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I. Introduction 
 
 Mixed stock analysis (MSA) is a widely used tool in the management of 
commercial fisheries of salmon (Oncorhynchus) species. In fisheries MSA is used to 
estimate the composition of a mixture sample consisting of certain (known) populations 
(stocks). Such a case arises when fishing for salmon in the ocean where fish congregate 
in schools and mix in search for food. In these circumstances, a catch usually represents a 
mixture of salmon stocks. The need to know the composition of a mixture arises in the 
effort to preserve endangered populations that might be present in a mixture. Given the 
efficiency of modern fishing equipment and the large volume of catches, it is feasible that 
endangered stocks might be fished out completely during their ocean life phase if not 
monitored carefully. Management becomes especially important when spawning runs 
begin. At this time, knowledge of possible and preferred pathways of returning salmon 
and restricting fishing efforts in some regions may well be crucial in protecting 
endangered stocks.   In addition, management of international fisheries often requires 
estimation of stock composition. MSA provides estimates of the relative contribution of 
stocks in a mixture of individuals. One of the important questions often posed by 
managers and researchers is whether a specific population, or a group of populations, is 
present or absent in a given mixture. An answer to this question determines the 
management strategy and may yield restrictive decisions. For a number of years MSA 
based on the conditional maximum likelihood approach has been successfully utilized by 
the Gene Conservation Lab, Alaska Department of Fish and Game (ADF&G) and by 
other resource management organizations. This study investigates the Bayesian approach 
to MSA. 

Genetic markers, such as multilocus genotypes, are widely used in mixed stock 
analysis (Pella and Milner, 1987). These genotypes serve as natural tags and allow the 
identification of fish origin. The unknown proportions of stocks comprising the mixture 
sample can be estimated from allele counts of individuals in the mixture if allele relative 
frequencies (RFs) differ among contributing stocks. The larger the differences in allele 
RFs among contributing stocks, the more accurate estimates of stock proportions can be 
obtained. In the case when a population has a private (i.e. unique) allele, it will be 
perfectly identifiable. However, even in this case, the bootstrap method often used to 
obtain confidence intervals for stock composition estimates, can significantly lower the 
statistical power of detecting small stock contributions (Reynolds and Templin, 2003).   

The Bayesian approach to the mixed stock analysis has become very appealing 
lately and it is believed to have a number of advantages over the conditional maximum 
likelihood (CML) method. For example, the CML stock composition estimate maximizes 
a likelihood function of the stock-mixture genotypes as if their RFs in the baseline stocks 
were known without error. In practice, however, the baseline allele RFs are determined 
from samples of limited sizes and thus have some uncertainty associated with them. 
Therefore, the resulting CML estimates are usually biased and their variability is 
underestimated. The Bayesian method treats the baseline allele RFs as unknowns with a 
specified prior distribution. Later, when the baseline and mixture samples become 
available, the prior is updated to a posterior distribution according to Bayes’ rule (see 
section II for details). 
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Another powerful argument in favor of Bayesian analysis has its roots in the 
principal difference between the two approaches. Namely, CML does not use the 
information from a mixture sample to improve the estimates of baseline allele RFs, 
whereas the Bayesian method allows for that. As Pella and Masuda (2001) indicate, this 
omission becomes ever more meaningful with accumulation of mixture individuals from 
a series of analyses performed on the stock mixtures of the same baseline populations.  

Treatment of RFs for rare alleles (alleles with RFs < 0.005, Hartl and Clark, 1997) 
is also quite different between the two approaches. In CML, if a baseline sample does not 
have a rare allele present, it is assumed to be absent, even though it might be present in a 
population. The Bayesian model, described in the next section, shrinks the observed 
baseline RFs of individual stocks toward genetically better-established grand, regional or 
group means (Pella and Masuda, 2001). Thus, a rare allele absent from a baseline sample 
will be assigned a relative frequency from the corresponding prior.  

Finally, the Bayesian approach allows for better handling of missing data. In 
particular, missing baseline allele RFs are easily filled in with appropriate grand, regional 
or group means – similarly to treatment of rare alleles (Pella and Masuda, 2001). They 
are revised later during analysis of the mixture sample. 

The objective of this study is to investigate and assess the use of Bayesian mixed 
stock analysis for the detection of specific populations (or groups of populations) in a 
mixture. Of particular interest is evaluating sensitivity of the Bayesian method to small 
contributions.  

The data set for this study consists of genetic samples from 63 baseline 
populations of sockeye salmon (Oncorhynchus nerka); 51 from Bristol Bay drainages 
(Alaska) (see Figure 1 and 2) and 12 from Russian rivers (Kamchatka peninsula). These 
populations are further grouped into 12 reporting regions (RR) according to geographic 
location and genetic similarities (Table 1). In general, a reporting region is defined 
through simulations with 100% contribution from that region and it is required to 

Figure 1. Map of the region. Courtesy: ADF&G
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demonstrate 90% or better estimated mean contribution for simulated mixtures (Seeb et 
al. 2000, Reynolds and Templin 2003).  
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Figure 2. Bristol Bay with its main river systems. (Courtesy of Chris Habicht                                      
               and Bill Templin, ADF&G, Anchorage, AK) 

 
 Bristol Bay (Figure 2) with its eight major river systems is home to the largest 
commercial salmon fishery in the world. Sockeye salmon are by far the most abundant 
salmon species in Bristol Bay. Abundance of some stocks is known to be declining 
(personal communication with Bill Templin, ADF&G) and therefore the main 
management objective is to achieve desired escapement for these stocks. Thus, detection 
of the specific populations in a mixture is especially important for management. 

In this setting, if we had a mixture of fish from these 63 populations, we would 
like to determine the composition of stocks in the mixture, or as described before - in the 
case of small contributions - the presence or absence of specific stocks or groups of 
stocks. The four major questions raised by the geneticists from ADF&G for this study 
can be formulated as follows: 

1) How many fish from Kvichak RR (22 populations) would have to be in a mixture 
to be detectable (Kvichak and Naknek baseline only)? 

2) How many fish from Lake Clark RR (5 populations) would have to be in a 
mixture to be detectable (Kvichak and Naknek baseline only)? 

3) How many fish from Bristol Bay stocks (51 populations) would have to be in a 
mixture to be detectable (full baseline)? 
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4) How many fish from Russian stocks (12 populations) would have to be in a 
mixture to be detectable (full baseline)?        

To answer these questions, a series of simulation experiments, with mixtures of size 200 
fish, was designed and implemented as described in section III. A Bayesian mixture 
model developed and described in Pella and Masuda (2001) and Masuda (2002) was used 
to perform simulations and estimate the contribution of each baseline stock in a mixture 
sample. The computations were conducted using the free software package BAYES 
available at the Alaska Fisheries Science Center anonymous ftp site 
ftp://www.abl.noaa.gov/sida/mixture-analysis/bayes.  

The results of simulation experiments are discussed in section VI. It is shown that 
the Bayesian method under consideration has relatively high sensitivity. In other words, it 
is able to detect small contributions of selected stock groups with reasonably high 
statistical power. Tables of summary statistics based on the posterior distributions for 
each contribution level and each simulated mixture sample are presented in Appendix 1. 
Histograms of posterior mean contributions for each scenario (i.e., reporting region by 
contribution level) are presented in Appendix 2.  

       
II. Description of the Bayesian Model (adapted from Pella & Masuda, 2001) 
 
 According to Bayes’ rule, the posterior distribution of an unknown parameter θ  
given the data Y, ( | )f Yθ , is proportional to the product of its prior density ( )f θ  and the 
likelihood of the sample, ( | )g Y θ , (Gelman et al., 1995) 
 

( | ) ( ) ( | )f Y f g Yθ θ θ∝ .                                                  (1) 
 
 The main idea behind this rule is that some information about θ , which is 
expressed through its prior density, is available before the experiment begins. This 
information might be based upon previous study, or just be a researcher’s best guess. If 
nothing is known a priori about θ , an uninformative prior can be chosen in a sense that 
its influence on the posterior density will be minimized. In this case, knowledge about θ  
will only come from the data, Y. The likelihood function, ( | )g Y θ , reflects the probability 
of observing the data, Y, given the parameter θ  and it is based on the probabilistic model 
defining the distribution of Y as a function of θ . After sampling, the observed data, Y, 
are used to revise the prior to the posterior probability density of the unknown parameter.  
 Once the posterior for θ  is obtained, a variety of point estimates such as mean, 
median, or mode can be derived along with corresponding credibility intervals (the 
Bayesian counterpart of frequentist confidence intervals). In mixed stock analysis with 
genetic markers, the unknown parameters are partitioned into two parts [θ = (p, Q)]: (1) 
the stock proportions of the mixture, p; and (2) the allele relative frequencies (RF) of the 
baseline stocks, Q. The mixture sample provides multilocus genotypes of the mixture 
individuals whereas the baseline samples provide allele RFs at the loci measured on the 
mixture genotypes.  
 
Prior for stock proportions, ( )f p  
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 Building a Bayesian model starts with specifying a prior for the unknown set of 
parameters θ  = (p, Q), which is a product of block priors for its components, p and Q. 
An uninformative uniform prior is chosen for p in this study, to allow the mixture sample 
information to dominate the prior. A prior for a mixture of c possible stocks must comply 
with two restrictions on vector p. First, each individual stock proportion must lie between 
zero and one; and, second, their sum over all stocks should equal one, 

                             0 1
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The Dirichlet probability density accommodates these requirements and is commonly 
used as a prior with compositional count data both for its computational convenience and 
for it straightforward interpretation as additional data. The computational convenience of 
the Dirichlet prior density lies in the fact that paired with multinomial likelihood function 
it forms the conjugate family. In other words, if the sampling distribution of the data is 
multinomial, then choosing the Dirichlet prior will automatically yield a Dirichlet 
posterior. Prior draws of p from the Dirichlet probability density, 
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If a prior draw of 1 2( , ,..., )cD α α αp �  was obtained for the stock proportions of a stock 
mixture, and then a mixture sample of size M was drawn such that the individuals could 
be correctly identified to stock origin, their counts, 1 2( , ,..., )cz z z=Z , would have a 
conditional multinomial distribution,  
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Z p K p , 

 
or Z | p ~ Mult(M, p). Thus the posterior for p, given Z, would be the Dirichlet,  
 
  1 1 2 2( | ) ( , ,..., )c cf D z z zα α α+ + +p Z � .                                                   (3)    
 
The prior parameters enter the posterior density in the same way as the sample counts and 
therefore can be viewed as counts obtained before the stock mixture was sampled (thus, 
having an interpretation as additional data). In practice, however, the mixture individuals 
are identified to stock origin (with unavoidable random error) during each cycle of the 
data augmentation algorithm (Gibbs sampler) later when samples are generated from the 
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posterior. With the stock origins identified at a cycle, the uncertainty in p is described by 
the Dirichlet posterior with parameters equal to the sums of stock counts and the prior 
parameters (zi + αi). 
 Assigning equal values summing to 1 to the prior parameters (as was done in this 
study), α1 = α2 = … = αc = c-1, would be equivalent to adding just a single individual to 
the mixture sample, thus allowing the information from the mixture sample to dominate 
that from the prior distribution.  
 
Prior for allele RFs given baseline samples,  ( | )f Q Y
 
 Genetic structures of separate stocks are determined by their allele RFs, Q. In the 
Bayesian approach, Q is treated as an unknown quantity. An estimate of Q can be 
obtained from baseline samples to estimate the stock genetic compositions. However, 
since baseline sample sizes are commonly limited, the observed RFs for individual stocks 
are shrunk toward central values that are more reliably determined and are consistent 
with the genetic similarity of the stocks (Pella and Masuda, 2001).  
 To develop our model we start with allele RFs at a single locus and then extend 
the reasoning to cover multiple loci. Consider a locus with T distinct alleles. Each of c 
baseline stocks will have a different set of RFs for these alleles. Denote the resulting 
unobserved RFs for the ith stock by qi = (qi1, qi2, …,qiT). The Bayes prior in the form of a 
Dirichlet probability density is chosen for baseline sampling,  
 

                                    1 2( ) ( , ,..., )i Tf D β β β=q . 
 
Next, baseline samples of n1, n2, …, nc alleles of the locus are available from the c stocks. 
The counts of the different alleles for the ith stock, yi = (yi1, yi2, …, yiT), have the 
multinomial distribution, Mult(ni, qi), and therefore the baseline posterior for the 
unknown allele RFs in each stock is also Dirichlet, 
 

         1 1 2 2( | ) ( , ,..., )i i i i T iTf D y y yβ β β+ + +q y � .                                   (4) 
 
The posterior means of qi | yi can be written as a weighted average of the observed and 
prior mean RFs (e.g., see Rice, 1995). If the baseline sample is missing, the posterior 
mean equals the prior mean. Otherwise the posterior mean ranges between the observed 
and prior mean RFs. Note, that all posterior means for the allele RFs are positive, so that 
absence of an allele from a stock’s baseline sample implies it is only rare and was missed 
in sampling rather than nonexistent (Pella and Masuda, 2001).  
 The pseudo-Bayes method is used in this study to estimate the values of the 
baseline prior parameters, β1, β2, …, βT (see Pella and Masuda 2001 for details). 
Complete analysis of the baseline requires repeated and separate application of the 
pseudo-Bayes method to each locus. Suppose a total of H loci compose the stock-mixture 
multilocus genotypes. Let the hth locus have Jh alleles with prior parameters 

1 2( , ,..., )
hh h h hJβ β β=β , and allele RFs in the ith stock of 1 2( , ,..., )

hih ih ih ihJq q q=q . If Qi 
denotes the ith stock’s combined arrays, , then the prior for the allele 
RFs of the complete baseline, Q = (Q

1 2,  ,  . . . , i iq q iHq
1, Q2, …, Qc) will be 
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that is, prior draws for allele RFs are independent among stocks and loci. 
 The baseline samples are drawn independently from the stocks. Denote by 

1 2( , ,..., )i i i iH=Y y y y  the H arrays of allele counts in the baseline sample for the ith stock, 
and by Y, the entire baseline collection of Y1, Y2, …, Yc. Then the Bayesian posterior 
density for the allele RFs of the entire baseline is the product of Dirichlet densities,  
 

1 1
1 1 1 1 1
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h

c c H c H

i i ih ih h ih hJ ihJ
i i h i h
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= = = = =
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h
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where each density in the product has a mean vector, for the stock and locus, equal to a 
weighted average of the observed allele RFs and corresponding prior means.  
 
Likelihood function of a mixture sample,  ( | )g X θ
 
 The mixture sample likelihood function is proportional to the probability of 
drawing individuals with observed genotypes as a function of the unknown parameters, p 
and Q. Let Xm denote the multilocus genotype of the mth individual and let the array X 
denote the collection of such arrays for the M individuals composing the stock-mixture 
sample. Next, let the probability of observing individuals with the genotype Xm in the ith 
stock, which depends on that stock’s allele RFs, Qi , be denoted as ( | )m iπ X Q . Then, the 
proportion of individuals with the genotype in the stock mixture is the weighted sum, 

, where the weights are represented by the (unknown) population’s 

contributions to the mixture, p
1

( |
c

i m
i

pπ
=
∑ X Q )i




i’s. Subsequently, the likelihood function for the entire 
mixture sample is 
 

                                              (6) 
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i m i
im

g pπ
==

= 
 
∑∏X p Q X Q

 
Here X is treated as fixed, and the likelihood, , is a random function of the 
unknown parameters p and Q. 

( | )g X θ

 
Posterior distribution of the unknowns,  ( | , )f θ X Y
 
 To complete the Bayesian setting, the posterior distribution of the unknown stock 
proportions in the mixture and of the baseline allele RFs is proportional to the product of 
the prior density for the unknown parameters and the likelihood function of the mixture 
sample, i.e. 
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 ( , | , ) ( , ) ( | , )f f g∝p Q X Y p Q X p Q                                              (7) 
 
The prior density for the stock proportions, ( )f p , is the uninformative Dirichlet of 
Equation 2. The baseline posterior of Equation 5 becomes the prior for the allele RFs. 
Now, since the priors on stock composition and allele RFs are considered independent, 
the joint prior for the unknowns is the product of its two constituents, 
 

( , ) ( ) ( | )f f f=p Q p Q Y .  
 
The analytical evaluation of the posterior distribution is complicated by the large number 
of terms in the likelihood function, which makes finding a proportionality constant 
impractical (Pella and Masuda, 2001). Instead, a sufficient number of samples can be 
drawn sequentially from the posterior distribution to accurately describe it. A data 
augmentation algorithm – the Gibbs sampler – is used to draw a sequence of samples 
(Gelman et al., 1995). 
 
The data augmentation algorithm  
 
 The main idea behind the algorithm lies in the fact that the estimation of 
parameters would be greatly simplified if the stock identities of the mixture individuals 
were known. Then, the posterior distribution for stock proportions and allele RFs can be 
directly obtained by updating Dirichlet priors of Equations 2 and 5 with the multinomial 
counts from the mixture sample (Pella and Masuda, 2001).  
 The stock identities of the mixture individuals are determined by chance in the 
data augmentation algorithm. Let 1 2( , ,..., )m m m mz z z c=z

(

 indicate the stock origin of the 
mth mixture individual by a single “1” at the coordinate of the contributing stock, and 

 “0” at the remaining coordinates. Also, let ( 1c − ) 1 2, ,..., )M=Z z
and Q

m

z z denote the stock 
origins of all mixture individuals. If p were known, the probability that a randomly 
drawn individual with genotype X  came from the ith stock would be 
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Then,  would represent a vector of probabilities of the origin of 
m

1 2( , ,..., )m m m mw w w=w

mz
(1, )m mMultz w

p Q

c
th mixture individual. The data augmentation algorithm draws the missing stock 

identity, , for each mixture individual from the multinomial distribution, 
, where the probabilities  are computed from the current values of 

. 
�

 and 
mw

 Given stock identities of mixture individuals, Z(k), obtained at the kth step of the 
algorithm, the posterior density for the unknown stock proportions, , is just an 
updated Dirichlet prior 

( )( | )kf p Z
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The posterior distribution for allele RFs given the baseline and mixture samples, 
is also a Dirichlet 
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As one can see, each term in the last expression is the sum of the prior parameter, allele 
counts from the baseline sample, and allele counts from the mixture sample.  
 To start drawing samples from the posterior distributions, one needs to specify the 
initial (or starting) values of . Consecutively, after the initial sample is 
obtained, a sequence of samples is drawn with each sample dependent only on the 
preceding sample, thus making the algorithm Markov Chain Monte Carlo (MCMC). At 
the k

(0) (0)and p Q

th cycle of the algorithm, two steps are performed: 
 

1) Determine stock identities of the mixture individuals, , using 
Equation 8 to obtain probabilities of origin, , for m

( ) ( )(1, )k k
m mMultz w�

1,2,..., .m M=

( )k
mw

( )and , k kQ Q

th individual with genotype 
, and the current values  mX ( )= =p p

2) Draw p from their respective posterior densities, , and 
. 

( 1) ( 1) and k+ Q
( ), , )kQ X Y Z

( )( | )kf p Z
( |f

 
The data augmentation algorithm cycles these two steps and outputs a sequence, or 

chain, of samples of stock proportions and baseline RFs from the posterior distribution. 
Since the early samples of a chain are influenced by the starting values of , they 
are discarded for the purpose of making valid inferences. Usually, as a rule of thumb, half 
the length of a chain is considered as burn-in samples that are discarded; the rest of the 
chain should accurately represent the posterior distribution, given that convergence of a 
chain is reached (Gelman et al., 1995). The Raftery and Lewis (1996) diagnostic is used 
to establish convergence to desired posterior density. This convergence diagnostic 
determines the number of samples required for estimating quantiles (q) of posterior 
distributions with a specified accuracy (r) and probability (s). In this study we used the 
following values for these parameters, recommended by Pella and Masuda (2001): q = 
0.975, r = 0.02, and s = 0.95. An initial pilot sample size is first generated, which is used 
by the diagnostic to compute the recommended number of samples. After an additional 
number of samples are generated, the diagnostic uses combined samples – the original 
pilot samples and the first recommendation – to compute the recommended sizes again. 
This iterative scheme is applied to each chain beginning with a pilot sample size of 235 
(the initial number suggested from the chosen values of q, r, and s). 

 and p
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Once convergence of a chain has been reached, the MCMC samples (after burn-in 
discard) of stock composition estimates are summarized with various statistics: means, 
standard deviations, and empirical percentiles (5, 50, and 95).     

 
III. Experimental setting 
 

A complete list of 63 baseline populations of sockeye salmon is presented in Table 1. 
Populations are grouped into twelve reporting regions based on their genetic similarities 
and geographic location.  

 
Table 1. List of baseline populations and their affiliation to reporting regions. 

Pop #   Population Name                        Group           Reporting Region 
  1   Bear River Weir Early 2000    1  N. Peninsula 
  2   Bear River Weir Late 2000    1  N. Peninsula 
  3  Nelson River 2000     1  N. Peninsula 
  4   Ugashik Outlet 2000     2  Ugashik 
  5   Ugashik Narrows 2000     2  Ugashik 
  6   Ugashik Creek 2001     2  Ugashik 
  7   Becharof Creek 2000     3  Bacharof Lake, Egegik 
  8   Cabin Creek 2000     3  Bacharof Lake, Egegik 
  9   Headwaters Creek early 2000    4  Brooks Lake, Naknek 
 10  Headwaters Creek late 2001     4  Brooks Lake, Naknek 
 11  Up-a-tree Creek 2000      4  Brooks Lake, Naknek 
 12  Margot Creek 2000      5  Naknek Lake, Naknek 
 13  Idavain Creek 2000      5  Naknek Lake, Naknek 
 14  American Creek 2000      5  Naknek Lake, Naknek 
 15  American Creek 2001     5  Naknek Lake, Naknek 
 16  Kulilk River 2001     6  Nonvianuk Lake, Iliamna L Early 
 17  Moraine Creek 2001     7  Kukaklek Lake, Kvichak 
 18  Battle River 2001       7  Kukaklek Lake, Kvichak 
 19  Illiamna Lake outlet late 1999    8  Iliamna Lake Late, Kvichak 
 20  Flat Island 2000       6  Iliamna Lake Early, Kvichak 
 21  Woody Island 2001       6  Iliamna Lake Early, Kvichak 
 22  Triangle Island 2000      6  Iliamna Lake Early, Kvichak 
 23  Finger Beach 2000      6  Iliamna Lake Early, Kvichak 
 24  Knutson Bay Beach 2000      6  Iliamna Lake Early, Kvichak 
 25  Lower Talaric Creek 2000     6  Iliamna Lake Early, Kvichak 
 26  Lower Talaric Creek 2001     6  Iliamna Lake Early, Kvichak 
 27  Dennis Creek 2000       6  Iliamna Lake Early, Kvichak 
 28  Gibraltar River 2000       6  Iliamna Lake Early, Kvichak 
 29  Southeast Creek 2000      6  Iliamna Lake Early, Kvichak 
 30  Dream Creek 2001      6  Iliamna Lake Early, Kvichak 
 31  Nick N. Creek 2000       6  Iliamna Lake Early, Kvichak 
 32  Copper River 2000      6  Iliamna Lake Early, Kvichak 
 33  Tommy Creek 2000       6  Iliamna Lake Early, Kvichak 
 34  Chinkelyes Creek 2000      6  Iliamna Lake Early, Kvichak 
 35  Tazimina River 2001       6  Iliamna Lake Early, Kvichak 
 36  Chulitna Bay Beaches 1999    9  Lake Clark, Kvichak 
 37  Kijik Lake Beach 2000      9  Lake Clark, Kvichak 
 38  Kijik River 2001      9  Lake Clark, Kvichak 
 39  Little Kijik River 2001     9  Lake Clark, Kvichak 
 40  Upper Tlikakila River 2001    9  Lake Clark, Kvichak 
 41  Allen River Beach 2000   10  Upper Nushagak River 
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 42  Mulchatna River, site A 2001  10  Upper Nushagak River 
 43  Koktuli River 2000   10  Upper Nushagak River 
 44  Upper Nushagak-slough 2001  10  Upper Nushagak River 
 45  Nuyakuk Lake Beaches 2000  10  Upper Nushagak River 
 46  Tikchik River 2001   10  Upper Nushagak River 
 47  Bear Creek, L. Aleknagik 2001  11  Lower Nushagak River 
 48  Agulowok River 2001   11  Lower Nushagak River 
 49  Agulukpak River 2001   11  Lower Nushagak River 
 50  Lake Kulik, Wood R. 2001  11  Lower Nushagak River 
 51  Gechiak Lake 2000   11  Lower Nushagak River 
 52  Kamchatka River late 1998  12  Russia 
 53  Kamchatka River early 1998  12  Russia 
 54  Hapiza River early 1998   12  Russia 
 55  Hapiza River late 1998   12  Russia 
 56  Kitigina River 1998   12  Russia 
 57  Kirushutk River 2000   12  Russia 
 58  Olada Bay 2000    12  Russia 
 59  Ozernaya Bay 2000   12  Russia 
 60  Ozernaya River 2000   12  Russia 
 61  Vichenkiya River 2000   12  Russia 
 62  Bistraya River 1998   12  Russia 
 63  Bolshaya River 1998   12  Russia 
 

 Baseline samples contain information on individual genotypes for eight 
microsatellite loci (genetic markers) named: Omy77, One102, One108, One109, One111, 
Ots107, Ots3, and uSat60. Each locus has a specific number of alleles associated with it. 
The number of alleles varies from 14 for locus One107 to 43 for locus One111. Allele 
relative frequencies determined from the baseline samples are used for generating 
mixtures with known contributions. They are also used in determining the baseline 
posterior (Equation 5), which serves as a prior for allele RFs.  

To test the sensitivity of the Bayesian model, the following simulation study has been 
designed. For each group/region of populations, mixtures of 200 fish were generated with 
specific (known) contribution from that group. Seven contribution levels of 20%, 10%, 
5%, 4%, 3%, 2%, and 1% were considered for each group. A contribution from a given 
population was generated by randomly simulating genotypes based on the population’s 
allele relative frequencies, obtained from the baseline samples. Thirty mixtures were 
generated at each contribution level. There were 28 scenarios in all (four groups times 
seven contribution levels). The mixtures with known contribution, say Aθ , from a 
group/region of interest were created using the statistical software package S-Plus 2000 
and locally written functions (S+Genetics, ADF&G).  

Mixtures of size M = 200 were simulated so that each population in, say, group A 
would have contributed equally to the mixture and the sum of these individual 
contributions would equal Aθ . The remaining baseline populations contribute evenly to 
the mixture to make up for the rest (1 - Aθ ) part of the mixture. Then, a number of 
individuals from group A, , can be found as a product of the group contribution,Am Aθ , 
and the size of the mixture sample, M, i.e., 200*Am Aθ= . For example, for the 5% 
contribution level ( 0.05Aθ = ), a simulated mixture will have 10 individuals from the 
populations of group A. If the number of populations comprising group A is less than or 
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equal to the cumulative number of individuals that should come from the entire group, 
then each population will supply at least one individual to the mixture. In the case when 
the number of populations in a group, say , is greater than the number of individuals 
allocated to that group, say , then the distribution of individuals to populations within 
the group is simulated as multinomial with equal proportions, i.e., 

n
Am

1, ,p

:a=

1 2 2 1 2
1( , ,..., ) ( ,..., ),  where ...n A nz z z Mult m p p p p p
n

= = = =� . n

 The distribution of individuals among populations of group A, , generated 
in this way would be even across a relatively large number of mixtures. Thus, in the long 
run, this procedure maintains equal contributions to the mixtures from all populations in 
the group. 

1 2( , ,..., )nz z z

The Bayesian model was run on each mixture sample. Point estimates of contributing 
stock proportions and 90% credibility intervals were obtained from each resulting 
posterior distribution (Appendix 1). A contribution of a group was determined as the sum 
of contributions for populations comprising a group. Thus, for each scenario with pre-
determined contribution level, we would have 30 estimates of a group contribution 
obtained by running the Bayes model on 30 random mixtures with a priori known 
contribution from that group. The statistical power to detect a group of populations is 
defined as the proportion of times (out of 30 runs) that a group has been successfully 
detected. Detection of a group is equivalent to a hypothesis testing for a non-zero 
contribution: 0 : 0 vs. 0H Hθ θ . A decision to reject the null hypothesis is made if 
the lower limit of the 90% credibility interval for θ  is not zero when rounded to two 
significant digits. With the sample size of 200 fish in the mixture, this would be 
equivalent to having detected just a single individual from the group in question.  In 
Bayesian terms an interpretation of this rule can be expressed as a request that posterior 
probability of 0.005θ >  be greater than or equal to 0.95, i.e., Pr( 0.005) 0.95θ > ≥

0H

. If 
this happens, the null hypothesis is rejected and the group is believed to be present in the 
mixture. In the opposite case, the data provide insufficient evidence to reject  and the 
group’s contribution, θ , is accepted to be not significantly different form zero. 

>

Detectability of a stock group is naturally expected to be dependent on the group 
identifiability relative to the rest of the baseline, level of the group’s contribution to the 
mixture, and the size of the mixture sample. The higher identifiability of the populations 
in a group the better detectability of the group should be seen in the mixed stock analysis. 
With 100% identifiability (i.e. presence of private allele/s), one should expect perfect 
detectability for any contribution level down to a single individual in the mixture. 
Usually, the power to detect small contributions decreases with the contribution level and 
the mixture sample size. For example, with a mixture size of 100 fish, contribution of 1% 
will bring just a single individual from a population of interest, which will be really 
difficult to identify if it does not have any fixed alleles. Increasing sample size to 1000 
fish will provide 10 individuals from the population in question, which should make 
detection easier. In this study mixture size is fixed at 200 fish. So, the primary concern is 
how fast does the statistical power to detect small contributions from a specific group of 
stocks decline with decrease in the contribution level. 
 Before we can begin discussion of the results, it is important to mention that such 
terms as “estimate”, “statistical power”, and “hypothesis testing” are pure frequentist 
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terms and do not make much sense in the strictly Bayesian context. Despite this fact, it is 
often convenient to adapt and use these classical concepts for interpretation of Bayesian 
results. First, even though posterior distribution fully describes the state of our knowledge 
concerning a parameter θ , a single estimate is usually needed for practical purposes. 
Thus, managers may want to know an estimate of stock contribution in a mixture, rather 
than its posterior distribution, in order to reach a certain executive decision. As 
mentioned earlier, posterior mean, median and/or various quantiles can serve as point 
estimates for an unknown parameter θ . Secondly, the power calculations, as described 
above, will enable a direct comparison of the Bayesian mixed stock analysis with similar 
studies (e.g., Reynolds and Templin, 2003) based on the classical maximum likelihood 
methods.     
 
IV. Results and discussions 
 

The population detectability was analyzed for the four regional groups: Kvichak 
reporting region (RR), Lake Clark RR, a group of 12 Russian populations, and finally a 
group of all Bristol Bay stocks combined. The detectability of the first two groups was 
tested relative to a truncated baseline consisting of the Kvichak and Naknek populations 
only (32 populations), whereas the last two groups were tested relative to the full baseline 
of 63 available populations. 

The power to detect nonzero contributions for the four regions of interest is 
shown in Table 2 as well as on Figures 3 and 4. The first two rows of Table 2 and the 
corresponding plots in Figure 3 show the detection power for populations from Lake 
Clark and Kvichak regions respectively. The simulations for these two regions were 
conducted based on the truncated baseline of 32 populations (Kvichak & Naknek RRs). 
As one can see, the detection power decreases progressively with the decline in 
contribution level, however it does not drop to zero even at the lowest contribution of 
1%. At high contributions of 20% and 10% both groups are detectable with power 1.00. 
Power declined rapidly below 10%, however it is still relatively high at 3%, 4%, and 5% 
contributions. 

 
Table 2. Power to detect non-zero contributions for the four reporting regions. 

 1% 2% 3% 4% 5% 10% 20% 
LakeClark 0.03 0.17 0.60 0.70 0.73 1.00 1.00 
Kvichak 0.07 0.17 0.27 0.63 0.63 0.97 1.00 
Bristol B. 0 0.23 0.43 0.70 0.87 1.00 1.00 
Russia 0.03 0.13 0.33 0.40 0.83 1.00 1.00 

 
Simulations based on the full baseline show that the power to detect the group of 

Russian stocks and the group of all Bristol Bay stocks declines somewhat slower (Table 
2, Figure 4). At the 5% contribution level the two groups can still be detected with high 
power (0.83 and 0.87 respectively). Even though after the 5% mark a steady decline in 
power is observed, at the 3% contribution level the Russian group exhibits the moderate 
detection power of 0.33 and the Bristol Bay group of 0.43. 
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Figure 3. Power to detect non-zero contributions (Kvichak & Naknek baseline) 
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Figure 4. Power to detect non-zero contributions (full baseline) 
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High detection power down to the 5% contribution level observed for combined 
Bristol Bay stocks and for the group of Russian stocks can be attributed to large 
genetic differences between these two groups. In other words, larger differences in 
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allele relative frequencies allow better identifiability between populations and hence 
lead to the high detection power by reducing the variability of the posterior 
distribution ofθ .  
 Simulations for all four groups at the two lowest contribution levels of 1% and 
2% yielded detection power of less than 0.25. With the mixture size of 200 fish, 1% 
and 2% contributions will supply 2 and 4 individuals respectively in a mixture sample 
from the group of interest. Clearly, with existing genetic relationships between the 
populations of the four regions and their corresponding baseline stocks, this low 
number of individuals in a mixture is not enough to consistently detect the presence 
of the specific group. Since the populations comprising a group are not perfectly 
identifiable, the few individuals contributed from that group can be adequately 
explained as having originated from similar populations (see discussion in Reynolds 
and Templin, 2003).  
 Reynolds and Templin (2003) and Pella and Milner (1987) show that methods 
based on maximum likelihood produced increasingly biased estimates of stock 
contributions as proportions of different stocks in the mixtures became more uneven. 
Contributions from abundant stocks are often underestimated and those from stocks 
that contribute little or nothing are usually overestimated. In this study, we consider 
mean and median of posterior distribution as possible point estimates of stock 
proportions (histograms of posterior means for each scenario, i.e., group * 
contribution level are presented in Appendix 2). Each histogram represents a 
distribution of 30 posterior means obtained by running the Bayesian model on 30 
simulated mixtures per scenario. Table 3 summarizes these results showing average 
across 30 mixtures posterior mean contributions and their standard errors for each 
scenario. 
 
 Table 3. Average across 30 mixtures posterior mean and its standard error.  
 1% 2% 3% 4% 5% 10% 20% 
LakeClark 0.013 

(0.011) 
0.019 

(0.011) 
0.033 

(0.015) 
0.035 

(0.014) 
0.051 

(0.020) 
0.094 

(0.022) 
0.201 

(0.018) 
Kvichak 0.029 

(0.016) 
0.035 

(0.016) 
0.041 

(0.026) 
0.057 

(0.027) 
0.063 

(0.024) 
0.091 

(0.033) 
0.178 

(0.051) 
Bristol B. 0.013 

(0.005) 
0.022 

(0.011) 
0.025 

(0.010) 
0.033 

(0.013) 
0.041 

(0.011) 
0.081 

(0.018) 
0.173 

(0.020) 
Russia 0.013 

(0.008) 
0.019 

(0.011) 
0.027 

(0.013) 
0.029 

(0.014) 
0.044 

(0.015) 
0.101 

(0.025) 
0.205 

(0.024) 
   
As one can see from the table, the averaged across simulated mixtures mean 
contributions are centered fairly accurately at the pre-assigned values. Their standard 
errors increase along with the contribution level, however at a much slower rate than 
the mean values themselves. In other words, the coefficient of variation (not shown) 
decreases with the increase in contribution level. Kvichak reporting region has the 
highest variation of the posterior means and the average mean contributions are 
somewhat off the nominal levels. Kvichak reporting region contains 22 populations 
and when analyzed against the truncated baseline (with 32 populations total) produces 
consistent overestimates of the group’s contribution at 1% and 2% nominal levels. 
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The overestimation is likely to be a result of genetic closeness between the Kvichak 
stocks and the rest of the truncated baseline consisting of the Naknek stocks, which 
makes it more difficult to correctly identify mixture individuals. For the other three 
reporting regions, even at the small contributions, the mean estimates are quite 
precise and less variable.    
 Medians of posterior distributions represent alternative Bayesian point estimates 
(Table 4 shows the average medians with their standard errors for the four regions 
and seven contribution levels). In general, the medians behave similarly to the means 
being slightly more biased-low at the smaller contribution levels.  
 
 Table 4. Average across 30 mixtures posterior median and its standard error. 
 1% 2% 3% 4% 5% 10% 20% 
LakeClark 0.009 

(0.011) 
0.016 

(0.012) 
0.030 

(0.015) 
0.033 

(0.015) 
0.048 

(0.021) 
0.092 

(0.022) 
0.200 

(0.018) 
Kvichak 0.023 

(0.016) 
0.029 

(0.016) 
0.034 

(0.027) 
0.051 

(0.029) 
0.057 

(0.025) 
0.086 

(0.034) 
0.175 

(0.052) 
Bristol B. 0.010 

(0.005) 
0.019 

(0.012) 
0.022 

(0.010) 
0.030 

(0.013) 
0.038 

(0.011) 
0.079 

(0.018) 
0.171 

(0.020) 
Russia 0.008 

(0.009) 
0.015 

(0.012) 
0.023 

(0.013) 
0.025 

(0.015) 
0.041 

(0.016) 
0.099 

(0.025) 
0.204 

(0.024) 
 
 Overall, the Bayesian method shows adequate potential in application to the 
mixed stock analysis and is evidently capable of detecting reasonably small 
contributions in mixtures of large number of baseline populations. Taking into 
account its advantages over the widely used maximum likelihood methods, such as 
better handling of missing data, ability to update the baseline RFs based on the 
information form mixture samples, and shrinking the baseline RFs to the better 
established grand or group means, the Bayesian approach is a sound alternative to the 
CML method.  
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