmula	3	9	3	3	1	6	25
			Epeorus	2	1	0	2	4	0	9
			Rhithrogena	4	11	1	3	3	2	24
	Plecoptera	Capniidae	Capnia	1	0	1	0	0	0	2
		Chloroperlidae	Suwallia	0	1	0	1	1	0	3
		Nemouridae	Podmosta	0	1	2	1	0	0	4
			Shipsa	0	0	1	0	0	0	1
			Zapada	3	1	1	0	0	0	5
		Taeniopterygidae	Taeniopteryx	0	1	0	0	0	0	1
	Trichoptera	Hydropsychidae	Arctopsyche	0	0	1	0	0	0	1
		Limnephilidae	Chyranda	1	0	0	0	0	0	1
			Ecclisomyia	1	0	0	0	0	0	1
			Moselyana	1	1	1	0	2	1	6
		Rhyacophilidae	Rhyacophila	5	4	2	2	1	2	16
	Diptera	Ceratopogonidae	Atrichepogon	0	1	0	0	0	0	1
		Chironomidae	unidentified	29	22	7	14	16	24	112
		Deuterophlebiidae	Deuterophlebia	0	0	1	0	0	0	1
		Empididae	Chelifera	0	2	3	0	0	3	8
			Clinocera	1	0	0	0	0	0	1
		Simuliidae	Prosimulium	5	1	0	0	0	2	8
		Tipulidae	Dicranota	0	0	0	0	1	0	1
	Lepidoptera	Crambidae	unidentified	1	0	0	0	0	0	1
Arachnida (mites)	unidentified	unidentified	unidentified	0	1	0	0	1	4	6
Entognatha	Collembola	unidentified	unidentified	13	2	3	2	1	1	22
Gastropoda	unidentified	unidentified	unidentified	0	1	0	0	0	0	1
Nematoda	unidentified	unidentified	unidentified	0	1	0	0	0	0	1
Oligochaeta	unidentified	unidentified	unidentified	14	1	14	3	0	17	49
Ostracoda	unidentified	unidentified	unidentified	0	2	6	0	0	0	8
Juvenile fish	unidentified	unidentified	unidentified	0	0	0	1	0	0	1
Arachnida (spiders)) unidentified	unidentified	unidentified	0	0	0	1	0	0	1
Misc. Terrestrial	unidentified	unidentified	unidentified	4	2	3	1	2	4	16
		Total Ac	uatic Organisms	180	175	98	136	100	184	873

Appendix C.8.–Upper Sarah Creek benthic macroinvertebrate sample summaries, 2024.

5411111411C3, 2021.	
	2024
Total BMI taxa	30
Number of EPT taxa	16
Total counts	
Ephemeroptera	611
Plecoptera	16
Trichoptera	25
Aquatic Diptera	132
Other organisms	89
% Ephemeroptera	70.0%
% Plecoptera	1.8%
% Trichoptera	2.9%
% Aquatic Diptera	15.1%
% Other organisms	10.2%
% EPT	74.7%
% Chironomidae	12.8%
Total aquatic invertebrates	873
Total terrestrial invertebrates	16
Total invertebrates	889
% Sample aquatic	98.2%
% Sample terrestrial	1.8%
Total sample area (m ²)	0.558
Mean BMI density (per m ²)	1,565
±1 SD	427
	,

Appendix C.9.-Plateau Creek benthic macroinvertebrate sample data, 2024.

				Sample Number 1 2 3 4 5 6									
Class or Subclass	Order	Family	Genus	1						Total			
Insecta	Ephemeroptera	Baetidae	Baetis	6	21	17	24	12	38	118			
		Ephemerellidae	Drunella	0	1	2	1	1	6	11			
		Heptageniidae	Cinygmula	2	1	3	1	4	1	12			
			Epeorus	0	1	1	2	0	1	5			
			Rhithrogena	3	0	0	3	1	1	8			
		Leptophlebiidae	Paraleptophlebia	0	0	3	4	0	1	8			
	Plecoptera	Capniidae	Capnia	9	4	17	32	7	18	87			
		Chloroperlidae	Suwallia	3	2	2	9	2	5	23			
		Nemouridae	Nemoura	1	0	0	0	0	1	2			
			Zapada	0	2	6	1	0	2	11			
	Trichoptera	Brachycentridae	Micrasema	0	1	1	0	0	4	6			
		Glossosomatidae	Glossosoma	2	1	0	0	0	2	5			
		Hydropsychidae	Hydropsyche	0	0	0	1	0	0	1			
		Rhyacophilidae	Rhyacophila	0	2	2	4	0	5	13			
	Diptera	Ceratopogonidae	Probezzia	0	0	1	0	0	0	1			
		Chironomidae	unidentified	15	16	35	39	24	35	164			
		Dixidae	unidentified	0	0	0	2	0	0	2			
		Empididae	Oreogeton	0	0	2	2	1	0	5			
		Simuliidae	Prosimulium	0	0	1	0	0	4	5			
		Tipulidae	Dicranota	0	0	0	1	0	1	2			
Arachnida (mites)	unidentified	unidentified	unidentified	0	0	2	1	0	2	5			
Entognatha	Collembola	unidentified	unidentified	0	1	3	6	0	1	11			
Gastropoda	unidentified	unidentified	unidentified	0	0	1	0	0	0	1			
Nematoda	unidentified	unidentified	unidentified	0	0	0	0	0	0	0			
Oligochaeta	unidentified	unidentified	unidentified	0	0	5	2	0	1	8			
Ostracoda	unidentified	unidentified	unidentified	0	0	2	1	1	3	7			
Arachnida (spiders)) unidentified	unidentified	unidentified	0	0	0	1	1	0	2			
Misc. Terrestrial unidentified		unidentified unidentified		1	0	2	2	2	1	8			
		Total	Aquatic Organisms	41	53	106	136	53	132	521			

Appendix C.10.—Plateau Creek benthic macroinvertebrate sample summaries, 2024.

	2024
Total BMI taxa	25
Number of EPT taxa	14
Total counts	
Ephemeroptera	162
Plecoptera	123
Trichoptera	25
Aquatic Diptera	179
Other organisms	32
% Ephemeroptera	31.1%
% Plecoptera	23.6%
% Trichoptera	4.8%
% Aquatic Diptera	34.4%
% Other organisms	6.1%
% EPT	59.5%
% Chironomidae	31.5%
% Chironomidae	31.370
Total aquatic invertebrates	521
Total terrestrial invertebrates	8
Total invertebrates	529
% Sample aquatic	1
% Sample terrestrial	0
Total sample area (m ²)	0.558
- , , ,	
Mean BMI density (per m ²)	934
±1 SD	462

APPENDIX D: RESIDENT FISH DATA AND LABORATORY REPORT

Appendix D.1.-Lower Glacier Creek whole body fish element concentrations, 2016-2024.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(K)	(mg/kg)							
6/7/2016	DV	108	12.7	1.0	< 0.019	< 0.48	0.429	3.55	0.0466	0.076	7.23	153
6/7/2016	DV	68	4.8	1.5	< 0.020	< 0.50	0.501	3.75	0.0330	0.182	7.60	173
6/7/2016	DV	112	17.7	1.3	0.025	< 0.48	1.310	3.63	0.0567	0.230	5.48	145
6/7/2016	DV	105	15.9	1.4	< 0.019	< 0.48	0.585	3.23	0.0509	0.078	7.56	150
6/7/2016	DV	113	14.3	1.0	< 0.020	0.50	0.420	3.42	0.0427	0.177	6.21	154
6/7/2016	DV	94	10.8	1.3	< 0.019	0.52	0.441	4.35	0.0381	0.195	7.83	167
6/7/2016	DV	109	14.6	1.1	0.026	< 0.50	1.250	5.20	0.0683	0.362	6.46	238
6/7/2016	DV	97	11.2	1.2	< 0.019	< 0.49	0.641	3.71	0.0401	0.172	6.11	154
6/8/2016	DV	93	9.5	1.2	< 0.020	< 0.49	0.960	3.32	0.0349	0.091	7.04	141
6/8/2016	DV	73	4.7	1.2	0.025	0.54	0.730	4.67	0.0353	0.360	6.31	168
6/8/2017	DV	133	29.1	1.2	0.023	< 0.50	0.727	4.47	0.0599	0.109	6.00	184
6/8/2017	DV	113	15.7	1.1	< 0.020	< 0.50	0.426	3.69	0.0505	0.027	7.01	148
6/8/2017	DV	105	12.6	1.1	< 0.020	< 0.50	0.601	3.23	0.0523	0.038	7.16	134
6/8/2017	DV	90	9.2	1.3	0.038	< 0.50	1.230	3.24	0.0473	0.088	8.33	123
6/8/2017	DV	106	12.8	1.1	< 0.020	< 0.50	0.606	4.06	0.0532	0.104	9.09	153
6/8/2017	DV	175	60.5	1.1	< 0.020	< 0.50	0.355	4.71	0.0924	0.119	6.90	162
6/8/2017	DV	75	5.7	1.4	< 0.020	< 0.50	0.429	4.77	0.0438	0.202	7.86	157
6/8/2017	DV	110	17.3	1.3	0.025	< 0.50	0.736	4.35	0.0446	0.074	9.03	126
6/8/2017	DV	59, 118 ^a	20.2	ND	< 0.020	< 0.50	0.472	4.20	0.0456	0.119	7.30	160
6/8/2017	DV	102, 70 ^a	15.6	ND	< 0.020	< 0.50	0.865	4.55	0.0642	0.196	7.62	130
5/30/2018	DV	112	12.3	0.9	< 0.020	< 0.50	0.183	3.26	0.0511	0.042	5.14	114
5/30/2018	DV	66, 65 ^a	4.7	ND	< 0.034	< 0.84	0.458	5.30	0.0467	0.098	5.90	142
5/30/2018	DV	109	15.1	1.2	< 0.020	< 0.50	0.257	4.34	0.0592	0.080	6.70	121
5/30/2018	DV	103	11.6	1.1	< 0.020	< 0.50	0.272	4.05	0.0426	0.108	7.04	132
5/30/2018	DV	78, 65 ^a	7.0	ND	< 0.020	< 0.50	0.545	5.03	0.0589	0.136	6.19	182
5/30/2018	DV	97	7.8	0.9	< 0.020	< 0.50	0.558	5.04	0.0529	0.165	6.25	160
5/30/2018	DV	61, 63 ^a	4.1	ND	< 0.15	< 3.7	0.710	5.29	0.0511	0.170	7.30	158
5/30/2018	DV	92	6.5	0.8	< 0.020	< 0.50	0.512	5.74	0.0545	0.207	5.47	175
5/30/2018	DV	81	4.5	0.8	< 0.024	< 0.59	0.440	4.43	0.0496	0.080	6.50	150
5/30/2018	DV	106	12.2	1.0	< 0.020	< 0.50	0.284	4.91	0.0530	0.087	5.76	149

a Composite sample of two fish.

-continued-

Appendix D.1.-Continued.

	iluix D.			Canditian	Λ ~	Α	C1	C	TT.	DL	C-	7
Sample Date	Species	Length (mm)	(g)	Condition (<i>K</i>)	Ag (mg/kg)	As (mg/kg)	Cd (mg/kg)	Cu (mg/kg)	Hg (mg/kg)	Pb (mg/kg)	Se (mg/kg)	Zn (mg/kg)
6/6/2019	DV	122	22.9	1.3	< 0.020	< 0.50	0.237	4.07	0.0546	0.110	5.83	158
6/6/2019	DV	124	22.7	1.2	< 0.019	< 0.48	0.349	3.63	0.0440	0.082	5.87	117
6/6/2019	DV	155	42.5	1.1	< 0.020	< 0.50	0.514	5.79	0.0510	0.180	6.27	207
6/6/2019	DV	97	12.3	1.3	< 0.020	< 0.50	0.372	5.58	0.0341	0.137	7.32	156
6/6/2019	DV	121	20.8	1.2	< 0.020	< 0.49	0.353	2.87	0.0496	0.144	5.82	116
6/6/2019	DV	106	15.0	1.3	< 0.019	< 0.47	0.259	4.42	0.0540	0.168	6.95	134
6/6/2019	DV	105	13.6	1.2	< 0.020	< 0.49	0.300	3.37	0.0368	0.109	5.95	115
6/6/2019	DV	117	19.7	1.2	< 0.020	< 0.50	0.665	4.86	0.0428	0.206	6.02	150
6/6/2019	DV	141	27.1	1.0	< 0.019	< 0.48	0.440	4.87	0.0457	0.158	6.68	148
6/6/2019	DV	126	25.5	1.3	< 0.020	< 0.50	0.442	5.18	0.0549	0.129	5.69	188
6/3/2020	DV	115	14.8	1.0	< 0.020	< 0.49	0.223	4.15	0.0517	0.053	5.92	149
6/3/2020	DV	98	11.2	1.2	< 0.020	< 0.50	0.657	4.10	0.0412	0.051	5.55	134
6/3/2020	DV	110	15.4	1.2	< 0.020	< 0.50	0.29	4.03	0.0425	0.076	5.72	160
6/3/2020	DV	99	11.9	1.2	< 0.020	< 0.49	0.446	4.77	0.0455	0.178	6.75	132
6/3/2020	DV	123	19.9	1.1	< 0.019	< 0.49	0.467	4.91	0.0458	0.055	5.82	139
6/3/2020	DV	113	14.7	1.0	0.021	< 0.49	1.29	5.81	0.0429	0.120	6.50	144
6/3/2020	DV	107	14.0	1.1	< 0.020	< 0.50	0.309	4.36	0.0412	0.069	5.95	141
6/3/2020	DV	113	15.8	1.1	< 0.020	< 0.50	0.312	5.49	0.0509	0.085	5.95	143
6/3/2020	DV	112	15.6	1.1	< 0.020	< 0.50	0.359	3.43	0.0369	0.045	7.10	150
6/3/2020	DV	122	18.3	1.0	< 0.020	< 0.50	0.286	4.62	0.0537	0.097	6.00	146
6/16/2021	DV	113	13.5	0.9	< 0.020	< 0.49	1.05	6.69	0.0630	0.278	6.49	214
6/16/2021	DV	110	14.9	1.1	< 0.020	< 0.49	0.873	7.06	0.0476	0.357	5.57	216
6/16/2021	DV	142	30.6	1.1	< 0.020	< 0.49	0.404	4.17	0.0829	0.120	6.17	136
6/16/2021	DV	100	13.2	1.3	< 0.020	< 0.50	0.413	3.63	0.0551	0.094	5.68	124
6/16/2021	DV	103	14.2	1.3	< 0.019	< 0.49	0.375	3.76	0.0465	0.055	5.78	115
6/16/2021	DV	137	33.3	1.3	< 0.020	< 0.49	0.188	3.27	0.0573	0.078	4.66	119
6/16/2021	DV	138	27.9	1.1	< 0.020	< 0.50	0.556	4.41	0.0720	0.080	6.21	136
6/16/2021	DV	123	21.8	1.2	< 0.020	< 0.50	0.276	3.56	0.0430	0.063	6.64	106
6/16/2021	DV	149	34.9	1.1	< 0.020	< 0.50	0.351	4.34	0.0509	0.062	5.26	113
6/16/2021	DV	128	23.3	1.1	< 0.020	< 0.50	0.434	4.31	0.0443	0.170	4.85	105
6/13/2022	DV	133	35.5	1.5	< 0.020	< 0.50	0.447	4.08	0.0511	0.064	3.95	109
6/13/2022	DV	148	40.0	1.2	< 0.020	< 0.50	0.227	3.76	0.0737	0.031	5.14	133
6/13/2022	DV	93	9.2	1.1	< 0.020	< 0.50	0.360	3.31	0.0513	0.062	5.88	127
6/13/2022	DV	144	36.4	1.2	< 0.020	< 0.50	0.443	4.88	0.0482	0.052	5.18	121
6/13/2022	DV	113	17.3	1.2	< 0.020	< 0.50	0.595	3.55	0.0424	0.063	5.40	117
6/13/2022	DV	107	17.5	1.4	< 0.020	< 0.50	1.680	4.48	0.0473	0.220	5.89	124
6/13/2022	DV	100	13.2	1.3	0.053	< 0.50	0.876	6.58	0.0551	0.507	6.99	176
6/13/2022	DV	115	16.5	1.1	< 0.020	< 0.50	0.254	3.20	0.0612	0.060	5.27	115
6/13/2022	DV	107	16.0	1.3	< 0.020	< 0.50	1.020	5.07	0.0397	0.220	6.47	129
6/13/2022	DV	102	13.3	1.3	0.022	< 0.50	1.100	5.17	0.0479	0.150	6.13	147

-continued-

Appendix D.1.—Continued.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(K)	(mg/kg)							
6/7/2023	DV	130	27.9	1.3	< 0.020	< 0.49	0.281	4.59	0.0350	0.092	4.52	95.8
6/7/2023	DV	104	14.0	1.2	< 0.020	< 0.50	0.323	4.82	0.0516	0.188	5.72	133
6/7/2023	DV	136	29.5	1.2	< 0.020	< 0.49	0.252	3.19	0.0382	0.136	6.96	121
6/7/2023	DV	106	13.1	1.1	< 0.020	< 0.49	0.400	5.57	0.0415	0.273	5.55	197
6/7/2023	DV	105	13.8	1.2	< 0.020	< 0.50	0.270	9.55	0.0259	0.218	6.20	127
6/7/2023	DV	103	9.8	0.9	< 0.020	< 0.49	0.319	4.16	0.0382	0.162	6.17	126
6/7/2023	DV	115	14.9	1.0	< 0.020	< 0.49	0.806	4.31	0.0483	0.228	6.13	146
6/7/2023	DV	98	10.6	1.1	0.026	< 0.49	0.791	5.31	0.0496	0.240	5.79	143
6/7/2023	DV	112	17.6	1.3	< 0.020	< 0.50	0.487	5.91	0.0374	0.196	6.53	167
6/7/2023	DV	94	8.1	1.0	< 0.020	< 0.50	0.695	6.11	0.0548	0.220	4.81	155
6/20/2024	DV	118	18.8	1.1	< 0.051	0.31	0.233	4.13	0.0355	0.115	5.52	147
6/20/2024	DV	105	14.9	1.3	< 0.051	0.29	0.265	3.99	0.0292	0.129	5.77	104
6/20/2024	DV	96	10.1	1.1	< 0.051	0.20	0.270	3.78	0.0352	< 0.051	5.02	124
6/20/2024	DV	122	18.7	1.0	< 0.051	0.35	0.462	5.30	0.0321	0.209	5.47	189
6/20/2024	DV	85	7.8	1.3	< 0.051	0.34	0.474	4.06	0.0357	0.116	5.82	138
6/20/2024	DV	111	16.9	1.2	< 0.051	0.31	0.270	4.65	0.0380	0.164	5.88	147
6/20/2024	DV	108	15.7	1.2	< 0.051	0.28	0.259	4.41	0.0322	< 0.051	5.22	111
6/20/2024	DV	78	6.8	1.4	< 0.051	0.32	0.447	5.13	0.0434	0.168	4.07	132
6/20/2024	DV	128	23.1	1.1	< 0.051	0.26	0.402	4.89	0.0326	0.084	5.23	128
6/20/2024	DV	136	30.5	1.2	< 0.051	0.26	0.254	4.09	0.0393	< 0.051	4.55	112

Appendix D.2.-Middle Glacier Creek whole body fish element concentrations, 2016-2024.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(K)	(mg/kg)							
6/8/2016	DV	150	36.0	1.1	0.031	< 0.48	0.605	3.37	0.0429	0.069	5.66	143
6/8/2016	DV	108	15.9	1.3	< 0.020	< 0.50	0.327	4.33	0.0337	0.183	6.91	147
6/8/2016	DV	123	26.5	1.4	< 0.020	< 0.50	0.683	3.83	0.0301	0.717	5.64	117
6/8/2016	DV	73	5.2	1.3	< 0.020	< 0.49	0.288	4.99	0.0260	0.128	3.94	128
6/8/2016	DV	180	66.7	1.1	< 0.020	< 0.50	0.329	3.11	0.0376	0.061	5.17	132
6/8/2016	DV	77	6.0	1.3	< 0.020	< 0.50	0.215	3.53	0.0259	0.259	4.80	146
6/8/2016	DV	83	7.8	1.4	< 0.020	< 0.50	0.280	3.75	0.0247	0.182	6.05	132
6/8/2016	DV	146	31.5	1.0	< 0.020	< 0.50	0.521	2.50	0.0299	0.062	4.90	103
6/8/2016	DV	83	7.0	1.2	< 0.020	< 0.50	0.678	2.56	0.0328	0.046	4.66	139
6/8/2016	DV	70	5.0	1.5	0.682	< 0.50	0.257	2.63	0.0184	0.036	6.29	133
6/9/2017	DV	154	45.5	1.2	< 0.020	< 0.50	0.267	3.29	0.0364	0.036	5.14	116
6/9/2017	DV	130	24.3	1.1	< 0.020	< 0.50	0.333	3.23	0.0343	0.056	6.86	95
6/9/2017	DV	210	115.0	1.2	< 0.020	< 0.50	0.758	7.67	0.0701	0.031	6.34	161
6/9/2017	DV	141	34.7	1.2	< 0.020	< 0.50	0.291	3.33	0.0430	0.037	8.02	126
6/9/2017	DV	131	24.3	1.1	< 0.020	< 0.50	0.299	3.26	0.0385	0.100	6.10	128
6/9/2017	DV	90	7.4	1.0	< 0.020	< 0.50	0.343	2.40	0.0361	0.034	6.86	101
5/31/2018	DV	171	55.9	1.1	< 0.020	< 0.50	0.696	15.20	0.0641	0.080	6.56	176
5/31/2018	DV	138	28.3	1.1	< 0.020	< 0.50	0.541	6.22	0.0659	0.044	5.30	114
5/31/2018	DV	58, 57 ^a	4.2	ND	< 0.082	< 2.0	0.357	4.25	0.0191	0.087	4.90	114
5/31/2018	DV	188	76.2	1.1	0.027	< 0.50	0.889	12.70	0.0487	0.143	6.22	140
5/31/2018	DV	175	58.1	1.1	< 0.020	< 0.50	0.612	5.47	0.0296	0.107	5.20	108
5/31/2018	DV	100	11.2	1.1	0.029	< 0.50	0.802	5.07	0.0676	0.122	6.72	146
6/7/2019	DV	65, 65 ^a	8.3	ND	< 0.020	< 0.50	0.501	3.89	0.0157	0.053	5.81	117
6/7/2019	DV	72, 70 ^a	10.2	ND	< 0.020	< 0.50	0.615	3.91	0.0241	0.073	5.30	101
6/7/2019	DV	141	36.9	1.3	< 0.019	< 0.48	0.354	3.16	0.0468	< 0.019	5.46	116
6/7/2019	DV	185	88.4	1.4	< 0.020	< 0.49	0.785	3.42	0.1060	0.050	5.16	161
6/7/2019	DV	67, 69 ^a	8.6	ND	< 0.020	< 0.50	0.438	3.55	0.0199	0.109	5.60	105
6/7/2019	DV	166	47.4	1.0	< 0.019	< 0.48	0.280	3.73	0.0528	0.091	5.47	115
6/7/2019	DV	87	8.7	1.3	< 0.019	< 0.48	0.231	2.39	0.0260	0.028	5.54	89
6/7/2019	DV	100	14.9	1.5	< 0.020	< 0.49	0.260	3.41	0.0356	0.163	5.43	100
6/7/2019	DV	75, 77 ^a	11.6	ND	0.984	< 0.48	0.337	3.94	0.0254	0.179	5.18	106
6/7/2019	DV	75, 75 ^a	8.4	ND	< 0.019	< 0.48	0.547	3.68	0.0331	0.120	5.25	89

a Composite sample of two fish.

-continued-

Appendix D.2.–Continued.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(K)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
6/2/2020	DV	141	30.3	1.1	< 0.019	< 0.49	0.251	3.45	0.0465	0.054	5.38	162
6/2/2020	DV	142	35.4	1.2	< 0.020	< 0.50	0.182	3.73	0.0396	0.127	4.12	125
6/2/2020	DV	118	20.1	1.2	< 0.020	< 0.49	0.344	4.97	0.0327	0.219	5.04	131
6/2/2020	DV	108	14.4	1.1	< 0.020	< 0.49	0.373	5.07	0.0326	0.216	4.81	144
6/2/2020	DV	119	18.4	1.1	< 0.020	< 0.49	0.314	4.19	0.0302	0.094	5.55	112
6/2/2020	DV	111	14.6	1.1	< 0.019	< 0.49	0.249	3.79	0.0326	0.151	4.94	129
6/15/2021	DV	140	37.2	1.4	0.022	< 0.50	1.11	9.25	0.0503	0.170	5.21	132
6/15/2021	DV	148	51.0	1.6	< 0.020	< 0.50	0.431	4.95	0.0505	0.080	4.30	99
6/15/2021	DV	158	48.2	1.2	< 0.020	< 0.49	0.348	6.37	0.0656	0.057	4.87	136
6/15/2021	DV	163	54.0	1.2	< 0.020	< 0.49	0.204	3.95	0.0416	0.031	4.50	89
6/15/2021	DV	135	32.8	1.3	< 0.020	< 0.49	0.286	5.99	0.0574	0.095	4.68	111
6/14/2022	DV	95	10.0	1.2	< 0.020	< 0.49	0.400	3.5	0.0132	0.038	5.44	94
6/6/2023	DV	153	47.2	1.3	0.021	< 0.50	0.485	4.20	0.0402	0.110	4.8	119
6/6/2023	DV	105	17.9	1.5	< 0.020	< 0.49	0.453	3.99	0.0215	0.104	4.24	107
6/6/2023	DV	148	43.0	1.3	0.022	< 0.50	0.958	3.85	0.0416	0.076	4.18	95
6/6/2023	DV	144	33.7	1.1	0.031	< 0.49	0.569	4.16	0.0610	0.416	4.46	109
6/6/2023	DV	95	9.9	1.2	< 0.020	< 0.49	0.406	4.39	0.0178	0.087	6.87	119
6/20/2024	DV	140	37.8	1.4	< 0.053	0.28	0.529	4.96	0.0336	< 0.053	6.25	113
6/20/2024	DV	122	22.5	1.2	< 0.051	0.26	0.548	4.40	< 0.0100	< 0.051	5.97	137
6/20/2024	DV	105	12.9	1.1	< 0.051	0.27	0.429	4.33	< 0.0100	< 0.051	6.01	123
6/20/2024	DV	76	5.6	1.3	< 0.053	0.24	0.277	3.38	0.0305	< 0.053	4.47	133
6/20/2024	DV	81	5.6	1.1	< 0.050	0.24	0.307	4.32	0.0271	< 0.050	5.68	145
6/20/2024	DV	93	9.1	1.1	< 0.053	0.17	0.148	2.88	0.0335	< 0.053	4.55	116

Appendix D.3.-Lower Sarah Creek whole body fish element concentrations, 2024.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(<i>K</i>)	(mg/kg)							
6/20/2024	CO	82	6.6	1.2	< 0.051	0.19	0.144	4.10	0.02924	< 0.051	5.68	117
6/20/2024	DV	97	9.2	1.0	< 0.051	0.14	0.270	3.06	0.04231	0.256	5.00	173
6/20/2024	DV	94	11.3	1.4	< 0.051	0.26	0.224	4.20	0.0711	0.116	5.46	120
6/20/2024	DV	90	9.8	1.3	< 0.050	0.17	0.076	2.39	0.06626	< 0.050	4.76	108
6/20/2024	DV	75	4.8	1.1	< 0.050	0.21	0.175	5.35	0.04781	0.1329	5.79	131
6/20/2024	DV	76	5.0	1.1	< 0.050	0.21	0.100	3.99	0.09867	0.1283	5.09	139

Appendix D.4.-Upper Sarah Creek whole body fish element concentrations, 2024.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(<i>K</i>)	(mg/kg)							
6/20/2024	DV	110	13.1	1.0	< 0.050	0.12	0.352	3.68	0.03276	< 0.050	8.10	131
6/20/2024	DV	111	15.5	1.1	< 0.051	0.28	0.297	3.45	0.02926	< 0.051	4.59	148
6/20/2024	DV	99	8.3	0.9	< 0.050	0.21	0.265	3.54	0.03151	< 0.050	9.37	145
6/20/2024	DV	88	6.9	1.0	< 0.051	0.23	0.271	3.69	0.03592	< 0.051	4.16	100
6/20/2024	DV	103	9.7	0.9	< 0.050	0.29	0.245	4.10	0.02576	< 0.050	3.41	124
6/20/2024	DV	84	5.6	0.9	< 0.050	0.21	0.385	4.58	0.03611	< 0.050	4.68	138
6/20/2024	DV	125	24.1	1.2	< 0.051	0.19	0.340	5.44	0.04956	< 0.051	3.72	140
6/20/2024	DV	86	7.7	1.2	< 0.051	0.29	0.300	3.16	0.03482	< 0.051	4.91	137
6/20/2024	DV	80	6.0	1.2	< 0.051	0.34	0.198	2.53	0.02546	< 0.051	4.10	124
6/20/2024	DV	108	12.2	1.0	< 0.051	0.15	0.288	3.47	0.03864	< 0.051	6.64	170

Appendix D.5.-Plateau Creek whole body fish element concentrations, 2024.

Sample		Length	Weight	Condition	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
Date	Species	(mm)	(g)	(<i>K</i>)	(mg/kg)							
6/19/2024	DV	120	17.4	1.0	< 0.051	0.25	0.328	3.50	0.07468	0.127	2.51	144
6/19/2024	DV	90	6.1	0.8	< 0.050	0.24	0.500	4.05	0.0615	< 0.050	3.66	144
6/19/2024	CT	99	9.9	1.0	< 0.050	0.23	0.459	3.96	0.0536	< 0.050	2.72	132
6/19/2024	CT	104	10.4	0.9	< 0.051	0.22	0.756	4.57	0.0560	< 0.051	3.12	136
6/19/2024	CT	85	5.5	0.9	< 0.051	0.32	0.491	3.62	0.05405	0.12748	3.23	124
6/19/2024	CT	100	10.1	1.0	< 0.051	0.13	0.356	3.38	0.06211	< 0.051	3.45	127
6/19/2024	CT	113	15.0	1.0	< 0.051	0.19	0.465	3.99	0.06372	< 0.051	3.08	123
6/19/2024	DV	91	7.3	1.0	< 0.051	0.19	0.474	3.89	0.0939	< 0.051	2.23	100
6/19/2024	CT	94	7.6	0.9	< 0.051	0.18	0.393	4.02	0.0783	< 0.051	2.22	119
6/19/2024	CT	110	12.5	0.9	< 0.050	0.26	0.859	5.45	0.08273	< 0.050	3.78	122

ANALYTICAL REPORT

Alaska State Environmental Health Laboratory 5251 Dr. Martin Luther King Jr. A ue Anchorage, AK 99507

www.dec.alaska.gov/eh/lab

Work Order Number: 2410018

Project Name: Palmer Project at Haines

For:

Constantine PO Box 315 Haines, AK 99827

Attn: Kris Benusa

Patryce D. McKinney

Chief, Environmental Health

Laboratory

patryce.mckinney@alaska.gov

THE THE PARTY OF T

Report Date: 12/24/2024

The results in this report apply to the samples analyzed in acc rdance with the sample submission form. This analytical report must be reproduced in its entirety. This report has been electronically signed and authorized by the signatory.

Sample Summary

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/2024 12:07

Lab Sample ID	Client Sample ID	Cooler	T mp C	Collected	Received
2410018-01	LGC 1	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-02	LGC 2	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-03	LGC 3	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-04	LGC 4	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-05	LGC 5	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-06	LGC 6	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-07	LGC 7	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-08	LGC 8	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-09	LGC 9	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-10	LGC 10	Default Cooler	2.3	20/24 8:00 am	10/4/24 8:00 am
2410018-11	PLAT 1	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-12	PLAT 2	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-13	PLAT 3	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-14	PLAT 4	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-15	PLAT 5	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-16	PLAT	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-17	PLAT 7	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-18	PLAT 8	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-19	PLAT 9	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am
2410018-20	PLAT 10	Default Cooler	2.3	19/24 8:00 pm	10/4/24 8:00 am

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Methods

All samples were analyzed and conform with the following methods unless otherwise specified in the Case Narrative:

*** DEFAULT SPECIFIC METHOD *** Fish prep SM 2540 G SW 3051A/6020A SW 7473

Case Narrative

SM 2540 for total solids has a hold time of 7 days. These sample arrived outside of holdtime and are flagged HT-REC.

Samples in the batch where there zinc was found in the associated blank and in the sample are flagged with B. The sample results are more than 30 times the blank, therefore no impact on data usability.

Notes and Definitions

Detected but below the Reporting Limit: therefore, result is an estimated concentration

HT-REC The sample arrival time caused Hold Time limit to be exceeded.

B-01 Analyte is found in the associated blank as well as in the sample. However, the value in the blank is less than 5% of

the value in the sample, therefore no impact on data usability.

В Analyte is found in the associated blank as well as in the sample.

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 1 Lab Sample ID: 2410018-01 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0808	.0508	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.0603	.0508	0.0165	g/kg	"	"	"	"	"	
opper	1.07	.0508	0.0174	g/kg	"	"	"	"	"	
Lead	0.0298	.0508	.0221	g/kg	"	"	"	"	"	J
Mer ury	0.00920	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.43	.0508	0.0 722	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0508	0.0344	g/kg	"	"	"	"	"	
Zinc	38.0	.508	0.147	g/kg	"	"	"	"	"	
Solids	25.9	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 2 Lab Sample ID: 2410018-02 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0741	.0506	0.0112	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.0671	.0506	0.0164	g/kg	"	"	"	"	"	
opper	1.01	.0506	0.0173	g/kg	"	"	"	"	"	
Lead	0.0326	.0506	.0219	g/kg	"	"	"	"	"	J
Mer ury	0.00740	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.46	.0506	0.0 718	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0506	0.0342	g/kg	"	"	"	"	"	
Zinc	26.2	.506	0.147	g/kg	"	"	"	"	"	
Solids	25.3	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 3 Lab Sample ID: 2410018-03 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0486	.0509	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0667	.0509	.0165	g/kg	"	"	"	"	"	
Copper	0.933	0.0509	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0509	.0221	g/kg	"	"	"	"	"	
Mer ury	0.00870	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	J
Selenium	1.24	.0509	.0 723	g/kg	"	B24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0509	.0344	g/kg	"	"	"	"	"	
Zinc	30.6	.509	.148	g/kg	"	"	"	"	"	
% Solids	24.7	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 4 Lab Sample ID: 2410018-04 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0809	.0509	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.108	.0509	0.0165	g/kg	"	"	"	"	"	
opper	1.24	.0509	0.0174	g/kg	"	"	"	"	"	
Lead	0.0490	.0509	.0221	g/kg	"	"	"	"	"	J
Mer ury	0.00750	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.28	.0509	0.0 723	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0509	0.0344	g/kg	"	"	"	"	"	
Zinc	44.3	.509	0.148	g/kg	"	"	"	"	"	
Solids	23.4	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 5 Lab Sample ID: 2410018-05 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0844	.0504	0.0112	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.118	.0504	0.0163	g/kg	"	"	"	"	"	
opper	1.01	.0504	0.0172	g/kg	"	"	"	"	"	
Lead	0.0288	.0504	.0219	g/kg	"	"	"	"	"	J
Mer ury	0.00890	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.45	.0504	0.0 716	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0504	0.0341	g/kg	"	"	"	"	"	
Zinc	34.3	.504	0.146	g/kg	"	"	"	"	"	
Solids	24.9	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 6 Lab Sample ID: 2410018-06 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0750	.0510	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.0661	.0510	.0165	g/kg	"	"	"	"	"	
opper	1.14	.0510	.0174	g/kg	"	"	"	"	"	
Lead	0.0401	.0510	.0221	g/kg	"	"	"	"	"	J
Mer ury	0.00930	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.44	.0510	.0 724	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0510	.0345	g/kg	"	"	"	"	"	
Zinc	6.0	.510	.148	g/kg	"	"	"	"	"	
Solids	24.5	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 7 Lab Sample ID: 2410018-07 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0680	.0508	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Cadmium	0.0634	0.0508	.0165	g/kg	"	"	"	"	"	
Copper	1.08	0.0508	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0508	.0221	g/kg	"	"	"	"	"	
Mer ury	0.00790	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	J
Selenium	1.28	.0508	.0 722	g/kg	"	B24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0508	.0344	g/kg	"	"	"	"	"	
Zinc	27.1	.508	.147	g/kg	"	"	"	"	"	
% Solids	24.5	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 8 Lab Sample ID: 2410018-08 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0722	.0507	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.102	.0507	0.0164	g/kg	"	"	"	"	"	
opper	1.17	.0507	0.0173	g/kg	"	"	"	"	"	
Lead	0.0383	.0507	.0220	g/kg	"	"	"	"	"	J
Mer ury	0.00990	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	0.928	.0507	0.0 720	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0507	0.0343	g/kg	"	"	"	"	"	
Zinc	30.1	.507	0.147	g/kg	"	"	"	"	"	
Solids	22.8	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 9 Lab Sample ID: 2410018-09 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0686	.0505	0.0112	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.106	.0505	0.0163	g/kg	"	"	"	"	"	
opper	1.29	.0505	0.0173	g/kg	"	"	"	"	"	
Lead	0.0223	.0505	.0219	g/kg	"	"	"	"	"	J
Mer ury	0.00860	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	J
Selenium	1.38	.0505	0.0 716	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0505	0.0341	g/kg	"	"	"	"	"	
Zinc	3.9	.505	0.146	g/kg	"	"	"	"	"	
Solids	26.4	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: LGC 10 Lab Sample ID: 2410018-10 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0678	.0505	0.0112	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Cadmium	0.0653	0.0505	.0164	g/kg	"	"	"	"	"	
Copper	1.05	0.0505	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0505	.0219	g/kg	"	"	"	"	"	
Mer ury	0.0101	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	
Selenium	1.17	.0505	.0 717	g/kg	"	B24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0505	.0341	g/kg	"	"	"	"	"	
Zinc	28.8	.505	.146	g/kg	"	"	"	"	"	
% Solids	25.7	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 1 Lab Sample ID: 2410018-11 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0584	.0509	0.0113	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
admium	0.0778	.0509	0.0165	g/kg	"	"	"	"	"	
opper	0.830	.0509	0.0174	g/kg	"	"	"	"	"	
Lead	0.0302	.0509	.0221	g/kg	"	"	"	"	"	J
Mer ury	0.0177	.010	.0 480	g/kg	"	24J017	09-Oct-24	09-Oct-24	SW 7473	
Selenium	0.595	.0509	0.0 723	g/kg	"	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	.0509	0.0344	g/kg	"	"	"	"	"	
Zinc	34.2	.509	0.148	g/kg	"	"	"	"	"	
Solids	23.7	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 2 Lab Sample ID: 2410018-12 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0552	.0504	0.0112	g/kg	1	24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Cadmium	0.113	0.0504	.0163	g/kg	"	"	"	"	"	
Copper	0.915	0.0504	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0504	.0219	g/kg	"	"	"	"	"	
Mer ury	0.0139	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	
Selenium	0.828	.0504	.0 715	g/kg	"	B24J095	28-Oct-24	14-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0504	.0341	g/kg	"	"	"	"	"	
Zinc	32.6	.504	.146	g/kg	"	"	"	"	"	
% Solids	22.6	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 3 Lab Sample ID: 2410018-13 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0511	.0502	0.0111	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.102	0.0502	.0163	g/kg	"	"	"	"	"	
Copper	0.880	0.0502	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0502	.0218	g/kg	"	"	"	"	"	
Mer ury	0.0119	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	
Selenium	0.604	.0502	.0 713	g/kg	"	B24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0502	.0339	g/kg	"	"	"	"	"	
Zinc	29.4	.502	.146	g/kg	"	"	"	"	"	
% Solids	22.2	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 4 Lab Sample ID: 2410018-14 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0505	.0505	0.0112	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.177	0.0505	.0164	g/kg	"	"	"	"	"	
Copper	1.07	0.0505	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0505	.0219	g/kg	"	"	"	"	"	
Mer ury	0.0131	.010	0.0 480	g/kg	"	24J017	9-Oct-24	9-Oct-24	SW 7473	
Selenium	0.730	.0505	.0 717	g/kg	"	B24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0505	.0341	g/kg	"	"	"	"	"	
Zinc	31.8	.505	.146	g/kg	"	"	"	"	"	
% Solids	23.4	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 5 Lab Sample ID: 2410018-15 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0701	.0509	0.0113	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
admium	0.109	.0509	0.0165	g/kg	"	"	"	"	"	
opper	0.803	.0509	0.0174	g/kg	"	"	"	"	"	
Lead	0.0283	.0509	.0221	g/kg	"	"	"	"	"	J
Mer ury	0.0120	.010	.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.718	.0509	0.0 723	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	.0509	0.0344	g/kg	"	"	"	"	"	
Zinc	27.6	.509	0.148	g/kg	"	"	"	"	"	
Solids	22.2	.10		% by weight	1	B24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 6 Lab Sample ID: 2410018-16 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0300	.0508	0.0113	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0809	.0508	.0165	g/kg	"	"	"	"	"	
Copper	0.767	0.0508	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0508	.0220	g/kg	"	"	"	"	"	
Mer ury	0.0141	.010	0.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.784	.0508	.0 721	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0508	.0343	g/kg	"	"	"	"	"	
Zinc	28.8	.508	.147	g/kg	"	"	"	"	"	
% Solids	22.7	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 7 Lab Sample ID: 2410018-17 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0438	.0508	0.0113	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	J
Cadmium	0.105	.0508	.0164	g/kg	"	"	"	"	"	
Copper	0.902	0.0508	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0508	.0220	g/kg	"	"	"	"	"	
Mer ury	0.0144	.010	0.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.697	.0508	.0 721	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0508	.0343	g/kg	"	"	"	"	"	
Zinc	27.8	.508	.147	g/kg	"	"	"	"	"	
% Solids	22.6	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 8 Lab Sample ID: 2410018-18 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0399	.0506	0.0112	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	J
Cadmium	0.101	.0506	.0164	g/kg	"	"	"	"	"	
Copper	0.828	0.0506	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0506	.0220	g/kg	"	"	"	"	"	
Mer ury	0.0200	.010	0.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.476	.0506	.0 719	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0506	.0342	g/kg	"	"	"	"	"	
Zinc	21.3	.506	.147	g/kg	"	"	"	"	"	
% Solids	21.3	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 9 Lab Sample ID: 2410018-19 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0382	.0508	0.0113	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0833	.0508	.0165	g/kg	"	"	"	"	"	
Copper	0.852	0.0508	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0508	.0220	g/kg	"	"	"	"	"	
Mer ury	0.0166	.010	0.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.471	.0508	.0 721	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0508	.0343	g/kg	"	"	"	"	"	
Zinc	25.2	.508	.147	g/kg	"	"	"	"	"	
% Solids	21.2	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410018
Project: Palmer Project at Haines Report Date: 12/24/24 12:07

Client Sample ID: PLAT 10 Lab Sample ID: 2410018-20 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0578	.0503	0.0112	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.189	0.0503	.0163	g/kg	"	"	"	"	"	
Copper	1.20	0.0503	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0503	.0218	g/kg	"	"	"	"	"	
Mer ury	0.0182	.010	0.0 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.831	.0503	.0 714	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0503	.0340	g/kg	"	"	"	"	"	
Zinc	26.9	.503	.146	g/kg	"	"	"	"	"	
% Solids	22.0	0.10		% by weight	1	24J098	19-Nov-24	20-Nov-24	SM 2540 G	HT-RE C

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B24J017 - EPA 7473										
Blank (B24J017-BLK1)				Prepared &	Analyzed:	09-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J017-BLK2)				Prepared &	Analyzed:	09-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J017-BLK3)				Prepared &	Analyzed:	09-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J017-BLK4)				Prepared &	Analyzed:	09-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J017-BLK5)				Prepared &	Analyzed:	09-Oct-24				
Mercury	ND	0.010	g/kg							
Duplicate (B24J017-DUP1)	Sour	ce: 2408112-0)3	Prepared &	Analyzed:	09-Oct-24				
Mercury	.0 720	.010	g/kg		.0 750			4	20	J
Duplicate (B24J017-DUP2)	Sour	e: 2410018-0	9	Prepared &	Analyzed:	09-Oct-24				
Mercury	.0 860	.010	g/kg	-	.0 860				20	J
MRL heck (B24J017-MRL1)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.0 760	.010	g/kg	.010 11	<u> </u>	76	70-130			J
Matrix Spike (B24J017-MS1)	Sour	ce: 2408112-()3	Prepared & Analyzed: 09-Oct-24						
Mercury	.267	0.010	g/kg	.24174	0.0 750	107	71-124			
Matrix Spike Dup (B24J017-MSD1)	Sour	ce: 2408112-()3	Prepared & Analyzed: 09-Oct-24						
Mercury	.276	0.010	g/kg	.24713	0.0 750	109	71-124	3	20	

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Metals - Quality Control

Alaska State Environmental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J017 - EPA 7473										
Reference (B24J017-SRM1)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.30	.010	g/kg	.3160		95	90-11			
Reference (B24J017-SRM2)	Prepared & Analyzed: 09-Oct-24									
Mercury	.333	0.010	g/kg	.3160		105	90-11			
Reference (B24J017-SRM3)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.296	0.010	g/kg	.3160		94	80-120			
Reference (B24J017-SRM4)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.327	0.010	g/kg	.3160	•	103	80-120			
Reference (B24J017-SRM5)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.292	0.010	g/kg	.3160		92	80-120			
Reference (B24J017-SRM6)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.335	0.010	g/kg	.3160		106	80-120			
Reference (B24J017-SRM7)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.296	0.010	g/kg	.3160		94	80-120			
Reference (B24J017-SRM8)				Prepared &	Analyzed:	09-Oct-24				
Mercury	.329	0.010	g/kg	.3160		104	80-120			
Batch B24J042 - EPA 7473										
Blank (B24J042-BLK1)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Work Order: 2410018 %REC RPD Reporting Spike Source RPD Analyte Result Limit Units Level Result %REC Limits Limit Notes

Allaryte	Result	Liiiit	Omis	LCVCI	Result	70ICEC	Lillits	KI D	Liiiit	Notes
Batch B24J042 - EPA 7473										
Blank (B24J042-BLK2)				Prepared &	Analyzed:					
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK3)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK4)				Prepared & Analyzed: 10-Oct-24						
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK5)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Duplicate (B24J042-DUP1)	Sour	Sour e: 2410018-17			Analyzed:	10-Oct-24				
Mercury	.0143	0.010	g/kg		.0144			.7	20	
Duplicate (B24J042-DUP2)	Sour	e: 2410019-	03	Prepared &	Analyzed:	10-Oct-24				
Mercury	.0 760	.010	g/kg		.0 750			1	20	J
MRL heck (B24J042-MRL1)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.0 780	.010	g/kg	.010 11		78	70-130			J
Matrix Spike (B24J042-MS1)	Sour	e: 2410018-	17	Prepared &	Analyzed:	10-Oct-24				
Mercury	.271	0.010	g/kg	.24256	0.0144	106	71-124			
Matrix Spike Dup (B24J042-MSD1)	Sour	e: 2410018-	17	Prepared &	Analyzed:	10-Oct-24				
Mercury	.282	0.010	g/kg	.24836	0.0144	108	71-124	4	20	
Reference (B24J042-SRM1)				Prepared & Analyzed: 10-Oct-24						
Mercury	.292	0.010	g/kg	.3160		92	90-110			

Alaska State Environmental Health Laboratory

The results in this re $\ rt$ apply to the samples analyzed in acc $\ ordance \ with the$ chain of custody document. This analytical report must be repr duced in its entirety.

%REC RPD Reporting Spike Source Result Limit Level %REC RPD Analyte Units Result Limits Limit Notes Batch B24J042 - EPA 7473 Reference (B24J042-SRM2) Prepared & Analyzed: 10-Oct-24 .333 0.010 g/kg Mercury 90-11 Reference (B24J042-SRM3) Prepared & Analyzed: 10-Oct-24 Mercury .297 0.010 g/kg 80-120 Reference (B24J042-SRM4) Prepared & Analyzed: 10-Oct-24 Mercury .329 0.010 g/kg .3160 80-120 Reference (B24J042-SRM5) Prepared & Analyzed: 10-Oct-24 Mercury .290 .010 .3160 80-120 g/kg Reference (B24J042-SRM6) Prepared & Analyzed: 10-Oct-24 Mercury .329 0.010 .3160 80-120 g/kg Reference (B24J042-SRM7) Prepared & Analyzed: 10-Oct-24 .297 0.010 .3160 80-120 g/kg Reference (B24J042-SRM8) Prepared & Analyzed: 10-Oct-24 .323 .3160 Mercury 0.010 g/kg 102 80-120 Batch B24J095 - SW 3051 Blank (B24J095-BLK1) Prepared: 28-Oct-24 Analyzed: 14-Nov-24 ND 0.050 Arsenic g/kgCadmium ND .050 Copper ND .050 Lead ND .050 Selenium ND .050 ND .050 Silver

0.516

.50

Alaska State Environmental Health Laboratory

Zinc

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

-01

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B24J095 - SW 3051										
LCS (B24J095-BS1)				Prepared: 2	8-Oct-24	Analyzed: 1	4-Nov-24			
Arsenic	9.57	0.050	g/kg	10.0		96	80-120			
Cadmium	9.57	0.050	"	10.0		96	80-120			
Copper	9.69	0.050	"	10.0		97	80-120			
Lead	9.75	0.050	"	10.0		98	80-120			
Selenium	9.36	0.050	"	10.0		94	80-120			
Silver	9.70	.050	"	10.0		97	80-120			
Zinc	192	0.50	"	199.81		96	80-120			
LCS Dup (B24J095-BSD1)	Prepared: 28-Oct-24 Analyzed: 14-Nov-24									
Arsenic	9.76	0.050	g/kg	10.0		98	80-120	2	20	
Cadmium	9.79	0.050	"	10.0		98	80-120	2	20	
Copper	9.87	0.050	"	10.0		99	80-120	2	20	
Lead	9.88	0.050	"	10.0		99	80-120	1	20	
Selenium	9.53	0.050	"	10.0		95	80-120	2	20	
Silver	9.88	0.050	"	10.0		99	80-120	2	20	
Zinc	196	0.50	"	199.81		98	80-120	2	20	
MRL heck (B24J095-MRL1)				Prepared: 2	8-Oct-24 A	Analyzed: 1	4-Nov-24			
Arsenic	.0453	0.050	g/kg	0.050 24		91	70-130			J
Cadmium	.0484	0.050	"	0.050 24		97	70-130			J
Copper	.0536	0.050	"	0.050 24		107	70-130			
Lead	.0489	0.050	"	0.050 24		98	70-130			J
Selenium	.0463	0.050	"	0.050 24		93	70-130			J
Silver	.0519	0.050	"	0.050 24		104	70-130			
Zinc	1.0	.50	"	.99908		10	70-130			
Matrix Spike (B24J095-MS1)	Sou	r e: 2410018-0	4	Prepared: 2	8-Oct-24 A	Analyzed: 1	4-Nov-24			
Arsenic	10.4	0.0507	g/kg	10.142	0.0809	102	75-125			
Cadmium	10.0	.0507	"	10.142	0.108	97	75-125			
Copper	11.0	.0507	"	10.142	1.24	97	75-125			
Lead	9.74	0.0507	"	10.142	0.0490	96	75-125			
Selenium	12.1	0.0507	"	10.142	1.28	107	75-125			
Silver	9.84	0.0507	"	10.142	ND	97	75-125			
Zinc	237	0.507	"	202.65	44.3	95	75-125			

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B24J095 - SW 3051										
Matrix Spike Dup (B24J095-MSD1)	Sou	ır e: 2410018-0)4	Prepared: 2	28-Oct-24 A	Analyzed: 1	4-Nov-24			
Arsenic	11.0	.0506	g/kg	10.119	0.0809	108	75-125	6	20	
Cadmium	10.2	0.0506	"	10.119	0.108	10	75-125	2	20	
Copper	11.2	0.0506	"	10.119	1.24	98	75-125	1	20	
Lead	9.92	0.0506	"	10.119	0.0490	98	75-125	2	20	
Selenium	13.2	0.0506	"	10.119	1.28	118	75-125	8	20	
Silver	10.0	.0506	"	10.119	ND	99	75-125	2	20	
Zinc	240	.506	"	202.20	44.3	97	75-125	1	20	
Batch B24J096 - SW 3051										
Blank (B24J096-BLK1)				Prepared: 2	29-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	ND	0.050	g/kg							
Cadmium	ND	.050	"							
Copper	ND	.050	"							
Lead	ND	.050	"							
Selenium	ND	.050	"							
Silver	ND	.050	"							
Zinc	ND	.50	"							
LCS (B24J096-BS1)				Prepared: 2	29-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	9.94	0.050	g/kg	10.0		99	80-120			
Cadmium	9.86	.050	"	10.0		99	80-120			
Copper	10.0	.050	"	10.0		10	80-120			
Lead	10.2	.050	"	10.0		102	80-120			
Selenium	9.74	.050	"	10.0		97	80-120			
Silver	9.86	.050	"	10.0		99	80-120			
Zinc	197	.50	"	199.81		99	80-120			

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B24J096 - SW 3051											
LCS Dup (B24J096-BSD1)				Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24				
Arsenic	9.88	0.050	g/kg	10.0		99	80-120	.5	20		
Cadmium	9.95	0.050	"	10.0		99	80-120	.9	20		
Copper	10.1	0.050	"	10.0		101	80-120	.4	20		
Lead	10.2	0.050	"	10.0		102	80-120	.5	20		
Selenium	9.65	0.050	"	10.0		96	80-120	1	20		
Silver	9.94	0.050	"	10.0		99	80-120	.9	20		
Zine	197	0.50	"	199.81		99	80-120	.2	20		
MRL heck (B24J096-MRL1)	Prepared: 29-Oct-24 Analyzed: 15-Nov-24										
Arsenic	.0468	0.050	g/kg	0.050 24		94	70-130			J	
Cadmium	.0502	0.050	"	0.050 24		10	70-130				
Copper	.0515	0.050	"	0.050 24		103	70-130				
Lead	.0501	0.050	"	0.050 24		10	70-130				
Selenium	.0474	0.050	"	0.050 24		95	70-130			J	
Silver	.0512	0.050	"	0.050 24		102	70-130				
Zinc	1.01	0.50	"	.99908		101	70-130				
Matrix Spike (B24J096-MS1)	Sou	r e: 2410018-2	0	Prepared: 2	pared: 29-Oct-24 Analyzed: 15-Nov-24						
Arsenic	11.0	.0510	g/kg	10.192	0.0578	107	75-125				
Cadmium	10.4	0.0510	"	10.192	0.189	10	75-125				
Copper	11.1	0.0510	"	10.192	1.20	97	75-125				
Lead	10.1	0.0510	"	10.192	ND	99	75-125				
Selenium	12.5	0.0510	"	10.192	0.831	115	75-125				
Silver	10.0	.0510	"	10.192	ND	98	75-125				
Zinc	228	0.510	"	203.64	26.9	99	75-125				
Matrix Spike Dup (B24J096-MSD1)	Sou	r e: 2410018-2	0	Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24				
Arsenic	10.5	0.0507	g/kg	10.146	0.0578	103	75-125	4	20		
Cadmium	10.3	0.0507	"	10.146	0.189	10	75-125	1	20		
Copper	10.9	0.0507	"	10.146	1.20	95	75-125	2	20		
Lead	9.92	0.0507	"	10.146	ND	98	75-125	2	20		
Selenium	11.6	0.0507	"	10.146	0.831	106	75-125	7	20		
Silver	9.97	0.0507	"	10.146	ND	98	75-125	.5	20		
Zinc	224	0.507	"	202.73	26.9	97	75-125	2	20		

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Classical Chemistry Parameters - Quality Control Alaska State Environmental Health Laboratory

	Reporting		Spike	Source		%REC		RPD	
Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
			Prepared: 1	19-Nov-24	Analyzed:	20-Nov-24			
ND	0.10	% by weight							
			Prepared: 1	19-Nov-24	Analyzed:	20-Nov-24			
ND	0.10	% by weight							
Sour	r e: 2410018	-10	Prepared: 1	19-Nov-24	Analyzed:	20-Nov-24			
25.5	0.10	% by weight		25.7			.7	20	
Soui	r e: 2410018	-09	Prepared: 1	19-Nov-24	Analyzed:	20-Nov-24			
26.1	0.10	% by weight		26.4			1	20	
	ND ND Sour	ND 0.10 ND 0.10 Sour e: 2410018 25.5 0.10 Sour e: 2410018	ND 0.10 % by weight ND 0.10 % by weight Sour e: 2410018-10 25.5 0.10 % by weight Sour e: 2410018-09	Result Limit Units Level ND 0.10 % by weight Prepared: ND 0.10 % by weight Prepared: Sour e: 2410018-10 Prepared: Prepared: Sour e: 2410018-09 Prepared:	Result Limit Units Level Result Prepared: 19-Nov-24 ND 0.10 % by weight Prepared: 19-Nov-24 ND 0.10 % by weight Sour e: 2410018-10 Prepared: 19-Nov-24 25.5 0.10 % by weight 25.7 Sour e: 2410018-09 Prepared: 19-Nov-24	Result Limit Units Level Result %REC Prepared: 19-Nov-24 Analyzed: ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: Sour e: 2410018-10 Prepared: 19-Nov-24 Analyzed: Sour e: 2410018-09 Prepared: 19-Nov-24 Analyzed:	Result Limit Units Level Result %REC Limits Prepared: 19-Nov-24 Analyzed: 20-Nov-24 ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: 20-Nov-24 ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: 20-Nov-24 Sour e: 2410018-10 Prepared: 19-Nov-24 Analyzed: 20-Nov-24 Sour e: 2410018-09 Prepared: 19-Nov-24 Analyzed: 20-Nov-24	Result Limit Units Level Result %REC Limits RPD Prepared: 19-Nov-24 Analyzed: 20-Nov-24 ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: 20-Nov-24 ND 0.10 % by weight 25.7 .7 Sour e: 2410018-09 Prepared: 19-Nov-24 Analyzed: 20-Nov-24	Result Limit Units Level Result %REC Limits RPD Limit Prepared: 19-Nov-24 Analyzed: 20-Nov-24 ND 0.10 % by weight Prepared: 19-Nov-24 Analyzed: 20-Nov-24 Vov-24 Analyzed: 20-Nov-24 Sour e: 2410018-10 Prepared: 19-Nov-24 Analyzed: 20-Nov-24 7 20 Sour e: 2410018-09 Prepared: 19-Nov-24 Analyzed: 20-Nov-24 20-Nov-24

Alaska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Buzby-Rynders, Danika M (DEC)

From:

Krull, Dylan P (DFG)

Sent:

Thursday, October 3, 2024 2:18 PM

To:

DEC EH - Lab - Shipping Receiving

Subject:

ADF&G Fish Samples

Hello,

I am heading to the airport to ship the samples via goldstreak.

Date shipped

0 10/3/2024

Your name and contact telephone number

• Dylan Krull (907) 465-6160 or Kate Kanouse (907) 465-4290

Number of pieces (coolers, boxes, etc.)

• 1 blue cooler

Content of shipment

42 individual bagged juvenile fish

Time of sample collection

• 6/19-6/20/2024

Test(s) requested

- 6020 Ag, As, Cd, Cu, Pb, Se, Zn
- 7473 Hg
- %solid (if sufficient volume)

Freight carrier

Alaska Airlines

The waybill number (or other carrier tracking number)

TBD

Flight number, if available

TBD

Date and time expected for arrival in Anchorage

TBD

I will add more information after I send the samples

Thank you!

Dylan Krull Habitat Biologist III ADF&G-Habitat Juneau, AK 907-465-6160

WO# 2415018 Client: Constantine Tissue Sample Stats | Prep Jars Comments wo Project: Palmer Project at Haines (B) 0 PFAS (Organic Prep Required) Axys (Organic Prep Required) Se, as one (small "solid (if sufficient volume) Cd, Cu, Pb, 8 Notes: Metals are the priority, % solid only if sufficient Tissue Processed Siopsy Punch/Plug volume Submitted As Composite-all 6020 Ag, As, ndividuals Composite atty acid **Nutrients** Organic ength Weight Metals (Requirea) (Max 20 per page) Extra Sample Sample Date / Time Notes LGC 1 6100 0800 W W Х X Х Χ -01 LGC 2 W W X Х Х -02 X X Х LGC 3 W W X X Х Х Х -03 Х LGC 4 W W X X Х X Χ -04 Х LGC 5 W W Χ X X X Χ -05 X LGC 6 W W Χ Χ Χ Х Χ -06 W X LGC 7 W X X X X X -07 WX Х LGC 8 W Х Х X X -08 wx LGC 9 W X Χ Х Х -09 W WX LGC 10 X X X X -10 6/19 2000 W w x PLAT 1 X X Х X -11 Х PLAT 2 W WX X Х X X -12 w x PLAT 3 W Χ X Х X -13 Х W W X X Х PLAT 4 Χ -14 W X X X PLAT 5 W Х X X -15 W Х PLAT 6 W X Χ Χ Х Х -16 W W Х Х Х PLAT 7 Χ X -17 PLAT 8 W W Χ Х X Χ Х Х -18 Х W W X X X X X -19 X X Х -20

PLAT 10 W w x Х NOTES: W=Whole Body, F=Fillet, R=Roast, G=Gonads, K=Kidney, L=Liver, P=Plugs, C=Composi

Collected (Sampled) By: 🔾 y lan Krull	
Submitted by: Dylan KILII	
Submitted Date/Time: 10/3/24 1400	
0.0	
Received by:	
Received Date/Fime: 10/4/24 a 0 000	

State of Alaska Department of Environmental Conservation Fish Tissue Monitoring Program 5251 Dr MLK Jr. Ave Anchorage, AK 99507

Andrews:

ADEC EHL Sample Receipt Checklist
(form SC-11, rev 01/11/2024)
.Environmental Health Laboratory
5251 Dr. MLK Jr. Ave., Anchorage, AK 99507
(907) 375-8200

wo #: 24168	18	# of Samples:	20
Client: ADFG		Sample Matrix:	Fish Tissul
COC Seals: On Shipping Container On Sample Packaging None		s x	Delivered by Client/Client Courier Courier Shipper: AKAV Other #_027-347 % 0 11 3
Sample Temperature @ Receip	_{pt:} 2.3 _{°c}		
Thermometer ID (circle one):		72/29/2024	
Shipping Container Type: Box Cooler Envelope Hand Carry Styro-Box Other	Sample Packagin Plastic/Ziploc Plastic/Glass Whirl Pak Bag Vacuum Pack Commercial F Blood Tubes Other	Bag Vial/Jar g kaging	Refrigerant: Dry Ice Gel/Ice Pack Water Ice Other None Notes:
Sample(s) and Sample Conta Intact? Correct Type? IDs/Times/Dates Match Form?	iners: Y	Properly Preserved Meets Temp Requ Adequate Amount	irements? Y O N
Sample Submission Form: Sample Submission Form Com Client Contacted Regarding Inc	complete Data? N	Y Provide	details below in "Comments" section.
Comments: <u>Collectrov</u> Please see atte	ryear miss	ing from	Submission form.
	,		

ANALYTICAL REPORT

Alaska State Environmental Health Laboratory 5251 Dr. Martin Luther King Jr. A ue Anchorage, AK 99507

www.dec.alaska.gov/eh/lab

Work Order Number: 2410019

Project Name: Palmer Project at Haines

For:

Constantine PO Box 315 Haines, AK 99827

Attn: Kris Benusa

Patryce D. McKinney

Chief, Environmental Health

Laboratory

patryce.mckinney@alaska.gov

OF THURONMENTAL CORRESPONDENCE OF THE PROPERTY OF THE PROPERTY

Report Date: 12/24/2024

The results in this report apply to the samples analyzed in acc rdance with the sample submission form. This analytical report must be reproduced in its entirety. This report has been electronically signed and authorized by the signatory.

Sample Summary

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/2024 12:32

Lab Sample ID	Client Sample ID	Cooler	T mp C	Collected	Received
2410019-01	USAR 1	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-02	USAR 2	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-03	USAR 3	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-04	USAR 4	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-05	USAR 5	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-06	USAR 6	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-07	USAR 7	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-08	USAR 8	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-09	USAR 9	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-10	USAR 10	Default Cooler	2.3	20/24 12:00 pm	10/4/24 8:00 am
2410019-11	LSAR 1	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-12	LSAR 2	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-13	LSAR 3	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-14	LSAR 4	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-15	LSAR 5	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-16	LSAR 6	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-17	MGC 1	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-18	MGC 2	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-19	MGC 3	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-20	MGC 4	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-21	MGC 5	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am
2410019-22	MGC 6	Default Cooler	2.3	6/20/24 11:00 am	10/4/24 8:00 am

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Methods

All samples were analyzed and conform with the following methods unless otherwise specified in the Case Narrative:

*** DEF UL T SPECIFIC METHOD ***
Fish prep
SM 2540 G
SW 3051A/6020A
SW 7473

Case Narrative

SM 2540 for total solids has a hold time of 7 days. These sample arrived outside of holdtime and are flagged HT-REC.

Notes and Definitions

J Detected but below the Reporting Limit: therefore, result is an estimated concentration HT-REC The sample arrival time caused Hold Time limit to be exceeded.

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 1 Lab Sample ID: 2410019-01 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0274	.0504	0.0112	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0816	.0504	.0163	g/kg	"	"	"	"	"	
Copper	0.853	0.0504	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0504	.0219	g/kg	"	"	"	"	"	
Mer ury	0.00760	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.88	.0504	. 716	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0504	.0341	g/kg	"	"	"	"	"	
Zinc	30.3	.504	.146	g/kg	"	"	"	"	"	
% Solids	23.2	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 2 Lab Sample ID: 2410019-02 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0641	.0508	0.0113	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.0679	0.0508	.0165	g/kg	"	"	"	"	"	
Copper	0.791	0.0508	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0508	.0221	g/kg	"	"	"	"	"	
Mer ury	0.00670	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.05	.0508	. 722	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0508	.0344	g/kg	"	"	"	"	"	
Zinc	33.9	.508	.147	g/kg	"	"	"	"	"	
% Solids	22.9	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 3 Lab Sample ID: 2410019-03 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0508	.0502	0.0111	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.0630	0.0502	.0162	g/kg	"	"	"	"	"	
Copper	0.842	0.0502	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0502	.0218	g/kg	"	"	"	"	"	
Mer ury	0.00750	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	2.23	.0502	. 712	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0502	.0339	g/kg	"	"	"	"	"	
Zinc	34.6	.502	.145	g/kg	"	"	"	"	"	
% Solids	23.8	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 4 Lab Sample ID: 2410019-04 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0562	.0505	0.0112	g/kg	1	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Cadmium	0.0664	0.0505	.0164	g/kg	"	"	"	"	"	
Copper	0.904	0.0505	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0505	.0219	g/kg	"	"	"	"	"	
Mer ury	0.00880	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.02	.0505	. 717	g/kg	"	24J096	29-Oct-24	15-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0505	.0342	g/kg	"	"	"	"	"	
Zinc	24.5	.505	.147	g/kg	"	"	"	"	"	
% Solids	24.5	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 5 Lab Sample ID: 2410019-05 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0656	.0503	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Cadmium	0.0560	0.0503	.0163	g/kg	"	"	"	"	"	
Copper	0.938	0.0503	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0503	.0218	g/kg	"	"	"	"	"	
Mer ury	0.00590	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	0.782	.0503	. 715	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0503	.0340	g/kg	"	"	"	"	"	
Zinc	28.5	.503	.146	g/kg	"	"	"	"	"	
% Solids	22.9	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 6 Lab Sample ID: 2410019-06 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0459	.0503	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0832	.0503	.0163	g/kg	"	"	"	"	"	
Copper	0.9 0	0.0503	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0503	.0218	g/kg	"	"	"	"	"	
Mer ury	0.00780	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.01	.0503	. 714	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0503	.0340	g/kg	"	"	"	"	"	
Zinc	29.9	.503	.146	g/kg	"	"	"	"	"	
% Solids	21.6	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 7 Lab Sample ID: 2410019-07 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0438	.0507	0.0113	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0776	.0507	.0164	g/kg	"	"	"	"	"	
Copper	1.24	0.0507	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0507	.0220	g/kg	"	"	"	"	"	
Mer ury	0.0113	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	0.848	.0507	. 720	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0507	.0343	g/kg	"	"	"	"	"	
Zinc	31.9	.507	.147	g/kg	"	"	"	"	"	
% Solids	22.8	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 8 Lab Sample ID: 2410019-08 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0648	.0506	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Cadmium	0.0671	0.0506	.0164	g/kg	"	"	"	"	"	
Copper	0.708	0.0506	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0506	.0220	g/kg	"	"	"	"	"	
Mer ury	0.00780	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.10	.0506	. 718	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0506	.0342	g/kg	"	"	"	"	"	
Zinc	30.6	.506	.147	g/kg	"	"	"	"	"	
% Solids	22.4	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 9 Lab Sample ID: 2410019-09 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0738	.0509	0.0113	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Cadmium	0.0427	0.0509	.0165	g/kg	"	"	"	"	"	J
Copper	0.546	.0509	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0509	.0221	g/kg	"	"	"	"	"	
Mer ury	0.00550	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	0.885	.0509	. 723	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0509	.0344	g/kg	"	"	"	"	"	
Zinc	26.8	.509	.148	g/kg	"	"	"	"	"	
% Solids	21.6	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: USAR 10 Lab Sample ID: 2410019-10 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0336	.0505	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0634	.0505	.0164	g/kg	"	"	"	"	"	
Copper	0.763	0.0505	.0173	g/kg	"	"	"	"	"	
Lead	ND	0.0505	.0219	g/kg	"	"	"	"	"	
Mer ury	0.00850	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.46	.0505	. 717	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0505	.0341	g/kg	"	"	"	"	"	
Zinc	37.5	.505	.146	g/kg	"	"	"	"	"	
% Solids	22.0	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 1 Lab Sample ID: 2410019-11 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0438	.0507	0.0113	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0340	.0507	.0164	g/kg	"	"	"	"	"	J
Copper	0.967	.0507	.0174	g/kg	"	"	"	"	"	
Lead	ND	0.0507	.0220	g/kg	"	"	"	"	"	
Mer ury	0.00690	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.34	.0507	. 721	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0507	.0343	g/kg	"	"	"	"	"	
Zinc	27.6	.507	.147	g/kg	"	"	"	"	"	
% Solids	23.6	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 2 Lab Sample ID: 2410019-12 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0326	.0509	0.0113	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0631	.0509	0.0165	g/kg	"	"	"	"	"	
Copper	0.716	.0509	0.0174	g/kg	"	"	"	"	"	
Lead	0.0600	.0509	0.0221	g/kg	"	"	"	"	"	
Mer ury	0.009 0	.010	. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	J
Selenium	1.17	.0509	0. 722	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	.0509	0.0344	g/kg	"	"	"	"	"	
Zinc	40.4	.509	0.148	g/kg	"	"	"	"	"	
% Solids	23.4	.10		% by weight	1	24K088	03-Dec-24	04-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 3 Lab Sample ID: 2410019-13 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0565	.0505	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Cadmium	0.0488	.0505	.0164	g/kg	"	"	"	"	"	J
Copper	0.916	.0505	0.0173	g/kg	"	"	"	"	"	
Lead	0.0252	.0505	.0219	g/kg	"	"	"	"	"	J
Mer ury	0.0155	.010	. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	1.19	.0505	0. 717	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	.0505	0.0341	g/kg	"	"	"	"	"	
Zinc	26.1	.505	0.146	g/kg	"	"	"	"	"	
% Solids	21.8	.10		% by weight	1	24K088	03-Dec-24	04-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 4 Lab Sample ID: 2410019-14 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0413	.0504	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0187	.0504	.0163	g/kg	"	"	"	"	"	J
Copper	0.587	.0504	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0504	.0219	g/kg	"	"	"	"	"	
Mer ury	0.0163	.010	0. 480	g/kg	"	24J042	10-Oct-24	10-Oct-24	SW 7473	
Selenium	1.17	.0504	. 715	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	0.0504	.0341	g/kg	"	"	"	"	"	
Zinc	26.6	.504	.146	g/kg	"	"	"	"	"	
% Solids	24.6	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 5 Lab Sample ID: 2410019-15 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0487	.0503	0.0112	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0400	.0503	.0163	g/kg	"	"	"	"	"	J
Copper	1.22	.0503	0.0172	g/kg	"	"	"	"	"	
Lead	0.0303	.0503	.0218	g/kg	"	"	"	"	"	J
Mer ury	0.0109	.010	. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	
Selenium	1.32	.0503	0. 715	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	.0503	0.0340	g/kg	"	"	"	"	"	
Zinc	29.8	.503	0.146	g/kg	"	"	"	"	"	
% Solids	22.8	.10		% by weight	1	24K088	03-Dec-24	04-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: LSAR 6 Lab Sample ID: 2410019-16 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0481	.0501	0.0111	g/kg	1	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	J
Cadmium	0.0226	.0501	.0162	g/kg	"	"	"	"	"	J
Copper	0.901	.0501	0.0171	g/kg	"	"	"	"	"	
Lead	0.0290	.0501	.0217	g/kg	"	"	"	"	"	J
Mer ury	0.0223	.010	. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	
Selenium	1.15	.0501	0. 712	g/kg	"	24J10	30-Oct-24	18-Nov-24	SW 3051A/6020 A	
Silver	ND	.0501	0.0339	g/kg	"	"	"	"	"	
Zinc	31.4	.501	0.145	g/kg	"	"	"	"	"	
% Solids	22.6	.10		% by weight	1	24K088	03-Dec-24	04-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 1 Lab Sample ID: 2410019-17 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0772	.0534	0.0119	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Cadmium	0.148	0.0534	.0173	g/kg	"	"	"	"	"	
Copper	1.39	0.0534	.0183	g/kg	"	"	"	"	"	
Lead	ND	0.0534	.0232	g/kg	"	"	"	"	"	
Mer ury	0.00940	.010	0. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	J
Selenium	1.75	.0534	. 758	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Silver	ND	0.0534	.0361	g/kg	"	"	"	"	"	
Zinc	31.5	.534	.155	g/kg	"	"	"	"	"	
% Solids	28.0	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 2 Lab Sample ID: 2410019-18 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0640	.0513	0.0114	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Cadmium	0.136	0.0513	.0166	g/kg	"	"	"	"	"	
Copper	1.09	0.0513	.0175	g/kg	"	"	"	"	"	
Lead	ND	0.0513	.0222	g/kg	"	"	"	"	"	
Mercury	ND	.010	. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	
Selenium	1.48	.0513	0. 728	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Silver	ND	0.0513	.0347	g/kg	"	"	"	"	" "	
Zinc	33.9	.513	.149	g/kg	"	"	"	"	"	
% Solids	24.8	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 3 Lab Sample ID: 2410019-19 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0619	.0512	0.0114	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 2051 A /6020	
									3051A/6020 A	
Cadmium	0.100	0.0512	.0166	g/kg	"	"	"	"	"	
Copper	1.01	0.0512	.0175	g/kg	"	"	"	"	"	
Lead	ND	0.0512	.0222	g/kg	"	"	"	"	"	
Mercury	ND	.010	. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	
Selenium	1.40	.0512	0. 727	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020	
Silver	ND	0.0512	.0346	g/kg	"	"	"	"	A "	
Zinc	28.6	.512	.148	g/kg	"	"	"	"	"	
% Solids	23.3	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Analytical Data

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 4 Lab Sample ID: 2410019-20 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0553	.0527	0.0117	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Cadmium	0.0626	0.0527	.0171	g/kg	"	"	"	"	"	
Copper	0.763	0.0527	.0180	g/kg	"	"	"	"	"	
Lead	ND	0.0527	.0229	g/kg	"	"	"	"	"	
Mer ury	0.00690	.010	0. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	J
Selenium	1.01	.0527	. 748	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Silver	ND	0.0527	.0356	g/kg	"	"	"	"	"	
Zinc	30.1	.527	.153	g/kg	"	"	"	"	"	
% Solids	22.6	0.10		% by weight	1	24K088	3-Dec-24	4-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Analytical Data

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 5 Lab Sample ID: 2410019-21 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0577	.0502	0.0111	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Cadmium	0.0724	0.0502	.0163	g/kg	"	"	"	"	"	
Copper	1.02	0.0502	.0172	g/kg	"	"	"	"	"	
Lead	ND	0.0502	.0218	g/kg	"	"	"	"	"	
Mer ury	0.00640	.010	0. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	J
Selenium	1.34	.0502	. 713	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Silver	ND	0.0502	.0339	g/kg	"	"	"	"	"	
Zinc	34.3	.502	.146	g/kg	"	"	"	"	"	
% Solids	23.6	0.10		% by weight	1	24K089	10-Dec-24	11-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Analytical Data

Client: Constantine Work Order: 2410019
Project: Palmer Project at Haines Report Date: 12/24/24 12:32

Client Sample ID: MGC 6 Lab Sample ID: 2410019-22 Sampled By: Dylan Krull

Analyte	Result	Reporting Limit	Detection Limit	Units	Dilution	tch	Prepared	Analyzed	Method	Notes
Arsenic	0.0400	.0532	0.0118	g/kg	1	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	J
Cadmium	0.0357	.0532	.0172	g/kg	"	"	"	"	"	J
Copper	0.696	.0532	.0182	g/kg	"	"	"	"	"	
Lead	ND	0.0532	.0231	g/kg	"	"	"	"	"	
Mer ury	0.00810	.010	0. 480	g/kg	"	24J087	24-Oct-24	24-Oct-24	SW 7473	J
Selenium	1.10	.0532	. 756	g/kg	"	24K059	21-Nov-24	5-Dec-24	SW 3051A/6020 A	
Silver	ND	0.0532	.0360	g/kg	"	"	"	"	"	
Zinc	28.0	.532	.154	g/kg	"	"	"	"	"	
% Solids	24.2	0.10		% by weight	1	24K089	10-Dec-24	11-Dec-24	SM 2540 G	HT-RE C

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

	ъ	Reporting	TT *-	Spike	Source	0/7550	%REC	DDC	RPD	3.7
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch B24J042 - EPA 7473										
Blank (B24J042-BLK1)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg	_ _						
Blank (B24J042-BLK2)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK3)				Prepared &	Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK4)				Prepared &	z Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J042-BLK5)				Prepared &	z Analyzed:	10-Oct-24				
Mercury	ND	0.010	g/kg							
Duplicate (B24J042-DUP1)	Sour	r e: 2410018-1	7	Prepared &	z Analyzed:	10-Oct-24				
Mercury	.0143	.010	g/kg		.0144			.7	20	
Duplicate (B24J042-DUP2)	Sour	r : 2410019-03	3	Prepared &	Analyzed:	10-Oct-24				
Mercury	. 760	.010	g/kg		. 750			1	20	J
MRL Check (B24J042-MRL1)				Prepared &	Analyzed:	10-Oct-24				
Mercury	. 780	.010	g/kg	.010 11		78	70-130			J
Matrix Spike (B24J042-MS1)	Sour	r e: 2410018-1	7	Prepared &	Analyzed:	10-Oct-24				
Mercury	.271	.010	g/kg	.24256	0.0144	106	71-124			
Matrix Spike Dup (B24J042-MSD1)	Sour	r e: 2410018-1	7	Prepared &	Analyzed:	10-Oct-24				
Mercury	.282	.010	g/kg	.24836	0.0144	108	71-124	4	20	

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Metals - Quality Control

Alaska State Enviro mental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J042 - EPA 7473										
Refer (B24J042-SRM1)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.292	0.010	g/kg	.3160	,	92	90-11			
Refer (B24J042-SRM2)				Prepared &	z Analyzed:	10-Oct-24				
Mercury	.333	0.010	g/kg	.3160		106	90-11			
Refer (B24J042-SRM3)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.297	0.010	g/kg	.3160		94	80-120			
Refer (B24J042-SRM4)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.329	0.010	g/kg	.3160		104	80-120			
Refer (B24J042-SRM5)				Prepared &	z Analyzed:	10-Oct-24				
Mercury	.290	.010	g/kg	.3160		92	80-120			
Refer (B24J042-SRM6)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.329	0.010	g/kg	.3160		104	80-120			
Refer (B24J042-SRM7)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.297	0.010	g/kg	.3160		94	80-120			
Refer (B24J042-SRM8)				Prepared &	Analyzed:	10-Oct-24				
Mercury	.323	0.010	g/kg	.3160		102	80-120			
Batch B24J087 - EPA 7473										
Blank (B24J087-BLK1)				Prepared &	Analyzed:	24-Oct-24				
Mercury	ND	0.010	g/kg							

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Metals - Quality Control

Alaska State Enviro mental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J087 - EPA 7473										
Blank (B24J087-BLK2)				Prepared &	Analyzed:	24-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J087-BLK3)				Prepared &	Analyzed:	24-Oct-24				
Mercury	ND	0.010	g/kg			·	·			
Blank (B24J087-BLK4)				Prepared &	Analyzed:	24-Oct-24				
Mercury	ND	0.010	g/kg							
Blank (B24J087-BLK5)				Prepared &	Analyzed:	24-Oct-24				
Mercury	ND	0.010	g/kg			·	·			<u> </u>
Duplicate (B24J087-DUP1)	Sour	: 2410008-0	4	Prepared &	Analyzed:	24-Oct-24				
Mercury	.020	.010	g/kg		.0169			17	20	
Duplicate (B24J087-DUP2)	Sour	e: 2410019-1	.7	Prepared &	Analyzed:	24-Oct-24				
Mercury	.0103	.010	g/kg		. 940	·	·	9	20	
MRL Check (B24J087-MRL1)				Prepared &	Analyzed:	24-Oct-24				
Mercury	. 730	.010	g/kg	.010 21		73	70-130			J
Matrix Spike (B24J087-MS1)	Sour	e: 2410008-0	5	Prepared &	Analyzed:	24-Oct-24				
Mercury	.285	.010	g/kg	.24519	0.0195	108	71-124			
Matrix Spike Dup (B24J087-MSD1)	Sour	e: 2410008-0	5	Prepared &	Analyzed:	24-Oct-24				
Mercury	.291	.010	g/kg	.24725	0.0195	11	71-124	2	20	
Refer (B24J087-SRM1)				Prepared &	Analyzed:	24-Oct-24				
Mercury	.294	0.010	g/kg	.3160		93	90-110			

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Metals - Quality Control

Alaska State Enviro mental Health Laboratory Work Order: 2410019

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J087 - EPA 7473										
Refer (B24J087-SRM2)				Prepared &	Analyzed:	24-Oct-24				
Mercury	.332	0.010	g/kg	.3160		105	90-11			
Refer (B24J087-SRM3)				Prepared &	Analyzed:	24-Oct-24				
Mercury	.301	0.010	g/kg	.3160		95	80-120			
Refer (B24J087-SRM4)				Prepared &	: Analyzed:	24-Oct-24				
Mercury	.334	0.010	g/kg	.3160		106	80-120			
Refer (B24J087-SRM5)				Prepared &	: Analyzed:	24-Oct-24				
Mercury	.303	0.010	g/kg	.3160		96	80-120			
Refer (B24J087-SRM6)				Prepared &	: Analyzed:	24-Oct-24				
Mercury	.334	0.010	g/kg	.3160		106	80-120			
Refer (B24J087-SRM7)				Prepared &	: Analyzed:	24-Oct-24				
Mercury	.295	0.010	g/kg	.3160		93	80-120			
Refer (B24J087-SRM8)				Prepared &	: Analyzed:	24-Oct-24				
Mercury	.325	0.010	g/kg	.3160		103	80-120			
Batch B24J096 - SW 3051										
Blank (B24J096-BLK1)				Prepared: 2	29-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	ND	0.050	g/kg							
Cadmium	ND	.050	"							
Copper	ND	.050	"							
Lead	ND	.050	"							
Selenium	ND	.050	"							
Silver	ND	.050	"							
Zinc	ND	.50	"							

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J096 - SW 3051										
LCS (B24J096-BS1)				Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	9.94	0.050	g/kg	10.		99	80-120			
Cadmium	9.86	.050	"	10.		99	80-120			
Copper	10.	.050	"	10.		10	80-120			
Lead	10.2	.050	"	10.		102	80-120			
Selenium	9.74	.050	"	10.		97	80-120			
Silver	9.86	.050	"	10.		99	80-120			
Zinc	197	.50	"	199.81		99	80-120			
LCS Dup (B24J096-BSD1)				Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	9.88	0.050	g/kg	10.		99	80-120	.5	20	
Cadmium	9.95	.050	"	10.		99	80-120	.9	20	
Copper	10.1	.050	"	10.		101	80-120	.4	20	
Lead	10.2	.050	"	10.		102	80-120	.5	20	
Selenium	9.65	.050	"	10.		96	80-120	1	20	
Silver	9.94	.050	"	10.		99	80-120	.9	20	
Zinc	197	.50	"	199.81		99	80-120	.2	20	
MRL Check (B24J096-MRL1)				Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	.0468	0.050	g/kg	0.050 24		94	70-130			J
Cadmium	.0502	0.050	"	0.050 24		10	70-130			
Copper	.0515	0.050	"	0.050 24		103	70-130			
Lead	.0501	0.050	"	0.050 24		10	70-130			
Selenium	.0474	0.050	"	0.050 24		95	70-130			J
Silver	.0512	0.050	"	0.050 24		102	70-130			
Zinc	1.01	0.50	"	.99908		101	70-130			
Matrix Spike (B24J096-MS1)	Sou	r : 2410018-2	0	Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	11.0	.0510	g/kg	10.192	0.0578	107	75-125			
Cadmium	10.4	0.0510		10.192	0.189	10	75-125			
Copper	11.1	0.0510		10.192	1.20	97	75-125			
Lead	10.1	0.0510		10.192	ND	99	75-125			
Selenium	12.5	0.0510		10.192	0.831	115	75-125			
Silver	10.	.0510		10.192	ND	98	75-125			
Zinc	228	0.510		203.64	26.9	99	75-125			

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J096 - SW 3051										
Matrix Spike Dup (B24J096-MSD1)	Sour	e: 2410018-2	0	Prepared: 2	9-Oct-24 A	Analyzed: 1	5-Nov-24			
Arsenic	10.5	.0507	g/kg	10.146	0.0578	103	75-125	4	20	
Cadmium	10.3	.0507	"	10.146	0.189	10	75-125	1	20	
Copper	10.9	.0507	"	10.146	1.20	95	75-125	2	20	
Lead	9.92	.0507	"	10.146	ND	98	75-125	2	20	
Selenium	11.6	.0507	"	10.146	0.831	106	75-125	7	20	
Silver	9.97	.0507	"	10.146	ND	98	75-125	.5	20	
Zinc	224	.507	"	202.73	26.9	97	75-125	2	20	
Batch B24J100 - SW 3051										
Blank (B24J100-BLK1)				Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	ND	0.050	g/kg							
Cadmium	ND	.050	"							
Copper	ND	.050	"							
Lead	ND	.050	"							
Selenium	ND	.050	"							
Silver	ND	.050	"							
Zinc	ND	.50	"							
LCS (B24J100-BS1)				Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	9.89	0.050	g/kg	10.		99	80-120			
Cadmium	9.67	.050	"	10.		97	80-120			
Copper	9.88	.050	"	10.		99	80-120			
Lead	10.	.050	"	10.		10	80-120			
Selenium	9.76	.050	"	10.		98	80-120			
Silver	9.74	.050	"	10.		97	80-120			
Zinc	198	.50	"	199.81		99	80-120			

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B24J100 - SW 3051										
LCS Dup (B24J100-BSD1)				Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	10.	.050	g/kg	10.		10	80-120	1	20	
Cadmium	9.87	0.050	"	10.		99	80-120	2	20	
Copper	9.97	0.050	"	10.		10	80-120	1	20	
Lead	10.	.050	"	10.		10	80-120	.02	20	
Selenium	9.75	0.050	"	10.		98	80-120	.08	20	
Silver	9.93	0.050	"	10.		99	80-120	2	20	
Zine	201	0.50	"	199.81		101	80-120	2	20	
MRL Check (B24J100-MRL1)				Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	.0479	0.050	g/kg	0.050 24		96	70-130			J
Cadmium	.0492	0.050	"	0.050 24		98	70-130			J
Copper	.0545	0.050	"	0.050 24		109	70-130			
Lead	.0497	0.050	"	0.050 24		99	70-130			J
Selenium	.0489	0.050	"	0.050 24		98	70-130			J
Silver	.0504	0.050	"	0.050 24		101	70-130			
Zine	1.06	0.50	"	.99908		106	70-130			
Matrix Spike (B24J100-MS1)	Sou	r : 2410019-1	0	Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	10.9	0.0509	g/kg	10.177	0.0336	106	75-125			
Cadmium	10.3	0.0509	"	10.177	0.0634	10	75-125			
Copper	10.8	0.0509	"	10.177	0.763	98	75-125			
Lead	10.1	0.0509	"	10.177	ND	99	75-125			
Selenium	12.5	0.0509	"	10.177	1.46	109	75-125			
Silver	10.1	0.0509	"	10.177	ND	99	75-125			
Zine	246	0.509	"	203.35	37.5	103	75-125			
Matrix Spike Dup (B24J100-MSD1)	Sou	r : 2410019-1	0	Prepared: 3	0-Oct-24 A	Analyzed: 1	8-Nov-24			
Arsenic	10.8	0.0510	g/kg	10.192	0.0336	106	75-125	.7	20	
Cadmium	10.3	0.0510	"	10.192	0.0634	10	75-125	.05	20	
Copper	10.7	0.0510	"	10.192	0.763	97	75-125	.7	20	
Lead	10.2	0.0510	"	10.192	ND	10	75-125	.8	20	
Selenium	12.5	0.0510	"	10.192	1.46	108	75-125	.4	20	
Silver	10.	.0510	"	10.192	ND	98	75-125	.2	20	
Zinc	245	0.510	"	203.64	37.5	102	75-125	.6	20	

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

%REC RPD Reporting Spike Source Result Limit %REC RPD Analyte Units Level Result Limits Limit Notes Batch B24K059 - SW 3051 Blank (B24K059-BLK1) Prepared: 21-Nov-24 Analyzed: 05-Dec-24 ND 0.050 g/kg Arsenic Cadmium ND 0.050 0.050 Copper ND Lead ND 0.050 ND Selenium 0.050 Silver ND 0.050 ND 0.50 Zinc LCS (B24K059-BS1) Prepared: 21-Nov-24 Analyzed: 05-Dec-24 9.95 0.050 80-120 Arsenic g/kg 10. 99 Cadmium 9.90 .050 10. 99 80-120 99 9.94 0.050 10. 80-120 Copper 10.5 0.050 10. 105 80-120 Lead Selenium 10.2 0.050 10. 102 80-120 Silver 10.2 0.050 10. 102 80-120 Zinc 192 0.50 199.43 96 80-120 LCS Dup (B24K059-BSD1) Prepared: 21-Nov-24 Analyzed: 05-Dec-24 9.95 99 20 Arsenic 0.050 g/kg 10. 80-120 .03 Cadmium 9.82 0.050 10. 98 80-120 .8 20 10 Copper 9.99 0.050 10. 80-120 .5 20 Lead 10.5 0.050 10. 105 80-120 .6 20 Selenium 9.69 0.050 10. 97 80-120 6 20 Silver 10.1 0.050 10. 101 80-120 20 1 Zinc 192 0.50 199.43 80-120 .03 20 Prepared: 21-Nov-24 Analyzed: 05-Dec-24 MRL Check (B24K059-MRL1) .0503 0.050 0.050 24 101 70-130 g/kg Cadmium .0516 0.050 0.050 24 103 70-130 Copper .0544 0.050 0.050 24 109 70-130 .0539 0.050 0.050 24 108 70-130 Lead Selenium .0526 0.050 0.050 24 105 70-130 Silver .0524 0.050 0.050 24 105 70-130 Zinc .988 0.50 0.99908 99 70-130

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Anaryte	Resuit	Limit	Units	Level	Resuit	70KEC	Limits	KPD	LIIIII	Notes
Batch B24K059 - SW 3051										
Matrix Spike (B24K059-MS1)	Sour	: 2410019-1	7	Prepared: 2	21-Nov-24	Analyzed: (05-Dec-24			
Arsenic	11.9	0.0521	g/kg	10.421	0.0772	113	75-125			
Cadmium	10.9	0.0521	"	10.421	0.148	103	75-125			
Copper	11.8	0.0521	"	10.421	1.39	10	75-125			
Lead	11.3	0.0521	"	10.421	ND	108	75-125			
Selenium	14.1	0.0521	"	10.421	1.75	119	75-125			
Silver	10.3	0.0521	"	10.421	ND	99	75-125			
Zine	241	0.521	"	207.83	31.5	101	75-125			
Matrix Spike Dup (B24K059-MSD1)	Sour	: 2410019-1	7	Prepared: 2	21-Nov-24	Analyzed: (05-Dec-24			
Arsenic	11.9	0.0513	g/kg	10.259	0.0772	115	75-125	.04	20	
Cadmium	10.9	0.0513	"	10.259	0.148	105	75-125	.2	20	
Copper	11.7	0.0513	"	10.259	1.39	101	75-125	.7	20	
Lead	11.3	0.0513	"	10.259	ND	11	75-125	.3	20	
Selenium	14.3	0.0513	"	10.259	1.75	122	75-125	.8	20	
Silver	10.3	0.0513	"	10.259	ND	101	75-125	.3	20	
Zinc	244	0.513	"	204.59	31.5	104	75-125	1	20	

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Patryce D. McKinney, Chief, Environmental Health Laboratory

Classical Chemistry Parameters - Quality Control Alaska State Enviro mental Health Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B24K088 - % Solids										
Blank (B24K088-BLK1)				Prepared: ()3-Dec-24	Analyzed:	04-Dec-24			
% Solids	ND	0.10	% by weight							
Blank (B24K088-BLK2)				Prepared: ()3-Dec-24	Analyzed:	04-Dec-24			
% Solids	ND	0.10	% by weight							
Duplicate (B24K088-DUP1)	Sou	r e: 2410019	-07	Prepared: (03-Dec-24	Analyzed:	04-Dec-24			
% Solids	23.2	.10	% by weight		22.8			2	20	
Duplicate (B24K088-DUP2)	Sou	r e: 2410019	-17	Prepared: ()3-Dec-24	Analyzed:	04-Dec-24			
% Solids	27.9	.10	% by weight		28.			.3	20	
Batch B24K089 - % Solids										
Blank (B24K089-BLK1)				Prepared: 1	10-Dec-24	Analyzed:	11-Dec-24			
% Solids	ND	0.10	% by weight							
Blank (B24K089-BLK2)				Prepared: 1	10-Dec-24	Analyzed:	11-Dec-24			
% Solids	ND	0.10	% by weight							
Duplicate (B24K089-DUP1)	Sou	rce: 2411011	-07	Prepared:	10-Dec-24	Analyzed:	11-Dec-24			
% Solids	84.2	.10	% by weight		83.6			.6	20	
Duplicate (B24K089-DUP2)	Sou	rce: 2411011	-09	Prepared: 1	10-Dec-24	Analyzed:	11-Dec-24			
% Solids	84.4	.10	% by weight		85.5	-		1	20	

laska State Environmental Health Laboratory

The results in this re rt apply to the samples analyzed in acc ordance with the chain of custody document. This analytical report must be repr duced in its entirety.

Buzby-Rynders, Danika M (DEC)

From:

Krull, Dylan P (DFG)

Sent:

Thursday, October 3, 2024 2:18 PM

To:

DEC EH - Lab - Shipping Receiving

Subject:

ADF&G Fish Samples

Hello.

I am heading to the airport to ship the samples via goldstreak.

Date shipped

0 10/3/2024

Your name and contact telephone number

• Dylan Krull (907) 465-6160 or Kate Kanouse (907) 465-4290

Number of pieces (coolers, boxes, etc.)

• 1 blue cooler

Content of shipment

• 42 individual bagged juvenile fish

Time of sample collection

• 6/19-6/20/2024

Test(s) requested

- 6020 Ag, As, Cd, Cu, Pb, Se, Zn
- 7473 Hg
- %solid (if sufficient volume)

Freight carrier

Alaska Airlines

The waybill number (or other carrier tracking number)

TBD

Flight number, if available

TBD

Date and time expected for arrival in Anchorage

• TBD

I will add more information after I send the samples

Thank you!

Dylan Krull Habitat Biologist III ADF&G-Habitat Juneau, AK 907-465-6160

W0#2410019

					Tiss	ue		Sa	mpl	e Sta	ats	Pre	ер					Jai	rs					Comments				wo			
Client: Constantine	A-11			-	1130	-	ŝ	-														\neg	П	_							1
Project: Palmer Project at Haine	es		CEL				one (small items)	1						6	(B)	0						(pa	١	e, Zn							1
							iali i	1						uire						- 1		quir	١	S, S		me)		-			
		-					si (sir	1						Req								S Re	- 1	u, P		volu		- 1			1
Notes: Metals are the priority, % :	solid onl	ly if suf	fficient			pa	one							rep	ng						1	Pre		Cd, Cu, Pb, Se,		ent					1
volume					v,	Tissue Processed	as							Axys (Organic Prep Required)	Biopsy Punch/Plug							PFAS (Organic Prep Required)		s, C		%solid (if sufficient volume)					
					Submitted As	roc	Individuals Composite-all					ь.		rgan	ounc	site		p			22	Org	e J	6020 Ag, As,	б	(if sı		١			
		(keq	uirea)		nitte	ne P	Individuals	£	Ħ		Otoliths	Standard	Organic	0)	sy F	Composite	Ø	Fatty acid	Gamma	Metals	Nutrients	48 (Reference	0 A	7473 Hg	pilo		- 1			
(Max 20 per page)			nple / Time		iqns	riss.	ndiv	Length	Weight	Sex	용	Star	Org	Axy	Biop	Cor	Extra	Fat	Gar	Me	N	PF	Re	09	74	%8		_	No	tes	+
Sample	16	120	120		W	W	X	十	ŕ			Х								Х				Х	Х	Х					-01
USAR 1	01	1	100	1	W	W	Х	T				Х								Х				Х	Х	Х					-02
USAR 2		1			w	w	Х					Х								Х				Х	Х	X					-03
USAR 3 USAR 4		1			w	W	Х			1		Х								Х				Χ	X	Х					-04
USAR 5		1			W	W	Х					Х								Х				Х	X	Х					-0:
USAR 6		1	1 0		W	w	х					X								X				Х	Х	Х	-				-0
USAR 7		1			W	W	Х					Х							_	Х			_	Х	X	Х	-				-0
USAR 8		1			W	W	Х					Х								X				Х	X	X	_		1		-0
USAR 9					W	W	Х					X								Х				Х	_	Х	_	H			-0 -1
USAR 10		1		7	W	W	Х					X		1				-		X			_	Х	-	Х		200			-1
LSAR 1	6	120	11	00	W	W	Х					X			1	_	_	_	-	X				X	_	_	+	-		-	-1
LSAR 2		1		1	W	W	Х					Х		1	-	_	-	-		X			_	X	_	+	-				-1
LSAR 3					W	W	Х			_	1	X	+	4	-	-	-	1	1	X	-			X		_	+				-1
LSAR 4		1			W	W	Х				_	×	_	4	-	-	-	-	+	X				X	_	-	_	-			-1
LSAR 5					W	W	Х	\perp	_	_	\perp	×	_	-	1	-	-	-	+	Х	-		\vdash	X			-	H			-1
LSAR 6					W	W	Х	-	1	-	-	×	_	4	1	-	+	-	+	X	+	-	-	X	_	_	_	-			-
MGC 1					W	W		+	1	+	+	×	_	+	-	+	+	+		X	-	-	-	\\ \\ \\ \	_	_	_	+			-
MGC 2					W	W		1	+	_	+)	_	4	-	+	+	-	+	X	+	-	-	$\pm \frac{1}{3}$	-	-	_	+			
MGC 3					W	W	X	+	+	-	-)	_	+	+	+	+	+	+	X	7		-	+	_	_	_	+			-
MGC 4		الم		1	W	W			\perp		\perp)							1	Х		1_	1_	1/	1/	1/	'	1			

NOTES: W=Whole Body, F=Fillet, R=Roast, G=Gonads, K=Kidney, L=Liver, P=Plugs, C=Composite

	51 10 11	
Collected (Sampled) By:	1) year Brui	
Submitted by:	Dylan Stull	
Submitted Date/Time:	1013/24 1	100
N	2	
Received by:	POU	
Received Date/Time:	TO14174 00 (180	

State of Alaska
Department of Environmental Conservation
Fish Tissue Monitoring Program
5251 Dr MLK Jr. Ave
Anchorage, AK 99507

Issue Date: 9/19/24

Page___of___

Issue Date: 9/19/24

-21 4 -03 -14 -19 -04 -05 -10 -12 -13 -15 -16 -18 90--07 -08 60--11 1001 FORM Notes Comments State of Alaska Department of Environmental Conservation Fish Tissue Monitoring Program 5251 Dr MLK Jr. Ave Anchorage, AK 99507 (sention transfer solume) (sentioner) × x P473 Hg × k 6020 Ag, As, Cd, Cu, Pb, Se, Zn 3eference PFAS (Organic Prep Required) Nutrients Metals Gamma Jars Fatty acid Extra (O) Somposite giopsy Punch/Plug (A) Axys (Organic Prep Required) Organic Prep NOTES: W=Whole Body, F=Fillet, R=Roast, G=Gonads, K=Kidney, L=Liver, P=Plugs, C=Composite Standard Sample Stats Otoliths xəç 14gi9VV -ength Composite-all as one (small items) X alsubivibn Tissue Tissue Processed > 1400 3 sA bettimdu2 6120 1100 0011 0019 Received by: COSO (Required)
Sample
Date / Time Notes: Metals are the priority, % solid only if sufficient volume Collected (Sampled) By: ひょんん んこう Submitted by: Submitted Date/Time: Project: Palmer Project at Haines (Max 20 per page) MGC 5 Sample MGC 6 Client: Constantine

O'DOR 1014/24

Form-SC-25

ADEC EHL Sample Receipt Checklist
(form SC-11, rev 01/11/2024)
.Environmental Health Laboratory
5251 Dr. MLK Jr. Ave., Anchorage, AK 99507
(907) 375-8200

wo#: 24102	019	# of Samples:	22
Client: ADFG		Sample Matrix:	Fish Tissue
COC Seals: On Shipping Container On Sample Packaging None	Intact? Y/N USF Intact? Y/N UPS Fedi	PS OF EX	Delivered by Client/Client Courier Courier Shipper: AKAV Other #_021-347 % 0113
Sample Temperature @ Rece	_{ipt:} 2,3 _℃		
Thermometer ID (circle one):	A19E080, calibration due	12/29/2024	
Shipping Container Type: Box Cooler Envelope Hand Carry Styro-Box Other	Sample Packagir Plastic/Ziploc Plastic/Glass Whirl Pak Ba Vacuum Pacl Commercial I Blood Tubes Other	e Bag Vial/Jar g kaging Packaging	Refrigerant: Dry Ice Gel/Ice Pack Water Ice Other None Notes:
Sample(s) and Sample Containtact? Correct Type? IDs/Times/Dates Match Form?	riners: Y N Y N N Y N N N	Properly Preserved Meets Temp Requir Adequate Amount fo	rements? Y
Sample Submission Form: Sample Submission Form Com Client Contacted Regarding Inc	plete? Y O	N Provide d	etails below in "Comments" section.
Comments: <u>Colloctrov</u> Please see affa	year missiched for	ng from clarifica	Submission form.
	8		

		4			
027 JNU 34786113	}	j	Trezes	/ hotelsty.	
Shipper's Name and Address	Shipper	's Account Number	Not negotiable	in the second of the second of	
DYLAN KRULL ADFG HABITAT SI	ECTION		Air Wayk	oill William	· · · · · · · · · · · · · · · · · · ·
8230 ASPEN AVE			Issued by	ALASKA AIRLI	VES
JUNEAU AK US 99801 9074656160	E (1) Y (1)				
Consignee's Name and Address			Copies 1,2 and 3 o	f this Air Waybill are originals and	have the same validity
onsignee's Ivanie and Address	Consigned	e's Account Number	It is agreed that	the goods described by	
ADEC EH LAB KATE KANOUSE	Landard Commence		IKEVERSE HEREC	FALL GOODS MAY BE CLEE	- THE CONDITIONS OF CONTRACT ON THE
HFPU ANGUARANTE	mS		INTERMEDIATE S	SHIPPER AND SHIPPER AGR	EES THAT THE SHIPMENT MAY BE CARRIED VI
ANCHORAGE AK US 00000 9073758231			ISHIPDED'S ATTEX	TION IS SELVED	THE ORIGINAL DEEMS ADDRODUATE +
issuing Carrier's Agent Name and C	city		and paying a supple	emental charge if required.	TICE CONCERNING CARRIER'S LIMITATION Of liability by declaring a higher value for carriage
ASQXGUEST	· · · · · · · · · · · · · · · · · · ·	3	Accounting Informati	tion	
SEATTLE					
CLAITE	Wite 18				
Agents IATA Code					er e
	Account No.			经验 大量	
999999					
Airport of Departure (Addr. of First C JUNEAU - JUNEAU INTL.	arrier) and Requested Routing		Reference		onal Shipping Informati
10.5.10					
ANC AS	uting and Destination to	by to by	Currency ChgsCo		ared Value for Carriage Declared Value for Custom
Airport of Destination	Requi	ested Flight/Date	USD	X	NVD NCV
ANCHORAGE - TED S	AS 0067/03-Oct	T / Ignobate	Amount of Insuran	requested in accordance	offers insurance and such insurance is
andling Information	14 B	- 4	XXX	to be insured in figures	
SI-UNKNOWN SHIPPER STA	TE OF ALASKA ONLY	9			
N American	A N			11	SCI
No.of Pieces Gross	K Rate Class			The state of the s	
RCP Weight	Ib Commodity Item No.	Chargeable Weight	Rate	Total	Nature and Quantity of Goods find. Dimensions or Volume)
1 11.00	L M 11.	.00	57.00	57.00	
					fish samples DIMS(INH)12.0x10.0x9.0/1
					At Southern Assess
		11			3-
11.00	7 11 1 11	11		57.00	
Prepaid Weight C	Charge Collect	Other Charges		4	
57.00		XBC12.5PP			
Valuat	ion Charge	- ABC 12.5PP			
		- F			
4.34	ax	9			
Total other Cha	rose Duo Age				
Total delet cita	rges Due Age	Shipper certifies the consignment conta	nat the particulars on the	face hereof are correct and the part is properly described by	at insofar as any part of the
Total other Char	rges Due Carrier	proper condition fo	or carriage by air according	n part is properly described by ig to the applicable Dangerous	name and is in Goods Regulations
12.50					7
(2)				1/2	
Total Prepaid	Total Care		Signature of	Shipper or his Agent	
73.84	Total Collect	=			
Currency Conversion Rates	cc charges in Dest. Currency	03-OCT-202	24	NICE	
		Executed on (Date)		***************************************	019446
or Carrier Use only at Destination	Charges at Destination	Total Collect Cr	DI.	(Place) Signatu	re of Issuing Carrier or its Agent
					027-34786113
				11 K-127 'NG-W' '	01100110

APPENDIX E: SEDIMENT DATA AND LABORATORY REPORT

Appendix E.1.-Lower Glacier Creek sediment compositions, 2016–2024.

_		Particle S	ize Data				
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/7/2016	4.00	29.17	66.83	0.00	78.6	0.274	ND
6/9/2017	1.98	26.67	71.07	0.29	82.3	< 0.16	< 0.20
6/9/2017	1.60	39.31	58.97	0.14	73.3	< 0.17	< 0.20
6/9/2017	0.65	18.35	81.01	0.00	73.9	0.20	< 0.20
6/9/2017	1.33	27.75	70.31	0.62	77.8	0.25	< 0.20
6/9/2017	0.38	3.16	95.57	0.62	76.3	< 0.16	< 0.20
5/30/2018	1.16	14.01	84.73	0.10	74.7	0.25	< 0.20
5/30/2018	1.93	44.25	50.12	3.72	77.7	0.29	0.63
5/30/2018	2.04	41.78	56.19	0.00	78.0	< 0.27	< 0.20
5/30/2018	1.05	9.59	85.04	4.32	79.1	< 0.20	< 0.20
5/30/2018	1.44	16.08	81.88	4.32	78.6	< 0.20	< 0.20
6/6/2019	0.29	10.14	89.32	0.00	83.1	0.29	< 0.20
6/7/2019	0.25	6.83	92.63	0.00	78.2	0.25	< 0.20
6/8/2019	0.25	8.49	91.16	0.00	74.6	0.250	< 0.20
6/9/2019	0.31	17.90	81.35	0.00	75.7	0.310	< 0.20
6/10/2019	0.32	8.51	90.95	0.00	80.1	0.320	< 0.20
6/3/2020	1.79	29.84	68.36	0.00	77.9	0.498	< 0.20
6/3/2020	2.35	31.30	64.96	1.38	72.4	0.336	< 0.20
6/3/2020	1.48	20.59	77.93	0.00	79.6	0.444	< 0.20
6/3/2020	1.97	24.20	73.78	0.07	83.1	0.203	< 0.20
6/3/2020	1.77	28.87	69.10	0.07	77.8	0.370	< 0.20
6/16/2021	2.20	14.50	83.30	0.00	71.8	0.440	< 5.0
6/16/2021	3.40	30.10	66.50	0.00	76.9	0.418	< 5.0
6/16/2021	4.20	33.90	61.80	0.10	79.6	0.185	< 5.0
6/16/2021	2.20	29.40	68.40	0.00	81.2	0.195	< 5.0
6/16/2021	4.00	2.70	88.60	4.70	80.0	0.269	< 5.0
6/13/2022	1.00	16.00	83.00	0.00	80.2	0.345	< 5.0
6/13/2022	1.00	26.40	72.40	0.20	78.1	0.347	< 5.0
6/13/2022	1.20	18.20	80.10	0.50	80.6	0.299	< 5.0
6/13/2022	1.00	10.20	85.80	3.00	82.2	0.369	< 5.0
6/13/2022	1.00	7.10	91.90	0.00	80.9	0.361	< 5.0
6/7/2023	1.00	8.70	89.50	0.80	76.6	0.278	< 5.0
6/7/2023	1.00	10.60	88.40	0.00	80.2	0.242	< 5.0
6/7/2023	1.00	13.70	83.60	1.70	76.8	0.283	< 5.0
6/7/2023	1.40	7.00	91.10	0.50	75.8	0.315	< 5.0
6/7/2023	1.00	10.60	87.70	0.70	77.3	0.204	< 5.0

-continued-

Appendix E.1.—Continued.

		Particle S	Size Data				
							Aci
				% Course		% Total	Volatil
Sample				Material	% Total	Organic	Sulfid
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg
6/3/2024	1.00	8.40	80.70	9.90	ND	ND	NI
6/3/2024	1.20	10.10	86.10	2.60	ND	ND	NI
6/3/2024	1.00	17.40	80.70	0.90	ND	ND	NI
6/3/2024	1.40	20.60	69.30	8.70	ND	ND	NI
6/3/2024	1.00	14.80	79.10	5.10	ND	ND	NI

Appendix E.2.-Lower Glacier Creek sediment element concentrations, 2016-2024.

Date Ag Al As Cd Cu Fe Hg Pb Se Zn 6/7/2016 0.19 9,460 4.98 1.17 51.1 35,700 <0.020 9.06 1.69 193 6/9/2017 0.14 15,500 3.91 0.510 37.0 47,300 0.0120 7.90 1.22 133 6/9/2017 0.25 16,300 5.68 0.910 58.5 57,800 0.0194 20.60 1.35 202 6/9/2017 0.26 14,700 5.49 1.01 53.6 51,100 0.0204 8.49 1.67 186 6/9/2017 0.21 14,900 4.66 0.821 60.1 53,600 0.0144 20.10 1.39 173 6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400
6/9/2017 0.14 15,500 3.91 0.510 37.0 47,300 0.0120 7.90 1.22 133 6/9/2017 0.25 16,300 5.68 0.910 58.5 57,800 0.0194 20.60 1.35 202 6/9/2017 0.26 14,700 5.49 1.01 53.6 51,100 0.0204 8.49 1.67 186 6/9/2017 0.21 14,900 4.66 0.821 60.1 53,600 0.0144 20.10 1.39 173 6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.16 15,400 4.27 0.835 41.6 </td
6/9/2017 0.25 16,300 5.68 0.910 58.5 57,800 0.0194 20.60 1.35 202 6/9/2017 0.26 14,700 5.49 1.01 53.6 51,100 0.0204 8.49 1.67 186 6/9/2017 0.21 14,900 4.66 0.821 60.1 53,600 0.0144 20.10 1.39 173 6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7<
6/9/2017 0.26 14,700 5.49 1.01 53.6 51,100 0.0204 8.49 1.67 186 6/9/2017 0.21 14,900 4.66 0.821 60.1 53,600 0.0144 20.10 1.39 173 6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7<
6/9/2017 0.21 14,900 4.66 0.821 60.1 53,600 0.0144 20.10 1.39 173 6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 16,800 6.70 0.950 62.4
6/9/2017 0.17 13,300 3.94 0.818 48.9 51,400 0.0135 7.03 1.54 186 5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.13 17,400 5.15 0.937 39.3
5/30/2018 0.19 18,300 4.65 1.02 49.3 50,400 0.0125 9.84 1.44 185 5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3
5/30/2018 0.14 16,600 4.08 0.880 44.4 42,600 0.0079 5.88 1.07 150 5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3
5/30/2018 0.17 14,900 3.60 0.858 44.1 43,600 0.0119 6.58 1.31 160 5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2<
5/30/2018 0.16 15,400 4.27 0.835 41.6 45,100 0.0142 8.11 1.12 168 5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 </td
5/30/2018 0.15 15,500 3.46 0.639 40.7 44,900 0.0092 7.53 1.00 141 6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/6/2019 0.17 17,300 4.32 0.950 50.4 48,400 0.0172 10.90 1.28 189 6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/6/2019 0.17 16,800 6.70 0.950 62.4 51,400 0.0131 6.23 1.43 173 6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/6/2019 0.13 17,400 5.15 0.937 39.3 46,900 0.0174 7.50 1.18 179 6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/6/2019 0.15 16,200 3.68 0.934 45.3 45,400 0.0156 5.23 1.06 166 6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/6/2019 0.14 15,700 4.72 0.771 45.2 44,900 0.0111 4.99 1.03 146 6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/3/2020 0.22 15,200 5.44 1.520 56.3 43,200 0.0125 7.14 2.41 213
6/3/2020 0.16 16.200 3.35 0.904 48.0 42.800 0.0109 6.08 1.08 1.66
0.012020 0.10 $10,200$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6/3/2020 0.18 16,800 4.33 1.630 48.4 43,700 0.0164 8.49 1.58 184
6/3/2020 0.11 14,800 3.14 0.640 40.1 43,400 0.0103 5.98 0.8 152
6/3/2020 0.21 15,200 4.61 0.924 54.3 43,000 0.0097 7.57 1.52 150
6/16/2021 0.18 11,800 4.48 1.070 43.1 41,600 0.0161 7.41 1.58 166
6/16/2021 0.14 12,500 4.48 1.150 31.6 39,000 0.0100 4.26 1.56 160
6/16/2021 0.15 18,500 3.69 0.572 50.7 59,800 0.0192 14.20 0.75 186
6/16/2021 0.14 11,600 6.48 0.540 51.0 54,400 0.0158 15.10 0.92 142
<u>6/16/2021</u> 0.13 12,900 2.85 1.008 33.9 35,550 0.0140 5.54 0.91 142.5
6/13/2022 0.17 15,400 3.89 0.920 67.5 45,500 0.0164 6.90 1.60 156
6/13/2022 0.16 15,700 4.75 0.989 52.2 44,700 0.0109 6.21 1.82 168
6/13/2022 0.15 16,200 4.53 1.050 51.3 53,600 0.0196 8.57 1.68 178
6/13/2022 0.16 15,400 4.04 0.902 42.3 46,800 0.0095 21.70 1.49 161
6/13/2022 0.13 15,400 3.81 0.879 68.5 43,300 0.0098 4.98 1.29 140
6/7/2023 0.12 16,900 3.94 0.758 33.0 42,500 0.0355 5.19 1.24 159
6/7/2023 0.13 15,600 5.34 0.988 40.3 42,600 0.0140 6.26 1.15 189
6/7/2023 0.15 18,000 4.28 0.783 44.5 48,200 0.0120 16.30 1.08 173
6/7/2023 0.14 17,800 4.68 0.839 49.3 46,500 0.0130 6.45 1.10 171
<u>6</u> /7/2023 0.17 17,700 5.34 0.925 57.8 53,600 0.0233 11.80 1.35 196

Appendix E.2.—Continued.

Sample		Concentration (mg/kg dry weight)											
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn			
6/3/2024	0.11	15,150	2.02	0.526	24.1	38,250	0.0132	3.35	0.68	150			
6/3/2024	< 0.10	15,700	1.93	0.401	38.2	41,700	< 0.0050	2.86	0.65	108			
6/3/2024	0.11	14,700	3.18	0.675	45.3	41,400	0.0118	7.14	0.71	158			
6/3/2024	0.14	15,200	4.52	0.735	56.5	46,000	0.0152	6.97	1.05	169			
6/3/2024	0.15	15,200	1.88	0.790	33.7	39,800	0.0094	3.38	0.94	142			

Appendix E.3.-Middle Glacier Creek sediment compositions, 2016-2024.

		Particle S	Size Data				
				_			Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/8/2016	4.06	31.18	64.76	0.00	80.50	0.491	ND
6/9/2017	0.66	11.07	83.97	4.30	82.50	< 0.16	< 0.20
6/9/2017	0.59	16.12	80.79	2.51	80.30	< 0.17	< 0.20
6/9/2017	1.21	28.37	70.36	0.05	76.10	< 0.19	0.30
6/9/2017	2.30	48.51	49.19	0.00	74.80	0.27	< 0.20
6/9/2017	2.62	45.51	51.89	0.00	74.70	< 0.19	< 0.20
5/31/2018	1.62	33.75	63.45	1.19	83.80	< 0.28	0.40
5/31/2018	1.65	26.48	71.45	0.41	80.10	< 0.29	< 0.20
5/31/2018	1.21	10.73	74.57	13.49	77.70	< 0.25	< 0.20
5/31/2018	1.56	25.93	71.89	0.62	75.00	< 0.27	< 0.20
5/31/2018	1.56	15.69	80.82	1.94	71.40	0.37	< 0.20
6/6/2019	0.49	10.58	84.23	4.68	83.40	0.44	< 0.20
6/6/2019	1.51	21.39	77.09	0.00	84.10	0.30	< 0.20
6/6/2019	0.52	9.97	89.51	0.00	82.90	0.37	< 0.20
6/6/2019	1.14	25.86	73.00	0.00	78.60	0.58	< 0.20
6/6/2019	0.56	13.64	85.80	0.00	76.20	0.56	< 0.20
6/2/2020	2.33	39.96	57.09	0.62	75.60	0.26	< 0.20
6/2/2020	2.37	35.95	61.67	0.00	73.00	0.36	< 0.20
6/2/2020	2.60	37.46	59.93	0.00	80.30	0.40	< 0.20
6/2/2020	2.84	42.50	54.30	0.36	71.60	0.42	< 0.20
6/2/2020	2.72	36.99	60.30	0.00	78.30	0.31	< 0.20
6/15/2021	3.40	28.70	67.90	0.00	77.70	0.172	< 5.0
6/15/2021	3.80	4.90	90.90	0.40	80.80	0.257	< 5.0
6/15/2021	4.60	31.80	59.50	4.10	76.80	0.317	< 5.0
6/15/2021	2.20	18.60	78.60	0.60	81.50	0.193	< 5.0
6/15/2021	2.20	32.90	64.90	0.00	80.40	0.320	< 5.0
6/14/2022	1.00	10.60	88.20	0.20	79.80	0.242	< 5.0
6/14/2022	0.00	5.00	94.00	1.00	81.80	0.165	< 5.0
6/14/2022	1.00	8.00	90.00	1.00	83.50	0.143	< 5.0
6/14/2022	1.00	23.00	76.00	1.00	78.10	0.408	< 5.0
6/14/2022	1.00	13.30	85.60	0.10	80.20	0.321	< 5.0
6/6/2023	1.00	8.70	85.00	5.30	79.60	0.646	< 5.0
6/6/2023	1.00	10.50	85.90	2.60	77.00	0.604	< 5.0
6/6/2023	1.00	10.80	86.40	1.80	76.60	0.816	< 5.0
6/6/2023	1.00	14.80	82.30	1.90	78.20	0.570	< 5.0
6/6/2023	1.00	13.40	84.10	1.50	78.60	0.489	< 5.0

-continued-

Appendix E.3.—Continued.

		Particle S	ize Data				
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/3/2024	2.80	28.80	59.60	8.80	ND	ND	ND
6/3/2024	1.80	24.60	69.80	3.80	ND	ND	ND
6/3/2024	2.30	30.00	66.20	1.50	ND	ND	ND
6/3/2024	1.00	12.80	85.70	0.50	ND	ND	ND
6/3/2024	2.90	38.90	56.70	1.50	ND	ND	ND

Appendix E.4.-Middle Glacier Creek sediment element concentrations, 2016-2024.

Sample				Concent	ration (mg	g/kg dry w	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
6/8/2016	0.16	7,650	4.33	0.871	55.8	32,400	< 0.0200	12.00	1.14	170
6/9/2017	0.14	15,700	3.68	0.758	48.1	49,400	0.0094	8.67	0.90	190
6/9/2017	0.15	13,800	4.76	0.902	45.5	53,400	0.0179	14.80	0.93	203
6/9/2017	0.33	14,700	4.88	1.110	75.6	54,500	0.0161	12.50	2.05	189
6/9/2017	0.18	16,000	4.47	1.140	55.7	47,500	0.0210	12.30	1.30	205
6/9/2017	0.21	15,600	4.73	1.070	62.1	50,800	0.0181	11.90	1.42	199
5/31/2018	0.18	18,000	4.17	0.564	47.4	49,000	0.0072	6.89	1.25	122
5/31/2018	0.22	16,900	3.95	1.030	49.6	45,400	0.0260	5.48	1.67	167
5/31/2018	0.18	20,200	2.80	0.675	49.1	49,200	0.0079	5.49	1.03	139
5/31/2018	0.15	18,900	2.48	0.645	45.6	42,500	0.0093	5.24	0.71	129
5/31/2018	0.17	16,900	3.74	1.020	52.8	43,000	0.0118	5.99	1.34	160
6/7/2019	0.19	14,800	3.20	1.380	41.6	43,000	0.0133	3.76	1.83	189
6/7/2019	0.19	16,600	4.97	1.070	53.5	53,600	0.0140	7.40	1.54	174
6/7/2019	0.21	16,800	3.74	1.330	54.2	49,800	0.0128	5.45	1.43	230
6/7/2019	0.53	16,700	4.19	2.220	47.6	47,500	0.0150	10.40	1.55	181
6/7/2019	0.27	17,000	6.14	1.670	54.6	47,000	0.0150	7.45	2.56	204
6/2/2020	0.14	14,900	3.10	0.646	48.2	41,000	0.0122	5.04	0.91	110
6/2/2020	0.15	14,900	2.36	0.687	44.5	37,800	0.0060	4.69	1.00	97
6/2/2020	0.16	15,500	2.71	0.726	44.4	38,800	0.0072	5.24	1.15	106
6/2/2020	0.23	15,400	4.99	1.300	60.7	46,400	0.0137	8.36	1.97	208
6/2/2020	0.16	15,800	2.66	0.716	46.5	39,600	0.0058	3.84	1.08	99
6/15/2021	0.13	13,300	3.01	0.594	42.1	49,300	0.0105	7.62	0.97	124
6/15/2021	0.10	11,200	2.95	0.818	35.4	38,300	0.0106	3.44	1.11	138
6/15/2021	0.19	12,200	3.70	1.020	44.4	45,400	0.0167	6.53	1.28	156
6/15/2021	0.14	12,300	3.31	0.516	47.9	50,800	0.0156	11.10	0.75	137
6/15/2021	0.18	11,800	4.55	1.380	47.3	44,400	0.0190	7.11	1.99	183
6/14/2022	0.12	13,400	3.46	0.552	43.3	47,300	0.0130	4.90	0.80	158
6/14/2022	0.14	15,500	3.55	0.427	46.9	51,400	0.0071	12.80	0.93	126
6/14/2022	0.11	15,800	3.72	0.542	57.4	54,000	0.0098	4.46	0.99	146
6/14/2022	0.20	15,800	5.31	1.230	67.0	49,900	0.0151	9.32	1.97	205
6/14/2022	0.16	15,100	4.39	1.170	54.4	48,000	0.0103	5.50	1.89	174
6/6/2023	0.16	15,900	3.14	1.210	32.4	38,900	0.0122	2.74	2.23	168
6/6/2023	0.23	17,300	3.82	2.110	50.1	41,400	0.0118	3.90	2.43	230
6/6/2023	0.22	16,800	4.64	1.950	44.8	41,200	0.0163	5.40	2.76	243
6/6/2023	0.18	18,000	3.66	1.580	50.7	44,100	0.0163	5.85	2.50	215
6/6/2023	0.17	18,900	2.77	1.500	43.2	46,000	0.0096	4.60	2.37	197

-continued-

Appendix E.4.-Continued.

Sample		Concentration (mg/kg dry weight)											
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn			
6/3/2024	0.15	16,400	2.98	0.782	47.0	41,500	0.0132	7.77	0.97	172			
6/3/2024	0.14	16,300	3.23	0.910	52.7	45,200	0.0138	6.11	1.06	180			
6/3/2024	0.16	17,700	3.87	0.880	51.6	48,900	0.0160	10.60	1.16	193			
6/3/2024	0.16	17,100	3.72	0.934	50.0	43,800	0.0119	5.10	1.14	194			
6/3/2024	0.14	16,200	3.06	0.617	52.2	42,800	0.0101	5.26	0.87	148			

Appendix E.5.-Lower Sarah Creek sediment compositions, 2024.

		Particle S	ize Data				_
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/4/2024	1.10	7.30	89.40	2.20	ND	ND	ND
6/4/2024	1.00	4.80	93.10	1.10	ND	ND	ND
6/4/2024	3.10	31.20	65.00	0.70	ND	ND	ND
6/4/2024	2.80	43.80	53.30	0.10	ND	ND	ND
6/4/2024	1.40	13.30	77.50	7.80	ND	ND	ND

Appendix E.6.-Lower Sarah Creek sediment element concentrations, 2024.

Sample				Concent	tration (mg	g/kg dry w	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
6/4/2024	< 0.10	16,400	3.90	0.540	36.2	31,900	0.0081	4.22	0.60	106
6/4/2024	0.12	17,000	4.71	0.706	41.9	33,800	0.0118	5.46	0.74	119
6/4/2024	0.20	21,400	5.70	0.896	61.3	44,900	0.0162	8.83	1.26	147
6/4/2024	0.16	19,300	6.10	0.732	54.6	41,300	0.0151	7.38	0.99	134
6/4/2024	0.13	18,900	4.72	0.671	46.5	37,100	0.0118	5.51	0.80	120

Appendix E.7.-Upper Sarah Creek sediment compositions, 2024.

_		Particle S	ize Data				
							Acid
				% Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/4/2024	4.60	41.90	52.00	1.50	ND	ND	ND
6/4/2024	6.70	52.00	40.00	1.30	ND	ND	ND
6/4/2024	3.70	50.70	45.60	0.00	ND	ND	ND
6/4/2024	4.90	42.50	52.60	0.00	ND	ND	ND
6/4/2024	4.70	47.90	47.40	0.00	ND	ND	ND

Appendix E.8.-Upper Sarah Creek sediment element concentrations, 2024.

Sample				Concer	ntration (m	g/kg dry w	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
6/4/2024	0.18	19,050	5.55	0.587	52.9	48,000	0.0115	6.47	0.80	126
6/4/2024	0.20	22,800	7.21	0.837	61.3	55,200	0.0173	8.83	1.14	157
6/4/2024	0.22	19,900	6.20	0.894	64.0	45,700	0.0193	8.11	1.17	145
6/4/2024	0.20	21,800	7.41	0.910	64.8	48,900	0.0186	8.12	1.15	157
6/4/2024	0.24	21,100	7.10	0.915	63.2	48,900	0.0203	9.29	1.18	155

Appendix E.9.-Plateau Creek sediment compositions, 2024.

_		Particle S	ize Data				
				%			Acid
				Course		% Total	Volatile
Sample				Material	% Total	Organic	Sulfide
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Carbon	(mg/kg)
6/4/2024	3.20	26.60	60.90	9.30	ND	ND	ND
6/4/2024	1.70	11.70	64.00	22.60	ND	ND	ND
6/4/2024	1.90	14.30	78.80	5.00	ND	ND	ND
6/4/2024	1.50	7.60	84.80	6.10	ND	ND	ND
6/4/2024	1.00	2.60	82.60	13.80	ND	ND	ND

Appendix E.10.-Plateau Creek sediment element concentrations, 2024.

Sample				Concen	tration (m	g/kg dry w	eight)			
Date	Ag	Al	As	Cd	Cu	Fe	Hg	Pb	Se	Zn
6/4/2024	0.16	20,000	5.82	0.628	50.9	46,800	0.0102	6.74	0.75	122
6/4/2024	0.18	21,600	6.34	0.770	57.4	48,600	0.0150	8.29	1.00	141
6/4/2024	0.18	20,200	5.88	0.827	55.9	42,000	0.0151	7.67	1.04	133
6/4/2024	< 0.10	19,200	2.94	0.458	23.1	44,100	0.0086	6.58	0.38	139
6/4/2024	< 0.10	19,100	3.17	0.552	18.8	41,200	0.0065	6.72	0.32	133

CERTIFICATE OF ANALYSIS

Work Order Client Contact Address Telephone roject PO C-O-C number Sampler Site Quote number	Constantine North Inc. Environmental Scientist Merlin Benner Suite 320 - 800 West Pender St. Vancouver BC Canada V6C 2V6 907 766 2057 ADFG Palmer Project D Is VA22-CONI100-001 (Q62329)	e Laboratory Ac ount Manager Address Telephone Date Samples Received Date Analysis Commenced Issue Date	of 6 ALS Environmental - Vancouver lan Chen 8081 Lougheed Highway Burnaby BC Canada V5A 1W9 +1 604 253 4188 26-Jun-2024 08:45 02-Jul-2024 08-Jul-2024 15:04
No. of samples received No. of samples analysed	0.0		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

E.11.-2024 Palmer Project sediment laboratory reports.

This Certificate of Analysis contains the following information

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate ttachments: Quality Control Report, QC Interpretive report to ssist with Quality Review nd Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	aboratory Department
Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burn by, British Columbia
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbi
Sam Silveira	Analyst	Metals, Burnaby, British Columbia

Constantine North Inc. ADFG Palmer Project VA24B5139 2 of 6 ge Work Order

Client roject

neral Comments

re developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, nd Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for pplicable references nd methodology summaries. Reference methods my incorporate modifications to improve performance. The nalytical methods used by ALS

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances Key:

LOR: Limit of Reporting (detection limit).

Description	no units	percent	milligrams per kilogram	pH units
Unit	in ou	% pero	mg/kg millig	pH units pH u

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not oc ur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis s a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

3 of 6 VA24B5139

ge Work Order Client roject

Constantine North Inc. ADFG Palmer Project

Analytical Results

Sub-Matrix: oi l			Olie	Client sample ID	2024 LGC S1	2024 LGC S2	2024 LGC S3	2024 LGC S4	2024 LGC S5
(Matrix: oil/Solid)									
			Client samplı	Client sampling date / time	03-Jun-2024 6:30	03-Jun-2024 6:30	03-Jun-2024 6:30	03-Jun-2024 6:30	03-Jun-2024 6:30
Analyte	CAS Number	Method/Lab	OR	Unit	VA24B5139-001	VA24B5139-002	VA24B5139-003	VA24B5139-004	VA24B5139-005
				-	Result	Result	Result	Result	Result
Physical Tests									
pH (1:2 soil:water)	E1	E108/VA	0.10	pH units	8.66	8.61	8.63	8.55	8.47
Particle Size									
Grain size curve	E1	E185A/SK			See	See	See Attached	See	See Attached
	1		1	1	Attached	Attached		Attached	
Percent Passing Passing (9.5mm)		E181/SK	0	%	98.5	00	00	98.2	7.86
Passing (4.75mm)	 	E181/SK	0.	: %	95.5	00	00	9.96	96.5
Passing (19mm)	<u>E1</u>	E181/SK	0:	%	00	00	00	00	00
Passing (25.4mm)	<u>E</u>	E181/SK	0.	%	00	00	00	00	00
Passing (38.1mm)	——————————————————————————————————————	E181/SK	0:	%	00	00	00	00	00
Passing (50.8mm)	<u>E1</u>	E181/SK	0:	%	00	00	00	00	00
Passing (76.2mm)	<u>E</u> 1	E181/SK	0:	%	00	00	00	00	00
Passing (1.0mm)	<u>E1</u>	E182/SK	0:	%	82.1	89.1	94.6	85.8	91.4
Passing (0.841mm)	<u>E</u> 1	E182/SK	0:	%	74.9	80.4	88.9	84.0	86.9
Passing (0.50mm)	 E1	E182/SK	0:	%	59.5	61.6	76.8	80.2	77.3
Passing (0.420mm)	 E1	E182/SK	0:	%	50.4	51.6	68.6	75.3	68.5
Passing (0.250mm)	<u>E</u> 1	E182/SK	0:	%	31.0	30.2	51.3	64.9	49.8
Passing (0.149mm)	 E1	E182/SK	0:	%	8.3	9.3	34.9	42.5	31.7
Passing (0.125mm)	<u>E</u> 1	E182/SK	0:	%	5.3	8.9	31.0	37.2	27.4
Passing (0.075mm)	<u>E</u> 1	E182/SK	0:	%	9.4	κi	8.4	22.0	5.8
Passing (0.063mm)	<u>E</u> 1	E182/SK	0:	%	8.0	6.6	5.4	8.3	3.0
Passing (0.05mm)	 E1	E182/SK	0:	%	6.4	8.5	2.1	4.4	0.0
Passing (0.0312mm)	<u>E</u> 1	E184/SK	0:	%	3.9	5.2	6.9	8.5	5.8
Passing (0.020mm)	<u>E</u> 1	E184/SK	0:	%	2.5	3.2	3.8	5.0	3.4
Passing (0.005mm)	 E1	E184/SK	0:	%	<1.0	2,	<1.0	4.	0.
Passing (0.004mm)	<u>E</u> 1	E184/SK	0.	%	<1.0	√.	<1.0	5.	< 1.0
Passing (0.002mm)	<u>E</u> 1	E184/SK	0:	%	<1.0	<1.0	<1.0	<1.0	<1.0
Passing (2.0mm)	<u>E1</u>	E181/SK	0:	%	90.1	97.4	99.1	91.3	94.9

4 of 6 VA24B5139 Constantine North Inc. ADFG Palmer Project

ge Work Order Client roject

Analytical Results

Sub-Matrix: oil		CI	Client sample ID	2024 LGC S1	2024 LGC S2	2024 LGC S3	2024 LGC S4	2024 LGC S5
(Matrix: oil/Solid)								
		Č	11-1-1-1-1					
		Client samp	Cilent sampling date / time	03-Jun-2024	03-Jun-2024	03-Jun-2024	03-Jun-2024	03-Jun-2024
				6:30	6:30	6:30	6:30	6:30
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5139-001	VA24B5139-002	VA24B5139-003	VA24B5139-004	VA24B5139-005
				Result	Result	Result	Result	Result
Metals								
Aluminum	7429-90-5 E440/VA	20	mg/kg	5200	2009	4700	5200	5200
Arsenic	7440-38-2 E440/VA	0.10	mg/kg	2.07	.93	3.18	4.52	88.
Cadmium	7440-43-9 E440/VA	0.020	mg/kg	0.519	0.401	0.675	0.735	0.790
Copper	7440-50-8 E440/VA	0.50	mg/kg	23.7	38.2	45.3	56.5	33.7
Iron	7439-89-6 E440/VA	20	mg/kg	39500	41700	41400	46000	39800
ead	7439-92-1 E440/VA	0.50	mg/kg	3.28	2.86	7.14	6.97	3.38
Mercury	7439-97-6 E510/VA	0.0050	mg/kg	0.0112	<0.0050	0.0118	0.0152	0.0094
elenium	7782-49-2 E440/VA	0.20	mg/kg	0.63	0.65	0.71	.05	0.94
ilver	7440-22-4 E440/VA	0.10	mg/kg	0.11	<0.10	0.11	0.14	0.15
Zinc	7440-66-6 E440/VA	2.0	mg/kg	32	80	58	69	42

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Ac reditation section for an explanation of analyte accreditations.

ge Work Order Client roject

5 of 6 VA24B5139 Constantine North Inc. ADFG Palmer Project

Analytical Results

			Č	<u></u>					
Sub-Matrix: oil			ිි	Client sample ID	2024 MGC S1	2024 MGC S2	2024 MGC S3	2024 MGC S4	2024 MGC S5
(Matrix: oil/Solid)									
			Cilent samp	Cilent sampling date / time	03-Jun-2024 3:10	03-Jun-2024 3:10	03-Jun-2024 3·10	03-Jun-2024 3:10	03-Jun-2024 3:10
Analyte	CAS Number	Method/Lab	OR	Unit	VA24B5139-006	VA24B5139-007	VA24B5139-008	VA24B5139-009	VA24B5139-010
					Result	Result	Result	Result	Result
Physical Tests									
pH (1:2 soil:water)	-	E108/VA	0.10	pH units	8.38	8.47	8.41	8.46	8.45
Particle Size									
Grain size curve		E185A/SK			See	See	See Attached	See	See Attached
					Attached	Attached		Attached	
Percent Passing									
Passing (9.5mm)	T	E181/SK	0:	%	99.4	99.2	00	00	00
Passing (4.75mm)	1	E181/SK	0.	%	98.5	98.1	8.66	6.66	8.66
Passing (19mm)	<u> </u>	E181/SK	0.	%	00	00	00	00	00
Passing (25.4mm)	i	E181/SK	0.	%	00	00	00	00	00
Passing (38.1mm)	<u>Ш</u>	E181/SK	0.	%	00	00	00	00	00
Passing (50.8mm)	<u>Ш</u>	E181/SK	0.	%	00	00	00	00	00
Passing (76.2mm)	1	E181/SK	0.	%	00	00	00	00	00
Passing (1.0mm)		E182/SK	0.	%	80.0	93.5	92.0	98.4	0.96
Passing (0.841mm)	1	E182/SK	0.	%	75.9	9.06	89.5	6.96	94.4
Passing (0.50mm)	1	E182/SK	0.	%	67.2	84.5	84.1	93.6	6.06
Passing (0.420mm)	i	E182/SK	0.	%	63.0	78.9	80.4	83.4	86.5
Passing (0.250mm)	1	E182/SK	0.	%	54.1	6.99	72.5	61.8	77.2
Passing (0.149mm)	1	E182/SK	0.	%	44.6	47.5	54.3	32.4	61.6
Passing (0.125mm)		E182/SK	0.	%	42.3	42.9	20.0	25.4	58.0
Passing (0.075mm)	1	E182/SK	0.	%	31.6	26.4	32.3	3.8	41.8
Passing (0.063mm)	i	E182/SK	0.	%	29.1	22.5	28.1	Υ.	38.0
Passing (0.05mm)	1	E182/SK	0.	%	26.3	8.2	23.5	8.0	33.8
Passing (0.0312mm)		E184/SK	0.	%	6.0	2.0	3.9	4.9	9.8
Passing (0.020mm)		E184/SK	0.	%	8.6	6.2	8.2	3.0	ī.
Passing (0.005mm)	1	E184/SK	0.	%	2.8	80.	2.3	0.	2.9
Passing (0.004mm)	1	E184/SK	0.	%	2.4	9:	2.0	<1.0	2.5
Passing (0.002mm)		E184/SK	0.	%	9.	2	4.	<1.0	7.
Passing (2.0mm)	1	E181/SK	0.	%	91.2	96.2	98.5	99.5	98.2
Metals									
Aluminum	7429-90-5 E440/VA	440/VA	20	mg/kg	6400	6300	7700	7100	6200

(Sud

6 of 6 VA24B5139 Constantine North Inc. ADFG Palmer Project

ge Work Order Client roject

Analytical Results

Sub-Matrix: oil		Cli	Client sample ID	2024 MGC S1	2024 MGC S2	2024 MGC S3	2024 MGC S4	2024 MGC S5
(Matrix: oil/Solid)								
		Client sampl	Client sampling date / time	03-Jun-2024	03-Jun-2024	03-Jun-2024	03-Jun-2024	03-Jun-2024
				3:10	3:10	3:10	3:10	3:10
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5139-006	VA24B5139-007	VA24B5139-008	VA24B5139-009	VA24B5139-010
				Result	Result	Result	Result	Result
Metals								
Arsenic	7440-38-2 E440/VA	0.10	mg/kg	2.98	3.23	3.87	3.72	3.06
Cadmium	7440-43-9 E440/VA	0.020	mg/kg	0.782	0.910	0.880	0.934	0.617
Copper	7440-50-8 E440/VA	0.50	mg/kg	47.0	52.7	51.6	50.0	52.2
Iron	7439-89-6 E440/VA	20	mg/kg	41500	45200	48900	43800	42800
ead	7439-92-1 E440/VA	0.50	mg/kg	7.77	6.11	9.0	5.10	5.26
Mercury	7439-97-6 E510/VA	0.0050	mg/kg	0.0132	0.0138	0.0160	0.0119	0.0101
elenium	7782-49-2 E440/VA	0.20	mg/kg	0.97	90.	.16	.14	0.87
ilver	7440-22-4 E440/VA	0.10	mg/kg	0.15	0.14	0.16	0.16	0.14
Zinc	7440-66-6 E440/VA	2.0	mg/kg	72	80	93	94	48

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Ac reditation section for an explanation of analyte accreditations.

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

Burnaby, British Columbia Canada V5A 1W9 ALS Environmental - Vancouver 8081 Lougheed Highway 26-Jun-2024 08:45 08-Jul-2024 15:18 +1 604 253 4188 : Ian Chen 1 of 14 Date Samples Received Account Manager Issue Date Telephone aboratory Address Environmental Scientist Merlin Benner Vancouver BC Canada V6C 2V6 Suite 320 - 800 West Pender St. : VA22-CONI100-001 (Q62329) onstantine North Inc. **ADFG Palmer Project** VA24B5139 907 766 2057 .. No. of samples received C-O-C number Quote number Work Order Telephone Sampler Address Contact Project Client М

QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality bjectives, provides holding ime details and exceptions, summarizes QC sample frequencies, and lists applicable methodology This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other references and summaries.

Kev

No. of samples analysed

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

PD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "--" if no guidance exists from CCME, Canadian provinces, or broadly recognized international eferences.

ummar y of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches)

Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 14

Work Order : VA24B5139

Client : Constantine N

OAZ4B5139
Constantine North Inc.
ADFG Palmer Project

Project

Analysis Holding Time Compliance

This eport summarizes extraction / preparation and analysis times and compares each with ALS ecommended holding times, which are selected to meet known provincial and /or ederal Environment Canada (where available). Dates and holding times eported elow epresent the irst dates o extraction or analysis. f subsequent tests o dilutions exceeded holding times, qualifiers requirements. In the absence of egulatory hold times, AS establishes ecommendations ased on guidelines published y organizations such as CCME, US EPA, APHA Standard Methods, ASTM, o are added (refer to COA).

f samples a e identified elow as having een analyzed or extracted outside o ecommended holding times, measurement uncertainties may e increased, and this should e taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid					Ev	aluation: * = }	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	edance; 🗸	= Within F	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	eparation			Analysis	is	
ontainer / Client Sample ID(s)			Preparation	Holding	Holding Times	Eval	Analysis Date	Holding	Holding Times	Eval
			Date	Kec	Actual			Кес	Actual	
Metals : Mercury in Soil/Solid by CVAAS					-					
Glass soil jar/Teflon lined cap	F510	03lim-2024	02-111-2024	00	00	>	02-1111-2024	28 days	28 days	>
	2		200	days	days			5	o g	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teffon lined cap	r 7	000	000	:	;	,	000	0		`
2024 LGC 52	D	03-3un-2024	02-Jul-2024	28 days	28 days	>	02-Jul-2024	zŏ days zŏ days	zs days	>
Metals : Mercury in Soil/Solid by CVAAS	ı									
Glass soil jar/Teflon lined cap										
2024 LGC S3	E510	03-Jun-2024	02-Jul-2024	28	28	>	02-Jul-2024	28 days 28 days	28 days	>
				days	days					
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2024 LGC S4	E510	03-Jun-2024	02-Jul-2024	28	28	>	02-Jul-2024	28 days 28 days	28 days	>
				days	days					
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2024 LGC S5	E510	03-Jun-2024	02-Jul-2024	28	28	>	02-Jul-2024	28 days 28 days	28 days	>
				days	days			,	,	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap						,				
2024 MGC S1	E510	03-Jun-2024	02-Jul-2024	28	28 days	>	02-Jul-2024	28 days	29 days	* 1
				udys	days					=
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap	i L	-	-			,	-	-	-	
2024 MGC S2	E510	03-Jun-2024	02-Jul-2024	28	28 daye	>	02-Jul-2024	28 days 29 days	29 days	* I
				ططع	days					:

Matrix: Soil/Solid					Eva	Evaluation: * =	= Holding time exceedance ; \checkmark = Within Holding Time	dance; ✓ :	= Within H	olding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis		
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Times Rec Actua	Times Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS	ı									
Glass soil jar/Teflon lined cap 2024 MGC S3	E510	03-Jun-2024	02-Jul-2024	28 days	28 days	>	02-Jul-2024	28 days 2	29 days	* #
Metals : Mercury in Soil/Solid by CVAAS	ı		l							
Glass soil jar/Teflon lined cap 2024 MGC S4	E510	03-Jun-2024	02-Jul-2024	28 days	28 days	>	02-Jul-2024	28 days 2	29 days	* #
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap 2024 MGC S5	E510	03-Jun-2024	02-Jul-2024	28 days	28 days	>	02-Jul-2024	28 days 2	29 days	* #
Metals : Metals in Soil/Solid by CRC ICPMS	ı									
Glass soil jar/Teflon lined cap 2024 LGC S1	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 LGC S2	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS	ı									
Glass soil jar/Teflon lined cap 2024 LGC S3	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS	ı									
Glass soil jar/Teflon lined cap 2024 LGC S4	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 LGC S5	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 MGC S1	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 2 days	29 days	>

Matrix: Soil/Solid					E	aluation: * = }	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	dance; v	= Within F	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis	si	
ontainer / Client Sample ID(s)			Preparation Date	Holding	Holding Times Rec Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 MGC S2	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teffon lined cap 2024 MGC S3	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 MGC S4	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 days	29 days	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 2024 MGC S5	E440	03-Jun-2024	02-Jul-2024	180 days	29 days	>	02-Jul-2024	180 days	29 days	>
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 LGC S1	E185A	03-Jun-2024		-	-		08-Jul-2024			
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 LGC S2	E185A	03-Jun-2024		l	I		08-Jul-2024			
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 LGC S3	E185A	03-Jun-2024	-	-	-		08-Jul-2024	-		
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 LGC S4	E185A	03-Jun-2024	1				08-Jul-2024	1		
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method	ı									
LDPE bag 2024 LGC S5	E185A	03-Jun-2024	1				08-Jul-2024	1		

Matrix: Soil/Solid					Ε̈́ν	aluation: * =	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	edance;	= Within	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis	sis	
ontainer / Client Sample ID(s)			Preparation Date	Holding	Holding Times Rec Actual	Eval	Analysis Date	Holdin	Holding Times Rec Actual	Eval
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 MGC S1	E185A	03-Jun-2024	1	1			08-Jul-2024		-	
Particle Size : Grain Size Renort (At achment) Dinet/Sieve Method	ı									
LDPE bag 2024 MGC S2	E185A	03-Jun-2024			1		08-Jul-2024			
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method					-					
LDPE bag 2024 MGC S3	E185A	03-Jun-2024	I				08-Jul-2024			
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method	ı									
LDPE bag 2024 MGC S4	E185A	03-Jun-2024	1				08-Jul-2024			
Particle Size : Grain Size Report (At achment) Pipet/Sieve Method										
LDPE bag 2024 MGC S5	E185A	03-Jun-2024					08-Jul-2024			
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 LGC S1	E184	03-Jun-2024	04-Jul-2024	365 davs	31 davs	>	04-Jul-2024	365 davs	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method	ı									
LDPE bag 2024 LGC S2	E184	03-Jun-2024	04-Jul-2024	365 davs	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 LGC S3	E184	03-Jun-2024	04-Jul-2024	365 davs	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method	ı									
LDPE bag 2024 LGC S4	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>

Constantine North Inc. ADFG Palmer Project 7 of 14 VA24B5139 Page : Work Order : Project Client

Matrix: Soil/Solid					Eva	aluation: × = ŀ	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	dance; •	= Within F	lolding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	eparation			Analysis	is	
ontainer / Client Sample ID(s)			Preparation Date	Holding Rec	Holding Times Rec Actual	Eval	Analysis Date	Holding Rec	Holding Times Rec Actual	Eval
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 LGC S5	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 MGC S1	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 MGC S2	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 MGC S3	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 MGC S4	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Pipet e Method										
LDPE bag 2024 MGC S5	E184	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 2024 LGC S1	E182	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 2024 LGC S2	E182	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm							-			
LDPE bag 2024 LGC S3	E182	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>

Matrix: Soil/Solid					Ēv	luation: x =	Evaluation: \star = Holding time exceedance ; \checkmark = Within Holding Time	dance; 🗸	= Within F	Iolding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	s	
ontainer / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	Holding Times	Times	Eval
Percent Passing : Particle Size Analysis - Sieve <2mm			Date							
LDPE bag 2024 LGC S4	E182	03-Jun-2024	04-Jul-2024	365	31	>	04-Jul-2024	365	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm	ı			days	days			days		
LDPE bag 2024 LGC S5	E182	03-Jun-2024	04-Jul-2024	365	31	>	04-Jul-2024	365	31 days	>
				days	days			days		
Percent Passing : Particle Size Analysis - Sieve <2mm									-	
LDPE bag 2024 MGC S1	E182	03-Jun-2024	04-Jul-2024	365	31	>	04-Jul-2024	365	31 days	>
				days	days			days		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 2024 MGC S2	E182	03-Jun-2024	04-Jul-2024	365 davs	31 davs	>	04-Jul-2024	365 davs	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm	ı									
LDPE bag 2024 MGC S3	E182	03-Jun-2024	04-Jul-2024	365 davs	31 days	>	04-Jul-2024	365 davs	31 days	>
Percent Passing : Particle Size Analysis - Sieve <2mm				`	,			`		
LDPE bag 2024 MGC S4	E182	03-Jun-2024	04-Jul-2024	365	31	>	04-Jul-2024	365	31 days	>
				days	days			days		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 2024 MGC S5	E182	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 LGC S1	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 LGC S2	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>

Matrix: Soil/Solid					Eva	luation: × = F	Evaluation: * = Holding time exceedance ; \checkmark = Within Holding Time	dance; ^	= Within F	Holding Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	is	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 LGC S3	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 LGC S4	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 LGC S5	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 MGC S1	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 MGC S2	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 MGC S3	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	`	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 MGC S4	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 2024 MGC S5	E181	03-Jun-2024	04-Jul-2024	365 days	31 days	>	04-Jul-2024	365 days	31 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 2024 LGC S1	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days	29 days	>

10 of 14 VA24B5139 Page : Work Order : Project Client

Constantine North Inc. ADFG Palmer Project

Matrix: Soil/Solid					Ēv	aluation: x = 1	Holding time exce	Evaluation: κ = Holding time exceedance ; \checkmark = Within Holding Time	n Holding Tim
Analyte Group : Analytical Method	Method	Sampling Date	Exi	Extraction / Preparation	eparation			Analysis	
ontainer / Client Sample ID(s)			Preparation Date	Holding	Holding Times Rec Actual	Eval	Analysis Date	Holding Times Rec Actual	Eval
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 LGC S2	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 LGC S3	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 LGC S4	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 LGC S5	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 MGC S1	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 MGC S2	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 MGC S3	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 MGC S4	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									
Glass soil jar/Teflon lined cap 2024 MGC S5	E108	03-Jun-2024	02-Jul-2024	30 days	29 days	>	02-Jul-2024	30 days 29 days	>

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Constantine North Inc. ADFG Palmer Project

11 of 14 VA24B5139

Page : Work Order :

Client Project

Constantine North Inc. ADFG Palmer Project 12 of 14 VA24B5139 Page : Work Order : Project Client

Quality Control Parameter Frequency Compliance

The ollowing eport summarizes the equency of laboratory QC samples analyzed within the analytical atches (QC lots) in which the submitted samples were processed. The actual equency

should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluation	: × = QC freque	ncy outside spe	cification; $\checkmark = 0$	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.	in specification.
Quality Control Sample Type			nnt	t		Frequency (%)	
Analy ical Methods	Method	GC Lot #	<i>)</i> 00	Regular	Actual	Expected	Evaluation
aboratory Duplicates (DUP)							
Mercury in Soil/Solid by CVAAS	E510	1522647	_	20	5.0	5.0	>
Metals in Soil/Solid by CRC ICPMS	E440	1522648	_	20	5.0	5.0	>
Particle Size Analysis - Pipette Method	E184	1527343	_	1	7.1	5.0	>
Particle Size Analysis - Sieve <2mm	E182	1527345	1	1	7.1	5.0	>
pH by Meter (1:2 Soil:Water Extraction)	E108	1522649	1	20	5.0	5.0	>
aboratory Control Samples (LCS)							
Mercury in Soil/Solid by CVAAS	E510	1522647	2	20	10.0	10.0	>
Metals in Soil/Solid by CRC ICPMS	E440	1522648	2	20	10.0	10.0	>
Particle Size Analysis - Pipette Method	E184	1527343	1	_	7.1	5.0	>
Particle Size Analysis - Sieve <2mm	E182	1527345	1	1	7.1	5.0	>
Particle Size Analysis - Sieve >2mm	E181	1527344	_	1	7.1	5.0	>
pH by Meter (1:2 Soil:Water Extraction)	E108	1522649	1	20	5.0	5.0	>
Method Blanks (MB)							
Mercury in Soil/Solid by CVAAS	E510	1522647	_	20	5.0	5.0	>
Metals in Soil/Solid by CRC ICPMS	E440	1522648	1	20	5.0	5.0	/

Methodology References and Summaries

The analytical methods used y AS are developed using internationally ecognized eference methods (where available), such as those published y US EPA, APHA Standard Methods, ASTM, SO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108	Soil/Solid	BC Lab Manual	pH is determined y potentiometric measurement with a pH electrode at ambient
				lly 20± 5°C), and is carried out in accord
	ALS Environmental -			procedures described in the BC ab Manual (prescriptive method). The procedure
	Vancouver			sieved (10mesh/2mm) sample
				water at a 1:2 atio of sediment to water. The pH is then measured y a standard pH
		:		ie.
Particle Size Analysis - Sieve >2mm	E181	Soil/Solid	ASTM D6913-17 (mod)	Soil samples a e disaggregated and sieved through a 2mm sieve. Material etained on
				the sieve is then urther sieved through a series o sieves. The amount passing through
	ALS Environmental -			the sieves is measured gravimetrically.
	Saskatoon			
Particle Size Analysis - Sieve <2mm	E182	Soil/Solid	ASTM D6913-17 (mod)	Soil samples a e disaggregated and sieved through a 2mm sieve. Material passed
				disaggre
	ALS Environmental -			g through the sieves is me
	Saskatoon			
Particle Size Analysis - Pipette Method	E184	Soil/Solid	SSIR-51 Method 3.2.1	Soil material is separated om coarse material (>2mm). A specimen is then
				disaggregated through mixing with Calgon solution. The material is then suspended in
	ALS Environmental -			solution wherein egular aliquots are taken using a mechanical pipette at specific time
	Saskatoon			suspension determined c
				ciples o Stokes' aw are applied to determine the amount o mat
				in solution as well as the maximum particle size emaining in solution at the specified
Grain Size Report (Attachment) Pipet/Sieve	E185A	Soil/Solid	SSIR-51 Method 3.2.1	A gain size curve is a graphical epresentation of the particle sizing o a sample
Method				representing the percent passing against the effective particle size.
	ALS Environmental -			
	Saskatoon			
Metals in Soil/Solid by CRC ICPMS	E440	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may e environmentally available. Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
	ALS Environmental -			
	Vancouver			Dependent on sample matrix, some metals may e only partially ecovered, including Al,
				Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Silicate minerals are not solubilized. Volatile orms
				of sulfur (including sulfide) may not e captured, as they may e lost during sampling,
				storage, o digestion. This method does not adequately ecover elemental sulfur, and is
				unsuitable for assessment of elemental sulfur standards or guidelines.
				Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510	Soil/Solid	EPA 200.2/1631	Samples a e dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI,
			Appendix (mod)	ollowed by CVAAS analysis.
	ALS Environmental -			
	Vancouver			

 Page
 : 14 of 14

 Work Order
 : VA24B5139

 Client
 : Constantine North Inc.

 Project
 : ADFG Palmer Project

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
each 1:2 Soil:Water for pH/EC	EP108	Soil/Solid	BC WLAP METHOD: PH. ELECTROMETRIC.	BC WLAP METHOD: The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample PH. ELECTROMETRIC. with deionized/distilled water at a 1:2 ratio of sediment to water.
	ALS Environmental - Vancouver		SOIL	
Digestion for Metals and Mercury	EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.
	ALS Environmental - Vancouver			
Dry and Grind in Soil/Solid <60°C	EPP442	Soil/Solid	Soil Sampling and Methods of Analysis	A ter emoval of any coarse agments and eservation of wet subsamples a portion of homonenized sample is set in a trav and dried at less than 60°C until dry. The sample is
	ALS Environmental - Saskatoon		Carter 2008	then particle size educed with an automated crusher o mortar and pestle, typically to <2 mm. Further size reduction may be needed for particular tests.

QUALITY CONTROL REPORT

Work Order	:VA24B5139	Page	
Client	: Constantine North Inc.	Laboratory	: ALS Environmental - Vancouver
Contact	: Environmental Scientist Merlin Benner	Account Manager	:lan Chen
Address	:Suite 320 - 800 West Pender St. Vancouver BC Canada V6C 2V6	Address	:8081 Lougheed Highway Burnaby, British Columbia Canada V5A 1W9
Telephone	907 766 2057	Telephone	:+1 604 253 4188
Project	: ADFG Palmer Project	Date Samples Received	:26-Jun-2024 08:45
РО		Date Analysis Commenced	: 02-Jul-2024
C-O-C number		Issue Date	: 08-Jul-2024 15:03
Sampler			
Site			
Quote number	:VA22-CONI100-001 (Q62329)		
No. of samples received	0::		
No. of samples analysed	0::		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

aboratory Department	Saskatoon Sask Soils, Saskatoon, Saskatchewan	/ancouver Organics, Burnaby, British Columbia	/ancouver Metals, Burnaby, British Columbia	Vancouver Metals, Burnaby, British Columbia
osition	Team Leader - Inorganics	Supervisor - Organics Instrumentation	Team Leader - Metals	Analyst
Signatories	Hedy Lai	Janice Leung	Robin Weeks	Sam Silveira

General Comments

Constantine North Inc. ADFG Palmer Project

2 VA24B5139

Work Order:

Client Project

report cntains detailed results r all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) r applicable method references and methodology The ALS Quality Control (QC) report is ptionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure ur high standards quality are associated test results. met. Each QC result as a known r expected target value, whic is cmpared against predetermined Data Quality Objectives (DQOs) to provide cnfidence in the accuracy

Key:

summaries.

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

rkorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

alsglobal.com

3 VA24B5139 Work Order: Project Client

Constantine North Inc. ADFG Palmer Project

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratry replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs r Laboratory Duplicates are expressed as test-specific limits r Relative Percent Difference (RPD), r as an absolute difference limit 2 times the LOR r low concentration duplicates within ~ 4-10

times the LOR (cut-off is test-specific).

							Laborai	Laboratory Duplicate (DUP) Report	UP) Report		
Sub-Iviatrix: Soli/Solid						27.13				:	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 1522649)	: Lot: 1522649)										
VA24B5139-001	2024 LGC S1	pH (1:2 soil:water)	-	E108	0.10	pH units	8.66	8.56	.2%	2%	-
Percent Passing (QC Lot: 1527343)	2C Lot: 1527343)										
CG2408976-001	Anonymous	Passing (0.002mm)	1	E184	0:	%	0. ^	0. ^	0	Diff <2x LOR	1
		Passing (0.004mm)	-	E184	0.	%	0. ^	0. ^	0	Diff <2x LOR	-
		Passing (0.005mm)	-	E184	0.	%	0. ^	0. ^	0	Diff <2x LOR	i
		Passing (0.020mm)	-	E184	0.	%	0. V	0. ^	0	Diff <2x LOR	1
		Passing (0.0312mm)	-	E184	0.	%	0. ^	0. ^	0	Diff <2x LOR	-
Percent Passing (QC Lot: 1527345)	AC Lot: 1527345)										
CG2408976-001	Anonymous	Passing (0.05mm)		E182	0:	%	ε.	2.	0.05	Diff <2x LOR	!
		Passing (0.063mm)	1	E182	0.	%	ιςi	4.	0.07	Diff <2x LOR	!
		Passing (0.075mm)	1	E182	0.	%	7.	9.	0.09	Diff <2x LOR	I
		Passing (0.125mm)	I	E182	0:	%	2.5	2.3	0.2	Diff <2x LOR	1
		Passing (0.149mm)	1	E182	0.	%	2.8	2.6	0.2	Diff <2x LOR	1
		Passing (0.250mm)	I	E182	0:	%	4.1	3.8	0.3	Diff <2x LOR	!
		Passing (0.420mm)	1	E182	0:	%	εċ	6.8	0.5	Diff <2x LOR	!
		Passing (0.50mm)	I	E182	0:	%	8.8	8.2	9.0	Diff <2x LOR	l
		Passing (0.841mm)	1	E182	0:	%	3.2	2.8	0.5	Diff <2x LOR	1
		Passing (1.0mm)	-	E182	0.	%	5.3	4.9	2.57%	2%	-
Metals (QC Lot: 1522647)	22647)										
VA24B5139-001	2024 LGC S1	Mercury	439-97-6	E510	0:0020	mg/kg	0.0112	0.0152	0.0040	Diff <2x LOR	!
Metals (QC Lot: 1522648)	22648)										
VA24B5139-001	2024 LGC S1	Aluminum	429-90-5	E440	20	mg/kg	5200	5100	0.592%	40%	-
		Arsenic	440-38-2	E440	0.10	mg/kg	2.07	96.	5.46%	30%	-
		Cadmium	440-43-9	E440	0.020	mg/kg	0.519	0.533	2.57%	30%	l
		Copper	440-50-8	E440	0.50	mg/kg	23.7	24.5	3.19%	30%	1
		Iron	439-89-6	E440	20	mg/kg	39500	37000	%02'9	30%	l
		Lead	439-92-1	E440	0.50	mg/kg	3.28	3.41	3.96%	40%	
		Selenium	82-49-2	E440	0.20	mg/kg	0.63	0.72	0.08	Diff <2x LOR	-
		Silver	440-22-4	E440	0.10	mg/kg	0.11	<0.10	0.01	Diff <2x LOR	1
		Zinc	440-66-6	E440	2.0	mg/kg	32	89	24.1%	30%	1

Constantine North Inc. ADFG Palmer Project 4 VA24B5139 Page : Work Order :

Project Client

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried ut r test samples. Method Blank results are used to mintor and control r potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid						
naly e	CAS Number Method	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 1522647)						
Mercury	439-97-6	E510	0.005	mg/kg	<0.0050	-
Metals (QCLot: 1522648)						
Aluminum	429-90-5	E440	90	mg/kg	<50	
Arsenic	440-38-2	E440	0.1	mg/kg	<0.10	-
Cadmium	440-43-9	E440	0.02	mg/kg	<0.020	1
Copper	440-50-8	E440	0.5	mg/kg	<0.50	1
Iron	439-89-6	E440	20	mg/kg	<50	-
Lead	439-92-1	E440	0.5	mg/kg	<0.50	-
Selenium	82-49-2	E440	0.2	mg/kg	<0.20	-
Silver	440-22-4	E440	0.1	mg/kg	<0.10	1
Zinc	440-66-6	E440	2	mg/kg	<2.0	

 Page
 5

 Work Order :
 VA24B5139

 Client :
 Constantine North Inc.

 Project :
 ADFG Palmer Project

Laboratory Control Sample (LCS) Report

CS A Laboratory Control Sample (LCS) is an analyte-free matrix that as been rifified (spiked) with test analytes at known concentration and processed in an identical manner t test samples. results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent test sample matrix.

Laboratory Control Sample (LCS) Report

Sub-Matrix: Soil/Solid

108		Spike	Recovery (%)	Recovery Limits (%)	Limits (%)	
LOR						
	Unit	Target Concentration	SO7	Low	High	Qualifier
	pH units	6 pH units	00	95.0	05	-
0.005	mg/kg	0.1 mg/kg	93.2	80.0	20	-
20	mg/kg	200 mg/kg	02	80.0	20	-
0.1	mg/kg	00 mg/kg	90	80.0	20	
0.02	mg/kg	0 mg/kg	00	80.0	20	
0.5	mg/kg	25 mg/kg	8.66	80.0	20	
90	mg/kg	00 mg/kg	10	80.0	20	
0.5	mg/kg	50 mg/kg	03	80.0	20	
0.2	mg/kg	00 mg/kg	0.00	80.0	20	
0.1	mg/kg	0 mg/kg	89.1	80.0	20	
2	mg/kg	50 mg/kg	10	80.0	20	
0.2 0.1 2	mg/kg mg/kg mg/kg	50 mg/kg 0 mg/kg 50 mg/kg		00.0 89.1 01		80.0 80.0 80.0

6 VA24B5139 Work Order: Project Client

Constantine North Inc. ADFG Palmer Project

Reference Material (RM) Report

RMs are processed in an identical manner t test samples, and are used t monitor and the target analyte cincentration. RM targets may be certified target a test method r a typical sample matrix. RM results are expressed as percent recovery A Reference Material (RM) is a omogenous material with known and well-established analyte c ncentrations. concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods). control the accuracy and precision

Sub-Matrix:					Referen	Reference Material (RM) Report	port	
				RM Target	Recovery (%)	Recovery Limits (%)	imits (%)	
Laboratory ample ID	Reference Material ID	nalyte CAS Number	mber Method	Concentration	RM	Том	High	Qualifier
Percent Passing	Percent Passing (QCLot: 1527343)							
QC-1527343-001	RM	Passing (0.002mm)	- E184	22.5 %	80	4.1	26	-
QC-1527343-001	RM	Passing (0.004mm)	- E184	25.1 %	90	6.8	23	
QC-1527343-001	RM	Passing (0.005mm)	- E184	26.5 %	90	6:	22	
QC-1527343-001	RM	Passing (0.020mm)	- E184	41.8 %	98.1	85.8	4	
QC-1527343-001	RM	Passing (0.0312mm)	- E184	45.6 %	02	88.0	2	
Percent Passing	Percent Passing (QCLot: 1527344)							
QC-1527344-001	RM	Passing (19mm)	- E181	% 00	00	0.06	0	-
QC-1527344-001	RM	Passing (2.0mm)	- E181	% 00	00	0.06	0	-
QC-1527344-001	RM	Passing (25.4mm)	- E181	% 00	00	0.06	0	
QC-1527344-001	RM	Passing (38.1mm)	- E181	% 00	00	0.06	0	
QC-1527344-001	RM	Passing (4.75mm)	- E181	% 00	00	0.06	0	
QC-1527344-001	RM	Passing (50.8mm)	- E181	% 00	00	0.06	0	
QC-1527344-001	RM	Passing (76.2mm)	- E181	% 00	00	0.06	0	-
QC-1527344-001	RM	Passing (9.5mm)	- E181	% 00	00	0.06	0	
Percent Passing	Percent Passing (QCLot: 1527345)							
QC-1527345-001	RM	Passing (0.05mm)	- E182	54.1 %	02	0.06	0	-
QC-1527345-001	RM	Passing (0.063mm)	- E182	57.1 %	01	8.06	60	
QC-1527345-001	RM	Passing (0.075mm)	- E182	60.2 %	9.66	91.4	60	
QC-1527345-001	RM	Passing (0.125mm)	- E182	68.2 %	01	92.7	07	
QC-1527345-001	RM	Passing (0.149mm)	- E182	2 %	99.2	93.1	07	
QC-1527345-001	RM	Passing (0.250mm)	- E182	82.3 %	6.86	94.1	90	
QC-1527345-001	RM	Passing (0.420mm)	- E182	89.9 %	97.6	94.6	90	-
QC-1527345-001	RM	Passing (0.50mm)	- E182	91.2 %	99.2	94.7	05	
QC-1527345-001	RM	Passing (0.841mm)	- E182	92.6 %	7.86	94.9	90	
QC-1527345-001	RM	Passing (1.0mm)	- E182	96.3 %	8.66	94.9	90	1
Metals (QCLot: 1522647)	522647)							
QC-1522647-003	MRCA-21	Mercury 439-97-6)7-6 E510	0.068 mg/kg	92.4	0.0	30	
Metals (QCLot: 1522648)	522648)							
QC-1522648-003	MRCA-21	Aluminum 429-90-5	0-5 E440	22500 mg/kg	07	0.0	30	-
QC-1522648-003	MRCA-21	Arsenic 440-38-2		21.2 mg/kg	8.96	0.0	30	
QC-1522648-003	MRCA-21	Cadmium 440-43-9	13-9 E440	2.15 mg/kg	2.66	0.0	30	-
QC-1522648-003	MRCA-21	Copper 440-50-8	io-8 E440	969 mg/kg	02	0.0	30	

Sub-Matrix:					Referen	Reference Material (RM) Report	port	
				RM Target	Recovery (%)	Recovery Limits (%)	imits (%)	
Laboratory ample ID	Reference Material ID	nalyte CAS Number	ber Method	Concentration	RM	Гом	High	Qualifier
Metals (QCLot: 1	Metals (QCLot: 1522648) - continued							
QC-1522648-003	MRCA-21	Iron 439-89-6	6 E440	32700 mg/kg	7.86	0.0	30	1
QC-1522648-003	MRCA-21	Lead 439-92-1	1 E440	919 mg/kg	93.0	0.0	30	
QC-1522648-003	MRCA-21	Selenium 82-49-2	2 E440	.04 mg/kg	97.0	0.09	40	
QC-1522648-003	MRCA-21	Silver 440-22-4	4 E440	8.98 mg/kg	93.4	0.0	30	-
QC-1522648-003	MRCA-21	Zinc 440-66-6	6 E440	828 mg/kg	98.6	0.0	30	-

ALS) Environmental

M24/B5139 CHAIN OF CUSTODY

1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (fax)

#000

OF

(00 (CIRCLE ONE) 문 Sn V(Zn) Hg REMARKS 4 72 Date/Time SUME ۲ RECEIVED BY: F F ঠ Ÿ merling constantine metalls. com Be B Ca (Ca) Co Cr (Cu) Fe (Pb) Mg Mn Mo Ni K (Ag) Na (Se) Se *INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: SPECIAL INSTRUCTIONS/COMMENTS: Signature | Signature | Printed Name y > S rate. Kanovale alaska. gov 🗌 Sample Shipment contains USDA regulated soil samples (check box if applicable) ъ Ад dylan. Krill delas Ka-god □ ε₀₀ *□909* ź Š □0206 XO1 Ž δ Р) Ha 2 Ha 3 Ha Date/Time Cd Co Cr Cu Fe RELINQUISHED BY: > 1 × ¥ Q ę Work Order Reference VA24B5139 Signature Environmental Division മ Send Into report Be Felephone: +1 604 253 4188 Circle which metals are to be analyzed: Ba Ва Dissolved Metals: Al As Sb Total Metals Al As Sb DHAM MIS Vancouver Date/Time RECEIVED BY: NUMBER OF CONTAINERS TURNAROUND REQUIREMENTS 4 6 6 S þ Merring constanting Bill To: Wertin Bennel metak.com Standard (15 working days) INVOICE INFORMATION . S 1000 1583 20% 30:1 Š 48 hr. Requested Report Date 30,1 Signature Provide FAX Results alas ka. go 24 hr. からん 029 620 5000 000 <u>C</u> <u>~</u> blan caoo 12 C 60 P.O. # ₹ 0 2 × Date/Time PSP6 Firm 72/8/9 12/2/2 10/3/25 RELINQUISHED BY: Cialin 2/2/26 465 - 6160 25.5 E G 6/2/24 2 3 2 2 2 II. Report Dup., MS, MSD as Parview DATE Dies Fel I. Routine Report: Method REPORT REQUIREMENTS X. W. Data Validation Report E-MAIL ADDRESS Blank, Surrogate, as **CLP Like Summary** 6 MOC SS wold mocsy MGC 53 (no raw data) 2024 LOC52 2024 L16C53 ないのころでん want moc si on/alas 3324 50555 224 MGC SI のいるか COMPANY NAME (DP (2241605 SAMPLE I.D. required required 3 100 SAMPLER'S SIGNATURE EDD Signature ROJECT WANAGER PROJECT NUMBER Toll PROJECT NAME JOST OF CITY/STATE/ZI > ≝ ADDRESS × ×

Copyright 2012 by ALS Group

Firm

Firm

Printed Name

Firm

Printed Name

KS

Printed Name

ALS) Environmental

CHAIN OF CUSTODY

SP#

VA24185139 1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (fax)

(CIRCLE ONE) -8:1 V Zn Hg REMARKS Sn V Zn Hg VINE ZO Date/Time 'n RECEIVED BY: Total Metals (A) (A) Sb Ba Be B Ca (Ca) Co Cr (Cu) (Fe) (Pb) Mg Mn Mo Ni K (Ag) Na (Se) Sr Ti F #000 ঠ CEMBINE ENGINE merling constantive metalls. com Se WI NORTHWEST OTHER: Signature Š Printed Name kate. kanovse@alaskă.gov Mo NI K Ag Sample Shipment contains USDA regulated soil samples (check box if applicable) dylan. KrvII @ alas ka.gov Dioxins/Furans 9 10009L ž ₽ В *INDICATE STATE HYDROCARBON PROCEDURE: AK CA Date/Time C C Fe RELINQUISHED BY: Y ပိ × B Ca Cd ዴ Work Order Reference VA24B5139 SPECIAL INSTRUCTIONS/COMMENTS. Inature **Environmental Division** send lab report Dissolved Metals: Al As Sb Ba Be elephone: +1 604 253 4188 Circle which metals are to be analyzed Nivolatile Organics by GC/MS Vancouver Rcvd jc 27Jun2024 1:30 pm C (avg (3 coolers) ice pk DECEIVED BY: NUMBER OF CONTAINERS 4 TURNAROUND REQUIREMENTS 7 4 h 4 meritale constantive. BIII TO: MCKLIN Benner metak.com Standard (15 working days) INVOICE INFORMATION 128 5011 79, 50,1 To the second 1300 30,1 Requested Report Date MATRIX Ŕ 48 hr. 56. Provide FAX Results LAB I.D. E-MAIL ADDRESS - TANK - JAILAS CA. ON 24 hr. Puofect 5 day 1630 1630 1630 613 lay 1630 1310 631241630 50 blshy capp 1310 310 13/0 P.O. # TIME × Date/Time 5/2/2 6/3/24 \$4/8/ \$/ 1/3/24 1907 4 DE - 16160 1/3/24 12/2× 37/E/a 6(3/24 RELINQUISHED BY: DATE II. Report Dup., MS, MSD as Parmer 7 1. Routine Report: Method REPORT REQUIREMENTS KIV. Data Validation Report Blank, Surrogate, as CLP Like Summary PROJECT MANAGER DY LAN way macss Bu 300 boundlas. Printed Name COMPANY NAME AND P.C. 1024 MBC 54 P224 L6654 2024 MGC SZ YOUN MGC 53 2024 LGC53 (no raw data) 2024 LOC ST 202466651 2024 かりいい 2024 MGC SI SAMPLE I.D. required required V. EDD PROJECT NAME ≡ *

Sopyright 2012 by ALS Group

Firm

Firm

nted Name

CERTIFICATE OF ANALYSIS

Work Order	: VA24B5141	Φ	of 6
Client	Constantine North Inc.	Laboratory	ALS Environmental - Vancouver
Contact	Allegra Cairns	Ac ount I nager	Man CBen
Ahhress	Suite d30 - 600 2 est Penher St.	Ahhress	6061 LougBeeh HigBway
	Vancouver 8 C Canaha VWC 3VW		8 urnaby 8 C Canaha V4A 12 5
Tele9Bone	Wp d35 4563	Tele9Bone	71 Wpp 34d p166
Proect	Aj DF Palmer Proect	j te Sam9les Geceiveh	3WRun-303p 06:p4
PJ	1	j te Analysis Commenceh	03-Rul-303p
C-J -C number		Masuej te	06-Rul-303p 14:3W
Sam9ler			
Site			
Ouote number	VA33-CJ QM00-001 NDV&d35(
Qo. of sam9les receiveh	4		
Qo. of sam9les analyseh	4		

TBis re9ort su9ersehes any 9revious re9ort1% (witB tBis reference. Gesults a99ly to tBe sam9le1% as submitteh. TBis hocument sBall not be re9rohuceh) e, e9t in full.

TBis Certificate of Analysis contains tBe following information

- Feneral Comments
 - Analytical Gesults

Ahhitional information 9ertinent to tBis re9ort will be founh in tBe following se9arate attacBments: Ouality Control Ge9ort) OC Mter9retive re9ort to ssist witB Ouality Geview nh Sam9le Gecei9t Qotification NSGQ(.

Signatories

TBis hocument Bas been electronically signeh by tBe autBorixeh signatories below. Electronic signing is conhucteh in accorhance witB z S Dj A 31 CDG rt 11.

aboratory Department	I etals) 8 umaby) 8 ritisB Columbia	Sask Soils) Saskatoon) SaskatcBewan	J rganics) 8umaby) 8 ritisB Columbia	I etals)8umaby)8ritisBColumbia	l etals) 8 umaby) 8 ritisB Columbia
Position	Analyst	Team Leaher - Morganics	Su9ervisor - J r nics Mnstrumentation	j e9artment nager - l etals	Analyst
Signatories	F BaxaleB UB nmirxaei	Hehy Lai	R nice Leung	Uim Rensen	Sam Silveira

Constantine QortB Mc. Aj DF Palmer Proect VA3p841p1 3 of 6 ge 2 ork J rher Pro-ect Client

neral Comments

re hevelogeh using internationally recognixeh reference metBohs NwBere available() sucB s tBose gublisBeh by zS EPA) APHA Stanh m I etBohs) ASTI) 184.) Environment Canaha) 8C I J E) nh J ntario I J E. Gefer to tBe ALS Ouality Control Miter9retive re9ort NOCM for 99licable references nh metBohology summaries. Geference metBohs may incor9orate mohifications to im9rove 9erformance. TBe nalytical metBohs useh by ALS

2 Bere a re9orteh less tBan № (result is BigBer tBan tBe LJ G) tBis may be hue to 9rimary sam9le e, tract/higestate hilution anh/or insufficient sam9le for nalysis.

2 Bere tBe LJ G of a re9orteh result hiffers from stanharh LJ G) tBis may be hue to BigB moisture content) insufficient sam9le Mehuceh weigBt em9loyeh (or matri, interference.

lease refer to Ouality Control Mnter9retive re9ort NOCMfor information regarhing Holhing Time com9liance.

CAS Qumber: CBemical Abstracts Services number is a uniKue ihentifier assigneh to hiscrete substances LJ G: Limit of Ge9orting Metection limit(. Uey:

Description no units Unit

milligrams 9er kilogram 9H units 9ercent 9H units mg/kg

<: less tB n.

% greater tBn.

Surrogate: An analyte tBt is similar in be B vior to target analyteMs() but tBat hoes not oc ur naturally in environmental sam9les. Dor a99licable tests) surrogates are ahheh to sam9les 9rior to analysis as a cBeck on recovery.

Test results re9orteh relate only to tBe sam9les as receiveh by tBe laboratory.

Z QLESS JTHEGZ 185E STATE; ON SGQ O'O COMGEGON!) ALL SAI PLES 2 EGE GECENVE; MO ACCEPTABLE CJQ; MIMIO.

ge 2 ork J rher

Pro-ect Client

d of 6 VA3p841p1 Constantine QortB Mc. Aj DF Palmer Pro ect

Analytical Results

			130	Ol elunes tueil	2024 CAD C4	2024164062	CO GV I CVC	2024 CAB CA	2024 I CAD CE
					10 100 100	20 APC + 207	20 44 10 44 10 44	+5 NPG7 +707	20 4 50 4 50 50 50 50 50 50 50 50 50 50 50 50 50
			Client sampl	Client sampling date / time	0p-Run-303p 00	0p-Run-303p 00	0p-Run-303p 00	0p-Run-303p 00	0p-Run-303p 00
Analyte	CAS Number	Method/Lab	OR	Unit	VA24B5141-001	VA24B5141-002	VA24B5141-003	VA24B5141-004	VA24B5141-005
					Gesult	Gesult	Gesult	Gesult	Gesult
Physical Tests									
pH (1:2 soil:water)	E106/VA	/A	0.10	9H units	6.3>	00.9	>.56	>.54	6.13
Particle Size									
Grain size curve	E164A/SU	ns/			See	See	See AttacBeh	See	See AttacBeh
	١	1			AttacBeh	AttacBeh		AttacBeh	
Percent Fassing Passing (9 5mm)	F161/SI		C	5	00	55.0	00	00	00
Passing (4.75mm)	E161/SU		. 0.	, 0	00	55.0	55.6	000	56.0
Passing (19mm)	E161/SU	ns ns	0.	- 0	00	55.0	00	00	00
Passing (25.4mm)	E161/SU	ns	0.	. 6	00	00	00	00	00
Passing (38.1mm)	E161/SU	ns	0.	Ь	00	00	00	00	00
Passing (50.8mm)	E161/SU	ns	0.	Ь	00	00	00	00	00
Passing (76.2mm)	E161/SU	ns n	0.	ь	00	00	00	00	00
Passing (1.0mm)	E163/SU	ns	0:	ь	61.0	5W5	56.p	55.1	6>.1
Passing (0.841mm)	E163/SU	ns ns	0:	ь	>d.4	66.5	5>.5	> 26.>	6p.4
Passing (0.50mm)	E163/SU	ns ns	0.	ь	4>.W	>1.6	5W5	5>.5	>6.6
Passing (0.420mm)	E163/SU	ns ns	0.	ь	p6.3	44.5	53.d	54.W	۸·0^
Passing (0.250mm)	E163/SU	ns ns	0:	ь	36.d	33.0	63.4	>09	4d.p
Passing (0.149mm)	E163/SU	ns ns	0:	Ь	4.6	þ.	4Wd	>0.3	35.4
Passing (0.125mm)	E163/SU	ns ns	0:	ь	3.6	۷.'9	40.1	₩.p	34.6
Passing (0.075mm)	E163/SU	ns ns	0:	b	6.p	4.6	p.dp	MWd	v. d
Passing (0.063mm)	E163/SU	ns ns	0:	Ь	p. ^	4.1	M.0b	p3.0	3.4
Passing (0.05mm)	E163/SU	ns ns	0.	ь	W1	d.q	3Wp	d>.3	0.1
Passing (0.0312mm)	E16p/SU	ns ns	0.	ь	p.3	0.b	WW	31.>	MM
Passing (0.020mm)	E16p/SU	ns ns	0:	ь	d.0	3.1	۸.۰٥	3.4	W.q
Passing (0.005mm)	E16p/SU	ns ns	0:	ь	τ.	<1.0	d.1	3.6	ġ.
Passing (0.004mm)	E16p/SU	ns ns	0:	Ь	<1.0	<1.0	3.W	3.d	ω
Passing (0.002mm)	E16p/SU	ns ns	0:	Ь	<1.0	<1.0	Ν.	ά	<1.0
Passing (2.0mm)	E161/SU	ns.	0.	Ь	5>.6	56.5	55.d	55.5	53.3
Metals									

p of 6 VA3p841p1

ge 2 ork J rher

Constantine QortB Mc. Aj DF Palmer Proect

Client Pro-ect

Analytical Results

Sub-l tri,: oil		Clie	Client sample ID	2024 LSAR S1	2024 LSAR S2	2024 LSAR S3	2024 LSAR S4	2024 LSAR S5
(l atri,: oil/Solid)								
		Client sampl	Client sampling date / time	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5141-001	VA24B5141-002	VA24B5141-003	VA24B5141-004	VA24B5141-005
			!	Gesult	Gesult	Gesult	Gesult	Gesult
Metals								
Aluminum	>p35-50-4 Epp0/VA	40	mg/kg	00dW	1>000	31p00	2d00	6500
Arsenic	>pp0-d6-3 Epp0/VA	0.10	mg/kg	d.50	۷. م	4.>0	W10	p.>3
Cadmium	>pp0-pd-5 Epp0/VA	0:030	mg/kg	0.4p0	0.>0W	0.65W	0.>d3	0.041
Copper	>pp0-40-6 Epp0/VA	0.40	mg/kg	dW3	p1.5	W.d	4p.W	pW4
Iron	>pd5-65-WEpp0/VA	40	mg/kg	d1500	009pp	pp500	p1d00	00 < p
ead	>pd5-53-1 Epp0/VA	0.40	mg/kg	p.33	4.pW	9.9d	9p.<	4.41
Mercury	>pd5-5>-WE410/VA	0.0040	mg/kg	0.0061	0.0116	0.01W8	0.0141	0.0116
elenium	>>63-p5-3 Epp0/VA	0.30	mg/kg	0.V0	0.>p	1.3W	0.55	09.0
ilver	>pp0-33-p Epp0/VA	0.10	mg/kg	<0.10	0.13	0.30	0.1W	0.1d
Zinc	>pp0-WWWEpp0/VA	3.0	mg/kg	00%	5	b>	dp	30

Please refer to tBe Feneral Comments section for an e, 9lanation of any result Kualifiers hetecteh.

Please refer to tBe Accrehitation section for an e, 9lanation of analyte accrehitations.

4 of 6 VA3p841p1

Constantine QortB Mc. Aj DF Palmer Pro-ect

ge 2 ork J rher

Pro-ect Client

Analytical Results								
Sub-l tri,: oil		Cli	Client sample ID	2024 USAR S1	2024 USAR S2	2024 USAR S3	2024 USAR S4	2024 USAR S5
(l atri,: oil/Solid)								
		Client sampl	Client sampling date / time	0p-Run-303p d:d0	0p-Run-303p d:d0	0p-Run-303p d:d0	0p-Run-303p d:d0	0p-Run-303p d:d0
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5141-006	VA24B5141-007	VA24B5141-008	VA24B5141-009	VA24B5141-010
				Gesult	Gesult	Gesult	Gesult	Gesult
Physical Tests								
pH (1:2 soil:water)	E106/VA	0.10	9H units	6.33	6.10	6.0p	0.0W	>.5>
Particle Size								
Grain size curve	E164A/SU	1	ı	See	See	See AttacBeh	See	See AttacBeh
Percent Passing				Vitacine	- Indoppin		- Citacher	
Passing (9.5mm)	E161/SU	0:	Ь	00	55.p	00	00	00
Passing (4.75mm)	E161/SU	0.	ь	55.6	56.5	00	00	00
Passing (19mm)	E161/SU	0.	ь	00	00	00	00	00
Passing (25.4mm)	E161/SU	0.	ь	00	00	00	00	00
Passing (38.1mm)	E161/SU	0.	ь	00	00	00	00	00
Passing (50.8mm)	E161/SU	0.	ь	00	00	00	00	00
Passing (76.2mm)	E161/SU	0.	Ь	00	00	00	00	00
Passing (1.0mm)	E163/SU	0.	Ь	5>.3	56.4	55.5	55.6	55.6
Passing (0.841mm)	E163/SU	0.	Ь	54.6	56.3	55.>	55.W	55.W
Passing (0.50mm)	E163/SU	0.	Ь	5d.0	2>.W	55.d	55.1	55.1
Passing (0.420mm)	E163/SU	0.	Ь	65.W	54.5	5>.5	5W6	5W6
Passing (0.250mm)	E163/SU	0.	ь	63.W	53.d	5p.5	51.6	53.0
Passing (0.149mm)	E163/SU	0.	Ь	p.4W	9.9<	<w<< th=""><th>>0.3</th><th>>3.d</th></w<<>	>0.3	>3.d
Passing (0.125mm)	E163/SU	0.	ь	<.baseline	>4.W	>3.p	0. ₩ .0	W.₩.
Passing (0.075mm)	E163/SU	0.	Ь	pW4	46.>	4p.p	d. <q< th=""><th>43.W</th></q<>	43.W
Passing (0.063mm)	E163/SU	0.	ь	p3.d	4p.W	40.1	pd.3	p5.0
Passing (0.05mm)	E163/SU	0.	Ь	d>.5	40.3	p4.p	W.9b	p4.3
Passing (0.0312mm)	E16p/SU	0.	Ь	34.6	d3.1	3000	3p.d	3>.4
Passing (0.020mm)	E16p/SU	0.	ь	4.p	31.d	4.4	4.6	1>.0
Passing (0.005mm)	E16p/SU	0.	Ь	W.q	A	۸. b	p.5	٧. م
Passing (0.004mm)	E16p/SU	0.	Ь	d.5	4.>	d.1	p.3	p.0
Passing (0.002mm)	E16p/SU	0.	Ь	3.4	٥. م.	ιςi	3.6	3.4
Passing (2.0mm)	E161/SU	0.	Ь	56.4	26.>	00	00	00
Metals								
Aluminum	>p35-50-4 Epp0/VA	40	mg/kg	2b00	33600	2200	31600	31100

A STAN

Wof 6 VA3p841p1

ge 2 ork J rher

Constantine QortB Mc. Aj DF Palmer Proect

Client Pro-ect

Analytical Results

Sub-l tri,: oil		Clie	Client sample ID	2024 USAR S1	2024 USAR S2	2024 USAR S3	2024 USAR S4	2024 USAR S5
(l atri,: oil/Solid)								
		Client sampli	Client sampling date / time	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p
				0p:p	d:d0	0p:p	d:d0	d:d0
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5141-006	VA24B5141-007	VA24B5141-008	VA24B5141-009	VA24B5141-010
			!	Gesult	Gesult	Gesult	Gesult	Gesult
Metals								
Arsenic	>pp0-d6-3 Epp0/VA	0.10	mg/kg	4°d4	8.4	W30	ď.	0 ^
Cadmium	>pp0-pd-5 Epp0/VA	0.030	mg/kg	0.465	0.6d>	0.65p	0.510	0.514
Copper	>pp0-40-6 Epp0/VA	0.40	mg/kg	4W3	W.d	0.dv	W6.6	VM.3
Iron	>pd5-65-WEpp0/VA	40	mg/kg	00<9d	44300	p4>00	p6500	p6500
ead	>pd5-53-1 Epp0/VA	0.40	mg/kg	0000	9.6d	9	6.13	5.35
Mercury	>pd5-5>-WE410/VA	0.0040	mg/kg	0.011W	0.01>d	0.015d	0.016W	0.030d
elenium	>>63-p5-3 Epp0/VA	0:30	mg/kg	0.63	.1p	<u>^</u>	.14	.16
ilver	>pp0-33-p Epp0/VA	0.10	mg/kg	0.16	0:30	0.33	0:30	0.3p
Zinc	>pp0-vww/Epp0/VA	3.0	mg/kg	3W	4	p4	4	44

Please refer to tBe Feneral Comments section for an e, 9lanation of any result Kualifiers hetedteh.

Please refer to tBe Accrehitation section for an e, 9lanation of analyte accrehitations.

ge 2 ork J rher

> of 6 VA3p841p1 Constantine QortB Mc. Aj DF Palmer Pro ect

Analytical Results

Pro-ect Client

Sub-l tri,: oil			Ö	Client sample ID	2024 PLA S1	2024 PLA S2	2024 PLA S3	2024 PLA S4	2024 PLA S5
(l atri,: oil/Solid)									
			Client samp	Client sampling date / time	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p
		,			06:p4	06:p4	06:p4	06:p4	06:p4
Analyte	CAS Number	Method/Lab	OR	Unit	VA24B5141-011	VA24B5141-012	VA24B5141-013	VA24B5141-014	VA24B5141-015
			ı		Gesult	Gesult	Gesult	Gesult	Gesult
Physical Tests									
pH (1:2 soil:water)		E106/VA	0.10	9H units	6.13	6.0W	90·9	>.43	₩ .<
Particle Size									
Grain size curve	1	E164A/SU	,	1	See	See	See AttacBeh	See	See AttacBeh
Percent Passing	1		ı		Allacben	Allacben		Allacben	
Passing (9.5mm)		E161/SU	0.	ь	00	55.6	55.6	5>.p	56.4
Passing (4.75mm)		E161/SU	0.	Ь	55.d	54.6	5>.5	5W1	54.1
Passing (19mm)	1	E161/SU	0.	σ	00	00	00	56.d	00
Passing (25.4mm)		E161/SU	0.	σ	00	00	00	00	00
Passing (38.1mm)		E161/SU	0.	ъ	00	00	00	00	00
Passing (50.8mm)		E161/SU	0.	ъ	00	00	00	00	00
Passing (76.2mm)		E161/SU	0.	ъ	00	00	00	00	00
Passing (1.0mm)		E163/SU	0.	ъ	>5.0	VØ.p	63.d	6Wp	W4.1
Passing (0.841mm)		E163/SU	0.	ъ	W.b<	4d.6	W.q<	9M<	43.W
Passing (0.50mm)		E163/SU	0.	ъ	VB.3	d5.>	46.1	4W3	3W0
Passing (0.420mm)		E163/SU	0.	Ь	4W3	dp.1	p5.4	pp.1	5.5
Passing (0.250mm)		E163/SU	0.	Ь	p.bq	33.3	d1.1	p.9	9/\
Passing (0.149mm)		E163/SU	0.	Ь	d4.0	1>.3	31.W	3.1	4.0
Passing (0.125mm)		E163/SU	0.	ъ	0.bb	W.0	5.d	W.0	W.q
Passing (0.075mm)	-	E163/SU	0.	ъ	35.6	d.b	W3	5.1	d.W
Passing (0.063mm)		E163/SU	0.	Ь	35.0	3.>	4.4	6.>	d.b
Passing (0.05mm)		E163/SU	0.	Ь	36.1	3.0	v. q	p.9	d.3
Passing (0.0312mm)		E16p/SU	0.	ъ	1>.3	W. <	5.3	4.4	3.d
Passing (0.020mm)		E16p/SU	0.	ъ	W.0	4.0	4.5	d.5	۸.
Passing (0.005mm)	-	E16p/SU	0.	ъ	d.3	۸.	ιờ	4.	<1.0
Passing (0.004mm)		E16p/SU	0.	ъ	3.6	4.	۸.	ġ.	<1.0
Passing (0.002mm)	-	E16p/SU	0.	ъ	.55	₹.	κi	0.	<1.0
Passing (2.0mm)		E161/SU	0.	р	20.>	d. <	54.0	54.5	6W3
Metals									
Aluminum	>p35-50-4 Epp0/VA	Epp0/VA	40	mg/kg	30000	31000	30300	2300	5100

ALS)

6 of 6 VA3p841p1

ge 2 ork J rher

Constantine QortB Mc. Aj DF Palmer Proect

Client Pro-ect

Analytical Results

Sub-l tri,: oil		Clier	Client sample ID	2024 PLA S1	2024 PLA S2	2024 PLA S3	2024 PLA S4	2024 PLA S5
(l atri,: oil/Solid)								
		Client sampling date / time	g date / time	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p	0p-Run-303p
				06:p4	06:p4	06:p4	06:p4	06:p4
Analyte	CAS Number Method/Lab	OR	Unit	VA24B5141-011	VA24B5141-012	VA24B5141-013	VA24B5141-014	VA24B5141-015
				Gesult	Gesult	Gesult	Gesult	Gesult
Metals								
Arsenic	>pp0-d6-3 Epp0/VA	0.10	mg/kg	4.63	Mdp	4.66	3.5p	d.1>
Cadmium	>pp0-pd-5 Epp0/VA	0.030	mg/kg	0.086	0.>>0	0.63>	0.p46	0.443
Copper	>pp0-40-6 Epp0/VA	0.40	mg/kg	40.5	4>.p	44.5	3d.1	9.9
Iron	>pd5-65-WEpp0/VA	40	mg/kg	DV600	0@V9d	p3000	pp100	p1300
ead	>pd5-53-1 Epp0/VA	0.40	mg/kg	W>p	6.35	♦ ₩`^	W46	W>3
Mercury	>pd5-5>-WE410/VA	0.0040	mg/kg	0.0103	0.0140	0.0141	0.006W	₩00.0
elenium	>>63-p5-3 Epp0/VA	0:30	mg/kg	0.>4	00:	d0:	9p.0	0.d3
ilver	>pp0-33-p Epp0/VA	0.10	mg/kg	0.1W	0.16	0.16	<0.10	<0.10
Zinc	>pp0-WWWEpp0/VA	3.0	mg/kg	33	p1	pp	d5	pp

Please refer to tBe Feneral Comments section for an e, 9lanation of any result Kualifiers hetecteh.

Please refer to tBe Accrehitation section for an e, 9lanation of analyte accrehitations.

ALS Canada Ltd.

QUALITY CONTROL INTERPRETIVE REPORT

. u naby, . itisl Columbia Canaha V5A 18 9 ALS Environmental - Vancouver 0201 Lougl eeh Higl way 36-Jun-3237 20:75 20-Jul-3237 15:20 :+1 627 35d 7100 Ban Clen : 1 of 14 Date Samples Receiveh Account Manager **B**sue Date Telepl one aboratory Ahhress Suite d32 - 022 8 est Penher StW Vancouver . C Canaha V6C 3V6 : VA33-CONB 22-221 (Q63d39) onstantine North Inc. **ADFG Palmer Project** VA24B5141 Allegra Cairns 627 d39 5903 : 15 15 NoWof samples receiveh C-O-C number Quote number Work Order Telepl one Ahhress Sampler Contact Project Client М

QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality bjectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality ontrol (QC) results and other references and summaries.

NoWof samples analyseh

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

PD: Relative Percent Difference.

Workorder Comments

Holhing times are hisplayeh as "---" if no guihance exists from CCME, Canahian provinces, or broahly recognizeh international eferencesW

ummar y of Outliers

Outliers: Quality Control Samples

- No Metl oh . lank value outliers occurW
 - No Duplicate outliers occurW
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers existW

Outliers: Reference Material (RM) Samples

No Reference Material (RM) Sample outliers occurW

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holhing Time Outliers existW

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occurW

Analysis Holding Time Compliance

This eport summarizes extraction / preparation anh analysis times anh compares eacl witl ALS ecommenheh olhing times, wicl are selecteh to meet known provincial anh for eheral Environment Canaha (will e available). W Dates anh ollning times eporteh elow epresent tile irst hates of extraction or analysis. W B subsequent tests o hilutions exceeheh ollning times, qualifiers requirements W B tle absence of egulatory olh times, A S establisl es recommenhations aseh on guihelines publisl eh y oganizations sucl as CCME, US EPA, APHA Stanharh Metl ohs, ASTM, o are ahheh (refer to COA)W

B samples a e ihentifieh elow as aving een analyzeh or extracteh outsihe o ecommenheh olhing times, measurement uncertainties may e increaseh, anh tis s oulh e taken into consiheration wl en interpreting resultsW

8 ere actual sampling hate is not proviheh on tle clain of custohy, tle hate of receipt witl time at 22:22 is useh for calculation purposesW

8 ere only tle sample hate witl out time is proviheh on tle clain of custohy, tle sampling hate at 22:22 is useh for calculation purposesW

Evaluation: \star = Holhing time exceehance; \checkmark = 8 itl in Holhing Time Matrix: Soil/Solid

))
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Times Rec Actual	Eval
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap	7 7 7	7000 2111 70	1000	6	(,	0000		,
523/ LSAK 0.1	2 2	757-1111-777	7070-IND-07	30 hays	30 hays	>	7070-Inc-07	ou nays ou nays	>
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap									
3237 LSAR S3	E512	27-Jun-3237	23-Jul-3237	30 havs	30 havs	>	23-Jul-3237	30 hays 30 hays	>
Metals : Mercury in Soil/Solid by CVAAS	I			.					
Glass soil jar/Teflon lined cap									
3237 LSAR Sd	E512	27-Jun-3237	23-Jul-3237	30	30	>	23-Jul-3237	30 hays 30 hays	>
				hays	hays				
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap 3237 LSAR S7	E512	27-Jun-3237	23-Jul-3237	30	30	>	23-Jul-3237	30 hays 30 hays	>
				hays	hays				
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap 3237 LSAR S5	E512	27-Jun-3237	23-Jul-3237	30	30	>	23-Jul-3237	30 hays 30 hays	>
				hays	hays				
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap 3237 PLA S1	E512	27-Jun-3237	23-Jul-3237	30	30	>	23-Jul-3237	30 havs 30 havs	>
				hays	hays				
Metals : Mercury in Soil/Solid by CVAAS									
Glass soil jar/Teflon lined cap	C I	-	-			,	-		,
3237 PLA 53	E512	27-Jun-3237	Z3-Jul-3Z3/	30 havs	30 havs	>	23-Jul-323/	30 nays 30 nays	>
_) (5	7	_		_	-

7 of 14 VA37. 5171 Page : 8 o k Orher : Client :

Constantine Nortl BrcW ADFG Palmer Project Project

Method Sampling Date Preparation Date		Extrac	### Holding Times Rec	Eval Control C	Analysis Date 23-Jul-3237 23-Jul-3237	Analysis Holding Times Rec Actual	Eval
E512 27-Jun-3237 SE512 27-Jun-3227 SE512 27-Jun-327 SE512 SE512 SE512 SE512 SE512 SE512 SE512 SE512 SE				Eval	Analysis Date 23-Jul-3237 23-Jul-3237	_	
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				\ \ \ \ \	23-Jul-3237 23-Jul-3237		
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	23-Jul-3237		
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				> >	23-Jul-3237		>
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				, ,	23-Jul-3237		
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				>		30 hays 30 hays	>
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237				>	-	_	
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237					23-Jul-3237	30 hays 30 hays	>
E512 27-Jun-3237 E512 27-Jun-3237 E512 27-Jun-3237							
E512 27-Jun-3237	-			>	2d-Jul-3237	30 hays 30 hays	>
E512 27-Jun-3237 E512 27-Jun-3237							
E512 27-Jun-3237		237 30 hays	30 hays	>	2d-Jul-3237	30 hays 30 hays	>
E512 27-Jun-3237							
	\vdash	237 30 hays	30 hays	>	2d-Jul-3237	30 hays 30 hays	>
Metals: Mercury in Soli/Solid by CVAAS							
Glass soil jar/Teflon lined cap 2237 USAR S7 27-Jun-3237 23-Jul-3237		237 30 hays	30 hays	>	2d-Jul-3237	30 hays 30 hays	>
Metals : Mercury in Soil/Solid by CVAAS							
Glass soil jar/Teflon lined cap 2237 USAR S5 27-Jun-3237 23-Jul-3237		237 30 hays	30 hays	>	2d-Jul-3237	30 hays 30 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS							
Glass soil jar/Teflon lined cap E772 27-Jun-3237 23-Jul-3237		237 102 hays	30 hays	>	23-Jul-3237	102 30 hays	>

5 of 14 VA37. 5171 Page : 8 o k Orher : Client : Project

Constantine Nortl BrcW ADFG Palmer Project

Matrix: Soil/Solid					Eval	uation: * = F	Evaluation: * = Holhing time exceehance;	hance; 🗸	= 8 itl in H	= 8 itl in Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	oaration			Analysis	is.	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 LSAR S3	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	30 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 LSAR Sd	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	30 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 LSAR S7	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	`	23-Jul-3237	102 hays	30 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 LSAR S5	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	30 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 PLA S1	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	39 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 PLA S3	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	39 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 PLA Sd	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	39 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 PLA S7	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	39 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 PLA S5	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	23-Jul-3237	102 hays	39 hays	>

6 of 14 VA37. 5171 Page : 8 o k Orher : Client : Project

Constantine Nortl BrcW ADFG Palmer Project

Matrix: Soil/Solid					Eva	luation: * = }	Evaluation: $\kappa = \text{Holhing time exceehance}$; $V = 8$ itl in Holhing Time	shance; ✓	= 8 itl in H	Iolhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	s	
ontainer / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	Holding Times	Times	Eval
Metals : Metals in Soil/Solid by CRC ICPMS			Calc	2	5					
Glass soil jar/Teflon lined cap 3237 USAR S1	E772	27-Jun-3237	23-Jul-3237	102	30	>	2d-Jul-3237	102	39 hays	>
				hays	hays			hays		
Metals: Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 USAR S3	E772	27-Jun-3237	23-Jul-3237	102	30	>	2d-Jul-3237	102	39 hays	>
				hays	hays			hays		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 USAR Sd	E772	27-Jun-3237	23-Jul-3237	102	30	>	2d-Jul-3237	102	39 hays	>
OMEGI OG AN FIROIINO EI AINOM EI ANDE	ı			hays	hays			nays		
Metals: Metals III soll/solld by CRC ICTMS										
Glass soil jar/Teflon lined cap 3237 USAR S7	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	2d-Jul-3237	102 hays	39 hays	>
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap 3237 USAR S5	E772	27-Jun-3237	23-Jul-3237	102 hays	30 hays	>	2d-Jul-3237	102 hays	39 hays	>
Particle Size: Grain Size Report (Attachment) Pipet/Sieve Method	ı									
LDPE bag 3237 LSAR S1	E105A	27-Jun-3237	l	I	ı		20-Jul-3237	I		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method	ı		l							
LDPE bag 3237 LSAR S3	E105A	27-Jun-3237	I	I			20-Jul-3237	I		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 LSAR Sd	E105A	27-Jun-3237	I	l			20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 LSAR S7	E105A	27-Jun-3237	l	l			20-Jul-3237	l		
					1				-	

of 14 VA37. 5171 Page : 8 o k Orher : Client : Project

Constantine Nortl BrcW ADFG Palmer Project

Matrix: Soil/Solid					Eval	ation: × = ⊦	Evaluation: $\star = \text{Holhing time exceehance}$; $\checkmark = 8$ itl in Holhing Time	shance; v	= 8 itl in	Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	oaration			Analysis	s,	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 LSAR S5	E105A	27-Jun-3237	l	l			20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method			l							
LDPE bag 3237 PLA S1	E105A	27-Jun-3237	i	l			20-Jul-3237	l	I	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 PLA S3	E105A	27-Jun-3237		-			20-Jul-3237	-	!	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 PLA Sd	E105A	27-Jun-3237	i				20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 PLA S7	E105A	27-Jun-3237	l				20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 PLA S5	E105A	27-Jun-3237	I	l			20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 USAR S1	E105A	27-Jun-3237	1				20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method					_					
LDPE bag 3237 USAR S3	E105A	27-Jun-3237	l				20-Jul-3237			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method					-					
LDPE bag 3237 USAR Sd	E105A	27-Jun-3237	1				20-Jul-3237			

Matrix: Soil/Solid					Eva	lluation: * = }	Evaluation: \star = Holhing time exceehance ; \checkmark = 8 itl in Holhing Time	hance; v	= 8 itl in F	lolhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis	is	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag 3237 USAR S7	E105A	27-Jun-3237	l	l	l		20-Jul-3237		l	
Particle Size: Grain Size Report (Attachment) Pipet/Sieve Method	ı									
LDPE bag 3237 USAR S5	E105A	27-Jun-3237	ı				20-Jul-3237			
Percent Passing : Particle Size Analysis - Pipette Method					_					
LDPE bag 3237 LSAR S1	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method	ı									
LDPE bag 3237 LSAR S3	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 LSAR Sd	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 LSAR S7	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method	ı									
LDPE bag 3237 LSAR S5	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 PLA S1	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 PLA S3	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>

Matrix: Soil/Solid					Eva	luation: x = F	Evaluation: * = Holhing time exceehance; ✓	hance; v	- 11	8 itl in Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis	Si	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 PLA Sd	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 PLA S7	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 PLA S5	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 USAR S1	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 USAR S3	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 USAR Sd	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method						•				
LDPE bag 3237 USAR S7	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Pipette Method										
LDPE bag 3237 USAR S5	E107	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 LSAR S1	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>

Matrix: Soil/Solid					ΕV	aluation: * = }	Evaluation: κ = Holhing time exceehance ; $ec{\lor}$ = 8 itl in Holhing Time	ehance;	= 8 itl in F	Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	sis	
ontainer / Client Sample ID(s)			Preparation	Holding Times	Times	Eval	Analysis Date	Holdin	Holding Times	Eval
			Date	Кес	Actual			Kec	Actual	
Percent Passing : Particle Size Analysis - Sieve <2mm	ı									
LDPE bag 3237 I SAR S3	E103	27-Jun-3237	27-Jul-3237	965	5	>	27-Jul-3237	765	d2 havs	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 LSAR Sd	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm					-					
LDPE bag 3237 LSAR S7	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 LSAR S5	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 PLA S1	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 PLA S3	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays		
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 PLA Sd	E103	27-Jun-3237	27-Jul-3237	d65 havs	d2 havs	>	27-Jul-3237	d65 havs	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm	ı							·		
LDPE bag 3237 PLA S7	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	d65	d2 hays	>
				hays	hays			hays	.	
Percent Passing : Particle Size Analysis - Sieve <2mm					-				-	
LDPE bag 3237 PLA S5	E103	27-Jun-3237	27-Jul-3237	d65	d2	>	27-Jul-3237	999	d2 hays	>
				nays	nays			nays		

Page : 8 o k Orher : Client : Project

Constantine Nortl BrcW ADFG Palmer Project

11 of 14 VA37. 5171

Matrix: Soil/Solid					Ēv	aluation: * = }	Evaluation: \star = Holhing time exceehance ; \checkmark = 8 itl in Holhing Time	hance;	/=8 itl in F	Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	paration			Analysis	is	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Percent Passing : Particle Size Analysis - Sieve ≺2mm										
LDPE bag 3237 USAR S1	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm	ı									
LDPE bag 3237 USAR S3	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 USAR Sd	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 USAR S7	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve <2mm										
LDPE bag 3237 USAR S5	E103	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm	ı									
LDPE bag 3237 LSAR S1	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 LSAR S3	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	*
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 LSAR Sd	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve ≻2mm										
LDPE bag 3237 LSAR S7	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>

Matrix: Soil/Solid					Ēv	lluation: * = }	Evaluation: \star = Holhing time exceehance ; \checkmark = 8 itl in Holhing Time	hance; v	= 8 itl in H	lolhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	sparation			Analysis	is.	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding	Holding Times Rec Actual	Eval
Percent Passing : Particle Size Analysis - Sieve ≻2mm										
LDPE bag 3237 LSAR S5	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm	ı			•						
LDPE bag 3237 PLA S1	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm	ı									
LDPE bag 3237 PLA S3	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm	ı									
LDPE bag 3237 PLA Sd	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 PLA S7	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 PLA S5	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm	ı									
LDPE bag 3237 USAR S1	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 USAR S3	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 USAR Sd	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>

Matrix: Soil/Solid					Evalt	iation: × = H	Evaluation: * = Holhing time exceehance; V	ehance; 🗸	= 8 itl in F	= 8 itl in Holhing Time
Analyte Group : Analytical Method	Method	Sampling Date	Ext	Extraction / Preparation	oaration			Analysis	S	
ontainer / Client Sample ID(s)			Preparation Date	Holding Times Rec Actual	Times Actual	Eval	Analysis Date	Holding Times Rec Actua	Times Actual	Eval
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 USAR S7	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Percent Passing : Particle Size Analysis - Sieve >2mm										
LDPE bag 3237 USAR S5	E101	27-Jun-3237	27-Jul-3237	d65 hays	d2 hays	>	27-Jul-3237	d65 hays	d2 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 LSAR S1	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	`	23-Jul-3237	d2 hays	30 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 LSAR S3	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	>	23-Jul-3237	d2 hays 30 hays	30 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 LSAR Sd	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	>	23-Jul-3237	d2 hays	30 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 LSAR S7	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	`	23-Jul-3237	d2 hays	30 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 LSAR S5	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	>	23-Jul-3237	d2 hays	30 hays	>
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 PLA S1	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	>	23-Jul-3237	d2 hays	30 hays	>
Physical Tests: pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap 3237 PLA S3	E120	27-Jun-3237	23-Jul-3237	d2 hays	30 hays	>	23-Jul-3237	d2 hays	30 hays	>

 Page
 :
 17 of 14

 8 o k Orher
 :
 VA37. 5171

 Client
 :
 Constantine

Constantine Nortl BrcW ADFG Palmer Project

Project

Evaluation: \times = Holhing time exceehance; \checkmark = 8 itl in Holhing Time Eval > > > > > > > > d2 hays 30 hays Holding Times Rec Actual Analysis Analysis Date 23-Jul-3237 2d-Jul-3237 2d-Jul-3237 2d-Jul-3237 2d-Jul-3237 23-Jul-3237 2d-Jul-3237 23-Jul-3237 Eval > > > > > > > > Extraction / Preparation Holding Times 30 hays Rec d2 hays d2 hays hays d2 hays d2 hays d2 hays d2 hays hays 엉 9 Preparation 23-Jul-3237 23-Jul-3237 23-Jul-3237 23-Jul-3237 23-Jul-3237 23-Jul-3237 23-Jul-3237 23-Jul-3237 Date Sampling Date 27-Jun-3237 27-Jun-3237 27-Jun-3237 27-Jun-3237 27-Jun-3237 27-Jun-3237 27-Jun-3237 27-Jun-3237 Method E120 E120 E120 E120 E120 E120 E120 E120 Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Physical Tests: pH by Meter (1:2 Soil:Water Extraction) Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Physical Tests : pH by Meter (1:2 Soil:Water Extraction) Analyte Group : Analytical Method Glass soil jar/Teflon lined cap 3237 USAR S1 Glass soil jar/Teflon lined cap 3237 USAR S5 ontainer / Client Sample ID(s) 3237 USAR S3 3237 USAR Sd 3237 USAR S7 3237 PLA S5 3237 PLA Sd 3237 PLA S7 Matrix: Soil/Solid

Legend & Qualifier Definitions

RecWHT: ALS recommenheh I olh time (see units)W

Quality Control Parameter Frequency Compliance

Constantine Nortl BncW ADFG Palmer Project

15 of 14 VA37. 5171

Page : 8 o k Orher :

Project Client

The ollowing eport summarizes the equency of laboratory QC samples analyzeh within the analytical atches (QC lots) in wild the submitten samples were processen the actual equency shoulb be greater than or equal to the expecten frequency W.

Matrix: Soil/Solid		Evaluation	1: x = QC freque	ncy outside spe	cification; $\checkmark = 0$	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency within specification.	nin specification.
Quality Control Sample Type			unt	t l		Frequency (%)	
Analy ical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
aboratory Duplicates (DUP)							
Mercury in Soil/Solih by CVAAS	E512	1533674	က	35	0/8/	5V X	>
Metals in Soil/Solih by CRC BCPMS	E772	153dd22	က	35	0/28	5V X	>
Particle Size Analysis - Pipette Metl oh	E107	1534d70	-	16	6/8/	5VØ	>
Particle Size Analysis - Sieve <3mm	E103	1534d74	-	16	6/3/	5V X	>
pH by Meter (1:3 Soil:8 ater Extraction)	E120	153dd23	က	35	0/8/	5V X	>
aboratory Control Samples (LCS)							
Mercury in Soil/Solih by CVAAS	E512	1533674	7	35	16/2	12/2	>
Metals in Soil/Solih by CRC BCPMS	E772	153dd22	7	35	16/2	12/2	>
Particle Size Analysis - Pipette Metl oh	E107	1534d70	-	16	6/8/	5VØ	>
Particle Size Analysis - Sieve <3mm	E103	1534d74	-	16	6/8/	5V X	>
Particle Size Analysis - Sieve >3mm	E101	1534d76	-	16	6/8/	5VØ	>
pH by Meter (1:3 Soil:8 ater Extraction)	E120	153dd23	3	35	0/8/	5W	>
Metl oh . lanks (M.							
Mercury in Soil/Solih by CVAAS	E512	1533674	ဇ	35	0/8/	5\ Ø	>
Metals in Soil/Solih by CRC ECPMS	E772	153dd22	3	35	0/8/	2/W	^

Constantine Nortl BrcW ADFG Palmer Project 16 of 14 VA37. 5171 Page : 8 o k Orher : Project Client

Methodology References and Summaries

The analytical methons usen y AS are hevelopen using internationally ecognizen eference methons (where available), such as tose publishen y US EPA, APHA Stanharh Methons, ASTM, BSO, Environment Canaha, . C MOE, anh Ontario MOEVReference methons may incorporate mohifications to improve per ormance (inhicateh by "moh").W

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:3 Soil:8 ater Extraction)	E120	Soil/Solih	. C Lab Manual	pH is hetermineh y potentiometric measurement witl a pH electrohe at ambient
				laboratory temperature (normally 32 ± 5°C), anh is carrieh out in accordance with
	ALS Environmental -			procehures hescribeh in tle . C ab Manual (prescriptive metloh)W T e pocehure
	Vancouver			involves mixing tle hrieh (at <62 °C) anh sieveh (12mesl/3mm) sample witl ultra pure
				water at a 1:3 atio of sehiment to waterW T e pH is t en measureh y a stanharh pH
Darticle Size Analysis - Sieve > 3mm	1070	Soil/Solih	ASTM D6914-14 (moh)	Material Manager and the description of the description of the Material
ration old Analysis - Oldva volilli	101		(1011) +1 -p1 600 IN 100	sampies ale insaggregaten ann sieven i ougi a omni sievevv iviatenal etanne
				the sieve is ten urthe sieveht ough a series o sievesWT e amount passing tough
	ALS Environmental -			tl e sieves is measureh gravimetricallyW
	Saskatoon			
Particle Size Analysis - Sieve <3mm	E103	Soil/Solih	ASTM D691d-14 (moh)	Soil samples a e hisaggregateh anh sieveh t ougl a 3mm sieveW Material passeh
				hisaggregateh using calgon solution anh
	ALS Environmental -			a series o sievesW T e amount passing t ougl t e sieves is m
	Saskatoon			tricallyW
Particle Size Analysis - Pipette Metl oh	E107	Soil/Solih	SSER-51 Metloh dWW	Soil material is separateh om coarse material (>3mm)W A specimen is t en
				hisaggregateh tl ougl mixing witl Calgon solutionWT e material is t en suspenheh in
	ALS Environmental -			solution weein egular aliquots are taken using a med anical pipette at specific time
	Saskatoon			
				ss o Stokes' aw are applieh to hetermine the amount o mat
				In solution as well as the maximum particle size emaining in solution at the specifien
		9		
Grain Size Report (Attacl ment) Pipet/Sieve	E105A	Soll/Solln	SSEK-51 Meti on dww	A gain size curve is a graplical epresentation of t e particle sizing o a sample
Metl oh				epresenting tl e percent passing against tl e effective particle sizeW
	ALS Environmental -			
	Saskatoon			
Metals in Soil/Solih by CRC BCPMS	E772	Soil/Solih	EPA 6232. (moh)	Ti is metl oh is intenheh to liberate metals t at may e environmentally available. Samples are hrieh, ti en sieveh ti ougl a 3 mm sieve, anh higesteh witi HNOd anh HCIW
	ALS Environmental -			
	Vancouver			Depenhent on sample matrix, some metals may e only partially ecovereh, incluhing AI,
				. a, . e, C , S , Ti, Tl, V, 8 , anh Z W Silicate minerals are not solubilizehW Volatile orms
				may not e captureh, as they may e lost huring so
				storage, o higestionWT is metl oh hoes not ahequately ecover elemental sulfur, anh is
				unsuitable for assessment of elemental sulfur stanharhs or guihelinesW
				Analysis is by Collision/Reaction Cell &PMSW
Mercury in Soil/Solih by CVAAS	E512	Soil/Solih	EPA 32200//16d1	Samples are hrieh, t en sieveh tl ougl a 3 mm sieve, anh higesteh witl HNOd anh HCl,
			Appenhix (moh)	olloweh by CVAAS analysisW
	ALS Environmental -			
	Vancouver			

Constantine Nortl BrcW ADFG Palmer Project

14 of 14 VA37. 5171

8 o k Orher

Client Project

Samples are hrieh, t en sieveh tl ougl a 3 mm sieve, anh higesteh witl HNOd anh HCN TI is metl oh is intenheh to liberate metals tl at may be environmentally availableW omogenizeh sample is set in a tray anh hrieh at less tlan 62°C until hryWT e sample is TI e procehure involves mixing t e h ieh (at <62°C) anh sieveh (NoW12/ 3mm) sample then particle size ehuceh with an automateh crusher o mortar anh pestle, typically to A ter emoval of any coarse agments anh eservation of wet subsamples a portion of <3 mm/Furtle size rehuction may be neeheh for particular tests// witl heionizeh/histilleh water at a 1:3 ratio of sehiment to waterW PH, ELECTROMETREC, . C 8 AP METHOD: Metl ohs of Analysis, Soil Sampling anh EPA 322W (moh) Carter 3220 SOB Soil/Solih Soil/Solih Soil/Solih ALS Environmental -ALS Environmental -ALS Environmental -Method / Lab Saskatoon Vancouver Vancouver EPP773 EP120 EP772 Dry anh Grinh in Soil/Solih <62°C Digestion for Metals anh Mercury eacl 1:3 Soil:8 ater for pH/EC Preparation Methods

QUALITY CONTROL REPORT

Work Order :VA24B5141 Client :Constantine North Inc. Contact :Allegra Cairns ABBress :Suite d32 - 722 0 est PenBer St. Vancouver 8C CanaBa VVC 3VW 9eleT one :V2+d35, 53 Pro&ct :Aj FD Palmer Pro&ct PJ : C-J -C number : SamTler : Site : Ouote number :VA33-CJ NI122-221 @V&d35(Laboratory : ALS Environmental - Vancouver Account Manager : lan Chen ABBress : 271 LougheeB 6ighHay 8 urnabyw8 ritish Columbia Canal 9 eleT one :p1 V2+3, d+ j ate SamTles GeceiveB :3WRn-323+27:+, j ate Analysis CommenceB :23-Rul-323+ Issue j ate :27-Rul-323+; : d	ALS Environmental - Vancouver lan Chen 271 LougheeB 6 ighHay 8 urnabyw8 ritish Columbia CanaBa V, A 10 5 p1 W2+ 3, d + 3WRun-323+ 27:+, 23-Rul-323+ 27-Rul-323+ , : d
No. of sam Tes analyseB		

9 is reTrt suT erseBes any Trevious reTrt (Alith this reference. Gesults aTTTy to the samTleQ (as submitteB. 9his B cument shall not be reTr BuceBwe) ceTt in full.

9 is Ouality Control GeT rt contains the folloHing information:

Laboratory j uTlicate Q x P (GeT rtUSelative Percent j ifference QSP j (anB j ata Ouality J b&ctives

Geference Material @M(GeT rtUSecovery anB) ata Ouality J b4ectives

Generation Material Wall, Gen in Coecovery and jata Outality 3 becauses Methob 81an; W/8 (GeT rtUGecovery and jata Outality J bectives

Laboratory Control SamTle QCS(GeT rtUSecovery anB j ata Ouality J b&ctives

Signatories

9 is Bcument has been electronically signeB by the authorikeB signatories beloH. Electronic signing is conBucteB in accorBance Hith x S Fj A 31 CFG Part 11.

Signatories	osition	aboratory Department
Dhakaleh z hanmirkaei	Analyst	Vancouver Metalsw8 umabyw8 ritish Columbia
6 eBy Lai	9eam LeaBer - Inorganics	Sas; atoon Sas; SoilswSas; atoonwSas; atcheHan
Ranice Leung	SuTervisor - J rganics Instrumentation	Vancouver J rganicsw8urnabyw8ritish Columbia
z im Rensen	j eTartment Manager - Metals	Vancouver Metalsw8umabyw8ritish Columbia
Sam Silveira	Analyst	Vancouver Metalsw8 umabwv8 ritish Columbia

 0 r; J rBer :
 VA3+8, +1

 Client :
 Constantine North Inc.

 Pro&ct :
 Aj FD Palmer Pro&ct

General Comments

9 e ALS Ouality Control @C(reT rt is oTtionally TroviBeB to ALS clients uTn request. ALS test methoBs incluBe comTrehensive OC chec; s Hith every analysis to ensure ur high stanBarBs quality are reT rt cntains BetaileB results r all OC results aTTlicable to this samTle submission. Please refer to the ALS Ouality Control InterTretation reT rt @Cl(r aTTlicable methoB references an B methoB logy associateB test results. met. Each OC result as a ; noHn r e) TecteB target valuew Hhich is comTareB against TreBetermineB j ata Ouality Jb&ctives Q OJ s(to TroviBe confiBence in the accuracy

z ey :

summaries.

Anonymous = Gefers to samTles Hhich are not Tart of this Hor; Berwbut Hhich formeB Tart of the OC Trocess lot.

CAS Number = Chemical Abstracts Service number is a unique iBentifier assigneB to Biscrete substances.

OJ = j ata Ouality Jb&ctive.

LJ G = Limit of GeT rting QBetection limit(.

GPj = Gelative Percent j ifference

= InBicates a OC result that BiB not meet the ALS j OJ .

rkorder Comments

6 olBing times are BisTlayeB as K--Kif no guilBance e) ists from CCMEwCanaBian Tr vincesw or broaBly recognikeB international references.

Constantine North Inc. d VA3+8, +1 0 r; JrBer : Pro&ct Client

Aj FD Palmer Pro&ct

Laboratory Duplicate (DUP) Report

A Laboratory j uTlicate QxP(is a ranBmly selecteB intralaboratory reTlicate samTle. Laboratory j uTlicates TroviBe information regarBing methoB Trecision anB samTle heterogeneity. ALS j OJ s r Laboratory j uTlicates are e) TresseB as test-sTecific limits r Gelative Percent j ifference @Pj (w r as an absolute Bi erence limit 3 times the LJG r loH concentration BuTlicates Hithin " +-2

times the LJ G Qut-off is test-sTecific(.

Sub-Matri): Soil/Solid							Laborat	Laboratory Duplicate (DUP) Report	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number Method	Method	TOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC Lot: 1522649)	Lot: 1522649)										
VA3+8, d5-221	Anonymons	T6 Q3 soil:Hater(E127	2.12	T6 units	WW.	Α,:	%	1	1
Physical Tests (QC Lot: 1523302)	Lot: 1523302)										
VA3+8, + -22W	323+ x SAG S1	T6 Q3 soil:Hater(E127	2.12	T6 units	.33	.3W	2., ~	2	-
Percent Passing (QC Lot: 1527347)	C Lot: 1527347)										
VA3+8, + -221	323+LSAGS1	Passing Q.2, mm(-	E173	7	ł	W1	M%	F	j iff <3) LJ G	-
		Passing Q.2Wdmm(1	E173	2	₹	p%	7.	÷	j i <3) LJ G	-
		Passing Q.2% mm(1	E173	2	1	+.	5.5	Μ.	j i <3) LJ G	!
		Passing Q.13, mm(-	E173	2	ł	3.7	+. +	11.%	7, ~	!
		Passing Q.1+5mm(-	E173	2	ł	:	M%	.2~	· .	!
		Passing Q.3, 2mm(-	E173	2	ł	3.d	d1.1	2.+~	?	!
		Passing Q.+32mm(1	E173	7	ł	÷.	, 2.W	+.7+~	· .	-
		Passing Q., 2mm(-	E173	2	ł	, %W	, 5.7	d.%d~	?	!
		Passing Q.7+ mm(-	E173	2	ł	%q.,	.4%	~8%:	?	!
		Passing Q.2mm(1	E173	2,	ł	2.	7:	.2, ~	?	!
Percent Passing (QC Lot: 1527348)	C Lot: 1527348)										
VA3+8, + -221	323+LSAGS1	Passing Q.223mm(1	E17+	.2	2	<.2	s. 2	2	ji <3) LJG	1
		Passing Q.22+mm(1	E17+	7	ł	< .2	<u></u>	2.12	ji <3) LJG	-
		Passing Q.22, mm(-	E17+	7	ł	₹.	Þ.	2.3	ji <3) LJG	!
		Passing Q.232mm(1	E17+	7	ł	d.2	d.W	2.W	j i <3) LJ G	-
		Passing Q.2d13mm(-	E17+	2	ł	÷.3	:	2.	j i <3) LJ G	!
Metals (QC Lot: 1522647)	22647)										
VA3+8, d5-221	Anonymous	Mercury	%+d5-5%W	E, 2	2.22, 2	mg/; g	2.2113	2.21, 3	2.22+2	j iff <3) LJ G	-
Metals (QC Lot: 1522648)	22648)										
VA3+8, d5-221	Anonymons	Aluminum	%+35-52-,	E++2	, 2	mg/; g	, 322	, 22	2., 53~	+2~	1
		Arsenic	%+2-d7-3	E++2	2.12	mg/; g	3.2%	.5W	, +W ,	d2~	-
		CaBmium	%+2-+d-5	E++2	2.232	mg/; g	2., 5	2., dd	3., %	d2~	-
		С Тег	%+2-, 2- <i>7</i>	E++2	2.,2	mg/; g	3d.%	3+.,	d.15∼	d2~	!
		Iron	%+d5-75-W	E++2	, 2	mg/; g	d5, 22	d%22	₩%2~	d2~	1
		LeaB	%+d5-53-1	E++2	2,2	mg/; g	d.37	+ .;	d.5W	+2~	!
		Selenium	%/73-+5-3	E++2	2.32	mg/; g	2.Wd	2.%3	2.27	j iff <3) LJ G	-
_	_	_	_		_	_	-		_	_	

ALS)

Constantine North Inc. Aj FD Palmer Pro&ct

+ VA3+8, +1

0 r; JrBer :

Client Pro⁄ect

Qualifier | | ---ji <3) LJ G j iff <3) LJ G ji <3) LJG j iff <3) LJ G Duplicate d2~ d2~ $d2\sim$ d2~ d2~ +5~ $\text{d}2^{\sim}$ RPD(%) or Difference 2.2221 2.%2~ 2.d, % +.21~ 2.2+ %+3~ 3.₩~ d.23~ 2.21 2.21 3+. ∼ d.7₩ Duplicate Result 2.211+ <2.12 +%422 2.1% +pW 2.% +5., ≥ Original Result 2.211W + %22 , W3 WW 2.73 2.17 2.11 3W 93 þ. mg/; g Unit 2.22, 2 2.12 2.12 2.232 2.32 2.12 LOR 3.2 CAS Number Method E++2 E++2 E++2 E++2 E++2 E++2 E++2 E++2 E++2 E, 2 %++2-WWW %+d5-75-W %+d5-5%W %++2-WWW %+2-d7-3 %++2-33-+ %+2-+d-5 %+2-, 2-*7* %+d5-53-1 %73-+5-3 %+2-33-+ %+35-52-[,] Aluminum CaBmium Selenium Mercury Arsenic СПег Analyte Silver LeaB Iron Metals (QC Lot: 1522648) - continued Client sample ID 323+ x SAG S1 323+ x SAG S1 Metals (QC Lot: 1523301) VA3+8, + -22W Metals (QC Lot: 1523300) VA3+8, + -22W 323+x Sub-Matri): Soil/Solid Laboratory sample ID VA3+8, d5-221

, VA3+8, +1 Constantine North Inc. Aj FD Palmer Pro&ct

0 r; JrBer :

Client Protect Method Blank (MB) Report

Meth B 8 lan; results are useB to m nitor anB c ntrol r T tential A Methob 8lan; is an analyte-free matri) that unBergoes samTle Trocessing iBentical to that carrieB ut r test samTles. contamination from the laboratory environment an Breagents. For most testswthe j OJ r MethoB 8 lan; s is for the result to be < LJ G.

Sub-Matri): Soil/Solid

Sub-Matri): Soil/Soild					
nalye	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 1522647)					
Mercury	%d5-5%WE, 2	2.22,	mg/; g	<2.22, 2	
Metals (QCLot: 1522648)					
Aluminum	%435-52-, E++2	, 2	mg/; g	<,2	
Arsenic	%+2-d7-3 E++2	2.1	mg/; g	<2.12	1
CaBmium	%+2-+d-5 E++2	2.23	g;'gm	<2.232	1
С Пег	%+2-, 2-7 E++2	2.,	g;'gm	<2., 2	1
Iron	%45-75-W E++2	, 2	g;'gm	<, 2	1
LeaB	%45-53-1 E++2	2.,	mg/; g	<2., 2	1
Selenium	%873-+5-3 E++2	2.3	mg/; g	<2.32	1
Silver	%+2-33-+ E++2	2.1	g;'gm	<2.12	1
Zinc	%+2-VWW E++2	ю	mg/; g	<3.2	1
Metals (QCLot: 1523300)					
Aluminum	%35-52-, E++2	, 2	mg/; g	<,2	
Arsenic	%+2-d7-3 E++2	2.1	mg/; g	<2.12	
CaBmium	%+2-+d-5 E++2	2.23	mg/; g	<2.232	1
С Пег	%+2-, 2-7 E++2	2.,	mg/; g	<2., 2	
Iron	%45-75-W E++2	, 2	mg/; g	<, 2	1
LeaB	%4d5-53-1 E++2	2.,	mg/; g	<2., 2	
Selenium	%73-+5-3 E++2	2.3	mg/; g	<2.32	
Silver	%+2-33-+ E++2	2.1	mg/; g	<2.12	
Zinc	%+2-VWW E++2	е	mg/; g	<3.2	-
Metals (QCLot: 1523301)					
Mercury	%45-5%ME, 2	2.22,	mg/; g	<2.22, 2	-

W VA3+8, +1 0 r; JrBer : Pro&ct Client

Constantine North Inc. Aj FD Palmer Pro&ct

Laboratory Control Sample (LCS) Report

CS A Laboratory Control SamTle QCS(is an analyte-free matri) that as been rtifieB QT; eB(Hith test analytes at ; noHn concentration anB TrcesseB in an iBentical manner t test samTles. results are e) TresseB as Tercent recoverywanB are useB to monitor anB control test methoB accuracy anB TrecisionwinBeTenBent of test samTle matri).

nalyte Physical Tests (QCLot: 1522649) T6 Q3 soli:Hater(Spike	Recovery (%)	Recovery	Recovery Limits (%)	
Physical Tests (QCLot: 1522649) T6 Q3 soli:Hater(CAS Number Method	LOR	Unit	Target Concentration	SD7	Low	High	Qualifier
Т6 Q3 soil:Hater(
	E127		T6 units	WT6 units	22	5, .2	2,	1
Physical Tests (QCLot: 1523302)								
T6 Q3 soli:Hater(E127		T6 units	WT6 units	55.d	5, .2	2,	1
Metals (QCLot: 1522647)								
Mercury	%+d5-5%W E, 2	2.22,	mg/; g	2.1 mg/; g	54.3	2.2	32	1
Metals (QCLot: 1522648)								
Aluminum	%+35-52-, E++2	, 2	mg/; g	322 mg/; g	23	2.2	32	
Arsenic	%++2-d7-3 E++2	2.1	mg/; g	122 mg/; g	2,	2.2	32	1
CaBmium	%++2-+d-5 E++2	2.23	mg/; g	12 mg/; g	22	2.2	32	1
C TTer	%++2-, 2-7 E++2	2.,	mg/; g	3, mg/; g	55.7	2.2	32	1
Iron	%+d5-75-W E++2	, 2	mg/; g	122 mg/; g	21	2.2	32	
LeaB	%+d5-53-1 E++2	2.,	mg/; g	, 2 mg/; g	2d	2.2	32	1
Selenium	%73-+5-3 E++2	2.3	mg/; g	122 mg/; g	22.2	2.2	32	1
Silver	%++2-33-+ E++2	5.	mg/; g	2 mg/; g	5.1	2.2	32	1
Zinc	%+2-VWWW E++2	ю	mg/; g	, 2 mg/; g	21	2.2	32	1
Metals (QCLot: 1523300)								
Aluminum	%35-52-, E++2	, 2	mg/; g	322 mg/; g	55.d	2.2	32	-
Arsenic	%++2-d7-3 E++2	2.1	mg/; g	122 mg/; g	27	2.2	32	1
CaBmium	%+2-+d-5 E++2	2.23	mg/; g	12 mg/; g	2,	2.2	32	-
C TTer	%++2-, 2-7 E++2	2.,	mg/; g	3, mg/; g	23	2.2	32	
Iron	%+d5-75-W E++2	, 2	mg/; g	122 mg/; g	2d	2.2	32	1
LeaB	%+d5-53-1 E++2	2.,	mg/; g	, 2 mg/; g	22	2.2	32	1
Selenium	%73-+5-3 E++2	2.3	mg/; g	122 mg/; g	2d	2.2	32	1
Silver	%++2-33-+ E++2	5.	mg/; g	2 mg/; g	5, .W	2.2	32	1
Zinc	%+2-VWWW E++2	ю	g';bm	, 2 mg/; g	2+	2.2	32	1
Metals (QCLot: 1523301)								
Mercury	%d5-5%W E, 2	2.22,	mg/; g	2.1 mg/; g	2d	2.2	32	-

% VA3+8, +1 0 r; J rBer : **Pro**ect Client

Constantine North Inc. Aj FD Palmer Pro&ct

Reference Material (RM) Report

GMs are TrcesseB in an iBentical manner t test samTleswanB are useB to m nitor anB the target analyte c ncentration. GM targets may be certifieB target control the accuracy anB Trecision a test methoB r a tyTical samTle matri). GM results are e)TresseB as Tercent recovery A Geference Material CBM(is a omogenous material Hith ; noHn anB Hell-establisheB analyte c ncentrations.

concentrations TroviBeB by the GM suTTlierwr may be ALS long-term mean values Qfor emTirical test methoBs(.

Laboratory Reference Material Is ample ID Percent Passing (OCLot: 1527346) OC-1, 3%4-W221 GM	Reference Material ID QCL ot: 1527346) GM GM GM GM GM GM GM	nalyte CAS Number		RM Target Concentration	Recovery (%)	Kererence Material (KM) Report	S	Qualifier
Laboratory Referent Passing (QCL) Percent Passing (QCL) OC-1, 3%4+W221 GM OC-1, 3%4+W221 GM OC-1, 3%4+W221 GM	rence Material ID			Concentration	RM	Low	High	Oualifier
Percent Passing (QCL, OC-1, 3%d+W221 OC-1, 3%d+W221 GM	.ot: 1527346)		iber inethod	_			ngın	
OC-1, 3%4+W221 GM								
		Passing Q5mm(E171	22 ~	22	52.2	2	-
		Passing 3 .2mm(E171	22 ~	22	52.2	2	1
		Passing Q, .+mm(E171	22 ~	22	52.2	2	1
		Passing Q7.1mm(E171	22 ~	22	52.2	2	1
		Passing Q.% mm(E171	22 ~	22	52.2	2	!
		Passing Q2.7 mm(E171	22 ~	22	52.2	2	ı
		Passing @WBmm(E171	22 ~	22	52.2	2	1
		Passing G., mm(E171	22 ~	22	52.2	2	!
Percent Passing (QCLot: 1527347)	ot: 1527347)							
OC-1, 3%d+%221 GM		Passing Q .2, mm(E173	· +.1 ~	21	52.2	2	-
OC-1, 3%d+%221 GM		Passing Q.2Wdmm(E173	, %1 ~	55.7	52.7	25	
OC-1, 3%d+%221 GM		Passing Q .2% mm(E173	₩.3 ~	57.,	51.+	25	-
OC-1, 3%d+%221 GM		Passing Q .13, mm(E173	W.3 ~	22	53.%	2%	
OC-1, 3%d+%221 GM		Passing Q .1+5mm(E173	~ %	92.79	5d.1	2%	
OC-1, 3%d+%221 GM		Passing Q .3, 2mm(E173	3.d ∼	55.7	5+.1	2W	
OC-1, 3%d+%221 GM		Passing Q .+32mm(E173	5.5 ~	b.73	2+.W	2,	
OC-1, 3%d+%221 GM		Passing Q ., 2mm(E173	51.3 ~	22	2+.%	2,	
OC-1, 3%d+%221 GM		Passing Q.7+ mm(E173	5, .W~	55.+	5+.5	2,	
OC-1, 3%d+%221 GM		Passing Q.2mm(E173	≥ 5Wd ~	22	5+.5	2,	
Percent Passing (QCLot: 1527348)	ot: 1527348)							
OC-1, 3%d+ -221 GM		Passing Q .223mm(E17+	33., ~	22	%+.	3W	-
OC-1, 3%d+ -221 GM		Passing Q .22+mm(E17+	3, .1 ~	22	2/\%	3d	-
OC-1, 3%d+ -221 GM		Passing Q .22, mm(E17+	3W, ~	22	9%%2	33	
OC-1, 3%d+ -221 GM		Passing Q .232mm(E17+	~ L +	2%W	7. ,	+	
OC-1, 3%d+ -221 GM		Passing Q .2d13mm(E17+	+, .W~	21	.2	3	
Metals (QCLot: 1522647)	47)							
OC-1, 33W+%22d MGCA-31	:A-31	Mercury %+d5-5%W	%W E, 2	2.2W mg/; g	53.+	%2.2	d2	1
Metals (QCLot: 1522648)	48)							
OC-1, 33W-7-22d MGCA-31	:A-31	Aluminum %+35-52-,	2-, E++2	33, 22 mg/; g	2%	%2.2	d2	1
OC-1, 33W-7-22d MGCA-31	.A-31	Arsenic %+2-d -3	-3 E++2	31.3 mg/; g	5W7	%2.2	d2	1
OC-1, 33W+7-22d MGCA-31	.A-31	CaBmium %++2-+d-5	d-5 E++2	3.1, mg/; g	92.%	%2.2	d2	
OC-1, 33W+7-22d MGCA-31	.A-31	C TTer %+2-, 2-	2- E++2	5W6 mg/; g	23	%2.2	d2	-

VA3+8, +1 Constantine North Inc. Aj FD Palmer Pro&ct

Page :
0 r; JrBer :
Client :

						9-0	0 0000	******	
Sub-Matri):						Kereren	Reference Material (RIM) Report	oort	
					RM Target	Recovery (%)	Recovery Limits (%)	imits (%)	
Laboratory ample ID	Reference Material ID	nalyte	CAS Number	Method	Concentration	RM	Том	High	Qualifier
Metals (QCLot: 1	Metals (QCLot: 1522648) - continued								
OC-1, 33W+7-22d	MGCA-31	Iron	%+d5-75-W	E++2	d3%22 mg/; g	%'29	%2.2	d2	!
OC-1, 33W+7-22d	MGCA-31	LeaB	%+d5-53-1	E++2	515 mg/; g	5d.2	%2.2	d2	
OC-1, 33WF7-22d	MGCA-31	Selenium	%/73-+5-3	E++2	.2+ mg/; g	5%2	V 2 .2	+2	
OC-1, 33W+7-22d	MGCA-31	Silver	%++2-33-+	E++2	7.57 mg/; g	+ p5	%2.2	d2	-
OC-1, 33W+7-22d	MGCA-31	Zinc	%++2-WWW	E++2	737 mg/; g	M.73	%2.2	d2	-
Metals (QCLot: 1523300)	523300)								
OC-1, 3dd22-22d	MGCA-31	Aluminum	%+35-52-,	E++2	33, 22 mg/; g	23	%2.2	d2	1
OC-1, 3dd22-22d	MGCA-31	Arsenic	%++2-d -3	E++2	31.3 mg/; g	55.7	%2.2	d2	
OC-1, 3dd22-22d	MGCA-31	CaBmium	%++2-+d-5	E++2	3.1, mg/; g	5%1	%2.2	d2	
OC-1, 3dd22-22d	MGCA-31	C TTer	%++2-, 2-	E++2	5W6 mg/; g	92.79	%2.2	d2	-
OC-1, 3dd22-22d	MGCA-31	Iron	%+d5-75-W	E++2	d3%22 mg/; g	55.1	%2.2	d2	-
OC-1, 3dd22-22d	MGCA-31	LeaB	%+d5-53-1	E++2	515 mg/; g	5+.3	%2.2	d2	-
OC-1, 3dd22-22d	MGCA-31	Selenium	%/73-+5-3	E++2	.2+ mg/; g	W.	V 2 .2	+2	
OC-1, 3dd22-22d	MGCA-31	Silver	%++2-33-+	E++2	7.57 mg/; g	2d	%2.2	d2	
OC-1, 3dd22-22d	MGCA-31	Zinc	%++2-WWW	E++2	737 mg/; g	%29	%2.2	d2	
Metals (QCLot: 1523301)	523301)								
OC-1, 3dd21-22d	MGCA-31	Mercury	%+d5-5%W	E, 2	2.2W mg/; g	3	%2.2	d2	1

(ALS) Environmental

	PAGE
) ;	lve., Kelso, WA 98626 360.577.7222 800.695.7222 360.636.1068 (fax)
	360.577.7222 800.695.7222 360.636.1068
	360,577,7222
•	, WA 98626
	Kelso
	1317 South 13th Ave., Kelso, W
_	1317 Si

#000

9

SR#

(CIRCLE ONE) (Zn Hg REMARKS Z E Date/Time, > RECEIVED BY: > الا బ = F Section of the sectio mering constantine metals. Com ঠ ഗ് Mo Ni K (Ag) Na (Sg) WI NORTHWEST OTHER Signature Printed Name $\supset \emptyset$ \supset > ğ 5 × rate. ransuse a alogua. 92 Sample Shipment contains USDA regulated soil samples (check box if applicable) sne^{Tl}/snixol^Q 7905 5065 XOA C03 [] ź D Viralinity D dylan. envil @ alanca go ŝ COLOG NH3-N, COD, TKN, Σ Ā ωĜ Σg Cond Cl. (a) GO8 Hd d *INDICATE STATE HYDROCARBON PROCEDURE: AK CA Date/Time e. RELINQUISHED BY: င် လ Ç × × 7 × \geq B Ca (6) В Q SPECIAL INSTRUCTIONS/COMMENTS: Work Order Reference VA24B5141 **Environmental Division** Signature œ wand lab report to: Be Be Avologing Sassing Sass Circle which metals are to be analyzed: Telephone: +1 604 263 4199 Ва ga Dissolved Metals: Al As Sb Total Metals: (AI) (As) Sb DHA9 MIS Vancouver Date/Time RECEIVED BY: NUMBER OF CONTAINERS Z TURNAROUND REQUIREMENTS d d Engl S Maring. Com marlin@ans whim north Bennar X Standard (15 working days) INVOICE INFORMATION 703 SON I Š 48 hr. Ž Requested Report Date SQ. Co 200 . Z Ž Signature Provide FAX Results @ alakhea. gov LABI Property かんのでの 24 hr. 5 day 0410 Bill To: 000 630 53 100 C 000 13 30 200 600 P.O. # (2) 0481 121 1/A Date/Time 0919 6/2/2 るという Dalmar Chi m 7 Chiley Why had Celulos Electron Sel the Contract of the Contra 1 2 Cal 2 Cal W. C. C. Land RELINQUISHED BY: Report Dup., MS, MSD as なるとないいと Y I. Routine Report: Method REPORT REQUIREMENTS Data Validation Report Blank, Surrogate, as 20x) 40x CLP Like Summary DOWNER Dulary 527 258 みもから かったら 15AR-57 いるとよりなのなってい いろとなるという 2024 USHRSS ないというななられ 2014 OSEF-52 2024 USAR 53 2024 USAR-SY ングがころをなるし (no raw data) いるがいいないから Signature CM/ Dividing Market Name SAMPLE I.D. required required PROJECT MANAGER COMPANY NAME E-WAIL ADDRESS SAMPLER'S SIC SITY/STATE/ZII 25 = ≡ ≥ > ADDRESS # JNOH × Æ,

Sopyright 2012 by ALS Group

Firm

Firm

Printed Name

Firm

Printed Name

E.

	=	
	enta	
	Enulronment	
	2	
	Ü	
4	M	

CHAIN OF CUSTODY

#HS

CIRCLE ONE) REMARKS Sn V Zn Hg Date/Time merring constanting aretald.com RECEIVED BY: Firm F #000 F HSK 175 [Methane Dethane] Ethene]

Dissolved Gases

Oo Cl ഗ് ঠ l'are. randre @ alabra .gov Se/ يخ Total Metals: (A) (As) Sb Ba Be B Ca (Cg) Co Cr (Cg) (F) (Py Mg Mn Mo Ni K (Ag) Na (*INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: K Ag Na Dioxins/Furans Printed Name $\Box \varepsilon_{OOH}$ dylan. my (@ alaster gov Sample Shipment contains USDA regulated soil samples (check box if applicable) Signature © €_{OO} D90g 9 Mg Mn Mo Ni ☐ ViinileXIA 100991 XOV ONCIE) PH, CONG. CI, SO4, PC (CINCIE) NH3-N, COD, THN, DOC, NO2+NO3, TOS, TINS, DOC, NO2+NO3, TOS, TINS, PAGE Hex-Chrom [] Cd Co Cr Cu Fe Pb Date/Time RELINQUISHED BY: Chicrophenolog - 8151M Firm 11918 1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (fax) .. Q Printed Name B Ca SPECIAL INSTRUCTIONS/COMMENTS: Signature Lab report æ Circle which metals are to be analyzed; DXIIB g SM/OD Yd soinegio gillelovings SM/OD Yd soinegio gillelovings CALLOTES COTES COTES As Sb Dissolved Metals: Al Date/Time NUMBER OF CONTAINERS X 25 25 RECEIVED BY: Firm 4 7 2 4 N TURNAROUND REQUIREMENTS MANNEY BIR Mexima constantine Bill To: Merlin Berner INVOICE INFORMATION X_Standard (15 working days) . B Sol Ž. 38 801. 48 hr. Printed Name Requested Report Date Signature Provide FAX Results taled LAB I.D. alaster. go なるなった 24 hr. _5 day グイグ 800 TIME V7.% 2 & 2 2 2 3 P.O. # Z Palmer 207/468-6160 Date/Time 6/2/24 なごろ dylanorull @ 20/2/2 12/2/20 1 56/5/5 Douglas ight DATE RELINQUISHED BY: Report Dup., MS, MSD as PROJECT MANAGER DY (ON 12 WAY Routine Report: Method REPORT REQUIREMENTS F. Firm × IV. Data Validation Report Blank, Surrogate, as CLP Like Summary をもかの COMPANY NAME POS 6 802 3rd るととなるの LOST PIASE とりと アプチ 52 (no raw data) 27-62 202 PIES SAMPLEID Signature Signature required required SAMPLER'S SIGNATUR Printed Name PROJECT NUMBER E-MAIL ADDIRESS EDD CITY/STATE/ZIP 大学 ADDRESS = ≓ > 4 12

Opyright 2012 by ALS Group

ALS) Environmental

CHAIN OF CUSTODY

1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (fax)

PAGE _

1 OF 6 COC#		2 500)H]09]20[91	/ε _Ο .	SUE.	7 A	A 12 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	91 10		у.	7	*	×	×	×	×	×	*		Mn Mo Ni K Ag Na S Sr TI Sn V Zn Hg	Mn Mo Ni K Ag Na Se Sr TI Sn V Zn Hg	NORTHWEST OTHER: (CIRCLE ONE)	ده . هی ا	aladra-gar o is	Maranethers: Colvic		k box if appligable)	RECEIVED BY:	1 USAC
360.636.1068 (fax) PAGE		(58)	De la	Our Solves 1151 1151 1151 1151 1151 1151 1151 11	ssia 8 s 8 s 9 9 9 9 9 9	MONICO IN THE PROPERTY OF THE	Med 1 september 1	oolorg	र्मक्ष 8 ि ह र्रुख्न े । हैं ≷	メ	Division x	eren.	5141 x 141c	×	×	*	X 4188	X	\	yzed;	1 Be B Ca (3) Co C (3) (5) Mg	a Be B Ca Cd Co Cr Cu Fe Pb Mg	CARBON PROCEDURE: AK CA WI		. –	merting constantineme		Sample Shipment contains USDA regulated soil samples (check box if appligable)	RELINQUISHED BY:	
800.695.7222	DX3	(W) 	57 1	17021 17021 9 80	8 s. ≥8 (!Ue6	Of	1187 019 826 828 828	SBO 1991 Ostologo 1987 Ostologo 1988 Ostolog	1 ≥	1	Environmental Division	Work Order Re	מ		7	7	7 Telentione: +1 604 253 4188	7	1	N Gircle which metals are to be analyzed	Total Metals: (A) (As) Sb Ba	NAC Dissolved Metals: Al As Sb Ba	لتل	<u> </u>	A STANK	ys)			20 pm	·
1317 South 13th Ave., Kelso, WA 98626 360.577.7222	Project				42824	alastea.gov	D FAX#		TIME LABI.D. MATRIX	11100 50:1	(100 80)	11 00	Log 007	001	1330	1350	1330 Soi !	1830 801	1330	ı	BIII To: Merky Benner	merlin@constant	mining. Com	TURNAROUND REQUIREMENTS		X Standard (15 working days)	Provide FAX Results	Requested Report Date	CARO	250
	PROJECT NUMBER	PROJECT MANAGER DY (an KWI)	NAME ANDER O	Ø	Donalas,	DRESS	PHONE (907) 465 WILD FAX#	SAMPLER'S SIGNATURE	SAMPLE I.D. DATE	12024LSARS1 10/4/24 1100	2004 USARSZ Velulay		12024 COORESY WHILE		elul 24	pel plu	white	2024 USAR-SY Why			Y I. Routine Report: Method		reduired	MSD as required	III. CLP Like Summary	(no raw data) (no raw data)	<u> </u>		RELINQUISHED BY:	

Copyright 2012 by ALS Group

ALS) Environmental

CHAIN OF CUSTODY

SR#

(CIRCLE ONE) Sn v(Zg/(Hg/ Sn v Zn Hg REMARKS mening constantine metals com ⊏ জ F Kate. Kandure @ alanca gov & #000 Total Metals: (A) (As) Sb Ba Be B Ca (Cg) Co Cr (Cg) (P) (Ps) Mg Mn Mo NI K (Ag) Na (Se) "INDICATE STATE HYDROCARBON PROCEDURE: AK CA WI NORTHWEST OTHER: SPECIAL INSTRUCTIONS/COMMENTS: B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Dioxins/Furans lab report to: dylan. mul@ alaren gov Sample Shipment contains USDA regulated soil samples (check box if applicable) HCO3 [] □ ε₀₀ □90ç 9 ☐ VirilleXIA 1880E (CILCIE) NH3-N' CO PAGE Cond 1317 South 13th Ave., Kelso, WA 98626 | 360.577.7222 | 800.695.7222 | 360.636.1068 (fax) Ba Be Hydrocarbons (**See below) Circle which metals are to be analyzed: Dissolved Metals: Al As Sb SWOD Vd SOINEQ DO SIN OS DI CON SIN OS DI CON GON SIN DI CON SIN DI CONTROL D send NUMBER OF CONTAINERS 4 TURNAROUND REQUIREMENTS 4 MAMMA : COM Mexical constanting Benner X Standard (15 working days) INVOICE INFORMATION MATRI 30, 1.8 Soil . ie 48 hr. Soil Requested Report Date Provide FAX Results LABI.D. E-WALL ADDRESS dylan . E-WILL @ ALBATCA. 900 toped Bill To: Merin 49824 24 hr. 5 day SHS TIME **%**+% 528 42/4/9 25 र्भाष्य क्ष्मर Pa/mer (407)468-6160 12/4/24 6/4/24 12/h/a DATE Daughers Will -K-II. -Report-Dup., MS, MSD as PROJECT MANAGER DY AN KMA Routine Report: Method REPORT REQUIREMENTS X IV. Data Validation Report ADDRESS 802 3rd St. Blank, Surrogate, as CLP Like Summary 5000 COMPANY NAME POPE 2824 PLA 52 my prass 2011 RA 53 rost prast (no raw data) 2024 PLASI SAMPLE I.D. required required SAMPLER'S SIGNATURE EDD PROJECT NUMBER PROJECT NAME ≝ >

Copyright 2012 by ALS Group

Date/Time

Signature

Date/Time

2

Ē

Rcvd jc 27Jun2024

800

15/24

RELINQUISHED BY:

ate of the second secon

Signature Ov I ov I cvv I Printed Name

Fil

Name

5°C (avg 13 coolers) ice ph

N C

RELINQUISHED BY:

Ë

Printed Name

RECEIVED BY: