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Length at and Timing of Hatching and Settlement for
Arrowtooth Flounders in the Gulf of Alaska

Kenneth A. Bouwens, Ronald L. Smith, A. J. Paul, and William Rugen

ABSTRACT:  Structures on the otoliths of arrowtooth flounders Atheresthes stomias have been identified that
correspond with hatching and settlement.  Analysis of length frequency profiles and back-calculation of otolith
dimensions suggested that arrowtooth flounders hatch at a mean standard length (SL) of 8–9 mm. They are
planktonic for 145 d, and become benthic at 40–43 mm SL.  Averaged over 14 years, the mean dates for hatching
and settlement were April 15 and September 8, respectively. The hatch and settlement periods were protracted,
with a 95% prediction interval (PI) of 37 days for each period.  This wide 95% PI in hatch and settlement dates
is a function of a long hatching period, not year-to-year fluctuations in hatch date.
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INTRODUCTION

The arrowtooth flounder Atheresthes stomias is a com-
mon North Pacific flatfish that will probably experi-
ence increased commercial fishing pressure. Presently,
at least one processor is making surimi from arrowtooth
flounders (C. Hicks, Alaska Department of Fish and
Game (ADF&G), Kodiak, personal communication).
Because of its large biomass and possible expanded
exploitation, there is considerable interest in describing
the early life history of this species.

Otolith surface patterns in subarctic fish species
display an opaque appearance during periods of fast
growth; during slow growth hyaline material is depos-
ited. In temperate and polar species, winter cessation
of growth is reflected in an annulus, a band of hyaline
material on the otolith (Williams and Bedford 1973;
Beckman and Wilson 1995). There also may be other
periods in the life history of a fish when growth slows
(Geffen and Nash 1995). At hatching or shortly after,
the fish switches from endogeneous to exogenous en-
ergy sources as yolk material is exhausted. At settle-
ment, a flatfish changes from primarily pelagic prey to
benthic and demersal prey. These physiological transi-

tions may temporarily disrupt energy and nutrient flow,
leaving an identifiable growth discontinuity on the otolith.
No systematic examination of the otoliths from early
life history stages of arrowtooth flounders has been
previously published.

The objectives of this study were to: (1) link iden-
tifiable structures on the otoliths to major early life his-
tory stages, (2) estimate mean fish length at hatch and
benthic recruitment, (3) estimate mean dates of hatch
and settlement to the benthos, (4) determine the dura-
tion of planktonic existence, (5) describe growth rates
of planktonic fish, and (6) discuss inter- and intra-
annual variability in the timing of reproduction.

The findings of this study will provide a context
within which questions about reproductive success,
strength of year classes, and potential effects of fish-
eries and climate change might be framed.

METHODS

Fish used in these analyses included a subset equal to
2,795 planktonic arrowtooth flounders collected inci-
dentally during National Marine Fisheries Service
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(NMFS) Gulf of Alaska surveys over 14 years be-
tween 1978 and 1992. Larvae were collected as early
as February 20 and as late as July 31 using various
ichthyoplankton-selecting gear types. Larvae were
measured for standard length (SL) in millimeters. Date
of capture, time of capture in Greenwich Mean Time
(GMT), location of capture by NMFS station and lati-
tude and longitude, gear type, mean gear depth (meters),
mean bottom depth (meters), and haul duration were
recorded. Detailed sampling methods are referenced
in Table 1.

Juvenile arrowtooth flounders were also collected
in benthic trawls from Kachemak Bay, Alaska in Au-
gust 1996 (n = 154) for the purpose of describing a fish
length–otolith length relationship. These fish were col-
lected from 2 different vessels. The first vessel, the
20-m Alaska Department of Fish and Game (ADF&G)
R/V Pandalus, fished a 400-mesh eastern trawl with
364-kg Nor’Eastern Astoria V trawl doors. The mesh
was 3.2 cm in the cod end, 8.9 cm in the intermediate,
and 10.2 cm in the body and wings. These samples
were taken while sampling locations described in
Bechtol and Yuen (1995), and targeted age-1 and older
arrowtooth flounders. A second vessel, an 8.5-m Uni-
versity of Alaska skiff, deployed a 3-m plumbstaff beam
trawl with a double tickler chain. The net mesh was
7 mm in the body and 4 mm in the cod end (Abookire
1997). The latter vessel sampled flatfish nursery areas
nearshore.

All arrowtooth flounders >276 mm SL were ex-
cluded to ensure only juveniles were examined and to
minimize potential bias from the sexual dimorphism in

size of mature fish (Rickey 1995; Zimmerman 1997).
The juvenile fish were measured for SL (millimeters),
total length (TL; millimeters) and wet weight (grams).
Sagittal otoliths from 50 fish were removed and stored
in a 50% glycerin solution with thymol crystals added
to the solution as an antifungal agent. This process
clears the otolith for surface pattern examination. The
otoliths remained in the solution for approximately
6 months before examination.

Figure 1 illustrates an arrowtooth flounder otolith
and identifies the focus as a very small hyaline area at
its center. The kernel is a dense, opaque structure sur-
rounding the focus. Otolith total length (OL), kernel
length (KL), and focus diameter (FD) were measured
using a dissecting microscope with a micrometer and
reflected fiberoptic light. Otoliths were examined
against a black background that made the hyaline zones
appear black and the opaque zones appear white. All
measurements were made laterally along the anterior–
posterior plane which passed through the focus.

Otolith length was measured and compared for size
differences between identifiable right and left otoliths
using a one-way ANOVA. Approximately 21 d after
the initial reading, OL, KL, and FD were again mea-
sured and compared using one-way ANOVA tests to
determine if otolith clearing had stopped.

Sizes at hatching and benthic recruitment were
estimated by examination of a SL frequency histogram
of  2,795 planktonic fish. The mode of the SL distribu-
tion was assumed to estimate the mean SL at hatch-
ing, and the largest arrowtooth flounder found in the
plankton was assumed to estimate the SL at recruit-
ment to a benthic environment. It is not possible to
calculate a variance using these methods or to calcu-
late a mode using the 2 largest planktonic fish. Addi-
tional sampling of this size range would not be very
fruitful due to their scarcity in the water column.

Additionally, SL and TL of benthic arrowtooth floun-
ders were regressed against OL. The resultant equa-
tion was solved using the mean FD and mean KL to
estimate mean fish size at completion of the formation
of focus and kernel.

Julian dates of capture were regressed against the
natural log of SL of larvae. The resulting equation was
solved using natural logs of estimates of mean larval
SL at hatch and benthic recruitment, allowing mean
dates for these events to be predicted (Mendenhall and
Sinich 1996). The difference between these dates was
used to estimate planktonic duration. The difference
between mean SL at hatch and benthic recruitment
was divided by the mean duration of the planktonic
stage to estimate larval growth rates in mm·d–1. This
equation assumes linear growth, but such an assump-

Figure 1.  Diagram of an arrowtooth flounder otolith.  OL =
otolith length, KL = kernel length, FD = focus diameter.
The horizontal line is the measurement plane.
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Table 1. Cruise and reference information for arrowtooth flounder larvae collected by NMFS. WGOA = Western
Gulf of Alaska,  SS = Shelikof Strait.

Year Cruise Dates General Location n Reference

1978 4DI78 4/1 to 4/17 WGOA 37 Dunn and Rugen (1989)

1979 1MF79 2/20 to 3/7 WGOA 47 Dunn and Rugen (1989)
5TI79 5/19 WGOA 1 "

1981 1SH81 3/6 to 3/27 WGOA 30 Dunn and Rugen (1989)
2SH81 4/19 to 4/22 WGOA 12 "
3SH81 5/22 to 5/25 SS 6 "
4MF81 5/20 to 5/21 SS 2 "

1982 1DA82 4/4 to 4/19 WGOA 18 Dunn and Rugen (1989)
2DA82 5/22 to 5/31 WGOA 4 "

1984 1SH84 4/7 to 5/4 WGOA 155 Dunn and Rugen (1989)

1985 1DI85 3/13 to 3/25 WGOA 17 Dunn and Rugen (1989)
1PO85 3/29 to 4/20 WGOA 57 "
2MF85 5/4 SS 1 "
2PO85 5/16 to 6/8 WGOA 258 "

1986 1GI86 3/30 to 4/20 WGOA 593 Dunn and Rugen (1989)
2MF86 5/4 SS 1 "

1987 3MF87 5/21 SS 1 Dunn and Rugen (1989)
4MF87 6/18 to 6/20 WGOA 5 "

1988 1MF88 4/1 to 4/12 SS 318 Dunn and Rugen (1989)
2MF88 4/24 to 5/1 SS 8 "
4MF88 5/20 to 6/6 WGOA 47 "

1989 1MF89 4/7 to 4/10 SS 3 Savage (1990)
2MF89 4/27 to 5/4 SS 12 "
3MF89 5/9 to 5/22 SS 33 "
4MF89 5/29 to 6/5 SS 107 "

1990 1MF90 4/8 to 4/10 SS 5 DeWitt and Clark (1992)
2MF90 5/7 to 5/14 SS 24 "
4MF90 5/28 to 6/4 SS 48 "

1991 1MF91 4/8 to 4/10 SS 14 DeWitt and Clark (1993)
2MF91 4/17 to 4/27 SS 122 "
3MF91 5/4 to 5/10 SS 44 "
4MF91 5/18 to 5/25 SS 131 "
5MF91 7/23 to 7/31 WGOA 283 "

1992 3MF92 5/3 to 5/13 SS/WGOA 139 Schleiger et al. (1995)
4MF92 5/18 to 5/28 SS/WGOA 200 "

tion is probably unrealistic for the entire 145-d plank-
tonic period. A second growth estimation, the instan-
taneous growth rate (G), was calculated using the
equation
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of hatch and settlement. Then G was multiplied by 100
and expressed as a percentage to estimate the specific
growth rate of planktonic flounders (Busacker et al.
1990).
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The associated variances around the estimates of
the planktonic period provided a measure of the mean
variability in hatch and settlement timing in the popula-
tion for all years’ data combined. Interannual variation
in early life history parameters was examined by com-
paring mean larval SL during April 8–10 (early in the
season) among the years 1984, 1986, 1988, and 1991
with a one-way analysis of variance (ANOVA). These
years were selected because sufficient numbers of lar-
vae were collected for the analysis.

In addition, a multiple linear regression model was
fitted to the ichthyoplankton data in the form of
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where
         Y = standard length of larva,

x1 = Julian day of capture,
x2– x13 = indicator variables coded for year, and

x14  – x26 = interaction variables between year and
Julian day.

The complete and reduced regression models were
compared using a nested F-test (Mendenhall and Sinich
1996) to determine if the year of capture explained
significantly more of the variability in SL than Julian
day of capture alone.
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Figure 2.  Relationship between otolith length and standard body length (A) and total body length (B) of juvenile (benthic)
arrowtooth flounders.
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Figure 3.  Standard length frequency of planktonic arrowtooth flounders, n = 2,795.

RESULTS

Otolith Analysis from Benthic Fish

There was no significant change in OL (F = <0.000001,
P >0.99, df = 49), FD (F = 1.09, P = 0.30, df = 49), or
KL (F = 0.79, P = 0.377, df = 49), of benthic fish after
an additional 3 weeks of treatment in glycerin and thy-
mol solution. The OL was similar for right and left
otoliths (F = 0.00087, P = 0.97, df = 21).

A simple linear regression model best fit the rela-
tionship between benthic fish TL or SL, and OL (Fig-
ure 2). The TL model was solved using the mean FD
we calculated (0.312 mm; SD = 0.0447) and mean KL
(1.251 mm; SD = 0.246), which estimated mean length
at completion of formation of these structures at 8.8 mm
(± 0.9, 95% PI; Mendenhall and Sinich 1996) and 44.7
mm (±0.9, 95% PI), respectively.

Ichthyoplankton Analysis

Lengths of planktonic arrowtooth flounders ranged
from 3.4 to 40 mm SL. Examination of a length fre-
quency histogram of 2,795 larvae (Figure 3) estimated
hatch length at  8.5 mm SL, the midpoint of the most
common length class. At length classes greater than
8–9 mm SL, frequency of occurrence in the plankton
steadily declined. The largest planktonic arrowtooth
flounders captured were 40 mm SL (n = 2).

The mean Julian dates for hatching and settlement
were 106 (April 15; 95% PI ± 37) and 251 (September
8; 95% PI ± 37), respectively, based on the regression
of mean SL and capture date. Mean planktonic stage
duration was 145 d. Using these dates, the linear daily

growth increment in the plankton was 0.22 mm ·d–1.
The instantaneous growth rate was 0.0107 and the
specific growth rate was 1.07% (Figure 4).

Using year of capture added significantly more in-
formation to the model than Julian day of capture alone
to predict SL of planktonic arrowtooth flounders
(F = 31.73, P <0.05, df = 2,793). However, interannual
variation in SL was small compared to intra-annual
variation in SL during the period of April 8–10 for the
years 1984, 1986, 1988, and 1991 (one-way ANOVA,
F = 1.97, P = 0.12).

DISCUSSION

Hatch and Settlement Length

Two separate lines of evidence indicate a hatch length
of 8 or 9 mm SL. First, in the ichthyoplankton size fre-
quency profile, 8 and 9 mm SL larvae were the most
abundant groups. Because the mesh size in most larval
tows was generally <1 mm, larvae 4–12 mm SL prob-
ably were fully recruited to the net. However, more
sampling effort early in the season may have biased
the results. Also, spatial differences, both vertical and
geographic, were not considered for this project. None-
theless, the most abundant length class captured from
the plankton was newly hatched larvae that had been
subjected to the least mortality. Second, the calculated
mean SL when otolith focus formation is complete was
8.8 mm based on the TL-OL of benthic fish. The fo-
cus may be the prehatch otolith, because otolith ring
formation begins at hatching or first feeding in several
species (Hagen 1986). The beginning of ring forma-
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tion would differentiate the relatively clear focus from
the more opaque surrounding material.

We found a few arrowtooth flounder larvae as small
as 3.8 mm SL (Figure 3). If SL at hatching is normally
distributed around a mean of 8.8 mm SL, larvae prob-

ably hatch as small as 4 mm SL and as large as 12 mm
SL. However, the smallest larvae may have been invi-
able embryos with the outer coat dissolved. Assuming
the focus is complete at hatching, we estimated a simi-
lar SL range at hatch of 7.88–9.72 mm from the upper
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and lower 95% prediction-interval bounds around the
mean FD.

The transition in the otolith between the focus and
the surrounding marks may represent the first feeding
event and not hatching. The duration of endogenous
nutrition after hatching is not known in arrowtooth
flounders. In Atlantic halibut Hippoglossus hippo-
glossus, this period lasts approximately 28 to 35 d at
5°C (Blaxter et al. 1983), and Hagen (1986) reported
the yolk-sac period is comparable in Pacific halibut. It
is unlikely this is the case with arrowtooth flounders.
Although the egg diameters of Pacific halibut and
arrowtooth flounders are similar, at a given length
arrowtooth larvae are more developed. At 9.5 to 10
mm SL, arrowtooth flounders have a well-developed
head and yolk material is absent. In contrast, Pacific
halibut have a less developed head and still depend on
yolk material for nutrition (Matarese et al. 1989). This
may explain the difference between Hagen’s (1986)
estimated otolith diameter at hatch of 0.023 mm for
Pacific halibut and ours of 0.312 mm for arrowtooth
flounders, because a small head probably houses a small
otolith.

Arrowtooth flounders probably settle to the benthos
at 40 to 45 mm SL in the Gulf of Alaska. Only 2 plank-
tonic 40-mm SL fish were captured. This is not unex-
pected because settlement-length flounders are rare in
the plankton.

Estimated fish length at kernel completion ranged
from 44 to 46 mm. This kernel is most likely associated
with planktonic growth. In studies of nursery areas in
the Gulf of Alaska, the smallest arrowtooth flounders
captured in benthic tows in August were 38–43 mm
SL, and the minimum size captured increased in later
months (A. Abookire, USGS Biological Resource Di-
vision, Anchorage, personal communication).

Growth Rates

The calculated larval growth rate of 0.22 mm · d–1 for
arrowtooth flounders is slower than the larval growth

rate of 0.29– 0.30 mm ·d–1 for the flathead sole
Hippoglossoides elassodon, an ecologically-similar
pleuronectid (Haldorson et al. 1989). Arrowtooth floun-
der larvae grow faster than Pacific halibut (0.13–0.17
mm ·d–1; Hagen 1986; Liu et al. 1993). Our growth
rate estimate is probably low because fish ≥ 40 mm SL
have settled to the benthos. Inclusion of fish that settle
earlier would increase our estimate of the mean growth
rate and decrease our estimate of mean duration of
the planktonic stage (Figure 4). More complete sam-
pling of larvae in the 20–40 mm SL range would im-
prove these estimates.

Variability in Reproductive Timing

Arrowtooth flounders have a protracted hatch period.
They are known to spawn December through March
in the Bering Sea (Pertzeva-Ostroumova 1961), and
September through March off coastal Washington State
(Rickey 1995). Spawning-condition females have been
observed in August in the Gulf of Alaska (Hirschberger
and Smith 1983). Data on egg incubation duration at
various temperatures would allow calculation of spawn-
ing seasons from our hatch date estimates. Presently,
this incubation information is not available.

Hatch-length larvae (6–12 mm SL) were present
in the water column in 1985 (Figure 4; upper panel)
over approximately the same time period as the 1978–
1992 combined data (Figure 4; lower panel). This sug-
gests a long hatch period (at least in 1985), because
within-year variability in SL at date (protracted hatch
period) was larger than between-year variability in SL
at date (year-to-year differences in mean hatch date).
For the entire sample, multiple regression analysis de-
termined that the year of capture accounted for sig-
nificantly more variation in SL than day of capture alone.
However, with the large sample size, this procedure is
extremely powerful and capable of detecting small
additions of information. Although mean hatch date may
vary annually, most variation of SL at date for the com-
bined sample can be attributed to an elongated hatch
period.
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