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A Bayesian Approach for Estimating Hatchery Contribution
in a Series of Salmon Fisheries

Harold J. Geiger

ABSTRACT:  Bayesian methods provide an under-appreciated way of analyzing tag or mark data for hatchery salmon
stock identification. For example, the otolith bones can now be marked in captive juvenile salmon, these marks
remaining visible in the returning adults. Fishery managers can summarize what is known and unknown about the
underlying proportion of hatchery fish in these fisheries using Bayesian methods and the beta probability distribu-
tion. Close examination of Bayesian probability theory exposes a philosophy in close agreement with common
sense and a form of inference that is direct and agrees with the way people use the notion of probability in everyday,
colloquial speech. This theory also provides a straightforward means to allocate sampling resources, in a staged
manner, based on information obtained from initial sampling.

Alaska Fishery Research Bulletin 1 (1):66–75. 1994.

INTRODUCTION

Bayesian statistics, although gaining acceptance
(e.g., G.G. Thompson 1992; Walters and Ludwig 1993;
Hilborn et al. 1993) is largely unused and misunder-
stood in the field of fisheries. The key features of this
form of statistical analysis are (1) that unknown
parameters are treated as random variables, (2) only
the data that is actually observed is used in the
analysis, and (3) the Bayesian algorithm is centered
around the idea of using data to update the state of
knowledge about the parameters.

Traditional statistical inference is based on the idea
of a probability distribution for the data and fixed
unknown parameters; both data that was and was not
observed is important in this analysis. Tools such as
confidence intervals from traditional, or sampling-
based, analysis are based on the idea of sets of data
that you are expected to observe if you repeat the
experiment or study over and over again (Lindgren
1993; S.K. Thompson 1992; Seber 1982). Effron
(1986) and Berger and Berry (1988) provided discus-
sions of the merits of the underlying theory behind
Bayesian and non-Bayesian inference.

Here, I will examine Bayesian methods for fish-
eries managers interested in a stock identification
system for hatchery-produced pink Oncorhynchus
gorbuscha and sockeye O. nerka salmon, when all of
the hatchery population has been marked. This kind
of mass-mark can now be applied to juvenile hatchery
salmon by manipulation of water temperature in such

a way as to create unique mark on the otolith bones
(Volk et al. 1990; Brothers 1990).

Bayes’ Theorem (e.g., Lindgren 1993) states that,
if A is some event that can occur only if one of the
mutually exclusive events, B1 , ... , Bn, occurs, then
the probability (Pr) of the event Bi, given that the event
A occurred, can be described as follows (the vertical
bar “|” denotes a that the latter event is “a given”):

{ } { } { }
{ }
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Pr Pr

Pr
B A

A B B

Ai
i i=

⋅
  .

For example, the probability that a fisherman
is Norwegian is proportional to the proportion of
Norwegians that are fishermen, times the proportion
of Norwegians in the world. Dividing these two
factors by the proportion of the world’s population that
are fishermen would give the probability that a fisher-
man is Norwegian. His being a fisherman corresponds
to event A, and the nationality corresponds to
B1 , ... , Bn .

Bayesian analysis of a series of independent
success-failure trials, such as the presence or absence
of a tag, dates back to Bayes’ original work in the 18th
century (Press 1989). Stroud (1994) discusses Baye-
sian analysis in the context of binary survey data, such
as the recovery of a tag or other mark. Bayesian infer-
ence is unaffected by the rules that govern how the
total sample size was generated in success-failure
trials, as noted in almost every essay on the virtues of
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Bayesian methods (e.g., Box and Tiao 1973,
Berger and Wolpert 1988). New features in computer
spreadsheets have made Bayesian statistics much more
workable for tag or mark data. In particular, the beta
probability distribution, which is now in computer
spreadsheets, can play a central role in this kind of
Bayesian analysis.

In mixed-stock salmon fisheries containing hatch-
ery stocks, the goal is to estimate the fraction of
hatchery fish present. Coded wire tags have been used
for such a purpose (Peltz and Miller 1990) in hatchery
salmon, but these tags are now being phased out for
pink salmon in Alaska. In this species coded wire tags
are expensive and leave lingering questions about un-
detected tag loss and tag-related mortality (Geiger and
Sharr 1990). Each individual fish must be anesthetized,
have a tag injected into its nasal cartilage, and then be
marked with a visible fin-clip. Because of the expense
and labor involved, only a small fraction of some hatch-
ery releases can be marked. In Prince William Sound,
approximately 1 in 600 hatchery fish have been tagged.
Sampling for coded wire tags consists of examining
the harvest for fin clips, indicating a tag may be present.
Fish with visible fin-clip marks are saved for later
decoding. In contrast, the otolith bones of the entire
production of a salmon hatchery can be microscopi-
cally marked by exposing either the embryo or
emergent fry to water temperature changes (Volk et
al. 1990; Brothers 1990). The cost of otolith marking
is low, following initial capital costs for heating equip-
ment. Because all fish are marked the statistical
models are much simpler.

If the cost of decoding the marks is small, then a
sensible rule might be to take a large sample in each
fishery. S.K. Thompson (1987) explains this approach
for two or more mark types, with advice on sample
size selection. If the cost of mark decoding is very
high, or there are a limited number of marks that can
be decoded, managers might want to decode some
marks and use this information to decide how to pro-
ceed with the rest of our sampling resources — that is,
dynamically allocate the sampling resources based on
sample results.

THE METHOD

Simple Example of Two Fisheries and Two
Mark Types

For simplicity, consider only two fisheries and two
mark types, although the generalization to more fish-
eries and multiple marks or tags is straightforward.

Some of the details about these generalization are pro-
vided in Appendix A. For concreteness, call the first
mark type hatchery otoliths and assume all hatchery
fish are marked. The second mark type could repre-
sent the absence of a hatchery mark. Let N denote the
number of fish caught in the first fishery and M the
number caught in the second fishery. We assume they
are known quantities calculated from some kind of
harvest reporting system. Let x denote the number of
marks of hatchery otoliths in a random sample of size
n in the first fishery, and y the number hatchery otoliths
in a random sample of size m in the second fishery.
Assume that n is much smaller than  N and m is much
smaller than M to avoid worry about sampling with or
without replacement. Finally, let π denote the true
proportion of hatchery fish in the first fishery, and let
λ denote the true proportion of hatchery fish in the
second fishery. The sampling distributions of the
number of hatchery otoliths in the sample are then
given by the binomial distribution,

( ) ( )f x
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x
n  ,x n xπ π π= 
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In the Bayesian setting the parameters are treated
as random variables, and probability is used as
a measure of the certainty at particular parameter
values. In the binomial sampling situation, the beta
distribution is often used to model the probability dis-
tribution of the parameters (Lee 1989), for reasons that
will soon be clear. This distribution, developed prior
to observing any data, is called the prior distribution.

Suppose we begin by just assuming that π and λ
follow beta distributions with parameters c1 ... d2:
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B(c
1
, c

2
) denotes a function called the beta func-

tion (which is now in most computer spreadsheets).
Note the similarities between the binomial distribu-
tion of the number of hatchery otoliths in a sample
and the beta distribution of the proportion of hatchery
otoliths in the population. Looking at the distribution
of π from any statistical theory text (e.g., Lindgren
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1993), the mean, denoted E(π), and variance, denoted
V(π), is given by

( )E
c

c c
π =
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  , (1)
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+ + +
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By using Bayes’ Theorem, we obtain the prob-
ability distribution for the unknown fraction of
hatchery fish in a fishery after observing some data.
A new probability distribution is formed by what is
called in probability, conditioning on the data that was
actually observed. We call the new distribution the
posterior distribution — that is, the distribution of
the parameters after, or posterior to, observing the data.
More importantly this posterior distribution is also a
beta distribution (Lee 1989). This distribution will be
proportional to the sampling distribution of the
number of marked fish in a sample from the fishery
(i.e., f (x|p)) and the prior distribution for π (i.e.,  f (π);
Lee 1989). Recalling that  x was the number of hatch-
ery fish in a sample of  n fish from the fishery, define
c'

1
= x + c

1
 and c'

2
 = n - x + c

2
, (and so forth with m and

y for d'1 and d'2). This emphasizes the recursive nature
of the process by which the probability distribution
that describes what we know, or don’t know, is up-
dated in the Bayesian setting. In mathematical form
— which is not really needed to make this work in
a computer spreadsheet — the posterior distribution
is given by
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When data have been collected, c'1 = x + c1 and
c'

2
 = n - x + c

2
 (and  d'

1
, and d'

2
) become constant, fixed

numbers. These numbers are placed in a spreadsheet
function to get useful descriptions about the

unknown fraction of hatchery fish from the probabil-
ity distributions. Specifically, the best single estimate
of the unknown parameter is the mean of the posterior
distribution (e.g., Lee 1989 describes why the mean
of the posterior distribution is the best estimate by the
squared-error loss criterion).

Using equations (1) and (2) find the posterior mean
and variance of π. The mean is given by

( )E x
x c

n c c
π = +

+ +
1

1 2

  ,

which will be near the usual estimate of x/n when the
sample size is large. The posterior variance the
proportion of hatchery fish is given by

( ) ( )( )
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which will be near the usual sample variance for the
binomial distribution, (x/n)[(n-x)/n]/n, with a large n
and relatively small c’s. The mean and variance of λ
are found by similar applications of equations (1) and
(2). Notice, by using beta prior distributions, the
parameters of the posterior distribution are found by
combinations of the c'

1
, c'

2
, d '

1
, and d'

2
 constants.

At each stage of the analysis the latest values of the
constants c'

1
, c'

2
, d'

1
, and d'

2
 are all that needs to be sup-

plied to the computer spreadsheet for a complete
inventory of what we know about the fishery.

In the Bayesian setting, by conditioning on what
we know at the moment, today’s prior distribution will
simply be yesterday’s old posterior distribution. The
values c'1,  c'2, d'1, and d'2 are updated by adding the cur-
rent data into the appropriate place (i.e., the new c'1
will be the old c'

1
 plus the new x). Notice also that with

increasing data, the original constants c1, c2, d1, and d2
have increasingly less influence.

To look at a sensible interval for the unknown
parameter, have your computer spreadsheet look up
the α/2 (100%) and (1-α/2)(100%) percentiles of the
beta distributions with parameters c'1 and c'2 ( or d'1,
and d'

2
). In Bayesian inference these intervals are called

credible intervals. Unlike confidence intervals, with
credible intervals you can correctly make the direct
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statement that the probability is (1-α/2) that the true
value is in this interval.  For an interval with 95% prob-
ability, using either Excel™ or Quattro™ spreadsheets,
these limits are found with the statements
“@BETAINV(0.025, c'1, c'2)” for the lower limit
and “@BETAINV(0.975, c'1, c'2)” for the upper limit,
with c'1 and c'2 denoting the cells with the current beta
parameters.

Dynamic Sample Sizes Between Two Fisheries

Suppose that the real source of our interest is the
overall proportion of marked fish in both fisheries
combined, which we will denote ρ. Then recalling that
N and M are the total number of fish in the harvest of
each fishery

ρ π λ=
+

+
+

N

N M

M

N M
  .

Then,
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Now to achieve a good distribution of sampling
resources, we may decide that we want the standard
deviation of ρ to be as small as possible. Assume for
the moment that π and λ are independent; I will
return to this subject below. Recall samples
of size n and m have already been taken, but
suppose one or both of these is to be increased by some
amount. If N [π(1-π)]1/2/n >> M [λ(1-λ)]1/2/m,  then
additional samples should come from Fishery  1
because increasing n will cause the fastest decline in
the standard deviation of ρ (Appendix B). Similarly,
if N [π(1-π)]1/2/n ≈  M [λ(1-λ)]1/2/m, then additional
samples should come from both fisheries, and if
N [π(1-π)]1/2/n <<  M [λ(1-λ)]1/2/m, then additional
samples should come from Fishery 2. This rule is sim-
ply telling us to devote more sampling resources where
there is more variability or where the catch is larger.

Choosing parameters for an initial prior
distribution

Because the Bayesian algorithm is based on a flow
of learning, the prior is needed to prime the inference
pump. The prior distribution is the most misunderstood
component of Bayesian analysis and is sometimes
thought of as a way to subvert what the data are trying
to say. A poorly thought out prior distribution can lead
to poor inference, just as unreasonable α and β error
rates can in a classical statistical hypothesis test.
Berger (1985) provides a complete, but highly math-
ematical, discussion of how to choose prior distribu-
tions. As n gets bigger and bigger, x and n-x will
increase too, x and n-x being the number of hatchery
and non-hatchery marks in the sample. Eventually, at
very large sample sizes, c

1
 and c

2
 will be insignificant

compared with x and n-x. So, the first consideration
might be a prior probability that will result in the sum
of  c1 and c2 being relatively small as a reasonable
amount of data are accumulated .

By restricting the sum of  c
1
 and c

2
 to a small value,

say even less than one, the prior probability can model
a wide range of reasonable and realistic representa-
tions of the state of knowledge for the manager. One
alternative is to let c1 and  c2 equal 1. This, in effect,
lets all values between 0 and 1 be equally likely be-
fore looking at any data. Figure 1 shows an example
of prior and posterior distributions with the sum of  c

1
and c2 restricted to 0.75, a sample size of 100, and
outcomes of x = 10 and x = 90. In this example the
final inference is almost completely controlled by the
data and virtually unaffected by the choice of prior
probability.

In the end, the choice of  c1 and c2 has the same
basis in judgement that the choice of α and β error
rates in a statistical hypothesis testing. After experi-
menting with various values of  c1 and c2, I recom-
mend letting  c

1
 = 0.25 and  c

2
 = 0.5, although another

analyst may have some reason for increasing these
initial values. The most obvious reason is that data
from fisheries adjacent in time or space is providing
information that can somehow be incorporated.

Inseason analysis of serially ordered fisheries,
and dependence between πππππ and λλλλλ

Earlier we simplified by assuming that π and λ
are independent. But in fisheries separated by only a
couple of days, most managers will think that what
happens in one period will be similar to what happens
in the next. Adjacent fishing districts will also tend to

(4)
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Figure 1.  The top figure shows the prior distribution of the
proportion of hatchery fish a fishery before examining any
otoliths.  This distribution is a beta distribution with
parameters c1 = 0.25 and  c2 = 0.5.  The middle distribution
shows the posterior distribution after decoding 100 otoliths
and observing 10 of the hatchery type.  The bottom figure
shows the posterior distribution after decoding 100 otoliths
and observing 90 of the hatchery type.
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have similar proportions of hatchery fish. In statisti-
cal terms, π and λ are dependent.

In traditional statistical sampling, the sampling
events are independent in the two fisheries so that the
estimates of the parameters are independent. In the
Bayesian setting we are developing a probability

distribution for the parameters themselves, and so the
parameters are not completely independent.

Suppose Fishery 1 takes place first. The results
from Fishery 1 should influence the prior distribution
for Fishery 2, and this is how a dependence between π
and λ is expressed. The question of how to set the prior
probabilities for Fishery 2 has no automatic answer.
One straightforward way to model dependence from
one fishery to the next is to introduce the quantity h,
which gives a proportional relationship between the
posterior information from the earlier fishery and the
prior probabilities in the latter fishery; i.e., either

Figure 2.  Prior and posterior distributions for the proportion
of hatchery fish in two 1994 Southeast Alaskan pink salmon
fisheries occurring in series.  The prior distribution for the
first fishery is a beta distribution with parameters c1 = 0.25
and c2 = 0.5, shown with a dashed line in the top graph.
After observing x = 6 hatchery fish out of a sample size of
100, the posterior distribution is given by the solid line on
the same graph.  Based on the results of the first fishery,
the prior distribution of the second fishery is a beta
distribution with parameters d1 = 5 (6/100) and  d2 = 5 (94/
100), with mean 0.056, shown as the dotted line on the
bottom graph.  After observing y = 20 hatchery fish in a
sample of 103 from the second fishery, the posterior
distribution, with mean 0.158, shown with the solid line
on the bottom graph.
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d
1
 = h c'

1
 and  d

2
 = h  c'

1
, or perhaps  d

1
 = h x and  d

2
 = h

(n-x) .
Based on trial and error, I suggest scaling the

sum of  d
1
 and d

2
 to be 5, and letting h = 5/n ; i.e.,

d
1
 = 5 (x/n) and d

2
 =  5 [(n-x)/n]. This seems to do

a reasonable job of expressing prior beliefs about a
fishery that has not yet happened and still results in
the data dominating the posterior distribution when
the sample sizes approach large values (e.g., near 100).
Figure 2 shows an example of two fisheries with
dependent parameters modeled using this rule.

The analyst is usually concerned inseason about
the fraction of hatchery fish, fishery by fishery.
Inseason, the analyst is not concerned about an over-
all estimate of hatchery fish in the two fisheries
combined.

Postseason analysis and the posterior distribu-
tion of the overall estimate

For the postseason analysis, the covariance
between parameters can safely be ignored if n and m
exceed 100 and the rule of scaling the sum of  d

1
 and

d
2
 to 5 is followed. Table 1 shows calculated param-

eters of the posterior distributions of π and λ for high
medium and low values of  x and y. The covariance of
π and λ is always less than two orders of magnitude
less than the minimum of the variances with  x and y
between 10 and 90 and sample sizes of 100.

For the postseason analysis, the manager will want
the posterior distribution of ρ. By the time hundreds
of otoliths have been examined, unless virtually all of
them were of one type, the posterior distribution of ρ
is very near the normal distribution, with the mean

Table 1.  Parameters of the posterior distribution of proportions of hatchery fish in two fisheries.  These propor-
tions are denoted π and λ and are dependent through the prior distribution of the second fishery.  The second
fishery’s prior is based on observed hatchery otoliths in the first fishery.  The beta prior distribution in the
first fishery is given by parameters c1 = 0.5 and c2 = 1.0.  With n and m, the sample sizes in each of the two
fisheries (fixed at 100), x and y, are the respective detected hatchery otoliths.  The beta parameters in the
second fishery are d1 = 5 (x/n) and d2 = 5 [(n - x)/n].

Level of Level of Mean of Posterior Variance of Covariance
x y λ π λ of π and λ
10 10 0.098 7.7 10-4 7.1 · 10-4 6.2 · 10-6

10 50 0.480 7.7 10-4 0.002 1.1 · 10-6

10 90 0.853 7.7 10-4 0.002 2.1 · 10-5

50 10 0.116 0.002 9.7 · 10-4 2.8 · 10-6

50 50 0.499 0.002 0.002 1.4 · 10-6

50 90 0.855 0.002 0.002 3.0 · 10-5

90 10 0.137 0.002 0.001 1.9 · 10-5

90 50 0.518 0.002 0.002 6.6 · 10-6

90 90 0.886 0.002 0.001 3.3 · 10-4

and variance given by equations (3) and (4). The cred-
ible intervals for ρ can safely be constructed with the
posterior mean, plus or minus posterior standard
deviation times the desired factor from the standard
normal distribution (e.g., 1.96 for a 95% credible
interval).

Sample Size Determination

In planning for the postseason analysis, most
managers will usually be familiar with requesting
resources sufficient to reduce the standard error of an
estimate of  the proportion of hatchery fish in all fish-
eries. Gauging the size of the request can be done by
looking at previous years and guessing at the total catch
in each fishery,  N

1
 , N

2
 , ... ,  then assuming

that proportion of hatchery fish is close to 0.5
(the worst case for the variance) for all fisheries. The
standard error of the estimate of overall hatchery
contribution to all fisheries is controlled by sample
size. This standard error is reduced by increasing n.
To reach precision objectives, solve the following for
n:

( ) ( )
SE

N

N n
i

j

ρ ≤
∑









 ×













∑












2 2
1 2

0 5.
/

  ,

with the left side replaced by the desired standard
error of the estimate. Assuming we take good guesses
at   N1 , N2 , ..., then with the ni’s dynamically
allocated, as explained above in the section Dynamic
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Sample Sizes Between Two Fisheries, the precision will
be generally better than planned.

Usually the manager does not have a definite idea
about precision and is looking for guidance. Figure 3
shows a graph of 1/√n, the rate at which
the standard error decreases for a fixed-population
standard deviation. Notice this flattens out consider-
ably by 30, and very little gain in precision is
achieved past a sample size of 100. For this reason,
a starting sample size of 100 makes sense for all
fisheries, with increases to come in the dynamic
allocation step in the postseason analysis.

In a complex, multifishery setting the sampling
should proceed in a series of steps. First,
a starting sample size is determined for each fishery
based on the minimum needed for inseason analysis.
Second, large numbers of fish are sampled from
the fishery and inventoried. Third, the fixed number
of marks are decoded from each fishery. Fourth,
the preliminary information is fed into the decision
rules laid out above in the section Dynamic Sample
Sizes Between Two Fisheries. Fisheries where addi-
tional samples will cause the fastest decline in the
standard deviation in the posterior distribution of the
overall mark rate are noted. Fifth, another increment
of marks are decoded based on the newest informa-
tion.

The size of the increment will be determined
by production considerations in the processing
laboratory. For small batch sizes, I suggest first
running 100 otoliths from each fishery. Next,
take an additional batch from the fishery that will
cause the largest increase in precision, based
on the rule in the section Dynamic Sample Size

Between Two Fisheries. Repeat the process of
sampling and reevaluating until the sampling resources
are exhausted.

Also see Fuchs et al. (1993) for a discussion of
sample size for the kind of yes-no data fish marks
present in the Bayesian setting, using prior informa-
tion.

CONCLUSIONS

These methods provide a rational, staged
means of estimating the contribution of hatchery fish
in a series of fisheries. The use of stages makes
the best possible use of sampling resources.
The analyst proceeds logically from a point of
relative ignorance to a point of relative certainty,
with a cogent summary of the state of  knowledge
at each stage. The way the relative certainty is
summarized — in the posterior distribution of the
proportion of hatchery fish in the catch —
is intuitive and easy to present and understand using
graphs.

The original prior probabilities are to prime
the inference pump. By starting with prior
probabilities that reflect the fact that not much
is known before collecting the data, the prior
probabilities have little affect on the final inference.
By using information to shape prior probabilities, when
the information exists, the posterior distribution
realistically reflects what the analyst knows at the end
of the study.

Turning to the issue of how the results are used,
in the Bayesian setting confidence intervals are
not used because these are based on some idea of
repeated sampling. Instead, a credible interval
makes the direct statement people want from
a confidence interval. If 95% is the desired level,
we use the posterior probability distribution to
directly state that the probability is 95% that
the parameter is in the interval from a to b.  Notice the
difference between this simple statement and
the complex, convoluted logic of the confidence
interval.

The data user can think of a 95% credible interval
as a 95% confidence interval with no real harm.
The mean of the posterior distribution is so near
to the classical point estimates as to be virtually
indistinguishable when sample sizes are large.
But the open-minded user gets the entire posterior
distribution, which offers a richer, more sensible,
and more direct summary of the available evidence.
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Figure 3. The rate at which the standard error declines as
a function of sample size for a given population standard
deviation. The rate is simply the function 1/√n , where n
denotes sample size.
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— Appendix A. —
Appendix A. Generalization to multiple tag codes and fisheries.

Two tag codes and two fisheries generalize in a straightforward way, although simultaneous analysis of
more than one tag type is not possible in a computer spreadsheet at this time. Let ξi(g) denote the true proportion
of fish with tag-code g in fishery i, with g and i extending over all codes and fisheries. If xi(g) represents the
number of g-type codes found in a sequence of ni  random tag decodings in fishery i, and ci,j  are the small
constants that define the prior distribution, then

( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( ) ( )
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1

  .

This distribution is called the Dirichlet distribution, and full descriptions can be found in appropriate statis-
tical text books (e.g., Berger 1980). The constants that define the prior distribution are developed in the same
way as in the two-tag, two-fishery example by using judgement and experience, just as with error rates in a
hypothesis test. The initial constants should be very small and similar to express relative ignorance. After the
first fishery, the constants should be small, but slightly larger and be in proportion to the sample results in
adjacent fisheries.

Define ρ(g) as the overall proportion of fish with the mark type g in all fisheries. Let Ni  be the total catch of
fish in fishery i. Then, for example, a straightforward way to summarize the best guess at the overall proportion
of the g-type mark is the weighted average over all fisheries, just as before:
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The variance is found as before with covariances of proportions in each fishery found as
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where fishery i comes before fishery j and the prior of fishery j is assumed to be based on the outcome in
fishery i. The notation f(ξ

j
(g)ξ

i
(g) , data) denotes the posterior distribution for ξ

j
(g) after using information

from fishery i.
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— Appendix B. —
Appendix B. Dynamic sample size justification.

To find the combination of sample sizes that will cause the fastest decline in the standard deviation of ρ,
consider the partial derivatives of [V(ρdata)]1/2 with respect to n and m. The most negative of these is the
direction with the fastest decreases in the standard deviation. Assume that the covariance between π and λ is
negligible, as discussed above. Because x increases randomly in response to an increase in n, we cannot take the
derivative of E(πx) and E(λy) with respect to n or m. So, assume that the constants c1, c2, d1, and d2 are
negligible, and let π and λ stand in place of E(πx) and E(λy), which are functions of n and m, for the purposes
of differentiating. Then the partial derivatives of the standard deviation of ρ are approximated as follows:
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Setting these equal and solving for either n or m gives the desired result.

Alternatively, the problem can be approached by minimizing the variance, subject to constraints.   Define
the Lagrange multiplier, γ, for the constraint n + m = r, where r is the total of the fixed resources. Now define

( )[ ] ( )Q V n m r= + + −ρ γ   .

These partial derivatives are
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Setting them all equal to zero we get ∂
∂
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=   ,  subject to n + m = r. So
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Replacing n2 in the left side with (m - r)2 reduces the problem to one variable that can be solved using the
quadratic equation.

Using a spreadsheet, for more than two fisheries, the practical thing to do is use the resources one batch at
a time until the resources are exhausted. Just recompute the approximate derivatives after each batch is
processed and take the samples for the next batch from the fishery with the most negative derivative.
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