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ABSTRACT: Competing models for generating a forecast of salmon returns may give differing predictions yet
have similar credibility. Within a single model, a wide range of alternative parameter values may also have
similar credibility. Bayesian methods allow us to incorporate a wide range of models, weighting their forecasts
by the posterior probability of each model and parameter combination. I illustrate this procedure by forecasting
pink salmon harvests for the year 2002 for northern and southern Southeast Alaska.

INTRODUCTION

Preseason forecasts of Southeast Alaska pink salmon
returns are used by Alaska Department of Fish &
Game (ADF&G) managers in setting harvest strate-
gies early in the season (Su 2002). However, more
accurate inseason assessments (McKinstry 1993;
Zheng and Mathisen 1998) supplant preseason indica-
tors fairly early in the fishing season. Nonetheless, the
fishing industry relies heavily on preseason forecasts
of harvests, particularly for planning purchase of sup-
plies, how many workers to hire, how many tenders to
contract, and for arranging short-term financing.

Preseason forecasts of salmon returns are notori-
ously unreliable (Adkison and Peterman 1999). Among
Pacific salmon species pink salmon predictions are
more difficult than most, as their rigid two-year life
cycle means early indications of the cohort strength
(e.g., jacks and other siblings, often the best informa-
tion for forecasting (Adkison and Peterman 1999) are
not available.

In Southeast Alaska, forecast models have included
density dependent survival, winter severity, sea and air
temperatures, coastal upwelling, and early marine
growth of juvenile pink salmon as predictors (Hofmeister
1994; Adkison and Shotwell 2000; T. Zadina, Alaska
Department of Fish and Game, Ketchikan, personal

communication). Cross-validation studies have shown
that environmental variables and growth indices do re-
duce forecasting error, albeit only modestly (Adkison
and Mathisen 1997). Forecasts are generally prepared
separately for the northern and southern regions of
Southeast Alaska (NSE and SSE, respectively), as tag-
ging studies and other biological evidence suggest their
pink salmon stocks have distinct dynamics (Nakatani
et al. 1975; Alexandersdottir 1987).

Forecasts of Southeast Alaska pink salmon har-
vests have always been based on a single model con-
taining one or a few of these predictors. Examination
of the relative evidence for competing models suggests
that the "best" model is not much favored over com-
peting ones (Adkison and Shotwell 2000). In addition,
the parameter values of the chosen model may be highly
uncertain.

This uncertainty about which predictors to include
lends itself to model averaging (Burnham and Ander-
son 1998), a technique that has been employed in other
applications to natural resource management. Baye-
sian model averaging allows consideration of both al-
ternative parameter values and model structures
(Gelman et al. 1995). Patterson (1999) employed Baye-
sian model averaging in examining alternative harvest
control laws, assigning prior weights to several com-
peting model forms. A simpler approach creates a model
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structure where the competing models are all special
cases (e.g., specific parameter combinations) of a broad
model for which the posterior probability distribution of
the parameters is calculated.

I employ this approach to forecasting harvests of
pink salmon in Southeast Alaska. A model containing
the commonly-used predictors is constructed and the
joint posterior probability distribution of its parameters
is computed. A Bayesian posterior predictive distribu-
tion of the harvest of pink salmon in 2002 is calculated
by sampling from the posterior distribution for model
parameters, then drawing a stochastic forecast from
each sample.

METHODS

Models considered
A variety of models were constructed using different
combinations of four environmental predictors, with and
without density-dependent effects. Environmental vari-
ables were all calculated as the deviation from their
monthly long-term averages. These deviations were
then averaged over the 12 month period (September to
August) following parental spawning. This period en-
compasses both incubation in the stream gravel
(Hofmeister 1994) and the early marine stage (Mathisen
and Van Alen 1995; Courtney 1997), the two periods
thought to most affect cohort survival rates. The can-
didate models were all special cases of the full model
(Quinn and Deriso 1999),
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where
S = number of spawners (parents). This value is cal-

culated as 2.5 times the index of peak escapement
aerial survey counts (Van Alen 2000). The index is
the sum of multiple streams, identified in discrete
geographical units and identified as individual
streams that had a long-term escapement data set.
The individual escapement counts have recently
been adjusted by ADF&G to account for differ-
ences among observers (Jones et al. 1998; T. Zadina,
Alaska Department of Fish and Game, Ketchikan,
personal communication).

R = number of offspring produced (total returns). This
value is calculated as the catches plus 2.5 times
the peak escapement count two years after the
parents spawned.

α, β = the parameters of the Ricker stock-recruitment
equation (Ricker 1954)

Air = the average air temperature anomaly in Juneau
and Annette Island from September to August over
the 12 months following spawning. Data from the
National Oceanographic and Atmospheric Admin-
istration (NOAA)'s National Climate Data Center
(http://lwf.ncdc.noaa.gov/oa/ncdc.html).

SST = the average anomaly of sea surface tempera-
tures in the Gulf of Alaska on a 1x1 degree grid, lat
55°– 60° N, long 135°–160° W. Data from NOAA's
Pacific Fisheries Environmental Laboratory (http:/
/www.pfeg.noaa.gov/), from the Comprehensive
Ocean-Atmosphere Data Set (COADS) and Glo-
bal Temperature-Salinity (GTS) databases.

Upwelling = average upwelling anomalies from 3
coastal sites [(lat 57°N, long 137°W) (lat 60°N,
long 146°W) (lat 60°N, long 149°W)]. Data from
NOAA's Pacific Fisheries Environmental Labo-
ratory.

Scales = This index of growth is computed from scales
taken from juveniles captured in northern South-
east Alaska in the summer of their first year (Orsi
et al. 1999, 2000). The measurement is the aver-
age length from the focus to the sixth circulus
(Courtney 1997). As this sampling program has
only been in place since 1994, I used an adjusted
time series of adult scale measurements from Auke
Creek (H.W. Jaenicke, National Oceanic and At-
mospheric Administration (retired), Juneau, personal
communication) to extend the data series back to
1977 (Adkison and Mathisen 1997).

ki = the weight assigned to each environmental predic-
tor

εy = a normally distributed random value with mean of
zero and standard deviation σ.

Maximum likelihood predictions
I calculated the maximum likelihood parameter esti-
mates (MLEs) for Ricker models (S is the only predic-
tor) for both NSE and SSE, and also the MLEs of all
four Ricker models with one of the environmental pre-
dictors added to the model. I also calculated the mean
squared residual (MSE) from each model fit. For each
model form, the expected return in 2002 was calcu-
lated from Eq. (1) with the MLE using the spawning
abundance in 2000 and the value of the environmental
predictor, then multiplying this expected return by
exp(MSE/2) (Hilborn and Walters 1992). Expected har-
vest was calculated as the expected return multiplied by
the average harvest fraction for the last 5 years (0.44
for NSE, 0.51 for SSE (Adkison and Shotwell 2000)).
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Bayesian posterior predictive distributions
I used a Bayesian approach that considered all pos-
sible parameter combinations. A Markov chain Monte
Carlo algorithm was used to generate random draws
from the joint posterior distribution of the model pa-
rameters α, β, k1– 4, and σ (details below). A forecast
harvest was generated by drawing a random ε from a
normal (0, σ 2) distribution, using this value and the
parameter values drawn to calculate an R using Eq.
(1), then multiplying by the appropriate harvest rate.

Prior probabilities and likelihood

I assumed log-normal error in the abundance of re-
turning adults. The likelihood of any parameter combi-
nation was calculated by comparing the natural log of
observed recruits (Ry) to the natural log of predicted
recruits ( ˆ

yR ) for each cohort from the 1960 to 1999
brood years. Thus,
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Bayesian posterior probabilities are proportional to
the product of the likelihood and a prior probability.
The prior probabilities assigned to specific parameter
combinations were constant over a broad range (Table
1) for all parameters except σ, the standard deviation
of εy. Following conventional practice, the prior distri-
bution of this parameter was assumed proportional to
1/σ (Gelman et al. 1995).

Markov chain Monte Carlo algorithm

The probability distribution of the forecast was calcu-
lated by drawing samples from the posterior distribu-
tion using a Markov chain Monte Carlo algorithm. I
used the Metropolis algorithm (Gelman et al. 1995),
with a jumping distribution that was a uniformly distrib-
uted random draw from within a hypercube centered
about the current location of the chain. Candidate points
outside the boundaries were not considered; this caused
only minor irregularities as the chains spent little time
near these boundaries.

Five separate chains of length 1,000,000 were gen-
erated from differing initial parameter combinations.
Based on convergence tests using Gelman's R statistic
(Gelman et al. 1995), the first 200,000 iterations of each
chain were discarded. At each point in the chain, a
single forecast was generated from Eq. (1) using a

random ε from a N(0,σ) distribution and the param-
eter values from the chain.

Probability distributions were summarized by graph-
ing the cumulative probability of harvests both less than
or greater than a fixed amount. An 80% credible inter-
val was calculated as the interval between the 10th and
90th percentile of the probability distribution.

Diagnostics

Efficiency of the Markov chain Monte Carlo algorithm
was assessed by monitoring the fraction of time the
chain moved to a new location. The width of the
hypercube used as the jumping distribution was ad-
justed by trial and error until this fraction was between
0.23–0.44 (Gelman et al. 1995). Convergence of
Markov chain Monte Carlo chains was assessed by
comparing the within to between chain variance in the
forecast (Gelman et al. 1995). Trace and bivariate plots
of sections of each chain were graphed to visually
search for convergence problems or attraction to a
parameter boundary.

Calibration
Bayesian forecasts, like their classical counterparts,
have uncertainties that grow with the range of models
considered. To check whether the probability distribu-
tion of the forecast contained the appropriate amount
of uncertainty, I generated hindcast probability distri-
butions for returns for each year from 1960 to 2001 in
exactly the same manner as was done for the 2002
forecast. I then examined the coverage properties of
these probability distributions.

For each year, I calculated what fraction of the
hindcast probability distribution fell below the actual
return. If these hindcast distributions were properly
calibrated, this statistic should take on any value from
0 to 1 with equal probability. As a visual check, I or-
dered these fractions from lowest to highest and plot-
ted them in sequence. If the probabilities of the observed
returns ranged from zero to one with equal probability,
then this sequence should roughly follow a straight line.

Table 1. Bayesian prior distributions of model parameters.
Parameter Shape of Prior Range

α constant 0.01 to infinity
β constant 0 to infinity
k i constant -infinity to infinity
σ 1/σ 0.0001 to infinity
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RESULTS

Maximum likelihood predictions
The maximum likelihood parameterizations of differ-
ent model forms gave quite different predictions of
abundance. For example, the Ricker model predicted
a harvest of 35.8 million fish but when the best-sup-
ported environmental predictor, sea surface tempera-
ture, was added the forecast increased to 51.6 million
fish (Table 2). None of these models fit the data much
better than the others, based on their similar MSE val-
ues (Table 2).

ure 1). The increasing curve gives the probability that
the harvest is smaller than the value on the x-axis. For
instance, for NSE the probability that the run is less
than 40 million was about 86% (Figure 1). Where these
two curves cross (21 million for NSE, 30 million for
SSE), the odds are even that the harvest will be larger
or smaller than this value.

The probability distributions for different levels of
harvest tended to be skewed. That is, there were large
harvests that had a small but non-negligible probability
of occurrence. As a result of the influence of these
possible large harvests, the average expected harvest
was larger than the values at the 50th percentile. For
NSE, the expected harvest was 29 million, and for SSE
36 million.

Diagnostics

Trace plots of parameter values in the latter part of the
Markov chain Monte Carlo chains revealed no aber-
rant behavior. Gelman's R statistic was very close to
1.0, indicating satisfactory convergence of the Markov
chain Monte Carlo chains. The jumping distributions
used performed fairly efficiently, producing acceptance
frequencies of 37% and 46% (Gelman et al. 1995).

Calibration

The 80% credible intervals calculated are the range of
plausible harvests. Their interpretation is that there is
only a 1 in 5 chance that the harvest in NSE will not be
in the range 13.0 - 34.5 million or that of SSE will not

Table 2. Predicted harvests and mean squared error values
(in parentheses) under maximum likelihood for five
competing models.

NSE SSE Total
Ricker 13.6 (0.37) 22.2 (0.40) 35.8
w/ scales 14.4 (0.35) 23.6 (0.38) 38.0
w/ air temperature 13.9 (0.33) 25.7 (0.34) 39.6
w/ sea surface temperature 20.3 (0.30) 31.3 (0.37) 51.6
w/ upwelling 14.3 (0.35) 23.6 (0.36) 37.9

Bayesian probability distributions
The harvest forecasts are given as two probability
curves (Figures 1 and 2). The decreasing curve gives
the probability that the harvest is larger than the value
on the x-axis. For instance, for NSE the probability of
a harvest greater than 10 million was about 90% (Fig-
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Figure 1. Probabilities of different harvest levels for NSE. The decreasing curve gives the probability that the harvest is larger
than the value on the x-axis. The increasing curve gives the probability that the harvest is smaller than the value on the
x-axis.
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be between 17.3 - 50.0 million pinks. As a check, fore-
cast probability distributions were calculated for all re-
turn years from 1962-2001. If the probability
distributions were properly calibrated (not too wide or
too narrow), then 20% of the returns should have been
below the 20th percentile, 50% below the 50th percen-
tile, etc. Figure 3 shows that these probability distribu-
tions were well-calibrated, and thus that the 80%
intervals calculated for 2002 harvests are reasonable
representations of the uncertainty in the forecast.

DISCUSSION

A variety of data sources and statistical techniques
have been employed for forecasting salmon harvests
(Mundy 1982; Fried and Yuen 1987; McKinstry 1993;
Zheng and Mathisen 1998), including some previous
Bayesian efforts (Fried and Hilborn 1988). Despite
these efforts, forecasts of salmon returns are notori-
ously imprecise (Adkison and Peterman 1999).

Quite frequently in resource management, the un-
derlying mechanisms controlling the dynamics of the
resource are poorly known. The magnitude of various
influences on the resource are not well known, result-
ing in uncertainty about the values of model param-
eters. In addition, it's often not clear what these
influences are, and the functional form of their expres-
sion; this results in uncertainty about the basic struc-
ture of the management model. Model averaging is a
methodology for incorporating this uncertainty about
model structure and parameter values into the outputs
of an analysis.

Frequentist techniques for model averaging do ex-
ist (Burnham and Anderson 1998). Bayesian method-
ologies have the advantage of weighting competing
hypotheses more intuitively, by their relative probabili-
ties. Competing model structures can be assigned prior
probabilities that are updated by the model's correspon-
dence to available data (Patterson 1999). The calcula-
tions involved in this approach can be somewhat
cumbersome, as the Markov chain Monte Carlo sam-
pling algorithm must be able to jump from one model
structure to another. If all models can be incorporated
as special cases of a broader model (e.g., certain pa-
rameters may have a value of zero or infinity for a
particular model form), then jumping between model
structures is no longer necessary. However, the disad-
vantage of this approach is that it is necessary to think
carefully about the prior probability distribution for the
parameters of the broad model, to ensure that implau-
sible biological structures are not accidentally incorpo-
rated in a quest for a general model form.

As with classical frequentist approaches to mod-
eling, uncertainty grows the wider the range of models
one considers. Using a frequentist approach, this un-
certainty would manifest itself as wide confidence in-
tervals for the quantities of interest. In Bayesian
approaches, the uncertainty from considering a wider
range of models or parameter values manifests itself
as a flattening and widening of the posterior probability
distribution (Walters and Ludwig 1994; McAllister and
Kirkwood 1998), leading to wide credible intervals.

From a practical point of view, it was important to
determine whether the probability distribution of the
2002 harvest was too wide or too narrow. That is, did I

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Harvest (millions)

Pr
ob

ab
ili

ty

Figure 2. Probabilities of different harvest levels for SSE. The decreasing curve gives the probability that the harvest is larger
than the value on the x-axis. The increasing curve gives the probability that the harvest is smaller than the value on the
x-axis.
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ignore significant uncertainty, for example by specify-
ing a modified Ricker stock-recruitment relationship
while ignoring other possible functional forms? Or did
I include too much uncertainty, for example by speci-
fying equal prior probabilities for both parameter com-
binations that implied strong effects of all environmental
factors and parameter combinations that implied no
environmental effects at all?

The calibration check involved use of the Baye-
sian P-value (Gelman et al. 1995), and was analogous
to calculating coverage probabilities of confidence in-
tervals in frequentist applications. Bayesian P-values
are somewhat of an oxymoron. The prior and poste-
rior distributions are supposed to be representations of
the analyst's degree of belief in alternative hypotheses,
and thus the theoretical foundation of checking the
calibration of a posterior distribution is weak at best.
However, any modeling exercise involves numerous
somewhat arbitrary decisions (Punt and Hilborn 1997;
Patterson 1999; Schnute et al. 2000); in this example
the decisions include whether to include a wider vari-
ety of stock-recruitment curves, which environmental
parameters to consider, what parameter bounds to set,
whether to use log-normal, normal, or even a t-distrib-
uted likelihood, etc. Many of these decisions are based
on very little pre-existing knowledge. In the face of
these many choices, as practical-minded natural re-
source analysts we should find empirical demonstra-
tions of good performance reassuring.

Although the width of the calculated credible in-
tervals appears justified, they are distressingly large.
There are two explanations for this large uncertainty.
The first is that alternative modeling efforts could pro-
duce more precise forecasts from the existing data.
While this is certainly a possibility, it's more probable
that the existing data has little to say about the magni-
tude of returns from a cohort of pink salmon.

Part of the data limitation may reflect inaccura-
cies in the determination of spawning abundance. The
size of the parental spawning stock is estimated from
periodic aerial counts (Van Alen 2000). These estima-
tion methods have several known deficiencies, and
several suggestions for improvement have been made
(Jones et al. 1998; Su et al. 2001; Adkison and Su 2001).
Additionally, not all streams are surveyed and total es-
capement is calculated by a 2.5-fold extrapolation.

While improvements in estimating the abundance
of the parental spawning stock might improve fore-
casts, it must be recognized that survival rates vary
tremendously from cohort to cohort (Pyper et al. 2001;
Willette et al. 2001). Thus, parental abundance becomes
a weak predictor of returns from a cohort. The envi-
ronmental indices that have been incorporated in fore-
casts explain very little of this variation (Adkison and
Mathisen 1997), although recent intensive studies of
factors determining growth and survival in Southeast
Alaska (Orsi et al. 1999, 2000; Mortenson et al. 2000)
and Prince William Sound (Willette 2001; Willette et al.

Figure 3. The calibration of probability distributions of forecasts of returns of pink salmon, Southeast Alaska, 1962-2001. For
each region, NSE or SSE, I generated a forecast probability distribution for the harvest of pink salmon for each year. I then
calculated what fraction of this probability fell below the observed return. These fractions were sorted from lowest to
highest and then plotted. If the forecast probability distributions were properly calibrated, these values should follow the
reference line.
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2001; Cooney et al. 2001) provide valuable guidance
on what factors are most important to measure. Fore-
casts of returns for other species of salmon rely heavily
on sibling returns, a direct index of the realized abun-
dance of the cohort (Adkison and Peterman 1999).
Reducing the uncertainty in forecasts of pink salmon
harvests will likely require direct measures of a cohort's
abundance in coastal or marine waters.

Finally, recent market conditions have substantially
changed the processing sector's demand for Southeast

Alaskan pink salmon. Several processors are consid-
ering reducing purchases or even curtailing operations
for the summer of 2002. ADF&G is considering alter-
ing its schedule of harvest openings to accommodate
proposals by fisheries participants designed to increase
the quality of pink salmon that are taken (Phil Doherty,
Alaska Department of Fish and Game, Ketchikan, per-
sonal communication). These changes have the poten-
tial to reduce harvest rates below the historical averages
we've assumed here, reducing the 2002 harvest.
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