Aquatic Studies at Kensington Gold Mine, 2016

By
Katrina M. Kanouse
and
Johnny Zutz

February 2017

Alaska Department of Fish and Game

Division of Habitat

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by the Divisions of Habitat, Sport Fish, and Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted			
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
		east	E	alternate hypothesis	H_A
Weights and measures (English)		north	N	base of natural logarithm	e
cubic feet per second	ft ³ /s	south	S	catch per unit effort	CPUE
foot	ft	west	W	coefficient of variation	CV
gallon	gal	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
inch	in	corporate suffixes:		confidence interval	CI
mile	mi	Company	Co.	correlation coefficient	01
nautical mile	nmi	Corporation	Corp.	(multiple)	R
ounce	OZ.	Incorporated	Inc.	correlation coefficient	K
pound	lb	Limited	Ltd.	(simple)	r
•		District of Columbia	D.C.	covariance	cov
quart yard	qt yd	etalii (and others)	et al.	degree (angular)	° COV
yard	yu	et cetera (and so forth)	etc.		df
T:		exempli gratia	cic.	degrees of freedom	
Time and temperature	d	(for example)	0.0	expected value	E
day		Federal Information	e.g.	greater than	>
degrees Celsius	°C	Code	FIC	greater than or equal to	<u>≥</u>
degrees Fahrenheit	°F		i.e.	harvest per unit effort	HPUE
degrees kelvin	K	idest (that is) latitude or longitude	lat. or long.	less than	<
hour	h		rat. or long.	less than or equal to	≤
minute	min	monetary symbols	ф ₄	logarithm (natural)	ln
second	S	(U.S.)	\$,¢	logarithm (base 10)	log
		months (tables and		logarithm (specify base)	log _{2,} etc.
Physics and chemistry		figures): first three	T D	minute (angular)	,
all atomic symbols		letters	Jan,,Dec	no data	ND
alternating current	AC	registered trademark	® TM	not significant	NS
ampere	A	trademark	IW	null hypothesis	H_{O}
calorie	cal	United States	*** **	percent	%
direct current	DC	(adjective)	U.S.	probability	P
hertz	Hz	United States of		probability of a type I error	
horsepower	hp	America (noun)	USA	(rejection of the null	
hydrogen ion activity	pН	U.S.C.	United States	hypothesis when true)	α
(negative log of)		*** 6	Code	probability of a type II error	
parts per million	ppm	U.S. state	use two-letter	(acceptance of the null	
parts per thousand	ppt,		abbreviations	hypothesis when false)	β
	‰		(e.g., AK, WA)	second (angular)	"
volts	V			standard deviation	SD
watts	W			standard error	SE
				variance	
				population	Var
				sample	var

TECHNICAL REPORT NO. 17-02

AQUATIC STUDIES AT KENSINGTON GOLD MINE, 2016

by

Katrina M. Kanouse

and

Johnny Zutz

Alaska Department of Fish and Game Division of Habitat, Southeast Region 802 W. 3rd Street, Douglas, Alaska, 99824

February 2017

This investigation was fully financed by Coeur Alaska, Inc.

Cover: Johnson Creek headwaters at Lions Head Mountain.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Division of Habitat, 802 W. 3rd Street, Douglas, Alaska, 99824, USA

This document should be cited as:

Kanouse, K. M. and J. Zutz. 2017. Aquatic studies at Kensington Gold Mine, 2016. Alaska Department of Fish and Game, Technical Report No. 17-02, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Division of Habitat, 802 W. 3rd Street, Douglas, Alaska 99824 (907) 465-4105

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	iv
ACKNOWLEDGEMENTS	V
EXECUTIVE SUMMARY	
INTRODUCTION	
Purpose	
Aquatic Studies	
Study Area	
Slate Creek Drainage	
Johnson Creek Drainage	
Sherman Creek Drainage	11
Monitoring Schedule	14
METHODS	15
Periphyton Density and Community Composition	15
Benthic Macroinvertebrate Density and Community Composition	16
Resident Fish Population	18
Resident Fish Condition	21
Adult Salmon Counts	22
Spawning Substrate Composition	22
Sediment Metals Concentrations	23
Sediment Toxicity	25
RESULTS	26
Slate Creek	26
Lower Slate Creek	26
West Fork Slate Creek	
East Fork Slate Creek	
Johnson Creek	
Lower Johnson Creek	
Upper Johnson Creek	
Sherman Creek	
Lower Sherman Creek	
REFERENCES CITED	55

LIST OF TABLES

Table		Page
1.	2016 aquatic studies required by the Plan of Operations and APDES permit	5
2.	2016 aquatic study sample sites.	
3.	Lower Slate Creek adult salmon count reach markers	13
4.	Lower Johnson Creek adult salmon count reach markers.	
5.	Lower Sherman Creek adult salmon count reach markers	14
6.	2016 aquatic studies sampling schedule.	14
7.	Sediment tests, analytes, and methods.	24
8.	Lower Slate Creek mean chlorophylls a, b, and c density, 2011–2016.	
9.	Lower Slate Creek BMI data summary, 2011–2016	27
10.	Lower Slate Creek adult salmon count, 2011–2016.	
11.	Lower Slate Creek SP1 and SP2 geometric mean particle sizes, 2011–2016	
12.	West Fork Slate Creek mean chlorophylls a, b, and c density, 2011–2016	
13.	West Fork Slate Creek BMI data summary, 2011–2016.	
14.	East Fork Slate Creek mean chlorophylls a, b, and c density, 2011–2016.	
15.	East Fork Slate Creek BMI data summary, 2011–2016	
16.	Upper Slate Creek mean chlorophylls a, b, and c density, 2011–2016	
17.	Upper Slate Creek BMI data summary, 2011–2016.	
18.	Lower Johnson Creek adult salmon count, 2011–2016.	43
19.	Upper Johnson Creek BMI data summary, 2011–2016.	46
20.	Lower Sherman Creek SP1 mean chlorophylls a, b, and c density, 2011–2016	47
21.	Lower Sherman Creek SP2 mean chlorophylls a, b, and c density, 2011–2016	
22.	Lower Sherman Creek SP1 BMI data summary, 2011–2016.	49
23.	Lower Sherman Creek SP2 BMI data summary, 2011–2016.	50
24.	Lower Sherman Creek adult salmon count, 2011–2016.	52
	LIST OF FIGURES	
Figure		Рада
Figure		Page
1.	Kensington Gold Mine project area map.	3
1. 2.	Kensington Gold Mine project area map. Slate Creek map.	3 6
1. 2. 3.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1.	3 6 7
1. 2. 3. 4.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek.	3 6 7
1. 2. 3. 4. 5.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek.	3 7 7
1. 2. 3. 4. 5. 6.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek.	3 6 7 7 8
1. 2. 3. 4. 5. 6. 7.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map.	
1. 2. 3. 4. 5. 6.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1 West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek.	
1. 2. 3. 4. 5. 6. 7. 8. 9.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek.	
1. 2. 3. 4. 5. 6. 7. 8. 9.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1 West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map.	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1.	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2.	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016.	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Kensington Gold Mine project area map. Slate Creek map	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016.	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016. Lower Slate Creek man proportion of chlorophylls a, b, and c, 2011–2016. Lower Slate Creek BMI mean density and community composition, 2011–2016. 2016 Lower Slate Creek weekly pink salmon count.	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	Kensington Gold Mine project area map. Slate Creek map	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016. Lower Slate Creek mean proportion of chlorophylls a, b, and c, 2011–2016. Lower Slate Creek BMI mean density and community composition, 2011–2016. 2016 Lower Slate Creek weekly pink salmon count. 2016 Lower Slate Creek weekly pink salmon distribution.	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek map. Lower Johnson Creek map. Lower Johnson Creek sp1. Lower Johnson Creek. Upper Johnson Creek sp1. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016. Lower Slate Creek man proportion of chlorophylls a, b, and c, 2011–2016. Lower Slate Creek BMI mean density and community composition, 2011–2016. 2016 Lower Slate Creek weekly pink salmon count. 2016 Lower Slate Creek sediment metals concentrations.	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Kensington Gold Mine project area map. Slate Creek map	3
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Kensington Gold Mine project area map. Slate Creek map. Lower Slate Creek SP1. West Fork Slate Creek. East Fork Slate Creek. Upper Slate Creek. Johnson Creek map. Lower Johnson Creek. Upper Johnson Creek. Sherman Creek map. Lower Sherman Creek SP1. Lower Sherman Creek SP2. Lower Slate Creek chlorophyll a density, 2011–2016. Lower Slate Creek BMI mean density and community composition, 2011–2016. 2016 Lower Slate Creek weekly pink salmon count. 2016 Lower Slate Creek sediment metals concentrations. Lower Slate Creek sediment metals concentrations, 2011–2016. West Fork Slate Creek chlorophyll a density, 2011–2016.	33

LIST OF FIGURES, CONTINUED

Figure		Page
24.	East Fork Slate Creek mean daily discharges three weeks prior to sampling periphyton, 2011–2016	
25.	East Fork Slate Creek chlorophyll a density, 2011–2016.	
26.	East Fork Slate Creek mean proportion of chlorophylls a, b, and c, 2011–2016	34
27.	East Fork Slate Creek BMI mean density and community composition, 2011–2016	
28.	East Fork Slate Creek Dolly Varden char population, 2011–2016.	
29.	East Fork Slate Creek Dolly Varden char population by habitat type, 2011–2016	36
30.	2016 East Fork Slate Creek sediment metals concentrations.	
31.	East Fork Slate Creek sediment metals concentrations, 2011–2016.	
32.	Upper Slate Creek chlorophyll a density, 2011–2016.	38
33.	Upper Slate Creek mean proportion of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> , 2011–2016.	
34.	Upper Slate Creek BMI mean density and community composition, 2011–2016.	
35.	Upper Slate Creek Dolly Varden char population, 2011–2016.	
36.	Upper Slate Creek Dolly Varden char population by habitat type, 2011–2016	
37.	2016 Upper Slate Creek sediment metals concentrations.	
38.	Upper Slate Creek sediment metals concentrations, 2011–2016.	
39.	2016 Lower Johnson Creek weekly pink salmon count.	
40.	2016 Lower Johnson Creek weekly pink salmon distribution.	
41.	2016 Lower Johnson Creek sediment metals concentrations	
42.	Lower Johnson Creek sediment metals concentrations, 2011–2016.	45
43.	Upper Johnson Creek BMI mean density and community composition, 2011–2016	
44.	Lower Sherman SP1 chlorophyll <i>a</i> density, 2011–2016	
45.	Lower Sherman SP1 mean proportion of chlorophylls a, b, and c, 2011–2016	
46.	Lower Sherman SP2 chlorophyll a density, 2011–2016	
47.	Lower Sherman SP2 mean proportion of chlorophylls <i>a</i> , <i>b</i> , and <i>c</i> , 2011–2016	
48.	Lower Sherman Creek SP1 BMI mean density and community composition, 2011–2016	
49.	Lower Sherman Creek SP2 BMI mean density and community composition, 2011–2016	
50.	2016 Lower Sherman Creek weekly pink salmon count.	
51.	2016 Lower Sherman Creek weekly pink salmon distribution.	
52.	2016 Lower Sherman Creek sediment metals concentrations.	
53.	Lower Sherman Creek sediment metals concentrations, 2011–2016.	54

LIST OF APPENDICES

APPENDIX A: PERIPHYTON DATA

- A.1. Lower Slate Creek chlorophylls a, b, and c density, 2011–2016.
- A.2. West Fork Slate Creek chlorophylls *a*, *b*, and *c* density, 2011–2016.
- A.3. East Fork Slate Creek chlorophylls *a*, *b*, and *c* density, 2011–2016.
- A.4. Upper Slate Creek chlorophylls *a*, *b*, and *c* density, 2011–2016.
- A.5. Lower Sherman Creek SP1 chlorophylls *a*, *b*, and *c* density, 2011–2016.
- A.6. Lower Sherman Creek SP2 chlorophylls a, b, and c density, 2011–2016.

APPDENIX B: BENTHIC MACROINVERTEBRATE DATA

- B.1. Lower Slate Creek benthic macroinvertebrate data summary, 2011–2016.
- B.2. West Fork Slate Creek benthic macroinvertebrate data summary, 2011–2016.
- B.3. East Fork Slate Creek benthic macroinvertebrate data summary, 2011–2016.
- B.4. Upper Slate Creek benthic macroinvertebrate data summary, 2011–2016.
- B.5. Upper Johnson Creek benthic macroinvertebrate data summary, 2011–2016.
- B.6. Lower Sherman Creek SP1 benthic macroinvertebrate data summary, 2011–2016.
- B.7. Lower Sherman Creek SP2 benthic macroinvertebrate data summary, 2011–2016.

APPENDIX C: RESIDENT FISH DATA

- C.1. East Fork Slate Creek Dolly Varden char population, 2011–2016.
- C.2. Upper Slate Creek Dolly Varden char population, 2011–2016.
- C.3. East Fork Slate Creek Dolly Varden char capture data and population by habitat type, 2011–2016.
- C.4. Upper Slate Creek Dolly Varden char capture data and population by habitat type, 2011–2016.
- C.5 Length frequency diagram of Dolly Varden char captured in East Fork Slate Creek, 2011–2012.
- C.6. Length frequency diagram of Dolly Varden char captured in Upper Slate Creek, 2011–2016.
- C.7. Length, weight, and condition data for Dolly Varden char captured in Upper Slate Creek, 2016.
- C.8. Mean Dolly Varden char condition factor by sample reach, 2011–2016.

APPENDIX D: ADULT SALMON DATA

- D.1. 2016 Lower Slate Creek adult pink salmon count by reach.
- D.2. 2016 Lower Slate Creek adult chum salmon count by reach.
- D.3. 2016 Lower Slate Creek adult coho salmon count by reach.
- D.4. 2016 Lower Johnson Creek adult pink salmon count by reach.
- D.5. 2016 Lower Johnson Creek adult chum salmon count by reach.
- $D.6. \quad 2016 \ Lower \ Johnson \ Creek \ adult \ coho \ salmon \ count \ by \ reach.$
- D.7. 2016 Lower Sherman Creek adult pink salmon count by reach.
- D.8. 2016 Lower Sherman Creek adult chum salmon count by reach.
- D.9. Lower Slate Creek adult pink salmon count by statistical week, 2011–2016.
- D.10. Lower Johnson Creek adult pink salmon count by statistical week, 2011–2016.
- D.11. Lower Sherman Creek adult pink salmon count by statistical week, 2011–2016.

APPENDIX E: SPAWNING SUBSTRATE DATA

- E.1. Lower Slate Creek SP1 pink salmon spawning substrate data, 2011–2016.
- E.2. Lower Slate Creek SP2 pink salmon spawning substrate data, 2011–2016.

APPENDIX F: SEDIMENT DATA AND LAB REPORTS

- F.1. Sediment sample compositions, 2011–2016.
- F.2. Sediment sample metals, As, and Se concentrations, 2011–2016.
- F.3. 2016 sediment metals lab report, 1 of 2.
- F.4. 2016 sediment metals lab report, 2 of 2.
- F.5. 2016 sediment toxicity lab report.

ACKNOWLEDGEMENTS

Coeur Alaska, Inc. provided financial support and Kensington Gold Mine environmental staff Kevin Eppers, Pete Strow, Ryan Bailey, Sierra Lammers, and Kelsey Stockert provided logistical support and discharge and water quality data.

Division of Habitat staff Greg Albrecht, Evan Fritz, and Nicole Legere assisted with data collection, Mr. Albrecht processed periphyton samples, and Mr. Albrecht and Katrina Lee identified benthic macroinvertebrates. Matthew Kern of Alder Grove Farms also identified benthic macroinvertebrates. Division of Commercial Fisheries staff Ben Williams and Sara Miller performed the fish population statistical analyses, and Division of Habitat Operations Manager Dr. Al Ott and Southeast Regional Supervisor Jackie Timothy reviewed and edited the report.

Thank you all for your contribution.

EXECUTIVE SUMMARY

The Alaska Department of Fish and Game (ADF&G) Division of Habitat completes the aquatic resource monitoring the U.S. Forest Service (USFS) and Alaska Department of Environmental Conservation (ADEC) require for Coeur Alaska Inc.'s (Coeur) Kensington Gold Mine. This partnership provides ADF&G the opportunity to gather and review data throughout the year, and help identify, assess, and resolve issues at the mine as they arise.

The National Weather Service reports 2016 was one of the warmest years on record for Juneau, and while total precipitation (163 cm) was normal, total snowfall (69 cm) was about 70% below normal (K. Vaughan, Observation Program Leader, National Weather Service, Juneau, personal communication).

Since August 2011, Coeur staff has sampled surface waters monthly in and around the tailings treatment facility (TTF) for ammonia, chlorophyll *a*, nitrate, nitrite, organic carbon, phosphorus, potassium, and sulfur to investigate the cause of algal blooms in the TTF. Sample sites included the TTF, upstream of the TTF at the outlet of Upper Slate Lake, the TTF water treatment plant effluent (Outfall 002), and downstream of Outfall 002 in East Fork Slate Creek. During 2016, phosphorus and chlorophyll *a* concentrations were occasionally detected in the TTF and were generally similar to concentrations observed in 2015. In the Outfall 002 effluent, ammonia, nitrate, potassium, and sulfur concentrations continued to be greater than background Upper Slate Lake concentrations. Organic carbon concentrations were greatest in Upper Slate Lake and nitrite was not detected in any of the samples, as in previous years.

The July 2016 mean periphyton density for each sample site was similar to or greater than previous July mean densities. We also sampled periphyton in Lower Slate Creek and East Fork Slate Creek in April to continue monitoring for changes that may occur from the TTF, and found a similar mean density compared to previous spring sampling results for each site.^c

Mean benthic macroinvertebrate density at each site was similar to previous years, except the mean density for East Fork Slate Creek and Lower Sherman Creek. At East Fork Slate Creek, we observed the lowest mean density and the greatest proportion of sensitive insects since we began sampling in 2011, largely due to fewer pea clams present. At Lower Sherman Creek, the benthic macroinvertebrate communities were again dominated by worms with few sensitive insects present.

Beginning in winter 2013/2014, Coeur staff observed a white substance occasionally present on the Sherman Creek streambed downstream of Outfall 001, which became persistent in fall 2014. We have worked with Coeur and ADEC staffs to investigate the cause and extent of the white substance and sampled benthic macroinvertebrates to document abundance and community composition near Outfall 001. In April 2016, we sampled benthic macroinvertebrates upstream and downstream of Outfall 001 in Middle Sherman Creek and again found fewer organisms and a smaller proportion of sensitive insects among the samples collected downstream of the outfall. With Coeur and ADEC, we will continue to monitor Sherman Creek in 2017. We have not

-

^a Coeur's water quality monitoring station MLA.

b Coeur's water quality monitoring station SLA.

^c Not required.

observed a white substance on the Lower Slate Creek or East Fork Slate Creek stream beds since summer 2014.

The 2016 Upper Slate Creek Dolly Varden char *Salvelinus malma* population was similar to the 2011–2015 populations. For the fourth year in a row we did not capture Dolly Varden char during the East Fork Slate Creek resident fish survey, however, one week following the survey we captured 32 Dolly Varden char in the diversion pipeline plunge pool, about 50 m upstream of the survey reach. Based on our experience, East Fork Slate Creek provides a corridor for downstream fish migration and resident fish population studies do not provide reliable information to assess stream health or determine whether TTF operations impact resident fish populations.

We observed low pink salmon *Oncorhynchus gorbuscha* returns in the lower reaches of Slate, Johnson, and Sherman Creeks in 2016, consistent with parent year low returns in 2014 and region-wide low pink salmon returns in 2016 (M. Sogge, Commercial Fisheries Area Management Biologist, ADF&G, Haines, personal communication). In Lower Slate Creek, we observed the greatest number of chum salmon *O. keta* since we began surveying in 2011, and in Lower Sherman Creek, pink and chum salmon arrived in the system near the end of August, several weeks late. We cannot quantify marine survival factors impacting adult salmon returns, so we are unable to attribute changes in adult salmon abundance to construction and operation of the Kensington Gold Mine. We again recommend the USFS and the Berners Bay working group discontinue the spawning salmon survey requirement.

The geometric mean particle size of pink salmon spawning gravel in Lower Slate Creek has increased by several millimeters at both sample sites since we began sampling in 2011, and the 2016 sampling results were within the range of values observed 2011–2015.

Most metals, arsenic, and selenium concentrations in sediment samples from each of the five sample sites were similar to or less than previous results. The 2016 East Fork Slate Creek sediment sample contained the greatest arsenic concentration observed since sampling began in 2010 and the 2016 Lower Johnson Creek sediment sample contained the greatest silver concentration observed since 2010 (Aquatic Science Inc. 2011). Arsenic, copper, nickel, and zinc concentrations at all sampling sites remain near or above the guidelines for freshwater sediments (Buchman 2008; MacDonald et al. 2000), including the upstream reference site Upper Slate Creek, except in Lower Johnson Creek where nickel and zinc concentrations were below the guidelines in recent years.

Among the five sediment samples we submitted to a private laboratory for 10-day chronic toxicity testing, midge survival on the Lower Sherman Creek sediment sample was significantly ($p \le 0.05$) less than survival on the control sediment. There were no significant differences in amphipod survival or growth on the five test sediments compared to the control.

INTRODUCTION

The Kensington Gold Mine is located near Berners Bay in Southeast Alaska (Figure 1), about 72 km north of Juneau and 56 km south of Haines within the City and Borough of Juneau and the Tongass National Forest (Tetra Tech Inc. et al. 2004a, 2004b). The mine is owned and operated by Coeur Alaska, Inc., a wholly owned subsidiary of Coeur Mining Inc.

Figure 1.-Kensington Gold Mine project area map.

The underground mine began producing gold concentrate for export on June 24, 2010. Tailings are disposed underground as paste backfill and in the TTF as slurry through a pipeline from the mill. Mine infrastructure is located in three drainages that support resident and anadromous fish: the TTF in the Slate Creek drainage; the waste rock pile, camp and mill facilities in the Johnson Creek drainage; and the waste rock pile and mine water treatment facility in the Sherman Creek drainage.

Contractors gathered aquatic data for the Kensington Gold Mine from the late 1980s through 2005, which provided a basis for Division of Habitat permit decisions, Plan of Operations (Coeur 2005) monitoring requirements, the U.S. Environmental Protection Agency National Pollutant Elimination Discharge System Permit No. AK-005057-1 (Timothy and Kanouse 2012, Appendix A), and the ADEC Alaska Pollutant Elimination System (APDES) Permit No.AK0050571 (Timothy and Kanouse 2012, Appendix A). Contractor reports include Aquatic Science Inc. (1998, 1999, 2000, 2001a, 2001b, 2002, 2004), Archipelago Marine Research Ltd. (1991), Dames and Moore (1991), Earthworks Technology, Inc. (2002), EVS Environment Consultants (2000), HDR Alaska, Inc. (2003), Kline (2003) Kline Environmental Research, LLC (2001, 2003, 2005), Konopacky Environmental (1992a, 1992b, 1993a, 1993b, 1993c, 1995, 1996a, 1996b, 1996c, 1996d), Pentec Environmental (1990, 1991), and Steffen Robertson and Kirsten Consulting Engineers and Scientists (1997). Monitoring reports include Aquatic Science Inc. (2006, 2007, 2008, 2009a, 2009b, 2009c, 2009d, 2011), Brewster (2016), Kanouse (2015), and Timothy and Kanouse (2012, 2013, 2014). Results of the TTF environmental monitoring studies completed during project operation are in Willson-Naranjo and Kanouse (2016).

The Division of Habitat has completed the aquatic studies required for the Kensington Gold Mine in Slate, Johnson, and Sherman Creeks since 2011. The APDES Permit requires sampling periphyton, benthic macroinvertebrates (BMI), resident fish, and sediment. We assess stream health using estimates of periphyton density and community composition, BMI density and community composition, sediment metals concentrations, and pink salmon spawning substrate composition. The Division of Habitat also completes the resident Dolly Varden char population and sediment toxicity studies required by the APDES permit, and adult salmon counts required in the project Plan of Operations (Coeur 2005).

PURPOSE

The purpose of this technical report is to summarize the 2016 aquatic study data and document the condition of biological communities and sediments in the Slate, Johnson, and Sherman Creeks near mine development and operations. This report satisfies the aquatic study requirements in the project Plan of Operations (Coeur 2005) and APDES Permit AK0050571.

AQUATIC STUDIES

We completed the Kensington Gold Mine aquatic studies required in the project Plan of Operations (Coeur 2005) and APDES Permit AK0050571 (Table 1).

Table 1.–2016 aquatic studies required by the Plan of Operations and APDES permit.

Location	Description	Aquatic Study	Frequency
Lower Slate	1 km reach between the	Periphyton density and composition	1/year
Creek	stream mouth in Slate	Benthic macroinvertebrate density and composition	1/year
	Cove and a 25 m waterfall.	Adult salmon counts	Seasonally
		Spawning substrate quality	1/year
		Sediment metals concentrations and toxicity	1/year
West Fork Slate	A tributary to Lower Slate	Periphyton density and composition	1/year
Creek	Creek, upstream of a	Benthic macroinvertebrate density and composition	1/year
	waterfall and mine		
	influence.		
East Fork Slate	A tributary to Lower Slate	Periphyton density and composition	1/year
Creek	Creek, 1 km reach	Benthic macroinvertebrate density and composition	1/year
	between the TTF plunge	Resident fish population and condition	1/year
	pool and waterfall at	Sediment metals concentrations and toxicity	1/year
	Lower Slate Creek.		
Upper Slate	A tributary to Upper Slate	Periphyton density and composition	1/year
Creek	Lake and upstream of	Benthic macroinvertebrate density and composition	1/year
	mine influence.	Resident fish population and condition	1/year
		Sediment metals concentrations and toxicity	1/year
Lower Johnson	1.5 km reach between the	Adult salmon counts	Seasonally
Creek	stream mouth in Berners	Sediment metals concentrations and toxicity	1/year
	Bay and a 30 m waterfall.		
Upper Johnson	Upstream of Bridge #2 to	Benthic macroinvertebrate density and composition	1/year
Creek	the headwaters, adjacent to		
	the upper camp and mill		
	bench.		
Lower Sherman	360 m reach between the	Periphyton density and composition	1/year
Creek	stream mouth in Lynn	Benthic macroinvertebrate density and composition	1/year
	Canal and a 15 m	Adult salmon counts	Seasonally
	waterfall.	Sediment metals concentrations and toxicity	1/year

STUDY AREA

Slate Creek Drainage

Slate Creek drains a 10.5 km² watershed into Slate Cove on the northwest side of Berners Bay (Coeur 2005; Figure 2). Two waterfalls about 1 km upstream of the mouth of Lower Slate Creek prevent upstream fish migration to the East and West Forks. West Fork Slate Creek is on river right^d. East Fork Slate Creek is on river left and flows between the TTF dam plunge pool and the waterfall at Lower Slate Creek. Coeur operates the TTF in Lower Slate Lake and discharges TTF water treatment plant effluent (Outfall 002) to East Fork Slate Creek. Upstream of the TTF, a concrete dam diverts water from Upper Slate Lake through a diversion pipeline and into East Fork Slate Creek at the TTF dam plunge pool, bypassing the TTF. Upper Slate Creek is the inlet to Upper Slate Lake.

_

d The terms "river right" and "river left" reference looking downstream.

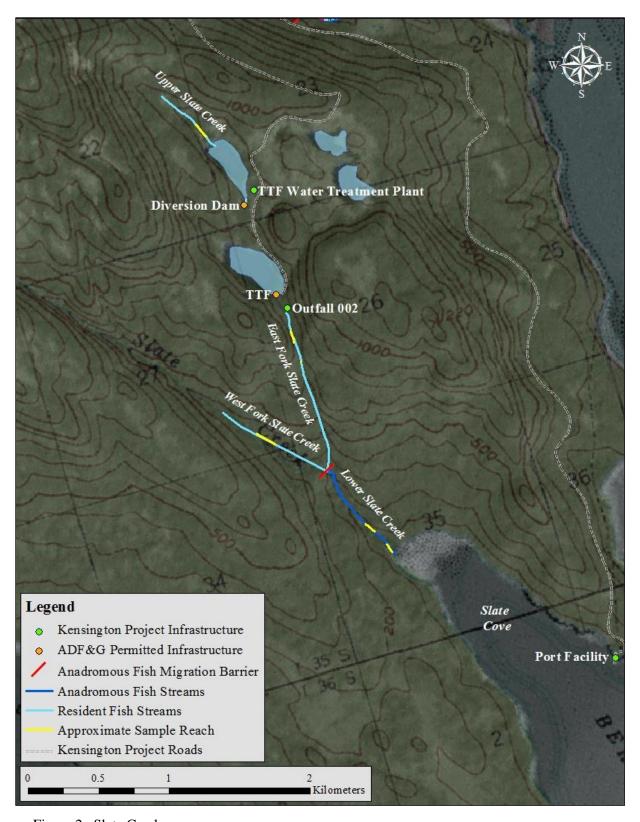


Figure 2.–Slate Creek map.

Lower Slate Creek

Lower Slate Creek provides spawning habitat for chum, coho, and pink salmon, and eulachon *Thaleichthys pacificus*, and rearing habitat for coho salmon (Stream No. 115-20-10030; Johnson and Litchfield 2016). We have also documented juvenile Dolly Varden char and adult cutthroat trout *O. clarkii* in the system (Timothy and Kanouse 2012).

Lower Slate Creek is a mixture of waters from the East and West Forks, Outfall 002, and Upper Slate Lake. We sample periphyton, BMIs, pink salmon spawning substrate, and sediment at Sample Point 1 (SP1; Figure 3), pink salmon spawning substrate again at Sample Point 2 (SP2), and count adult salmon throughout Lower Slate Creek.

Figure 3.-Lower Slate Creek SP1.

West Fork Slate Creek

West Fork Slate Creek (Figure 4) supports Dolly Varden char (Timothy and Kanouse 2014) and is not influenced by the mine. We sample periphyton and BMIs about 600 m upstream of the waterfall at Lower Slate Creek.

Figure 4.–West Fork Slate Creek.

East Fork Slate Creek

East Fork Slate Creek (Figure 5) provides a corridor for Dolly Varden char and threespine stickleback *Gasterosteus cognatus* emigrating from Upper Slate Lake, currently via the diversion pipeline and formerly via Lower Slate Lake. East Fork Slate Creek is a mixture of Outfall 002 and drainage from Upper Slate Lake. We sample periphyton, BMIs, resident fish, and sediments in East Fork Slate Creek within 200 m downstream of the TTF.

Figure 5.-East Fork Slate Creek.

Upper Slate Creek

Upper Slate Creek (Figure 6) supports Dolly Varden char and is not influenced by the mine. We sample periphyton, BMIs, resident fish, and sediments in Upper Slate Creek within 100 m of Upper Slate Lake.

Figure 6.-Upper Slate Creek.

Johnson Creek Drainage

Johnson Creek drains a 14.6 km² watershed to the Lace River on the northwest shore of Berners Bay (Coeur 2005; Figure 7). A waterfall about 1.5 km upstream of the Lower Johnson Creek mouth prevents upstream fish migration. Middle Johnson Creek is the 2.5 km reach between the waterfall and Jualin Road Bridge #2. Upper Johnson Creek is the reach upstream of Jualin Road Bridge #2 to the headwaters.

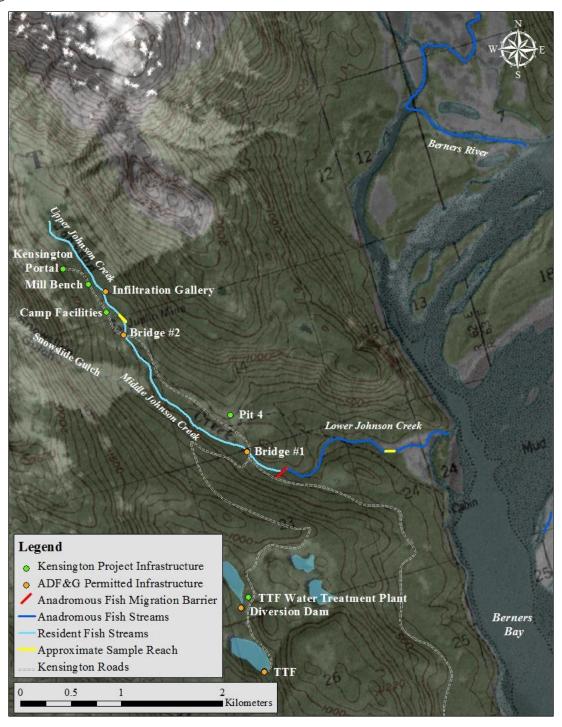


Figure 7.-Johnson Creek map.

Lower Johnson Creek

Lower Johnson Creek provides spawning and rearing habitat for chum, coho, and pink salmon (Stream No. 115-20-10030; Johnson and Litchfield 2016). We have also documented juvenile Dolly Varden char and cutthroat trout (Timothy and Kanouse 2012). Lower Johnson Creek is a mixture of drainages near and from mine infrastructure in Middle^e and Upper Johnson Creeks. We sample sediment about 600 m upstream from the mouth and count adult salmon throughout Lower Johnson Creek (Figure 8).

Figure 8.-Lower Johnson Creek.

Upper Johnson Creek

Upper Johnson Creek supports Dolly Varden char and flows adjacent to the camp facilities, mill bench, Kensington and Jualin adits, and waste rock pile. An infiltration gallery collects water from Upper Johnson Creek near the mill bench to support the camp. We sample BMIs about 50 m upstream of Bridge #2 (Figure 9).

Figure 9.-Upper Johnson Creek.

.

^e Mine facilities include the domestic wastewater treatment plant, warehouse, reclamation material and acid generating rock storage piles, bridges, and Pit 4; drainages include Snowslide Gulch, the domestic wastewater outfall, and storm water discharges; aquatic studies are not required in Middle Johnson Creek.

Sherman Creek Drainage

Sherman Creek drains a 10.84 km² watershed to the east shore of Lynn Canal (Coeur 2005; Figure 10). A waterfall about 360 m upstream from the Lower Sherman Creek mouth prevents upstream fish migration. Middle Sherman Creek is the 2 km reach between the waterfall and the Comet Beach road bridge. Upper Sherman Creek is the reach upstream of the bridge to the headwaters.

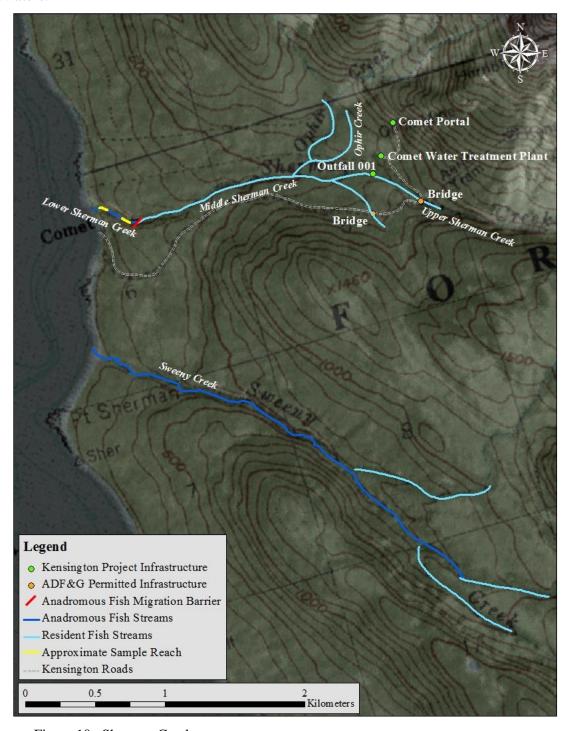


Figure 10.-Sherman Creek map.

Lower Sherman Creek

Lower Sherman Creek provides spawning habitat for chum and pink salmon (Stream No.115-31-10330; Johnson and Litchfield 2016). We have also documented juvenile Dolly Varden char in the system (Timothy and Kanouse 2012). Lower Sherman Creek is a mixture of drainages near and from mine infrastructure in Middle Sherman Creek and its tributaries. We sample periphyton and BMIs at Sample Points 1 and 2 (SP1, SP2), sediment at SP1, and count adult salmon throughout Lower Sherman Creek (Figures 11, 12).

Figure 11.-Lower Sherman Creek SP1.

Figure 12.-Lower Sherman Creek SP2.

Table 2 presents the coordinates for each sample site, and Tables 3–5 present the coordinates for adult salmon count reach markers in Lower Slate Creek, Lower Johnson Creek, and Lower Sherman Creek.

Mine facilities include the Comet water treatment plant, waste rock pile, bridges and culverts; drainages include Ivanhoe Creek, Ophir Creek, South Fork Sherman Creek, and Comet water treatment plant Outfall 001; aquatic studies are not required in Middle or Upper Sherman Creeks.

Table 2.–2016 aquatic study sample sites.

Location	Sample Site	Latitude	Longitude
Lower Slate Creek	Periphyton and Benthic Macroinvertebrates	58.7905	-135.0345
	Adult Salmon Counts	Table 3	
	Spawning Substrate		
	Sample Point 1	58.7905	-135.0345
	Sample Point 2	58.7920	-135.0360
	Sediment Metals and Toxicity	58.7905	-135.0345
West Fork Slate Creek	Periphyton and Benthic Macroinvertebrates	58.7993	-135.0457
East Fork Slate Creek	Periphyton and Benthic Macroinvertebrates	58.8045	-135.0381
	Resident Fish (center of 90 m reach)	58.8042	-135.0382
	Sediment Metals and Toxicity	58.8053	-135.0383
Upper Slate Creek	Periphyton and Benthic Macroinvertebrates	58.8189	-135.0415
	Resident Fish (center 90 m of reach)	58.8196	-135.0418
	Sediment Metals and Toxicity	58.8189	-135.0416
Lower Johnson Creek	Adult Salmon Counts	Table 4	
	Sediment Metals and Toxicity	58.8235	-135.0024
Upper Johnson Creek	Benthic Macroinvertebrates	58.8407	-135.0450
Lower Sherman Creek	Periphyton and Benthic Macroinvertebrates		
	Sample Point 1	58.8687	-135.1413
	Sample Point 2	58.8674	-135.1381
	Adult Salmon Counts	Table 5	
	Sediment Metals and Toxicity	58.8687	-135.1413

Note: WGS84 datum.

Table 3.–Lower Slate Creek adult salmon count reach markers.

Location	Latitude	Longitude
100 m	58.7884	-135.0324
200 m	58.7893	-135.0337
300 m	58.7905	-135.0349
400 m	58.7915	-135.0359
500 m	58.7922	-135.0361
600 m	58.7930	-135.0368
700 m	58.7936	-135.0379
800 m	58.7944	-135.0384
900 m	58.7953	-135.0385
Falls	58.7964	-135.0389

Table 4.–Lower Johnson Creek adult salmon count reach markers.

-		
Location	Latitude	Longitude
Lace	58.8215	-135.0010
Mouth	58.8236	-134.9987
Trap	58.8235	-135.0007
#4	58.8236	-135.0039
#7	58.8243	-135.0072
#10	58.8254	-135.0109
Power House	58.8259	-135.0148
Log Falls	58.8258	-135.0168
#15	58.8252	-135.0190
Falls	58.8243	-135.0201

Table 5.—Lower Sherman Creek adult salmon count reach markers.

Location	Latitude	Longitude
50 m	58.8687	-135.1416
100 m	58.8687	-134.1408
150 m	58.8684	-135.1401
200 m	58.8682	-135.1394
250 m	58.8679	-135.1388
300 m	58.8675	-135.1383
350 m	58.8673	-135.1374
Falls	58.8671	-135.1367

MONITORING SCHEDULE

Table 6 presents the dates we collected data in 2016, by site.

Table 6.–2016 aquatic studies sampling schedule.

Aquatic Study	Lower Slate	West Fork Slate	East Fork Slate	Upper Slate	Lower Johnson	Upper Johnson	Lower Sherman	Middle Sherman
Periphyton	4/26		4/25					
	7/26	7/26	7/25	7/25			7/25	
Benthic Macroinvertebrates	4/26	4/26	4/25	4/25		4/27	4/27	4/27
Resident Fish			8/8	8/10				
Adult Salmon Counts	7/19–				7/18-		7/19–	
	10/26				10/26		8/29	
Spawning Substrate	7/5							
Sediment Metals	7/5		7/6	7/6	8/8		7/6	
Sediment Toxicity	7/5		7/6	7/6	8/8		7/6	

Note: Cells highlighted in gray indicate the sampling was not required by the APDES permit or Plan of Operations.

METHODS

We annually review data sets to ensure accuracy and consistency with methods modifications, and report corrections and updates in the document and appendices. The most recent technical report presents the current data sets and should be used to analyze data from previous years. In this report, we

- corrected two errors in the 2014 periphyton data set and included three 2011 chlorophyll *a* values previously not reported;
- excluded Dolly Varden char measuring less than 40 mm FL from the Upper Slate Creek and East Fork Slate Creek mean fish condition calculations, and updated the 2011–2015 data sets:
- discontinued using the 2.5 peak count multiplier for Lower Johnson Creek adult pink and chum salmon aerial counts and updated the 2011–2015 data; and
- corrected calculation errors and updated the 2011–2015 Lower Slate Creek spawning substrate data.

PERIPHYTON DENSITY AND COMMUNITY COMPOSITION

Requirement APDES 1.5.3.5.2

Periphyton is composed of primary producing organisms such as algae, cyanobacteria, and heterotrophic microbes, and detritus, attached to the submerged surfaces of aquatic ecosystems. Algal density and community structure are influenced by water and sediment quality through physical, chemical, and biological disturbances that change throughout the year (Barbour et al. 1999). The concentration of chlorophyll a pigment in periphyton samples provides an estimate of active algal biomass (density), while concentrations of chlorophylls b and c estimate the composition of algal organisms present, such as green algae that produce chlorophyll b, and diatoms and brown algae that produce chlorophyll c.

The APDES permit requires monitoring periphyton density and community composition in Lower Slate Creek, East Fork Slate Creek, and Lower Sherman Creek annually between late-June and early-August and not within three weeks following peak discharge to detect changes over time. The APDES permit also requires monitoring periphyton biomass and community composition at reference sites in West Fork Slate Creek and Upper Slate Creek at the same time to detect variations due to natural factors, such as mineral seeps, climate, and stream flow.

Sample Collection and Analysis

We collected 10 smooth, flat, undisturbed, and perennially wetted rocks from submerged cobbles in riffle habitats in less than 0.45 m water depth at each sample site. We placed a 5×5 cm square of high-density foam on each rock and scrubbed the area around the foam with a toothbrush to remove algae and other organisms outside the covered area, then rinsed the rock by dipping it in the stream while holding the foam in place.

We removed the foam square and scrubbed the sample area with a rinsed toothbrush over a $1 \mu m$, 47 mm glass fiber filter attached to a vacuum pump. We used stream water in a wash bottle to rinse the loosened periphyton from the rock, the toothbrush, and the inside of the vacuum pump onto the filter. We pumped most of the water through the filter and added a few

drops^g of saturated magnesium carbonate (MgCO₃) solution to the filter to prevent acidification and conversion of chlorophyll to phaeophytin, before we pumped the sample dry. We removed the glass fiber filter, folded it in half with the sample on the inside, and wrapped it in a white coffee filter to absorb additional water. We placed the samples in a sealed, labeled plastic bag with desiccant and stored the samples in a light-proof cooler containing frozen icepacks during transportation, in a camp freezer while onsite, and in a -20° C freezer until we processed them in an ADF&G laboratory.

We followed U.S. Environmental Protection Agency (1997) protocol for chlorophyll extraction and measurement, determining instrument and estimated detection limits, and data analysis. We removed the samples from the freezer, cut them into small pieces, and placed the filter pieces for each sample into individual centrifuge tubes containing 10 mL of 90% buffered acetone. We capped the centrifuge tubes, placed them in a rack, covered them with aluminum foil, and stored them in a refrigerator for less than 24 h to extract the chlorophyll. We centrifuged the samples for 20 min at 1,600 rpm and read them on a Shimadzu UV-1800 Spectrophotometer at optical densities (OD) 664 nm, OD 647 nm, and OD 630 nm, and used an acetone blank to correct for the solvent. We also read the samples at OD 750 nm to correct for turbidity. We treated each sample with 80 μ L of 0.1 N hydrochloric acid to convert the chlorophyll to phaeophytin, and read each sample again at OD 665 nm and OD 750 nm.

We used trichromatic equations to estimate chlorophylls a, b, and c concentration, and corrected chlorophyll a concentration when phaeophytin was detected. If chlorophyll a was not detected in a sample, we report the concentration at the estimated detection limit and do not report values for chlorophylls b or c. The 2016 chlorophyll a concentration estimated detection limit was 0.19 mg/m².

Data Presentation

For each site and by year, we present a table of mean chlorophylls a, b, and c density, illustrate mean chlorophyll a density and mean proportion of chlorophylls a, b, and c in figures, and provide the 2011–2016 data in Appendix A.

BENTHIC MACROINVERTEBRATE DENSITY AND COMMUNITY COMPOSITION Requirement APDES 1.5.3.2

BMIs classified in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT taxa, have complex and short life cycles and many genera are sensitive to changes in water and sediment quality (Barbour et al. 1999). These organisms are secondary producers, feed on periphyton and other macroinvertebrates, and provide an important food source for fish.

This measurement is not exact as the amount of water used to saturate the magnesium carbonate solution is not exact and fixes the sample regardless of the concentration and without affecting sample integrity.

Except we store the samples longer than 3.5 weeks and we cut the sample filters, rather than homogenize them, to reduce risk of acetone exposure.

The APDES permit requires monitoring BMI density and community composition in Lower Slate Creek, East Fork Slate Creek, Upper Johnson Creek, and Lower Sherman Creek annually between late-March and late-May after spring breakup and before peak snowmelt to detect changes over time. The APDES permit also requires monitoring at reference sites in West Fork Slate Creek and Upper Slate Creek at the same time to detect variations due to natural factors.

Sample Collection and Analysis

We opportunistically sampled BMIs using a Surber stream bottom sampler in riffle and run habitats with cobble substrate measuring less than 20 cm along the longest axis, and varying flow velocities (Barbour et al. 1999), collecting six samples at each site. Sampling only riffles and runs, habitats that support greater BMI densities and number of taxa, reduces variability in the data.

The Surber stream bottom sampler has a 0.093 m² sample area and a 0.3 mm mesh net and cod end. After securing the frame on the substrate, we scrubbed rocks within the sample area with a brush and disturbed gravels, sand, and silt to about 10 cm depth to dislodge macroinvertebrates into the net. We rinsed the net in the stream to ensure all organisms floated into the cod end of the Surber sampler, transferred each sample from the cod end to labeled 500 mL plastic bottles, and preserved the samples in 95% ethanol at a ratio of three parts ethanol to one part sample.

Biologists used an elutriator system and 0.5 mm and 0.3 mm sieves to sort macroinvertebrates from debris, i,j and identified organisms to the lowest practical taxonomic level using Merritt and Cummins (1996) and Stewart and Oswood (2006). Habitat Biologist Greg Albrecht provided quality assurance and control by verifying macroinvertebrate identification of five samples.

We calculated benthic macroinvertebrate density (per m²) for each sample by dividing the number of macroinvertebrates by 0.093 m², the Surber sampling area. We estimated mean BMI density for each site by calculating the mean density among the six samples. We report taxa richness as the number of taxonomic groups identified to the lowest practical level, and exclude terrestrial¹ organisms from all calculations.

Shannon Diversity (H) and Evenness (E) Indices provide measures of taxonomic diversity and abundance equality. We calculate these indices using the following equations given in Magurran (1988):

$$H = -\sum_{i=1}^{S} (P_i \log_{10} P_i)$$

_

¹ Gordon Willson-Naranjo and Greg Albrecht, Habitat Biologists, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Benthic macroinvertebrate elutriation trials amendment; dated 12/17/2013.

Katrina Lee, Administrative Assistant, to Jackie Timothy, Southeast Regional Supervisor, ADF&G Habitat Division. Memorandum: Benthic macroinvertebrate sample enumeration procedures; dated 6/28/2016.

^k Insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera to genus, except nonbiting midges to family Chironomidae, and all others to class or order.

Including adult terrestrial insects of the orders Ephemeroptera, Plecoptera, Trichoptera, and Diptera.

and

$$E = \frac{H}{\log_{10} S},$$

where P_i is the number of macroinvertebrates per taxonomic group divided by the total number of macroinvertebrates in the sample, and S is the number of taxonomic groups in the sample.^m A single taxa macroinvertebrate community has an H value of 0, which increases with the number of taxa (richness) and abundance equality (evenness). The Evenness calculation normalizes the H value to a number between 0 and 1, with an E value of 1 indicating all taxa are equally abundant.

Data Presentation

For each site and by year, we present a table summarizing mean BMI density, total taxa, total EPT taxa, percent EPT, and mean Shannon Diversity and Evenness scores, illustrate mean density in a figure, and provide the 2011–2016 data summary in Appendix B.

RESIDENT FISH POPULATION

Requirement APDES 1.5.3.3

The APDES Permit requires estimating resident fish populations by species and habitat types in 360 m reaches in East Fork Slate Creek and Upper Slate Creek so that comparisons can be made between years within each reach, and estimating the variability of the data, including minimum detectable differences between years and the precision of the 95% CI.

Sample Collection and Analysis

In 2011, habitat biologists surveyed East Fork Slate Creek and Upper Slate Creek habitats in about the same 360 m reaches surveyed by Aquatic Science Inc. (2011) using the habitat types described in Bisson et al. (1982). Based on the results of the surveys, we selected a 90 m sampling reach in each creek representative of the habitat types present. Though Bisson et al. (1982) subdivides three main habitat types for precision to detect environmental change, following Aquatic Science Inc. (2011) we counted only the three main habitat types: riffles (steepest bed slopes, shallowest water depths, and a poorly defined thalweg); pools (deepest areas where water surface slope is near zero); and glides (immediately downstream of pools with negative bed slope and positive water surface slope). The East Fork Slate Creek and Upper Slate Creek sample sites are moderate gradient, narrow, shallow, and contained, with East Fork Slate Creek dominated by bedrock, cobble, and boulder substrate. Channels of this type are stable and habitat features are unlikely to change.

We sampled resident fish populations using a modificationⁿ of a depletion method described by Bryant (2000). We isolated sample reaches using 3.17 mm mesh nets and secured them to the stream bottom and stream banks with rocks. We saturated the 90 m reaches with 6.35 mm and 3.17 mm soft and wire mesh minnow traps baited with disinfected salmon eggs contained in punctured plastic bags, following methods described in Magnus et al. (2006).

^m Assuming all taxonomic groups are represented.

ⁿ We sampled shorter reaches, used more minnow traps, and completed three passes instead of four.

Beginning at the downstream end of each reach, we opportunistically set baited minnow traps in all habitat types where water depth and flow allowed. We recorded the habitat type in which each trap was set, and moved away from the sampling reach so fish were not disturbed while the traps soaked for 1.5 h. We retrieved each trap and recorded fish captured by habitat type, then retained fish in an aerated bucket for processing. We removed the used bait bag, then rebaited and reset each trap in the same place as quickly as possible. We let the traps soak another 1.5 h, and completed the sequence a third time.

We anesthetized fish in an aerated bucket using 9 mg/L AQUI-S 20E (10% eugenol), measured and recorded FL to the nearest 1 mm, weight to the nearest 0.1 g, and species (Pollard et al. 1997). Prior to weighing each fish, we tared the scale and emptied the measuring tray to minimize water weight. We retained fish in a perforated plastic bucket secured in the creek downstream of the sample reach during the study, and returned all fish to the stream upon study completion.

We collected the data while meeting assumptions of closure and of equal probability of capture (Lockwood and Schneider 2000) during the three passes by ensuring the following:

- Fish emigration and immigration during the sampling period was negligible.
 - o We isolated sample reaches using fine mesh nets having a cork and lead line.
 - We secured the net to the streambed with rocks along the lead line.
- All fish were equally vulnerable to capture during a pass.
 - We set baited minnow traps in all habitat types where water depth and flow allowed.
- Fish did not become more wary of capture with each pass.
 - We maintained trap numbers and placement during all three passes.
 - We limited the instream field crew to two biologists.
 - We completed all three capture events as quickly possible.
 - o To avoid disturbing fish, we moved away from sampling reaches while the traps soaked 1.5 h during all three passes.
- Collection effort and conditions which affect collection efficiency remained constant.
 - We retrieved traps beginning at the downstream end of each reach.
 - We moved upstream setting, retrieving and replacing traps as quickly as possible.
 - We timed each pass exactly 1.5 h.
 - o For the second and third passes, we removed the used bait bag, inserted a new bait bag, and reset each trap in the same location.

We estimated fish populations using the multiple-pass depletion method developed by Lockwood and Schneider (2000), based on methods developed by Carle and Strub (1978). The repetitive method produces a maximum likelihood estimate (MLE) of fish with a 95% CI.

Let X represent an intermediate sum statistic where the total number of passes, k, is reduced by the pass number, i, and multiplied by the number of fish caught in the pass, C_i , for each pass:

$$X = \sum_{i=1}^{k} (k-i)C_i$$

Let T represent the total number of fish captured in the minnow traps, all passes. Let n represent the predicted population of fish, using T as the initial value tested. Using X, we calculated the MLE, N, by repeated estimations of n. The MLE is the smallest integer value of n greater than or equal to T which satisfies the following:

$$\left[\frac{n+1}{n-T+1}\right] \prod_{i=1}^{k} \left[\frac{kn-X-T+1+(k-i)}{kn-X+2+(k-i)}\right]_{i} \le 1.000$$

The probability of capture, p, is given by the total number of fish captured, divided by an equation where the number of passes is multiplied by the MLE and subtracted by the intermediate statistic, X,

$$p = \frac{T}{kN - X}$$

The variance of N, a measure of variability from the mean, is given by:

Variance of
$$N = \frac{N(N-T)T}{T^2 - N(N-T)\left[\frac{(kp)^2}{(1-p)}\right]}$$

We determined the SE of N by calculating the square root of the variance of N, and the 95% CI for the MLE using ± 2 (SE). Because we sample a 90 m reach, we multiplied the MLE and 95% CI by four to extrapolate the data to a 360 m sample reach. The size of the 95% CI depends on the number of captures each pass; a small 95% CI results when fewer captures steadily occur with each pass, and a large 95% CI results when captures do not steadily decrease and when the number of fish captured on the second or third pass exceeds the number of fish captured on the previous pass. A MLE cannot be generated from samples from small populations if few fish were captured (e.g. \leq 20) during the three passes; in these cases, we present the number of fish captured as the result and do not include a MLE. We determined the precision of the estimate by expressing the 95% CI as a percentage of the MLE.

Calculating a MLE using three-pass depletion data relies on equal capture probability among passes (Bryant 2000; Carle and Strub 1978; Lockwood and Schneider 2000). To evaluate equal capture probability, we used the goodness of fit test (White et al. 1982) recommended by Lockwood and Schneider (2000), which follows the χ^2 test form. We first calculated expected numbers of fish captured for each pass (C_1 , C_2 , C_3) using variables previously described:

$$E(C_1) = N(1-p)^{i-1}p$$

Then we calculated χ^2 ,

 $\chi^2 = \frac{[C_1 - E(C_1)]^2}{E(C_1)} + \frac{[C_2 - E(C_2)]^2}{E(C_2)} + \frac{[C_3 - E(C_3)]^2}{E(C_3)}$

Lockwood and Schneider (2000) suggest the result should be rounded to one decimal place (1.0). We use three decimal places (1.000) which is an option in Carle and Strub (1978).

We compare the χ^2 test result against $\chi^2_{0.95}$ with one degree of freedom (Lockwood and Schneider (2000), and if the χ^2 value is lower, the goodness of fit test suggests we achieved equal capture probability; if not, the MLE will be biased low.

We used Monte-Carlo simulations to assess the power of the three-pass depletion studies to detect changes in abundance of small (N < 200) fish populations. We simulated sampling according to the three-pass depletion design on each year's population of fish where the abundance of fish differs by varying degrees, and estimated the abundance of each population using the techniques described in Lockwood and Schneider (2000). We used a Student's *t*-test with two degrees of freedom to test the null hypothesis that both estimates come from populations of equal size, with one degree of freedom associated with each estimate. We evaluated significance at $\alpha = 0.05$. To assess power we conducted 10,000 simulations of two three-pass depletion experiments, sampling from two populations using parameters *N* and *p* calculated as described above for the two populations of interest. Values of *N* and variance of *N* are calculated for each set of simulated sampling data and a *t*-test was performed. We estimate power as the proportion of simulations where the null hypothesis was rejected (Timothy and Kanouse 2014).

Data Presentation

For each site and by year, we illustrate resident fish population by 360 m reach and by habitat type in figures, and we include the fish capture data, population by reach and by habitat type, statistical analyses results, and length frequency diagram of captured fish 2011–2016 in Appendix C.

RESIDENT FISH CONDITION

Requirement APDES 1.5.3.3

Age, sex, season, maturation, diet, gut contents, fat reserve, and muscular development affect fish condition. The APDES permit requires comparing fish condition by reach and by year in East Fork Slate Creek and Upper Slate Creek.

Sample Collection and Analysis

We used the FL and weight data of Dolly Varden char captured during the resident fish population studies, excluding fish measuring less than 40 mm FL.^p We calculated Fulton's condition factor (K) for each fish using the equation given in Anderson and Neumann (1996), where the fish weight (W) is divided by the cubed length (L), and the product multiplied by 100,000:

$$K = \frac{W}{L^3} \times 100,000$$

Data Presentation

For each site, we present mean Dolly Varden char condition and provide the 2016 data and the 2011–2016 mean fish condition data in Appendix C.

We reviewed the 2011–2015 data set and determined Dolly Varden char less than 40 mm FL usually have flawed weight measurements, which may be due to excess water present during measurement.

ADULT SALMON COUNTS

Requirement Plan of Operations

The Plan of Operations (Coeur 2005) requires weekly surveys of adult chum, coho, and pink salmon in Lower Slate Creek, Lower Johnson Creek, and Lower Sherman Creek throughout the spawning season.

Sample Collection

We surveyed Slate Creek, Johnson Creek, and Sherman Creek downstream of fish migration barriers once per week between mid-July and late-August and counted the number of live adult pink salmon, chum salmon, and carcasses. We surveyed Slate and Sherman Creeks by foot, Johnson Creek by helicopter, and verified three aerial survey counts with foot counts. We also surveyed Slate and Johnson Creeks once per week from late-September through October to count the number of live adult coho salmon and carcasses. To improve coho salmon observations, we snorkeled and recorded underwater videos with a GoPro in large pools and around large woody debris, habitats where adult coho salmon tend to occur.

We began each survey at the stream mouth, moving upstream by section and ending at the fish migration barrier. Slate Creek is sectioned in 100 m reaches, Johnson Creek by landmarks, and Sherman Creek in 50 m reaches. A team of two biologists independently recorded the number of live fish and carcasses by species in each section during the foot and aerial surveys, using polarized glasses as necessary to improve visibility. We also recorded weather and flow conditions during each survey.

We used the average of the two biologists' counts to estimate the total number of fish by species for each reach and survey, and rounded down all intermediate numbers to whole numbers in the calculations.^q Comparing the 2016 Lower Johnson Creek aerial and foot count data, our mean underestimation of pink salmon counted was a factor of 2.4.^r

Data Presentation

For each site, we present figures of the weekly adult pink salmon count and by distribution, and provide the 2011–2016 count by species in a table. The 2016 data and pink salmon count by statistical week 2011–2016 are in Appendix D.

SPAWNING SUBSTRATE COMPOSITION

Requirement APDES 1.5.3.5.1

The APDES permit requires annually sampling pink salmon spawning substrate during early-July at Lower Slate Creek SP1 and SP2 to detect change in composition over time. We calculate the geometric mean particle size, an index of substrate textural composition, for each sample and among samples collected at each site each year.

_

^q We no longer multiply the Lower Johnson Creek mean weekly aerial counts for each reach by a factor of 2.5 to account for adult salmon not seen, and we updated the 2011–2015 data reflecting this change.

Previous mean aerial underestimation factors were 3.1 (2011), 1.8 (2012), 2.1 (2013), 1.5 (2014), and 2.0 (2015). Pilot skill, visibility, and weather affect count accuracy and observer confidence decreases with faster helicopter speed and downstream orientation.

Sample Collection

We collected four sediment samples at two locations in Lower Slate Creek using a McNeil sampler, which has a 15 cm basal core diameter and 25 cm core depth. We selected sample sites with substrate measuring less than 10 cm, the maximum gravel size used by pink salmon (Lotspeich and Everest 1981; Kondolf and Wolman 1993), and where the stream gradient was less than 3% (Valentine, B. E. 2001. Unpublished. Stream substrate quality for salmonids: Guidelines for Sampling, Processing, and Analysis. California Department of Forestry and Fire Protection, Coast Cascade Regional Office, Santa Rosa, CA). We pushed the McNeil sampler into the substrate until the sample core was buried, then transferred the sediments to a bucket. We wet-sieved samples onsite using sieve sizes 101.6, 50.8, 25.4, 12.7, 6.35, 1.68, 0.42, and 0.15 mm and measured the contents of each sieve to the nearest 25 mL by the volume of water displaced in 600 mL and 1 L plastic beakers. We transferred the fines that passed through the 0.15 mm sieve to Imhoff cones, allowed 10 min settling time, and measured the sediment volume to the nearest 1 mL using the Imhoff cone gradations.

For the fines that pass through the 0.15 mm sieve, we converted sediment wet weights to dry weights using standards identified by Zollinger (1981). For all other sediments, we converted wet weights to dry weights using a correction factor derived from Shirazi et al. (1979), assuming a gravel density of 2.6 g/cm³ (Aquatic Science Inc. 2011). We calculated the geometric mean particle size (d_g) using methods developed by Lotspeich and Everest (1981), where the midpoint diameter of particles retained in each sieve (d) are raised to a power equal to the decimal fraction of volume retained by that sieve (w), and multiplied the products of each sieve size to obtain the final product,

$$d_g = d_1^{w1} \times d_2^{w2} \times d_3^{w3} \dots d_n^{wn}$$

Data Presentation

For each site and by year, we present a table of the geometric mean particle size and include the 2011–2016 data in Appendix E.

SEDIMENT METALS CONCENTRATIONS

Requirement APDES 1.5.2

Sediment metals concentrations are influenced by a variety of factors, such as geochemical composition and weathering within the watershed, sediment grain size, organic content, and development (Tchounwou et al. 2012) and heavy metals in sediments can decrease BMI taxa richness and change the composition of BMI communities (Qu et al. 2010).

The APDES permit requires annually sampling fine sediments in Lower Slate Creek, East Fork Slate Creek, Upper Slate Creek, Lower Johnson Creek, and Lower Sherman Creek for particle size, total solids, total volatile solids, total sulfide, total organic carbon, and total concentrations of silver (Ag), aluminum (Al), arsenic (As) cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn).

^s Except we measure the contents of the 0.15 mm sieve to the nearest 1 mL using an Imhoff cone.

Sample Collection and Analysis

Wearing latex gloves, we opportunistically collected sand and silt at each site within actively flowing channels and retained the top 4 cm of sediment in three glass jars provided by the laboratory. We stored the samples in a cooler with frozen icepacks during transport and in a Juneau ADF&G laboratory fridge until we shipped them to the ALS Environmental laboratory in Kelso, Washington for analyses.

We shipped the samples in a cooler with frozen icepacks via overnight air freight, and maintained written chain of custody documentation. ALS Environmental measured particle size, total solids, total volatile solids, total sulfide, total organic carbon, and total concentrations of Ag, Al, As, Cd, Cu, Fe, Hg, Pb, Se, and Zn on a dry-weight basis using the methods listed in Table 7. The laboratory provided Tier II quality assurance and quality control information, including results for matrix spikes, sample blanks, and sample duplicates.

Table 7.–Sediment tests, analytes, and methods.

Test Description	Analyte	Method
Standard test method for particle-size analysis of soils	Particle size determination	ASTM D422
Puget Sound Estuary Program sediment total organic carbon	Total organic carbon	PSEP TOC
Total solids on liquids, modified for solids	Total solids	160.3 Modified
Puget Sound Estuary Program sediment sulfide	Total sulfide	PSEP Sulfide
Total volatile solids, modified for solids	Total volatile solids	160.4 Modified
Mercury in solid or semisolid waste	Hg	7471B
Determination of trace elements in waters and wastes by ICP/MS	Ag, Al, As, Cd, Cr, Cu, Ni, Pb, Se, Zn	200.8

Data Presentation

For each site, we present the 2016 concentration data in a figure and illustrate the 2011–2016 data by analyte in a figure. We compare the data with the Screening Quick Reference Tables (SQuiRTs) for inorganics in freshwater sediment guidelines developed by the National Oceanic and Atmospheric Administration (NOAA; Buchman 2008; MacDonald et al. 2000), specifically the threshold effects concentrations (TEC) and the probable effects concentrations (PEC). The guidelines are based on results of controlled laboratory bioassays, wherein metals concentrations below the TEC rarely affect aquatic life survival and growth, and metals concentrations above the PEC can affect aquatic life survival and growth. We provide the 2011–2016 sediment data by site and by year and include the 2016 laboratory reports in Appendix F.

In 2015, we discontinued sieving sediments during collection to avoid washing contaminants from the sample.

Despite our effort to schedule field work and shipping as close as possible, ALS Environmental received all sediment samples past the 7-day hold time limit for total volatile solids and total sulfide, as in previous years.

The Al spike recovery exceeded the control criteria on the 2016 Lower Slate Creek sediment sample because the analyte concentration was significantly greater than the added spike concentration, which frequently occurs for matrix spikes on Kensington Gold Mine stream sediment samples due to natural Al concentrations in systems near the project.

SEDIMENT TOXICITY

Requirement APDES 1.5.2.3

The APDES permit requires laboratory toxicity testing of Lower Slate Creek, East Fork Slate Creek, Upper Slate Creek, Lower Johnson Creek, and Lower Sherman Creek sediments using the amphipod Hyalella azteca and midge Chironomus dilutus following method EPA/600/R-94/024.

Sample Collection and Analysis

Wearing latex gloves, we opportunistically collected sand and silt within actively flowing channels at each site and retained the top 4 cm of sediment in three glass jars provided by the laboratory. Between sites, we rinsed our sampling equipment in stream water. We stored the samples in a cooler with frozen icepacks during transport and in a Juneau ADF&G laboratory fridge until we shipped them to the CH2M Hill Applied Sciences Laboratory in Corvallis, OR for analyses.

We shipped the samples in a cooler with frozen icepacks via overnight air freight, and maintained written chain of custody documentation. Laboratory staff recommended, and followed, the updated bioassay method EPA/600/R-99/064 with the organisms H. azteca and C. tentans (B. Muckey, Bioassay Laboratory Manager, CH2M Hill Applied Sciences Laboratory, Corvallis, personal communication). For the control sediment, laboratory staff collected sediment from Beaver Creek, upstream of Yaquina Bay near Newport, OR, and press sieved the sediment to remove organisms prior to initiating the experiments.

Data Presentation

For each site, we present the 2016 organism survival and growth results. We provide the 2016

laboratory report in Appendix F.

CH2M Hill Applied Sciences Laboratory of Corvallis, OR, has performed the 10-day chronic sediment bioassays since 2014; AECOM Environmental Toxicology Laboratory of Fort Collins, CO, performed the bioassays 2011-

Though we shipped the 2016 coolers via FedEx overnight priority delivery, the cooler containing Johnson Creek sediments arrived at the laboratory one day late and the temperature inside the cooler was outside the holding range recommended in the toxicity test method, as in previous years. Since the holding temperature range is a recommendation and not a requirement, we agreed with the laboratory's recommendation to proceed with testing (M. Stanaway, Laboratory Project Manager, CH2M Hill Applied Sciences Laboratory, Corvallis, OR, personal communication).

RESULTS

SLATE CREEK

Lower Slate Creek

Periphyton Density and Composition

The 2016 Lower Slate Creek mean chlorophyll a density was 5.26 mg/m², within the range observed since 2011 (Table 8). Figure 13 presents the minimum, mean, and maximum chlorophyll a density from samples collected each year, and Figure 14 presents the mean proportion of chlorophylls a, b, and c each year.

Table 8.–Lower Slate Creek mean chlorophylls *a*, *b*, and *c* density, 2011–2016.

	7/29/2011	7/25/2012	7/31/2013	7/30/2014	7/28/2015	7/26/2016
Chlorophyll a (mg/m²)	5.15	2.31	12.59	4.00	2.16	5.26
Chlorophyll b (mg/m²)	0.43	0.05	0.00	0.85	0.10	0.21
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.26	0.18	1.64	0.30	0.21	0.62

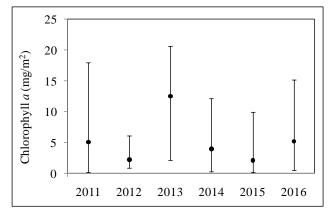


Figure 13.–Lower Slate Creek chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

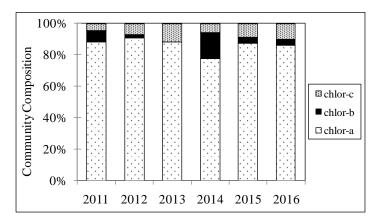


Figure 14.–Lower Slate Creek mean proportion of chlorophylls *a*, *b*, and *c*, 2011–2016.

Benthic Macroinvertebrate Density and Community Composition

Among the 2016 Lower Slate Creek BMI samples, we identified 24 taxa and estimate density at 3,394 BMI/m², of which 15% were EPT insects (Table 9, Figure 15), the lowest proportion of EPT insects observed since 2011. The Shannon Diversity and Evenness scores were similar to previous years, and the dominant taxon was Diptera: Chironomidae representing 51% of the samples, also similar to previous years.

Table 9.–Lower Slate Creek BMI data summary, 2011–2016.

	5/4/2011	5/2/2012	4/30/2013	4/30/2014	4/27/2015	4/26/2016
Mean BMI/m ²	2,057	3,154	2,581	4,136	3,407	3,394
Total BMI Taxa	29	32	27	32	26	24
Number of EPT Taxa	13	17	16	17	13	11
% EPT	14%	38%	51%	19%	24%	15%
Shannon Diversity Score	0.51	0.69	0.85	0.64	0.70	0.65
Evenness Score	0.48	0.58	0.70	0.52	0.58	0.57

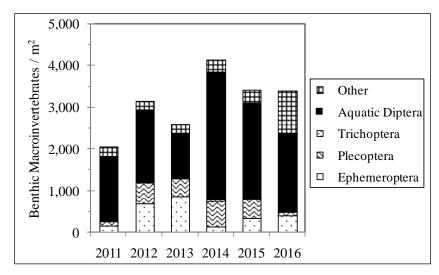


Figure 15.-Lower Slate Creek BMI mean density and community composition, 2011-2016.

Adult Salmon Counts

We counted 79 live pink salmon, 45 live chum salmon, and 2 live coho salmon in Lower Slate Creek during the 2016 spawning season. Figure 16 presents the pink salmon count for each survey, and Figure 17 shows the distribution of pink salmon by reach. Table 10 presents the 2011–2016 adult salmon count.

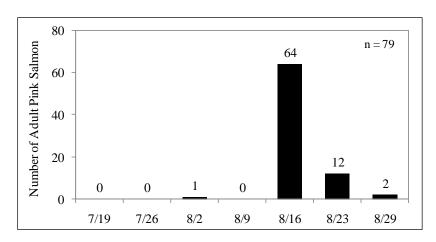


Figure 16.–2016 Lower Slate Creek weekly pink salmon count.

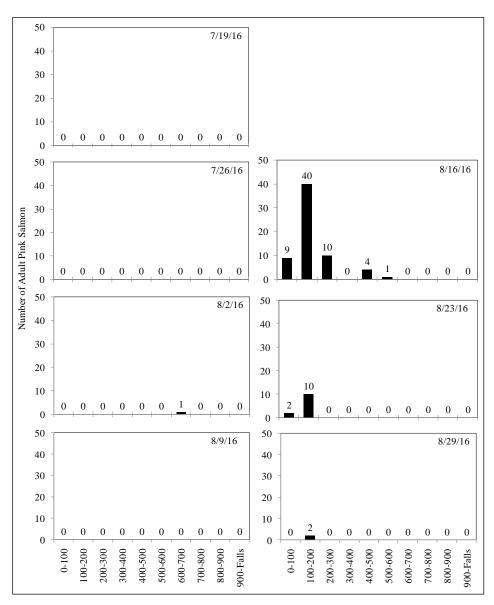


Figure 17.–2016 Lower Slate Creek weekly pink salmon distribution.

Table 10.-Lower Slate Creek adult salmon count, 2011-2016.

	2011	2012	2013	2014	2015	2016
Pink Salmon	6,275	7,272	3,337	41	7,580	79
Chum Salmon	61	1	1	0	13	45
Coho Salmon	0	0	26	5	0	2

Spawning Substrate Composition

Sample Points 1 and 2

The geometric mean particle size among samples collected at Lower Slate Creek SP1 and SP2 was 13.6 mm and 11.6 mm, both within the range of sizes observed at each site since 2011 (Table 11).

Table 11.-Lower Slate Creek SP1 and SP2 geometric mean particle sizes (mm), 2011-2016.

	2011	2012	2013	2014	2015	2016
Sample Point 1	10.3	10.8	14.2	12.9	13.3	13.6
Sample Point 2	11.1	11.2	13.2	16.5	17.5	11.6

Sediment Metals Concentrations

The 2016 Lower Slate Creek sediment metals, As, and Se concentrations were within the range observed 2011–2015. Figure 18 presents the 2016 results and Figure 19 presents the 2011–2016 data. The As, Cu, Ni, and Zn concentrations remain above NOAA's freshwater sediment guidelines (Buchman 2008; MacDonald et al. 2000).

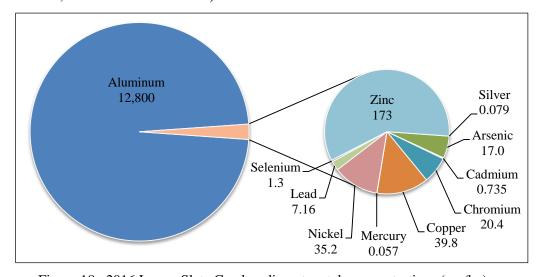


Figure 18.–2016 Lower Slate Creek sediment metals concentrations (mg/kg).

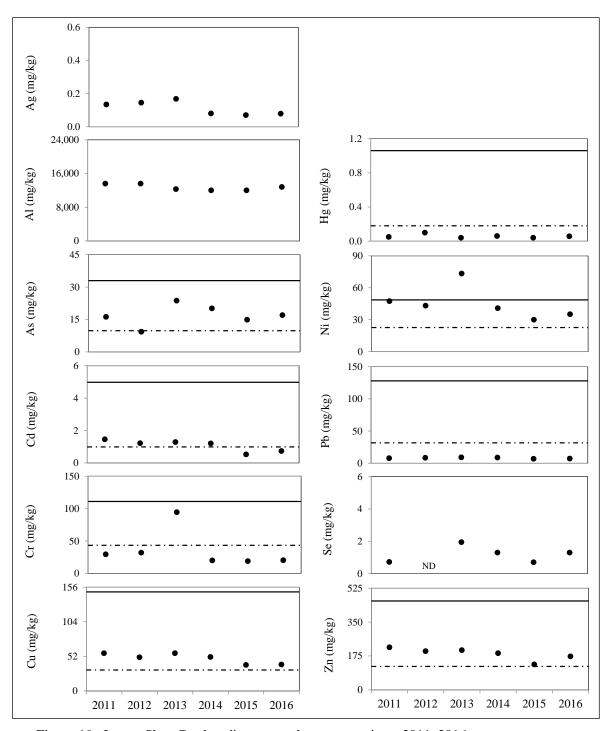


Figure 19.-Lower Slate Creek sediment metals concentrations, 2011–2016.

Note: The dashed line represents the TEC and the solid line represents the PEC for each analyte in freshwater sediments (Buchman 2008; MacDonald et al. 2000); guidelines are not published for Ag, Al, and Se; ND = not detected.

Sediment Toxicity

There were no significant (p \leq 0.05) reductions in *H. azteca* or *C. tentans* growth or survival between the laboratory control sediment and the 2016 Lower Slate Creek sediment sample.

West Fork Slate Creek

Periphyton Density and Composition

The 2016 West Fork Slate Creek mean chlorophyll a density was 4.93 mg/m², the greatest observed since 2011 (Table 12). Figure 20 presents minimum, mean, and maximum chlorophyll a density from samples collected each year and Figure 21 presents the mean proportion of chlorophylls a, b, and c each year.

Table 12.—West Fork Slate	Creek mean c	chlorophylls a, b,	and c density, 2011–2016.

	7/29/2011	7/25/2012	7/31/2013	7/30/2014	7/28/2015	7/26/2016
Chlorophyll a (mg/m²)	3.92	1.01	4.22	0.77	0.92	4.93
Chlorophyll $b \text{ (mg/m}^2\text{)}$	0.00	0.00	0.00	0.00	0.03	0.00
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.27	0.10	0.61	0.06	0.06	0.66

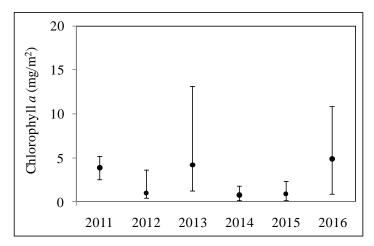


Figure 20.–West Fork Slate Creek chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

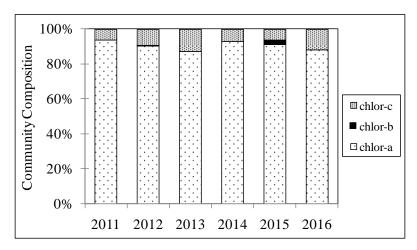


Figure 21.-West Fork Slate Creek mean proportion of chlorophylls *a*, *b*, and *c*, 2011–2016.

Benthic Macroinvertebrate Density and Community Composition

Among the 2016 West Fork Slate Creek BMI samples, we identified 25 taxa and estimate density at 1,470 BMI/m², of which 77% were EPT insects (Table 13, Figure 22), all within the range observed in previous years. The Shannon Diversity and Evenness scores were also similar to previous years, and the dominant taxa were Ephemeroptera: Baetis, representing 38% of the samples, and Diptera: Chironomidae representing 18% of the samples.

	5/4/2011	5/2/2012	4/30/2013	4/30/2014	4/27/2015	4/26/2016
Mean BMI/m ²	502	1,819	2,446	973	2,634	1,470
Total BMI Taxa	21	31	28	29	28	25
Number of EPT Taxa	11	21	18	17	16	15
% EPT	80%	80%	90%	71%	82%	77%
Shannon Diversity Score	0.63	0.84	0.73	0.91	0.82	0.72

0.71

0.61

0.79

0.71

0.69

Table 13.-West Fork Slate Creek BMI data summary, 2011–2016.

0.78

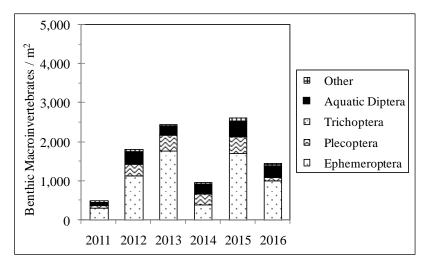


Figure 22.-West Fork Slate Creek BMI mean density and community composition, 2011–2016.

East Fork Slate Creek

Evenness Score

East Fork Slate Creek discharge is dependent on Upper Slate Lake discharge, routed through the diversion pipeline bypassing the TTF, and effluent discharge^y from the TTF water treatment plant. East Fork Slate Creek mean daily discharges^z during July 2016 were lower than previous years, except during the last week of the month (Figure 23; unpublished data obtained from K. Eppers, Environmental Superintendent, Coeur Alaska Inc., Juneau). The minimum, median, and maximum mean daily discharges three weeks prior to sampling periphyton were the lowest observed since we began sampling in 2011 (Figure 24).

Outfall 002 began discharging to East Fork Slate Creek in December 2010.

Calculated by combining the diversion pipeline Parshall flume and TTF water treatment plant Outfall 002 mean daily discharge data (unpublished data obtained from K. Eppers, Environmental Superintendent, Coeur Alaska Inc., Juneau, AK).

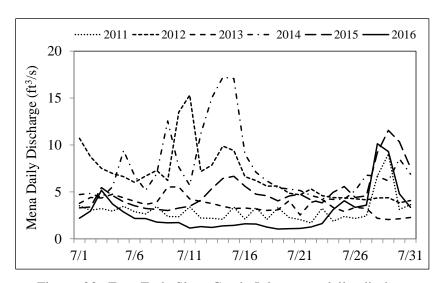


Figure 23.—East Fork Slate Creek July mean daily discharges, 2011–2016.

Note: Combined Parshall flume and TTF water treatment plant Outfall 002 discharge data.

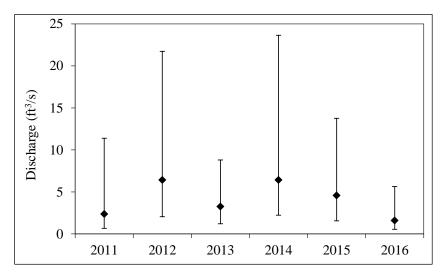


Figure 24.—East Fork Slate Creek mean daily discharges three weeks prior to sampling periphyton, 2011–2016.

Note: Minimum, median, and maximum mean daily discharges presented.

Periphyton Density and Composition

The 2016 East Fork Slate Creek mean chlorophyll a density was 1.21 mg/m², the second lowest observed since 2011 (Table 14). Figure 25 presents the minimum, mean, and maximum chlorophyll a density from samples collected each year and Figure 26 presents the mean proportion of chlorophylls a, b, and c each year.

Table 14.—East Fork Slate Creek mean chlorophylls a, b, and c density, 2011–2016.

	7/28/2011	7/24/2012	7/30/2013	7/30/2014	7/27/2015	7/25/2016
Chlorophyll a (mg/m²)	8.84	5.08	2.28	0.27	1.56	1.21
Chlorophyll <i>b</i> (mg/m ²)	1.56	0.57	0.06	0.02	0.00	0.00
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.24	0.18	0.20	0.03	0.15	0.15

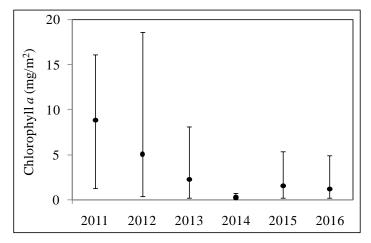


Figure 25.–East Fork Slate Creek chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

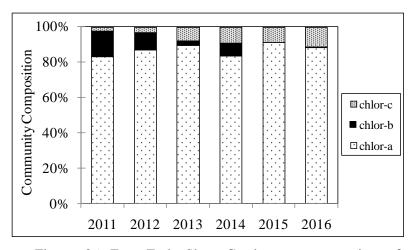
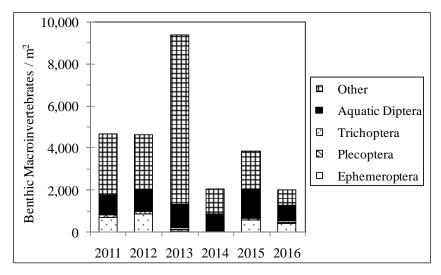


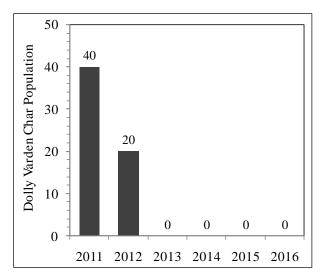
Figure 26.–East Fork Slate Creek mean proportion of chlorophylls a, b, and c, 2011–2016.

Benthic Macroinvertebrate Density and Community Composition

Among the 2016 East Fork Slate Creek BMI samples, we identified 21 taxa and estimate density at 2,002 BMI/m², of which 28% were EPT insects (Table 15, Figure 27); the lowest number of taxa and density, yet the greatest proportion^{aa} of EPT insects we have observed since 2011. The Shannon Diversity and Evenness scores were similar to the 2015 scores and greater than previous years. The dominant taxa were Diptera: Chironomidae, representing 26% of the samples, and Bivalvia: *Pisidium*, representing 23% of the samples.

	5/12/2011	4/27/2012	4/29/2013	4/30/2014	4/29/2015	4/25/2016
Mean BMI/m ²	4,688	4,633	9,407	2,048	3,854	2,002
Total BMI Taxa	27	33	33	24	28	21
Number of EPT Taxa	15	17	17	9	16	11
% EPT	19%	23%	2.5%	2.0%	18%	28%
Shannon Diversity Score	0.64	0.78	0.57	0.70	0.92	0.92
Evenness Score	0.54	0.61	0.47	0.63	0.72	0.78




Figure 27.—East Fork Slate Creek BMI mean density and community composition, 2011–2016.

Resident Fish Population and Condition

We did not capture Dolly Varden char during the 2016 East Fork Slate Creek survey, therefore the population estimate was 0 fish, the same as the previous three years (Figures 28, 29).

-

^{aa} Largely due to fewer pea clams (Bivalvia: *Pisidium*).

Riffles Pools Glides

40

10

12

16

10

10

4 4

0 0000 000 000 000

2011 2012 2013 2014 2015 2016

Figure 28.–East Fork Slate Creek Dolly Varden char population, 2011–2016.

Figure 29.—East Fork Slate Creek Dolly Varden char population by habitat type, 2011–2016.

Sediment Metals Concentrations

Sediment metals, As, and Se concentrations in the 2016 East Fork Slate Creek sediment sample are illustrated in Figure 30, and Figure 31 presents the 2011–2016 data. The 2016 contained a greater concentration of As than previous years, while concentrations of metals and Se were within the range observed 2011–2015. The As, Cd, Cu, Ni, and Zn concentrations remain above NOAA's freshwater sediment guidelines (Buchman 2008; MacDonald et al. 2000).

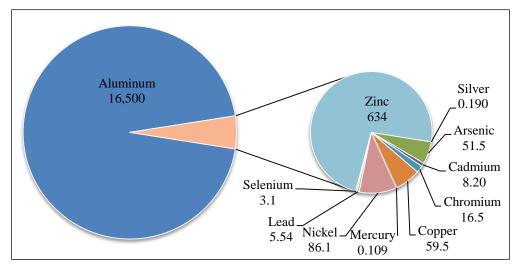


Figure 30.–2016 East Fork Slate Creek sediment metals concentrations (mg/kg).

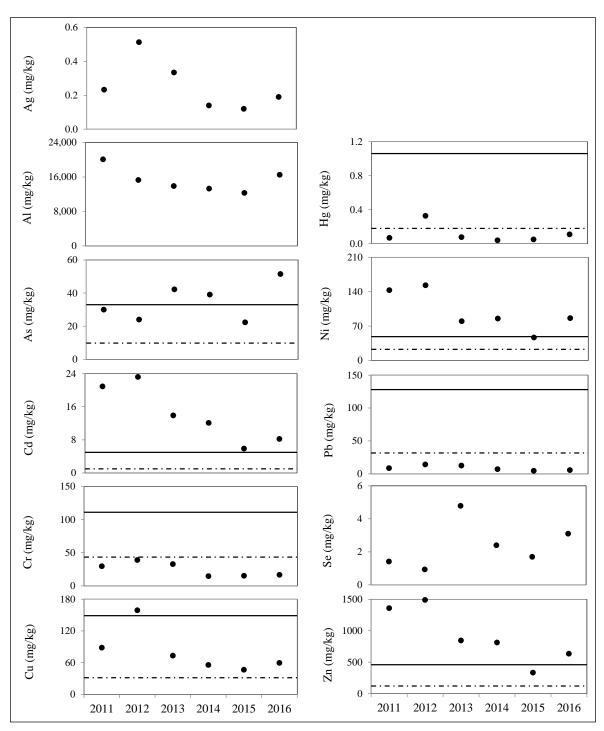


Figure 31.–East Fork Slate Creek sediment metals concentrations, 2011–2016.

Note: The dashed line represents the TEC and the solid line represents the PEC for each analyte in freshwater sediments (Buchman 2008; MacDonald et al. 2000); guidelines are not published for Ag, Al, and Se; ND = not detected.

Sediment Toxicity

There were no significant ($p \le 0.05$) reductions in *H. azteca* or *C. tentans* growth or survival between the laboratory control sediment and the 2016 East Fork Slate Creek sediment sample.

Upper Slate Creek

Periphyton Density and Composition

The 2016 Upper Slate Creek mean chlorophyll a density was 3.86 mg/m², the greatest observed since 2011 (Table 16). Figure 32 presents the minimum, mean, and maximum chlorophyll a density from samples collected each year and Figure 33 presents the mean proportion of chlorophylls a, b, and c each year.

Table 16.–Upper Slate Creek mean chlorophylls a, b, and c density, 2011–201	Table 16.–Upper	Slate Creek mean	chlorophylls a, b.	and c density.	2011-2016.
---	-----------------	------------------	--------------------	----------------	------------

	7/29/2011	7/24/2012	7/30/2013	7/30/2014	7/27/2015	7/25/2016
Chlorophyll <i>a</i> (mg/m ²)	0.76	1.26	2.13	1.09	0.63	3.86
Chlorophyll $b \text{ (mg/m}^2\text{)}$	0.00	0.00	0.00	0.00	0.00	0.02
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.05	0.07	0.13	0.06	0.09	0.42

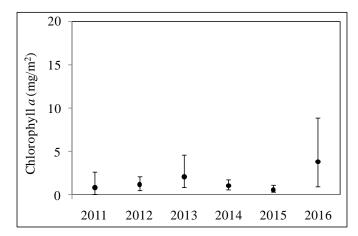


Figure 32.–Upper Slate Creek chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

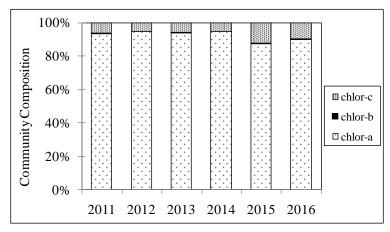


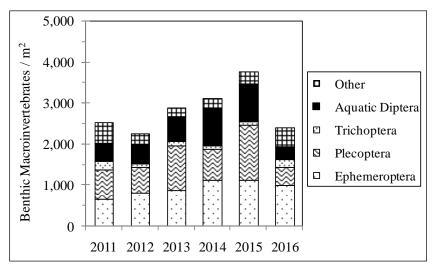
Figure 33.–Upper Slate Creek mean proportion of chlorophylls a, b, and c, 2011–2016.

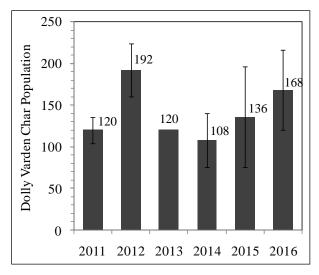
Benthic Macroinvertebrate Density and Community Composition

Among the 2016 Upper Slate Creek BMI samples, we identified 28 taxa and estimate density at 2,398 BMI/m², of which 68% were EPT insects (Table 17, Figure 34); a lower number of taxa and density we have observed since 2011. The Shannon Diversity and Evenness scores were greater than previous years. The dominant taxa were Ephemeroptera: *Baetis*, representing 18% of the samples, Plecoptera: *Despaxia*, representing 11% of the samples, and Diptera: Chironomidae, representing 11% of the samples.

Table 17Upper	Slate Creek	BMI data summa	cy, 2011–2016.
1 4 5 1 7 1 C P P 5 1	21000		.,,

	5/12/2011	4/27/2012	4/29/2013	4/28/2014	4/29/2015	4/25/2016
Mean BMI/m ²	2,523	2,256	2,880	3,125	3,776	2,398
Total BMI Taxa	33	39	34	36	31	28
Number of EPT Taxa	18	21	20	20	19	15
% EPT	63%	68%	72%	63%	68%	68%
Shannon Diversity Score	0.97	1.04	1.02	1.03	0.98	1.06
Evenness Score	0.76	0.79	0.78	0.76	0.74	0.82




Figure 34.—Upper Slate Creek BMI mean density and community composition, 2011–2016.

Resident Fish Population and Condition

The 2016 Upper Slate Creek Dolly Varden char population estimate was 168 ± 48 fish^{bb}, similar to populations observed since 2011 (Figure 35). As in previous years, we captured more Dolly Varden char in pools than riffles or glides (Figure 36), and captured fish represented several age classes. Mean fish condition was 1.2, greater than previous years.

-

The goodness of fit X^2 test indicates we achieved equal capture probability between passes.

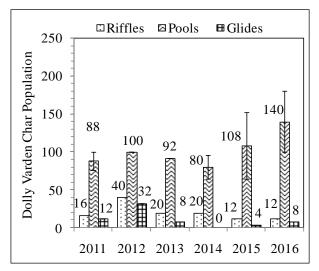


Figure 35.–Upper Slate Creek Dolly Varden char population, 2011–2016.

Figure 36.–Upper Slate Creek Dolly Varden char population by habitat type, 2011–2016.

Sediment Metals Concentrations

Sediment metals, As, and Se concentrations in the 2016 Upper Slate Creek sediment sample are shown in Figure 37, and Figure 38 presents the 2011–2016 data. The 2016 sample contained lower concentrations of Al, Cd, Cr, Cu, Ni and Pb than previous years and concentrations of other metals, As and Se were within the range observed 2011–2015. The As, Cr, Cu, and Ni concentrations remain above NOAA's freshwater sediment guidelines (Buchman 2008; MacDonald et al. 2000).

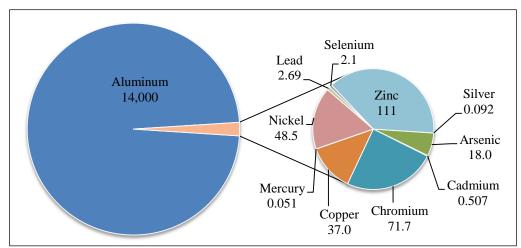


Figure 37.–2016 Upper Slate Creek sediment metals concentrations (mg/kg).

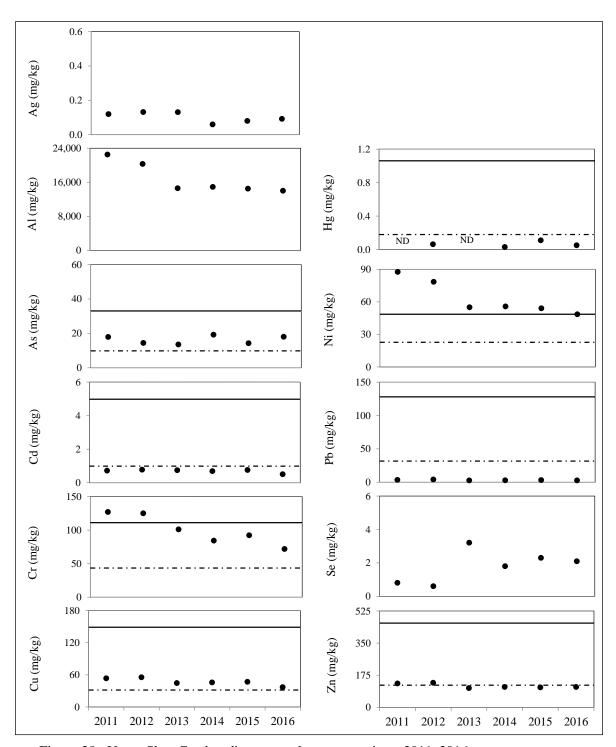


Figure 38.–Upper Slate Creek sediment metals concentrations, 2011–2016.

Note: The dashed line represents the TEC and the solid line represents the PEC for each analyte in freshwater sediments (Buchman 2008; MacDonald et al. 2000); guidelines are not published for Ag, Al, and Se; ND = not detected.

Sediment Toxicity

There were no significant (p \leq 0.05) reductions in *H. azteca* or *C. tentans* growth or survival between the laboratory control sediment and the 2016 Upper Slate Creek sediment sample.

JOHNSON CREEK

Lower Johnson Creek

Adult Salmon Counts

We counted 428 live adult pink salmon, 39 live chum salmon, and 24 live coho salmon in Lower Johnson Creek during the 2016 spawning season. Figure 39 presents the pink salmon count for each survey, and Figure 40 shows the distribution of pink salmon by reach. Table 18 presents 2011–2016 adult salmon count.

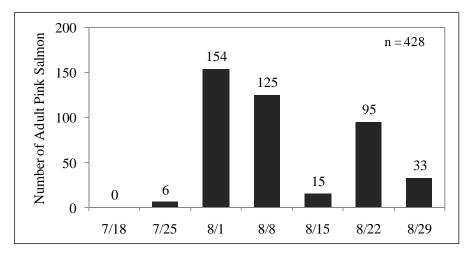


Figure 39.–2016 Lower Johnson Creek weekly pink salmon count.

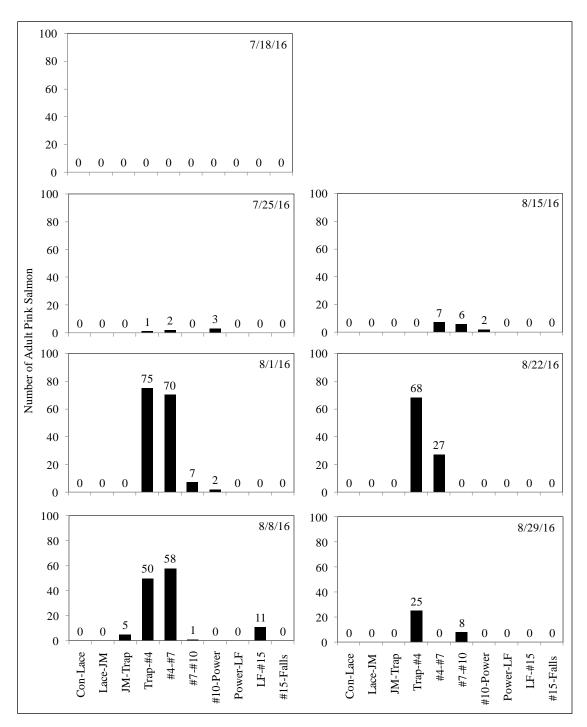


Figure 40.–2016 Lower Johnson Creek weekly pink salmon distribution.

Table 18.–Lower Johnson Creek adult salmon count, 2011–2016.

	2011	2012	2013	2014	2015	2016
Pink Salmon	17,509	5,016	8,186	189	51,325	428
Chum Salmon	18	99	17	3	0	39
Coho Salmon	33	90	64	107	88	24

Sediment Metals Concentrations

Sediment metals, As, and Se concentrations in the 2016 Lower Johnson Creek sediment sample are shown in Figure 41, and Figure 42 presents the 2011–2016 data. The 2016 sample contained a greater concentration of Ag and lower concentrations of Al, Ni and Zn than previous years, and the concentrations of other metals and As, and Se were within the range observed 2011–2015. As and Cu concentrations remain above NOAA's freshwater sediment guidelines (Buchman 2008; MacDonald et al. 2000). Se was not detected for the sixth year in a row.

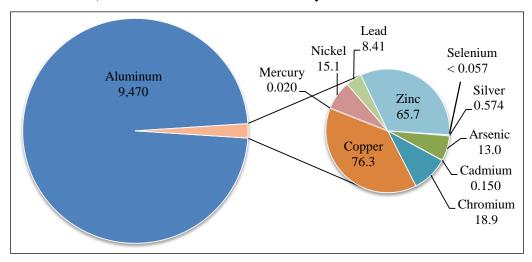


Figure 41.–2016 Lower Johnson Creek sediment metals concentrations (mg/kg).

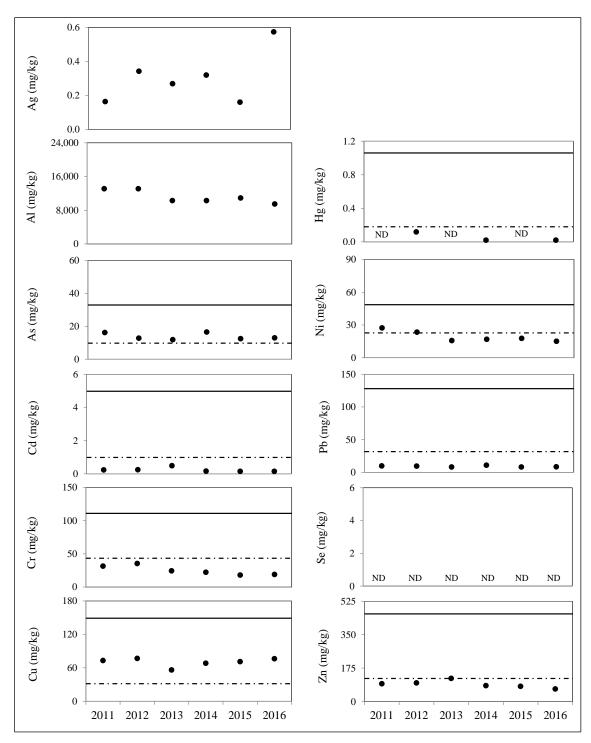


Figure 42.–Lower Johnson Creek sediment metals concentrations, 2011–2016.

Note: The dashed line represents the TEC and the solid line represents the PEC for each analyte in freshwater sediments(Buchman 2008; MacDonald et al. 2000); guidelines are not published for Ag, Al, and Se; ND = not detected.

Sediment Toxicity

There were no significant ($p \le 0.05$) reductions in *H. azteca* or *C. tentans* growth or survival between the laboratory control sediment and the 2016 Lower Johnson Creek sediment sample.

Upper Johnson Creek

Benthic Macroinvertebrate Density and Community Composition

Among the 2016 Upper Johnson Creek BMI samples, we identified 32 taxa and estimate density at 3,681 BMI/m², of which 71% were EPT insects (Table 19, Figure 43), all within ranges observed since 2011. The Shannon Diversity and Evenness scores were also similar to previous years. The dominant taxa were Ephemeroptera: *Baetis*, representing 30% of the samples, and Diptera: Chironomidae, representing 22% of the samples.

Table 19.-Upper Johnson Creek BMI data summary, 2011-2016.

	5/3/11	4/26/12	4/29/13	4/29/14	4/28/15	4/27/16
Mean BMI/m ²	3,735	3,968	5,265	2,658	2,789	3,681
Total BMI Taxa	24	28	34	32	28	32
Number of EPT Taxa	14	14	24	21	17	21
% EPT	55%	64%	65%	69%	71%	71%
Shannon Diversity Score	0.76	0.81	0.74	0.74	0.87	0.88
Evenness Score	0.66	0.68	0.59	0.59	0.71	0.70

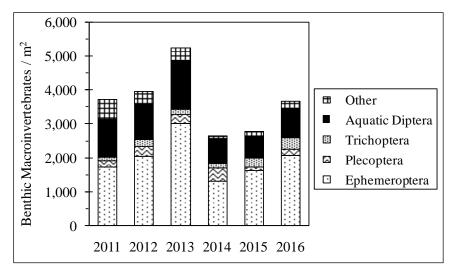


Figure 43.–Upper Johnson Creek BMI mean density and community composition, 2011–2016.

SHERMAN CREEK

Lower Sherman Creek

Periphyton Density and Composition

Sample Point 1

The 2016 Lower Sherman Creek SP1 mean chlorophyll a density was 3.70 mg/m², within the range observed since 2011 (Table 20). Figure 44 presents the minimum, mean, and maximum chlorophyll a density from samples collected each year and Figure 45 presents the mean proportion of chlorophylls a, b, and c each year.

Table 20.–Lower Sherman Creek SP1 mean chlorophylls a, b, and c density, 2011–2016.

	7/28/2011	7/26/2012	7/29/2013	7/28/2014	7/27/2015	7/25/2016
Chlorophyll <i>a</i> (mg/m ²)	7.60	2.54	3.69	1.34	1.36	3.70
Chlorophyll $b \text{ (mg/m}^2\text{)}$	0.69	0.93	0.00	0.00	0.00	0.74
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.49	0.08	0.51	0.18	0.17	0.33

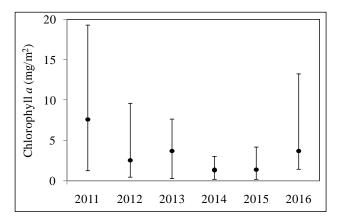


Figure 44.–Lower Sherman SP1 chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

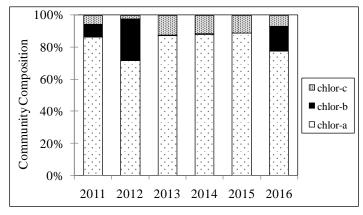


Figure 45.–Lower Sherman SP1 mean proportion of chlorophylls *a*, *b*, and *c*, 2011–2016.

Sample Point 2

The 2016 Lower Sherman Creek SP2 mean chlorophyll a density was 1.42 mg/m², similar to the mean observed in 2014 and 2015 (Table 21). Figure 46 presents the minimum, mean, and maximum chlorophyll a density from samples collected each year and Figure 47 presents the mean proportion of chlorophylls a, b, and c each year.

Table 21.–Lower Sherman Creek SP2 mean chlorophylls a, b, and c density, 2011–2016.

	7/28/2011	7/26/2012	7/29/2013	7/28/2014	7/27/2015	7/25/2016
Chlorophyll a (mg/m²)	5.61	0.67	2.87	1.32	1.62	1.42
Chlorophyll $b \text{ (mg/m}^2\text{)}$	0.02	0.01	0.00	0.00	0.15	0.04
Chlorophyll $c \text{ (mg/m}^2\text{)}$	0.32	0.09	0.32	0.12	0.27	0.18

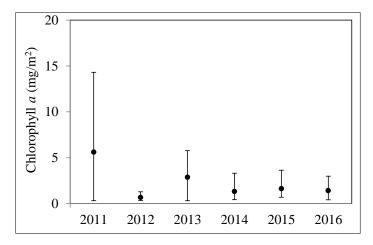


Figure 46.–Lower Sherman SP2 chlorophyll *a* density, 2011–2016.

Note: Minimum, mean, and maximum values presented.

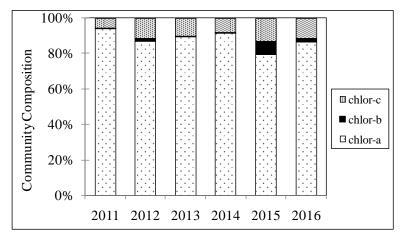


Figure 47.–Lower Sherman SP2 mean proportion of chlorophylls *a*, *b*, and *c*, 2011–2016.

Benthic Macroinvertebrate Density and Community Composition

Sample Point 1

Among the 2016 Lower Sherman Creek SP1 BMI samples, we identified 26 taxa and estimate density at 6,839 BMI/m², of which 4% were EPT insects (Table 22, Figure 48); the greatest density and lowest proportion^{cc} of EPT insects we have observed since 2011. The Shannon Diversity and Evenness scores were lower than previous years and the dominant taxon was Annelida: Oligochaeta, representing 83% of the samples.

Table 22.–Lower	Sherman C	Creek SP1	BMI data	summary, 2011–2016.
-----------------	-----------	-----------	----------	---------------------

	5/4/11	4/30/12	5/1/13	4/29/14	4/28/15	4/27/16
Mean BMI/m ²	1,118	2,733	1,796	3,023	1,651	6,839
Total BMI Taxa	26	31	28	30	26	26
Number of EPT Taxa	15	18	16	13	13	13
% EPT	32%	66%	64%	14%	27%	4%
Shannon Diversity Score	0.76	0.74	0.85	0.71	0.84	0.32
Evenness Score	0.71	0.62	0.71	0.57	0.70	0.27

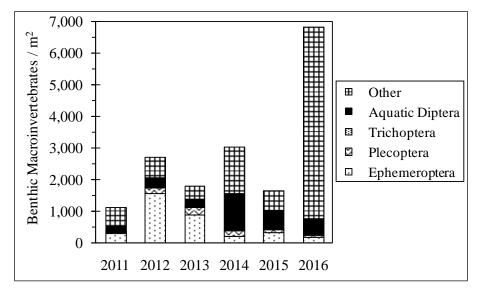


Figure 48.–Lower Sherman Creek SP1 BMI mean density and community composition, 2011–2016.

_

Largely due to an increase in the number of aquatic worms (Oligochaeta); three of the six BMI samples we collected contained pink salmon fry, coinciding with the greatest worm densities among the six samples.

Sample Point 2

Among 2016 Lower Sherman Creek SP2 BMI samples, we identified 23 taxa and estimate density at 1,873 BMI/m², of which 12% were EPT insects (Table 23, Figure 49), similar to the 2014 and 2015 sample results and due in part to an increase in the number of aquatic worms (Oligochaeta). The Shannon Diversity and Evenness scores were the lowest observed since 2011, and the dominant taxon was Annelida: Oligochaeta, representing 65% of the samples.

Table 23.-Lower Sherman Creek SP2 BMI data summary, 2011-2016.

	5/3/11	4/30/12	4/30/13	4/29/14	4/28/15	4/27/16
Mean BMI/m ²	1,651	2,823	3,385	1,185	1,609	1,873
Total BMI Taxa	30	37	39	28	23	23
Number of EPT Taxa	17	26	25	16	13	13
% EPT	76%	79%	72%	12%	25%	12%
Shannon Diversity Score	0.93	0.70	0.84	0.70	0.77	0.53
Evenness Score	0.76	0.57	0.65	0.62	0.66	0.49

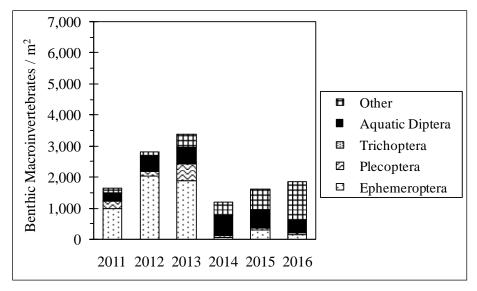


Figure 49.-Lower Sherman Creek SP2 BMI mean density and community composition, 2011-2016.

Adult Salmon Counts

We counted 26 live adult pink salmon and 5 live chum salmon in Lower Sherman Creek during the 2016 spawning season. dd Figure 50 presents the pink salmon count for each survey, and Figure 51 shows the distribution of pink salmon by reach. Table 24 presents the 2011–2016 adult salmon count.

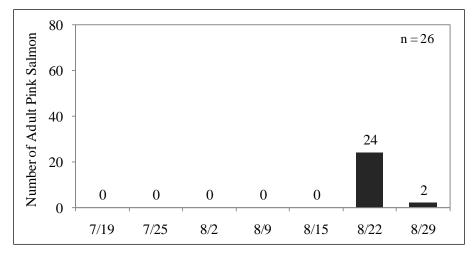


Figure 50.–2016 Lower Sherman Creek weekly pink salmon count.

.

On August 15 we were only able to survey the lower 150 m due to high flow and poor visibility, and on August 29 we surveyed by helicopter because the Comet Beach road was closed.

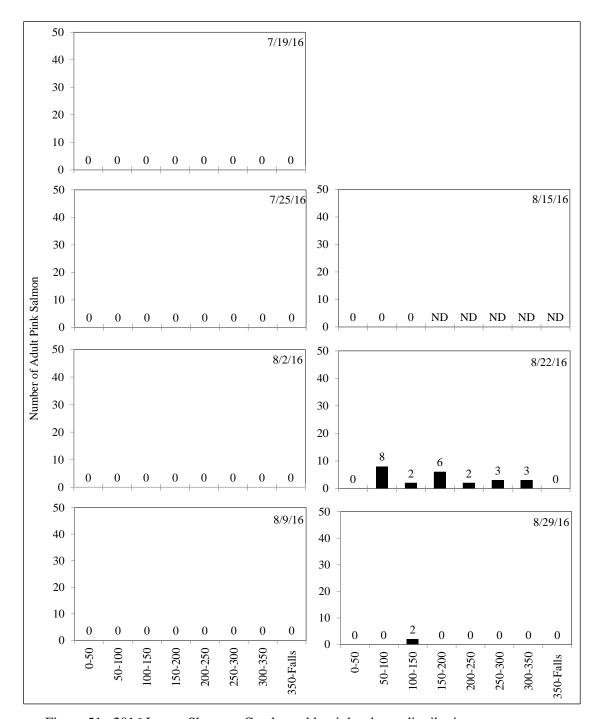


Figure 51.–2016 Lower Sherman Creek weekly pink salmon distribution.

Table 24.-Lower Sherman Creek adult salmon count, 2011-2016.

	2011	2012	2013	2014	2015	2016
Pink Salmon	4,624	1,608	4,981	70	2,798	26
Chum Salmon	0	0	12	0	1	5

Sediment Metals Concentrations

Sediment metals, As, and Se concentrations in the 2016 Lower Sherman Creek sediment sample are shown in Figure 52, and Figure 53 presents the 2011–2016 data. The 2016 sample contained lower concentrations of Ag, Al, As, Cr and Pb than previous years, and the concentrations of other metals and Se were within the range observed 2011–2015. The As, Cu, Ni, and Zn concentrations remain above NOAA's freshwater sediment guidelines (Buchman 2008; MacDonald et al. 2000).

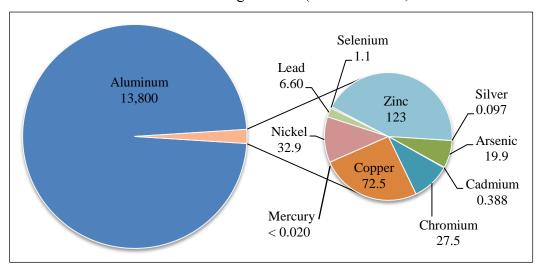


Figure 52.–2016 Lower Sherman Creek sediment metals concentrations (mg/kg).

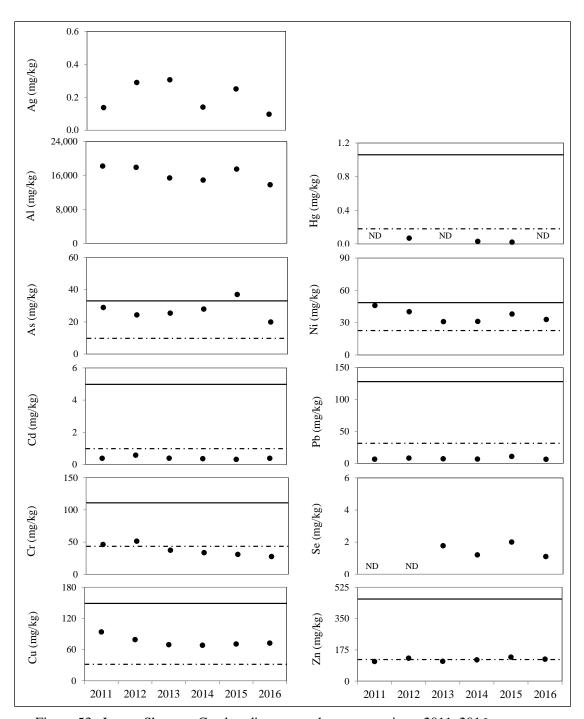


Figure 53.–Lower Sherman Creek sediment metals concentrations, 2011–2016.

Note: The dashed line represents the TEC and the solid line represents the PEC for each analyte in freshwater sediments(Buchman 2008; MacDonald et al. 2000); guidelines are not published for Ag, Al, and Se; ND = not detected.

Sediment Toxicity

C. tentans survival on the 2016 Lower Sherman Creek sediment sample was significantly $(p \le 0.05)$ lower than on the control sediment. *H. Azteca* growth and survival on the 2016 sediment sample were not significantly $(p \le 0.05)$ different than on the control sediment.

REFERENCES CITED

- Anderson, R. O. and R. M. Neumann, 1996. Length, weight, and associated structural indices. Pages 447–481 [*In*] B. R. Murphy and D.W. Willis, editors. Fisheries Techniques. 2nd edition. American Fisheries Society, Bethesda, MD.
- Aquatic Science Inc. 1998. Kensington Gold Project 1998 aquatic resource surveys. Prepared for Coeur Alaska Inc, Juneau, AK.
- Aquatic Science Inc. 1999. Kensington Gold Project 1999 aquatic resource surveys. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2000. Kensington Gold Project 2000 aquatic resource surveys. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2001a.Kensington Gold Project invertebrate tissue analysis [sic]^{ee}.Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2001b. Kensington Gold Project resident fish surveys [sic]^{ff}. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2002. Kensington Gold Project aquatic resource surveys. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2004. Kensington Gold Project benthic invertebrate surveys Slate and Johnson Creeks. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2006. Kensington Gold Project NPDES permit AK-0050571 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2005. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2007. Kensington Gold Project NPDES permit AK-0050571 annual water quality monitoring summary Volume 1: Aquatic resource surveys 2006. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2008. NPDES Annual report 2007 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2009a. Johnson Creek fish habitat channel types and aquatic capability. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2009b. Out-migrating salmon fry, Sherman, Johnson and Slate Creeks. Prepared for ADF&G, Permit No. SF-2009-059, Juneau, AK.
- Aquatic Science Inc. 2009c. NPDES annual report 2008 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2009d [sic]^{gg}. NPDES annual report 2009 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Juneau, AK.
- Aquatic Science Inc. 2011. NPDES annual report 2010 Volume 1: Aquatic resources. Prepared for Coeur Alaska Inc., Juneau, AK.
- Archipelago Marine Research Ltd. 1991. Use of nearshore habitat by juvenile salmonids near Point Sherman, Lynn Canal, Alaska. Prepared for Kensington Venture, Juneau, AK.
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

ee This publication is actually the resident fish survey report.

ff This publication is actually the invertebrate tissue analysis.

gg Actually published February 2010.

REFERENCES CITED, CONTINUED

- Bisson, P. A., J. L. Nielsen, R. A. Palmason, and L. E. Grove. 1982. A system of naming habitat types in small streams, with examples of habitat utilization by salmonids during low streamflow. Pages 62–73 [*In*] N. B. Armantrout, editor. Acquisition and utilization of aquatic habitat inventory information. Proceedings of the American Fisheries Society, Western Division symposium held October28–30, 1981, Portland, OR.
- Brewster, B.P. 2016. Aquatic studies at Kensington Gold Mine, 2015. Alaska Department of Fish and Game, Technical Report No. 16-03, Douglas, AK.
- Bryant, M. D. 2000. Estimating fish populations by removal methods with minnow traps in Southeast Alaska streams. North American Journal of Fisheries Management 20:923–930.
- Buchman, M. F. 2008. NOAA Screening Quick Reference Tables, U.S. National Oceanic and Atmospheric Administration, Office of Response and Restoration Division, Report 08-1, Seattle, WA.
- Carle, F. L., and M. R. Strub. 1978. A new method for estimating population size from removal data. Biometrics 34:621–630.
- Coeur Alaska, Inc. 2005. Final plan of operations for the Kensington Gold Project. Prepared for the U.S. Department of Agriculture Forest Service, Juneau Ranger District, Tongass National Forest, Juneau, AK.
- Dames & Moore. 1991. Nearshore marine biological baseline survey Pt. Sherman, Lynn Canal, Alaska April 18–21, 1988 (16325-002-020). Prepared for Kensington Venture, Boise, ID.
- Earthworks Technology, Inc. 2002. Kensington Project August-September 2001 Slate Lakes Basin. Prepared for Coeur Alaska, Inc., Juneau, AK.
- EVS Environment Consultants. 2000. Year 2000 outmigration counts of juvenile pink salmon in Sherman and Sweeny Creeks. Prepared for Coeur Alaska, Inc. Juneau, AK.
- HDR Alaska, Inc. 2003. Slate and Johnson Creek water years 2000, 2001, 2002, and 2003 streamflow analysis. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Johnson, J., and V. Litchfield. 2016. Catalog of waters important for spawning, rearing, or migration of anadromous fishes Southeastern Region, Effective June 1, 2016. Alaska Department of Fish and Game, Special Publication No. 16-04, Anchorage, AK.
- Kanouse, K.M. 2015. Aquatic studies at Kensington Gold Mine, 2014. Alaska Department of Fish and Game, Technical Report No. 15-02, Douglas, AK.
- Kline Environmental Research, LLC. 2003. Technical Memorandum: Preliminary results of 2003 Slate Lakes field work, Somerset, WI.
- Kline Environmental Research, LLC. 2001. Kensington Project June 2000 Slate Creek basin survey data report. Prepared for Coeur Alaska, Inc.
- Kline Environmental Research, LLC. 2003. Kensington Project: Summary of adult salmon counts during 1995–2000 in Slate Creek and Johnson Creek. Prepared for Earthworks Technology, Inc., Coeur d'Alene, ID.
- Kline Environmental Research, LLC. 2005. Data report for aquatic studies conducted in the Slate Lakes drainage during 2003–2004. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Kondolf, G. M. and M. G. Wolman. 1993. The sizes of salmonid spawning gravels. Water Resources Research. 29(7):2275–2285.
- Konopacky Environmental.1992a. Reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during Mid-July 1991. Volume 1 of 2. Prepared for Kensington Venture, Boise, ID.
- Konopacky Environmental. 1992b. Baseline monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1991. Volume 2 of 2. Prepared for Kensington Venture, Boise, ID.

REFERENCES CITED, CONTINUED

- Konopacky Environmental. 1993a. Second-year reconnaissance photograph study of Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during Mid-July 1992. Volume 1 of 2. Prepared for Kensington Venture, Boise, ID.
- Konopacky Environmental. 1993b. Counts of adult pink, chum, and coho salmon in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during spawning periods in 1990 through 1993. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1993c. Ongoing and completed monitoring studies of fish and fish habitat in Sherman and Sweeny Creeks, located near the Kensington Mine, Alaska, during 1992. Volume 2 of 2. Prepared for Kensington Venture, Boise, ID.
- Konopacky Environmental. 1995. Baseline studies of aquatic habitat and salmonid populations in the Slate Creek system, located near Berners Bay, Southeast Alaska, during Summer-1994. Volume 2 of 2. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996a. Presence-absence survey for fish in small unnamed streams, located in and near the area proposed for the dry tailings storage facility associated with the Kensington Mine, Alaska, during May 1996. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996b. Counts of adult pink, chum, and coho salmon in Sherman Creek, located near the Kensington Mine, Southeast Alaska, during spawning periods in 1990 through 1993 and 1995. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996c. Analyses of aquatic macroinvertebrate communities in selected stream reaches in the Sherman Creek drainage, located near the Kensington Mine, Southeast Alaska, during September 1991, July 1995, and December 1995. Volume 1 of 2. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Konopacky Environmental. 1996d. Concentrations of nine trace elements in various size-classes of Dolly Varden char, prickly sculpin, and pink salmon collected from Sherman Creek, located near the Kensington Mine, Southeast Alaska, during 1995 and 1996. Prepared for Coeur-Alaska, Inc., Juneau, AK.
- Lockwood, R. N., and J. C. Schneider. 2000. Stream fish population estimates by mark-and-recapture and depletion methods. [*In*] J. C. Schneider, editor. 2000. Manual of fisheries survey methods II: with periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, MI.
- Lotspeich, F. B. and F. H. Everest. 1981. A new method for reporting and interpreting textural composition of spawning gravel. U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experimental Station, Research Note PNW-369.
- MacDonald, D. D., C. G. Ingersoll, and T. A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination Toxicology 39(1):20–31.
- Magnus, D. L., D. Brandenburger, K. F. Crabtree, K. A. Pahlke, and S. A. McPherson. 2006. Juvenile salmon capture and coded wire tagging manual. Alaska Department of Fish and Game, Special Publication No. 06-31, Anchorage, AK.
- Magurran, A. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, NJ.
- Merritt, R. W. and K. W. Cummins, editors. 1996. An introduction to the aquatic insects of North America. 3rd edition. Kendall/Hunt Publishing Co., Dubuque, IA.
- Pentec Environmental, Inc. 1990. Escapement counts of pink and coho salmon and habitat surveys in three streams near the Kensington Mine, Alaska, from August to October 1990. Prepared for Kensington Venture, Boise, ID.
- Pentec Environmental, Inc. 1991. Additional analyses of pink salmon counts and habitat composition in three streams near the Kensington Mine, Alaska, during August and September 1990. Prepared for Kensington Venture, Boise, ID.

REFERENCES CITED, CONTINUED

- Pollard, W. R., G. F. Hartman, C. Groot, and P. Edgell. 1997. Field identification of coastal juvenile salmonids. Department of Fisheries and Oceans, Vancouver, BC.
- Qu, X., N. Wu, T. Tang, Q. Cai, and Y. S. Park. 2010. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. International Journal of Limnology 46(4):291–302.
- Shirazi, M., W. Seim, and D. Lewis. 1979. Characterization of spawning gravel and stream system evaluation. Originally published as EPA Report EPA-800/3-79-109.
- Steffen Robertson and Kirsten Consulting Engineers and Scientists. 1997. Kensington Gold Project report on construction activity related to creek crossings and alterations. Prepared for Coeur Alaska, Inc., Juneau, AK.
- Stewart, K. W. and M. W. Oswood. 2006. The stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press, Columbus, OH.
- Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. Heavy metal toxicity and the environment. Pages 133–164 [*In*] Experimentia Supplementum: Molecular, Clinical and Environmental Toxicology: Volume 3: Environmental Toxicology. Springer Basel.
- Tetra Tech, Inc., Tongass National Forest (Alaska), U.S. Environmental Protection Agency Region X, U.S. Army Corps of Engineers Alaska District, Alaska Department of Natural Resources. 2004a. Kensington Gold Project: final supplemental environmental impact statement Volume 1. U.S. Department of Agriculture Forest Service, Tongass National Forest, Juneau AK.
- Tetra Tech, Inc, Tongass National Forest (Alaska), U.S. Environmental Protection Agency Region X, U.S. Army Corps of Engineers Alaska District, Alaska Department of Natural Resources. 2004b. Kensington Gold Project: final supplemental environmental impact statement Volume 2. U.S. Department of Agriculture Forest Service, Tongass National Forest, Juneau AK.
- Timothy, J. and K. M. Kanouse. 2012. Aquatic studies at Kensington Mine, 2011. Alaska Department of Fish and Game, Technical Report No. 11-08, Douglas, AK.
- Timothy, J. and K. M. Kanouse. 2013. Aquatic studies at Kensington Gold Mine, 2012. Alaska Department of Fish and Game, Technical Report No.12-10, Douglas, AK.
- Timothy, J. and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No.14-01, Douglas, AK.
- U.S. Environmental Protection Agency. 1997. Method 446.0: In vitro determination of chlorophylls a, b, c₁ + c₂ and pheopigments in marine and freshwater algae by visible spectrophotometry. Adapted by Elizabeth J. Arar. Revision 1.2.U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, OH.
- White, G. C., D. R. Anderson, K. P. Burnham, and D. L. Otis. 1982. Capture-recapture and removal methods for sampling closed populations. Los Alamos National Laboratory LA-8787-NERP, Los Alamos, NM.
- Willson-Naranjo, G. R, and K. M. Kanouse. 2016. Kensington Gold Mine tailings treatment facility studies. Alaska Department of Fish and Game, Technical Report No.16-02, Douglas, AK.
- Zollinger, H. L. 1981. Engineering Technical Note No. 2: Estimating sediment concentrations by Imhoff Cone in runoff water from silt loam soils. U.S. Department of Agriculture, Natural Resources Conservation Service, Boise, ID.

APPENDIX A: PERIPHYTON DATA	

Appendix A.1.–Lower Slate Creek chlorophylls *a*, *b*, and *c* density, 2011–2016.

July 2011				July 2012				July 2013		July 2014			
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	-	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c
	0.21	0.05	0.00	1.60	0.13	0.07		14.10	0.00	1.56	0.37	0.00	0.00
	1.28	0.02	0.11	4.06	0.00	0.39		20.72	0.00	3.11	9.29	3.22	0.48
	0.85	0.01	0.07	2.03	0.00	0.18		10.89	0.00	1.01	1.45	0.00	0.23
	3.31	0.08	0.25	0.96	0.00	0.04		17.84	0.00	2.66	12.18	5.27	0.38
	11.85	3.11	0.30	2.56	0.04	0.22		2.14	0.00	0.24	0.75	0.00	0.05
	18.05	0.42	0.91	0.92	0.00	0.01		6.09	0.00	0.95	4.70	0.00	0.67
	0.72	0.13	0.00	1.49	0.13	0.13		15.49	0.00	1.99	2.88	0.00	0.49
	0.43	0.05	0.00	2.35	0.12	0.19		12.71	0.00	1.58	1.82	0.00	0.15
	8.54	0.39	0.58	6.19	0.05	0.54		11.32	0.00	1.87	0.73	0.00	0.07
	6.30	0.03	0.38	0.96	0.00	0.06		14.63	0.00	1.46	5.87	0.00	0.51
mean	5.15	0.43	0.26	2.31	0.05	0.18	_	12.59	0.00	1.64	4.00	0.85	0.30
max	18.05	3.11	0.91	6.19	0.13	0.54		20.72	0.00	3.11	12.18	5.27	0.67
min	0.21	0.01	0.00	0.92	0.00	0.01		2.14	0.00	0.24	0.37	0.00	0.00
	July 2015				April 2016			July 2016					
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	_	chlor-a	chlor-b	chlor-c			
	0.45	0.10	0.01	1.82	0.00	0.37	_	0.60	0.00	0.12			

		July 2015		April 2016				July 2016			
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c		chlor-a	chlor-b	chlor-c	
	0.45	0.10	0.01	1.82	0.00	0.37		0.60	0.00	0.12	
	3.06	0.00	0.28	2.88	0.00	0.54		15.27	0.00	2.14	
	0.95	0.09	0.04	3.95	0.00	0.43		6.41	0.00	0.97	
	0.85	0.00	0.06	3.17	0.00	0.52		2.35	0.00	0.22	
	0.72	0.13	0.00	3.26	0.00	0.48		9.51	0.76	0.88	
	2.24	0.44	0.12	1.47	0.00	0.23		2.88	0.66	0.20	
	9.93	0.00	1.13	2.71	0.00	0.46		3.52	0.00	0.40	
	0.19	-	-	0.78	0.00	0.06		2.03	0.00	0.28	
	2.88	0.14	0.28	2.14	0.07	0.19		5.34	0.67	0.36	
	0.32	0.01	0.00	5.23	0.00	0.86		4.70	0.00	0.65	
mean	2.16	0.10	0.21	2.74	0.01	0.41		5.26	0.21	0.62	
max	9.93	0.44	1.13	5.23	0.07	0.86		15.27	0.76	2.14	
min	0.19	0.00	0.00	0.78	0.00	0.06		0.60	0.00	0.12	

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll *a* not detected.

Appendix A.2.-West Fork Slate Creek chlorophylls a, b, and c density, 2011–2016.

July 2011					July 2012			July 2013				July 2014		
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor	r-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	
	2.52	0.00	0.19	1.15	0.00	0.04	2	4.70	0.00	0.74	0.3	0.00	0.01	
	4.70	0.00	0.43	0.41	0.00	0.08	1	1.39	0.00	0.16	0.1	9 0.00	0.00	
	2.78	0.00	0.26	0.53	0.00	0.02	13	3.14	0.00	2.19	0.7	5 0.00	0.05	
	3.35	0.00	0.04	0.64	0.00	0.16	4	4.38	0.00	0.47	0.8	0.00	0.00	
	4.27	0.00	0.25	3.62	0.00	0.24	1	1.28	0.00	0.11	1.6	0.00	0.19	
	4.91	0.00	0.42	0.85	0.00	0.14	3	3.10	0.00	0.50	0.2	3 0.00	0.03	
	3.95	0.00	0.27	0.96	0.01	0.07	3	3.74	0.00	0.53	0.4	1 0.00	0.00	
	3.10	0.00	0.25	0.41	0.00	0.08	2	2.03	0.00	0.33	0.3	3 0.00	0.02	
	4.38	0.00	0.39	0.60	0.00	0.12	4	5.02	0.00	0.67	1.1	8 0.00	0.13	
	5.23	0.00	0.20	0.96	0.00	0.06	3	3.40	0.00	0.36	1.8	0.00	0.15	
mean	3.92	0.00	0.27	1.01	0.00	0.10		4.22	0.00	0.61	0.7	7 0.00	0.06	
max	5.23	0.00	0.43	3.62	0.01	0.24	13	3.14	0.00	2.19	1.8	0.00	0.19	
min	2.52	0.00	0.04	0.41	0.00	0.02	1	1.28	0.00	0.11	0.1	9 0.00	0.00	

		July 2015		July 2016			
mg/m²	chlor-a	chlor-b	chlor-c		chlor-a	chlor-b	chlor-c
	1.34	0.00	0.21		7.48	0.00	1.16
	0.92	0.00	0.01		4.70	0.00	0.71
	0.77	0.02	0.03		3.22	0.00	0.25
	0.54	0.05	0.00		5.34	0.00	0.61
	0.19	-	-		2.67	0.00	0.34
	1.64	0.00	0.04		3.31	0.00	0.45
	2.35	0.00	0.21		4.27	0.00	0.44
	0.53	0.12	0.00		0.92	0.00	0.01
	0.56	0.00	0.06		10.89	0.00	1.64
	0.32	0.05	0.00		6.51	0.00	0.95
mean	0.92	0.03	0.06	-	4.93	0.00	0.66
max	2.35	0.12	0.21		10.89	0.00	1.64
min	0.19	0.00	0.00		0.92	0.00	0.01

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix A.3.–East Fork Slate Creek chlorophylls a, b, and c density, 2011–2016.

	July 2011				July 2012			July 2013			July 2014		
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	
	9.51	2.16	0.24	11.53	3.24	0.28	8.12	0.00	0.67	0.1	4 0.00	0.00	
	9.18	0.02	0.20	0.41	0.04	0.04	0.24	-	-	0.6	4 0.00	0.07	
	1.28	0.03	0.00	0.88	0.00	0.05	1.07	0.03	0.07	0.0	5 -	-	
	5.13	1.15	0.11	0.50	0.00	0.03	0.32	0.07	0.00	0.7	5 0.14	0.10	
	16.02	0.18	0.44	3.42	0.00	0.11	0.64	0.10	0.00	0.0	5 -	-	
	8.86	1.94	0.70	0.64	0.08	0.05	5.02	0.16	0.35	0.3	7 0.00	0.00	
	4.70	0.70	0.13	18.58	0.00	0.66	0.43	0.00	0.03	0.0	5 -	-	
	16.13	5.35	0.28	13.67	2.32	0.57	6.41	0.11	0.50	0.1	0.00	0.00	
	4.91	0.49	0.12	0.69	0.00	0.00	0.32	0.00	0.00	0.5	3 0.00	0.01	
	12.71	3.59	0.15	0.43	0.00	0.00	0.24	-	-	0.0	5 -	-	
mean	8.84	1.56	0.24	5.08	0.57	0.18	2.28	0.06	0.20	0.2	7 0.02	0.03	
max	16.13	5.35	0.70	18.58	3.24	0.66	8.12	0.16	0.67	0.7	5 0.14	0.10	
min	1.28	0.02	0.00	0.41	0.00	0.00	0.24	0.00	0.00	0.0	5 0.00	0.00	
	July 2015			A pril 2016			July 2016						

		July 2015			April 2016			July 2016			
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c		
	0.85	0.00	0.12	0.32	0.00	0.09	0.23	0.00	0.03		
	0.19	-	-	1.07	0.00	0.04	4.91	0.00	0.69		
	1.92	0.00	0.09	10.04	0.00	1.53	0.75	0.00	0.05		
	0.96	0.00	0.09	2.98	0.00	0.48	1.42	0.00	0.14		
	1.60	0.00	0.22	1.82	0.25	0.15	0.85	0.02	0.17		
	5.34	0.00	0.55	0.77	0.01	0.13	1.56	0.00	0.12		
	2.14	0.00	0.09	1.15	0.00	0.24	0.64	0.00	0.08		
	0.37	0.00	0.00	0.87	0.00	0.11	0.19	-	-		
	0.92	0.00	0.11	0.19			0.87	0.00	0.02		
	1.28	0.00	0.08	0.55	0.00	0.12	0.64	0.00	0.06		
mean	1.56	0.00	0.15	1.98	0.03	0.32	1.21	0.00	0.15		
max	5.34	0.00	0.55	10.04	0.25	1.53	4.91	0.02	0.69		
min	0.19	0.00	0.00	0.19	0.00	0.04	0.19	0.00	0.02		

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix A.4.–Upper Slate Creek chlorophylls a, b, and c density, 2011–2016.

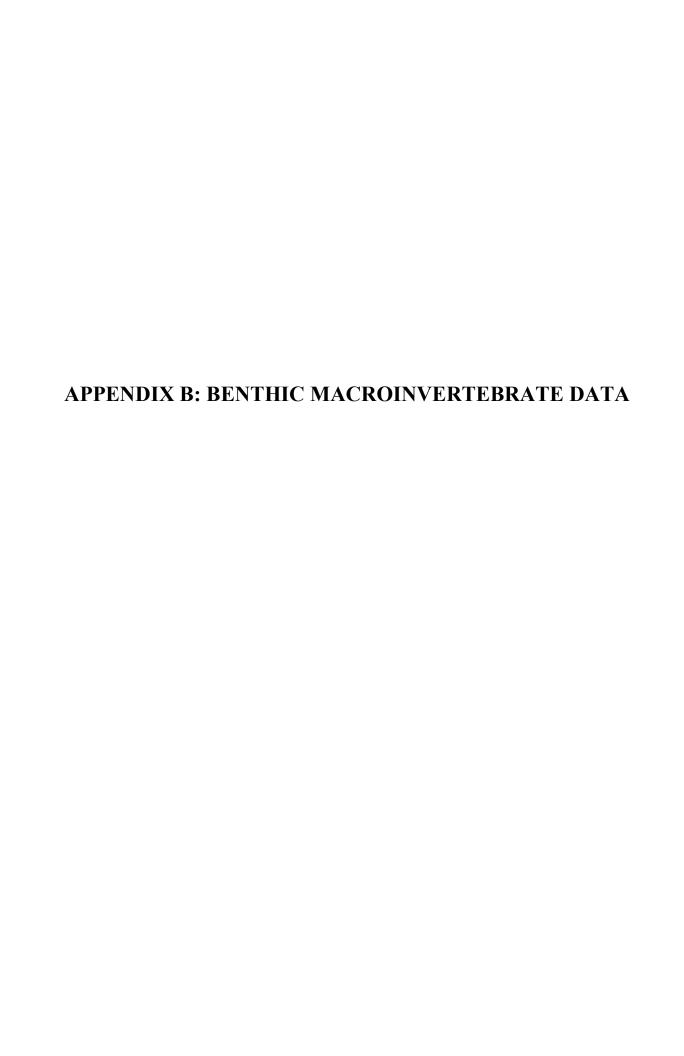
· · · · ·	July 2011				July 2012			July 2013				July 2014		
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c		chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	
	0.41	0.00	0.00	2.03	0.00	0.14		1.82	0.00	0.27	0.92	0.00	0.11	
	0.32	0.00	0.04	0.96	0.00	0.09		0.85	0.01	0.07	1.20	0.00	0.07	
	0.96	0.01	0.07	0.75	0.00	0.00		2.94	0.00	0.13	1.52	0.00	0.06	
	0.11	0.00	0.00	0.50	0.00	0.03		1.39	0.00	0.12	1.82	0.00	0.15	
	2.67	0.00	0.26	2.03	0.00	0.14		2.99	0.00	0.11	0.85	0.00	0.00	
	0.28	0.00	0.00	1.07	0.00	0.14		4.59	0.00	0.20	0.64	0.00	0.01	
	0.60	0.00	0.12	0.55	0.00	0.02		0.85	0.00	0.01	1.18	0.00	0.07	
	1.14	0.00	0.01	1.71	0.00	0.06		2.03	0.00	0.20	0.96	0.00	0.00	
	0.53	0.00	0.00	2.14	0.00	0.12		0.85	0.00	0.00	0.64	0.00	0.01	
	0.60	0.00	0.02	0.83	0.00	0.00		2.94	0.00	0.20	1.17	0.00	0.12	
mean	0.76	0.00	0.05	1.26	0.00	0.07		2.13	0.00	0.13	1.09	0.00	0.06	
max	2.67	0.01	0.26	2.14	0.00	0.14		4.59	0.01	0.27	1.82	0.00	0.15	
min	0.11	0.00	0.00	0.50	0.00	0.00		0.85	0.00	0.00	0.64	0.00	0.00	
-	July 2015				July 2016									

		July 2015			July 2016				
mg/m²	chlor-a	chlor-b	chlor-c		chlor-a	chlor-b	chlor-c		
	0.37	0.00	0.08	-	1.15	0.00	0.07		
	0.64	0.00	0.08		8.86	0.00	1.12		
	0.64	0.00	0.07		1.52	0.00	0.06		
	0.51	0.00	0.06		5.34	0.00	0.93		
	0.43	0.00	0.08		2.85	0.00	0.14		
	0.55	0.00	0.28		1.01	0.00	0.09		
	0.64	0.00	0.02		4.81	0.00	0.40		
	0.64	0.00	0.08		2.40	0.16	0.21		
	0.69	0.00	0.00		4.49	0.00	0.36		
	1.17	0.00	0.13		6.19	0.00	0.79		
mean	0.63	0.00	0.09	-	3.86	0.02	0.42		
max	1.17	0.00	0.28		8.86	0.16	1.12		
min	0.37	0.00	0.00		1.01	0.00	0.06		

Appendix A.5.–Lower Sherman Creek SP1 chlorophylls a, b, and c density, 2011–2016.

		July 2011			July 2012			July 2013			July 2014		
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	
	1.28	0.00	0.05	1.07	0.00	0.14	4.06	0.00	0.38	2.46	0.00	0.30	
	5.34	0.00	0.36	2.88	0.87	0.16	5.55	0.00	0.73	0.74	0.00	0.10	
	5.98	0.00	0.54	0.41	0.04	0.04	0.24	-	-	0.19	0.00	0.00	
	3.84	0.10	0.48	2.67	1.27	0.00	4.67	0.00	0.55	0.92	0.00	0.14	
	15.59	3.98	0.17	0.60	0.00	0.12	7.69	0.00	0.89	0.83	0.00	0.15	
	11.11	2.64	0.28	1.07	0.00	0.11	7.37	0.00	0.62	2.99	0.00	0.47	
	19.33	0.00	1.65	3.63	1.56	0.03	0.24	-	-	1.39	0.00	0.17	
	7.26	0.00	0.74	9.61	4.12	0.08	2.67	0.00	0.35	2.46	0.00	0.25	
	1.92	0.04	0.19	2.99	1.43	0.02	0.75	0.03	0.08	0.45	0.01	0.04	
	4.38	0.17	0.44	0.43	0.00	0.06	ND	ND	ND	0.96	0.00	0.16	
mean	7.60	0.69	0.49	2.54	0.93	0.08	3.69	0.00	0.51	1.34	0.00	0.18	
max	19.33	3.98	1.65	9.61	4.12	0.16	7.69	0.03	0.89	2.99	0.01	0.47	
min	1.28	0.00	0.05	0.41	0.00	0.00	0.24	0.00	0.08	0.19	0.00	0.00	
	July 2015				July 2016								

		July 2015	July 2016				
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	
	0.28	0.00	0.03	3.31	0.52	0.31	
	0.19	-	-	4.27	0.00	0.76	
	0.92	0.00	0.11	1.39	0.00	0.16	
	0.64	0.00	0.01	2.14	0.00	0.37	
	2.67	0.00	0.31	2.28	0.00	0.32	
	0.79	0.00	0.00	13.24	6.47	0.31	
	2.78	0.00	0.32	2.78	0.13	0.23	
	0.19	-	-	2.24	0.00	0.31	
	4.17	0.00	0.49	3.31	0.12	0.35	
	1.01	0.00	0.09	2.03	0.20	0.17	
mean	1.36	0.00	0.17	3.70	0.74	0.33	
max	4.17	0.00	0.49	13.24	6.47	0.76	
min	0.19	0.00	0.00	1.39	0.00	0.16	


 $\overline{\textit{Note}:}$ Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix A.6.–Lower Sherman Creek SP2 chlorophylls a, b, and c density, 2011–2016.

	July 2011			July 2012			July 2013				July 2014			
mg/m²	chlor-a	chlor-b	chlor-c	chlor-a	chlor-b	chlor-c	chl	or-a	chlor-b	chlor-c	chle	or-a	chlor-b	chlor-c
	3.10	0.00	0.26	1.05	0.04	0.12		1.07	0.00	0.14		0.74	0.00	0.10
	6.30	0.19	0.62	0.64	0.00	0.11		3.84	0.00	0.34		1.38	0.00	0.18
	4.59	0.00	0.38	0.73	0.00	0.07		0.96	0.00	0.15		2.83	0.00	0.15
	0.32	0.00	0.00	0.50	0.07	0.10		4.81	0.00	0.49		3.31	0.00	0.31
	13.88	0.00	0.54	0.34	-	-		5.77	0.00	0.78		0.75	0.00	0.06
	7.37	0.00	0.46	0.51	0.00	0.06		0.32	0.02	0.10		0.85	0.03	0.08
	1.50	0.00	0.09	0.96	0.00	0.16		4.70	0.00	0.44		0.85	0.00	0.01
	14.31	0.00	0.59	0.37	0.00	0.00		3.52	0.00	0.35		1.39	0.00	0.16
	0.85	0.00	0.01	1.28	0.00	0.09		0.53	0.00	0.02		0.43	0.01	0.04
	3.84	0.00	0.25	0.34	-	-		3.20	0.00	0.43		0.69	0.00	0.07
mean	5.61	0.02	0.32	0.67	0.01	0.09		2.87	0.00	0.32		1.32	0.00	0.12
max	14.31	0.19	0.62	1.28	0.07	0.16		5.77	0.02	0.78		3.31	0.03	0.31
min	0.32	0.00	0.00	0.34	0.00	0.00		0.32	0.00	0.02		0.43	0.00	0.01

		July 2015			July 2016				
mg/m²	chlor-a	chlor-b	chlor-c	_	chlor-a	chlor-b	chlor-c		
	0.69	0.00	0.00	-	1.50	0.00	0.17		
	0.96	0.00	0.00		2.03	0.00	0.30		
	0.85	0.00	0.11		0.43	0.00	0.13		
	1.28	0.00	0.16		2.98	0.00	0.38		
	2.14	0.00	0.24		0.96	0.00	0.09		
	3.63	0.65	0.43		1.28	0.04	0.26		
	0.96	0.07	0.03		1.71	0.00	0.22		
	2.14	0.78	1.30		1.92	0.35	0.16		
	1.07	0.00	0.14		0.41	0.00	0.08		
_	2.46	0.00	0.24	_	0.96	0.00	0.06		
mean	1.62	0.15	0.27		1.42	0.04	0.19		
max	3.63	0.78	1.30		2.98	0.35	0.38		
min	0.69	0.00	0.00		0.41	0.00	0.06		

Note: Bolded values are the spectrophotometer estimated detection limit, chlorophyll a not detected.

Appendix B.1.-Lower Slate Creek BMI data summary, 2011–2016.

	5/4/11	5/2/12	4/30/13	4/30/14	4/27/15	4/26/16
Total BMI Taxa	29	32	27	32	26	24
Total EPT Taxa	13	32 17	16	32 17	13	11
Total El T Taxa	13	17	10	17	13	11
Total BMI Counted	1,148	1,760	1,200	2,308	1,901	1,894
Ephemeroptera	85	387	400	73	196	225
Plecoptera	70	274	203	352	258	61
Trichoptera	2	8	6	17	6	3
Aquatic Diptera	862	975	503	1,711	1,268	1038
Other	129	116	88	155	173	567
% Ephemeroptera	7%	22%	33%	3%	10%	12%
% Plecoptera	6%	16%	17%	15%	14%	3%
% Trichoptera	0.2%	0.5%	0.5%	0.7%	0.3%	0.2%
% Aquatic Diptera	75%	55%	42%	74%	67%	55%
% Other	11%	7%	7%	7%	9%	30%
% EPT	14%	38%	51%	19%	24%	15%
% Chironomidae	72%	53%	35%	68%	64%	51%
Shannon Diversity Score (H)	0.51	0.69	0.85	0.64	0.70	0.65
Evenness Score (E)	0.48	0.58	0.70	0.52	0.58	0.57
Total Sample Area (m ²)	0.558	0.558	0.465	0.558	0.558	0.558
Mean BMI/m ²	2,057	3,154	2,581	4,136	3,407	3,394
±1 SD	1,046	1,849	551	3,592	2,458	1,667
Terrestrial Invertebrates	0	4	0	1	3	88
Juvenile Fish	1	0	0	1	0	0

Appendix B.2.-West Fork Slate Creek BMI data summary, 2011–2016.

	5/4/11	5/2/12	4/30/13	4/30/14	4/27/15	4/26/16
T . 1D) (I T	21	21	20	20	20	25
Total BMI Taxa	21	31	28	29	28	25
Total EPT Taxa	11	21	18	17	16	15
Total BMI Counted	280	1,015	1,365	543	1,470	820
Ephemeroptera	181	634	991	223	956	564
Plecoptera	41	166	233	150	243	55
Trichoptera	3	11	10	15	10	10
Aquatic Diptera	35	175	118	136	215	151
Other	20	29	13	19	46	40
% Ephemeroptera	65%	63%	73%	41%	65%	69%
% Plecoptera	15%	16%	17%	28%	17%	7%
% Trichoptera	1%	1%	0.7%	3%	0.7%	1%
% Aquatic Diptera	13%	17%	9%	25%	15%	18%
% Other	7%	3%	1%	3%	3%	5%
% EPT	80%	80%	90%	71%	82%	77%
% Chironomidae	10%	15%	7%	22%	12%	18%
Shannon Diversity Score (H)	0.63	0.84	0.73	0.91	0.82	0.72
Evenness Score (E)	0.78	0.71	0.61	0.79	0.71	0.69
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI/m ²	502	1,819	2,446	973	2,634	1,470
±1 SD	410	1,009	777	482	1,400	703
Terrestrial Invertebrates	2	0	0	0	1	7
Juvenile Fish	0	0	0	0	0	0

Appendix B.3.–East Fork Slate Creek BMI data summary, 2011–2016.

	5/12/11	4/27/12	4/29/13	4/30/14	4/29/15	4/25/16
Total BMI Taxa	27	33	33	24	28	21
Total EPT Taxa	15	17	17	9	16	11
Total BMI Counted	2,616	2,585	5,249	1,143	1,792	1,117
Ephemeroptera	387	490	19	9	274	227
Plecoptera	70	73	45	10	36	42
Trichoptera	28	23	66	3	14	40
Aquatic Diptera	507	547	598	454	633	398
Other	1,624	1,451	4,521	667	835	410
% Ephemeroptera	15%	19%	0.4%	0.8%	15%	20%
% Plecoptera	3%	3%	0.9%	0.9%	2%	4%
% Trichoptera	1%	0.9%	1%	0.3%	0.8%	4%
% Aquatic Diptera	19%	21%	11%	40%	35%	36%
% Other	62%	56%	86%	58%	47%	37%
% EPT	19%	23%	2%	2%	18%	28%
% Chironomidae	17%	15%	10%	35%	28%	26%
Shannon Diversity Score (H)	0.64	0.78	0.57	0.70	0.92	0.92
Evenness Score (E)	0.54	0.61	0.47	0.63	0.72	0.78
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.465	0.558
Mean BMI/m ²	4,688	4,633	9,407	2,048	3,854	2,002
±1 SD	1,081	1,325	3,830	952	837	469
Terrestrial Invertebrates	3	1	0	0	5	11
Juvenile Fish	0	0	0	0	0	0

Appendix B.4.–Upper Slate Creek BMI data summary, 2011–2016.

	5/12/11	4/27/12	4/29/13	4/28/14	4/29/15	4/25/16
		•				•0
Total BMI Taxa	33	39	34	36	31	28
Total EPT Taxa	18	21	20	20	19	15
Total BMI Counted	1,408	1,259	1,607	1,744	2,107	1,338
Ephemeroptera	368	454	492	622	622	554
Plecoptera	401	349	604	429	758	252
Trichoptera	116	48	55	44	44	104
Aquatic Diptera	248	273	338	518	517	169
Other	275	135	118	131	166	259
% Ephemeroptera	26%	36%	31%	36%	30%	41%
% Plecoptera	29%	28%	38%	25%	36%	19%
% Trichoptera	8.2%	4%	3%	3%	2%	8%
% Aquatic Diptera	18%	22%	21%	30%	25%	13%
% Other	20%	11%	7%	8%	8%	19%
% EPT	63%	68%	72%	63%	68%	68%
% Chironomidae	15%	20%	19%	28%	22%	11%
Shannon Diversity Score (H)	0.97	1.04	1.02	1.03	0.98	1.06
Evenness Score (E)	0.76	0.79	0.78	0.76	0.74	0.82
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI/m ²	2,523	2,256	2,880	3,125	3,776	2,398
±1 SD	1,173	1,321	1,049	660	1,174	520
Terrestrial Invertebrates	1	0	0	1	3	6
Juvenile Fish	0	0	0	0	0	0

Appendix B.5.–Upper Johnson Creek BMI data summary, 2011–2016.

	5/3/11	4/26/12	4/29/13	4/29/14	4/28/15	4/27/16
Total DMI Toyo	24	20	34	22	20	22
Total BMI Taxa	24	28		32	28	32
Total EPT Taxa	14	14	24	21	17	21
Total BMI Counted	2,084	2,214	2,938	1,483	1,556	2,054
Ephemeroptera	962	1,139	1,680	740	917	1160
Plecoptera	114	163	147	217	58	97
Trichoptera	59	118	95	68	137	198
Aquatic Diptera	619	586	799	407	366	476
Other	330	208	217	51	78	123
% Ephemeroptera	46%	51%	57%	50%	59%	56%
% Plecoptera	6%	7%	5%	15%	4%	5%
% Trichoptera	3%	5%	3%	5%	9%	10%
% Aquatic Diptera	30%	27%	27%	27%	24%	23%
% Other	16%	9%	7%	3%	5%	6%
% EPT	55%	64%	65%	69%	71%	71%
% Chironomidae	29%	26%	27%	26%	22%	22%
Shannon Diversity Score (H)	0.76	0.81	0.74	0.74	0.87	0.88
Evenness Score (E)	0.66	0.68	0.59	0.59	0.71	0.70
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI/m ²	3,735	3,968	5,265	2,658	2,789	3,681
±1 SD	1,918	2,305	2,512	2,017	858	1,025
Terrestrial Invertebrates	1	1	1	4	1	2
Juvenile Fish	0	0	0	0	0	0

Appendix B.6.-Lower Sherman Creek SP1 BMI data summary, 2011–2016.

	5/4/11	4/30/12	5/1/13	4/29/14	4/28/15	4/27/16
Total BMI Taxa	26	31	28	30	26	26
Total EPT Taxa	15	18	16	13	13	13
Total BMI Counted	624	1,525	1,002	1,687	921	3,816
Ephemeroptera	157	876	499	114	175	101
Plecoptera	36	103	135	97	67	41
Trichoptera	7.0	14	6	18	6	9
Aquatic Diptera	89	160	131	648	326	273
Other	335	372	231	810	347	3,392
% Ephemeroptera	25%	58%	50%	7%	19%	3%
% Plecoptera	6%	7%	13%	6%	7%	1%
% Trichoptera	1%	0.9%	0.6%	1%	1%	0.2%
% Aquatic Diptera	14%	11%	13%	38%	35%	7%
% Other	54%	24%	23%	48%	38%	89%
% EPT	32%	66%	64%	14%	27%	4%
% Chironomidae	6%	8%	12%	33%	33%	7%
Shannon Diversity Score (H)	0.76	0.74	0.85	0.71	0.84	0.32
Evenness Score (E)	0.71	0.62	0.71	0.57	0.70	0.27
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI/m ²	1,118	2,733	1,796	3,023	1,651	6,839
±1 SD	1,000	1,410	247	936	718	1,398
Terrestrial Invertebrates	1	0	14	1	14	21
Juvenile Fish	10	12	0	8	0	77

Appendix B.7.-Lower Sherman Creek SP2 BMI data summary, 2011–2016.

	5/3/11	4/30/12	4/30/13	4/29/14	4/28/15	4/27/16
Total BMI Taxa	30	36	39	28	23	23
Total EPT Taxa	17	26	25	16	13	13
Total BMI Counted	921	1,573	1,889	661	898	1,045
Ephemeroptera	548	1,143	1,049	31	163	84
Plecoptera	137	77	299	40	47	32
Trichoptera	14	26	18	7	13	10
Aquatic Diptera	143	254	289	354	315	224
Other	79	75	234	229	360	695
% Ephemeroptera	60%	73%	56%	5%	18%	8%
% Plecoptera	15%	5%	16%	6%	5%	3%
% Trichoptera	2%	2%	1%	1%	1%	1%
% Aquatic Diptera	16%	16%	15%	54%	35%	21%
% Other	8.6%	4.8%	12%	35%	40%	67%
% EPT	76%	79%	72%	12%	25%	12%
% Chironomidae	11%	15%	14%	48%	33%	20%
Shannon Diversity Score (H)	0.93	0.70	0.84	0.70	0.77	0.53
Evenness Score (E)	0.76	0.57	0.65	0.62	0.66	0.49
Total Sample Area (m ²)	0.558	0.558	0.558	0.558	0.558	0.558
Mean BMI/m ²	1,651	2,823	3,385	1,185	1,609	1,873
±1 SD	927	1,174	1,471	769	748	982
Terrestrial Invertebrates	1	2	18	1	10	4
Juvenile Fish	0	0	14	0	0	6

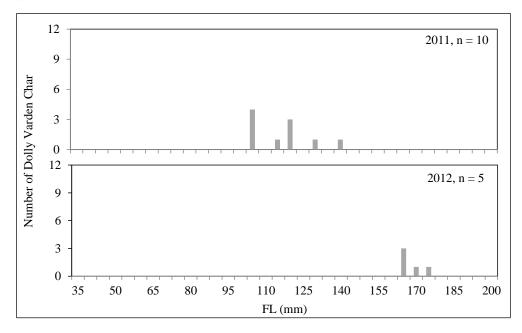
APPENDIX C: RESIDENT FISH DATA

Appendix C.1.–East Fork Slate Creek Dolly Varden char population, 2011–2016.

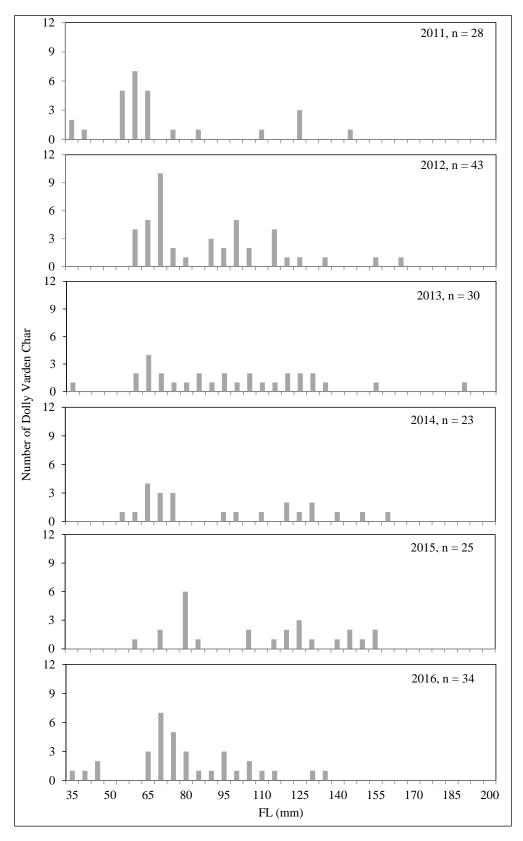
Sample	_	Numb	er of Fish	n Capture	ed	Population			
Date	FL (mm)	Set 1	Set 2	Set 3	Total	Estimate	95% CI	Precision	Power
9/1/2011	105-140	6	2	2	10	40			
8/1/2012	165-175	2	1	2	5	20			
8/27/2013		0	0	0	0	0			
8/20/2014		0	0	0	0	0			
8/17/2015		0	0	0	0	0			
8/8/2016		0	0	0	0	0			

Appendix C.2.–Upper Slate Creek Dolly Varden char population, 2011–2016.

Sample		Numb	er of Fish	n Capture	ed	Population			
Date	FL (mm)	Set 1	Set 2	Set 3	Total	Estimate	95% CI	Precision	Power
8/10/2011	35-145	14	12	2	28	120	104-136	13%	
8/2/2012	60-164	23	14	6	43	192	160-224	17%	44%
8/28/2013	35-190	21	7	2	30	120	120-120		
8/21/2014	55-160	13	4	6	23	108	76-140	30%	0.03%
8/20/2015	56-154	10	9	6	25	136	76-196	44%	0.10%
8/10/2016	33-135	18	7	9	34	168	120-216	29%	0.55%


Appendix C.3.—East Fork Slate Creek Dolly Varden char capture data and population by habitat type, 2011–2016.

	Habitat	Numb	er of Fis	h Captu	red	Population	
Year	Type	Set 1	Set 2	Set 3	Total	Estimate	95% CI
2011	Riffle	3	0	0	3	12	
2011	Pool	3	1	2	6	24	
2011	Glide	0	1	0	1	4	
2012	Riffle	0	0	1	1	4	
2012	Pool	2	1	1	4	16	
2012	Glide	0	0	0	0	0	
2013	Riffle	0	0	0	0	0	
2013	Pool	0	0	0	0	0	
2013	Glide	0	0	0	0	0	
2014	Riffle	0	0	0	0	0	
2014	Pool	0	0	0	0	0	
2014	Glide	0	0	0	0	0	
2015	Riffle	0	0	0	0	0	
2015	Pool	0	0	0	0	0	
2015	Glide	0	0	0	0	0	
2016	Riffle	0	0	0	0	0	
2016	Pool	0	0	0	0	0	
2016	Glide	0	0	0	0	0	


Appendix C.4.–Upper Slate Creek Dolly Varden char capture data and population by habitat type, 2011–2016.

	Habitat	Nı	Number of Fish Captured Population						
Year	Type	Set 1	Set 2	Set 3	Total	Estimate	95% CI		
2011	Riffle	2	2	0	4	16			
2011	Pool	11	9	1	22	88	76-100		
2011	Glide	1	1	1	3	12			
2012	Riffle	2	4	4	10	40			
2012	Pool	20	3	2	25	100	100-100		
2012	Glide	1	7	0	8	32			
2013	Riffle	4	1	0	5	20			
2013	Pool	17	5	1	23	92	92-92		
2013	Glide	0	1	1	2	8			
2014	Riffle	3	0	2	5	20			
2014	Pool	10	4	4	18	80	64-96		
2014	Glide	0	0	0	0	0			
2015	Riffle	1	2	0	3	12			
2015	Pool	9	7	5	21	108	64-152		
2015	Glide	0	0	1	1	4			
2016	Riffle	1	0	2	3	12			
2016	Pool	15	7	7	29	140	100-180		
2016	Glide	2	0	0	2	8			

Appendix C.5.–Length frequency diagram of Dolly Varden char captured in East Fork Slate Creek, 2011–2012.

Appendix C.6.–Length frequency diagram of Dolly Varden char captured in Upper Slate Creek, 2011–2016.

Appendix C.7.–Length, weight, and condition data for Dolly Varden char captured in Upper Slate Creek, 2016.

-			Condition
Pass No.	FL (mm)	Weight (g)	Factor
1	76	4.5	1.0
1	33	1.5	ND
1	104	13.9	1.2
1	110	14.5	1.1
1	101	10.6	1.0
1	114	15	1.0
1	63	3.5	1.4
1	69	3.9	1.2
1	80	6.7	1.3
1	79	5.8	1.2
1	66	3.8	1.3
1	90	7.8	1.1
1	69	3.9	1.2
1	71	3.9	1.1
1	69	3.5	1.1
1	82	4.8	0.9
1	66	3.2	1.1
1	75	4.8	1.1
2	44	1.6	1.9
2	94	8	1.0
2	97	9.1	1.0
2	93	6.4	0.8
2	135	26.8	1.1
2	62	2.8	1.2
3	64	3.6	1.4
	71	4.7	1.3
3	126	20.4	1.0
3	68	3.8	1.2
3	75	4.5	1.1
3	44	1.4	1.6
3	37	1.7	ND
3	91	9.1	1.2
3	69	4.7	1.4
3	72	4.8	1.3

Appendix C.8.–Mean Dolly Varden char condition factor by sample reach, 2011–2016.

Site	2011	2012	2013	2014	2015	2016
East Fork Slate Creek	1.1	1.1	ND	ND	ND	ND
Upper Slate Creek	1.1	1.0	1.0	1.0	0.9	1.2

APPENDIX D: ADULT SALMON DATA	

Appendix D.1.–2016 Lower Slate Creek weekly adult pink salmon count by reach.

		7/19	9/2016			7/20	6/2016			8/2/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100 m	0	0	0	0	0	0	0	0	0	0	0	0	
100-200 m	0	0	0	0	0	0	0	0	0	0	0	0	
200-300 m	0	0	0	0	0	0	0	0	0	0	0	0	
300-400 m	0	0	0	0	0	0	0	0	0	0	0	0	
400-500 m	0	0	0	0	0	0	0	0	0	0	0	0	
500-600 m	0	0	0	0	0	0	0	0	0	0	0	0	
600-700 m	0	0	0	0	0	0	0	0	2	0	1	0	
700-800 m	0	0	0	0	0	0	0	0	0	0	0	0	
800-900 m	0	0	0	0	0	0	0	0	0	0	0	0	
900-Falls	ND	ND	ND	ND	0	0	0	0	0	0	0	0	
Total	0	0	0	0	0	0	0	0	2	0	1	0	

		8/9	/2016			8/16/2016				8/23/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100 m	0	0	0	0	10	8	9	0	2	2	2	0	
100-200 m	0	0	0	0	40	40	40	0	10	10	10	0	
200-300 m	0	0	0	0	10	10	10	0	0	0	0	1	
300-400 m	0	0	0	0	0	0	0	0	0	0	0	0	
400-500 m	0	0	0	0	4	4	4	0	0	0	0	0	
500-600 m	0	0	0	0	1	1	1	0	0	0	0	0	
600-700 m	0	0	0	0	0	0	0	0	0	0	0	0	
700-800 m	0	0	0	0	0	0	0	0	0	0	0	0	
800-900 m	0	0	0	0	0	1	0	0	0	0	0	0	
900-Falls	0	0	0	0	0	0	0	0	0	0	0	0	
Total	0	0	0	0	65	64	64	0	12	12	12	1	

		8/29	0/2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
0-100 m	0	0	0	0
100-200 m	2	2	2	0
200-300 m	0	0	0	0
300-400 m	0	0	0	0
400-500 m	0	0	0	0
500-600 m	ND	ND	ND	ND
600-700 m	ND	ND	ND	ND
700-800 m	ND	ND	ND	ND
800-900 m	ND	ND	ND	ND
900-Falls	ND	ND	ND	ND
Total	2	2	2	0

Appendix D.2.–2016 Lower Slate Creek weekly adult chum salmon count by reach.

		7/19	9/2016			7/2	6/2016			8/2/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100 m	0	0	0	0	0	0	0	0	0	0	0	0	
100-200 m	0	0	0	0	0	0	0	0	0	0	0	0	
200-300 m	0	0	0	0	0	0	0	0	0	0	0	0	
300-400 m	0	0	0	0	0	0	0	0	0	0	0	0	
400-500 m	0	0	0	0	0	0	0	0	0	0	0	0	
500-600 m	0	0	0	0	0	0	0	0	0	0	0	0	
600-700 m	0	0	0	0	0	0	0	0	3	4	3	0	
700-800 m	0	0	0	0	0	0	0	0	2	0	1	0	
800-900 m	0	0	0	0	0	0	0	0	0	0	0	0	
900-Falls	ND	ND	ND	ND	0	0	0	0	0	0	0	0	
Total	0	0	0	0	0	0	0	0	5	4	4	0	

		8/9	/2016			8/16/2016				8/23/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
0-100 m	5	5	5	0	5	6	5	0	0	0	0	0	
100-200 m	2	2	2	0	5	6	5	0	9	9	9	0	
200-300 m	0	0	0	0	0	0	0	0	6	6	6	0	
300-400 m	0	0	0	0	0	0	0	0	5	5	5	0	
400-500 m	2	5	3	0	0	0	0	0	0	0	0	0	
500-600 m	0	0	0	0	0	0	0	0	0	0	0	0	
600-700 m	1	0	0	0	0	0	0	0	0	0	0	0	
700-800 m	0	0	0	0	0	0	0	0	0	0	0	0	
800-900 m	0	0	0	0	0	0	0	0	0	0	0	0	
900-Falls	0	0	0	0	0	0	0	0	0	0	0	0	
Total	10	12	10	0	10	12	10	0	20	20	20	0	

		8/29	0/2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
0-100 m	0	0	0	0
100-200 m	1	1	1	0
200-300 m	0	0	0	0
300-400 m	0	0	0	0
400-500 m	0	0	0	0
500-600 m	ND	ND	ND	ND
600-700 m	ND	ND	ND	ND
700-800 m	ND	ND	ND	ND
800-900 m	ND	ND	ND	ND
900-Falls	ND	ND	ND	ND
Total	1	1	1	0

Appendix D.3.–2016 Lower Slate Creek weekly adult coho salmon count by reach.

	9/2	8/2016	10/	5/2016	10/1	2/2016	10/2	0/2016	10/26/2016	
Stream Reach	Obs.	Carcass	Obs.	Carcass	Obs.	Carcass	Obs.	Carcass	Obs.	Carcass
0-100 m	0	0	0	0	0	0	0	0	0	0
100-200 m	0	0	0	0	0	0	0	0	0	0
200-300 m	0	0	0	0	0	0	0	0	0	0
300-400 m	0	0	0	0	0	0	0	0	0	0
400-500 m	0	0	0	0	0	0	2	0	0	0
500-600 m	0	0	0	0	0	0	0	0	0	0
600-700 m	0	0	0	0	0	0	0	0	0	0
700-800 m	0	0	0	0	0	0	0	0	0	0
800-900 m	0	0	0	0	0	0	0	0	0	0
900-Falls	0	0	0	0	ND	ND	0	0	0	0
Total	0	0	0	0	0	0	2	0	0	0

Appendix D.4.–2016 Lower Johnson Creek weekly adult pink salmon count by reach.

		7/18/	2016			7/25/	2016		8/1/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	0	0	0	0	0	0	0	0
Trap-Site #4	0	0	0	0	2	0	1	0	100	50	75	0
Site #4-Site #7	0	0	0	0	3	2	2	0	60	80	70	0
Site #7-Site #10	0	0	0	0	0	0	0	0	11	3	7	0
Site #10-PH	0	0	0	0	0	6	3	0	0	4	2	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	5	8	6	0	171	137	154	0

		8/8/2	2016	•		8/15/2016				8/22/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0	
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0	
JM-Trap Site	0	10	5	0	1	0	0	0	0	0	0	0	
Trap-Site #4	0	100	50	0	0	0	0	0	68	68	68	0	
Site #4-Site #7	46	70	58	0	5	10	7	0	27	27	27	2	
Site #7-Site #10	2	0	1	0	1	11	6	0	0	0	0	4	
Site #10-PH	0	0	0	0	0	5	2	0	0	0	0	0	
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0	
LF-Site #15	13	10	11	0	0	0	0	0	0	0	0	0	
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0	
Total	61	190	125	0	7	26	15	0	95	95	95	6	

		8/29/	2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0
Lace-JM	0	0	0	0
JM-Trap Site	0	0	0	0
Trap-Site #4	30	20	25	0
Site #4-Site #7	0	0	0	0
Site #7-Site #10	3	13	8	0
Site #10-PH	0	0	0	0
PH-LF	0	0	0	0
LF-Site #15	0	0	0	0
Site #15-Falls	0	0	0	0
Total	33	33	33	0

Appendix D.5.–2016 Lower Johnson Creek weekly adult chum salmon count by reach.

		7/18	3/2016			7/25/	2016			8/1/2	2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	0	0	0	0	0	0	0	0
Trap-Site #4	0	0	0	0	0	1	0	0	0	0	0	0
Site #4-Site #7	0	0	0	0	0	8	4	0	2	2	2	0
Site #7-Site #10	0	0	0	0	7	0	3	0	0	0	0	0
Site #10-PH	0	0	0	0	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	7	9	7	0	2	2	2	0

		8/8/	/2016			8/15/	2016			8/22/	2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0	0	0	0	0	0	0	0	0
Lace-JM	0	0	0	0	0	0	0	0	0	0	0	0
JM-Trap Site	0	0	0	0	7	5	6	0	0	0	0	0
Trap-Site #4	4	2	3	0	1	0	0	0	0	0	0	0
Site #4-Site #7	2	0	1	2	10	3	6	0	0	0	0	0
Site #7-Site #10	0	0	0	0	6	10	8	0	0	0	0	0
Site #10-PH	0	0	0	0	0	0	0	0	0	0	0	0
PH-LF	0	0	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	0	0	0	0	0	0
Site #15-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	6	2	4	2	24	18	20	0	0	0	0	0

		8/29	/2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass
Con-Lace	0	0	0	0
Lace-JM	0	0	0	0
JM-Trap Site	0	0	0	0
Trap-Site #4	0	0	0	0
Site #4-Site #7	5	3	4	0
Site #7-Site #10	5	0	2	0
Site #10-PH	0	0	0	0
PH-LF	0	0	0	0
LF-Site #15	0	0	0	0
Site #15-Falls	0	0	0	0
Total	10	3	6	0

 $Appendix\ D.6.-2016\ Lower\ Johnson\ Creek\ weekly\ adult\ coho\ salmon\ count\ by\ reach.$

	9/2	8/2016	10/	5/2016	10/1	2/2016	10/2	20/2016	10/2	26/2016
Stream Reach	Obs.	Carcass								
Con-Lace	ND	ND	ND	ND	0	0	ND	ND	ND	ND
Lace-JM	ND	ND	ND	ND	0	0	ND	ND	ND	ND
JM-Trap Site	1	0	0	0	0	0	0	0	0	0
Trap-Site #4	0	0	0	0	0	0	1	0	1	0
Site #4-Site #7	0	0	0	0	0	0	3	0	1	0
Site #7-Site #10	0	0	0	0	0	0	1	0	1	0
Site #10-PH	1	0	0	0	0	0	5	0	7	0
PH-LF	0	0	0	0	0	0	0	0	0	0
LF-Site #15	0	0	0	0	0	0	2	0	0	1
Site #15-Falls	0	0	0	0	0	0	0	0	0	0
Total	2	0	0	0	0	0	12	0	10	1

Appendix D.7.–2016 Lower Sherman Creek weekly adult pink salmon count by reach.

		7/19	9/2016			7/25	5/2016			8,	/2/2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-50 m	0	0	0	0	0	0	0	0	0	0	0	0
50-100 m	0	0	0	0	0	0	0	0	0	0	0	0
100-150 m	0	0	0	0	0	0	0	0	0	0	0	0
150-200 m	0	0	0	0	0	0	0	0	0	0	0	0
200-250 m	0	0	0	0	0	0	0	0	0	0	0	0
250-300 m	0	0	0	0	0	0	0	0	0	0	0	0
300-350 m	0	0	0	0	0	0	0	0	0	0	0	0
350-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0

		8/9/2016				8/15/	2016		8/22/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-50 m	0	0	0	0	0	0	0	0	0	0	0	0
50-100 m	0	0	0	0	0	0	0	0	9	8	8	0
100-150 m	0	0	0	0	0	0	0	0	1	3	2	0
150-200 m	0	0	0	0	ND	ND	ND	ND	6	7	6	0
200-250 m	0	0	0	0	ND	ND	ND	ND	2	2	2	0
250-300 m	0	0	0	0	ND	ND	ND	ND	3	3	3	0
300-350 m	0	0	0	0	ND	ND	ND	ND	3	3	3	0
350-Falls	0	0	0	0	ND	ND	ND	ND	0	0	0	0
Total	0	0	0	0	0	0	0	0	24	26	24	0

		8/29/2016										
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass								
0-50 m	0	0	0	0								
50-100 m	0	0	0	0								
100-150 m	0	4	2	0								
150-200 m	0	0	0	0								
200-250 m	0	0	0	0								
250-300 m	0	0	0	0								
300-350 m	0	0	0	0								
350-Falls	0	0	0	0								
Total	0	4	2	0								

Appendix D.8.–2016 Lower Sherman Creek weekly adult chum salmon count by reach.

	7/19/2016					7/25	5/2016			8,	/2/2016	
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-50 m	0	0	0	0	0	0	0	0	0	0	0	0
50-100 m	0	0	0	0	0	0	0	0	0	0	0	0
100-150 m	0	0	0	0	0	0	0	0	0	0	0	0
150-200 m	0	0	0	0	0	0	0	0	0	0	0	0
200-250 m	0	0	0	0	0	0	0	0	0	0	0	0
250-300 m	0	0	0	0	0	0	0	0	0	0	0	0
300-350 m	0	0	0	0	0	0	0	0	0	0	0	0
350-Falls	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0

		8/9/2016				8/15/	2016		8/22/2016			
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass	Obs. 1	Obs. 2	Mean	Carcass
0-50 m	0	0	0	0	0	0	0	0	0	0	0	0
50-100 m	0	0	0	0	0	0	0	0	0	0	0	0
100-150 m	0	0	0	0	0	0	0	0	0	0	0	0
150-200 m	0	0	0	0	ND	ND	ND	ND	2	2	2	0
200-250 m	0	0	0	0	ND	ND	ND	ND	0	0	0	0
250-300 m	0	0	0	0	ND	ND	ND	ND	0	0	0	0
300-350 m	0	0	0	0	ND	ND	ND	ND	4	3	3	0
350-Falls	0	0	0	0	ND	ND	ND	ND	0	0	0	0
Total	0	0	0	0	0	0	0	0	6	5	5	0

		8/29/2016										
Stream Reach	Obs. 1	Obs. 2	Mean	Carcass								
0-50 m	0	0	0	0								
50-100 m	0	0	0	0								
100-150 m	0	0	0	0								
150-200 m	0	0	0	0								
200-250 m	0	0	0	0								
250-300 m	0	0	0	0								
300-350 m	0	0	0	0								
350-Falls	0	0	0	0								
Total	0	0	0	0								

Appendix D.9.-Lower Slate Creek adult pink salmon count by statistical week, 2011-2016.

Statistical						
Week No.	2011	2012	2013	2014	2015	2016
29	ND	0	0	0	ND	ND
30	ND	0	7	0	12	0
31	0	364	66	2	487	0
32	371	1,106	604	14	1,769	1
33	765	3,152	864	13	1,783	0
34	1,396	2,331	1,199	12	1,543	64
35	1,649	318	472	0	850	12
36	1,816	1	97	ND	527	2
37	232	0	27	ND	575	ND
38	46	ND	1	ND	32	ND
39	0	ND	ND	ND	2	ND

Appendix D.10.-Lower Johnson Creek adult pink salmon count by statistical week, 2011-2016.

Statistical						
Week No.	2011	2012	2013	2014	2015	2016
29	ND	0	59	ND	ND	ND
30	1	73	200	44	4,512	0
31	181	411	2,250	48	568	6
32	1,893	753	1,456	84	17,517	154
33	3,850	1,698	1,873	2	19,028	125
34	5,264	1,816	1,557	11	5,444	15
35	1,352	198	545	0	2,057	95
36	3,713	60	149	0	1,238	33
37	672	7	97	ND	702	ND
38	438	0	ND	ND	249	ND
39	145	ND	ND	ND	10	ND

Appendix D.11.-Lower Sherman Creek adult pink salmon count by statistical week, 2011-2016.

Statistical						
Week No.	2011	2012	2013	2014	2015	2016
29	ND	0	2	ND	ND	ND
30	1	2	164	0	120	0
31	301	9	860	6	38	0
32	774	97	979	40	348	0
33	1,051	285	765	10	723	0
34	399	521	549	4	334	0
35	159	521	785	10	0	24
36	873	145	624	0	413	2
37	418	25	232	ND	648	ND
38	612	3	21	ND	159	ND
39	36	ND	ND	ND	15	ND

APPENDIX E: SPAWN	ING SUBSTRATE	DATA

Appendix E.1.-Lower Slate Creek SP1 pink salmon spawning substrate data, 2011–2016.

Sample	Sample		Volu	me (mL/I	L) Retain	ed Each	Sieve (m	m)			
Date	No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	GMPS
08/17/11	1	0	0	470	260	340	425	225	20	22.0	9.8
08/17/11	2	0	70	460	250	200	280	100	25	8.0	14.0
08/17/11	3	525	280	240	210	290	440	100	70	20.5	12.2
08/17/11	4	0	0	250	340	495	1425	525	55	68.0	5.2
07/09/12	1	1,050	140	140	280	190	395	95	15	24.0	10.6
07/09/12	2	0	0	200	225	140	325	140	15	24.0	8.2
07/09/12	3	0	515	310	225	250	580	240	27	65.0	12.8
07/09/12	4	0	570	510	260	290	750	435	53	54.0	11.8
07/02/13	1	0	400	460	430	320	365	145	25	66.0	15.4
07/02/13	2	0	150	400	250	245	515	225	36	53.0	9.8
07/02/13	3	0	800	325	320	255	445	205	25	60.0	18.0
07/02/13	4	0	275	565	385	245	495	250	19	28.0	13.5
07/01/14	1	600	420	375	225	235	320	165	22	57.0	15.5
07/01/14	2	0	50	350	300	175	225	25	7.5	41.0	14.0
07/01/14	3	0	100	510	465	275	420	250	38	52.0	11.0
07/01/14	4	400	275	260	220	225	375	225	19	51.0	11.2
07/06/15	1	0	75	300	350	325	350	325	70	42.0	8.2
07/06/15	2	0	225	350	400	325	525	300	24	20.5	10.8
07/06/15	3	0	150	475	150	150	200	50	6	6.5	19.6
07/06/15	4	0	275	400	225	275	375	150	16	17.0	14.6
07/05/16	1	0	175	600	300	375	625	100	25	34.0	12.8
07/05/16	2	0	500	375	375	300	700	100	50	26.0	14.6
07/05/16	3	0	275	300	475	725	500	100	25	15.0	12.9
07/05/16	4	0	100	725	250	300	500	125	25	15.0	13.9

Note: GMPS = Geometric mean particle size.

Appendix E.2.-Lower Slate Creek SP2 pink salmon spawning substrate data, 2011–2016.

Sample	Sample		Volu	me (mL/	L) Retain	ed Each S	Sieve (mr	n)			
Date	No.	101.6	50.8	25.4	12.7	6.35	1.68	0.42	0.15	Imhoff	GMPS
08/17/11	1	1050	130	305	210	205	350	200	20	11.5	11.0
08/17/11	2	0	120	320	405	335	740	415	85	53.0	7.3
08/17/11	3	0	400	350	295	290	540	200	40	17.5	13.4
08/17/11	4	0	100	450	580	320	390	160	15	25.0	12.8
07/09/12	1	0	250	380	270	260	475	195	23	46.5	11.8
07/09/12	2	600	75	395	295	180	375	135	15	18.5	12.0
07/09/12	3	0	450	340	370	340	590	295	30	18.0	12.8
07/09/12	4	0	0	320	460	285	545	300	28	16.5	8.3
07/02/13	1	0	310	490	440	505	640	410	35	107.5	9.8
07/02/13	2	0	420	270	240	215	560	150	34	42.0	13.1
07/02/13	3	0	550	885	375	290	570	290	45	107.8	15.0
07/02/13	4	0	785	230	340	240	580	330	30	46.5	14.8
07/01/14	1	0	1225	450	495	305	760	300	12	110.0	17.7
07/01/14	2	0	450	250	250	200	300	100	11	65.0	16.5
07/01/14	3	0	850	480	200	175	490	175	30	106.0	18.4
07/01/14	4	0	150	350	200	225	300	120	15	20.0	13.3
07/06/15	1	0	75	175	325	425	475	50	6	5.5	10.7
07/06/15	2	500	825	225	225	175	250	50	11	8.0	28.9
07/06/15	3	300	225	500	200	175	300	50	15	21.5	18.1
07/06/15	4	275	100	200	200	150	225	100	22	9.0	12.2
07/05/16	1	0	300	275	400	350	525	100	25	26.0	13.1
07/05/16	2	0	0	200	600	575	550	150	25	30.0	9.0
07/05/16	3	0	0	100	1150	450	650	100	25	26.0	10.1
07/05/16	4	125	275	575	525	450	475	150	25	39.0	14.3

Note: GMPS = Geometric mean particle size.

AP	PENDIX F: S	SEDIMENT 1	DATA AND	LAB REPO	RTS

Appendix F.1.–Sediment sample compositions, 2011–2016.

		Particle Si	ize Data					
				% Coarse		% Total	Total	% Total
Sample				material	% Total	Volatile	Sulfide	Organic
Date	% Clay	% Silt	% Sand	(> 2 mm)	Solids	Solids	(mg/kg)	Carbon
Lower Slate Creek								
10/03/11	2.0	4.0	94.0	0.4	78.00	3.38	ND	2.04
07/03/12	2.0	0.0	98.0	0.1	79.22	3.37	ND	1.67
07/02/13	2.0	2.0	96.0	0.0	74.57	1.63	ND	1.67
07/28/14	2.3	3.8	91.8	0.9	75.3	3.28	<1.3	0.58
07/06/15	1.8	3.1	72.2	22.8	83.5	ND	<1.2	0.473
07/05/16	0.0	23.1	55.1	21.8	70.3	7.70	<2.5	0.585
East Fork Slate Cre	ek							
10/03/11	10.0	4.0	86.0	1.7	60.17	7.81	ND	11.00
07/10/12	40.0	34.0	26.0	0.0	23.72	28.54	ND	16.70
07/01/13	6.0	12.0	82.0	0.0	43.66	13.30	ND	18.30
07/30/14	3.8	21.1	75.0	0.1	65.5	6.21	<1.5	1.84
07/07/15	2.3	6.9	82.3	8.5	76.2	ND	<1.3	0.792
07/06/16	3.5	24.8	53.7	18.0	21.0	31.40	< 6.8	13.0
Upper Slate Creek								
10/06/11	4.0	2.0	94.0	0.0	72.10	4.12	ND	5.46
07/02/12	2.0	0.0	98.0	0.3	79.58	2.90	ND	3.74
07/01/13	4.0	0.0	96.0	0.2	74.21	2.73	ND	5.50
07/30/14	4.3	8.2	87.5	0.0	72.4	3.88	<1.4	0.87
07/07/15	1.5	0.2	31.9	66.3	76.5	ND	<1.3	1.04
07/06/16	0.0	2.9	73.1	24.0	62.9	5.00	<2.2	2.14
Lower Johnson Cre	ek							
10/03/11	2.0	2.0	96.0	0.0	74.28	2.01	ND	0.89
07/02/12	8.0	0.0	92.0	0.0	77.67	2.55	ND	1.19
07/01/13	2.0	2.0	96.0	0.3	73.21	0.90	ND	1.08
07/30/14	2.9	4.8	91.4	0.2	73.7	1.93	<1.4	0.26
07/06/15	0.4	1.1	41.9	56.6	80.0	ND	<1.3	0.376
08/08/16	5.1	28.1	66.8	0.0	71.9	2.40	<2.5	0.422
Lower Sherman Cre	eek							
10/04/11	2.0	2.0	96.0	0.1	73.15	2.75	ND	0.54
07/03/12	4.0	0.0	96.0	0.1	78.55	3.05	ND	0.82
07/01/13	2.0	2.0	96.0	0.6	75.66	0.75	ND	0.61
07/28/14	3.4	6.5	89.9	0.3	76.7	2.50	<1.3	0.35
07/07/15	1.8	3.0	86.1	9.0	76.2	ND	<1.3	0.399
07/06/16	0.1	0.9	71.19	27.8	80.5	3.10	<2.4	0.322

Appendix F.2.–Sediment sample metals, As, and Se concentrations, 2011–2016.

Sample				Con	centration	(mg/kg	dry weigh	nt)			
Date	Ag	Al	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
Lower Slate Creek											
10/03/11	0.134	13,600	16.2	1.46	29.4	56.7	0.0502	47.4	7.79	0.720	220
07/03/12	0.145	13,600	9.31	1.22	32.0	50.7	0.0994	43.2	8.45	< 0.170	200
07/02/13	0.168	12,300	23.7	1.29	94.5	56.7	0.0402	73.4	9.14	1.94	205
07/28/14	0.08	12,000	20.1	1.21	20.0	51.1	0.06	40.8	8.78	1.3	189
07/06/15	0.07	12,000	14.9	0.53	18.9	39.1	0.04	30.0	6.86	0.7	131
07/05/16	0.079	12,800	17.0	0.735	20.4	39.8	0.057	35.2	7.16	1.3	173
East Fork Slate Cre	ek										
10/03/11	0.233	20,100	30.0	20.9	29.5	88.4	0.0692	143	8.50	1.41	1,360
07/10/12	0.513	15,300	24.0	23.2	38.9	159.0	0.3270	153	14.2	0.934	1,490
07/01/13	0.334	13,900	42.2	13.9	32.7	73.4	0.0774	79.8	12.5	4.79	844
07/30/14	0.14	13,300	39.1	12.1	14.6	55.7	0.04	85.3	6.94	2.4	812
07/07/15	0.12	12,300	22.3	5.87	15.1	46.7	0.05	46.8	4.48	1.7	333
07/06/16	0.190	16,500	51.5	8.20	16.5	59.5	0.109	86.1	5.54	3.1	634
Upper Slate Creek											
10/06/11	0.120	22,500	17.9	0.722	127	53.4	< 0.0489	87.5	3.37	0.809	130
07/02/12	0.132	20,300	14.4	0.776	125	55.4	0.0625	78.4	4.05	0.606	134
07/01/13	0.131	14,600	13.5	0.750	101	44.6	< 0.0380	55.0	2.70	3.21	105
07/30/14	0.06	14,900	19.2	0.69	84.2	45.8	0.03	55.7	2.86	1.8	111
07/07/15	0.08	14,500	14.2	0.76	92.2	47.0	0.11	54.0	3.17	2.3	109
07/06/16	0.092	14,000	18.0	0.507	71.7	37.0	0.051	48.5	2.69	2.1	111
Lower Johnson Cre	ek										
10/03/11	0.164	13,100	16.2	0.238	31.5		< 0.0386	27.3	9.76	< 0.181	93.3
07/02/12	0.342	13,100	12.8	0.250	35.5	76.8	0.119	23.4	9.45	< 0.167	97.3
07/01/13	0.269	10,300	11.9	0.492	24.4		< 0.0354	15.7	8.00	< 0.163	121
07/30/14	0.32	10,300	16.5	0.16	22.2	68.2	0.02	16.9	10.9	< 0.5	83.4
07/06/15	0.16	10,900	12.5	0.15	18.1	71.1	< 0.02	17.7	8.04	< 0.8	79.7
08/08/16	0.574	9,470	13.0	0.150	18.9	76.3	0.020	15.1	8.41	< 0.57	65.7
Lower Sherman Cre	eek										
10/04/11	0.137	18,200	28.9	0.389	46.2	94.0	< 0.0455	45.9	6.70	< 0.178	110
07/03/12	0.289	17,900	24.3	0.578	51.4	79.1	0.0681	40.2	8.43	< 0.174	128
07/01/13	0.306	15,400	25.4	0.390	37.4		< 0.0384	30.9	7.39	1.77	111
07/28/14	0.14	14,900	27.9	0.360	33.6	68.4	0.03	31.1	6.97	1.2	119
07/07/15	0.25	17,500	37.0	0.32	30.9	70.8	0.02	38.0	11.0	2.0	134
07/06/16	0.097	13,800	19.9	0.388	27.5	72.5	< 0.020	32.9	6.6	1.1	123

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222 **F**:+1 360 636 1068

www.alsglobal.com

September 23, 2016

Analytical Report for Service Request No: K1607834

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: Coeur AK Biomonitoring

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory July 13, 2016 For your reference, these analyses have been assigned our service request number **K1607834**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer	
Louisiana DEQ	mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	
Oregon – DEQ (NELAP)	yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1607834

Project: Coeur AK Biomonitoring Date Received: 07/13/16

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Four sediment samples were received for analysis at ALS Environmental on 07/13/16. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Total Volatile Solids by EPA Method 160.4 Modified and Total Sulfide by PSEP:

All samples were received past holding time or with insufficient time remaining. The analysis was performed as soon as possible after receipt by the laboratory. The data was flagged to indicate the holding time violation.

No other anomalies associated with the analysis of these samples were observed.

Total Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Aluminum for sample Lower Slate Creek were not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

Approved by_____

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

CHAIN OF CUSTODY 70615

001	 	 	

	K1603034
SR#_	11,40,07
COC Set_	of
000#	

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068

			*								www.	alsglo	bal.co	om					Page 1 of 1
Project Name O CW AV Blomonitar Project Manager	Project N	umber:				5	140	28D	9	2081	G666								
Gompany the Kanouse	· · · · ·				SS S	a .	 	1		Γ	<u> </u>	19	1	1					
Company Maska/AK Dept Agest 3rd St., Dough			iame_		OF CONTAINERS	Sulfide / PSEP Sulfide	1 00.1			- Ze		7							
			() of loc	LA 6-11	NO.	SEF	EP 1		١.	art Si	S.	لإرا							
Phone 90 7 405 - 4290 Sampler Signature	Sampler F	· Kanouse Printed Name	(womas	ka.gov	R OF (fide / F	C/PS	_D	etais T	22 / Pa	diffed /	3							
KaleKanous	Ka	te Kano			NUMBER	PSEP Su	PSEP TOC / PSEP TOC	7471B / Hg	200.8 / Metals T	ASTM D422 / Part Size	160,3 Modified / TS	100.4 mod		8	4	و	Remarks		
CLIENT SAMPLE ID	LABID	SAMPI Date	LING Time	Matrix															
1. Lower Slake Creek		7/5/16	0900		3	X	Х	X	X	Х	X	X							
2. East Fork Slate Creek		7/6/16	1300		3	X	X	У	×	X	乂	X							
3. Upper Slate Creek		7/6/16	1500		3	火	X.	X	X	X	乂	X							
4 Kolon Torreson Commerce	LLZ	140100	1000	N	30	XZ	X	W	XV	又	Æ.	V	2			2	rr		
5 Lower Sherman Creek		7/4/16	1000		3	X	X.	×	X	X	X	χ.							
6.																			
7.																			
8.																			
9.																			
10.																			
Report Requirements		ice Inforr	mation													2	Circle which metals ar	re to be analyzed	
✓ I. Routine Report: Method Blank, Surrogate, as required	P.O.#_ Bill To:	Coeur +	Maska						\ <u>-</u>	_						_			a Se Sr TI Sn V Zn Hg
✓ II. Report Dup., MS, MSD				- <u>L</u>								Sb	Ba	Ве					Na Se Sr Tl Sn V Zn Hg
as required	Turnaro	und Requ	uiremer	nts S	pecial	Instr	uctio	ons/C	Comr	neni	s:				*Inc	dicat	e State Hydroca	arbon Procedure: AK CA WI	Northwest Other(Circle One)
III. CLP Like Summary (no raw data)	24 5 [hr Day	48 hr.																
IV. Data Validation Report	_k Sta	andard																	
V. EDD		Requested Report D	Date																
Relinquished By:	5	Received B	y:			inqı	iish	ed E	Зу:				F	Rece	eive	d By		Relinquished By:	Received By:
Signature Kun	Signature	1015		Signa							Si	gnati	ure					nature	Signature
Printed Name Kate Kanouse		me KUS	0	Printe	d Na	me							i Nai	ne				ited Name	Printed Name
ADFIG	7/13	140	940	Firm	ne (<u></u>	Fir		·	<u></u>			Firm		Firm
Date/Time 1/11/14 0800	Date/Timé			Date/	Time						Da	te/T	ime				Date	e/Time	Date/Time

Cooler Receipt and Preservation Form Service Request K16 Opened: By: Unloaded: Fed Ex Samples were received via? **USPS UPS** DHL**PDX** Courier Hand Delivered Cooler Other Samples were received in: (circle) Box Envelope NA NA If yes, how many and where? Were custody seals on coolers? N If present, were custody seals intact? Ν If present, were they signed and dated? Ν Cooler/COC ID Tracking Number Corr. Thermometer Corrected. Raw Corrected Cooler Temp Factor ID NA Filed Temp Blank Temp Blank **Cooler Temp** 1. R Bubble Wrap Gel Packs Packing material: Inserts Baggies Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA N Did all bottles arrive in good condition (unbroken)? Indicate in the table below. NA N Were all sample labels complete (i.e analysis, preservation, etc.)? NA N Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N Were appropriate bottles/containers and volumes received for the tests indicated? NA N 10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below N Were VOA vials received without headspace? Indicate in the table below. Y N Y Was C12/Res negative? Ν Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Out of Head-Volume Reagent Lot Temp space Broke Reagent Sample ID **Bottle Type** рΗ added Number Initials Time

 	 	 			 				 ــــــ

					 -	***************************************			
								Page	
		Pa	ge 10	of 48				Page	of_

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1607834

Date Collected: 07/05/16 - 07/06/16

Date Received: 07/13/16

Units: Percent

Basis: As Received

Solids, Total

					Date	
Sample Name	Lab Code	Result	MRL	Dil.	Analyzed	Q
Lower Slate Creek	K1607834-001	70.7	-	1	07/27/16 16:00	
East Fork Slate Creek	K1607834-002	21.0	-	1	07/27/16 16:00	
Upper Slate Creek	K1607834-003	62.9	-	1	07/27/16 16:00	
Lower Sherman Creek	K1607834-004	80.5	-	1	07/27/16 16:00	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1607834

Date Collected:07/05/16

Date Received:07/13/16

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Lower Slate Creek	K1607834-001DUP	-	70.7	69.9	70.3	1	20	07/27/16
Batch QC	K1608007-001DUP	_	76.2	77.5	76.9	2	20	07/27/16

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/28/2016 10:30:09 AM Superset Reference:16-0000384754 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring Date Collected: 07/05/16 - 07/06/16

Sample Matrix: Sediment Date Received: 07/13/16

Analysis Method: 160.4 Modified Units: Percent

Prep Method: None Basis: Dry, per Method

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Lower Slate Creek	K1607834-001	7.70	0.010	1	07/14/16 08:43	*
East Fork Slate Creek	K1607834-002	32.5	0.010	1	07/14/16 08:43	*
Upper Slate Creek	K1607834-003	5.00	0.010	1	07/14/16 08:43	*
Lower Sherman Creek	K1607834-004	3.10	0.010	1	07/14/16 08:43	*
Method Blank	K1607834-MB	ND U	0.010	1	07/14/16 08:43	

Service Request: K1607834

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1607834

Project Coeur AK Biomonitoring **Date Collected:** 07/06/16 **Date Received:** 07/13/16

Sample Matrix: Sediment

Date Analyzed: 07/14/16

Replicate Sample Summary

General Chemistry Parameters

Sample Name: East Fork Slate Creek Units: Percent

Lab Code: K1607834-002 Basis: Dry, per Method

Duplicate Sample

K1607834-

Sample **002DUP**

Analysis Method Result **Analyte Name MRL** Result **RPD RPD** Limit Average Solids, Total Volatile 160.4 Modified 0.010 32.5 30.2 31.4

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/31/2016 1:58:04 PM

Superset Reference:16-0000384754 rev 00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 7/5/2016 **Date Received:** 7/13/2016 **Date Analyzed:** 7/19/2016

Service Request: K1607834

Particle Size Determination ASTM D422

Sample Name: Lower Slate Creek **Lab Code:** K1607834-001

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0957	99.28
Gravel (9.50 mm)	No.3/8"(9.50 mm)	6.0386	81.77
Gravel, Medium	No.4 (4.75 mm)	1.1718	78.37
Gravel, Fine	No.10 (2.00 mm)	0.0584	78.20
Sand, Very Coarse	No.20 (0.850 mm)	2.7406	70.20
Sand, Coarse	No.40 (0.425 mm)	1.8150	64.90
Sand, Medium	No.60 (0.250 mm)	3.7860	53.85
Sand, Fine	No.140 (0.106 mm)	10.0533	24.49
Sand, Very Fine	No.200 (0.0750 mm)	2.6145	16.86

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	23.11
0.005 mm	0.00
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 7/6/2016 **Date Received:** 7/13/2016 **Date Analyzed:** 7/19/2016

Service Request: K1607834

Particle Size Determination ASTM D422

Sample Name: East Fork Slate Creek **Lab Code:** K1607834-002

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4''(19.0 mm)	0.0000	94.07
Gravel (9.50 mm)	No.3/8''(9.50 mm)	0.1721	92.91
Gravel, Medium	No.4 (4.75 mm)	1.1775	84.96
Gravel, Fine	No.10 (2.00 mm)	0.4382	81.99
Sand, Very Coarse	No.20 (0.850 mm)	2.5596	64.93
Sand, Coarse	No.40 (0.425 mm)	2.0926	50.98
Sand, Medium	No.60 (0.250 mm)	0.8673	45.19
Sand, Fine	No.140 (0.106 mm)	2.1104	31.12
Sand, Very Fine	No.200 (0.0750 mm)	0.6597	26.72

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	28.32
0.005 mm	3.48
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 7/6/2016 Date Received: 7/13/2016 Date Analyzed: 7/19/2016

Service Request: K1607834

Particle Size Determination ASTM D422

Sample Name: Upper Slate Creek **Lab Code:** K1607834-003

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4''(19.0 mm)	0.0000	100.05
Gravel (9.50 mm)	No.3/8''(9.50 mm)	3.1101	91.08
Gravel, Medium	No.4 (4.75 mm)	5.0954	76.39
Gravel, Fine	No.10 (2.00 mm)	0.1177	76.05
Sand, Very Coarse	No.20 (0.850 mm)	17.1372	26.12
Sand, Coarse	No.40 (0.425 mm)	4.9260	11.77
Sand, Medium	No.60 (0.250 mm)	1.9467	6.10
Sand, Fine	No.140 (0.106 mm)	1.0710	2.98
Sand, Very Fine	No.200 (0.0750 mm)	0.1374	2.58

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	2.93
0.005 mm	0.00
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 7/6/2016 **Date Received:** 7/13/2016 **Date Analyzed:** 7/19/2016

Service Request: K1607834

Particle Size Determination ASTM D422

Sample Name: Lower Sherman Creek **Lab Code:** K1607834-004

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.01
Gravel (9.50 mm)	No.3/8"(9.50 mm)	4.0688	90.68
Gravel, Medium	No.4 (4.75 mm)	7.9300	72.49
Gravel, Fine	No.10 (2.00 mm)	0.1319	72.19
Sand, Very Coarse	No.20 (0.850 mm)	26.4918	11.29
Sand, Coarse	No.40 (0.425 mm)	3.1914	3.96
Sand, Medium	No.60 (0.250 mm)	0.9920	1.68
Sand, Fine	No.140 (0.106 mm)	0.3901	0.78
Sand, Very Fine	No.200 (0.0750 mm)	0.0365	0.69

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	1.00
0.005 mm	0.07
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 7/6/2016 Date Received: 7/13/2016 Date Analyzed: 7/19/2016

Service Request: K1607834

Particle Size Determination ASTM D422

Sample Name: Lower Sherman Creek **Lab Code:** K1607834-004DUP

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.01
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.01
Gravel, Medium	No.4 (4.75 mm)	8.0611	81.30
Gravel, Fine	No.10 (2.00 mm)	0.1051	81.06
Sand, Very Coarse	No.20 (0.850 mm)	27.3535	17.40
Sand, Coarse	No.40 (0.425 mm)	4.8084	6.21
Sand, Medium	No.60 (0.250 mm)	1.6003	2.48
Sand, Fine	No.140 (0.106 mm)	0.6265	1.03
Sand, Very Fine	No.200 (0.0750 mm)	0.0598	0.89

Silt and Clay

Particle Diameter	Percent Passing
0.074 mm	1.28
0.005 mm	0.04
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring **Date Collected:** 07/05/16 - 07/06/16

Sample Matrix: Sediment Date Received: 07/13/16

Analysis Method:PSEP SulfideUnits: mg/KgPrep Method:MethodBasis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Slate Creek	K1607834-001	ND U	2.5	1	07/29/16 21:57	7/29/16	*
East Fork Slate Creek	K1607834-002	ND U	6.8	1	07/29/16 21:57	7/29/16	*
Upper Slate Creek	K1607834-003	ND U	2.2	1	07/29/16 21:57	7/29/16	*
Lower Sherman Creek	K1607834-004	ND U	2.4	1	07/29/16 21:57	7/29/16	*
Method Blank	K1607834-MB	ND U	1.0	1	07/29/16 21:57	7/29/16	

Service Request: K1607834

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Date Collected: 07/05/16

Sediment

Date Received: 07/13/16

Service Request: K1607834

Date Analyzed: 07/29/16

Units: mg/Kg

Basis: Dry

Triplicate Sample Summary General Chemistry Parameters

Sample Name: Lower Slate Creek

Lab Code: K1607834-001

Analysis Method: PSEP Sulfide

Prep Method: Method

Project

Sample Matrix:

Analyte Name	MRL	Sample Result	Duplicate K1607834- 001DUP Result	Triplicate K1607834- 001TRP Result	Average	RSD	RSD Limit
Sulfide, Total	2.6	ND	ND	ND	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/31/2016 1:58:04 PM

SuperSet Reference:16-0000384754 rev 00

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Sample Matrix:

Project:

Sediment

Service Request: Date Collected:

K1607834

07/05/16

Date Received:

07/13/16 07/29/16

Date Analyzed: **Date Extracted:**

07/29/16

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: Lab Code:

Lower Slate Creek

K1607834-001

Units: mg/Kg **Basis:** Dry

Analysis Method:

PSEP Sulfide

Prep Method:

Method

Matrix Spike K1607834-001MS **Duplicate Matrix Spike**

K1607834-001DMS

Sample Analyte Name Result

Result Amount % Rec

Result

Spike Amount

% Rec

RPD Limit

20

Sulfide, Total

ND U

770

930

Spike

740

910

% Rec

Limits 28-175

RPD

Printed 7/31/2016 1:58:05 PM

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 24 of 48

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request:

K1607834

Project:

Coeur AK Biomonitoring

Date Analyzed:

07/29/16

Sample Matrix:

Sediment

Date Extracted:

07/29/16

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

1115/1X

Dubib.

Dry

Analysis Lot:

507779

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1607834-LCS	391	410	94	39-166

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring **Date Collected:** 07/05/16 - 07/06/16

Sample Matrix: Sediment Date Received: 07/13/16

Analysis Method: PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Slate Creek	K1607834-001	0.585	0.050	1	07/19/16 12:00	7/19/16	
East Fork Slate Creek	K1607834-002	13.0	0.050	1	07/19/16 12:00	7/19/16	
Upper Slate Creek	K1607834-003	2.14	0.050	1	07/19/16 12:00	7/19/16	
Lower Sherman Creek	K1607834-004	0.322	0.050	1	07/19/16 12:00	7/19/16	
Method Blank	K1607834-MB	ND U	0.050	1	07/19/16 12:00	7/19/16	

Service Request: K1607834

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request: K1607834

Date Collected: NA

Date Received: NA

Date Analyzed: 07/19/16

Basis: Dry, per Method

Units: Percent

Triplicate Sample Summary General Chemistry Parameters

Sample Name: Batch QC

Lab Code: K1607938-013

Analysis Method:

Project

PSEP TOC

Prep Method: ALS SOP

Analyte Name	MRL	Sample Result	Duplicate K1607938- 013DUP Result	Triplicate K1607938- 013TRP Result	Average	RSD	RSD Limit
Carbon, Total Organic (TOC)	0.050	0.873	0.873	0.874	0.874	<1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/31/2016 1:58:05 PM

SuperSet Reference: 16-0000384754 rev 00

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Service Request:**

Date Collected:

K1607834

Project:

Coeur AK Biomonitoring

N/A

Sample Matrix: Sediment **Date Received:** Date Analyzed: N/A 07/19/16

Date Extracted:

07/19/16

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Batch QC

Units:

Percent

Lab Code:

Sample Name:

K1607938-013

Basis:

Dry, per Method

Analysis Method:

Prep Method:

PSEP TOC ALS SOP

> **Matrix Spike** K1607938-013MS

Duplicate Matrix Spike

K1607938-013DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Carbon, Total Organic (TOC)	0.873	3.91	3.02	101	3.80	3.00	98	69-123	3	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 7/31/2016 1:58:06 PM Superset Reference: 16-0000384754 rev 00

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

ALS SOP

Service Request: K1607834

Project: Coeur AK Biomonitoring **Date Analyzed:** 07/19/16

Sample Matrix: Sediment

Date Extracted:

07/19/16

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC

Prep Method:

Units: Percent

Basis: Dry, per Method

507692 **Analysis Lot:**

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1607834-LCS	0.579	0.582	99	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1607834 **Date Collected:** 07/05/16 09:00 **Project:** Coeur AK Biomonitoring

Date Received: 07/13/16 09:40 **Sample Matrix:** Sediment

Sample Name: Lower Slate Creek Basis: Dry

Lab Code: K1607834-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.7	13100	mg/Kg	2.1	2	08/15/16 05:35	08/15/16	
Arsenic	200.8	17.5	mg/Kg	0.52	5	08/25/16 10:07	08/15/16	
Cadmium	200.8	0.673	mg/Kg	0.021	5	08/25/16 10:07	08/15/16	
Chromium	200.8	21.1	mg/Kg	0.21	5	08/25/16 10:07	08/15/16	
Copper	200.8	37.5	mg/Kg	0.10	5	08/25/16 10:07	08/15/16	
Lead	200.8	7.00	mg/Kg	0.052	5	08/25/16 10:07	08/15/16	
Mercury	7471B	0.057	mg/Kg	0.019	1	08/02/16 12:35	08/02/16	
Nickel	200.8	33.8	mg/Kg	0.21	5	08/25/16 10:07	08/15/16	
Selenium	200.8	1.4	mg/Kg	1.0	5	08/25/16 10:07	08/15/16	
Silver	200.8	0.076	mg/Kg	0.021	5	08/25/16 10:07	08/15/16	
Zinc	200.8	177	mg/Kg	0.52	5	08/25/16 10:07	08/15/16	

Printed 9/13/2016 8:12:26 AM Superset Reference:

Analytical Report

Service Request: K1607834

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring Date Collected: 07/06/16 13:00

Sample Matrix: Sediment Date Received: 07/13/16 09:40

Sample Name: East Fork Slate Creek Basis: Dry

Lab Code: K1607834-002

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.7	16500	mg/Kg	5.7	2	08/15/16 05:52	08/15/16	
Arsenic	200.8	51.5	mg/Kg	1.4	5	08/25/16 10:35	08/15/16	
Cadmium	200.8	8.20	mg/Kg	0.057	5	08/25/16 10:35	08/15/16	
Chromium	200.8	16.5	mg/Kg	0.57	5	08/25/16 10:35	08/15/16	
Copper	200.8	59.5	mg/Kg	0.28	5	08/25/16 10:35	08/15/16	
Lead	200.8	5.54	mg/Kg	0.14	5	08/25/16 10:35	08/15/16	
Mercury	7471B	0.109	mg/Kg	0.020	1	08/02/16 12:37	08/02/16	
Nickel	200.8	86.1	mg/Kg	0.57	5	08/25/16 10:35	08/15/16	
Selenium	200.8	3.1	mg/Kg	2.8	5	08/25/16 10:35	08/15/16	
Silver	200.8	0.190	mg/Kg	0.057	5	08/25/16 10:35	08/15/16	
Zinc	200.8	634	mg/Kg	1.4	5	08/25/16 10:35	08/15/16	

Printed 9/13/2016 8:12:27 AM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1607834 **Date Collected:** 07/06/16 15:00 **Project:** Coeur AK Biomonitoring

Date Received: 07/13/16 09:40 **Sample Matrix:** Sediment

Sample Name: Upper Slate Creek Basis: Dry

Lab Code: K1607834-003

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.7	14000	mg/Kg	2.0	2	08/15/16 05:55	08/15/16	
Arsenic	200.8	18.0	mg/Kg	0.51	5	08/25/16 10:39	08/15/16	
Cadmium	200.8	0.507	mg/Kg	0.020	5	08/25/16 10:39	08/15/16	
Chromium	200.8	71.7	mg/Kg	0.20	5	08/25/16 10:39	08/15/16	
Copper	200.8	37.0	mg/Kg	0.10	5	08/25/16 10:39	08/15/16	
Lead	200.8	2.69	mg/Kg	0.051	5	08/25/16 10:39	08/15/16	
Mercury	7471B	0.051	mg/Kg	0.019	1	08/02/16 12:39	08/02/16	
Nickel	200.8	48.5	mg/Kg	0.20	5	08/25/16 10:39	08/15/16	
Selenium	200.8	2.1	mg/Kg	1.0	5	08/25/16 10:39	08/15/16	
Silver	200.8	0.092	mg/Kg	0.020	5	08/25/16 10:39	08/15/16	
Zinc	200.8	111	mg/Kg	0.51	5	08/25/16 10:39	08/15/16	

Printed 9/13/2016 8:12:27 AM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1607834 **Date Collected:** 07/06/16 10:00 **Project:** Coeur AK Biomonitoring

Date Received: 07/13/16 09:40 **Sample Matrix:** Sediment

Sample Name: Lower Sherman Creek Basis: Dry

Lab Code: K1607834-004

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.7	13800	mg/Kg	2.1	2	08/15/16 05:58	08/15/16	
Arsenic	200.8	19.9	mg/Kg	0.52	5	08/25/16 10:42	08/15/16	
Cadmium	200.8	0.388	mg/Kg	0.021	5	08/25/16 10:42	08/15/16	
Chromium	200.8	27.5	mg/Kg	0.21	5	08/25/16 10:42	08/15/16	
Copper	200.8	72.5	mg/Kg	0.10	5	08/25/16 10:42	08/15/16	
Lead	200.8	6.60	mg/Kg	0.052	5	08/25/16 10:42	08/15/16	
Mercury	7471B	ND U	mg/Kg	0.020	1	08/02/16 12:44	08/02/16	
Nickel	200.8	32.9	mg/Kg	0.21	5	08/25/16 10:42	08/15/16	
Selenium	200.8	1.1	mg/Kg	1.0	5	08/25/16 10:42	08/15/16	
Silver	200.8	0.097	mg/Kg	0.021	5	08/25/16 10:42	08/15/16	
Zinc	200.8	123	mg/Kg	0.52	5	08/25/16 10:42	08/15/16	

Printed 9/13/2016 8:12:27 AM Superset Reference:

Analytical Report

Service Request: K1607834

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1609655-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.7	ND U	mg/Kg	2.0	2	08/15/16 05:28	08/15/16	
Arsenic	200.8	ND U	mg/Kg	0.50	5	08/25/16 09:56	08/15/16	
Cadmium	200.8	ND U	mg/Kg	0.020	5	08/25/16 09:56	08/15/16	
Chromium	200.8	ND U	mg/Kg	0.20	5	08/25/16 09:56	08/15/16	
Copper	200.8	ND U	mg/Kg	0.10	5	08/25/16 09:56	08/15/16	
Lead	200.8	ND U	mg/Kg	0.050	5	08/25/16 09:56	08/15/16	
Nickel	200.8	ND U	mg/Kg	0.20	5	08/25/16 09:56	08/15/16	
Selenium	200.8	ND U	mg/Kg	1.0	5	08/25/16 09:56	08/15/16	
Silver	200.8	ND U	mg/Kg	0.020	5	08/25/16 09:56	08/15/16	
Zinc	200.8	ND U	mg/Kg	0.50	5	08/25/16 09:56	08/15/16	

Printed 9/13/2016 8:12:27 AM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1607834 Date Collected: NA

Project: Coeur AK Biomonitoring **Sample Matrix:** Sediment Date Received: NA

Method Blank **Sample Name:** Basis: Dry

KQ1609070-04 Lab Code:

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed Date Extracted** Q 7471B 08/02/16 12:05 Mercury ND U mg/Kg 0.020 08/02/16

Printed 9/13/2016 8:12:28 AM Superset Reference:

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request: K1607834

Date Collected: 07/05/16 **Date Received:** 07/13/16

Date Analyzed: 08/15/16 - 08/25/16

Replicate Sample Summary

Total Metals

Sample Name:Lower Slate CreekUnits: mg/KgLab Code:K1607834-001Basis: Dry

	Analysis		Sample	Duplicate Sample KQ1609655-04			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	200.7	2.0	13100	12500	12800	5	20
Arsenic	200.8	0.51	17.5	16.5	17.0	6	20
Cadmium	200.8	0.020	0.673	0.797	0.735	17	20
Chromium	200.8	0.20	21.1	19.6	20.4	8	20
Copper	200.8	0.10	37.5	42.1	39.8	11	20
Lead	200.8	0.051	7.00	7.31	7.16	4	20
Nickel	200.8	0.20	33.8	36.5	35.2	8	20
Selenium	200.8	1.0	1.4	1.1	1.3	28	20
Silver	200.8	0.020	0.076	0.082	0.079	7	20
Zinc	200.8	0.51	177	168	173	5	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:27 AM Superset Reference:

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project

Coeur AK Biomonitoring Date Collected: NA

Service Request: K1607834

Sample Matrix: Biosolids Solids Date Received: NA

Date Analyzed: 08/15/16 - 08/25/16

Replicate Sample Summary

Total Metals

 Sample Name:
 Batch QC
 Units: mg/Kg

 Lab Code:
 K1607934-001
 Basis: Dry

Duplicate Sample Analysis Sample KQ1609655-06 Method Result Result **RPD Limit MRL RPD Analyte Name** Average 200.7 4730 4680 Aluminum 11 4710 20 ND U 20 Arsenic 200.8 2.8 ND U ND 5 Cadmium 1.44 20 200.8 0.11 1.37 1.41 Chromium 200.8 1.1 29.2 34.3 31.8 16 20 275 271 Copper 200.8 0.56 267 3 20 2 20 11.3 Lead 200.8 0.28 11.5 11.4 Nickel 200.8 1.1 24.3 27.7 26.0 13 20 Selenium 200.8 5.6 ND U ND U ND 20 17 Silver 200.8 0.11 1.90 2.25 2.08 20 Zinc 200.8 2.8 681 685 683 <1 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:28 AM Superset Reference:

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1607834

Project Coeur AK Biomonitoring **Date Collected:** NA

Sample Matrix: Soil

Date Received: NA **Date Analyzed:** 08/02/16

Replicate Sample Summary

Total Metals

Sample Name: Batch QC Units: mg/Kg

K1607727-003 Lab Code:

Basis: Dry

Duplicate Sample

Analysis

KQ1609070-09

Sample Method Result Result RPD Limit **Analyte Name MRL RPD** Average 7471B 0.093 0.066 20 Mercury 0.020 0.080 33

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:28 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request: K1607834

Date Collected:07/05/16 **Date Received:**07/13/16

Date Analyzed:08/15/16 - 08/25/16

Matrix Spike Summary Total Metals

Sample Name: Lower Slate Creek Lab Code: K1607834-001

Units:mg/Kg
Basis:Dry

Matrix Spike KQ1609655-05

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	200.7	13100	13600	407	117 #	70-130
Arsenic	200.8	17.5	114	102	95	70-130
Cadmium	200.8	0.673	10.5	10.2	97	70-130
Chromium	200.8	21.1	59.8	40.7	95	70-130
Copper	200.8	37.5	88.2	50.9	100	70-130
Lead	200.8	7.00	103	102	94	70-130
Nickel	200.8	33.8	135	102	100	70-130
Selenium	200.8	1.4	105	102	102	70-130
Silver	200.8	0.076	9.59	10.2	94	70-130
Zinc	200.8	177	260	102	82	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:27 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Biosolids Solids

Service Request: K1607834

Date Collected:N/A
Date Received:N/A

Date Analyzed:08/15/16 - 08/25/16

Matrix Spike Summary Total Metals

Sample Name: Batch QC **Lab Code:** K1607934-001

Units:mg/Kg
Basis:Dry

Matrix Spike KQ1609655-07

Analyte Name	Method	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	200.7	4730	7220	2250	111	70-130
Arsenic	200.8	ND U	579	563	103	70-130
Cadmium	200.8	1.37	56.5	56.3	98	70-130
Chromium	200.8	29.2	264	225	104	70-130
Copper	200.8	267	572	282	108	70-130
Lead	200.8	11.5	569	563	99	70-130
Nickel	200.8	24.3	604	563	103	70-130
Selenium	200.8	ND U	594	563	105	70-130
Silver	200.8	1.90	56.5	56.3	97	70-130
Zinc	200.8	681	1270	563	105	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:28 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1607834

Coeur AK Biomonitoring Date Collected:

Sample Matrix: Soil Date Received: N/A

 Date Analyzed:
 08/2/16

 Date Extracted:
 08/2/16

N/A

Duplicate Matrix Spike Summary

Total Metals

 Sample Name:
 Batch QC
 Units:
 mg/Kg

 Lab Code:
 K1607727-003
 Basis:
 Dry

Analysis Method: 7471B **Prep Method:** Method

Project:

Matrix Spike Duplicate Matrix Spike

KQ1609070-01 KQ1609070-02

RPD Sample **Spike Spike** % Rec Analyte Name Result Amount % Rec Result Amount % Rec Limits **RPD** Limit Result Mercury 0.093 0.545 0.490 92 0.550 0.490 93 80-120 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/13/2016 8:12:28 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sediment

Service Request:

K1607834

Date Analyzed: Date Extracted:

08/15/16 08/15/16

Duit

Lab Control Sample Summary Total Metals

Analysis Method: 200.7

Sample Matrix:

Prep Method: EPA 3050B

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

509941

Lab Control Sample KQ1609655-02

Analyte NameResultSpike Amount% Rec% Rec LimitsAluminum40537410885-115

Printed 9/13/2016 8:12:27 AM Superset Reference:

Page 43 of 48

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request:
Date Analyzed:

K1607834

Date Extracted:

08/25/16 08/15/16

Lab Control Sample Summary

Total Metals

Analysis Method: 200.8

Prep Method: EPA 3050B

Units:

mg/Kg

Basis: Analysis Lot: Dry 511439

Lab Control Sample KQ1609655-02

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	97.6	93.5	104	85-115
Cadmium	9.16	9.35	98	85-115
Chromium	37.9	37.4	101	85-115
Copper	48.2	46.7	103	85-115
Lead	90.2	93.5	96	85-115
Nickel	96.6	93.5	103	85-115
Selenium	103	93.5	110	85-115
Silver	9.01	9.35	96	85-115
Zinc	102	93.5	109	85-115

Printed 9/13/2016 8:12:27 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request:

K1607834

Date Analyzed:
Date Extracted:

08/15/16

2 400 2400

08/15/16

Lab Control Sample Summary

Total Metals

Analysis Method: 200.7

Prep Method:

EPA 3050B

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

509941

Lab Control Sample KQ1609655-03

Analyte NameResultSpike Amount% Rec% Rec LimitsAluminum597079307539-161

Printed 9/13/2016 8:12:27 AM Superset Reference:

Page 45 of 48

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment **Service Request: Date Analyzed:**

K1607834

08/25/16

Date Extracted:

08/15/16

Lab Control Sample Summary

Total Metals

Analysis Method: 200.8

Prep Method: EPA 3050B **Units:**

mg/Kg

Basis:

Dry

Analysis Lot: 511439

Lab Control Sample KQ1609655-03

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Arsenic	102	98.5	104	69-145
Cadmium	143	146	98	73-127
Chromium	183	182	100	71-130
Copper	108	106	102	75-125
Lead	127	130	98	72-127
Nickel	153	149	103	73-127
Selenium	169	154	110	68-132
Silver	39.7	40.9	97	66-134
Zinc	201	191	105	70-130

Printed 9/13/2016 8:12:27 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sediment

Service Request:
Date Analyzed:

K1607834

Date Extracted:

08/02/16 08/02/16

Lab Control Sample Summary

Total Metals

Analysis Method: 7471B

Sample Matrix:

Prep Method: Method

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

508132

Lab Control Sample KQ1609070-06

 Analyte Name
 Result
 Spike Amount
 % Rec
 % Rec Limits

 Mercury
 0.490
 0.500
 98
 80-120

Printed 9/13/2016 8:12:28 AM Superset Reference:

Page 47 of 48

QA/QC Report

Client: Alaska Department of Fish and Game

Sediment

Project: Coeur AK Biomonitoring

Service Request: Date Analyzed:

K1607834

Date Extracted:

08/02/16 08/02/16

Lab Control Sample Summary

Total Metals

Analysis Method: 7471B

Sample Matrix:

Prep Method: Method **Units:**

mg/Kg

Basis:

Dry

Analysis Lot:

508132

Lab Control Sample KQ1609070-08

Analyte Name Result **Spike Amount** % Rec % Rec Limits 6.91 7.10 97 51-149 Mercury

Printed 9/13/2016 8:12:28 AM Superset Reference:

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

September 27, 2016

Analytical Report for Service Request No: K1609286

Kate Kanouse Alaska Department of Fish and Game Division of Habitat 802 3rd Street P.O. Box 110024 Douglas, AK 99811-0024

RE: Coeur AK Biomonitoring

Dear Kate.

Enclosed are the results of the sample(s) submitted to our laboratory August 11, 2016 For your reference, these analyses have been assigned our service request number **K1609286**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

General Chemistry

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1609286

Project: Coeur AK Biomonitoring Date Received: 08/11/16

Sample Matrix: Sediment

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

One sediment sample was received for analysis at ALS Environmental on 08/11/16. The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of this sample were observed.

Total Metals

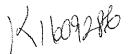
Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Aluminum in the Batch QC sample was outside the normal ALS control limits. The variability in the results was attributed to the heterogeneous character of the sample. Standard mixing techniques were used, but were not sufficient for complete homogenization of this sample.

No other anomalies associated with the analysis of this sample were observed.

Approved by

Chain of Custody


ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Chain of Custody

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068 Columbia Analytical Services, Inc.

Work Order No.:

	e Kanouse	en brothers Limited Co	inpan	<u>y</u>					Bill	· • •			ر سر سما	1001				
Client Name: Coex	Maska/AK.	Det of Fel o	الدينا	G.	2 04 0	.			Com		v:		in B					
Address: 802.7	3rd Street	PEPI. DE JION D	VALV.	<u> </u>	1.10-			Ì	\$50,000 (\$10,000)	ress:	ZATO DI CHESTO CONTRATO				n Dr	Sh	202	
	las. AL 998	124							City,	Stat	e ZIP:				99			
	anouse@alaska.		(90	ر (اد	465	-42	.90		Ema			Keppe	15@		r. con			
	- AK Biomonito									REQ	UESTE	D ANAL	YSIS					TAT
Project Number:		0																Routine
P.O. Number:)			u)		J				-				Same Day ***
Sampler's Name: Kata	e Kanouse					i		S17e										Next Day ***
SA	MPLE RECEIPT										ĺ							5 Day
Temperature (°C):	Temp Bla	ank Present					<u> -</u>	Part		S								7 Day
Received Intact:	Yes No N/A	Wet Ice / Blue Ice						T	60	>								
Cooler Custody Seals:	Yes No N/A	Total Containers:		2			1	7	1	4	1			-		1	1 1	*** Please call
Sample Custody Seals:	Yes No N/A		ers.	PSEP Suffide]	142	Metals	D422	4	~								for availability
			ain	××		-	8	۵	Made	mad								Due Date:
	Date	Time	No. of Containers	اری	PSEP TOC	7471B	· ~~	5	60									
Sample Identification	Matrix Sampled	Sampled Lab ID	<u> </u>	分	A	F	\ ⊘	STM	- 1	7.	J]]]]]]	
			8	اركما	\tilde{\	过	8	AS	8	9				İ				
	2010	4-5-	and personal filters	-	7	\-\frac{\fir}{\fint}}}}}}}}}{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	-					 	<u> </u>				<u> </u>	Comments
Lower Johnson Creek	3/8/16	1500	3	X	7	_ ブー	<u>メ</u>	X	<u> </u>	4					- -		<u> </u>	
											$-\!\!\!\!\!-$				 			
			4									<u> </u>					<u> </u>	
									_ :									
									_									
																7 1		
					一											_		
			1	\dashv		$\neg \dagger$	_	\dashv	$\neg +$		\neg	1 -				+		
	***************************************		1-1	_	一十		一十			十	+					+		<u> </u>
Dissolved"	ARON DEC 107	82, Be, 22, 2d) Cq. Ct	7,7	2 K	<u></u>	ler Mı	1. 16/10 2. 16/10	12	(ig)	2Ph)	8b/Seg/9	Si_Sn_Spg	TLW Zo	721	<u> </u>		Δddiri	onal Methods
Total		Ba, Be, Ca, Cd, Co Cr													ر ا	۸ 🗕	6.5746-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	e Upon Request
Tytal	RELINQUISH		Cust	C, IV,	L1, 191	·9, IVII	., .,,0	, 114(***	<u>(197</u>	(21, 211, 21,			ED BY	503030501526		
Print Name		gnature		Dat	e/Ti	me				Pri	nt Nan	ne .			Signa			Date/Time
	- Vola	/	<u> </u>	9/II		080	\ <u>\</u>	Ŕ	, 1 ,		1)				
Kate Kanouse	- David	an	01	1/10	<u> </u>	1 20	וטי	V	ω¥	10v1	<u>'</u>			4	<u> </u>			81116 945
									1)	,				13				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																		

7/25/16

PC Shar

Page____of_

client Coeur Alaska	Cooler Receipt and Preservation Form	
Client COUV HaSLA Received: 81116 Opened:	Service Request K16 0 (700 8-11-14 By: Du Unloaded: 8-11-14 By: Du	
		
 Samples were received via? USPS Samples were received in: (circle) Were <u>custody seals</u> on coolers? If present, were custody seals intact? 	Fed Ex UPS DHL PDX Courier Hand Delivered Cooler Box Envelope Other NA NA Y N If yes, how many and where? Y N If present, were they signed and dated? Y	N
Raw Corrected Raw Corrected Temp Blank Temp Blank	Corr. Thermometer Cooler/COC ID NA NA -04 365 7837-8021-1987	Filed
4. Packing material: Inserts Baggies	Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves That El	
5. Were custody papers properly filled out6. Were samples received in good condition	The state of the s	N N
7. Were all sample labels complete (i.e anal8. Did all sample labels and tags agree with		N N N
11. Were VOA vials received without head	O GEN SOP) received at the appropriate pH? Indicate in the table below NA Y Ispace? Indicate in the table below. NA Y NA Y	N N
12. Was C12/Res negative?		N
12. Was C12/Res negative? Sample ID on Bottle	Sample ID on COC Identified by:	N
Sample ID on Bottle Bottle	Sample ID on COC Identified by: e Count Out of Head- Temp Space Broke pH Reagent Volume Reagent Lot Initials Tirent Tirent	
Sample ID on Bottle Bottle	e Count Out of Head- Volume Reagent Lot	
Sample ID on Bottle Bottle	e Count Out of Head- Volume Reagent Lot	
Sample ID on Bottle Bottle	e Count Out of Head- Volume Reagent Lot	

Page 10 of 40

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request: K1609286

Date Collected: 08/8/16

Date Received: 08/11/16

Units: PercentBasis: As Received

Solids, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Lower Johnson Creek	K1609286-001	71.9	-	1	08/17/16 14:22	

QA/QC Report

Client: Alaska Department of Fish and Game

Project Coeur AK Biomonitoring

Sample Matrix:

Analysis Method:

Soil

160.3 Modified

Prep Method: None Service Request:K1609286

Date Collected:NA Date Received:NA

Units:Percent

Basis: As Received

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch OC	K1609223-001DUP	-	56.1	55.6	55.9	<1	20	08/17/16

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/18/2016 10:07:28 AM Superset Reference:16-0000388929 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Project Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: 160.3 Modified

Prep Method: None

Service Request:K1609286

Date Collected:NA
Date Received:NA

Units:Percent

Basis:NA

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
Batch OC	K1609256-001DUP	=	41.2	41.1	41.2	<1	20	08/17/16

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 8/18/2016 10:07:28 AM Superset Reference:16-0000388929 rev 00

General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: 160.4 Modified

Prep Method: None

Service Request: K1609286

Date Collected: 08/8/16

Date Received: 08/11/16

Units: Percent

Basis: Dry, per Method

Solids, Total Volatile

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Lower Johnson Creek	K1609286-001	2.30	0.010	1	08/12/16 13:45	_
Method Blank	K1609286-MB	ND U	0.010	1	08/12/16 13:45	

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1609286

Project Coeur AK Biomonitoring

Date Collected: 08/08/16

Sample Matrix: Sediment

Date Received: 08/11/16 **Date Analyzed:** 08/12/16

Replicate Sample Summary General Chemistry Parameters

Sample Name: Lower Johnson Creek

Lab Code:

Units: Percent

K1609286-001

Basis: Dry, per Method

Duplicate Sample

K1609286-

Samp

.1009200 111111

			Sample	001DUP			
Analyte Name	Analysis Method	MRL	Result	Result	Average	RPD	RPD Limit
Solids, Total Volatile	160.4 Modified	0.010	2.30	2.50	2.40	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 8/8/2016 **Date Received:** 8/11/2016 **Date Analyzed:** 8/30/2016

Service Request: K1609286

Particle Size Determination ASTM D422

Sample Name: Lower Johnson Creek **Lab Code:** K1609286-001

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.0000	100.00
Sand, Very Coarse	No.20 (0.850 mm)	0.3049	98.53
Sand, Coarse	No.40 (0.425 mm)	0.4190	96.52
Sand, Medium	No.60 (0.250 mm)	1.7426	88.13
Sand, Fine	No.140 (0.106 mm)	8.2435	48.47
Sand, Very Fine	No.200 (0.0750 mm)	3.1642	33.25

Silt and Clay

(Hydrometer Analysis)

Particle Diameter	Percent Passing
0.074 mm	30.57
0.005 mm	5.14
0.001 mm	0.00

ALS Group USA, Corp. dba ALS Environmental Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Date Collected: 8/8/2016 **Date Received:** 8/11/2016 **Date Analyzed:** 8/30/2016

Service Request: K1609286

Particle Size Determination ASTM D422

Sample Name: Lower Johnson Creek **Lab Code:** K1609286-001DUP

Gravel and Sand (Sieve Analysis)

Description	Sieve Size		Percent
		Weight (g)	Passing
Gravel (19.0 mm)	No.3/4"(19.0 mm)	0.0000	100.00
Gravel (9.50 mm)	No.3/8"(9.50 mm)	0.0000	100.00
Gravel, Medium	No.4 (4.75 mm)	0.0000	100.00
Gravel, Fine	No.10 (2.00 mm)	0.0000	100.00
Sand, Very Coarse	No.20 (0.850 mm)	0.1436	99.29
Sand, Coarse	No.40 (0.425 mm)	0.3416	97.60
Sand, Medium	No.60 (0.250 mm)	1.3571	90.87
Sand, Fine	No.140 (0.106 mm)	7.7890	52.27
Sand, Very Fine	No.200 (0.0750 mm)	3.0595	37.11

Silt and Clay

(Hydrometer Analysis)

Particle Diameter	Percent Passing
0.074 mm	33.00
0.005 mm	5.24
0.001 mm	0.00

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Analysis Method: PSEP Sulfide

Prep Method: Method

Service Request: K1609286

Date Collected: 08/8/16

Date Received: 08/11/16

Units: mg/Kg

Basis: Dry

Sulfide, Total

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Johnson Creek	K1609286-001	ND U	2.5	1	08/15/16 20:07	8/15/16	
Method Blank	K1609286-MB	ND U	1.0	1	08/15/16 20:07	8/15/16	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

K1609286-001

Service Request: K1609286

Project Coeur AK Biomonitoring

Date Collected: 08/08/16 **Date Received:** 08/11/16

Sample Matrix: Sediment

Lab Code:

Date Analyzed: 08/15/16

Replicate Sample Summary

General Chemistry Parameters

Sample Name: Lower Johnson Creek

Units: mg/Kg

Basis: Dry

Duplicate

Sample

K1609286-

Sample 001DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitSulfide, TotalPSEP Sulfide2.2ND UND UNCNC20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:17 PM

Superset Reference:16-0000388929 rev 00

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Sediment

Service Request: K1609286

Date Collected: 08/08/16

Date Received: 08/11/16

Date Analyzed: 08/15/16

Units: mg/Kg

Basis: Dry

Triplicate Sample Summary General Chemistry Parameters

Sample Name: Lower Johnson Creek

Lab Code: K1609286-001

Analysis Method: PSEP Sulfide

Prep Method: Method

Project

Sample Matrix:

Analyte Name	MRL	Sample Result	Duplicate K1609286- 001DUP Result	Triplicate K1609286- 001TRP Result	Average	RSD	RSD Limit
Sulfide, Total	2.4	ND	ND	ND	NC	NC	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:17 PM

SuperSet Reference:16-0000388929 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Sample Matrix:

Project:

Sediment

Service Request:

K1609286

Date Collected:

08/08/16

mg/Kg

Dry

Date Received:

08/11/16

Date Analyzed: **Date Extracted:**

Units:

Basis:

08/15/16 08/15/16

Duplicate Matrix Spike Summary

Sulfide, Total

Sample Name: Lab Code:

Lower Johnson Creek

K1609286-001

Analysis Method:

PSEP Sulfide

Prep Method:

Method

Matrix Spike

Duplicate Matrix Spike

K1609286-001MS

K1609286-001DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfide, Total	ND U	850	970	88	830	970	86	28-175	3	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:17 PM Superset Reference: 16-0000388929 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request:

K1609286

Project:

Coeur AK Biomonitoring

Date Analyzed:

08/15/16

Sample Matrix:

Sediment

Date Extracted:

08/15/16

Lab Control Sample Summary

Sulfide, Total

Analysis Method:

PSEP Sulfide

Units:

mg/Kg

Prep Method:

Method

Basis:

Dry

Analysis Lot:

510030

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1609286-LCS	359	400	90	39-166

Analytical Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring **Date Collected:** 08/8/16

Sample Matrix: Sediment Date Received: 08/11/16

Analysis Method: PSEP TOC Units: Percent

Prep Method: ALS SOP Basis: Dry, per Method

Carbon, Total Organic (TOC)

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Lower Johnson Creek	K1609286-001	0.422	0.050	1	08/19/16 11:00	8/18/16	
Method Blank	K1609286-MB	ND U	0.050	1	08/19/16 11:00	8/18/16	

Service Request: K1609286

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1609286

Project Coeur AK Biomonitoring **Date Collected:** NA

Sample Matrix: Sediment

Date Received: NA **Date Analyzed:** 08/19/16

Replicate Sample Summary General Chemistry Parameters

Sample Name: Batch QC Units: Percent

Lab Code: K1609115-012

Basis: Dry, per Method

Duplicate Sample

K1609115-

Sample **012DUP**

Analysis Method Analyte Name

Result

Result Average

RPD RPD Limit

Carbon, Total Organic (TOC)

PSEP TOC

MRL 0.050

1.26

1.26

1.26

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:17 PM

Superset Reference:16-0000388929 rev 00

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1609286 Date Collected: NA

Project Coeur AK Biomonitoring **Sample Matrix:**

Date Received: NA

Sediment

Date Analyzed: 08/19/16

Triplicate Sample Summary General Chemistry Parameters

Sample Name: Batch QC Units: Percent

Lab Code: K1609115-012 Basis: Dry, per Method

Analysis Method: PSEP TOC Prep Method: ALS SOP

Analyte Name	MRL	Sample Result	Duplicate K1609115- 012DUP Result	Triplicate K1609115- 012TRP Result	Average	RSD	RSD Limit
Carbon, Total Organic (TOC)	0.050	1.26	1.26	1.25	1.26	<1	27

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:17 PM

SuperSet Reference:16-0000388929 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1609286

Project: Coeur AK Biomonitoring Date Collected: N/A

Sample Matrix: Sediment Date Received: N/A

Date Analyzed: 08/19/16 **Date Extracted:** 08/18/16

Duplicate Matrix Spike Summary Carbon, Total Organic (TOC)

Sample Name: Batch QC Units: Percent

Lab Code: K1609115-012 Basis: Dry, per Method

Analysis Method: PSEP TOC **Prep Method:** ALS SOP

Matrix SpikeDuplicate Matrix SpikeK1609115-012MSK1609115-012DMS

RPD Sample **Spike** Spike % Rec **Analyte Name** Result Result **Amount** % Rec Result **Amount** % Rec Limits **RPD** Limit Carbon, Total Organic (TOC) 1.26 4.98 3.73 100 4.86 3.64 69-123

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/9/2016 3:30:18 PM Superset Reference:16-0000388929 rev 00

QA/QC Report

Client: Alaska Department of Fish and Game

Coeur AK Biomonitoring

Sediment

Service Request:

K1609286

Date Analyzed:

08/19/16

Date Extracted:

08/18/16

Lab Control Sample Summary

Carbon, Total Organic (TOC)

Analysis Method: PSEP TOC

Project:

Sample Matrix:

Prep Method:

ALS SOP

Units:

Percent

Basis:

Dry, per Method

Analysis Lot:

510765

			Spike		% Rec
Sample Name	Lab Code	Result	Amount	% Rec	Limits
Lab Control Sample	K1609286-LCS	0.563	0.582	97	74-118

Metals

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1609286 **Date Collected:** 08/08/16 15:00 **Project:** Coeur AK Biomonitoring

Date Received: 08/11/16 09:45 **Sample Matrix:** Sediment

Sample Name: Lower Johnson Creek Basis: Dry

Lab Code: K1609286-001

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.8	9470	mg/Kg	110	500	09/13/16 11:57	09/02/16	
Arsenic	200.8	13.0	mg/Kg	0.28	5	09/13/16 11:53	09/02/16	
Cadmium	200.8	0.150	mg/Kg	0.011	5	09/13/16 11:53	09/02/16	
Chromium	200.8	18.9	mg/Kg	0.11	5	09/13/16 11:53	09/02/16	
Copper	200.8	76.3	mg/Kg	0.057	5	09/13/16 11:53	09/02/16	
Lead	200.8	8.41	mg/Kg	0.028	5	09/13/16 11:53	09/02/16	
Mercury	7471B	0.020	mg/Kg	0.020	1	09/02/16 12:00	09/02/16	
Nickel	200.8	15.1	mg/Kg	0.11	5	09/13/16 11:53	09/02/16	
Selenium	200.8	ND U	mg/Kg	0.57	5	09/13/16 11:53	09/02/16	
Silver	200.8	0.574	mg/Kg	0.011	5	09/13/16 11:53	09/02/16	
Zinc	200.8	65.7	mg/Kg	0.28	5	09/13/16 11:53	09/02/16	

Printed 9/16/2016 8:21:21 AM Superset Reference:

Analytical Report

Service Request: K1609286

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring Date Collected: NA

Sample Matrix: Sediment Date Received: NA

Sample Name: Method Blank Basis: Dry

Lab Code: KQ1610690-01

Total Metals

	Analysis							
Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Date Extracted	Q
Aluminum	200.8	ND U	mg/Kg	2.0	5	09/13/16 11:45	09/02/16	
Arsenic	200.8	ND U	mg/Kg	0.50	5	09/13/16 11:45	09/02/16	
Cadmium	200.8	ND U	mg/Kg	0.020	5	09/13/16 11:45	09/02/16	
Chromium	200.8	ND U	mg/Kg	0.20	5	09/13/16 11:45	09/02/16	
Copper	200.8	ND U	mg/Kg	0.10	5	09/13/16 11:45	09/02/16	
Lead	200.8	ND U	mg/Kg	0.050	5	09/13/16 11:45	09/02/16	
Nickel	200.8	ND U	mg/Kg	0.20	5	09/13/16 11:45	09/02/16	
Selenium	200.8	ND U	mg/Kg	1.0	5	09/13/16 11:45	09/02/16	
Silver	200.8	ND U	mg/Kg	0.020	5	09/13/16 11:45	09/02/16	
Zinc	200.8	ND U	mg/Kg	0.50	5	09/13/16 11:45	09/02/16	

Printed 9/16/2016 8:21:21 AM Superset Reference:

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1609286

Date Collected: NA **Project:** Coeur AK Biomonitoring **Sample Matrix:** Sediment Date Received: NA

Method Blank **Sample Name:** Basis: Dry

KQ1610699-01 Lab Code:

Total Metals

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed Date Extracted** Q 7471B 09/02/16 11:56 Mercury ND U mg/Kg 0.020 09/02/16

Printed 9/16/2016 8:21:22 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1609286 Date Collected: NA

Project Coeur AK Biomonitoring

Date Received: NA

Sample Matrix: Soil

Date Analyzed: 09/13/16

Replicate Sample Summary Total Metals

Sample Name: Units: mg/Kg Batch QC Lab Code: K1609967-001 Basis: Dry

	Analysis		Sample	Duplicate Sample KQ1610690-03			
Analyte Name	Method	MRL	Result	Result	Average	RPD	RPD Limit
Aluminum	200.8	20	275	364	320	28 *	20
Arsenic	200.8	5.0	ND U	ND U	ND	-	20
Cadmium	200.8	0.20	ND U	ND U	ND	-	20
Chromium	200.8	2.0	8.4	10.0	9.2	17	20
Copper	200.8	1.00	114	124	119	9	20
Lead	200.8	0.50	1.57	1.95	1.76	22	20
Nickel	200.8	2.0	59.6	66.6	63.1	11	20
Selenium	200.8	10.0	ND U	ND U	ND	-	20
Silver	200.8	0.20	0.23	ND U	NC	NC	20
Zinc	200.8	5.0	562	607	585	8	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/16/2016 8:21:22 AM Superset Reference:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1609286

Project Coeur AK Biomonitoring **Date Collected:** NA

Sample Matrix: Soil

Date Received: NA Date Analyzed: 09/02/16

Replicate Sample Summary

Total Metals

Sample Name: Batch QC

Lab Code:

Mercury

K1609479-001

Units: mg/Kg

Basis: Dry

Duplicate Sample

Analysis Sample KQ1610699-04

Method Result Result **RPD** RPD Limit **Analyte Name MRL** Average 7471B 0.043 0.042 0.043 20 0.020

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/16/2016 8:21:22 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Soil

Date Received: N/A
Date Analyzed: 09/13/16

K1609286

N/A

Date Extracted: 09/2/16

Service Request:

Date Collected:

Matrix Spike Summary Total Metals

 Sample Name:
 Batch QC
 Units:
 mg/Kg

 Lab Code:
 K1609967-001
 Basis:
 Dry

Analysis Method: 200.8 **Prep Method:** EPA 3050B

Matrix Spike KQ1610690-04

Analyte Name	Sample Result	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	275	3860	3920	92	70-130
Arsenic	ND U	905	980	92	70-130
Cadmium	ND U	94.3	98.0	96	70-130
Chromium	8.4	379	392	95	70-130
Copper	114	584	489	96	70-130
Lead	1.57	950	980	97	70-130
Nickel	59.6	982	980	94	70-130
Selenium	ND U	912	980	93	70-130
Silver	0.23	92.1	98.0	94	70-130
Zinc	562	1470	980	93	70-130

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/16/2016 8:21:22 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1609286

Project: Coeur AK Biomonitoring Date Collected: N/A

Sample Matrix: Soil Date Received: N/A

Date Analyzed: 09/2/16 **Date Extracted:** 09/2/16

Duplicate Matrix Spike Summary

Total Metals

 Sample Name:
 Batch QC
 Units:
 mg/Kg

 Lab Code:
 K1609479-001
 Basis:
 Dry

Analysis Method: 7471B **Prep Method:** Method

Matrix Spike Duplicate Matrix Spike

KQ1610699-05 KQ1610699-06

RPD Sample **Spike Spike** % Rec Analyte Name Result Result Amount % Rec Result Amount % Rec Limits **RPD** Limit Mercury 0.043 0.506 0.496 93 0.485 0.496 89 80-120 20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 9/16/2016 8:21:22 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Sample Matrix: Sediment

Service Request: Date Analyzed: K1609286 09/13/16

Date Extracted:

09/02/16

Lab Control Sample Summary

Total Metals

Analysis Method: 200.8

Prep Method: EPA 3050B

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

513863

Lab Control Sample KQ1610690-02

Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
Aluminum	5350	7930	67	39-161
Arsenic	91.8	98.5	93	69-145
Cadmium	130	146	89	73-127
Chromium	159	182	87	71-130
Copper	95.6	106	90	75-125
Lead	120	130	92	72-127
Nickel	133	149	90	73-127
Selenium	150	154	97	68-132
Silver	36.0	40.9	88	66-134
Zinc	178	191	93	70-130

Printed 9/16/2016 8:21:21 AM Superset Reference:

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring

Service Request: Date Analyzed:

K1609286 09/02/16

Sediment

Date Extracted:

09/02/16

Lab Control Sample Summary

Total Metals

Analysis Method: 7471B

Sample Matrix:

Prep Method: Method **Units:**

mg/Kg

Basis:

Dry

Analysis Lot:

512823

Lab Control Sample KQ1610699-02

Analyte Name Result **Spike Amount** % Rec % Rec Limits 0.512 0.500 102 80-120 Mercury

Printed 9/16/2016 8:21:22 AM Superset Reference:

Page 39 of 40

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Coeur AK Biomonitoring **Date Analyzed:**

Service Request:

K1609286 09/02/16

Sample Matrix:

Prep Method:

Sediment

Date Extracted:

09/02/16

Lab Control Sample Summary

Total Metals

Analysis Method: 7471B

Method

Units:

mg/Kg

Basis:

Dry

Analysis Lot:

512823

Lab Control Sample KQ1610699-03

Analyte Name Result **Spike Amount** % Rec % Rec Limits 7.15 7.10 101 51-149 Mercury

Printed 9/16/2016 8:21:22 AM Superset Reference:

Page 40 of 40

BIOASSAY REPORT

CHRONIC DEFINITIVE SEDIMENT BIOASSAYS CONDUCTED August 22 through September 1, 2016

Prepared for

COEUR ALASKA / ALASKA DEPARTMENT OF FISH AND GAME KENSINGTON MINE DOUGLAS, ALASKA

Prepared by

Applied Sciences Laboratory (ASL)

1100 NE Circle Boulevard, Suite 300 Corvallis, Oregon 97330 541-768-3160

NELAC #OR100022

Report Date: September 21, 2016 Lab I.D. No. B3584

CONTENTS

Section	ge
INTRODUCTION	1
OVERVIEW OF REGULATORY GUIDANCE	1
SUMMARY OF TEST RESULTS	2
ACRONYM DEFINITIONS	2
METHODS AND MATERIALS	3
TEST METHODS	
DEVIATIONS FROM PROTOCOLS	3
TEST DESIGN	3
DILUTION WATER	4
SAMPLE COLLECTION AND STORAGE	4
SAMPLE PREPARATION	5
DATA ANALYSIS	
RESULTS AND DISCUSSION	6
ACUTE BIOASSAYS	
REFERENCE TOXICANT TESTS	8
APPENDIX A. RAW DATA SHEETS	
APPENDIX B. REFERENCE TOXICANT DATA SHEETS	
APPENDIX C. CHAIN OF CLISTODY	

INTRODUCTION

CH2M HILL conducted 10 day chronic definitive sediment bioassays from August 22 through September 31, 2016, on samples provided by Coeur Alaska / Alaska Department of Fish and Game, Douglas, Alaska on behalf of the Kensington Gold Mine. The tests were conducted using the freshwater amphipod (*Hyalella azteca*) and the freshwater chironomid (*Chironomus tentans*).

OVERVIEW OF REGULATORY GUIDANCE

The following provides an overview and excerpts of applicable permit specifics, regulatory guidance, and other relevant information. This is intended only as a helpful guide, from a laboratory perspective, for understanding test outcomes. The final responsibility for interpretation of results remains with the client and/or regulatory agency.

The following guidance is taken from CH2M's reading of the APDES permit for Kensington Mine (permit #AK0050571).

1.5.2.3 Biological Testing of Sediments:

- 1.5.2.3.1 Sediment samples will undergo acute toxicity testing to assess the relative toxicity ... The following bioassays are required:
 - o Test method 100.1: Hyalella azteca 10-day survival test for sediments
 - o Test method 100.2: Chironomus dilutus 10-day survival test for sediments
- 1.5.2.3.2 Test methods ... shall be in accordance with Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, EPA/600/R-94/024.

SUMMARY OF TEST RESULTS

Exhibit 1 provides a summary of the final test results.

EXHIBIT 1
Summary of Chronic Test Results

Sample ID	Species	NOEC (%)	LOEC (%)	
Lower Sherman Creek	H. azteca	100%	> 100%	
Lower Sherman Creek	C. tentans	< 100%	100%	, ,,
East Fork Slate Creek	H. azteca	100%	> 100%	
East Fork Slate Creek	C. tentans	100%	> 100%	
Lower Johnson Creek	H. azteca	100%	> 100%	
Lower Johnson Creek	C. tentans	100%	> 100%	
Lower Slate Creek	H. azteca	100%	> 100%	
Lower Slate Creek	C. tentans	100%	> 100%	
Upper Slate Creek	H. azteca	100%	> 100%	
Upper Slate Creek	C. tentans	100%	> 100%	

Note: acronyms are as defined below Exhibit 2.

More detailed information is provided in the Acute Results and Data Interpretation sections.

ACRONYM DEFINITIONS (from EPA guidance):

NOEC = No Observed Effect Concentration: The highest test concentration that causes no observable adverse effects on the test organisms (i.e. no statistically significant reduction from the control).

LOEC = Low Observed Effect Concentration: The lowest test concentration that does cause an observable adverse effect on the test organisms (i.e. is statistically significant reduction from the control).

METHODS AND MATERIALS

TEST METHODS

The tests were performed according to: Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition, EPA 600/R-99/064 (EPA 2000). (Most recent update to the EPA 600/R-94/024 method sited in the permit)

Note: The test species *Chironomus dilutus* was replaced with *Chironomus tentans* in the newer version of the protocol and was used for this testing.

DEVIATIONS FROM PROTOCOLS

Deviations from <u>required</u> procedures in the test methods:

None noted.

Deviations from recommended procedures in the test methods:

Not all of the samples were within the EPA <u>recommended</u> holding temperature range of 0 to 6 °C upon arrival at the laboratory. See notation in Sample Collection and Storage below.

TEST DESIGN

The following summarizes the conditions used for both overall testing and the specifics for each test (observations and notations can be found on the datasheets in Appendix A):

Overall Test Design:

• Acute tests: 100 percent sample + dilution sediment for the control.

H. azteca 10-day sediment test:

- Source: Chesapeake Cultures, Nayes, Virginia
- Age: 7 to 14 days old (required), within a 1-2 age range (recommended)
- Design: Eight test vessels per concentration (a minimum of 4 required), ten organisms per vessel
 - o 100 ml of sediment per vessel
 - o 175 ml of overlying water (Reconstituted Moderately Hard water)
- Overlying Water Renewal: Twice Daily
- Monitoring:
 - o Initiation and Termination: Hardness, Alkalinity, Ammonia, DO, pH, Conductivity, and Temperature in the overlying water.

- o Daily: DO and Temperature in pre-renewal solutions in the overlying water, all concentrations.
- o Termination: Survival and Dry Weight.
- Feeding: 1.0 ml YCT per vessel daily.
- Termination: 10 days after test initiation.
- Endpoints: Survival and Growth (average dry weight per surviving organism)

C. tentans 10-day sediment test:

- Source: Aquatic Biosystems, Fort Collins, Colorado
- Age: 2nd to 3rd instar (~10 days old)
- Design: Eight test vessels per concentration (a minimum of 4), ten organisms per vessel
 - o 100 ml of sediment per vessel.
 - o 175 ml of overlying water (Reconstituted Moderately Hard water)
- Overlying Water Renewal: Twice Daily
- Monitoring:
 - o Initiation and Termination: Hardness, Alkalinity, Ammonia, DO, pH, Conductivity, and Temperature in the overlying water.
 - o Daily: DO and Temperature in pre-renewal solutions in the overlying water, all concentrations.
 - o Termination: Survival and Ash-Free Dry Weight (AFDW).
- Feeding: 1.5 ml of a 4 g/L TetraMin slurry per vessel daily.
- Termination: 10 days after test initiation.
- Endpoints: Survival and AFDW (average AFDW per surviving organism)

CONTROL SEDIMENT AND OVERLYING WATER

The dilution water used was the standard culture water used by CH2M-ASL:

• Reconstituted, moderately hard water (as per EPA protocol) with a total hardness of 80 to 100 mg/L as CaCO₃ and an alkalinity of 60 to 70 mg/L as CaCO₃.

The dilution sediment used was field collected sediment from Beaver Creek, upstream of Yaquina bay, near the town of Newport, Oregon.

• The Beaver Creek sediment was press sieved to remove indigenous organisms.

SAMPLE COLLECTION AND STORAGE

Samples were collected by Coeur Alaska / Alaska Department of Fish and Game personnel. The samples were accepted as scheduled by CH2M's Applied Sciences Laboratory. Chain of Custody and Sample Receipt Records are provided in Appendix C.

- Not all samples were received within the EPA recommended 0 to 6 °C range.
 - o The sample collected on Aug. 8, 2016 was received at 15.2 °C which is outside of the EPA recommended 0 to 6 °C range.
 - o The Jul. 6, 2016 and Jul. 5, 2016 samples were received in the 0 to 6 °C range.

- Following receipt, the samples were stored in the dark at 0 to 6 °C until test solutions were prepared and tested.
- All testing was initiated within the EPA recommended 8 week holding time from sample collection.

SAMPLE PREPARATION

Samples used during these tests were:

• Homogenized prior to use with all large material (~ 1 inch +) removed.

DATA ANALYSIS

The statistical analyses performed for the acute tests were those outlined in *Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates*, Second Edition, EPA 600/R-99/064

- The specific statistical analysis and CETIS version used for each endpoint evaluation is listed with the statistical outputs included with each test in Appendix A.
- If any additional analysis methods were also used, an explanation of the rationale and reference to the source method is included with the presentation of those results below.

RESULTS AND DISCUSSION

The raw data sheets for all tests are presented in Appendix A.

ACUTE BIOASSAYS

Table 1 summarizes the survival data for the amphipod test.

Amphi	Table 1 pod (<i>H. azteca</i>) Bioassay	y Data
Sample Concentration (%)	10 day % Survival	10 day Dry Weight (mg)
Control	96.3	0.0914
Lower Sherman Creek	95.0	0.0929
East Fork Slate Creek	91.3	0.0990
Lower Johnson Creek	91.3	0.0917
Lower Slate Creek	90.0	0.0976
Upper Slate Creek	85.0	0.0929

Statistical analysis in accordance with the EPA protocol results no statistically significant reduction in survival or growth for the following samples:

- Lower Sherman Creek
- East Fork Slate Creek
- Lower Johnson Creek
- Lower Slate Creek
- Upper Slate Creek

Daily mean test temperatures remained at 23±1°C, and instantaneous temperatures remained at 23±3°C, for the tests. The dissolved oxygen levels in the tests remained above the EPA recommended minimum 2.5 mg/L throughout the test period.

The *H. azteca* test meets Test Acceptability Criteria (TAC) of a minimum 80 percent control survival and measureable growth (initial dry weights were 0.0645 mg). Unless referenced above, the tests proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

Table 2 summarizes the survival data for the chironomid test.

Table 2 Chironomid (C. tentans) Bioassay Data							
10 day % Survival	10 day Ash- Free Dry Weight (mg)						
100	1.473						
83.8 ^a	1.420						
93.8	1.409						
97.5	1.499						
96.3	1.470						
95.0	1.403						
	10 day % Survival 100 83.8 a 93.8 97.5 96.3						

^a Indicates a statistically significant reduction from control at p equal to 0.05 using Equal Variance t Two-Sample test.

Statistical analysis in accordance with the EPA protocol results in <u>no</u> statistically significant reduction in survival or growth for the following samples:

- East Fork Slate Creek
- Lower Johnson Creek
- Lower Slate Creek
- Upper Slate Creek

Statistical analysis in accordance with the EPA protocol <u>did</u> result in a statistically significant reduction in survival or growth for the following samples:

• Lower Sherman Creek

Daily mean test temperatures remained at 23±1°C, and instantaneous temperatures remained at 23±3°C, for the tests. The dissolved oxygen levels in the tests remained above the EPA recommended minimum 2.5 mg/L throughout the test period.

The *C. tentans* test meets Test Acceptability Criteria (TAC) of a minimum 70 percent control survival and minimum Ash-free dry weight (AFDW) of 0.48 mg. Unless referenced above, the tests proceeded without any noted deviations or interruptions that could have affected test results. The testing should be considered "valid".

REFERENCE TOXICANT TESTS

Reference toxicant (reftox) testing is performed to document both initial and ongoing laboratory performance of the test method(s). While the health of the test organisms is primarily evaluated by the performance of the laboratory control, reftox test results also may be used to assess the health and sensitivity of the test organisms. Reftox test results within their respective cumulative summary (Cusum) chart limits are indicative of consistent laboratory performance and normal test organism sensitivity.

The results of the reftox tests indicate that the test organisms were within their respective cusum chart limits based on EPA guidelines. This demonstrates ongoing laboratory proficiency of the test methods and suggests normal test organism sensitivity in the associated client testing.

The *H. azteca* and *C. tentans* reftox tests were conducted using potassium chloride. The data sheets for the reference toxicant tests are provided in Appendix B.

Table 3 summarizes the reference toxicant test results and Cusum chart limits.

Refere	Table 3 nce Toxicant Tests (g/L)	
Species	LC50	Control Chart
H. azteca	0.309	0.280 to 0.439
C. tentans	6.12	1.71 to 7.24

APPENDIX A RAW DATA SHEETS

CEM HILL TOXICITY TEST ORGANISM AND WATER QUALITY DATA

Client	The second secon		Kensington	ngton			T	Test Initiation: Date	8-22-16	Test Tern	Test Termination: Date	9-1-16
Contact						Technician						
Test Species/ID	0	Hyallela azteca	ı azteca	:	\	AMP $\mathcal{O}($	9				/	
					\						/	
		Sam	Sample Information	mation				Test	m#,	#01	#UI	#W
				Total Residual Ammonia	Ammonia	Hardness Alkalinity	Alkalinity	Species	AMP BLO			
Sample ID	Field	(F)	Collected	Chlorine (mg/l)		mg/l as	mg/l as	Information	Chronic			
Number	D	Date	Time	As As Received / Dechlor.	mg/l	CaCO ₃	CaCO3	Organism Age at	7 to 14 days			
B3584-01	East Fork Slate Creek アんハ		1300	- / -	See Titra	See Titration and Ammonia	mmonia	Initiation	(1 day range)			
B3584-02	Upper Slate Creek	7-6-16	1500	1 / -		sheet		Test Container Size	300 ml			
B3584-03	Lower Sherman Creek 7-6-10 1000	ek7-6-16	1000	- / -	ı	ı	ı	Test Volume	100 ml sample,			
B3584-04	Lower Slate Creek	7-5-16-5-60	S 900	- / -	ı	ı	1		water			
B3584-05	Lower Johnson Creek ちょうしん	3k8-8-14	1530	- / -	ı	-	1	Feeding: Type	1 ml YCT			
				/				Amount	daily			
				/				Aeration: Began	Nove			
				/				Amount	١			
				/				Dilution Water ID#	1830 US97			
				/			-	Acclimation Period	3 days			
				_			-	Test Location	01 #			
				/				Initial Size (mg/org)	2,0645			
					Hardness	Alkalinity	Initial	Comments: 🗹 Indica	ates the following a	ction was taken,	☑ Indicates the following action was taken, (□ Indicates action not taken):	n not taken):
	Dilution Water			ID#	mg/l as	mg/l as	Hd		_	•	æ	,
					CaCO ₃	CaCO ₃		8-21-16-	Sedinary a	added to Ta	Ja-5 -> di)	whien
Dilution Sediment	Beauc	Creek		0884	1	1	1	worter a	added MIS	/ ms/	400	
Recon MH (FHM)	HM)			4397	05	99	5,5		7			
	-			740(40	وك	5%					
				2025	96	66	2.2					
				2026	26	E	1,11		Water Qu.	Water Quality Meters Used/ID#	4/ID#	
	W.			くんんり	۴۲	66	9,6	Dissolved Oxygen	rygen ## 4	€# Hd	Conductivity	#2
	ALBERTANIA DEL TATALON DE LA CANTANIA DEL CANTANIA DEL CANTANIA DE LA CANTANIA DELA CANTANIA DEL CANTANIA DE LA CANTANIA DEL CANTANIA DEL CANTANIA DEL CANTANIA DEL CANTANIA DE LA CANTANIA DEL CANT			***************************************					7	One.		

(20) E-17-1 L Kensington Hyallela with randomization 10 day B3584.xism Doc. Control ID: ASL1119-0614

	-	RANDOMIZATIO	N SHEET		
Client:	Kensington	Т	est Start Date:		
Laboratory ID:	Field ID:	Alternate ID / Dilutions:	Replicate ID:	Random Number	Test Chamber Number:
Sediment Control	Beaver Creek	Control	D	0.96386	3
Sediment Control	Beaver Creek	Control	A	0.87687	7
Sediment Control	Beaver Creek	Control	В	0.84599	10
Sediment Control	Beaver Creek	Control	E	0.78946	14
Sediment Control	Beaver Creek	Control	F	0.64025	19
Sediment Control	Beaver Creek	Control	С	0.57624	22
Sediment Control	Beaver Creek	Control	Н	0.11533	41
Sediment Control	Beaver Creek	Control	G	0.03380	45
B3584-05	Lower Johnson Creek		Н	0.98837	2
B3584-05	Lower Johnson Creek		E	0.60252	21
B3584-05	Lower Johnson Creek		A	0.47825	28
B3584-05	Lower Johnson Creek		С	0.33275	33
B3584-05	Lower Johnson Creek		G	0.29038	34
B3584-05	Lower Johnson Creek		D	0.08595	42
B3584-05	Lower Johnson Creek		F	0.04697	44
B3584-05	Lower Johnson Creek		В	0.00317	48
B3584-04	Lower Slate Creek		F	0.99934	1
B3584-04	Lower Slate Creek		D	0.84256	11
B3584-04	Lower Slate Creek		Н	0.77387	15
B3584-04	Lower Slate Creek		В	0.54258	24
B3584-04	Lower Slate Creek		E	0.50834	26
B3584-04	Lower Slate Creek		A	0.47836	27
B3584-04	Lower Slate Creek		G	0.45783	31
B3584-04	Lower Slate Creek		С	0.06878	43
B3584-03	Lower Sherman Creek		D	0.89121	5
B3584-03	Lower Sherman Creek		С	0.89107	6
B3584-03	Lower Sherman Creek	,	A	0.85573	9
B3584-03	Lower Sherman Creek		E	0.80200	13
B3584-03	Lower Sherman Creek		G	0.46815	29
B3584-03	Lower Sherman Creek		Н	0.28869	35
B3584-03	Lower Sherman Creek		В	0.23766	37
B3584-03	Lower Sherman Creek		F	0.19028	39
B3584-02	Upper Slate Creek		H	0.94389	4
B3584-02	Upper Slate Creek		E	0.70720	16
B3584-02	Upper Slate Creek		A	0.66646	17
B3584-02	Upper Slate Creek		В	0.60460	20
B3584-02	Upper Slate Creek		D	0.53838	25
B3584-02	Upper Slate Creek		F	0.46329	30
B3584-02	Upper Slate Creek		G	0.27055	36
B3584-02	Upper Slate Creek		C	0.16596	40
B3584-01	East Fork Slate Creek		E	0.87374	8
B3584-01	East Fork Slate Creek		A	0.81221	12
B3584-01	East Fork Slate Creek East Fork Slate Creek		B C	0.66528	18
B3584-01 B3584-01	East Fork Slate Creek		D	0.54494	23 32
	East Fork Slate Creek		F	0.35681	
B3584-01 B3584-01	East Fork Slate Creek East Fork Slate Creek		G	0.20421 0.01514	38
B3584-01	East Fork Slate Creek		H	0.01514	46 47
D0004-01	Last Fulk Sidle Creek			0.00040	41
			Z Z		
			Z		
			Z		

TITRATION AND AMMONIA DATA

Client	Kensington	Species ID#	AMP 8(a
Sample Description:	See Randomization Sheet.	Start Date	2/22/11

	See Kandolinzali				_ Start Date	
Laboratory ID		dness s CaCO ₃)	F .	linity s CaCO₃)		nonia s NH ₃ -N)
	Initial	Final	Initial	Final	Initial	Final
Sediment Control	80	Ç(59	67	0,13	0,30
B3584-01	111	105	24	96	0.40	0.27
B3584-02	101	97	૧૦	21	0.16	0.65
B3584-03	95	27	70	74	10,10	0.20
B3584-04	93	<i>6</i> 7	69	62	20,10	(0,10
B3584-05	99	25	63	66	0.16	0.30
		·				
			L			

Client	Kens	sington	Species ID# AMP 8	6
Lab ID: see randomiza	ation sheet batch nu	mber: B3584	Start Date	8/22/2016
Sample Description:	Weights of Amphipods	at test initiation (= num	ber of replicates as the test	, 10 Hyallela each)
Technician:	MC	KJ		
Date:	8/24/2016	8/18/2016		
Balance Serial #:	50309851	50309851		

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
@ Initiation A	64.41	64.04	20	5
			<u>na</u>	
@ Initiation B	63.73	63.45	na	5
@ Initiation C	64.08	63.81	na	5
@ Initiation D	63.17	62.80	na	5
@ Initiation E			na	
@ Initiation F			na	
@ Initiation G			na	
@ Initiation H			na	

weigh to 0.01 mg

Accepte weight: 0.0645 m/ individual

\exists
I
3
Ö

FRESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

																				I	I	١
Clions					Voncington	100						á) winning	Day	S)	1777		F	Time	4.70		
Sample Description	scription	See Ra	See Randomization Sheet.		Batch Number B	umber B	358	7				ăБ	Ending (Day 10), Date 9-1-20	v 10), Da	∯ 21	7-7	7 0 0	*	Time Of Ob	3060	1	
Test Species: Hyallela azteca	es:	Tech. Time		1 24 74	Dayo MC Dayo (430		35	2 2	Day 2 DO A Day 3 Day 2 O6-30 Day 3 0	3 2015	Day 4		ay 5 (\$\frac{\angle}{\angle}\		MC 826	Day 7 Day 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 8 V	Day 9	a Copio	bay 10	[2] [2]
ID#: @	g	Tech. Time Feeding	Tech. Day-1 Sv. Day 0 Time Day-1 OKN Day 0 Feeding: V when done Day 0	Sar Day 0 Come Day 0	Day 0 1655 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Day 1 Day 1 Day 1	る数	Day 2 LC Day	Day 2 15 Day 3 15 Day 4 17 Day 5 12 Day 6 14 Day 7 21 Day 8 21 Day 9 21 Day 9 21 Day 9 21 Day 9 21 Day 1 Day 2 15 Day 1 Day 2 1 Day 9 10 21 Day 2 1 Day 3 1 Day 4 14 Day 5 Day 5 Day 6 Day 7 52 Day 8 1 14 Day 9 10 0100 Day 2 Day 7 Day 8 1 Day 9 10 0100 Day 2 Day 8 1 Day 9 10 0100 Day 2 Day 9 10 0100 Day 9 1	图型	Day 4 Day 4 Day 4 Day 4	475		(기) (기) (조) (조) (조)	ENERGY SE	Day 7 Day 7 (Day 7			T 1/J/ Day 9 Day 9	1 (00) 7	bay 10	17 3
Beaker						.		11												Co	Conductivity	
Number	1 0	2	Dissol-	Dissolved Oxygen (mg/l) 3 4 5 6	n (mg/l)	7	8	6	0 01	_	2	3 Ten	Temperature (°C) 4 5	္မ	7		6	01		\$	(µmohs/cm) 0 10	
11.33x	49 L.D	03	7,27	[cy	8-90-9	22 8	1	1,217	12/0/13.0	122 0	22,33	22,322,722,622,422.3	262	.4 22	3 23	22.8	22.822.722.8	2,178	4,2	387	3/8	N
6	7.3 64		7.31	1,26.1		£2 8-9	11'2	2,26	269 my 120 22, 322, 722, 23 24 224	y 22.0	22.3	22,7 22	2,5 2	3 2	1224	28	2.7 8.22 7.21 8.22	1287		7,6325	325	٩
12	99 7.7	27	i	1,37,26.26.874	265	325	7	2,24	268 115 220	5 22.0	22.2	22,222,622,4223224	2,422	.3 22 1	1 224	22.8	12.8 22,622.8 7.1	7 83	72	7.4.271	363	4
17	7,0 6.3	11	 	(e) 	5.7 9.9 0.0	22 0	0.0	70/2	106,4 71.5 220 22.322.7225224 22.4	5 22.0	22.3	22.72	2522	72 h		22.8	224 22,8 22,622.871	1.8	1	74 331		S S
27	7,1 63	 `	7,3	1 6 /	ر ق 1		1	9 6.9	967 224 250 22, 22, 725, 725, 724	~27 F	22.7	22.72	252	.3 22H		22.1	477.782.622.87.27.14	1 8		- 372	ı	+
28	7,3 6,7		7.47.1	7.1 1.3	2		4.	50%	7.0696622421.9	4 21.9	22.2	22,222,822,572,8 22.4 22.1	2.52	2 2	<u>;</u>	12.7	22,522.8	87.7	7,7	7.7.00	317	
		1			<u> </u>		-)	<u> </u>	,)		-
				<u> </u>																		
																		-				
							•										,					
																			•			
																	Kensin	Kensington Hveliela with randomization 16 day B3584 xlam	with random	ization 18 day	v B3584.xlan	E

Kensington Hyaliela with randomization 10 day B3584.xlsm Doc. Control ID: ASL1119-0614

<u>CH</u>	VI HIL	<u> </u>	FR	RESHWATER	TOXICITY TEST	SURVIV	AL AN	D WAT	ER QUA	ALITY DATA	<u> </u>
Client]	Kensington		_	Beginnin	g, Date _	3-22-1	Time	:
Sample D	escription	See Ra	ndomizati	ion Sheet(s). Batc	h number: B 35층니		Ending, I	Date	Q-1-1	C Time	0230
Test Spec	ies:	Hyallela:	azteca	<u></u>	D#: AMP 86						
Test Initia	ation:	Tech:	Tech:	<u> </u>	Time: 3030 Right	∥⁄Test Te⊓	mination:	Tech:	Tech:	`B~	Time: US30
	Gii		I	1			04-4			1	
Beaker	Start Count	# alive found	# dead found			Beaker	Start Count	# alive found	# dead found		
Number	0	10	10	Comments:		Number	0	10	10	Comments:	
1	10	10	ð			16	10	9	0		
2	10	10	ō			17	10	গ	0		
3	10	10	0			18	10	9	D		
4	10	3	0			19	10	10	٥		
5	10	10	0			20	10	8	0		
6	10	10	0			21	10	9	0		
7	10	10	0			22	10	9	0		
8	10	10	0	<u></u>		23	10	9	0		
9	10	סן	O			24	10	9	٥		
10	10	10	D			25	10	10	0		
11	10	10	0			26	10	8	6		
12	10	9	٥	<u> </u>		27	10	8	0		
13	10	9	٥			28	10	9	0		THE STREET
14	10	9	0			29	10	10	0		
15	10	<i>i0</i>	0			30	10	10	Ò		
	•										

_CH	VI HIL	<u> </u>	FR	ESHWATER	TOXICIT	Y TEST	SURVIV	AL AN	D WAT	ER QUA	ALITY DATA	
Client Sample D	Description	See Ra	I Indomizati	Censington on Sheet(s). Bate	ch number: B	35%L	Ī	Beginning Ending, D	g, Date	8-12-16 9-1-16	TimeTime	~23 <u>~</u>
Test Initia		Tech:		·3~		_	Test Terr	mination:	Tech:	Tech:	<u>&-</u>	Time: <u>093</u> 0
Beaker Number	Start Count	# alive found 10	# dead found 10	Comments:			Beaker Number	Start Count 0	# alive found 10	# dead found 10	Comments:	
31	10	9	0				46	10	36	0		
32	10	10	0				47	10	8	0		
33	10	9	0				48	10	9	0		
34	10	10	0									
35	10	9	0									
36	10	9	0									
37	10	ઇ	0									
38	10	10	<u>ک</u>									
39	10	שו	0									
40	10	10	0									
41	10	9	0									•
42	10	7	0									
43	10	8	0									
44	10	10	0									
45	10	16	0									
								,				
	13.00										1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	- W											

Client _		Kens	sington	Species ID# AMP 86	}
Lab ID:	see randomization she	et batch nu	mber: B3584	Start Date	8/22/2016
Sample I	Description:				
	Technician:	MC	MC		
	Date:	9/7/2016	8/30/2016		
В	alance Serial #:	50309851	50309851		

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
1	69.48	68.63	10	10
2	69.64	68.58	10	10
3	69.67	68.82	10	10
4	69.03	68.71	3	3
5	69.51	68.54	10	10
6	69.74	68.72	10	10
7	69.69	68.76	10	10
8	69.61	68.82	10	10
9	69.44	68.69	10	10
10	69.67	68.73	10	10
11	69.87	68.90	10	10
12	69.65	68.74	9	9
13	69.65	68.75	9	9
14	69.53	68.67	9	9
15	69.64	68.64	10	10
16	69.52	68.65	9	9
17	69.54	68.78	9	9
18	69.80	68.76	9	9
19	69.23	68.38	10	10
20	69.09	68.48	8	8
21	69.51	68.64	9	9
22	69.55	68.76	9	9
23	69.39	68.61	9	9
24	69.31	68.50	9	9
25	69.51	68.57	10	10
26	69.47	68.68	8	8
27	69.09	68.33	8	8
28	69.57	68.86	9	9
29	69.18	68.36	10	10
30	69.31	68.49	10	10

Client _		K	ensington	Species ID# AMP 86	5
Lab ID:	see randomization	sheet batch	number: B3584	Start Date	8/22/2016
Sample 1	Description:	· · · · · · · · · · · · · · · · · · ·			
	Technician:	MC	MC		
	Date:	9/7/2016	8/30/2016		
F	Balance Serial #:	50309851	50309851		

Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
31	69.49	68.49	9	9
32	69.49	68.58	10	10
33	69.69	68.78	9	9
34	69.62	68.88	10	10
35	69.57	68.83	9	9
36	69.54	68.57	9	9
37	69.75	68.91	8	8
38	69.70	68.69	10	10
39	69.45	68.45	10	10
40	69.53	68.58	10	10
41	69.31	68.53	9	9
42	69.47	68.82	7	7
43	69.72	68.89	8	8
44	70.05	69.13	10	10
45	70.07	69.03	10	10
46	69.86	69.00	8	8
47	69.55	68.67	8	8
48	69.53	68.70	9	9
	•			

Client		Kensi	ngton	_ Species ID# AN	1P 26	
Lab ID:	see randomization shee	et batch nun	nber: B 3824	Start Date	2-22-14	
Sample D	escription:					
	Technician:		MC			
	Date:		8/30/2016			
Ва	alance Serial #:	50309851	50309851			

Dalance Serial #.		30309031		
Tin ID Number	Total Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
1		69.62	C	10
1		68.63	Same as -0	10
2		68.58	*	(0
3		68.82		10
4		68.71		3
5		68.54		10
6		68.72		10
7		68.76		10
8		68.82		10
9		68.69		10
10		68.73		10
11		68.90		ıΟ
12		68.74		9
13		68.75		9
14		68.67		9
15		68.64		10
16		68.65		9
17		68.78		9
18		68.76		9
19		68.38		10
20		68.48		3
21		68.64		9
22		68.76		9
23	· · · · · · · · · · · · · · · · · · ·	68.61		9
24		68.50		9
25		68.57		10
26	· · · · · · · · · · · · · · · · · · ·	68.68		5
27		68.33		9
28		68.86		9
29		68.36		10
30		68.49		10

Client		Kensington	Species ID#	# AMP &6	
Lab ID:	see randomization sheet	batch number: B 35:	Start Date	9-22-11	
Sample D	Description:				
	Technician:	Me	<u> </u>		
	Date:	8/30/2	2016		
В	alance Serial #: 5036	9851 50309	851		

	Weight (mg) (after 60°C for 24 hr)	Tare Weight (mg) (after 60°C for 24 hr)	No. of Amphipods Surviving	No. of Amphipods in Tin
31		68.49	Shut —D	৭
32		68.58		10
33	· · · · · · · · · · · · · · · · · · ·	68.78		9
34		68.88		(3
35		68.83		9
36		68.57		প
37		68.91		3
38		68.69		10
39		68.45		ĺΰ
40		68.58		טו
41		68.53		G
42		68.82		7
43		68.89		ક
44		69.13		(0
45		69.03		10
46		69.00		9
47		68.67		ž
48		68.70		9

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:17 (p 1 of 1) B358403hac | 06-9305-2114

Hyallela 10-d	Survival and Gr	owth Sedi	ment Tes	t						CH2M	HILL - ASL
Batch ID: Start Date: Ending Date: Duration:	15-6395-3015 22 Aug-16 01 Sep-16 10d 0h	Pro Sp	otocol: ecies:	Survival-Growth EPA/600/R-99/ Hyalella azteca Chesapeak Cul	064 (2000)	s, Virginia	Di Br	•	t Muckey -Hard Synth	etic Water	
Sample ID:	05-1582-8506	Со	de: (B3584-03	<u> </u>		CI	ient:			
Sample Date:	06 Jul-16	Ma	terial:	Sediment			Pr	oject:			
Receive Date:	: 13 Jul-16	So	urce:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	47d 0h	Sta	ition:	Lower Shermar	Creek						
Comparison S	Summary		***	-							, , , , , , , , , , , , , , , , , , , ,
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
03-9700-6627	Mean Dry Weig	ht-mg (100	>100)	NA	8.93%	1	Equal Var	iance t Two-	Sample Te	st
14-1674-6543	Survival Rate		100	>100	NA	5.76%	1	1 Wilcoxon Rank Sum Two-San			e Test
Test Acceptal	oility										
Analysis ID	Endpoint		Attribu	ite	Test Stat	TAC Lin	nits	Overlap	Decision		
14-1674-6543	Survival Rate		Contro	l Resp	0.9625	0.8 - NL		Yes	Passes A	cceptability	Criteria 🗸
Mean Dry We	ight-mg Summa	ry									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.0913	8 0.08588	0.09687	0.085	0.104	0.002325	0.006577	7.2%	0.0%
100		8	0.0929	0.08342	0.1024	0.075	0.105	0.004009	0.01134	12.21%	-1.67%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9625	0.9192	1	0.9	1	0.0183	0.05175	5.38%	0.0%
100		8	0.95	0.8868	1	8.0	1	0.02673	0.07559	7.96%	1.3%
Mean Dry Wei	ight-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
100		0.097	0.102	0.075	0.1	0.082	0.08222	2 0.105	0.1		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	0.9	1	0.9	0.9	1		
100		1	1	1	0.9	1	0.9	8.0	1		
Survival Rate	Binomials					•					
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	10/10	10/10	9/10	10/10	9/10	9/10	10/10		

Analyst:_____QA:____

10/10

10/10

10/10

10/10

9/10

10/10

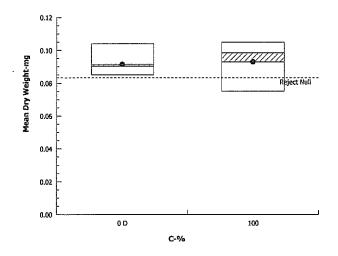
9/10

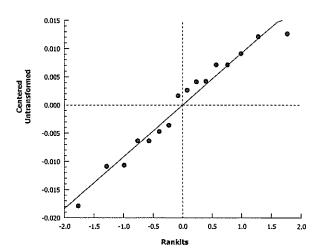
8/10

100

15 Sep-16 16:17 (p 1 of 4)

Report Date: Test Code: B358403hac | 06-9305-2114


							1000	Couc.	2000	1001100 0	
Hyallela 10-d S	Survival and Gr	owth S	ediment Te	st						CH2M	HILL - AS
Analysis ID:	03-9700-6627		Endpoint:	Mean Dry Weig	ght-mg		CET	IS Version:	CETISv1	.8.8	
Analyzed:	15 Sep-16 16:1	7	Analysis:	Parametric-Tw	o Sample		Offic	ial Results	: Yes		
Batch ID:	15-6395-3015		Test Type:	Survival-Growt	h		Anai	yst: Bre	tt Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu	-	d-Hard Synth	etic Water	
Ending Date:	01 Sep-16		Species:	Hyalella azteca	1		Brin	e:	·		
Duration:	10d 0h		Source:	Chesapeak Cu	itures, Naye	s, Virginia	Age:	:			
Sample ID:	05-1582-8506		Code:	B3584-03			Clier	nt:			11000
Sample Date:	06 Jul-16		Material:	Sediment			Proj	ect:			
Receive Date:	13 Jul-16		Source:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	47d 0h		Station:	Lower Sherma	n Creek						
Data Transforr	m	Zeta	Alt H	lyp Trials	Seed		PMSD	Test Res	ult		
Untransformed		NA	C > T	NA	NA		8.93%	Passes m	nean dry weig	ght-mg	
Equal Variance	e t Two-Sample	Test									
Control	vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Dilution Water	100		-0.329	96 1.761	0.008 14	0.6267	CDF	Non-Sign	ificant Effect		
Auxiliary Tests	3										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:5%)			
Control Trend	Mann-Kei	ndall Tr	end			0.3987	Non-signi	ficant Trend	in Controls		
ANOVA Table											
Source	Sum Squa	ares	Mean	Square	DF	F Stat	P-Value	Decision	(α:5%)		
Between	9.335101E	-06	9.335	101E-06	1	0.1087	0.7466	Non-Sign	ificant Effect		
Error	0.0012028	36	8.591	859E-05	14						
Total	0.0012121	95			15						
Distributional '	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision((α:1%)			
Variances	Variance	Ratio F	Test	2.973	8.885	0.1739	Equal Var	iances			
Distribution	Shapiro-V	Vilk W I	Normality	0.9565	0.8408	0.5992	Normal Di	istribution			
Mean Dry Weig	ght-mg Summa	ry									
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.091	38 0.08588	0.09687	0.09039	0.085	0.104	0.002325	7.2%	0.0%
100		8	0.092	9 0.08342	0.1024	0.0985	0.075	0.105	0.004009	12.21%	-1.67%
Mean Dry Weig	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
	_										
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		


Report Date: Test Code: 15 Sep-16 16:17 (p 2 of 4) B358403hac | 06-9305-2114

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

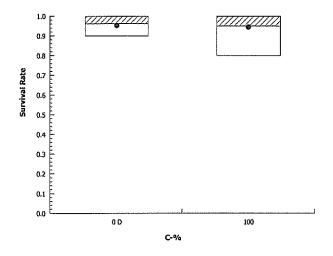
Analysis ID:	03-9700-6627	Endpoint:	Mean Dry Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:17	Analysis:	Parametric-Two Sample	Official Results:	Yes

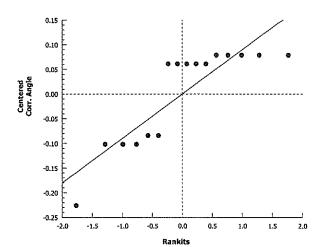
000-092-188-2

Report Date:

15 Sep-16 16:17 (p 3 of 4) B358403hac | 06-9305-2114

Test Code:


-	f Survival and Gr	rowth Sed	liment Test							CH2M	HILL - AS
Analysis ID: Analyzed:	14-1674-6543 15 Sep-16 16:			Survival Rate Ionparametric	·Two Sample	e	_	IS Version ial Results		.8.8	
Batch ID:	15-6395-3015	Te	est Type: S	Survival-Growth	ו		Analyst: Brett Muckey				
Start Date:	22 Aug-16	Pı	rotocol: E	PA/600/R-99/	064 (2000)		Dilu	ent: Mo	d-Hard Syntl	netic Wate	r
Ending Date:	: 01 Sep-16	Sį	pecies: F	lyalella azteca			Brine:				
Ouration:	10d Oh	Sc	ource: C	hesapeak Cul	tures, Naye	s, Virginia	Age	1			
Sample ID:	05-1582-8506	C		3584-03			Clie	nt:			
Sample Date		M:	aterial: S	Sediment			Proj	ect:			
Receive Date		Sc		Censington Gol	•	0050571)					
Sample Age:	: 47d 0h	St	ation: L	ower Shermar	n Creek						
Data Transfo)rm	Zeta	Ait Hyp	Trials	Seed		PMSD	Test Res	ult		
Angular (Corr	ected)	NA	C>T	NA	NA		5.76%	Passes s	urvival rate	***************************************	
Wilcoxon Ra	ınk Sum Two-Saı	mple Test									
Control	vs C-%		Test St	at Critical	Ties DF	P-Value	P-Type	Decision	(α:5%)		
Dilution Wate	er 100		66.5	NA	2 14	0.5000	Exact	Non-Sign	ificant Effec	t	
Auxiliary Tes	sts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	l Mann-Ke	endall Tren	d			0.1964	Non-signi	ficant Trend	l in Controls		
ANOVA Table	e										
Source	Sum Squ	ares	Mean S	quare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.0012584		0.00125		1	0.1206	0.7336	Non-Sign	ificant Effect	ł	
Error	0.1461217		0.01043	726	14	_					
Total	0.1473801	1			15						
Distributiona											
Attribute	Test			Test Stat		P-Value	Decision				
Variances		Ratio F To		1.934	8.885	0.4037	Equal Var				
Distribution		Wilk W No	тпанц	0.756	0.8408	8000.0	Non-norm	al Distributi	on		
Survival Rate C-%		Caust	Maaa	050/ 1.01	95% UCL	Madian	8.81.m	Mari	Chi Em	CM/0/	0/ 554
-	Control Type Dilution Water	Count 8	Mean 0.9625	0.9192	1		Min	Max	Std Err	CV%	%Effect
0 100	Dilution water	8	0.9525	0.8868	1	1	0.9 0.8	1 1	0.0183 0.02673	5.38% 7.96%	0.0% 1.3%
100			0.33	0.0000	'	1	v.o	ı	0.02073	7.5070	1.376
1 /0	4 T £				-						
- '	rrected) Transfor		•	050/ 1.01				Mar	C44 5		0/ E#
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	cv%	
C-%	•	Count 8	Mean 1.351	1.28	95% UCL 1.421	Median 1.412	Min 1.249	1,412	0.02982	CV% 6.24%	0.0%
C-% O	Control Type Dilution Water	Count	Mean		95% UCL	Median	Min			cv%	
C-%) 100 Survival Rate	Control Type Dilution Water	Count 8 8	Mean 1.351 1.333	1.28 1.235	95% UCL 1.421 1.431	Median 1.412 1.412	Min 1.249 1.107	1.412 1.412	0.02982 0.04147	CV% 6.24%	0.0%
C-% 0 100 Survival Rate C-%	Control Type Dilution Water	Count 8	Mean 1.351	1.28	95% UCL 1.421	Median 1.412	Min 1.249	1,412	0.02982	CV% 6.24%	0.0%
C-% 0 100 Survival Rate C-%	Control Type Dilution Water e Detail Control Type	Count 8 8 Rep 1	Mean 1.351 1.333 Rep 2	1.28 1.235 Rep 3	95% UCL 1.421 1.431 Rep 4	Median 1.412 1.412 Rep 5	Min 1.249 1.107	1.412 1.412 Rep 7	0.02982 0.04147 Rep 8	CV% 6.24%	0.0%
C-%) 00 Survival Rate C-% 100	Control Type Dilution Water e Detail Control Type	Rep 1 1	Mean 1.351 1.333 Rep 2 1	1.28 1.235 Rep 3	95% UCL 1.421 1.431 Rep 4	Median 1.412 1.412 Rep 5	Min 1.249 1.107 Rep 6 0.9	1.412 1.412 Rep 7	0.02982 0.04147 Rep 8	CV% 6.24%	0.0%
G-% 000 Gurvival Rate G-% 000 Angular (Core	Control Type Dilution Water e Detail Control Type Dilution Water	Rep 1 1	Mean 1.351 1.333 Rep 2 1	1.28 1.235 Rep 3	95% UCL 1.421 1.431 Rep 4	Median 1.412 1.412 Rep 5	Min 1.249 1.107 Rep 6 0.9	1.412 1.412 Rep 7	0.02982 0.04147 Rep 8	CV% 6.24%	0.0%
C-% Output O	Control Type Dilution Water e Detail Control Type Dilution Water	Rep 1 1 1 med Deta	Mean 1.351 1.333 Rep 2 1 1	1.28 1.235 Rep 3 1	95% UCL 1.421 1.431 Rep 4 0.9 0.9	Median 1.412 1.412 Rep 5 1	Min 1.249 1.107 Rep 6 0.9 0.9	1.412 1.412 Rep 7 0.9 0.8	0.02982 0.04147 Rep 8 1	CV% 6.24%	0.0%
C-% OUTO Survival Rate C-% OUTO Angular (Core	Control Type Dilution Water e Detail Control Type Dilution Water rected) Transfort Control Type	Rep 1 1 1 med Deta	Mean 1.351 1.333 Rep 2 1 1 Rep 2	1.28 1.235 Rep 3 1 1	95% UCL 1.421 1.431 Rep 4 0.9 0.9	Median 1.412 1.412 Rep 5 1 1	Min 1.249 1.107 Rep 6 0.9 0.9	1.412 1.412 Rep 7 0.9 0.8	0.02982 0.04147 Rep 8 1 1	CV% 6.24%	0.0%
C-% 0 100 Survival Rate C-% 0 100 Angular (Core C-% 0 100	Control Type Dilution Water e Detail Control Type Dilution Water rected) Transfort Control Type Dilution Water	Rep 1 1 1 med Deta Rep 1 1,412	Mean 1.351 1.333 Rep 2 1 1 II Rep 2 1.412	1.28 1.235 Rep 3 1 1 Rep 3	95% UCL 1.421 1.431 Rep 4 0.9 0.9 Rep 4 1.249	Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412	Min 1.249 1.107 Rep 6 0.9 0.9	1.412 1.412 Rep 7 0.9 0.8 Rep 7 1.249	0.02982 0.04147 Rep 8 1 1 Rep 8 1.412	CV% 6.24%	0.0%
C-% 0 100 Survival Rate C-% 0 100 Angular (Cor. C-% 0 100 Survival Rate	Control Type Dilution Water e Detail Control Type Dilution Water rected) Transfort Control Type Dilution Water	Rep 1 1 1 med Deta Rep 1 1,412	Mean 1.351 1.333 Rep 2 1 1 II Rep 2 1.412	1.28 1.235 Rep 3 1 1 Rep 3	95% UCL 1.421 1.431 Rep 4 0.9 0.9 Rep 4 1.249	Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412	Min 1.249 1.107 Rep 6 0.9 0.9	1.412 1.412 Rep 7 0.9 0.8 Rep 7 1.249	0.02982 0.04147 Rep 8 1 1 Rep 8 1.412	CV% 6.24%	0.0%
C-% 0 100 Survival Rate C-% 0 100	Control Type Dilution Water e Detail Control Type Dilution Water rected) Transfort Control Type Dilution Water	Rep 1 1 1 med Deta Rep 1 1.412 1.412	Mean 1.351 1.333 Rep 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.28 1.235 Rep 3 1 1 1 Rep 3 1.412 1.412	95% UCL 1.421 1.431 Rep 4 0.9 0.9 Rep 4 1.249 1.249	Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412 1.412	Min 1.249 1.107 Rep 6 0.9 0.9 Rep 6 1.249 1.249	1.412 1.412 Rep 7 0.9 0.8 Rep 7 1.249 1.107	0.02982 0.04147 Rep 8 1 1 1 Rep 8 1.412 1.412	CV% 6.24%	


Report Date: Test Code: 15 Sep-16 16:17 (p 4 of 4) B358403hac | 06-9305-2114

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	14-1674-6543	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:17	Analysis:	Nonparametric-Two Sample	Official Results:	Yes

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:15 (p 1 of 1) B358401hac | 12-1807-9938

Hyallela 10-d	Survival and Gr	owth Sed	iment Test							CH2M	HILL - ASL
Batch ID: Start Date: Ending Date: Duration:	15-6395-3015 22 Aug-16 01 Sep-16 10d Oh	Pr Sp	Test Type: Survival-Growth Protocol: EPA/600/R-99/064 (2000) Species: Hyalella azteca Source: Chesapeak Cultures, Nayes, Virginia				ent: Mod ne:	t Muckey I-Hard Synth	etic Water		
Sample ID:	18-2203-5030	Co	ode: B3	584-01			Clie	nt:			
Sample Date:		Ma		diment			Pro	ject:			
Receive Date			Source: Kensington Gold Mine (AK0050571)								
Sample Age:	47d 0h	St	Station: East Fork Slate Creek								
Comparison	Summary			the state of the s	والمتاوية						
Analysis ID	Endpoint		NOEL	EOEL	TOEL	PMSD	TU	Method			
00-6723-3050	Mean Dry Weig	ght-mg	100	>100	NA	9.62%	1	Equal Var	iance t Two	Sample Te	st.
12-0143-9665	Survival Rate		100	>100	NA	6.1%	1 Equal Variance t Two-Sample Te			⊭st	
Test Accepta	bility										
Analysis ID	Endpoint		Attribute		Test Stat	TAC Lim	nits	Overlap	Decision		
12-0143-9665	0143-9665 Survival Rate Control Resp 0.9625 0.8 - NL				Yes	Passes A	cceptability	Criteria 🗸			
Mean Dry We	ight-mg Summa	ry									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.09138	0.08588	0.09687	0.085	0.104	0.002325	0.006577	7.2%	0.0%
100		8	0.09898	0.08854	0.1094	0.079	0.1156	0.004416	0.01249	12.62%	-8.32%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.9625	0.9192	1	0.9	1	0.0183	0.05175	5.38%	0.0%
100		8	0.9125	0.8427	0.9823	0.8	1	0.0295	0.08345	9.15%	5.2%
Mean Dry We	ight-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		<u> </u>
100		0.079	0.1011	0.1156	0.08667	0.091	0.101	0.1075	0.11		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	0.9	1	0.9	0.9	1	······	
100		1	0.9	0.9	0.9	1	1	8.0	8.0		
Survival Rate	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	10/10	10/10	9/10	10/10	9/10	9/10	10/10		

100

10/10

9/10

9/10

9/10

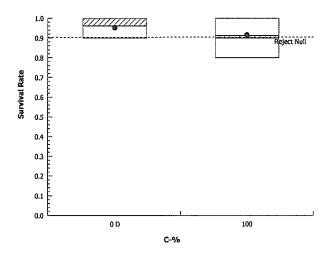
10/10

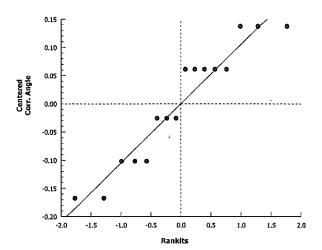
10/10

8/10

8/10

Report Date: Test Code: 15 Sep-16 16:15 (p 3 of 4) B358401hac | 12-1807-9938


							1631	Coue.	D330	HUITIAC [1.	2-1001-330
Hyallela 10-d	Survival and G	rowth S	ediment Te	st						CH2M	HILL - AS
Analysis ID: Analyzed:	12-0143-9665 15 Sep-16 16:		Endpoint: Analysis:	Survival Rate Parametric-Two	o Sample			IS Version		.8.8	
Batch ID:	15-6395-3015		Test Type:	Survival-Growt	h		Anal	lyst: Bre	tt Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Mo	d-Hard Synti	hetic Water	
Ending Date	: 01 Sep-16		Species:	Hyalella azteca	ļ		Brin	e:			
Duration:	10d 0h		Source:	Chesapeak Cu	Itures, Naye	s, Virginia	Age	:			
Sample ID:	18-2203-5030		Code:	B3584-01			Clie	nt:			
Sample Date			Material:	Sediment			Proj	ect:			
Receive Date			Source:	Kensington Go	•	0050571)		•			
Sample Age:	: 47d 0h		Station:	East Fork Slate	creek						
Data Transfo		Zeta	Alt H		Seed		PMSD	Test Res	ult		
Angular (Corr	rected)	NA	C > T	NA 	NA		6.1%	Passes s	urvival rate		
Equal Varian	ice t Two-Sample	e Test									
Control	vs C-%		Test			P-Value	P-Type	Decision	<u> </u>		
Dilution Wate	er 100		1.406	1.761	0.095 14	0.0907	CDF	Non-Sign	ificant Effec	t	
Auxiliary Tes	sts										
Attribute	Test			Test Stat	Critical	P-Value	Decision				
Control Trend	d Mann-K∈	endall Ire	end			0.1964	Non-signi	ticant Trend	in Controls		
ANOVA Table	е										
Source	Sum Squ		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Square	DF	F Stat	P-Value	Decision	<u> </u>		
Between	0.023236			23603	1	1.978	0.1814	Non-Sign	ificant Effec	Į.	
Error Total	0.1644872 0.01174908 0.1877232				14 15	_					
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F	Test	2.303	8.885	0.2934	Equal Var	riances			
Distribution	Shapiro-	Wilk W 1	Vormality	0.9035	0.8408	0.0916	Normal D	istribution			
Survival Rate	e Summary										
C-%	Control Type	Count	. Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.962		1	1	0.9	1	0.0183	5.38%	0.0%
100		8	0.912	5 0.8427	0.9823	0.9	0.8	1	0.0295	9.15%	5.2%
Angular (Cor	rrected) Transfor	med Su	mmary								
C-%	Control Type	Count		95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.351	1.28	1.421	1.412	1.249	1.412	0.02982	6.24%	0.0%
100		8	1.275	1.168	1.382	1.249	1.107	1.412	0.04525	10.04%	5.64%
Survival Rate	e Detail										
C-%	Control Type	Rep 1	Rep 2		Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	0.9	1	0.9	0.9	1		
100		1	0.9	0.9	0.9	1 	1	8.0	8.0		
Angular (Cor	rrected) Transfor										
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	***	
C-%	······						4 240	1.249	4 440		
0	Dilution Water	1.412	1.412	1.412	1.249	1.412	1.249		1.412		
0	······	1.412 1.412	1.412 1.249	1.412 1.249	1.249 1.249	1.412 1.412	1.412	1.107	1.107		····
	Dilution Water										···· ·
0 100 Survival Rate C-%	Dilution Water Binomials Control Type	1.412 Rep 1	1.249 Rep 2	1.249 Rep 3	1.249 Rep 4	1.412 Rep 5	1.412 Rep 6	1.107 Rep 7	1.107 Rep 8		
0 100 Survival Rate	Dilution Water	1.412	1.249	1.249	1.249	1.412	1.412	1.107	1.107		

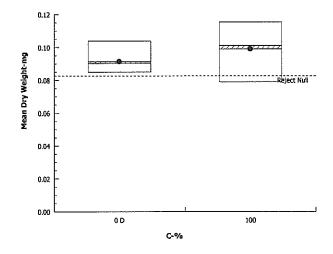

Report Date: Test Code: 15 Sep-16 16:15 (p 4 of 4) B358401hac | 12-1807-9938

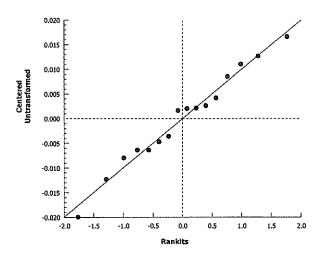
Hyaliela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	12-0143-9665	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:12	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date: Test Code: 15 Sep-16 16:15 (p 1 of 4) B358401hac | 12-1807-9938


										·'	
Hyallela 10-d	Survival and G	rowth S	ediment Te	st						CH2M	HILL - AS
Analysis ID: Analyzed:	00-6723-3050 15 Sep-16 16:		Endpoint: Analysis:	Mean Dry Weig Parametric-Tw				IS Version		.8.8	
Batch ID:	15-6395-3015		Test Type:	Survival-Growt	h		Anal	lvst: Bre	tt Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu	-	d-Hard Synth	etic Water	
Ending Date:	_		Species:	Hyalella azteca	, ,		Brin				
Duration:	10d 0h		Source:	Chesapeak Cu		s, Virginia	Age	;			
Sample ID:	18-2203-5030		Code:	B3584-01			Clie	nt:			
Sample Date:	06 Jul-16		Material:	Sediment			Project:				
Receive Date:	13 Jul-16		Source:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	47d 0h		Station:	East Fork Slate	e Creek						
Data Transfor	m	Zeta	Alt H	yp Trials	Seed		PMSD	Test Res	ult		
Untransformed		NA	C > T	NA	NA		9.62%	Passes n	nean dry weig	ght-mg	
Equal Varianc	e t Two-Sample	e Test									
Control	vs C-%		Test			P-Value	P-Type	Decision	·· ·····		
Dilution Water	100		-1.524	4 1.761	0.009 14	0.9251	CDF	Non-Sign	ificant Effect		
Auxiliary Test	S										
Attribute	Test			Test Stat	Critical	P-Value	Decision			·	
Control Trend	Mann-Ke	ndall Tr	end			0.3987	Non-signi	ficant Trend	in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.0002312	2942	0.000	2312942	1	2.322	0.1498	Non-Sign	ificant Effect		
Error	0.001394	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000	099622	14	_					
Total	0.001626	002			15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F	Test	3.606	8.885	0.1123	Equal Var	iances			
Distribution	Shapiro-\	Wilk W I	Vormality	0.9804	0.8408	0.9670	Normal D	istribution			
Mean Dry Wei	ght-mg Summa	ıry									
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.091	38 0.08588	0.09687	0.09039	0.085	0.104	0.002325	7.2%	0.0%
100		8	0.098	98 0.08854	0.1094	0.1011	0.079	0.1156	0.004416	12.62%	-8.32%
Mean Dry Wei	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
U	Silation Hater		0.000	0.00 .	0.0000	0.000	0.007.0		0.10-1		


Report Date: Test Code: 15 Sep-16 16:15 (p 2 of 4) B358401hac | 12-1807-9938

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	00-6723-3050	Endpoint:	Mean Dry Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:15	Analysis:	Parametric-Two Sample	Official Results:	Yes

CETIS Summary Report

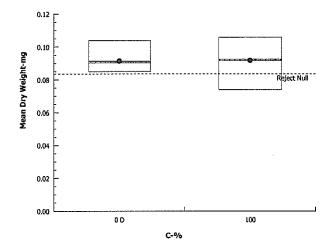
Report Date: 15 Sep-16 16:19 (p 1 of 1) B358405hac | 01-9737-8056

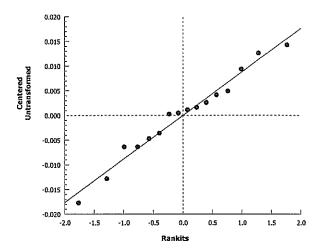
							16	Si Code.	D000	400Hac 0	1-9101-000
Hyallela 10-d	Survival and Gr	owth S	iediment Te	st						CH2M	HILL - ASL
Batch ID:	15-6395-3015		Test Type:	Survival-Growth	h		Ar	alyst: Bret	t Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/	064 (2000)		Di	luent: Mod	-Hard Synth	netic Water	
Ending Date:	01 Sep-16		Species:	Hyalella azteca	l		Br	ine:			
Duration:	10d 0h		Source:	Chesapeak Cu	ltures, Naye	s, Virginia	Αg	 			
Sample ID:	02-9733-1775		Code:	B3584-05	````		CI	ient:			
Sample Date:	08 Aug-16		Material:	Sediment			Pr	oject:			
Receive Date:	11 Aug-16		Source:	Kensington Go	ld Mine (AKI	0050571)					
Sample Age:	14d 0h		Station:	Lower Johnson	Creek	\mathcal{L}					
Comparison S	Summary				and the second s						
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
19-7018-2435	Mean Dry Weig	ht-mg	100	>100) NA	8.54%	1	Equal Var	iance t Two	Sample Te	est
20-4344-5400	Survival Rate		100	>100	NA	6.53%	1	Equal Var	iance t Two	-Sample Te	st
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Overlap	Decision		
20-4344-5400	Survival Rate		Contr	ol Resp	0.9625	0.8 - NL		Yes	Passes A	cceptability	Criteria 🔑
Mean Dry Wei	ght-mg Summa	ry									
C-%	Control Type	Cour	ıt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.091	38 0.08588	0.09687	0.085	0.104	0.002325	0.006577	7.2%′	0.0%
100		8	0.091	72 0.0828	0.1006	0.074	0.106	0.003772	0.01067	11.63%	-0.38%
Survival Rate	Summary										
C-%	Control Type	Cour	ıt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.962	5 0.9192	1	0.9	1	0.0183	0.05175	5.38%	0.0%
100		8	0.912	5 0.8296	0.9954	0.7	1	0.03504	0.0991	10.86%	5.2%
Mean Dry Wei	ght-mg Detail										
C-%	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
100		0.106	0.096	67 0.07889	0.1011	0.074	0.09286	0.092	0.09222		
Survival Rate	Detail		-								
C-%	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	0.9	1	0.9	0.9	1		
100		1	0.9	0.9	0.9	1	0.7	1	0.9		
Survival Rate	Binomials							•			
C-%	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	10/10	10/10	9/10	10/10	9/10	9/10	10/10		
100		10/10	9/10	9/10	9/10	10/10	7/10	10/10	9/10		

Report Date:

15 Sep-16 16:19 (p 1 of 4)

B358405hac | 01-9737-8056 Test Code:


Hyallela 10-d \$	Survival and Gr	owth S	Sediment Te	st						·	CH2M	HILL - ASI
Analysis ID: Analyzed:	19-7018-2435 15 Sep-16 16:	19	Endpoint: Analysis:	Mean Di Parame	-	ht-mg Sample			IS Version: cial Results:	CETISv1. Yes	8.8	
Batch ID:	15-6395-3015		Test Type:	Survival	-Growth	า		Ana	vst: Bret	t Muckey		
Start Date:	22 Aug-16		Protocol:			064 (2000)		Dilu	•	I-Hard Synth	etic Water	
Ending Date:	01 Sep-16		Species:	Hyalella	azteca			Brin	e:	_		
Duration:	10d 0h		Source:	Chesap	eak Cul	tures, Naye	s, Virginia	Age	:			
Sample ID:	02-9733-1775		Code:	B3584-0	5			Clie	nt:		***************************************	
Sample Date:	08 Aug-16		Material:	Sedime	nt			Proj	ect:			
Receive Date:	-		Source:	-		d Mine (AK	0050571)					
Sample Age:	14d 0h		Station:	Lower J	ohnson	Creek						
Data Transfor		Zeta	Alt H			Seed		PMSD	Test Resu			
Untransformed		NA	C > T	NA		NA		8.54%	Passes m	ean dry weig	ht-mg	
Equal Varianc	e t Two-Sample	Test										
Control	vs C-%		Test	Stat Cri	tical	MSD DE	P-Value	P-Type	Decision(α:5%)		
Dilution Water	100		-0.07	751 1.7	61	0.008 14	0.5303	CDF	Non-Signi	ficant Effect		
Auxiliary Tests	5											
Attribute	Test			Te	st Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	Mann-Ke	ndall T	rend				0.3987	Non-signi	ficant Trend	in Controls		
ANOVA Table												
Source	Sum Squ	ares	Mean	Square		DF	F Stat	P-Value	Decision(α:5%)		
Between	4.719144			144E-07		1	0.006008	0.9393	Non-Signi	ficant Effect		
Error	0.0010996		7.854	368E-05		14						
Total	0.0011000	083				15		***************************************				
Distributional	Tests											
Attribute	Test			Te	st Stat	Critical	P-Value	Decision	(a:1%)	······································		
Variances	Variance		•	2.6		8.885	0.2250	Equal Va				
Distribution	Shapiro-\	Vilk W	Normality	0.9	743	0.8408	0.9019	Normal D	istribution			
Mean Dry Wei	ght-mg Summa	ry										
C-%	Control Type	Cour	it Mean	959	% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.091		8588	0.09687	0.09039	0.085	0.104	0.002325	7.2%	0.0%
100		8	0.091	72 0.0	828	0.1006	0.09254	0.074	0.106	0.003772	11.63%	-0.38%
Mean Dry Wei	ght-mg Detail											
					_				D 7	D 0		
C-%	Control Type	Rep :	1 Rep 2	? Re	р 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
	Control Type Dilution Water	0.085				0.09556	0.085	0.08778	0.08667	0.104		·


Report Date: Test Code: 15 Sep-16 16:19 (p 2 of 4) B358405hac | 01-9737-8056

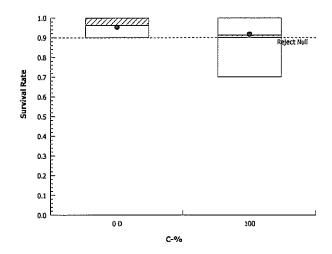
Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

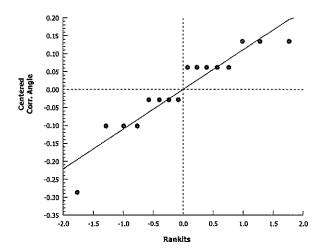
Analysis ID:	19-7018-2435	Endpoint:	Mean Dry Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:19	Analysis:	Parametric-Two Sample	Official Results:	Yes

15 Sep-16 16:19 (p 3 of 4) B358405hac | 01-9737-8056

Report Date:


Hyallela 10-d	10 10										
	i Survival and Gi	owth Se	diment Tes	st .						CH2M	HILL - AS
Analysis ID: Analyzed:	20-4344-5400 15 Sep-16 16:			Survival Rate Parametric-Two	Sample			IS Version: cial Results:	CETISv1 Yes	.8.8	
Batch ID:	15-6395-3015	T	est Type:	Survival-Growth	1		Anal	yst: Brett	Muckey		
Start Date:	22 Aug-16			EPA/600/R-99/			Dilue	-	_	netic Water	
Ending Date:	: 01 Sep-16	5	Species:	Hyalella azteca			Brin	e:			
Duration:	10d 0h	9	Source:	Chesapeak Cul	tures, Naye	s, Virginia	Age:	;			
Sample ID:	02-9733-1775	0	Code:	B3584-05			Clie	nt:			
Sample Date	: 08 Aug-16	٨	/laterial:	Sediment			Proje	ect:			
	e: 11 Aug-16	9	Source:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	: 14d 0h	5	Station:	Lower Johnson	Creek						
Data Transfo		Zeta	Alt Hy	····	Seed		PMSD	Test Resu	lt		
Angular (Corr	rected)	NA	C>T	NA	NA 		6.53%	Passes su	rvival rate		
≣qual Varian	nce t Two-Sample	e Test									
Control	vs C-%		Test S			P-Value	P-Type	Decision(
Dilution Wate	er 100		1.255	1.761	0.102 14	0.1150	CDF	Non-Signif	icant Effect	<u> </u>	
Auxiliary Tes	sts										
Attribute	Test			Test Stat	Critical	P-Value	Decision				
Control Trend	d Mann-Ke	ndall Tre	nd			0.1964	Non-signi	ficant Trend i	in Controls		
ANOVA Table	-										
Source	Sum Squ			Square	DF 1	F Stat	P-Value	Decision(
Between	0.021303		0.0213		1	1.575	0.2300	Non-Signif	icant Effect	Į.	
Error Fotal	0.1893122 0.2106158		0.0135	223	14 15	_					

Distributiona				T4 C4-4	Cuitinal	D Value	Danining	(m. 40/)			
Attribute	Test	D-41- E *	T £	Test Stat		P-Value	Decision				
Variances Distribution	Variance Shapiro-V			2.802 0.8908	8.885 0.8408	0.1975 0.0573	Equal Var Normal Di				
		VVIIN VV IN	Officiality	0.0900	0.0400	0.0373	NOTITIAL D				
Survival Rate		0	••	000/101	050/ 1101				0.15	O) (0)	0/=//
C-%	Control Type	Count	Mean	95% LCL	95% UCL		Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.9625		1 0054	1	0.9	1	0.0183	5.38%	0.0%
100		8	0.9125	0.8296	0.9954	0.9	0.7	1	0.03504	10.86%	5.2%
• •	rrected) Transfor		-								
C-%	Control Type	Count	Mean	95% LCL				MAN	Std Err	CV%	%Effect
					95% UCL	Median	Min	Max			
	Dilution Water	8	1.351	1.28	1.421	1.412	1.249	1.412	0.02982	6.24%	0.0% 5.4%
100										6.24% 11.05%	0.0% 5.4%
100 Survival Rate	e Detail	8	1.351 1.278	1.28 1.16	1.421 1.396	1.412 1.249	1.249 0.9912	1.412 1.412	0.02982 0.04991		
100 Survival Rate C-%	e Detail Control Type	8 8 Rep 1	1.351 1.278 Rep 2	1.28 1.16 Rep 3	1.421 1.396 Rep 4	1.412 1.249 Rep 5	1.249 0.9912 Rep 6	1.412 1.412 Rep 7	0.02982 0.04991 Rep 8		
100 Survival Rate C-%	e Detail	8	1.351 1.278	1.28 1.16	1.421 1.396	1.412 1.249	1.249 0.9912	1.412 1.412	0.02982 0.04991		
100 Survival Rate C-% 100	e Detail Control Type Dilution Water	8 8 Rep 1 1	1.351 1.278 Rep 2 1 0.9	1.28 1.16 Rep 3	1.421 1.396 Rep 4 0.9	1.412 1.249 Rep 5	1.249 0.9912 Rep 6 0.9	1.412 1.412 Rep 7	0.02982 0.04991 Rep 8		
Survival Rate C-%) 100 Angular (Cor	e Detail Control Type	8 8 Rep 1 1	1.351 1.278 Rep 2 1 0.9	1.28 1.16 Rep 3	1.421 1.396 Rep 4 0.9	1.412 1.249 Rep 5	1.249 0.9912 Rep 6 0.9	1.412 1.412 Rep 7	0.02982 0.04991 Rep 8		
Survival Rate C-% O 100 Angular (Cor	e Detail Control Type Dilution Water rrected) Transfor Control Type	8 8 Rep 1 1 1 med Det	1.351 1,278 Rep 2 1 0.9	1.28 1.16 Rep 3 1 0.9	1.421 1.396 Rep 4 0.9 0.9	1.412 1.249 Rep 5 1 1	1.249 0.9912 Rep 6 0.9 0.7	1.412 1.412 Rep 7 0.9 1	0.02982 0.04991 Rep 8 1 0.9		
Survival Rate C-% 100 Angular (Cor C-%	e Detail Control Type Dilution Water	8 8 Rep 1 1 1	1.351 1.278 Rep 2 1 0.9	1.28 1.16 Rep 3 1 0.9	1.421 1.396 Rep 4 0.9 0.9	1.412 1.249 Rep 5 1	1.249 0.9912 Rep 6 0.9 0.7	1.412 1.412 Rep 7 0.9	0.02982 0.04991 Rep 8 1 0.9		
Survival Rate C-% 0 100 Angular (Cor C-% 0	e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water	8 8 Rep 1 1 1 med Det Rep 1 1.412	1.351 1.278 Rep 2 1 0.9 ail Rep 2 1.412	1.28 1.16 Rep 3 1 0.9 Rep 3 1.412	1.421 1.396 Rep 4 0.9 0.9 Rep 4 1.249	1.412 1.249 Rep 5 1 1 Rep 5 1.412	1.249 0.9912 Rep 6 0.9 0.7 Rep 6 1.249	1.412 1.412 Rep 7 0.9 1	0.02982 0.04991 Rep 8 1 0.9 Rep 8 1.412		
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate	e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water	8 8 Rep 1 1 1 med Det Rep 1 1.412	1.351 1.278 Rep 2 1 0.9 ail Rep 2 1.412	1.28 1.16 Rep 3 1 0.9 Rep 3 1.412	1.421 1.396 Rep 4 0.9 0.9 Rep 4 1.249	1.412 1.249 Rep 5 1 1 1 Rep 5 1.412 1.412	1.249 0.9912 Rep 6 0.9 0.7 Rep 6 1.249	1.412 1.412 Rep 7 0.9 1	0.02982 0.04991 Rep 8 1 0.9 Rep 8 1.412 1.249		
0 100 Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-%	e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water	8 8 Rep 1 1 1 med Det Rep 1 1.412 1.412	1.351 1.278 Rep 2 1 0.9 ail Rep 2 1.412 1.249	1.28 1.16 Rep 3 1 0.9 Rep 3 1.412 1.249	1.421 1.396 Rep 4 0.9 0.9 Rep 4 1.249 1.249	1.412 1.249 Rep 5 1 1 Rep 5 1.412	1.249 0.9912 Rep 6 0.9 0.7 Rep 6 1.249 0.9912	1.412 1.412 Rep 7 0.9 1 Rep 7 1.249 1.412	0.02982 0.04991 Rep 8 1 0.9 Rep 8 1.412		


Report Date: Test Code: 15 Sep-16 16:19 (p 4 of 4) B358405hac | 01-9737-8056

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	20-4344-5400	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:19	Analysis:	Parametric-Two Sample	Official Results:	Yes

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:18 (p 1 of 1) B358404hac | 20-2784-0407

							103	t Couc.	5000	10 11 LO 21	3-210-1-0-101
Hyallela 10-d	Survival and Gr	owth Sed	iment Te	st						CH2M	HILL - ASL
Batch ID:	15-6395-3015	Те	st Type:	Survival-Growth	1		Ana	lyst: Bret	t Muckey		
Start Date:	22 Aug-16	Pr	otocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Mod	-Hard Synth	etic Water	
Ending Date:	01 Sep-16	Sp	ecies:	Hyalella azteca			Brir	ie:			
Duration:	10d 0h	Sc	ource:	Chesapeak Cul	tures, Naye	s, Virginia	Age	:			
Sample ID:	10-0448-9482	Co	ode:	B3584-04			Clie	nt:			
Sample Date:	05 Jul-16	Ma	aterial:	Sediment			Pro	ect:			
Receive Date:	13 Jul-16	Sc	ource:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	48d 0h	St	ation:	Lower Slate Cr	eek						
Comparison S	Summary			The state of the s							
Analysis ID	Endpoint		NOEL	ĿOEL-	TOEL	PMSD	TU	Method			
20-0902-1284	Mean Dry Weig	ght-mg 🤇	100	>100)	NA	7.07%	1	Equal Var	iance t Two-	Sample Te	st
02-7799-3698	Survival Rate		100	>100	NA	6.53%	1	Equal Var	iance t Two-	Sample Te	st
Test Acceptab	oility		•								
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	its	Overlap	Decision		
02-7799-3698	Survival Rate		Contro	ol Resp	0.9625	0.8 - NL		Yes	Passes Ad	ceptability	Criteria
Mean Dry Wei	ght-mg Summa	ıry								• • • • • • • • • • • • • • • • • • • •	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.091	38 0.08588	0.09687	0.085	0.104	0.002325	0.006577	7.2%	0.0%
100		8	0.097	58 0.09087	0.1043	0.085	0.1111	0.002838	0.008028	8.23%	-6.79%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	0.962	5 0.9192	1	0.9	1	0.0183	0.05175	5.38%	0.0%
100		8	0.9	0.8226	0.9774	0.8	1	0.03273	0.09258	10.29%	6.49%
Mean Dry Wei	ght-mg Detail								• •		
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
100		0.085	0.097	0.1	0.09	0.09875	0.095	0.1111	0.1038		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	0.9	1	0.9	0.9	1	***************************************	·····
100		1	1	1	0.9	8.0	8.0	0.9	8.0		
Survival Rate	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	10/10	10/10	9/10	10/10	9/10	9/10	10/10		

Analyst:______QA:____

100

10/10

10/10

10/10

9/10

8/10

8/10

9/10

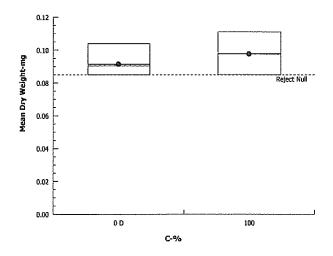
8/10

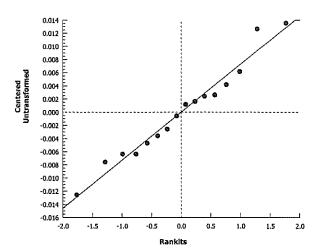
Report Date:

15 Sep-16 16:18 (p 1 of 4)

Test Code: B358404hac | 20-2784-0407

Hyallela 10-d S	Survival and Gr	owth Se	ediment Te	st						CH2M	HILL - AS
Analysis ID: Analyzed:	20-0902-1284 15 Sep-16 16:		Endpoint: Analysis:	Mean Dry Weig Parametric-Two	_			IS Version: ial Results		.8.8	
Batch ID: Start Date: Ending Date: Duration:	15-6395-3015 22 Aug-16 01 Sep-16 10d Oh	:	Test Type: Protocol: Species: Source:	Survival-Growth EPA/600/R-99/ Hyalella azteca Chesapeak Cul	064 (2000)	s, Virginia	Anal Dilu Brin Age:	ent: Mod e:	tt Muckey I-Hard Synth	etic Wateı	•
Sample ID: Sample Date: Receive Date: Sample Age:	13 Jul-16	! :	Code: Material: Source: Station:	B3584-04 Sediment Kensington Gol Lower Slate Cre	-	0050571)	Cliei Proj				
Data Transfor	n	Zeta	Alt H	yp Trials	Seed		PMSD	Test Resi	ult		
Untransformed		NA	C > T	NA	NA		7.07%	Passes m	ean dry weig	ght-mg	
Equal Varianc	e t Two-Sample	e Test									
Control	vs C-%		Test 9		MSD DF	P-Value	P-Type	Decision((α:5%)		
Dilution Water	100		-1.69	1.761	0.006 14	0.9434	CDF	Non-Signi	ficant Effect		
Auxiliary Tests	3										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:5%)			
Control Trend	Мапп-Ке	ndall Tre	end			0.3987	Non-signi	ficant Trend	in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision((a:5%)		
Between	0.0001538	329	0.000	153829	1	2.857	0.1131	Non-Signi	ficant Effect		
Error	0.0007538		5.384	782E-05	14						
Total	0.0009076	5985			15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance			1.49	8.885	0.6119	Equal Var				
Distribution	Shapiro-\	Milk W N	lormality	0.9678	0.8408	0.8015	Normal D	stribution			
Mean Dry Weig	ght-mg Summa	ıry									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
_	Dilution Water	8	0.091		0.09687	0.09039	0.085	0.104	0.002325	7.2%	0.0%
100		8	0.097	58 0.09087	0.1043	0.09788	0.085	0.1111	0.002838	8.23%	-6.79%
Mean Dry Weig	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
100		0.085	0.097	0.1	0.09	0.09875	0.095	0.1111	0.1038		


000-092-188-2

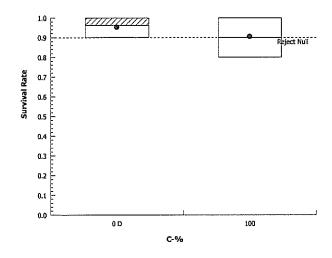

Report Date: Test Code: 15 Sep-16 16:18 (p 2 of 4) B358404hac | 20-2784-0407

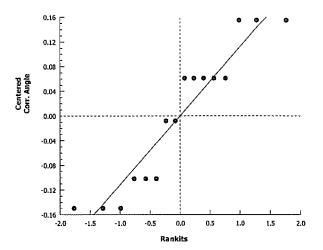
Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	20-0902-1284	Endpoint:	Mean Dry Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:18	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date: Test Code: 15 Sep-16 16:18 (p 3 of 4) B358404hac | 20-2784-0407


Analyzed: 15 Batch ID: 15- Start Date: 22 Ending Date: 01 Duration: 100 Sample ID: 10- Sample Date: 05 Receive Date: 13	-7799-3698 5 Sep-16 16:18 -6395-3015 Aug-16 Sep-16 d 0h -0448-9482 Jul-16 d 0h	En 8 An Ter Sp So Co Ma So Sta Zeta NA Test	dpoint: alysis: st Type: otocol: ecies: urce: de: terial: urce: ation: Alt Hy C>T Test S 1.616	Survival Rate Parametric-Two Survival-Growth EPA/600/R-99/6 Hyalella azteca Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre P Trials NA	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)		ent: Mod- e: :	t Muckey -Hard Synth -Hard Synth -Hard Synth -Hard Synth -Hard Synth	.8.8 netic Water	HILL - AS
Analyzed: 15 Batch ID: 15- Start Date: 22 Ending Date: 01 Duration: 100 Sample ID: 05 Receive Date: 13 Sample Age: 486 Data Transform Angular (Corrected Equal Variance t 1 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	5 Sep-16 16:18 -6395-3015 Aug-16 Sep-16 d 0h -0448-9482 Jul-16 d 0h Two-Sample S C-% 100 Test Mann-Ken	8 An Ter Pro Sp So Co Ma So Sta Zeta NA Test	alysis: st Type: otocol: ecies: urce: de: terial: urce: ation: Alt Hy C>T Test S 1.616	Parametric-Two Survival-Growth EPA/600/R-99/6 Hyalella azteca Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)	Office Anal Dilucture Brin Age: Cliet Proj PMSD 6.53%	yst: Brett ent: Mod- e:	Yes Muckey Hard Synti	netic Water	
Start Date: 22 Ending Date: 01 Duration: 100 Sample ID: 100 Sample Date: 05 Receive Date: 13 Sample Age: 480 Data Transform Angular (Corrected Equal Variance to 10 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Aug-16 Sep-16 d 0h -0448-9482 Jul-16 Jul-16 d 0h Two-Sample s C-% 100 Test Mann-Ken	Pro Sp So Co Ma So Sta Zeta NA Test	otocol: ecies: urce: de: terial: urce: ation: Alt Hy C > T Test S 1.616	EPA/600/R-99/6 Hyalella azteca Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)	Dilur Brin Age: Clief Proj	ent: Mod- e: nt: ect: Test Resu Passes su	Hard Synth		
Ending Date: 01 Duration: 100 Sample ID: 100 Sample Date: 05 Receive Date: 13 Sample Age: 480 Data Transform Angular (Corrected Equal Variance to The Control 100 Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Sep-16 d 0h -0448-9482 Jul-16 Jul-16 d 0h Two-Sample s C-% 100 Test Mann-Ken	Pro Sp So Co Ma So Sta Zeta NA Test	otocol: ecies: urce: de: terial: urce: ation: Alt Hy C > T Test S 1.616	EPA/600/R-99/6 Hyalella azteca Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)	Dilur Brin Age: Clief Proj	ent: Mod- e: nt: ect: Test Resu Passes su	Hard Synth		
Ending Date: 01 Duration: 100 Sample ID: 100 Sample Date: 05 Receive Date: 13 Sample Age: 480 Data Transform Angular (Corrected Equal Variance to The Control 100 Control 100 Control Trend ANOVA Table Source Between Error	Sep-16 d 0h -0448-9482 Jul-16 Jul-16 d 0h Two-Sample s C-% 100 Test Mann-Ken	Sp So Co Ma So Sta Zeta NA Test	ecies: urce: de: terial: urce: ation: Alt Hy C > T Test S 1.616	Hyalella azteca Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AKI eek Seed NA MSD DF 0.102 14	0050571)	Brin Age: Clied Proj PMSD 6.53%	e: int: ect: Test Resu Passes sui	ilt rvival rate ¤:5%)		
Duration: 100 Sample ID: 10- Sample Date: 05 Receive Date: 13 Sample Age: 480 Data Transform Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	d 0h -0448-9482 Jul-16 d 0h Two-Sample S C-% 100 Test Mann-Ken	Co Ma So Sta Zeta NA Test	urce: de: terial: urce: ation: Alt Hy C > T Test S 1.616	Chesapeak Cul B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)	Age: Cliet Proj PMSD 6.53% P-Type	nt: ect: Test Resu Passes sui	rvival rate a:5%)		
Sample ID: 10- Sample Date: 05 Receive Date: 13 Sample Age: 48c Data Transform Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	-0448-9482 Jul-16 Jul-16 d 0h Two-Sample S C-% 100 Test Mann-Ken	Zeta NA Test	de: terial: urce: ation: Alt Hy C>T Test S 1.616	B3584-04 Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	d Mine (AK) eek Seed NA MSD DF 0.102 14	0050571)	PMSD 6.53%	nt: ect: Test Resu Passes sur Decision(d	rvival rate a:5%)		
Sample Date: 05 Receive Date: 13 Sample Age: 486 Data Transform Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Jul-16 Jul-16 d 0h Two-Sample s C-% 100 Test Mann-Ken	Ma So Sta Zeta NA Test	terial: urce: ation: Alt Hy C > T Test S 1.616	Sediment Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	Seed NA MSD DF 0.102 14	: P-Value	PMSD 6.53% P-Type	Test Resu Passes su	rvival rate a:5%)		
Receive Date: 13 Sample Age: 486 Data Transform Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Jul-16 d 0h Two-Sample s C-% 100 Test Mann-Ken	Zeta NA Test	urce: ation: Alt Hy C>T Test S 1.616	Kensington Gol Lower Slate Cre p Trials NA tat Critical 1.761	Seed NA MSD DF 0.102 14	: P-Value	PMSD 6.53% P-Type	Test Resu Passes sur Decision(o	rvival rate a:5%)		
Sample Age: 48d Data Transform Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	d 0h Two-Sample s C-% 100 Test Mann-Ken	Zeta NA Test	Alt Hy C>T Test S 1.616	Lower Slate Cre Trials NA tat Critical 1.761	Seed NA MSD DF 0.102 14	: P-Value	6.53% P-Type	Passes sur	rvival rate a:5%)		
Data Transform Angular (Corrected Equal Variance t 1 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	ti) Two-Sample s C-% 100 Test Mann-Ken	Zeta NA Test	Alt Hy C>T Test S 1.616	n Trials NA tat Critical 1.761	NA MSD DF 0.102 14		6.53% P-Type	Passes sur	rvival rate a:5%)		
Angular (Corrected Equal Variance t 7 Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Two-Sample s C-% 100 Test Mann-Ken	NA Test	C > T Test S 1.616	NA tat Critical 1.761	MSD DF 0.102 14		6.53% P-Type	Passes sur	rvival rate a:5%)		
Equal Variance t T Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Two-Sample s C-% 100 Test Mann-Ken	Test	Test S 1.616	tat Critical 1.761	MSD DF 0.102 14		P-Type	Decision(c	a:5%)		
Control vs Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	S C-% 100 Test Mann-Ken Sum Squa	idali Trend	1.616	1.761	0.102 14						
Dilution Water Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Test Mann-Ken		1.616	1.761	0.102 14					<u> </u>	
Auxiliary Tests Attribute Control Trend ANOVA Table Source Between Error	Test Mann-Ken Sum Squa				,,	0.0642	CDF	Non-Signif	icant Effect	t	
Attribute Control Trend ANOVA Table Source Between Error	Mann-Ken		l	Test Stat	Critical						
Control Trend ANOVA Table Source Between Error	Mann-Ken		1	Test Stat	Critical						
ANOVA Table Source Between Error	Sum Squa		I		Oi filodi	P-Value	Decision	(α:5%)			
Source Between Error		ıres				0.1964	Non-signi	ficant Trend i	in Controls		
Between Error		res									
Error	0.0353094		Mean :	Square	DF	F Stat	P-Value	Decision(d	a:5%)		
···			0.0353	094	1	2.61	0.1285	Non-Signifi	icant Effect		
Total	0.1893815		0.0135	2725	14			-			
. Otal	0.2246909				15						
Distributional Tes	sts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance F	Ratio F Te	st	2.803	8.885	0.1973	Equal Var	·	······································		
Distribution	Shapiro-W	/ilk W Nor	mality	0.8803	0.8408	0.0392	Normal D	istribution			
Survival Rate Sun	nmarv										
	ntrol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	ition Water	8	0.9625	<u>_</u>	1	1	0.9	1	0.0183	5.38%	0.0%
100	Ittori vvater	8	0.9023	0.8226	0.9774	0.9	0.8	1	0.03273	10.29%	6.49%
				0.0220	0.3774	0.9	U.0	I	0.03273	10.29%	0.4976
Angular (Correcte	•		•								
-	ntrol Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	ition Water	8	1.351	1.28	1.421	1.412	1.249	1.412	0.02982	6.24%	0.0%
100		8	1.257	1.139	1.375	1.249	1.107	1.412	0.04993	11.23%	6.96%
Survival Rate Deta	ail										
C-% Con	ntrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
Dilu	ition Water	1	1	1	0.9	1	0.9	0.9	1		
100		1	1	1	0.9	8.0	0.8	0.9	8.0		
Angular (Correcte	d) Transform	ned Detail									
C-% Con	ntrol Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0 Dilu	ition Water	1.412	1.412	1.412	1.249	1.412	1.249	1.249	1.412		
100		1.412	1.412	1.412	1.249	1.107	1.107	1.249	1.107		
Survival Rate Bind	omials										
		Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
		10/10	10/10	10/10	9/10	10/10	9/10	9/10	10/10		
100		10/10	10/10	10/10	9/10	8/10	8/10	9/10	8/10		


Report Date: Test Code: 15 Sep-16 16:18 (p 4 of 4) B358404hac | 20-2784-0407

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	02-7799-3698	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:18	Analysis:	Parametric-Two Sample	Official Results:	Yes

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:16 (p 1 of 1) B358402hac | 01-4580-4296

Hyallela 10-d Survival and Growth Sediment Test CH2M HILL - ASL Batch ID: 15-6395-3015 Test Type: Survival-Growth **Brett Muckey** Analyst: Start Date: 22 Aug-16 Protocol: EPA/600/R-99/064 (2000) Diluent: Mod-Hard Synthetic Water 01 Sep-16 Hyalella azteca Ending Date: Species: Brine: **Duration:** 10d 0h Source: Chesapeak Cultures, Nayes, Virginia Age: 13-2959-2362 Code: B3584-02 Sample ID: Client: Sample Date: 06 Jul-16 Material: Sediment Project: Receive Date: 13 Jul-16 Source: Kensington Gold Mine (AK0050571) Upper Slate Creek Sample Age: 47d 0h Station: Comparison Summary Analysis ID **Endpoint** NOEL LOEL TOEL **PMSD** TU Method 11-0783-3458 Mean Dry Weight-mg 100 >100 NΑ 8.93% 1 Equal Variance t Two-Sample Test 10-2248-7243 100 >100 Survival Rate NA 11.8% 1 Wilcoxon Rank Sum Two-Sample Test **Test Acceptability** Analysis ID Endpoint **Attribute** Test Stat **TAC Limits** Overlap Decision 10-2248-7243 Survival Rate Control Resp 0.9625 0.8 - NL Yes Passes Acceptability Criteria Mean Dry Weight-mg Summary Mean C-% **Control Type** Count 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 **Dilution Water** 8 0.09138 0.08588 0.09687 0.085 0.104 0.002325 0.006577 7.2% 0.0% 100 8 0.09285 0.08338 0.1023 0.07625 0.1078 0.004005 0.01133 12.2% -1.62% **Survival Rate Summary** C-% **Control Type** Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% %Effect 0 Dilution Water 8 0.9625 0.9192 1 0.9 1 0.0183 0.05175 5.38% 0.0% 8 0.85 0.6552 1 0.3 0.08238 0.233 27.41% 11.69% 100 1 Mean Dry Weight-mg Detail Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 0 Dilution Water 0.085 0.093 0.094 0.09556 0.085 0.08778 0.08667 0.104 0.1067 0.09667 0.08444 0.07625 0.094 0.082 0.1078 0.095 100 **Survival Rate Detail** C-% **Control Type** Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 0 1 1 0.9 1 0.9 0.9 1 100 0.3 0.9 0.9 0.8 0.9 1 1 1 Survival Rate Binomials **Control Type** C-% Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 1 Rep 8 0 Dilution Water 10/10 10/10 10/10 9/10 10/10 9/10 9/10 10/10

Analyst:______ QA:____

3/10

9/10

9/10

8/10

10/10

10/10

9/10

10/10

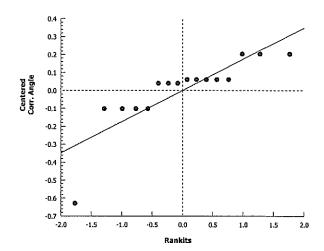
100

Report Date:

15 Sep-16 16:16 (p 3 of 4)

Test Code: B358402hac | 01-4580-4296


Manipard 15 Sap-1615-15 Analysis Non-arameter No Sample Official Results Yes	Hyallela 10-d S	Survival and G	rowth Sec	liment Tes	ot						CH2M	HILL - AS
Start Pate 22 Aug-16 Protocol: PPA(800IN-9901064 (2000) Pate Springer Spri	Analysis ID: Analyzed:			•		-Two Sampl	е				.8.8	
Start Pate 22 Aug-16 Protocol: EPA/BODR-391064 (2000) Species Hypothesia zations Hypothesia zati	Batch ID:	15-6395-3015	Ţ	est Type:	Survival-Growtl	1		Anai	yst: Bre	ett Muckey		
Simple Delta 1 Sep-16 Species Hywellia azteos Chesapaek Cultures Nayes Virginia Age: Sepeim Material Sepeim Sepim Sepeim Sepim Sep	Start Date:	22 Aug-16							•	-	hetic Water	,
Source Chesapeak Cultures, Nayes, Virginia Age Source Chesapeak Cultures, Nayes, Virginia Age Source Sou	Ending Date:	-	s	pecies:	Hyalella azteca	. ,		Brin		•		
Sample Rate: 13 Jul-16 Material: Sediment Project: Sediment Sediment Sediment Station: Upper State Creek Upper State Creek Station: Upper State Creek Upper State C	Duration:	=	S		=		s, Virginia	Age	:			
Receive Page: 13 Jul-16 Source: Kensinglon Gold Mine (AK0050571) Stample Age: 47d 0h	Sample ID:	13-2959-2362	С	ode:	B3584-02			Clie	nt:			
Sample Age: 47d 0h	Sample Date:	06 Jul-16	M	aterial:	Sediment			Proj	ect:			
	Receive Date:	13 Jul-16	S		-	•	0050571)					
Victor Name	Sample Age:	47d 0h	S	tation:	Upper Slate Cr	eek						
Note									Test Res	sult		
	Angular (Corre	cted)	NA 	C>T	NA	NA		11.8%	Passes s	survival rate		
Test	Wilcoxon Ran	k Sum Two-Sa	mple Test	t								
Test State Test Test State Test Stat	Control	vs C-%		Test S	tat Critical	Ties DF	P-Value	P-Type	Decision	η(α:5%)		
Test	Dilution Water	100		57	NA	2 14	0.1508	Exact	Non-Sigr	nificant Effec	t	
Control Trend Mann-Kendall	Auxiliary Tests	s										
NOVA Table Singre Sum Square DF F Stat P-Value Decision(a:5%) Singre DF F Stat P-Value Decision(a:5%) Singre DF Stat P-Value Decision(a:5%) Singre DF Stat D	Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Notice Sum Square Mean Square DF F Stat P-Value Decision(c:5%)	Control Trend	Mann-Ke	endall Tren	ıd			0.1964	Non-signi	ficant Trend	d in Controls		
Set	ANOVA Table											
Process of the control 14 15 15 15 15 15 15 15	Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	η(α:5%)		
State	Between					=	1.935	0.1859	Non-Sigr	nificant Effect	t	
	Error			0.0417	6599							
Test						10						
Variances Variance Ratio F Test 10.74 8.885 0.0057 Unequal Variances Non-normal Distribution Shapiro-Wilk W Normality 0.7382 0.8408 0.0005 Non-normal Distribution					Test Stat	Critical	P-Value	Decision	(a:1%)			
Shapiro-Wilk W Normality 0.7382 0.8408 0.0005 Non-normal Distribution Non-normal Distribution			Ratio F T	est								
Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CV% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 1.412 1.412 1.412 1.249 1.412 1.249 1.412 1.249 1.412	Distribution							•		ion		
Dilution Water 8	Survival Rate	Summary										
Second S			Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Std Err CV% Median Min Max Std Err CV% Median Min	Ö	Dilution Water	8	0.9625	0.9192	1	1	0.9	1	0.0183	5.38%	0.0%
Control Type Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Std Err CV% %Effect Country Std Err CV% Std Err	100		8	0.85	0.6552	1	0.9	0.3	1	0.08238	27.41%	11.69%
Dilution Water 8	Angular (Corre	ected) Transfor	med Sum	mary								
8 1.209 0.9776 1.44 1.249 0.5796 1.412 0.09774 22.87% 10.52% Survival Rate Detail	C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
8 1.209 0.9776 1.44 1.249 0.5796 1.412 0.09774 22.87% 10.52% Survival Rate Detail		Dilution Water	8	1.351	1.28	1.421	1.412	1.249		0.02982		
Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 1 1 1 1 0.9 0.8 1 0.9 0.9 1 O0 0.3 0.9 0.9 0.8 1 1 0.9 1 Ingular (Corrected) Transformed Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 1.412 1.412 1.412 1.249 1.412 1.249 1.249 1.412 1.249 1.412 O0 0.5796 1.249 1.249 1.107 1.412 1.	100		8	1.209	0.9776	1.44	1.249	0.5796	1.412	0.09774	22.87%	10.52%
Dilution Water 1	Survival Rate	Detail										
00 0.3 0.9 0.9 0.8 1 1 0.9 1 Ingular (Corrected) Transformed Detail C-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 1.412 1.412 1.412 1.249 1.412 1.249 1.412 1.249 1.412 00 0.5796 1.249 1.249 1.107 1.412 1.412 1.249 1.412 Iurvival Rate Binomials Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 10/10 10/10 10/10 9/10 9/10 9/10 9/10 10/10				<u>-</u>					Rep 7	Rep 8		
Ingular (Corrected) Transformed Detail 3-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 1.412 1.412 1.412 1.249 1.412 1.249 1.412 1.249 1.412 00 0.5796 1.249 1.249 1.107 1.412 1.412 1.249 1.412 Furvival Rate Binomials 3-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 10/10 10/10 10/10 9/10 9/10 9/10 9/10 10/10		Dilution Water		· ·			· ·			•		
Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8	100		0.3	0.9	0.9	8.0		1	0.9	1		
Dilution Water 1.412 1.412 1.249 1.249 1.2	Angular (Corre	ected) Transfor	med Deta	il								
00 0.5796 1.249 1.249 1.107 1.412 1.412 1.249 1.412 survival Rate Binomials -% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 10/10 10/10 10/10 9/10 10/10 9/10 9/10								<u>.</u>		•	*****	
Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 10/10 10/10 10/10 9/10 10/10 9/10 9/10		Dilution Water										
-% Control Type Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 Rep 8 Dilution Water 10/10 10/10 10/10 9/10 10/10 9/10 9/10	100		0.5796	1.249	1.249	1.707	1.412	1.412	1.249	1.412		
Dilution Water 10/10 10/10 10/10 9/10 10/10 9/10 9/10			_		_	_						
					· -					_		
00 3/10 9/10 9/10 8/10 10/10 10/10 9/10 10/10		Dilution Water										
	100		3/10	9/10	9/10	8/10	10/10	10/10	9/10	10/10		


Report Date: Test Code: 15 Sep-16 16:16 (p 4 of 4) B358402hac | 01-4580-4296

Hyallela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

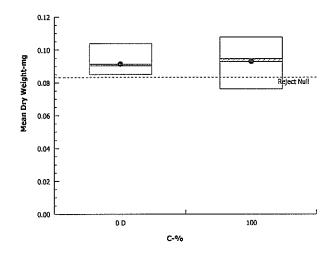
Analysis ID:10-2248-7243Endpoint:Survival RateCETIS Version:CETISv1.8.8Analyzed:15 Sep-16 16:16Analysis:Nonparametric-Two SampleOfficial Results:Yes

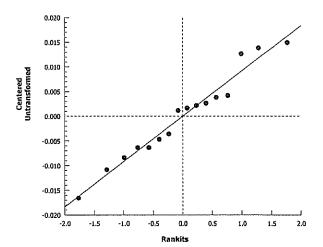
Report Date:

15 Sep-16 16:16 (p 1 of 4)

Test Code:

B358402hac | 01-4580-4296


Hyallela 10-d	Survival and G	rowth \$	Sediment Te	st						CH2M	HILL - ASI
Analysis ID: Analyzed:	11-0783-3458 15 Sep-16 16:	16	Endpoint: Analysis:	Mean Dry Weig Parametric-Tw				IS Version: ial Results		.8.8	
Batch ID:	15-6395-3015	•	Test Type:	Survival-Growt	h		Anal	yst: Bre	tt Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99	, ,		Dilu		d-Hard Synth	etic Wate	r
Ending Date:	•		Species:	Hyalella azteca			Brin				
Duration:	10d 0h		Source:	Chesapeak Cu	iltures, Naye	s, Virginia	Age				
Sample ID:	13-2959-2362		Code:	B3584-02			Clie	nt:			
Sample Date:			Material:	Sediment			Proj	ect:			
Receive Date	•		Source:	Kensington Go	•	0050571)					
Sample Age:	47d Uh		Station:	Upper State Ci	eek						
Data Transfo		Zeta	Alt H		Seed		PMSD	Test Res			
Untransforme	d	NA	C > T	NA	NA		8.93%	Passes m	ean dry weig	ght-mg	
Equal Varian	ce t Two-Sample	e Test									
Control	vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decision	(α:5%)		
Dilution Water	100		-0.318	36 1.761	0.008 14	0.6226	CDF	Non-Signi	ficant Effect		
Auxiliary Tes	ts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:5%)			
Control Trend	Mann-Ke	endall T	rend			0.3987	Non-signi	ficant Trend	in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	8.708719		8.708	719E-06	1	0.1015	0.7547	Non-Signi	ficant Effect		
Error	0.001200		8.578	517E-05	14						
Total	0.001209	701			15						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio I	Test	2.967	8.885	0.1747	Equal Var	iances		***************************************	
Distribution	Shapiro-	Wilk W	Normality	0.9607	0.8408	0.6736	Normal D	stribution			
Mean Dry We	ight-mg Summa	ary		*****							
C-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	0.091		0.09687	0.09039	0.085	0.104	0.002325	7.2%	0.0%
100		8	0.092	85 0.08338	0.1023	0.0945	0.07625	0.1078	0.004005	12.2%	-1.62%
Mean Dry We	ight-mg Detail										
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	0.085	0.093	0.094	0.09556	0.085	0.08778	0.08667	0.104		
100		0.106	67 0.096	67 0.08444	0.07625	0.094	0.082	0.1078	0.095		


Report Date: Test Code: 15 Sep-16 16:16 (p 2 of 4) B358402hac | 01-4580-4296

Hyailela 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	11-0783-3458	Endpoint:	Mean Dry Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:16	Analysis:	Parametric-Two Sample	Official Results:	Yes

_
7
7
7
\sim
~
\simeq
12
\sim
0
2
- 63
Œ
~
WATER OUAL
Z
-5
₩
AN
2
S
SI
~
₹
ORGANISM
~
0
TEST (
ESI
័ះ
2
, T
بحز
-63
acı
~
0
Ε
-
-
=
T
-
~~
X
关
3

Client		Kensi	Kensington			<u> </u>	Test Initiation: Date	8-22-16	Test Tern	Test Termination: Date	9-1-16
Contact	With the second	-			Technician				***************************************		
Test Species/ID	D Chirmonus	i totars	5 ~		できっ	220				/	
	maymi spililiyaasi sa									/	
		Sample Information	rmation				Test	ID#	#OI	ID#	#QI
			Total Residual Ammonia	Ammonia	Hardness	Alkalinity	Species	CHI 26			
Sample ID	Field	Collected	Chlorine (mg/l)	NH3-N	mg/l as	mg/l as	Information	Chronic			
Number	QI	Date Time	As As Received / Dechlor.	mg/l	CaCO ₃	$CaCO_3$	Organism Age at	2nd to 3rd instar			
B3584-01	East Fork Slate Creek 7-6-1	11 13co	- / -	See Titra	See Titration and Ammonia	mmonia	Initiation	(~10 day old)			
B3584-02	Upper Slate Creek 7-6-16	Jas 1500)	/		sheet		Test Container Size	300 ml			
B3584-03	Lower Sherman Creek 7-4-10 NOO	6-14 NOO	- / -	ı	ı	ı	Test Volume	100 ml sample,			- T-
B3584-04	Lower Slate Creek 7-5	7-5-16 6900	- / -	_	1	ł		water			
B3584-05	Lower Johnson Creek 8-8-16 1530	8161530	- / -	ı	ı	•	Feeding: Type	1.5 ml of a 4 g/L			
			`				Amount	Cetrafin slurry daily			
			\					Î		The state of the s	
			/				Aeration: Began	nae			
							Amount	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			/				Dilution Water ID#	730 USP			
			/				Acclimation Period	🗦 days			
			/				Test Location	<i>O!</i> #			
							Initial Size (mg/org)				
				Hardness	Alkalinity	Initial	Comments: 🗹 Indic	☑ Indicates the following action was taken, (☐ Indicates action not taken):	ction was taken,	(🔲 Indicates acti	on not taken):
	Dilution Water		#CI	mg/l as	mg/l as	Hd					
				$CaCO_3$	CaCO ₃						
Dilution Sediment	ment		1380	ı	1	B.					
Recon MH (FHM)	(MHz		4207	90	(90)	5.2					
			1000	90	70	62					
			20nh	35	99	2.2					
			2002	26	79	8.(Water Qua	Water Quality Meters Used/ID#	I/ID#	
	A		4.67	ho	99	3.0	Dissolved Oxygen	xygen #2'H	11 X# Hd	Conductivity	#2
								17.71			

Role 8-22-16

TITRATION AND AMMONIA DATA

Client Kensington Species ID# CHI ZC.
Sample Description: See Randomization Sheet. Start Date 22-16.

Laboratory ID	4	dness s CaCO ₃) Final		linity s CaCO ₃) Final		nonia s NH ₃ -N) Final
Sediment Control	કર	છ(62	68	0,12	0,24
B3584-01	115	113	26	114	0,23	0,19
B3584-02	113	104	26	100	0.22	1.51
B3584-03	21	101	69	92	<0,0	0.48
B3584-04	91	90	66	73	<0,10	0,18
B3584-05	25	28	63	73	0.15	1,24
						and the second

Chironomid GROWTH DATA

Client			Kensingt	on	Species ID#	CHI 26	
Lab ID:	see randomiza	tion sheet	batch number	: B3584	Start Date		8/22/2016
Sample	Description:	Weights of C	Chironomids at te	est initiation (=	number of replicates	as the test, 1	0 Midge each)
	Technician:	M	C	KJ			
	Date:	8/24/	2016	8/18/2016			
Balance Serial #:		5030	9851	50309851			

Tin ID Number	Total Dry Weight (mg) (including pan)	Tare Weight (mg)	No. of Amphipods Surviving	No. of Amphipods in Tin
@ Initiation A	63.93	62.90	na	5
@ Initiation B	63.64	62.99	na	5
@ Initiation C	64.30	63.73	na	5
@ Initiation D	63.97	63.20	na	5
@ Initiation E			na	
@ Initiation F			na	
@ Initiation G			na	
@ Initiation H			na	

_
_
-
I
Diam.
200
_3
7
14 =
7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-
_

FRESHWATER TOXICITY TEST SURVIVAL AND WATER QUALITY DATA

	300 th		
1	19 1 1	Conductivity 6 7 8 9 10 0 10 0 22.4 72.1 22.622.7 22.7 7.3 7.3 31 33.2 22.3 22.3 22.522.7 22.7 7.3 7.1 3.20 31.7 22.3 22.3 22.522.622.7 7.3 7.1 3.20 31.7 22.3 22.3 22.5 22.7 22.7 7.2 7.4 372 379 22.3 22.2 22.3 22.7 22.6 7.2 7.3 33.3 34.6 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1 8 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1 8 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1 8 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1 8 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1 8 22.3 22.2 22.3 22.7 22.6 7.3 7.1 379 32.1	SL.1120-1113
onhi	Day 2 Diversity 2	Conduction (umob) (umob	ontrol IU: A
Time 17	Day 9 C	8 9 10 0 10 22,622,7 22,7 7.3 7.3 22,522,622,7 7.3 7.1 22,522,622,7 7.2 7.4 22,422,722,67.2 7.2 22,422,722,67.3 7.1 22,422,722,67.3 7.1	7.000
	2 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 8 9 10 0 0 22.1 22.1 22.7 7.3 22.1 2.3 22.3 22.3 22.3 22.3 22.3 22.	
ي	Day 8 Day 8 Day 8 Day 8 Day 8 Day 8	10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 12	
8-22-16 0-1-7012	Day 7 22-15 Day 7 22-15 Day 7 15-35 Day 7 15-35	8 9 10 22,622,7 22,7 22,522,7 22,7 22,522,722,7 22,522,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,322,722,6 22,6 22,6 22,6 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,7 22,6 22,7 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22	
27.8	1 28 7 58 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 22.1 22 22.2 22.3 22.2 22.2 22.3 22.3 2	
), Date	Day 6 08 Day 6 20 Day 6 14 Day	22.3 22 2.2.3 22 22.2.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22 22.3 22.	
Beginning (Day 0), Date	Day 5 HC Day 6 MC Day 7 Day 5 Day 6 OB 20 Day 7 Day 5 OB 20 Day 6 OB 2 Day 6 OB 2 Day 7 Day 5 OB 5 Day 7 Day 6 OB 2 DAY 7 DAY 7 DAY 6 OB 2 DAY 7 DAY 7 DAY 6 OB 2 DAY	(C) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Beginnir r-diec	Day 5 Con Day 5	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	TEK-18CE	22 22 22 22 22 22 22 22 22 22 22 22 22	
	Day 4 Day 4 Day 4 Day 4 Day 4 Day 4	22.2 22.2 22.2 22.2 22.2 22.2 22.2 22.	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
	DIVERSIS DAY 3.	25.7.2.3 24.1.2.3 24.1.2.3 24.1.2.3 24.1.2.3 24.1.2.3 24.1.2.3 24.1.2.3 25.2.2.3 26.2.3 26.2.3 26.2.3 26.2.3 26.2.3 26.3 26	
-		5.45.7 22.3 4.54.72.3 4.24.72.3 4.24.72.3 5.35.27.4 5.35	
75 61	The Day		
	1		
Kensington	18/2/5/		
Ž K	Day 0 Sww Day 0 1440 2 1	50 50 50 650 650 650 650 650 650 650 650	
5	Sy Sy Son one done	Dissolved O. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
	Tech. Day 0 Property		
	Tech Time Tech Tech Tech Tech	▟▗ <u>▕▕▕▘</u> ▗ ▕▗▕▗▕▗▕▔▎▔▎▃▍▃▎▃▕▗▁▍▃▍▃▎▀▕▀▔▍▀▎ ▀▍	
	ST22-14		
	Test Species: Chironomus tentans Tok W. \$72-1.C	┇ ╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸	
Client	Test Spe Chircon ID#: Pol-	Beaker Number 55 59 59 94 94 94	

Chironomid RANDOMIZATION SHEET										
Client:	Client: Kensington Test Start Date:									
Laboratory ID:	Field ID:	Alternate ID / Dilutions:	Replicate ID:	Random Number	Test Chamber Number:					
Sediment Control	Beaver Creek	Control	F	0.90407	51					
Sediment Control	Beaver Creek	Control	В	0.88971	52					
Sediment Control	Beaver Creek	Control	С	0.76041	61					
Sediment Control	Beaver Creek	Control	D	0.73942	66					
Sediment Control	Beaver Creek	Control	G	0.63191	72					
Sediment Control	Beaver Creek	Control	E	0.55508	73					
Sediment Control	Beaver Creek	Control	H	0.45454	78					
Sediment Control	Beaver Creek	Control	A	0.01631	94					
B3584-05	Lower Johnson Creek		<u>H</u>	0.93879	50					
B3584-05	Lower Johnson Creek		<u> </u>	0.88696	53					
B3584-05	Lower Johnson Creek		A	0.76600	59					
B3584-05	Lower Johnson Creek		В	0.49618	75					
B3584-05	Lower Johnson Creek		G	0.48773	76					
B3584-05	Lower Johnson Creek		D	0.44359	79					
B3584-05	Lower Johnson Creek		C	0.23540	87					
B3584-05	Lower Johnson Creek		E	0.21939	88					
B3584-04	Lower Slate Creek		D	0.77809	58					
B3584-04	Lower Slate Creek		A	0.75842	62					
B3584-04	Lower Slate Creek		С	0.74187	65					
B3584-04	Lower Slate Creek		B	0.50409	74					
B3584-04	Lower Slate Creek		<u>H</u>	0.43420	80					
B3584-04	Lower Slate Creek		E	0.38522	82					
B3584-04	Lower Slate Creek		G	0.14000	90					
B3584-04	Lower Slate Creek		F	0.00219	96					
B3584-03	Lower Sherman Creek		A	0.82549	56					
B3584-03	Lower Sherman Creek		B	0.80014	57					
B3584-03	Lower Sherman Creek		D	0.75695	63					
B3584-03	Lower Sherman Creek		E	0.71313	67					
B3584-03	Lower Sherman Creek		G	0.67422	71					
B3584-03	Lower Sherman Creek		С	0.27353	85					
B3584-03	Lower Sherman Creek		H F	0.25418	86					
B3584-03	Lower Sherman Creek			0.08580	92					
B3584-02	Upper Slate Creek Upper Slate Creek		H	0.94785	49 54					
B3584-02			В	0.88528	60					
B3584-02 B3584-02	Upper Slate Creek Upper Slate Creek			0.76290 0.41629	81					
B3584-02	Upper Slate Creek		A F	0.41029	83					
B3584-02	Upper Slate Creek		G	0.21876	89					
B3584-02	Upper Slate Creek		E	0.21878	91					
B3584-02	Upper Slate Creek		C	0.10043	93					
B3584-01	East Fork Slate Creek		Н	0.83515	55 55					
B3584-01	East Fork Slate Creek		F	0.74752	64					
B3584-01	East Fork Slate Creek		E	0.69883	68					
B3584-01	East Fork Slate Creek		G	0.69883	69					
B3584-01	East Fork Slate Creek		A	0.69417	70					
B3584-01	East Fork Slate Creek			0.48029	77					
B3584-01	East Fork Slate Creek		C	0.46029	84					
B3584-01	East Fork Slate Creek		В	0.01058	95					
D0004-01	Last I Olk Sidle Cieek		Z	0.01030	30					
			Z Z							
			Z							
					<u> </u>					

CHM	ШП	
- T-101	пш	

FRESHWATER TOXICITY TEST SURVIVAL AND EMERGENCE DATA

Client				Kensingto	n				Beginning,	Date 2	122/16	Time Time
			domization S	sheet(s). Bat			4		Ending, Da	te <u> </u>	<u>-\ </u>	
Test Spec Starting		Chironomu ay 7 evening		val, record th		CHI ZC f emerged ac	— lults in each	container (c	an be left bl	ank if there	are none)	Survival = (total number of live pupae + live larvae + emerged adults) / Start count
Tech:	·	1	l <u></u>	L 	<u></u> .	L ——	L 	l ——		SUM	<u> </u>	If Growth endpoint to be used, place only the live larvae collected @ Day 10 final into tin.
Beaker	Start Count	# emerged	# emerged	# emerged	# emerged	# emerged	# emerged	# emerged	# pupae alive	# larvae alive	# larvae dead	(pupae and emerged adults are discarded)
Number	0	Day 7	Day 8 am	Day 8 pm	Day 9 am	Day 9 pm	Day 10 am	Day 10 final	Day 10 final	Day 10 final	Day 10 final	Comments:
49	10									8		
50	10									10		
51	10									11		
52	10									1\		
53	10									10 -		
54	10		<u> </u>							10		
55	10				,,.,			49		10		
56	10								<u> </u>	<u> </u>	:	
57	10											
58	10									9		
59	10									10		
60	10									10	1.09	
6 I	10									811	the rue	
62	10									10		
63	10									8		
64	10									11		One ofer sp of own found. For
65	10			-						10		" One other sp of worm founds
66	10							a di		10		
67	10		⊕					es"				
68	10									4		
<u>6</u> 9	10											
70	10									7		
71	10									(y)		
72	10						- · · · · · · · · · · · · · · · · · · ·			10		
73 74	10									- 4		
75	10 10									10		One other sp worm found . He
76	10	<u>,</u>					.			10		One ofter of work tours. Or
77	10									10		
78	10									10		
								*****		*	···········	
							. <u></u>				<u> </u>	
												488

liest				Kensingto	n				Beginning,	Date 9	122/16	Time -
		See Rand	lomization S	heet(s). Bat	ch number:	B 35 & 4			Ending, Da	te	1/22/16	Time Time
est Spec	ies:	Chironomu	s tentans		ID#:	CHI 26						Survival = (total number of live pupae + live
Starting	on the Da	ay 7 evening	water renev	val, record th	ie number o	f emerged ad	lults in each	container (c	an be left bl	ank if there	are none)	larvae + emerged adults) / Start count
					_							If Growth endpoint to be used, place only the
Tech:	Start	#	#	#	#	#	#	#	# pupae	# larvae	# larvae	live larvae collected (a) Day 10 final into tin. (pupae and emerged adults are discarded)
Beaker	Count	emerged	emerged	emerged	emerged	emerged	emerged	emerged	alive	alive	dead	
Number	0	Day 7	Day 8	Day 8	Day 9	Day 9	Day 10	Day 10	Day 10	Day 10	Day 10	
		pm	am	pm	am	pm	am	final	final	final	final	Comments:
79	10									8		<u></u>
80	10									10		
81	10									10		
82	10									1		
									· · · · · · · · · · · · · · · · · · ·	0		Market Same Control of the Control o
83	10									<u> </u>		
84	10											
85	10									7		
86	10									9		
87	10									10		
	10			_						10		
88												
89	10			<u> </u>						7		
90	10				1					10		
91	10									9		
92	10									9		
93	10									9		
***										10		
94	10				<u> </u>							
95	10						<u> </u>			10		
96	10									9		.,
]	:
												A STATE OF THE STA
							L		<u> </u>			

Client	Kens	ington	Species ID# CHI 26		
Lab ID: see randomization	on sheet batch nur	mber: B3584	Start Date	8/22/2016	
Sample Description:					
Technician:	MC	MC	Note: Empty tins shoul	d be ashed (550°C for 2 hrs)	
Date:	9/7/2016	9/8/2016	prior to use to allow fo	r any oxidation to occur.	
Balance Serial #:	50309851	50309851	NO TARE weights nee	ded	

Tin ID Number	Total Dry Weight (mg) (including pan)	Total Ashed Weight (mg) (including pan)	No. of Chironomids Surviving (larval+pupae+adult)	No. of larval Chironomids in Tin
49	82.29	71.45	8	8
50	91.27	74.93	10	10
51	88.48	73.01	11	11
52	87.99	72.19	11	11
53	88.78	75.17	10	10
54	84.53	70.57	10	10
55	87.29	70.81	10	10
56	85.83	72.86	10	9
57	84.21	71.84	8	8
58	88.52	73.62	9	9
59	92.65	78.05	10	10
60	83.08	71.11	10	10
61	87.11	71.63	11	11
62	86.92	72.03	10	10
63	81.84	71.40	8	8
64	84.66	70.85	11	11
65	89.29	74.57	10	10
66	87.73	71.76	10	10
67	81.92	71.24	8	7
68	83.68	70.20	11	11
69	83.67	70.47	9	9
70	81.37	70.25	7	7
71	80.74	71.62	6	6
72	87.42	71.62	10	10
73	87.78	72.61	10	10
74	87.01	72.74	9	9
75	94.53	78.83	10	10
76	89.27	75.25	10	10
77	85.00	70.77	10	10
78	87.77	71.84	10	10

Client _		Ken	nsington	Species ID# CHI 26	
Lab ID:	see randomization s	sheet batch n	umber: B3584	Start Date	8/22/2016
Sample D	escription:				
	Technician:	MC	MC	Note: Empty tins shoul	ld be ashed (550°C for 2 hrs)
	Date:	9/7/2016	9/8/2016	prior to use to allow fo	r any oxidation to occur.
В	alance Serial #:	50309851	50309851	NO TARE weights nee	eded

Tin ID Number	Total Dry Weight (mg) (including pan)	Total Ashed Weight (mg) (including pan)	No. of Chironomids Surviving (larval+pupae+adult)	No. of larval Chironomids in Tin
79	88.97	75.60	8	8
80	86.04	71.97	10	10
81	85.12	71.33	10	10
82	84.38	71.60	10	10
83	85.67	70.54		
84			10	10
<u> </u>	82.84	70.38	9 9	9
85	84.05	71.60		9
86	83.79	71.54	9	9
87	90.29	75.36	10	10
88	88.02	74.01	10	10
89	85.68	71.17	10	10
90	87.07	72.41	10	10
91	83.81	70.55	9	9
92	85.49	73.97	9	9
93	84.35	71.23	9	9
94	84.42	71.96	10	10
95	83.58	70.79	10	10
96	85.63	73.00	9	9

Client		Kensingt	on	Species ID# CH	
Lab ID:	see randomization sheet	batch number	: B 3524	Start Date	4-22-16
Sample D	Description:				
	Technician:			. -	should be ashed (550°C for 2 hrs w for any oxidation to occur.
В	alance Serial #: 50	309851	50309851	NO TARE weight	s needed

Tin ID Number	Total Dry Weight (mg) (including pan)	Total Ashed Weight (mg) (including pan)	No. of Chironomids Surviving (larval+pupae+adult)	No. of larval Chironomids in Tin
49			3	ಚ
50			10	10
51			íl	((
52			(1)	11
53			(0	(5
54			(5)	10
55			10	10
56		, , , , , , , , , , , , , , , , , , ,	9	9
57			8	೪
58			9	9
59			(0	10
60			61	10
61			(t	((
62			(0	O
63			3	ਤੰ
64			il	<i>i</i> l
65			10	(0
66			ن	10
67			8	7
68			11	n
69			ণ	9
70			7	7
71			6	6
72			טו	10
73			(0	(0
74			9	9
75			(0	10
76			Gì	12
77			(0	W
78			10	(0

Client			Kensi	ington	Species ID# CH	τ	
Lab ID:	see randomiza	tion sheet	batch nun	nber: B 3529	Start Date	Start Date 9.22-16	
Sample D	escription:						
	Technician: Date:		***************************************		Note: Empty tins sl prior to use to allow		•
В	alance Serial #:	5030	9851	50309851	NO TARE weights	needed	
	in ID umber	Total Weigh	•	Total Ashed Weight (mg)	No. of Chironomic	ls	No. of larval

Tin ID Number	Total Dry Weight (mg) (including pan)	Total Ashed Weight (mg) (including pan)	No. of Chironomids Surviving (larval+pupae+adult)	No. of larval Chironomids in Tin
79			8	8
80			10	10
81			10	10
82			10	10
83			10	(0
84			9	9
85			ς .	9
86		**************************************	9	₹
87			10	10
88			(0	G I
89			10	10
90			10	10
91			9	9
92			9	9
93			9	<u> </u>
94			10	10
95			10	10
96			9	9
				and the second section of the section of t
- Westernament of the Control of the				
		. — — — — — — — — — — — — — — — — — — —		

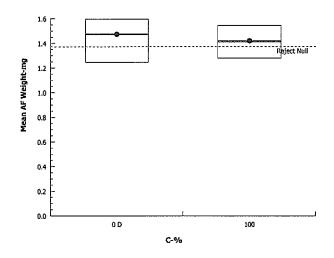
CETIS Summary Report

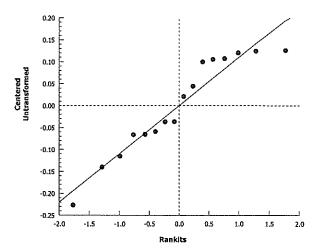
Report Date: Test Code:

15 Sep-16 16:38 (p 1 of 1) B358403ctc | 09-6386-7058

Chironomus 1	10-d Survival an	d Grov	vth Sedimen	nt Test						CH2M	HILL - AS
Batch ID: Start Date:	08-6381-0778 22 Aug-16		Test Type: Protocol:	Survival-AF Gro EPA/600/R-99/				•	tt Muckey d-Hard Syntl	netic Water	
Ending Date:	01 Sep-16		Species:	Chironomus ter	ntans		В	rine:			
Duration:	10d 0h		Source:	Aquatic Biosyst	tems, CO		Α	.ge:			
Sample ID:	05-1582-8506		Code:	B3584-03			C	lient:			
Sample Date:	06 Jul-16		Material:	Sediment			P	roject:			
Receive Date:	13 Jul-16		Source:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	47d 0h		Station:	Lower Shermar	Creek						
Comparison S	Summary		· washing								
Analysis ID	Endpoint		ŅOEL	. LOEL	TOEL	PMSD	TU	Method			
07-7096-6286	Mean AF Weig	ht-mg	100	>100	NA	6.78%	1		riance t Two		
03-9500-1344	Survival Rate		<100	100	NA	6.63%	>1	Unequal	Variance t T	wo-Sample	Test
Test Acceptab	oility		The Company	and the second s							
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Overlap	Decision		
03-9500-1344	Survival Rate		Contro	ol Resp	1	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Weig	ght-mg Summar	у									
C-%	Control Type	Cour	it Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	1.473	1.371	1.575	1.246	1.597	0.04326	0.1224	8.31%	0.0%
100		8	1.42	1.334	1.507	1.28	1.546	0.03664	0.1036	7.3%	3.57%
Survival Rate	Summary										
C-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec
0	Dilution Water	8	1	1	1	1	1	0	0	0.0%	0.0%
100		8	0.8375	5 0.7382	0.9368	0.6	1	0.04199	0.1188	14.18%	16.25%
Mean AF Weig	ght-mg Detail										
C-%	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		
100		1.441	1.546	1.383	1.305	1.526	1.28	1.52	1.361		
Survival Rate	Detail										
C-%	Control Type	Rep '	í Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		
100		1	8.0	0.9	0.8	8.0	0.9	0.6	0.9		
Survival Rate	Binomíals										
C-%	Control Type	Rep '	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	11/11	11/11	10/10	10/10	11/11	10/10	10/10		

Report Date: Test Code: 15 Sep-16 16:38 (p 1 of 4) B358403ctc | 09-6386-7058


10-d Survival an	d Grow	th Sedime	nt Test						CH2M	HILL - AS
07-7096-6286	E	Endpoint:	Mean AF Weigl	nt-mg		CET	IS Version	ı: CETISv1	.8.8	
15 Sep-16 16:3	38	Analysis:	Parametric-Two	Sample		Offic	ial Result	s: Yes		
08-6381-0778	-	Test Type:	Survival-AF Gro	owth		Anai	yst: Br	ett Muckey		
22 Aug-16							-	od-Hard Synth	netic Wate	r
: 01 Sep-16	5	Species:	Chironomus ter	ntans		Brin	e:			
10d 0h		Source:	Aquatic Biosyst	ems, CO		Age:				
05-1582-8506	(Code:	B3584-03			Clier	nt:			
: 06 Jul-16	ſ	Material:	Sediment			Proje	ect:			
e: 13 Jul-16	:	Source:	Kensington Gol	d Mine (AK0	0050571)					
: 47d Oh	(Station:	Lower Shermar	r Creek						
orm	Zeta	Alt H	yp Trials	Seed		PMSD	Test Re	suit		
ed	NA	C > T	NA	NA		6.78%	Passes	mean af weig	ht-mg	
nce t Two-Sample	Test									
vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decisio	n(α:5%)		
er 100		0.927	1 1.761	0.1 14	0.1848	CDF	Non-Sig	nificant Effect	t	
sts										
Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Mann-Ke	ndall Tre	end			0.1788	Non-signi	ficant Tren	d in Controls		
e										
Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decisio	n(α:5%)		
0.0110502	25	0.011	05025	1	0.8595	0.3696	Non-Sig	nificant Effect	t	
0.1799895	5	0.012	85639	14	_					
0.1910397	7			15						
al Tests										
Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variance	Ratio F	Test	1.394	8.885	0.6725	Equal Var	iances	•	·	
Shapiro-\	Nilk W №	lormality	0.9116	0.8408	0.1236	Normal D	istribution			
ight-mg Summar	у									
Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Dilution Water	8	1.473	1.371	1.575	1.477	1.246	1.597	0.04326	8.31%	0.0%
	8	1.42	1.334	1.507	1.412	1.28	1.546	0.03664	7.3%	3.57%
inht on Datail										
ight-mg Detail										
Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
	Rep 1 1.246	Rep 2	<u>_</u>	Rep 4 1.597	Rep 5	Rep 6 1.406	Rep 7	Rep 8 1.593		
	07-7096-6286 15 Sep-16 16:3 08-6381-0778 22 Aug-16 : 01 Sep-16 10d 0h 05-1582-8506 : 06 Jul-16 :: 13 Jul-16 47d 0h orm ed vs C-% r 100 ets Test Mann-Ke e Sum Squ 0.0110502 0.1799898 0.1910397 nl Tests Test Variance Shapiro-V ight-mg Summan	07-7096-6286 15 Sep-16 16:38 08-6381-0778 22 Aug-16 101 Sep-16 100 0h 05-1582-8506 100 Jul-16 113 Jul-16 147d 0h 100 Test Test Mann-Kendall Tree Sum Squares 0.01105025 0.1799895 0.1910397 In Tests Test Variance Ratio F Shapiro-Wilk W N Ight-mg Summary Control Type Count Dilution Water 8	07-7096-6286 Endpoint: 15 Sep-16 16:38 Analysis: 08-6381-0778 Test Type: 22 Aug-16 Protocol: : 01 Sep-16 Species: 10d 0h Source: 05-1582-8506 Code: : 06 Jul-16 Material: s: 13 Jul-16 Source: 47d 0h Station: orm Zeta Alt H ice t Two-Sample Test vs C-% Test r 100 0.927 its Test Mann-Kendall Trend e Sum Squares Mean 0.01105025 0.011 0.1799895 0.012 0.1910397 variance Ratio F Test Shapiro-Wilk W Normality ight-mg Summary Control Type Count Mean Dilution Water 8 1.473	15 Sep-16 16:38	07-7096-6286	07-7096-6286	07-7096-6286	O7-7096-6286	17-7096-6286	107-7096-6286

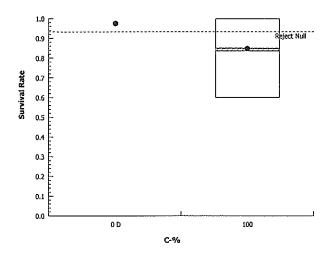

Report Date: Test Code: 15 Sep-16 16:38 (p 2 of 4) B358403ctc | 09-6386-7058

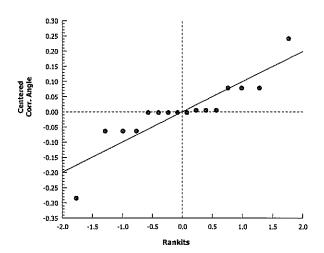
Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	07-7096-6286	Endpoint:	Mean AF Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:38	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date: Test Code: 15 Sep-16 16:38 (p 3 of 4) B358403ctc | 09-6386-7058


					•						
Chironomus '	10-d Survival an	d Grow	rth Sedimer	it Test						CH2M	HILL - AS
Analysis ID:	03-9500-1344 15 Sep-16 16:3		Endpoint: Analysis:	Survival Rate Parametric-Two	Sampla			IS Version:	CETISv1.	8.8	
Analyzed:	· · · · · · · · · · · · · · · · · · ·		•								
Batch ID:	08-6381-0778		= -	Survival-AF Gro			Anal	-	t Muckey	-4:- 10/-1	
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/	• •		Dilu		-Hard Synth	etic vvater	
Ending Date:	01 Sep-16 10d 0h		Species:	Chironomus ter			Brin				
Duration:			Source:	Aquatic Biosyst	eins, co		Age:				
Sample ID:	05-1582-8506		Code:	B3584-03			Clie				
Sample Date:			Material:	Sediment	1841 /81/		Proj	ect:			
Receive Date:			Source:	Kensington Gol	•	0050571)					
Sample Age:	4/a Un		Station:	Lower Shermar	Сгеек				,		
Data Transfor		Zeta	Alt H		Seed		PMSD	Test Resu			
Angular (Corre		NA		NA	NA		6.63%	Fails survi	vai rate		
	ance t Two-Sam	pie Tes									
Control	vs C-%		Test S			P-Value	P-Type CDF	Decision(
Dilution Water			4.43	1.895	0.104 7	0.0015	CDF	Significant	Entect		
Auxiliary Test											
Attribute Control Trend	Test Mann-Ke	ndell Tr	and	Test Stat	Critical	P-Value 1.0000	Decision	(α:5%) ficant Trend	in Controla	····	
		nuali III				1.0000	Non-signi	ilicant frend	in Controls		
ANOVA Table			Manu	S	DE	E 64-4	D Volue	Decision/	~~ E9/)		
Source Between	Sum Squ 0.238094	ares	0.238	Square	DF 1	F Stat 19.62	P-Value 0.0006	Decision(Significant			
Error Error	0.169878		0.236		ι 14	19.02	0.0000	Significant	Ellect		
	····		0.012	13414							
Total	0.4079719	9			15	_					
		9									
Distributional	l Tests	9		Test Stat	15	P-Value	Decision	(a:1%)			
Distributional Attribute	I Tests Test		Test	Test Stat	15 Critical	P-Value <0.0001	Decision			And the second of the second o	
Distributional Attribute Variances	l Tests	Ratio F		Test Stat 1632 0.8416	15	P-Value <0.0001 0.0103	Decision Unequal \	/ariances			
Distributional Attribute Variances Distribution	Tests Test Variance Shapiro-\	Ratio F		1632	15 Critical 8.885	<0.0001	Unequal \	/ariances			
Distributional Attribute Variances Distribution Survival Rate	Tests Test Variance Shapiro-\	Ratio F	Vormality	1632	15 Critical 8.885 0.8408	<0.0001 0.0103	Unequal \	/ariances	Std Err	CV%	%Effect
Distributional Attribute Variances Distribution Survival Rate C-%	Tests Test Variance Shapiro-V	Ratio F Vilk W I	Vormality	1632 0.8416	15 Critical 8.885 0.8408	<0.0001 0.0103	Unequal \ Normal D	Variances istribution	Std Err	CV% 0.0%	%Effect
Distributional Attribute Variances Distribution Survival Rate C-% 0	Tests Test Variance Shapiro-\ Summary Control Type	Ratio F Vilk W I	Normality t Mean	1632 0.8416 95% LCL	Critical 8.885 0.8408	<0.0001 0.0103 Median	Unequal \ Normal D	Variances istribution Max		····	
Distributional Attribute Variances Distribution Survival Rate C-% 0	Tests Test Variance Shapiro-\ Summary Control Type	Ratio F Wilk W I Count 8	Normality t Mean 1 0.8375	1632 0.8416 95% LCL	15 Critical 8.885 0.8408 95% UCL	<0.0001 0.0103 Median	Unequal \ Normal D Min 1	Variances istribution Max	0	0.0%	0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-\ Summary Control Type Dilution Water rected) Transfor	Ratio F Wilk W I Count 8 8	t Mean 1 0.8379	1632 0.8416 95% LCL 1 0.7382	15 Critical 8.885 0.8408 95% UCL 1 0.9368	<0.0001 0.0103 Median 1 0.85	Unequal Normal D	Variances istribution Max 1	0 0.04199	0.0% 14.18%	0.0% 16.25%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-V Summary Control Type Dilution Water Tected) Transfor Control Type	Ratio F Wilk W I Count 8 8 med Su	t Mean 1 0.8375 mmary t Mean	1632 0.8416 95% LCL 1 0.7382 95% LCL	15 Critical 8.885 0.8408 95% UCL 1 0.9368	<0.0001 0.0103 Median 1 0.85	Min 1 0.6	Variances istribution Max 1 1	0 0.04199 Std Err	0.0% 14.18% CV%	0.0% 16.25% %Effect
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-\ Summary Control Type Dilution Water rected) Transfor	Ratio F Wilk W I Count 8 8	t Mean 1 0.8379	1632 0.8416 95% LCL 1 0.7382	15 Critical 8.885 0.8408 95% UCL 1 0.9368	<0.0001 0.0103 Median 1 0.85	Unequal Normal D	Variances istribution Max 1	0 0.04199	0.0% 14.18%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8	t Mean 1 0.8375 mmary t Mean 1.415	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412	15 Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418	<0.0001 0.0103 Median 1 0.85 Median 1.412	Min 1 0.6 Min 1.412	Max 1 1 Max 1 1 1 Max	0 0.04199 Std Err 0.001366	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8	t Mean 1 0.8375 mmary t Mean 1.415 1.171	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041	15 Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418	<0.0001 0.0103 Median 1 0.85 Median 1.412	Min 1 0.6 Min 1.412	Max 1 1 Max 1 1 1 Max	0 0.04199 Std Err 0.001366	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Control Type Dilution Water Dilution Water Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8	t Mean 1 0.8375 mmary t Mean 1.415 1.171	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301	<0.0001 0.0103 Median 1 0.85 Median 1.412 1.178	Min 1 0.6 Min 1.412 0.8861	Max 1 1 Max 1.419 1.412	0 0.04199 Std Err 0.001366 0.05506	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0	Tests Test Variance Shapiro-V Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type	Ratio F Wilk W I Count 8 8 med Su Count 8 8	t Mean 1 0.8375 mmary t Mean 1.415 1.171	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4	<0.0001 0.0103 Median 1 0.85 Median 1.412 1.178	Min 1 0.6 Min 1.412 0.8861	Max 1 1 Max 1.419 1.412 Rep 7	0 0.04199 Std Err 0.001366 0.05506	0.0% 14.18% CV% 0.27%	16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Survival Rate C-% 0 100	Tests Test Variance Shapiro-V Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type	Ratio F Wilk W I Count 8 8 Count 8 8 Rep 1	t Mean 1 0.8375 mmary t Mean 1.415 1.171 Rep 2 1 0.8	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1	<0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5	Min 1 0.6 Min 1.412 0.8861	Max 1 1 Max 1.419 1.412 Rep 7	0 0.04199 Std Err 0.001366 0.05506 Rep 8	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type Dilution Water	Ratio F Wilk W I Count 8 8 Count 8 8 Rep 1	t Mean 1 0.8379 t Mean 1.415 1.171 Rep 2 1 0.8	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1	<0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5	Min 1 0.6 Min 1.412 0.8861	Max 1 1 Max 1.419 1.412 Rep 7	0 0.04199 Std Err 0.001366 0.05506 Rep 8	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr C-% 0 Angular (Corr C-% 0 Angular (Corr	Tests Test Variance Shapiro-V Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type Dilution Water	Ratio F Wilk W I Count 8 8 Count 8 8 Rep 1 1 1 med De	t Mean 1 0.8378 mmary t Mean 1.415 1.171 Rep 2 1 0.8	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1	15 Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1 0.8	<0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5 1 0.8	Min 1 0.6 Min 1.412 0.8861 Rep 6 1 0.9	Max 1 1 Max 1.419 1.412 Rep 7 1 0.6	0 0.04199 Std Err 0.001366 0.05506 Rep 8 1 0.9	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-V Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type Dilution Water Tected) Transfor Control Type Control Type Control Type Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8 8 Rep 1 1 1 med De Rep 1	t Mean 1 0.8375 mmary t Mean 1.415 1.171 Rep 2 1 0.8	95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1 0.9	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1 0.8	<pre><0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5 1 0.8</pre>	Min 1 0.6 Min 1.412 0.8861 Rep 6 1 0.9	Max 1 1 Max 1.419 1.412 Rep 7 1 0.6	0 0.04199 Std Err 0.001366 0.05506 Rep 8 1 0.9	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effec 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Angular (Corr	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Control Type Dilution Water Detail Control Type Dilution Water Tected) Transfor Control Type Dilution Water Tected) Transfor Control Type Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8 8 Rep 1 1 1 med De Rep 1 1.412	t Mean 1 0.8375 mmary t Mean 1.415 1.171 Rep 2 1 0.8	95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1 0.9	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1 0.8	<pre><0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5 1 0.8 Rep 5 1.412</pre>	Min 1 0.6 Min 1.412 0.8861 Rep 6 1 0.9	Max 1 1 Max 1.419 1.412 Rep 7 1 0.6	0 0.04199 Std Err 0.001366 0.05506 Rep 8 1 0.9	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
Distributional Attribute Variances Distribution Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Angular (Corr C-% 0 100 Survival Rate C-% 0 100 Survival Rate	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Tected) Transfor Control Type Dilution Water Detail Control Type Dilution Water Tected) Transfor Control Type Dilution Water Tected) Transfor Control Type Dilution Water Tected Transfor Control Type Dilution Water Binomials	Ratio F Vilk W I Count 8 8 Rep 1 1 1 med De Rep 1 1.412 1.412	Mean 1 0.8379 mmary t Mean 1.415 1.171 Rep 2 1 0.8 stail Rep 2 1.419 1.107	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1 0.9	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1 0.8 Rep 4 1.412 1.107	<pre><0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5 1 0.8 Rep 5 1.412 1.107</pre>	Min 1 0.6 Min 1.412 0.8861 Rep 6 1 0.9 Rep 6 1.419 1.249	Max 1 1 1 Max 1.419 1.412 Rep 7 1 0.6 Rep 7 1.412 0.8861	0 0.04199 Std Err 0.001366 0.05506 Rep 8 1 0.9	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%
C-% 0 100 Survival Rate C-% 0 100	Tests Test Variance Shapiro-N Summary Control Type Dilution Water Control Type Dilution Water Detail Control Type Dilution Water Tected) Transfor Control Type Dilution Water Tected) Transfor Control Type Dilution Water	Ratio F Wilk W I Count 8 8 med Su Count 8 8 Rep 1 1 1 med De Rep 1 1.412	Mean 1 0.8379 mmary t Mean 1.415 1.171 Rep 2 1 0.8 stail Rep 2 1.419 1.107	1632 0.8416 95% LCL 1 0.7382 95% LCL 1.412 1.041 Rep 3 1 0.9	Critical 8.885 0.8408 95% UCL 1 0.9368 95% UCL 1.418 1.301 Rep 4 1 0.8	<pre><0.0001 0.0103 Median 1 0.85 Median 1.412 1.178 Rep 5 1 0.8 Rep 5 1.412</pre>	Min 1 0.6 Min 1.412 0.8861 Rep 6 1 0.9	Max 1 1 Max 1.419 1.412 Rep 7 1 0.6	0 0.04199 Std Err 0.001366 0.05506 Rep 8 1 0.9 Rep 8 1.412 1.249	0.0% 14.18% CV% 0.27%	0.0% 16.25% %Effect 0.0%


Report Date: Test Code: 15 Sep-16 16:38 (p 4 of 4) B358403ctc | 09-6386-7058

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analyzed: 15 Sep-16 16:38 Analysis: Parametric-Two Sample Official Results: Yes	
Analyzed: 15 Sep-16 16:38 Analysis: Parametric-Two Sample Official Results: Yes	

CETIS Summary Report

Report Date: Test Code:

15 Sep-16 16:36 (p 1 of 1) B358401ctc | 02-1469-9480

Chironomus 1	10-d Survival an	d Grow	th Sedimer	nt Test				1 11.1		CH2M	HILL - ASL
Batch ID:	08-6381-0778		Test Type:	Survival-AF Gro	owth		A	nalyst: Brei	t Muckey		
Start Date:	22 Aug-16	į	Protocol:	EPA/600/R-99/	064 (2000)		D	iluent: Mod	l-Hard Syntl	netic Water	
Ending Date:	01 Sep-16	;	Species:	Chironomus ter	ntans		8	Brine:			
Duration:	10d 0h	;	Source:	Aquatic Biosyst	tems, CO		Δ	lge:			
Sample ID:	18-2203-5030	(Code: <	B3584-01	>		C	lient:			
Sample Date:	06 Jul-16	ı	Material:	Sediment			P	roject:			
Receive Date:		;	Source:	_Kensington=Gol	ld Mine (AK	0050571)					
Sample Age:	47d 0h	:	Station:	East Fork Slate	Creek	>					
Comparison S	Summary				the Section of Section 1989 of Section 1989, 1989 of	.,					
Analysis ID	Endpoint		NOEL	LOEL	TOEL	PMSD	TU	Method			
18-2377-4367	Mean AF Weigl	nt-mg	100	>100	NA NA	8.34%	1	Equal Var	iance t Two	-Sample Te	st
16-8056-7322	Survival Rate		100	>100	NA	6.18%	1	Wilcoxon	Rank Sum	Two-Sample	e Test
Test Acceptat	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Overlap	Decision		
16-8056-7322	Survival Rate		Contro	ol Resp	1	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Wei	ght-mg Summar	у									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575	1.246	1.597	0.04326	0.1224	8.31%	0.0%
100		8	1.409	1.279	1.538	1.225	1.648	0.05472	0.1548	10.99%	4.35%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	0	0	0.0%	0.0%
100		8	0.937	5 0.8488	1	0.7	1	0.0375	0.1061	11.31%	6.25%
Mean AF Weig	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		·
100		1.589	1.279	1.384	1.423	1.225	1.255	1.467	1.648		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		
100		0.7	1	0.9	1	1	1	0.9	1		
Survival Rate	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	11/11	11/11	10/10	10/10	11/11	10/10	10/10		
100		7/40	4040	0440	40/40	4 4 14 4		0440	40140		

100

7/10

10/10

9/10

10/10

11/11

11/11

9/10

10/10

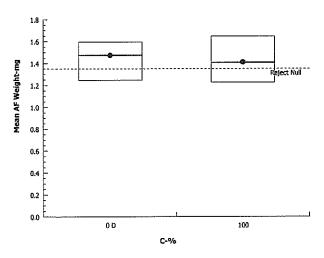
Report Date: Test Code: 15 Sep-16 16:36 (p 1 of 4) B358401ctc | 02-1469-9480

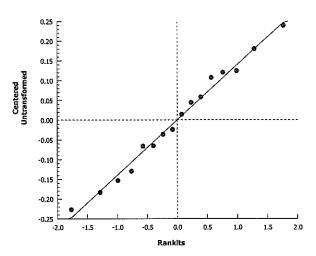
Chironomus '	10-d Survival an	ıd Grov	vth Sedime	nt Test						СН2М	HILL - AS
Analysis ID:	18-2377-4367		Endpoint:	Mean AF Weig	ht-mg		CET	IS Version	: CETISv1	.8.8	
Analyzed:	15 Sep-16 16:3	36	Analysis:	Parametric-Two	o Sample		Offic	ial Result	s: Yes		
Batch ID:	08-6381-0778		Test Type:	Survival-AF Gro	owth		Ana	lyst: Bre	ett Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu	•	d-Hard Synth	netic Water	•
Ending Date:	01 Sep-16		Species:	Chironomus ter	ntans		Brin				
Duration:	10d Oh		Source:	Aquatic Biosyst	tems, CO		Age	:			
Sample ID:	18-2203-5030		Code:	B3584-01			Clie	nt:			
Sample Date:	06 Jul-16		Material:	Sediment			Proj	ect:			
Receive Date:			Source:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	47d 0h		Station:	East Fork Slate	Creek						
Data Transfor	m	Zeta	Alt H	yp Trials	Seed		PMSD	Test Res	sult		
Untransformed	1	NA	C > T	NA	NA		8.34%	Passes r	nean af weig	ht-mg	
Equal Variano	e t Two-Sample	e Test									
Control	vs C-%		Test			P-Value	P-Type	Decision	<u> </u>		
Dilution Water	100		0.918	3 1.761	0.123 14	0.1870	CDF	Non-Sigr	nificant Effect		
Auxiliary Test	s										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:5%)			
Control Trend	Mann-Ke	ndall Tr	rend			0.1788	Non-signi	ficant Trend	d in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.0164100	02	0.016	41002	1	0.8432	0.3740	Non-Sigr	nificant Effect		
Error	0.2724487		0.019	46063	14	_					
Total	0.2888588	3			15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F	Test	1.6	8.885	0.5503	Equal Var	iances			
Distribution	Shapiro-\	∕Vilk W i	Normality	0.9796	0.8408	0.9605	Normal D	istribution			
Mean AF Weig	ght-mg Summar	у									
C-%	Control Type	Coun	it Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
)	Dilution Water	8	1.473	1.371	1.575	1.477	1.246	1.597	0.04326	8.31%	0.0%
100		8	1.409	1.279	1.538	1.404	1.225	1.648	0.05472	10.99%	4.35%
Mean AF Weig	ght-mg Detail		•								
C-%	Control Type	Rep 1	l Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
		4.040	4 400			4 547	4.400	1.58	4 500	***************************************	
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.00	1.593		

Report Date: Test Code:

15 Sep-16 16:36 (p 2 of 4) B358401ctc | 02-1469-9480

Chironomus 10-d Survival and Growth Sediment Test


CH2M HILL - ASL

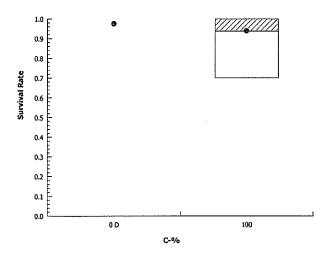

Analysis ID: Analyzed:

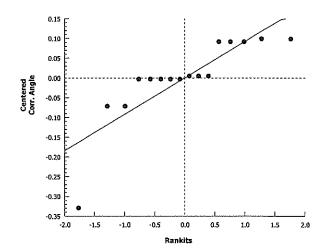
18-2377-4367 15 Sep-16 16:36 Endpoint: Mean AF Weight-mg Analysis: Parametric-Two Sample **CETIS Version:** Official Results:

CETISv1.8.8

Yes

Report Date: Test Code: 15 Sep-16 16:36 (p 3 of 4) B358401ctc | 02-1469-9480


	i 10-d Survival ar	id Grow	th Sedimer	nt Test						CH2M	HILL - AS
Analysis ID:	16-8056-7322		Endpoint:	Survival Rate			CET	IS Version:	CETISv1.	8.8	
Analyzed:	15 Sep-16 16:	36	Analysis:	Nonparametric-	Two Sample	е	Offic	ial Results:	Yes		
Batch ID:	08-6381-0778		Test Type:	Survival-AF Gro	owth		Anal	vst: Brett	Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu		Hard Synth	etic Water	
Ending Date:	-		Species:	Chironomus ter	` '		Brin				
Duration:	10d 0h		Source:	Aquatic Biosyst			Age				
Sample ID:	18-2203-5030		Code:	B3584-01			Clie	nt:			
Sample Date			Material:	Sediment			Proj				
Receive Date			Source:	Kensington Gol	d Mine (AK)	0050571)					
Sample Age:	: 47d 0h		Station:	East Fork Slate	•	,					
Data Transfo	orm	Zeta	Alt H	yp Trials	Seed		PMSD	Test Resu	lt		
Angular (Corr	rected)	NA	C > T	NA	NA		6.18%	Passes sur	vival rate		
Wilcoxon Ra	ank Sum Two-Sa	mple Te	st								
Control	vs C-%		Test 9	Stat Critical	Ties DF	P-Value	P-Type	Decision(1:5%)		
Dilution Wate	er 100		56	NA	1 14	0.1000	Exact	Non-Signifi	cant Effect		
Auxiliary Tes	sts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	d Mann-Ke	ndall Tr	end			1.0000	Non-signi	ficant Trend i	n Controls		
ANOVA Table	le										
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision(ı:5%)		
Between	0.035555	61	0.035	55561	1	3.045	0.1029	Non-Signifi	cant Effect		
Error	0.163495	7	0.011	37827	14						
Total	0.199051	3			15						
Distributiona	al Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Datia E	Toot	1571	8.885	-0.0004			······		
		rallor	rest	1371	0.000	<0.0001	Unequal \	/ariances			
Distribution			Normality	0.7362	0.8408	0.0004	,	/ariances al Distributio	n		
	Shapiro-						,		n		
Survival Rate	Shapiro-		Normality			0.0004	,		Std Err	CV%	%Effec
Survival Rate	Shapiro-¹ e Summary	Wilk W I	Normality	0.7362	0.8408	0.0004	Non-norm	al Distributio		CV% 0.0%	%Effec
Survival Rate C-%	Shapiro-\ e Summary Control Type	Wilk W I	Normality t Mean	0.7362 95% LCL 1	0.8408 95% UCL	0.0004 Median	Non-norm	al Distributio	Std Err		
Survival Rate C-% 0 100	Shapiro-\ e Summary Control Type	Coun 8 8	t Mean 1 0.937	0.7362 95% LCL 1	0.8408 95% UCL	0.0004 Median	Min 1	Max	Std Err	0.0%	0.0%
Survival Rate C-% 0 100 Angular (Cor	Shapiro-1 e Summary Control Type Dilution Water	Coun 8 8	t Mean 1 0.9379	0.7362 95% LCL 1	95% UCL 1 1	0.0004 Median 1	Min 1	Max	Std Err	0.0%	0.0% 6.25%
Survival Rate C-% 0 100 Angular (Cor C-%	Shapiro-1 e Summary Control Type Dilution Water rrected) Transfor Control Type	Coun 8 8 med Su	t Mean 1 0.9379 Immary t Mean	0.7362 95% LCL 1 0.8488 95% LCL	95% UCL 1 1 95% UCL	Median 1 1 Median	Min 1 0.7 Min	Max 1 1 Max	Std Err 0 0.0375 Std Err	0.0% 11.31% CV%	0.0% 6.25% %Effec
Survival Rate C-% 0 100 Angular (Cor C-%	Shapiro-1 e Summary Control Type Dilution Water rrected) Transfor	Coun 8 8 med Su Coun	t Mean 1 0.9379	0.7362 95% LCL 1 0.8488	95% UCL 1	0.0004 Median 1	Min 1 0.7	Max 1	Std Err 0 0.0375	0.0% 11.31%	0.0% 6.25%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8	t Mean 1 0.9375 Immary t Mean 1,415	95% LCL 1 0.8488 95% LCL 1.412	95% UCL 1 1 95% UCL 1.418	0.0004 Median 1 1 Median 1.412	Min 1 0.7 Min 1.412	Max 1 1 Max 1.419	Std Err 0 0.0375 Std Err 0.001366	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8	t Mean 1 0.9379 mmary t Mean 1.415 1.321	95% LCL 1 0.8488 95% LCL 1.412 1.193	95% UCL 1 1 95% UCL 1.418	0.0004 Median 1 1 Median 1.412	Min 1 0.7 Min 1.412	Max 1 1 Max 1.419	Std Err 0 0.0375 Std Err 0.001366	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%
C-% 0 100 Angular (Cor C-% 0 100 Survival Rate	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8	t Mean 1 0.9379 mmary t Mean 1.415 1.321	95% LCL 1 0.8488 95% LCL 1.412 1.193	95% UCL 1 1 1 95% UCL 1.418 1.448	0.0004 Median 1 1 Median 1.412 1.412	Min 1 0.7 Min 1.412 0.9912	Max 1 1 Max 1.419 1.419	Std Err 0 0.0375 Std Err 0.001366 0.05402	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type	Coun 8 8 med Su Coun 8 8	t Mean 1 0.937s Immary t Mean 1.415 1.321	95% LCL 1 0.8488 95% LCL 1.412 1.193	95% UCL 1 1 95% UCL 1.418 1.448	0.0004 Median 1 1 Median 1.412 1.412 Rep 5	Min 1 0.7 Min 1.412 0.9912	Max 1 1 Max 1.419 1.419 Rep 7	Std Err 0 0.0375 Std Err 0.001366 0.05402	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type	Coun 8 8 med Su Coun 8 8 1 0.7	t Mean 1 0.9379 Immary t Mean 1.415 1.321 Rep 2	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3	95% UCL 1 1 95% UCL 1.418 1.448	0.0004 Median 1 1 Median 1.412 1.412 Rep 5	Min 1 0.7 Min 1.412 0.9912 Rep 6 1	Max 1 1 Max 1.419 1.419 Rep 7	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100 Angular (Cor	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 0.7	t Mean 1 0,9379 mmary t Mean 1,415 1,321 Rep 2 1 1	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9	95% UCL 1 1 95% UCL 1.418 1.448	0.0004 Median 1 1 Median 1.412 1.412 Rep 5	Min 1 0.7 Min 1.412 0.9912 Rep 6 1	Max 1 1 Max 1.419 1.419 Rep 7	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effect 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100 Angular (Cor	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 0.7	t Mean 1 0.9379 t Mean 1.415 1.321 Rep 2 1 tail Rep 2	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9	95% UCL 1 1 95% UCL 1.418 1.448 Rep 4 1 1	0.0004 Median 1 1 Median 1.412 1.412 Rep 5 1 1	Min 1 0.7 Min 1.412 0.9912 Rep 6 1 1	Max 1 1 Max 1.419 1.419 1.9	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8 1	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effect 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100 Angular (Cor C-%	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 1 0.7 med De	t Mean 1 0.9379 mmary t Mean 1.415 1.321 Rep 2 1 1 Rep 2 1.419	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9	95% UCL 1 1 95% UCL 1.418 1.448 Rep 4 1 1	0.0004 Median 1 1 Median 1.412 1.412 Rep 5 1 1	Min 1 0.7 Min 1.412 0.9912 Rep 6 1 1	Max 1 1 Max 1.419 1.419 Rep 7 1 0.9	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8 1 1	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effect 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100 Angular (Cor C-% 0 100 100	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 0.7 med De Rep 1 1.412	t Mean 1 0.9379 mmary t Mean 1.415 1.321 Rep 2 1 1 Rep 2 1.419	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9	95% UCL 1 1 95% UCL 1.418 1.448 Rep 4 1 1 Rep 4 1.412	0.0004 Median 1 1 Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412	Min 1 0.7 Min 1.412 0.9912 Rep 6 1 1 Rep 6 1.419	Max 1 1 1 Max 1.419 1.419 Rep 7 1 0.9	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8 1 1 Rep 8 1.412	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effect 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 0.7 med De Rep 1 1.412	Mean 1 0.9379 Immary t Mean 1.415 1.321 Rep 2 1 1 Itail Rep 2 1.419 2 1.412	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9 Rep 3 1.419 1.249	95% UCL 1 1 95% UCL 1.418 1.448 Rep 4 1 1 Rep 4 1.412	0.0004 Median 1 1 Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412	Min 1 0.7 Min 1.412 0.9912 Rep 6 1 1 Rep 6 1.419	Max 1 1 1 Max 1.419 1.419 Rep 7 1 0.9	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8 1 1 Rep 8 1.412	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effect 0.0%
Survival Rate C-% 0 100 Angular (Cor C-% 0 100 Survival Rate C-% 0 100	Shapiro- e Summary Control Type Dilution Water rrected) Transfor Control Type Dilution Water e Detail Control Type Dilution Water rrected) Transfor Control Type Dilution Water rrected) Transfor Control Type Dilution Water	Coun 8 8 med Su Coun 8 8 1 0.7 med De Rep 1 1.412 0.991:	Mean 1 0.9379 1 Mean 1.415 1.321 Rep 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95% LCL 1 0.8488 95% LCL 1.412 1.193 Rep 3 1 0.9 Rep 3 1.419 1.249	95% UCL 1 1 95% UCL 1.418 1.448 Rep 4 1 1 Rep 4 1.412 1.412	0.0004 Median 1 1 Median 1.412 1.412 Rep 5 1 1 Rep 5 1.412 1.419	Min 1 0.7 Min 1.412 0.9912 Rep 6 1 1 Rep 6 1.419 1.419	Max 1 1 Max 1.419 1.419 Rep 7 1 0.9 Rep 7 1.412 1.249	Std Err 0 0.0375 Std Err 0.001366 0.05402 Rep 8 1 1 Rep 8 1.412 1.412	0.0% 11.31% CV% 0.27%	0.0% 6.25% %Effec 0.0%


Report Date: Test Code: 15 Sep-16 16:36 (p 4 of 4) B358401ctc | 02-1469-9480

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	16-8056-7322	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:36	Analysis:	Nonparametric-Two Sample	Official Results:	Yes

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:40 (p 1 of 1) B358405ctc | 18-5976-9394

										•	
Chironomus 1	10-d Survival and	d Grov	wth Sedime	nt Test						CH2M	HILL - ASI
Batch ID: Start Date: Ending Date: Duration:	08-6381-0778 22 Aug-16 01 Sep-16 10d Oh		Test Type: Protocol: Species: Source:	Survival-AF Gr EPA/600/R-99/ Chironomus te Aquatic Biosys	/064 (2000) ntans		C E		tt Muckey d-Hard Synti	netic Water	•
Sample ID:	02-9733-1775		Code:	B3584-05				Client:			
Sample Date:			Material:	Sediment			F	roject:			
Receive Date:	-		Source:	Kensington-Go		0050571)					
Sample Age:	14d Un		Station:	Lower Johnson	1 Creek	<u> </u>					
Comparison S	Summary			* • • · · · · · · · · · · · · · · · · ·	The state of the s						
Analysis ID	Endpoint		NOEI	LOEL\	TOEL	PMSD	TU	Method		· · · · · · · · · · · · · · · · · · ·	
17-6869-3558	Mean AF Weigh	nt-mg	100	>100	NA	7.1%	1		riance t Two	-	
12-7074-1598	Survival Rate		100	>100 /	NA	4.9%	1	Wilcoxon	Rank Sum	Two-Sampl	e Test
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	oute	Test Stat	TAC Lin	nits	Overlap	Decision		_
12-7074-1598	Survival Rate		Contr	ol Resp	1	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Weig	ght-mg Summar	у									
C-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575 ·	1.246	1.597	0.04326	0.1224	8.31%	0.0%
100		8	1.499	1.403	1.595	1.361	1.671	0.04065	0.115	7.67%	-1.78%
Survival Rate	Summary										
C-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	0	0	0.0%	0.0%
100		8	0.975	0.9159	1	8.0	1	0.025	0.07071	7.25%	2.5%
Mean AF Weig	ght-mg Detail										
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		
100		1.46	1.57	1.493	1.671	1.401	1.361	1.402	1.634		
Survival Rate	Detail										
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		······································
100		1	1	1	0.8	1	1	1	1		
Survival Rate	Binomials									•	
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10		-	10/10	10/10	11/11	10/10	10/10		
400		40146		40140	0440	40/40	40440	4040	40140		

Analyst: 8 QA:

100

10/10

10/10

10/10

8/10

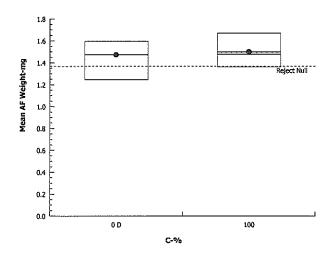
10/10

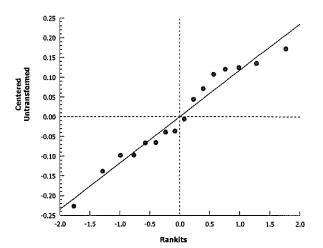
10/10

10/10

10/10

Report Date: Test Code: 15 Sep-16 16:40 (p 1 of 4) B358405ctc | 18-5976-9394


Chironomus '	10-d Survival ar	nd Grow	th Sedime	nt Test						CH2M	HILL - ASL
Analysis ID: Analyzed:	17-6869-3558 15 Sep-16 16:		Endpoint: Analysis:	Mean AF Weig Parametric-Two	•			IS Version		.8.8	
Batch ID:	08-6381-0778	' '	Test Type:	Survival-AF Gr	owth		Ana	lyst: Bre	ett Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/	064 (2000)		Dilu	ent: Mo	d-Hard Syntl	netic Wate	r
Ending Date:	01 Sep-16		Species:	Chironomus ter	ntans		Brin	e:			
Duration:	10d 0h		Source:	Aquatic Biosys	tems, CO		Age	:			
Sample ID:	02-9733-1775		Code:	B3584-05			Clie	nt:			
Sample Date:	: 08 Aug-16		Material:	Sediment			Proj	ect:			
Receive Date:	: 11 Aug-16		Source:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	14d 0h		Station:	Lower Johnson	Creek						
Data Transfor	rm	Zeta	Ait H	yp Trials	Seed		PMSD	Test Res	ult		
Untransformed	d	NA	C > T	NA	NA		7.1%	Passes r	nean af weig	ht-mg	
Equal Variance	ce t Two-Sample	e Test									
Control	vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decision	ι(α:5%)		
Dilution Water	100		-0.440	06 1.761	0.105 14	0.6669	CDF	Non-Sign	ificant Effect		
Auxiliary Test	ts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	Mann-Ke	ndall Tr	end			0.1788	Non-signi	ficant Trend	in Controls		
ANOVA Table)										
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	ι(α:5%)		
Between	0.002736	575	0.002	736575	1	0.1941	0.6662	Non-Sigr	ificant Effect	ì	
Error	0.197342		0.014	09591	14						
Total	0.200079	3			15						
Distributional	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance	Ratio F	Test	1.132	8.885	0.8740	Equal Va	riances			
Distribution	Shapiro-	Wilk W I	Normality	0.955	0.8408	0.5724	Normal D	istribution			
Mean AF Weig	ght-mg Summa	ry									
C-%	Control Type	Coun	t Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575	1.477	1.246	1.597	0.04326	8.31%	0.0%
100		8	1.499	1.403	1.595	1.476	1.361	1.671	0.04065	7.67%	-1.78%
	aht-ma Detail										
Mean AF Weig	girt-ing Detail										
•	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
Mean AF Weig C-% 0		Rep 1	Rep 2		Rep 4 1.597	Rep 5	Rep 6 1.406	Rep 7	Rep 8 1.593		

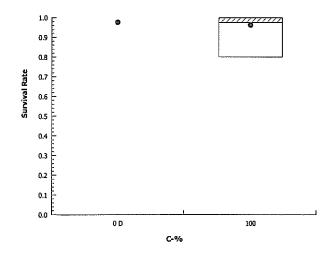

Report Date: Test Code: 15 Sep-16 16:40 (p 2 of 4) B358405ctc | 18-5976-9394

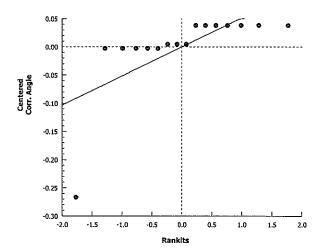
Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	17-6869-3558	Endpoint:	Mean AF Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:39	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date: 15 Sep-16 16:40 (p 3 of 4)


CE 110 Analytical Report									Test	Code:	B358	3405ctc 1	8-5976-9394
Chironomus	10-d Survival a	nd Grow	vth Sedime	nt Test								CH2M	HILL - ASL
Analysis ID: Analyzed:	12-7074-1598 15 Sep-16 16:		Endpoint: Analysis:	Survival R		Two Samp	ole			S Version: ial Results:	CETISv1.	.8.8	
Batch ID:	08-6381-0778		Test Type:	Survival-A	F Gro	wth			Analy	yst: Bret	t Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/F)		Dilue	•	-Hard Synth	etic Wate	r
Ending Date:	01 Sep-16		Species:	Chironomu	ıs ten	ntans			Brine) :			
Duration:	10d 0h		Source:	Aquatic Bi	osyst	ems, CO			Age:				
Sample ID:	02-9733-1775		Code:	B3584-05					Clien				
Sample Date:			Material:	Sediment					Proje	ict:			
Receive Date	_		Source:	_			(0050571)						
Sample Age:	14d 0h		Station:	Lower Joh	nson	Сгеек							
Data Transfo		Zeta	Alt H		3	Seed		PMS		Test Resu			
Angular (Corre	ected)	NA	C > T	NA NA		NA		4.9%	•	Passes su	ırvival rate	-	
Wilcoxon Ra	nk Sum Two-Sa	mple Te											
Control	vs C-%		Test		al		F P-Value		······	Decision(·	
Dilution Water			64	NA		1 1	4 0.5000	Exac	Я	мол-Signi	ficant Effect		
Auxiliary Tes					.								
Attribute	Test	1 - 11 77 -		Test	Stat	Critical	P-Value			α:5%)	1- 0		
Control Trend	Mann-Ke	endall Ir	ena				1.0000	Non-	signit	icant Trend	in Controls		
ANOVA Table	•												
Source	Sum Sqւ			Square		DF	F Stat	P-Va		Decision(
Between	0.006691			691654		1	1.15	0.30	16	Non-Signi	ficant Effect		
Error Total	0.081430 0.088121		0.005	816436		14 15							
Distributiona	l Taete												
Attribute	Test			Test	Stat	Critical	P-Value	Deci	sion(α:1%)			
Variances	Variance	Ratio F	Test	782		8.885	<0.0001			ariances			
Distribution	Shapiro-	Wilk W	Normality	0.480	7	0.8408	<0.0001		•	al Distributio	on		
Survival Rate	Summary												
C-%	Control Type	Coun	t Mean	95%	LÇL	95% UCI	L Median	Min		Max	Std Err	CV%	%Effect
0	Dilution Water	8	1	1		1	1	1		1	0	0.0%	0.0%
100		8	0.975	0.915	9	1	1	0.8		1	0.025	7.25%	2.5%
Angular (Cor	rected) Transfo	rmed Su	ımmary										
C-%	Control Type	Coun	t Mean	95%	LCL	95% UCI	L. Median	Min		Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.415			1.418	1.412	1.41:		1.419	0.001366	0.27%	0.0%
100		8	1.374	1.284		1.464	1.412	1.10	7	1.412	0.03811	7.85%	2.89%
Survival Rate													
C-%	Control Type	Rep 1		<u>.</u>	3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
0 100	Dilution Water	1 1	1 1	1 1		1 0.8	1 1	1 1		1 1	1 1		
				1		J.U							
- '	rected) Transfor) m	,	De- 4	D 5	-	c	D 7	Do 6		
C- %	Control Type Dilution Water	Rep 1			**********	Rep 4 1,412	Rep 5 1.412	Rep 1,419		Rep 7	Rep 8 1,412		
100	Dilution Assiet.	1.412 1.412				1.412	1.412 1.412	1.41		1.412 1.412	1.412 1.412		
	Rinomiala								•		· · · · -		
Survival Rate C-%		Rep 1	Rep 2	2 Rep∶	2	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8		
0	Control Type Dilution Water	10/10			···	10/10	10/10	11/1		10/10	10/10		
100	Didion water	10/10				8/10	10/10	10/10		10/10	10/10		
		10/10	10/10	10/10		5, 10	.0.10	10/10	-	10, 10	10/10		


Report Date: Test Code: 15 Sep-16 16:40 (p 4 of 4) B358405ctc | 18-5976-9394

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	12-7074-1598	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:39	Analysis:	Nonparametric-Two Sample	Official Results:	Yes

CETIS Summary Report

Report Date: Test Code: 15 Sep-16 16:39 (p 1 of 1) B358404ctc | 12-6122-7241

Chironomus '	10-d Survival and	i Growth	sedime	nt Test						CH2M	HILL - ASI
Batch ID:	08-6381-0778	T€	est Type:	Survival-AF Gro	owth		Δ	nalyst: Br	ett Muckey		
Start Date:	22 Aug-16	Pr	rotocol:	EPA/600/R-99/	064 (2000)		D	iluent: Mo	od-Hard Syntl	hetic Water	
Ending Date:	01 Sep-16	Sı	pecies:	Chironomus ter			Е	Brine:			
Duration:	10d Oh	Sc	ource:	Aquatic Biosyst	ems, CO		Δ	/ge:			
Sample ID:	10-0448-9482	C	ode:	B3584-04			C	lient:			
Sample Date:	05 Jul-16	M	aterial:	Sediment			P	roject:			
Receive Date:	: 13 Jul-16		ource:	Kensington Gol	d Mine (AK	0050571)					
Sample Age:	48d Oh	St	tation:	Lower Slate Cre	eek `						
Comparison S	Summary			· · · · · · · · · · · · · · · · · · ·							
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Method			
19-0870-1575	Mean AF Weight	t-mg (100	>100	NA	7.11%	1	,	ariance t Two	•	
17-1479-8981	Survival Rate	`	100	>100	NA	4.29%	1	Wilcoxo	n Rank Sum	Two-Sampl	e Test
Test Acceptal	bility			The second second second second							
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lin	nits	Overlap	Decision		
17-1479-8981	Survival Rate		Contr	ol Resp	1	0.7 - NL		Yes	Passes A	cceptability	Criteria
Mean AF Wei	ght-mg Summary	,									
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575	1.246	1.597	0.04326	0.1224	8.31%	0.0%
100		8	1.47	1.373	1.566	1.278	1.656	0.04085	0.1155	7.86%	0.23%
Survival Rate	Summary				•	·					
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	0	0	0.0%	0.0%
100		8	0.962	5 0.9192	1	0.9	1	0.0183	0.05175	5.38%	3.75%
Mean AF Wei	ght-mg Detail									** W*******	
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		
100		1.489	1.586	1.472	1.656	1.278	1.403	1.466	1.407		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		
100		1	0.9	1	0.9	1	0.9	1	1		
Survival Rate	Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10	11/11	11/11	10/10	10/10	11/11	10/10	10/10	***************************************	
			-11-	45445				45145			

100

10/10

9/10

10/10

9/10

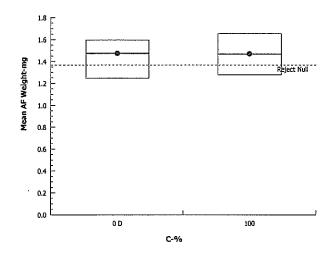
10/10

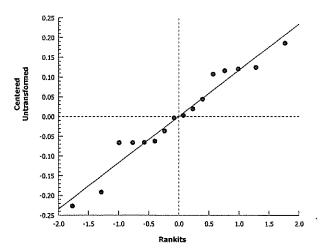
9/10

10/10

10/10

Report Date: Test Code: 15 Sep-16 16:39 (p 1 of 4) B358404ctc | 12-6122-7241


Chironomus	10-d Survival ar	d Grov	wth Sedime	nt Test						CH2M	HILL - ASL
Analysis ID: Analyzed:	19-0870-1575 15 Sep-16 16:	39	Endpoint: Analysis:	Mean AF Weig Parametric-Tw	-			IS Version: ial Results		.8.8	
Batch ID: Start Date: Ending Date: Duration:	08-6381-0778 22 Aug-16 01 Sep-16 10d 0h		Test Type: Protocol: Species: Source:	Survival-AF Gr EPA/600/R-99, Chironomus te Aquatic Biosys	/064 (2000) ntans		Ana Dilu Brin Age	ent: Mod e:	tt Muckey i-Hard Synti	netic Wate	r
Sample ID: Sample Date: Receive Date Sample Age:	: 13 Jul-16		Code: Material: Source: Station:	B3584-04 Sediment Kensington Go Lower Slate Cr	•	0050571)	Clie Proj			1	
Data Transfo	rm	Zeta	Alt H	lyp Trials	Seed		PMSD	Test Res	ult		
Untransformed	3	NA	C > T	NA	NA		7.11%	Passes m	ean af weig	ht-mg	
Equal Variane	ce t Two-Sample	Test									
Control	vs C-%		Test :	Stat Critical	MSD DF	P-Value	P-Type	Decision	(a:5%)		
Dilution Water			0.055		0.105 14		CDF		ficant Effect	<u> </u>	
Auxiliary Tes	ts						<u>.</u>				
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	Mann-Ke	ndall T	rend			0.1788		ficant Trend	in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between Error Total	4.4076378 0.1982333 0.1982774	3		637E-05 15952	1 14 15	0.003113	0.9563	Non-Signi	ificant Effect	İ	
Distributiona	I Taete										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(α:1%)			
Variances	Variance			1.121	8.885	0.8837	Equal Va				
Distribution	Snapiro-	VVIIK VV	Normality	0.9511	0.8408	0.5068	Normal D	istribution			
Mean AF Wei	ght-mg Summa	гу									
C-%	Control Type	Cour			95% UCL	Median	Min	·Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.473		1.575	1.477	1.246	1.597	0.04326	8.31%	0.0%
100		8	1.47	1.373	1.566	1.469	1.278	1.656	0.04085	7.86%	0.23%
Mean AF Wei	ght-mg Detail										
C-%	Control Type	Rep		•	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246			1.597	1.517	1.406	1.58	1.593		
100		1.489	9 1.586	1.472	1.656	1.278	1.403	1.466	1.407		

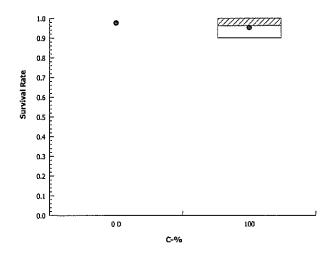

Report Date: Test Code: 15 Sep-16 16:39 (p 2 of 4) B358404ctc | 12-6122-7241

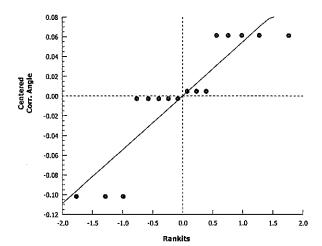
Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:	19-0870-1575	Endpoint:	Mean AF Weight-mg	CETIS Version:	CETISv1.8.8
Analyzed:	15 Sep-16 16:39	Analysis:	Parametric-Two Sample	Official Results:	Yes

Report Date: Test Code: 15 Sep-16 16:39 (p 3 of 4) B358404ctc | 12-6122-7241


							Test	: Code:	8358	3404ctc 1	2-6122-72
Chironomus	10-d Survival ar	nd Grov	wth Sedime	nt Test						CH2M	HILL - AS
Analysis ID:	17-1479-8981 15 Sep-16 16:	20	Endpoint:	Survival Rate Nonparametric	Turo Somol			IS Version:		.8.8	
Analyzed:		<u>ა</u>	Analysis:								
Batch ID:	08-6381-0778		= -	Survival-AF Gr			Ana		tt Muckey		_
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu		i-Hard Synth	etic vvate	r
Ending Date: Duration:	01 Sep-16 10d 0h		Species: Source:	Chironomus te			Brin				
				Aquatic Biosys	tenis, co		Age				
Sample ID:	10-0448-9482		Code:	B3584-04			Clie				
Sample Date:			Material:	Sediment			Proj	ect:			
Receive Date	•		Source:	Kensington Go	•	0050571)					
Sample Age:	48d 0h		Station:	Lower Slate Cr	eek						
Data Transfo		Zeta	Alt H	• •	Seed		PMSD	Test Res			
Angular (Corre	ected)	NA	C > T	NA	NA		4.29%	Passes si	urvival rate		
Wilcoxon Rai	nk Sum Two-Sa	mple T	est								
Control	vs C-%		Test	····		P-Value	P-Type	Decision	<u> </u>		
Dilution Water	100		56	NA	1 14	0.1000	Exact	Non-Signi	ficant Effect		
Auxiliary Tes	ts										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	Mann-Ke	endall T	rend			1.0000	Non-signi	ficant Trend	in Controls		
ANOVA Table	;										
Source	Sum Squ			Square	DF	F Stat	P-Value	Decision	. ,		
Between	0.016336			33628	1	4.583	0.0504	Non-Signi	ificant Effect		
Error	0.049902		0.003	564482	14						
Total	0.066239	02			15						
Distributiona	l Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio I	- Test	478.8	8.885	<0.0001	Unequal \	Variances		***************************************	
Distribution	Shapiro-	Wilk W	Normality	0.802	0.8408	0.0029	Non-norm	nal Distribution	on		
Survival Rate	Summary										
C-%	Control Type	Cour	nt Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	1	0	0.0%	0.0%
100		8	0.962	5 0.9192	1	1	0.9	1	0.0183	5.38%	3.75%
Angular (Cor	rected) Transfor	med S	ummary								
C-%	Control Type	Cour	_	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.415		1.418	1,412	1.412	1.419	0.001366	0.27%	0.0%
100	Dilation Trater	8	1.351		1.421	1.412	1.249	1.412	0.02982	6.24%	4.52%
Survival Rate	Detail										
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		
100	Dilution Water	1	0.9	1	0.9	1	0.9	1	1		
	antad) Terref	-		•	*		-				
• '	rected) Transfor			Dom 2	Don A	Don F	Don 6	Don 7	Don 0		
C-% 0	Control Type	Rep			Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0 100	Dilution Water	1.412 1.412			1.412 1.249	1.412 1.412	1.419 1.249	1.412 1.412	1.412 1.412		
	Dt	1.712	. 1.270	1.712		1 1.6-	1, <u>2</u> TU	1.716	1.716		
Survival Rate		-	4	. m ^	D== 4	D 5	Dan C	De:: =	D 6		
C-%	Control Type	Rep	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	10/10		11/11	10/10	10/10	11/11	10/10	10/10		
100		10/10	9/10	10/10	9/10	10/10	9/10	10/10	10/10		


Report Date: Test Code: 15 Sep-16 16:39 (p 4 of 4) B358404ctc | 12-6122-7241

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

	Endpoint:	Survival Rate	CETIS Version:	CETISv1.8.8
Analyzed: 15 Sep-16 16	:39 Analysis:	Nonparametric-Two Sample	Official Results:	Yes

CETIS Summary Report

0

100

Dilution Water

10/10

10/10

11/11

10/10

11/11

9/10

10/10

10/10

10/10

9/10

11/11

10/10

10/10

10/10

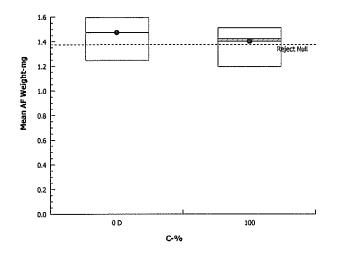
10/10

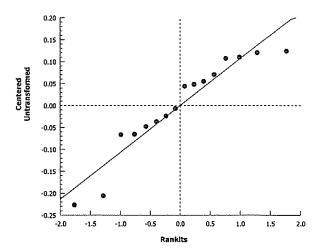
8/10

Report Date: Test Code: 15 Sep-16 16:37 (p 1 of 1) B358402ctc | 02-8841-2087

							1.0	0. 0000.	500	0702010 0	~ 00 <u>~</u> 00
Chironomus 1	I0-d Survival and	d Growth	n Sedimer	nt Test					1001 TT 1000	CH2M	HILL - ASL
Batch ID:	08-6381-0778	Te	est Type:	Survival-AF Gro	owth		Ar	nalyst: Bre	tt Muckey		
Start Date:	22 Aug-16		rotocol:	EPA/600/R-99/			Di	luent: Mod	d-Hard Syntl	netic Water	-
Ending Date:	01 Sep-16	S	pecies:	Chironomus ter	ntans		Br	ine:			
Duration:	10d 0h	S	ource:	Aquatic Biosyst	tems, CO		Αç	je:			
Sample ID:	13-2959-2362	C	ode:	B3584-02			CI	ient:			
Sample Date:	06 Jul-16	M	aterial:	Sediment			Pr	oject:			
Receive Date:	13 Jul-16	S	ource:	Kensington Gol	ld Mine (AK	0050571)					
Sample Age:	47d 0h	St	tation:	Upper Slate Cro	eek						
Comparison S	Summary		~	To the last the second second	The second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the second section of the section of the second section of the se						
Analysis ID	Endpoint		NOEL	. LOEL	TOEL	PMSD	TU	Method			
08-2648-1221	Mean AF Weigh	t-mg (<u>(</u> 100	>100	NA	6.64%	1	Equal Va	riance t Two	-Sample Te	est
17-8188-8523	Survival Rate		100	>100	NA	5.16%	1 .	Wilcoxon	Rank Sum	Two-Sampl	e Test
Test Acceptab	oility										
Analysis ID	Endpoint		Attrib	ute	Test Stat	TAC Lim	nits	Overlap	Decision		
17-8188-8523	Survival Rate		Contro	ol Resp	1	0.7 - NL		Yes	Passes A	cceptability	Criteria .
Mean AF Weig	ght-mg Summary	<i>'</i>							***		
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575	1.246	1.597	0.04326	0.1224	8.31%	0.0%
100		8	1.403	1.321	1.485	1.197	1.513	0.03477	0.09835	7.01%	4.76%
Survival Rate	Summary										
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	0	0	0.0%	0.0%
100		8	0.95	0.8868	1	8.0	1	0.02673	0.07559	7.96%	5.0%
Mean AF Weig	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		***************************************
100		1.379	1.197	1.458	1.396	1.473	1.513	1.451	1.355		
Survival Rate	Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1	1	1	1	1	1		
100		1	1	0.9	1	0.9	1	1	8.0		
Survival Rate	Binomials									,,,,,,	
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		

Report Date: Test Code: 15 Sep-16 16:37 (p 1 of 4) B358402ctc | 02-8841-2087


										1 1 2 2 3 10 1 0	_ 00 // LUC
Chironomus 1	10-d Survival an	d Growt	th Sedime	nt Test						CH2M	HILL - ASI
Analysis ID:	08-2648-1221	E	Endpoint:	Mean AF Weig	ht-mg		CET	'IS Version	: CETISv1	.8.8	
Analyzed:	15 Sep-16 16:3	37 #	Analysis:	Parametric-Two	Sample		Offic	cial Result	s: Yes		
Batch ID:	08-6381-0778	٦	Test Type:	Survival-AF Gr	owth		Ana	lyst: Bro	ett Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99/			Dilu	ent: Mo	d-Hard Synth	netic Wate	7
Ending Date:	01 Sep-16	5	Species:	Chironomus ter	ntans		Brin	e:			
Duration:	10d 0h	8	Source:	Aquatic Biosys	tems, CO		Age	:			
Sample ID:	13-2959-2362	(Code:	B3584-02			Clie	nt:			
Sample Date:	06 Jul-16	N	Vlaterial:	Sediment			Proj	ect:			
Receive Date:	13 Jul-16	5	Source:	Kensington Go	ld Mine (AK	0050571)					
Sample Age:	47d Oh	5	Station:	Upper Slate Cr	eek						
Data Transfor	m	Zeta	Alt H	yp Trials	Seed		PMSD	Test Res	sult		
Untransformed		NA	C>T	NA	NA		6.64%	Passes i	mean af weig	ht-mg	
Equal Varianc	e t Two-Sample	Test									
Control	vs C-%		Test	Stat Critical	MSD DF	P-Value	P-Type	Decisio	n(α:5%)		
Dilution Water	100		1.263	1.761	0.098 14	0.1136	CDF	Non-Sigr	nificant Effect		
Auxiliary Test	s										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:5%)			
Control Trend	. Mann-Ke	ndall Tre	end			0.1788	Non-signi	ficant Tren	d in Controls		
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	n(α:5%)		
Between	0.0196622	27	0.019	66227	1	1.596	0.2271	Non-Sigr	nificant Effect		
Error	0.1725082		0.012	32201	14						
Total	0.1921705	5			15						
Distributional	Tests										
Attribute	Test			Test Stat	Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio F	Test	1.548	8.885	0.5787	Equal Va	riances			
Distribution	Shapiro-V	Vilk W N	lormality	0.9016	0.8408	0.0854	Normal D	istribution			
Mean AF Weig	ght-mg Summar	у								***************************************	
C-%	Control Type	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.473	1.371	1.575	1.477	1.246	1.597	0.04326	8.31%	0.0%
100		8	1.403	1.321	1.485	1.424	1.197	1.513	0.03477	7.01%	4.76%
Mean AF Weig	ght-mg Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1.246	1.436	1.407	1.597	1.517	1.406	1.58	1.593		

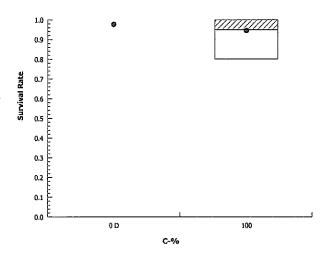

Report Date: Test Code: 15 Sep-16 16:37 (p 2 of 4) B358402ctc | 02-8841-2087

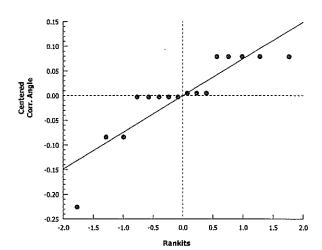
Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:08-2648-1221Endpoint:Mean AF Weight-mgCETIS Version:CETISv1.8.8Analyzed:15 Sep-16 16:37Analysis:Parametric-Two SampleOfficial Results:Yes

Report Date: Test Code: 15 Sep-16 16:37 (p 3 of 4) B358402ctc | 02-8841-2087

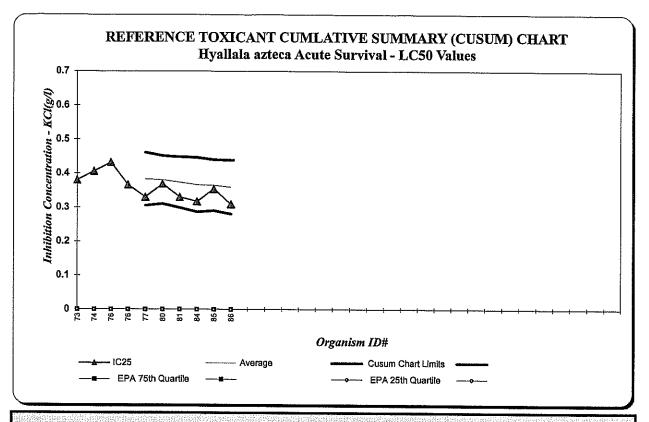

							Test	t Code:	B358	3402ctc (2-8841-208
Chironomus	10-d Survival at	nd Gro	wth Sedime	nt Test						CH2M	HILL - ASI
Analysis ID:	17-8188-8523		Endpoint:	Survival Rate			CET	'IS Version:	CETISv1	.8.8	
Analyzed:	15 Sep-16 16:	37	Analysis:	Nonparametri	c-Two Samp	le	Offic	cial Results:	Yes		
Batch ID:	08-6381-0778		Test Type:	Survival-AF G	rowth		Ana	lyst: Brett	Muckey		
Start Date:	22 Aug-16		Protocol:	EPA/600/R-99	3/064 (2000)		Dilu	ent: Mod-	Hard Synth	etic Wate	r
Ending Date:	01 Sep-16		Species:	Chironomus te	entans		Brin	ie:			
Duration:	10d 0h		Source:	Aquatic Biosys	stems, CO		Age	:			
Sample ID:	13-2959-2362		Code:	B3584-02			Clie	nt:			
Sample Date	: 06 Jul-16		Material:	Sediment			Proj	ect:			
Receive Date	-		Source:	Kensington G		0050571)					
Sample Age:	47d 0h		Station:	Upper Slate C	reek						
Data Transfo		Zeta	Alt H	* · 	Seed		PMSD	Test Resu	lt		
Angular (Corre	ected)	NA	C > T	NA	NA		5.16%	Passes su	rvival rate		
Wilcoxon Ra	nk Sum Two-Sa	mple T	est								
Control	vs C-%		Test			F P-Value	P-Type	Decision(····
Dilution Water	r 100		56	NA	1 14	0.1000	Exact	Non-Signif	icant Effect		
Auxiliary Tes	ts										
Attribute	Test			Test Sta	t Critical	P-Value	Decision	(α:5%)			
Control Trend	Mann-Ke	endall T	rend			1.0000	Non-signi	ificant Trend i	in Controls		
ANOVA Table	9		*								
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.026662	87	0.026	66287	1	3.871	0.0693	Non-Signif	icant Effect		
Error	0.096426	93	0.006	887638	14						
Total	0.123089	8			15						
Distributiona	l Tests										
Attribute	Test			Test Stat	t Critical	P-Value	Decision	(a:1%)			
Variances	Variance	Ratio I	- Test	926.2	8.885	<0.0001	Unequal '	Variances		·	
Distribution	Shapiro-	Wilk W	Normality	0.8003	0.8408	0.0027	Non-norm	nal Distributio	n		
Survival Rate	Summary										
C-%	Control Type	Cour	nt Mean	95% LCL	. 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1	1	1	1	1	1	0	0.0%	0.0%
100		8	0.95	0.8868	1	1	8.0	1	0.02673	7.96%	5.0%
Angular (Cor	rected) Transfor	med S	ummary			,					
C-%	Control Type	Cour	•	95% LCL	. 95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	Dilution Water	8	1.415		1.418	1.412	1.412	1.419	0.001366	0.27%	0.0%
100		8	1.333		1.431	1.412	1.107	1.412	0.04147	8.8%	5.77%
Survival Rate	Detail						•				
C-%	Control Type	Rep	1 Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0	Dilution Water	1	1	1 1	1	1	1	1	1		
100		1	1	0.9	1	0.9	1	1	0.8		
Angular (Core	rected) Transfor	med D	etail						- 11		
C-%	Control Type	Rep		Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
0 0	Dilution Water	1.412		•	1.412	1.412	1.419	1.412	1.412		
100	Diagon Hatel	1,412			1.412	1.249	1,412	1,412	1.107		
Survival Rate	Rinomiale								··· ··		
		Don 1	1	Dan 2	Don 4	Por F	Por 6	Don 7	Don 0		
C-%	Control Type Dilution Water	10/10			Rep 4 10/10	Rep 5 10/10	Rep 6 11/11	Rep 7 10/10	Rep 8 10/10		
•	Diminion Assist.	10/10			10/10	9/10	10/10	10/10	8/10		
100		10/10	, 10/10	<i>3/</i> IU	10/10	3/10	10/10	10/10	3/ TU		


Report Date: Test Code: 15 Sep-16 16:37 (p 4 of 4) B358402ctc | 02-8841-2087

Chironomus 10-d Survival and Growth Sediment Test

CH2M HILL - ASL

Analysis ID:17-8188-8523Endpoint:Survival RateCETIS Version:CETISv1.8.8Analyzed:15 Sep-16 16:37Analysis:Nonparametric-Two SampleOfficial Results:Yes



APPENDIX B REFERENCE TOXICANT DATA SHEETS

REFERENCE TOXICANT DATA SHEET

Client		04/0c				Refere	Reference Toxicant	cicant				KCI			Test Begin:		Date £	8-22-16 Time	16T	ı	1505	-	
Test Organism		Hyallela azteca	teca		ı	Solvent:	ot:	Milli-Q water	ater		Stock Solution		50 g/L		Test End:		Date 2	9-5-16	1	Time	17%0		
Source	Cheasepeake Cultures	Culture	SS			Reage	Reagent Log ID#		2BO	9	8												
#	ANA	S				*Dilut	*Dilution Water	er		Reco	Recon MH		#日	<i>5</i> 25					,				
Age	0-00	days				Total	Total Hardness as CaCO3	s as Ca	çç Ç		0	9			Total Al	kalinity	Fotal Alkalinity as CaCO3	ű	_	<u>و</u> و			
Feeding:	Feeding: 0.1 ml YCT on Day 0 & 48 hrs.	on Day	0 & 48	hrs.		Condu	Conductivity (µmhos/cm) / Salinity (ppt)	'nmhos	cm) / St	Jeimile (ept)		305			ţ.,	Temperature	ture	2	23° C ± 2° C	o C		
Test Chamber Size	ber Size	30	30 ml	,		Technician	ician	0 hr	M		24 hr	ر کا	ر کر	48 hr	£		72 hr	K	8	96 hr	300		
Volume p	Volume per Replicate	20	20 ml			Time		0 hr	(T	1505	24 hr	1416	و.	48 hr	1330		•	0955		96 hr	1350		
*10 rep	*10 reps. w/1 organism per test chamber	m per te	st cham	iĥer		Therr	Therm. ID#	0 hr	186	2	24 hr	180		48 hr	159		72 hr	159		96 hr	136		
J	Q.	4				Food	Food I.D. #	0 hr	1104		. 24 hr	NONE	1	48 hr	7011		72 hr	NONE		96 hr	NONE		
Toxicant Concen.	Test Chamber	Nu	mber o	Number of Live Organisms Surviving	Organi 1g	sms	Q	issolve	Dissolved Oxygen (mg/l)	cen (mg	(1)			pH				Tempe	Temperature °C	ာ့		Cond.	
g/L	Number	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	24	48	72	96	0	96
Cont	A	10	10	(0)	91	ر ت	8,0	ı	ŀ		32	7.2	(l	(26	21.7	20.2	22.7 25	22-3 23	23.(3)	310 415	ſλ
0.125	A	10	Q.	01	9	Qj	86 	1	1	(22	7.3	ı	١	(22	2 L-12	22-1 22	2 22	2 4.55	55 P.55	530 733	33
0.250	A	10	0	0	σ	7	- 69 - C9	1	29		22	82	}	62	1	23		21.3 2	27 2	22.5-22	22.9 71		72.(
0.500	A	10	S	X,2	_	_	80 12	4	9	7.5	7.8	7.3	8.2	90	73	1 62	21-7 2	z 1 77	225 7	2 5-22	11 722	170 83	836
1.00	A.	10	۵	· 1000	ι	1	& 3.3	77	{	}		h'L	9.1	((21.8/12	3	1	(- 22	20102	2030
2.00	Ą	10	٥	0	j	ì	8.4	ι ,	-	ŧ	١	2.5	8,1)	1	-	2.8 2	072	,	1	- 32	3670 37	3720
***************************************										:													
Test Accept	Test Acceptability Limits:	Sur	ival in (Survival in Controls: > or = 90%	> or =	%06	For H	yallela (a	For Hyallela (at 23°C): >4.0 and <8.6	>4.0 an	d <8.6		pH: >	> 6.0 and < 9.0	< 9.0		Te Peke	Temperature + X°C	$\frac{1}{2}$	၁.			
*Dilution Water Code	/ater Code										!	•			عام-١٦٠ We verify this data is true and correct.	y this d	م-م ata is tru	۹-۱-۱۴ true and co	orrect.				
Recon.	reconstituted watersoft	l water					96 h	96 hr I C50		0	0.300	5		ŗ	Tock Monogor	1000	4	ST ST	ر. کے کم	4			
H	- moderately hard	ıard))		-	0	C		700		dor ma	lagoi	(THE PERSON NAMED IN COLUMN TWO	} \	7 7 7			
	- hard	3				Cusum	Cusum Chart Limits	imits	j (707	2].	0,000 0000	7		Project Manager	fanager			12				
Art. Sea	- Artificial Sea Water	ea Watı	i.			Statisti	Statistical Method	. Jod	مص	100	STS	ıΛ			OA Officer	į	A.	24	5/6	11, 11	A		
						CHERON	CG1 144 CH				}	1		, 	¥2 Cm	\ 5	, , ,	7	\$	77	ξĮ		

REFTOX - Hyallela acute (KCI) 96 hrs.xls
Doc Control ID: ASL 689-0510

Hyallela azteca - acute

POTASIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

10th Quartile CV (control timit) =

ша:

Endpoint: 96 hour Survival

25th Quartile CV (warning limit) =

na

Stats Method: Probit, Spearman-Karber, Linear Interpolation

/5th Quartile CV (warning limit) =

na...

Test Conditions: Recon MH, 23 oC

90th Quartile CV (control limit) =

na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (5) and therefore not to be considered typical or representative. Cusum limits are based on ASL data only.

Event #	AMP ID#	Test Start Date	LC50	Running Average	Running SD	332437628888888888	nart Limits AVG+2SD	Intralab CV
1	73	9/17/2008	0.380	0.380	***************************************	2354 (A6) PO (6) (6) (6) (6) (6) (6) (6)	Bite revealure (arreste vite in tri	
2	74	4/24/2009	0.406	0.393				
3	76	1/28/2011	0.432	0.406	0.026			
4	76	1/28/2011	0.366	0.396	0.029			
5	77	3/27/2014	0.330	0.383	0.039	0.305	0.461	0.07
6	80	8/14/2014	0.369	0.381	0.035	0.310	0.451	0.10
7	81	11/12/2014	0.330	0.373	0.037	0.299	0.448	0.09
8	84	7/15/2015	0.317	0.366	0.040	0.286	0.446	0.10
9	85	2/17/2016	0.354	0.365	0.038	0.290	0.440	0.11
10	86	8/22/2016	0.309	0.359	0.040	0.280	0.439	0.10
11								
12								
13								
14	11/14				····			
15				-	*****			
16								
17			***************************************	-	****			····
18			· · · · · · · · · · · · · · · · · · ·					*****

REFERENCE TOXICANT DATA SHEET

							[B)	Cond.	96 0	742 345	2390 2770	4330 4670	क्रुन्न धरूक	52.4. (24.1)	15430 1634			
15.0	1233				. 2° C	the ten	(255	9 2 3	NONE		96	22.9	2 8.72	५ ४-२२	22.9 3	-≧- 	1			
Time -	Time _		•	و	23° C ± 2° C	96 hr	96 hr	96 hr	96 hr	၁, ခ	72	22.0	. 1.22	22	17.72 17.4	02D	ť			7.2°C
ı	0-66-16							Q.	NONE	Temperature °C	48	21.8	1,22	522	22.4	22.3)			Temperature ナグ・C なそへし
2-3	É			3CO3	Temperature	IJ ズ	1000	159	NC	Теп	24	21.7 21.9	21.9	12.1	19.3	11.5	219			Temper
Date	Date		. 9	Total Alkalinity as CaCO3	_Temp(- 72 hr	_72 hr	72 hr	_72 hr		0	21.7	21.2	21,8	21.9	21.9	21.9			Ş
Test Begin:	End:	ر. ټتر	439£7 82246	Alkalin		7.5	(359	15.59	1107		96	82 -	0,3	78	%].	`			
Test	Test End:	₽.	77	Total							72	7.2	7.2	- }	1.5	17.7	١			nd < 9.0
	ار		439		365	MC/プ 48 社	48 hr	48 hr	48 hr	Hď	48	ŧ)	8.(3	53	1			pH: > 6.0 and < 9.0
	10 g/L		#白_			2 7	1400	781	NONE		24	- (-	1			· 如				Hd
	go			<u>م</u>		į	_				0	7.5	7.5	57	7.15	1.	52			9
KCI	Stock Solution	70	Recon MH	20	(1dd)	3~/UC 24 hr	_ 24 br		24 hr	ng/l)	96	82 8	2 76	-92	52	1)	-		23°C): >4.0 and <8.6
	Stoci	B 000 -07	Rec		Salinity	Buch	1500	931	1087	Oxygen (mg/l)	72	7.3	7.2	}	7.2	7.3	١			3): >4.0
-	water	2B c		aCO3	s/cm) /	, ==					48	1	١	25	1	37 1	1			
oxicant	distilled water	# A	ater	Total Hardness as CaCO3	Conductivity (µmhos/cm) / Salimity (ppt)	" 0 hr	0 hr	0 hr	0 hr	Dissolved	24	1	1	1	1	4.9	80			For Hyallela (at
Reference Toxicant	ı	Reagent Log ID#	*Dilution Water	Hardn	luctivits	, Technician	45	Therm. ID#	Food I.D. #		0	7.9	7.9	9¢	9	i i i	7.8		- 11	For
Refe	Solvent:	Reag	*Dill	Tota	Conc	Tech	Time	Ther	F00(nisms	96	0	G	8	0-	1	}			%06 =
					8 hrs.	ı				Organ	72	6	6	2	0	0	\ 			ls: > or
					0.08.4		ı	۱.	nper	of Live Or	48	(0)	ŝ	9	õ	2	1			Contro
	Chironomus tentans				- amin (a	400 ml	250 ml		est char	Number of Live Organisms	24	0_	2	2	2	80	0			Survival in Controls: $ > $ or $ = 90\% $
QA/QC	nomus		و	しられ	/L Tetr	40			m per t	z —	0	10	10	10	10	10	10			
7Ò	- 1	ABS	CHI 26	2 nd instan	Feeding: 0,1 ml of 4 g/L Tetramin @ 0 & 48 hrs.	er Size	Volume per Replicate	•	*1 rep. w/10 organism per test chamber	Test	Number	₹	Ą	Ą	Ą	Ą	A			Test Acceptability Limits:
Client	Test Organism	Source	# <u></u>	Age	Feeding:	Test Chamber Size	Volume po	•	*I rep.	Toxicant	concen.	Cont	1.25	2.50	5.00	7.50	10.0			Test Accept

02HZ17

- reconstituted water *Dilution Water Code - soft Recon.

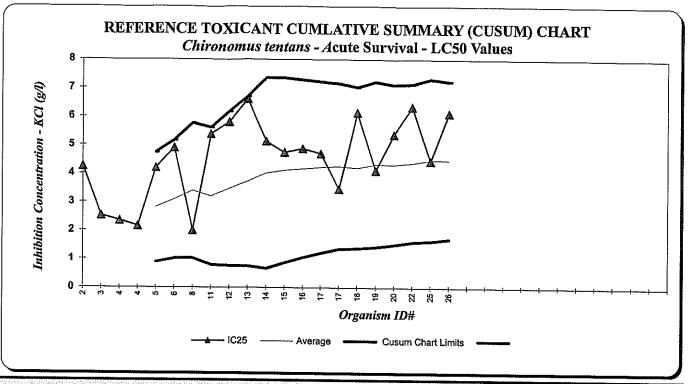
- moderately hard

- hard MH H

- Artificial Sea Water Art. Sea

We verify this data is true and correct.

Task Manager 4


Project Manager LOUID

QA Officer

Statistical Method Spearman Karbel

Cusum Chart Limits 17/70 7.24

REFTOX - Chironomids.xls
Doc Control ID: ASL 687-0510

Chironomus tentans - acute

POTASSIUM CHLORIDE (g/L)

From EPA 833-R-00-003:

Endpoint: 96 hour Survival

Stats Method: Probit, Spearman-Karber, Linear Interpolation

Test Conditions: Recon MH, 25 oC

10th Quartile CV (control limit) = na 25th Quartile CV (warning limit) = na 75th Quartile CV (warning limit) = na 90th Quartile CV (control limit) = na

As per EPA 833-R-00-003, section B.2.1, the quartiles listed above are from just a few labs (4) and therefore not to be considered typical or representative. Custom limits are based on ASI data only.

Event #	Chi ID#	Test Start Date	LC50	Running Average	Running SD		ts are based on 2 nart Limits AVG+2SD	Intralab CV
1	2	9/10/1999	4.24			3744 C 2023	AY GIZED	Commission Control
2	3	10/5/1999	2,52	: 9: 3:				
3	4	10/12/1999	2.34					
4	4	10/12/1999	2.16			****	i i kara izeraja karajek	
5	5	10/20/1999	4.20	2.82	0.96	0.89	4.74	0.34
6	6	11/2/1999	4.90	3.09	1.04	1.02	5.17	0.34
7	8	7/29/2002	2.00	3.39	1.19	1.02	5.77	0.35
8	11	10/1/2004	5,38	3.19	1.20	0.79	5.60	0.38
9	12	4/26/2005	5.80	3.47	1.36	0.76	6,18	0.39
10	13	4/29/2005	6.61	3.73	1.49	0.75	6.70	0.40
11	14	5/6/2005	5.13	4.02	1.67	0.67	7,36	0.42
12	15	7/14/2006	4.74	4.12	1.62	0.87	7.36	0.39
13	16	7/20/2006	4.87	4.17	1.56	1.05	7.28	0.37
14	17	1/28/2011	4.70	4.22	1.50	1.22	7.23	0.36
15	17	1/28/2011	3.46	4.26	1.45	1.36	7.16	0.34
16	18	7/1/2014	6.14	4.20	1.41	1.38	7.03	0.34
17	19	8/19/2014	4.11	4.32	1.45	1.43	7.22	0.33
18	20	11/14/2014	5.37	4.31	1.40	1.51	7.12	0.33
19	22	7/21/2015	6.35	4.37	1.38	1.60	7.14	0.32
20	25	3/2/2016	4.44	4.47	1.42	1.64	7.31	0.32
21	26	8/22/2016	6.12	4.47	1.38	1.71	7.24	0.31
22							,,,,,	0.31

Chirono (KCI). 8/30/2016

APPENDIX C CHAIN OF CUSTODY

Sample Receipt Record

Batch Number: B 3584 A	Date Received:	7/13/16	1050)
Client/Project: COEUr Haska / Alaska Dept.	Received By:	<u> 25</u>	······································	
Were custody seals intact?		Xye	S No	□ N/A
Packing Material:		∑ Ice	Blue Ice	Вох
Temp OK? (<6C) Therm ID: TH173 Exp. 7/16	4.	Z °C □ Yes	☐ No	□ N/A
Was a Chain of Custody (CoC) Provided?		X Yes	i 🗌 No	□ N/A
Was the CoC correctly filled out (If No, document below)		XYes	☐ No	□ N/A
Were the sample containers in good condition (not broken or leaking)?		Yes	No	□ N/A
Are all samples within 36 hours of collection?		☐ Yes	⊠(No	□ N/A
Method of Shipment:	UPS Greyhound	Other:	······································	□ N/A
Compute Essentian Depart (7)				
Sample Exception Report (The follow	wing exceptions were	noteu)		
Client was notified on: Client contact:				
Resolution to Exception:				

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING OT NOTIFIE

Client Coan Alaska/Maska Dech of Fish e Grame NPDES#

Ship Samples to:

CH2M HILL - Applied Sciences Laboratory Concentration Comments Customer Service: (541) 768-3120 and/or 7/11/16 0800 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 Attention: Bioasssay Lab Shipping # Date/Time Date/Time Date/Time Corvallis, OR 97330 Analysis Required / Comments azteca chronic > tentans chance (Please sign and print name) (Please sign and print name) (Please sign and print name) Haz Waste 7 Ac Tarous Total Tomores Other Mysid Chronic Mysid Acute Menidia Chronic Hand Menidia Acute Sheepshead Chronic Fed-Ex Time Time Composite Sample Information: Relinquished By Relinquished By Relinquished By Yes Yes Bus Shipped Via UPS Dechlorinated prior to shipping? Fathead Chronic Chilled During Collection ? -athead Acute 7/16/16 1300-1500 1050 Date Date d 0 1 tap 也 Q 12/16 Initiated: Ended: # of Containers W Date/Time Date/Time Date/Time N Date/Time Remarks Comp. Grab B35844 Sample Type Y Late Kanouse, Habitat Biologist IV, Kath Konn Southa Pr (Please sign and print name) Pléase sign and print name) (Please sign and print name) Kate. Kanovse (2 alaska. Gov (Please sign and print name) (Please sign and print name) Time 1500 1300 465-4290 CH2M HILL Project # / Purchase Order # Kate Kanouse DOLLANDO, Nr. 09824 Chast Love Slate Creek 1/10/10 Date 7/10/10 More Slake Creek Sample ID Nork Authorized By Sampled By & Title Contact Person: Received By Received By Received By Lecutod/ E-mail:

CH2NTHILL CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING Client CREW ANGLA ANGLA Dept of 右ちり (Chaine NPDES#

>					_										
CHPM HILL - Applied Sciences Laboratory Attention: Bioassay ab 1100 NE Circle Blvd. Suite 300 Corvallis, OR 97330 Lab Phone: (541) 768-3160 Customer Service: (541) 768-3120	mments	Concentration and/or	Comments	X	The state of the s				TOTAL TOTAL	Date/Time 7/11/10 0800	Date/Time	Date/Time	Shipping #		containers tele
CH2M HILL - Appl Attention: Bioasss 1100 NE Circle Blv Corvallis, OR 973 Lab Phone: (541) 7 Customer Service:	Analysis Required / Comments	sute ate ste	Menidia Mysid Ad Nysid Cl Was Was Max Was	×						(Please sign and print name)	(Please sign and print name)	(Please sign and print name)	The security of	ᅐ	
mation: Time Time No	Analys	lgae ute sad Acute pead Chronio	A nəərə A tuorT Taqəəd2							KS	•				+ 1 used spare
Composite Sample Information: Date Date Time Time Trime	Chronic sute	Fathead Fathead Cerio Ac					Control of the Contro		Relinquished By	Relinquished By	Relinquished By	Shipped Via		2 unused	
Composite Sample Initiated: Date Ended: Date Chilled During Collection? Dechlorinated prior to shipping?		containers)	5 - 03	h0- E			CO CO CO CO CO CO CO CO CO CO CO CO CO C		Jate/Time 7/1/4/14 1006	Date/Time	Time	Time	10/2	arks returned
In C C C C C C C C C C C C C C C C C C C		Sample Type	Comp. Grab	X	× 0					-7		me) Date/Time	me) Daţe/Time	200	
D SEE	se Order#		Date Time	7/w/16 1000	1/5/16 0900					(Please sign and print name)	(Please sign and print name)	(Please sign and print name)	Please sign and print name)	[ussell sou	Please sign and print name)
Address 602, 3rd St. Contact Person: Kate K Phone: (907) 4 E-mail: Kate Kano	CH2M HILL Project # / Purchase Order #		Sample ID	DWer Sherman Creek	OWER Slate Creek		7		A THE STATE OF THE	Sampled By & Title (Please sign and print name)	Received By (Received By (Received By	Nell A	work Authorized By
Address Contact Phone: E-mail:	CH2			80 2	五 三 三 三	 ļ				Sam 7,0%	Rece	Rece	Rece		Work

B3584A

Stanaway, Mike/CVO

From:

Kanouse, Kate M (DFG) <kate.kanouse@alaska.gov>

Sent:

Monday, August 15, 2016 8:17 PM

To:

Stanaway, Mike/CVO

Subject:

RE: B3610 Exceptions [EXTERNAL]

Sounds good, Mike. Thank you for letting me know.

From: Mike.Stanaway@CH2M.com [mailto:Mike.Stanaway@CH2M.com]

Sent: Thursday, August 11, 2016 1:54 PM

To: Kanouse, Kate M (DFG)
Cc: Brett.Muckey@CH2M.com
Subject: FW: B3610 Exceptions

Hi Kate,

We received the sample today. It was delivered a day late and the temperature was outside of the recommended temperature at sample receipt. ASTM recommends the temperature be below 6 C but it is not a requirement, so I think we are good to go on the testing and will just flag that sample, unless you tell us otherwise.

Thanks Mike

Mike Stanaway Biologist / Laboratory Project Manager D 1 541 768 3161 M 1 503 551 1567

CH2M Applied Sciences Laboratory (ASL)
1100 NE Circle Blvd., Suite 300
Corvallis, OR 97330
USA
www.ch2m.com | LinkedIn | Twitter | Facebook

Subscribe to ASL News on the VO (My News)

CONFIDENTIALITY NOTICE: This e-mail message, including attachments, is for the sole use of the intended recipient and may contain confidential, proprietary, and/or privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not an intended recipient or you have received this e-mail in error, please contact the sender by reply e-mail and destroy all copiesof the original message.

From: Castro, Pierrette/CVO

Sent: Thursday, August 11, 2016 12:00 PM

To: Stanaway, Mike/CVO < Mike. Stanaway@CH2M.com >

Subject: B3610 Exceptions

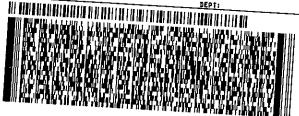
Mike,

Attached is the exceptions report, along with the COC and shipping tag, for the Alaska shipment we received today.

Pierrette Castro Laboratory Technician/Sample Receiving D 541-768-3106

CH2M Applied Sciences Laboratory (ASL) 1100 NE Circle Blvd., Suite 300 Corvallis, OR 97330 www.ch2mleb.com ORIGIN ID: JNUA (907) 465-4105

ADF&G 802 3RD ST


DOUGLAS, AK 99824 UNITED STATES US

SHIP DATE: 09AUG16 ACTWGT: 32.10 LB CAD: 00G994357/SSFE1704 DIMS: 24x13x14 IN

BILL THIRD PARTY

TO BIOASSAY LAB CH2MHILL 1100 NE CIRCLE BLVD

CORVALLIS OR 97330

Part# 156297-45517172/EX/765157 ***

7837 8025 0675

WED - 10 AUG 10:30A PRIORITY OVERNIGHT

XH CVOA

97330 on-us PDX

Sample Receipt Record

Batch Number:		Date Received:		
Client/Project:		Received By:		
Were custody seals intact?			☐ Yes ☐ No	∏N/A
Packing Material:			☐ Ice ☐ Blue Ice	Box
Temp OK? (<6C) Therm ID: TH1	73 Exp.	99	☐ Yes ☐ No	□ N/A
Was a Chain of Custody (CoC) Pro	vided?		☐ Yes ☐ No	□ N/A
Was the CoC correctly filled out (If	No, document below)		☐ Yes ☐ No	□ N/A
Were the sample containers in goo	d condition (not broken or leaking)?		☐ Yes ☐ No	□ N/A
Are all samples within 36 hours of c	ollection?		☐ Yes ☐ No	□ N/A
Method of Shipment:	☐ Hand Delivered ☐ FedEx ☐	UPS Greyhound COthe	er:	□ N/A
	Sample Exception Report (The follo			
Client was notified on:	Client contact:			
Resolution to Exception:			Annual Control of the	
		•		

CHAIN OF CUSTODY RECORD FOR NPDES COMPLIANCE BIOMONITORING しまれるとまじ

CH2M HILL - Applied Sciences Laboratory Concentration Comments Customer Service: (541) 768-3120 and/or 0600 1100 NE Circle Blvd. Suite 300 Lab Phone: (541) 768-3160 Attention: Bioasssay Lab Date/Time Shipping # Date/Time Corvallis, OR 97330 Analysis Required / Comments Ship Samples to: H. aztecor chrone Please sign and print name) (Please sign and print name) (Please sign and print name) Haz Waste Tate ranous hat have Other Mysid Chronic 406 4W 12016 Menidia Chronic Bus___ Fed-Ex___ Hand 8 8 7 / Sheepshead Chroni Sheepshead Acute Time Time Composite Sample Information: Relinquished By Relinquished By CISING A Relinquished By Yes Yes Shipped Via UPS___ Dechlorinated prior to shipping? Fathead Chronic Chilled During Collection? Fathead Acute Ŋ とうとうなりのと #他如 非事事件 Date Date 0 / 1 / 10 盘 查 15,2C Date/Time Initiated: M Ended: (DOEW ALASKA/ALASKA DEPT. Of Tish + GAME/NPDES# 3)|11|8 # of Containers Date/Time M Date/Time Date/Time Remarks Comp. Grab Sample Type Ž V X Kate Kanouse, Habitat Biologist IV, Kate Kowaves 09pb (Please sign and print name) (Please sign and print name) (Please sign and print name) (Please sign and print name) Please sign and print name) Kanouse @ alaska.gov 1230 Time 中的 lik Workman Kate Kanowse CH2M HILL Project # / Purchase Order # 7218 72866 218/8/8 中田地 Date (901) 405-429D Toughas, DK lower Johnson Creek Common Creek THE State GOOK The Warner Sample ID Work Authorized By Sampled By & Title Contact Person: Received By Received By Received By Phone: Address Client E-mail:

133284

Sample Receipt Record Pode MC 9-20-16 B3610 A B3584 Date Received: Yes No □ N/A Were custody seals intact? ☐ Ice ☐ Blue Ice ☐ Box Packing Material: Temp OK? (<6C) Therm ID: TH173 Exp. 10 Was a Chain of Custody (CoC) Provided? Yes No N/A Was the CoC correctly filled out (If No, document below) Yes No N/A Were the sample containers in good condition (not broken or leaking)? ☐ Yes ☑ No ∏ N/A Are all samples within 36 hours of collection? ☐ Hand Delivered ☐ FedEx ☐ UPS ☐ Greyhound ☐ Other: ☐ N/A Method of Shipment: Sample Exception Report (The following exceptions were noted) 1) Arrived I day late. Client was notified on: Client contact: Resolution to Exception: