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Abstract 
Pleistocene climate cycles greatly infuenced the distributions of kelps in northern seas and gated trans-Arctic dispersals 
between the North (N) Pacifc and N Atlantic oceans. Here, we used partial sequences of the mitochondrial DNA cytochrome 
oxidase I-5′ (COI) and plastid ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit-3′ (rbcL) to resolve the phy-
logeography of the kelp Hedophyllum nigripes in the Gulf of Alaska and globally. In the Gulf of Alaska, genetic diversity 
was moderate (COI: h = 0.493 ± 0.076, n = 57; rbcL: h = 0.578 ± 0.00047, n = 54), but nucleotide diversity was small (COI: 
θπ = 0.00114 ± 0.00100, n = 57; rbcL: θπ = 0.0001 ± 0.00089, n = 54). Concatenated sequences showed strong haplotype-
frequency diferences among populations (ΦST = 0.728). The addition of previously published COI sequences from British 
Columbia showed a general absence of southern haplotypes in the Gulf of Alaska, supporting the conclusion of northern 
ice-age refugia. COI sequences in Canadian Arctic-Northwestern (NW) Atlantic populations difered by 1–2 mutation from 
Northeastern (NE) Pacifc sequences, and unexpectedly, were marginally more closely related to populations in British 
Columbia than to geographically intermediate populations in the Gulf of Alaska. COI haplotypes from the Svalbard Archi-
pelago in the NE Atlantic showed no variability and difered by 1–2 mutations from haplotypes in the NW Atlantic. Time-
calibrated genetic divergences indicated trans-Arctic dispersal(s) from the N Pacifc into the N Atlantic in the mid-Pleistocene. 

Keywords Hedophyllum nigripes · Kelp · Phylogeography · Trans-arctic dispersal · Mitochondrial DNA · Chloroplast 
DNA · Bering strait · Pleistocene glaciation 

Introduction 

Historical events and contemporary processes have shaped 
the genetic structures of populations of kelps at mid to high 
latitudes. Chief among contemporary processes is the disper-
sal of propagules, either as planktonic spores, or as drifting 
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unattached kelp (Gillespie et al. 2012), that enhances genetic 
connetivity between populations and seeds empty habitat 
patches. Metapopulation processes, involving local extinc-
tions and colonizations, can also shape patterns of genetic 
variability among populations by eroding genetic diver-
sity within and among populations (Gilpin 1991; Moy and 
Christie 2012). On large time scales, coastal glaciers during 
Pleistocene ice-ages profoundly infuenced genetic variabil-
ity among populations through extirpations, isolations in 
refugia (Maggs et al. 2008), and post-glacial colonizations. 

In the North (N) Pacifc and N Atlantic oceans, rocky-
shore kelps, such as Saccharina latissima, S. japonica, and 
Laminaria digitata tend to show low levels of genetic vari-
ability within populations, but strong diferences between 
populations (Zhang et al. 2015; Guzinski et al. 2016; Lut-
tikhuizen et  al. 2018; Grant et  al. unpublished). These 
patterns of population structure have been attributed to 
restricted gene fow between populations because of short-
lived spores and habitat discontinuities. While spores lose 
mobility after a few hours, non-motile spores can still be 

http://orcid.org/0000-0002-3636-8099
http://crossmark.crossref.org/dialog/?doi=10.1007/s00300-020-02748-6&domain=pdf
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suspended in the water and potentially be transported in 
coastal currents for several days (van den Hoek 1987). How-
ever, realized spore dispersal is generally limited to only a 
few meters (Anderson and North 1966; Dayton 1985; San-
telices 1990). Genetic diferentiation between populations on 
spatial scales of a few meters to tens of kilometers indicates 
that long-distance dispersal is rare (Robuchon et al. 2014; 
Zhang et al. 2015; Luttikhuizen et al. 2018). Nevertheless, 
rare dispersals of detached kelp are possible, as evidenced 
by rafting of kelp across large oceanic distances (Fraser et al. 
2011; Saunders 2014; Macaya et al. 2016) and the develop-
ment of seaweed foras on newly formed island (van den 
Hoek 1987). 

In addition to contemporary processes, historical events 
have been important infuences on population structure. The 
margins of continental glaciers periodically covered shore-
lines in the Northeastern (NE) Pacifc and N Atlantic oceans 
and displaced populations into refugia. A widely held view, 
based on phylogeographic patterns of terrestrial plants and 
animals proposes that high-latitude populations survived 
glacial advances in southern ice-free refugia (Hewitt 1996, 
2004). Even though glaciers reached mid latitudes in North 
America and Europe during glacial maxima, genetic evi-
dence and coastal climate reconstructions indicate the exist-
ence of northern refugia above the southern margins of ice 
sheets in the NE Pacifc (Hickerson and Ross 2001; Clague 
and James 2002; Kaufman and Manley 2004; Carrara et al. 
2007; Lindstrom 2009; Marko et al. 2010; Canino et al. 
2010; Bigg 2014) and in the N Atlantic (Sarnthein et al. 
2003; Provan et al. 2005; Shaw 2006; Maggs et al. 2008; 
Provan and Bennett 2008; Assis et al. 2018; Bringloe et al. 
2020). 

On a broader geographic scale, the opening and closing of 
the Bering Strait, in concert with glacially driven sea-level 
changes, repeatedly gated trans-Arctic dispersals of marine 
species between the N Pacifc and N Atlantic oceans since 
the Strait frst opened 7.4–4.8 million years ago (Vermeij 
1991; Marincovich and Gladenkov 2001; Gladenkov et al. 
2002; Marincovich et al. 2002). Genetic distances between 
related species or populations in the N Pacifc and N Atlantic 
show deep and shallow divergences, indicating a range of 
dispersal times. Several species of fshes (Grant 1986; Grant 
and Ståhl 1988), invertebrates (Väinölä 2003; Marko et al. 
2014; Laakkonen et al. 2015) and macroalgae (Lindstrom 
2001; Rothman et al. 2017; Bringloe and Saunders 2019a) 
dispersed across the Arctic Ocean soon after Bering Strait 
opened in the late Miocene-early Pliocene Epochs. Whereas 
other species have only recently transited the Arctic, as evi-
denced by small genetic distances between N Pacifc and 
N Atlantic populations of fshes (Laakkonen et al. 2013; 
Makhrov and Lajus 2018), invertebrates (Addison and Hart 
2005; Albrecht et al. 2014; Laakkonen et al. 2015) and 

macroalgae (van Oppen et al. 1995; Coyer et al. 2011; Neiva 
et al. 2018; Bringloe and Saunders 2019a). 

The focus here is on the phylogeography of the subtidal 
and low-intertidal kelp, Hedophyllum nigripes (S. Agardh) 
Starko, S.C. Lindstrom and Martone. This species is distrib-
uted on wave-exposed or current-swept rocky shores from 
central California to Alaska and the Aleutian Archipelago 
in the N Pacifc (Druehl 1979; Hansen 1997; Lindeberg and 
Lindstrom 2010; Mondragon and Mondragen 2010; Klink-
ingberg 2018), and in the Arctic and Northwestern (NW) 
Atlantic (Sears 2002; McDevit and Saunders 2010; Longtin 
and Saunders 2016). This kelp also occurs in the high lati-
tude NE Atlantic, but is apparently absent along the west 
coast of Norway (Lien et al. 1999; Rueness et al. 2001; Lund 
2014). This kelp has been observed growing under low-light 
conditions as deep as 20 m in SE Alaska (Ellis and Calvin 
1981; Calvin and Ellis 1981) and 15 m in the Arctic (Lydon 
2015; Filbee-Dexter et al. 2019). 

Several authors have confused Hedophyllum nigripes 
with Saccharina latissima, Laminaria digitata, or have 
treated it as Laminaria bongardiana. In a review, Bartsch 
et al. (2008) listed H. nigripes (Laminaria groenlandica, 
Rosenvinge) as occurring only in the N Pacifc Ocean, and 
concluded that putative populations of L. groenlandica in 
the N Atlantic belonged to a morphologically plastic S. latis-
sima species complex. However, subsequent molecular and 
morphological analyses showed that many of the taxa in this 
putative species complex were distinct species, including 
H. nigripes (Lane et al. 2006; Longtin and Saunders 2015; 
Starko et al. 2019). McDevit and Saunders (2010) surveyed 
cytochrome oxidase-1 (COI) sequences in H. nigripes from 
the NE Pacifc, Canadian Arctic, and NW Atlantic and found 
that populations in these areas were conspecifc. However, 
material from the NE Atlantic was not examined where this 
kelp was frst described from specimens collected at Spits-
bergen (Agardh 1868). 

In the present study, we provide new partial sequences 
of cytochrome c oxidase subunit I-5′ gene (COI) and plas-
tid ribulose-1,5-bisphosphate carboxylase/oxygenase large 
subunit-3′ (rbcL) from populations in the Gulf of Alaska 
(n = 57), and combine these sequences with available data 
from British Columbia and Washington (n = 22), the Cana-
dian Arctic and the NW (n = 26) and NE (n = 51) Atlantic 
oceans to provide a broader phylogeographic perspective. 
Our frst objective was to survey genetic variability among 
populations in the NE Pacifc to assess levels of connectivity 
between populations and to test whether genetic signatures 
of northern glacial refugia were imprinted on these popula-
tions. The second objective was to infer the phylogeographic 
origins of Arctic and N Atlantic populations and to estimate 
the timing(s) of trans-Arctic dispersal(s). 
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Materials and methods 

Samples of sporophytes were collected at rocky intertidal 
sites around the Gulf of Alaska (Fig. 1). Individuals of Hedo-
phyllum nigripes were misidentifed as Saccharina latissima 
at some localites in the Gulf of Alaska and as Laminaria 
digitata in the Svalbard Archipelago (see Online Resource 
Methods; Lund 2014; Lydon 2015). The misidentifcations 
were detected by comparing COI sequences with published 
sequences of H. nigripes. A 2×2-cm piece of frond near the 
basal meristem was excised, damp dried, then dried on sil-
ica beads immediately after collection. DNA was extracted 
with the NucleoSpin® 96 Plant II kit (Macherey–Nagel Inc. 
Düren, Germany). 

We used mitochondrial and plastid DNA to infer phy-
logeographic structure, because both are generally non-
recombining and uni-parentally (maternal) inherited in kelps 
(Motomura et al. 2010; Li et al. 2016) and hence can be used 
to infer historical relationships among populations (Avise 
2000). Furthermore, the analyses of both mitochondria and 
plastids provide diferent perspectives of a common popula-
tion history because they evolve independently of each other. 
Both DNAs have mutation rates that can be used to resolve 
the infuences of environmental events in the late Pleistocene 
Epoch (e.g. Neiva et al. 2018). 

A 658 bp segment of COI-5′ was amplifed with PCR 
using the forward primer GazF2 (5′ CCAACCAYAAAG 
ATATWGGTAC 3′) and reverse primer GazR2 (5′ GGATGA 
CCAAARAACCAAAA 3′) (Lane et al. 2007). A 735 bp 
segment of rbcL-3′ was amplifed with PCR using the for-
ward primer rbcL-543F (5′ CCWAAATTAGGTCTTTCW 
GGWAAAAA 3′) (Bittner et al. 2008; Silberfeld et al. 2010) 
and reverse primer rbcL-1381R (5′ ATATCTTTCCATARR 
TCTAAWGC 3′) (Burrowes et al. 2003; Silberfeld et al. 
2010). The PCR cocktail consisted of a 50 μL mixture of 
2.0 μL template DNA in 1 × Colorless GoTaq Flexi bufer, 
2.5 mM MgCl2, 0.2 mM of each dNTP, 1 μM of forward and 
reverse primers, and 2.5U GoTaq Flexi DNA polymerase. 
PCR amplifcations were conducted in ABI 9700 thermocy-
clers with initial denaturation at 94 °C for 3 min, followed 
by 35 amplifcation cycles of 45 s at 94 °C, 1 min at primer 
annealing temperature 50 °C for COI and 52 °C for rbcL, 
and 1 min 30 s at 72 °C, and a fnal 5 min at 72 °C. PCR 
amplifcations were sequenced in the forward and reverse 
directions by Genewiz Inc. (South Plainfeld, NJ) or by the 
University of Arizona Genetics Core. Forward and reverse-
complement sequences were aligned and edited with MEGA 
7.0.20 (Kumar et al. 2016) and chromatograms viewed with 
Finch TV 1.4.0 (Geospiza Inc.). Kelp with unique haplo-
types were selected from each of the 96-well plates for re-
extraction and re-sequencing for quality control. Methods 

for processing kelp samples from the Svalbard Achipelago 
are similar and can be found in Lydon (2015). 

Eight new COI haplotypes in Gulf of Alaska pop-
ulations correspond to Genbank accession num-
bers MT742224–MT742231, and five rbcL haplo-
types correspond to Genbank accession numbers 
MT742232–MT742236 (Online Resource Table  S1). 
Sequences of COI for split kelp in British Columbia, Hud-
son’s Bay, NW and NE Atlantic were included in the study 
to compare with new sequences from the Gulf of Alaska 
(Online Resource Table S1). This larger dataset consisted 
of a 576 bp fragment that overlapped with COI sequences 
from the Gulf of Alaska. 

ARLEQUIN 3.5.2.2 (Excofer and Lischer 2010) was 
used to estimate the number of polymorphic nucleotide sites, 
Npoly, the number of observed haplotypes, NH, and number of 
expected haplotypes under neutrality, NEH. ARLEQUIN was 
also used to estimate gene diversity, h (standard deviation), 
and nucleotide diversity, θπ (standard deviation). Divergence 
between populations was estimated with ΦST (based on hap-
lotype frequencies and sequence divergences between haplo-
types). An appropriate mutation model to estimate sequence 
divergence were determined with MEGA 7 (Kumar et al. 
2016). Departures from neutrality were tested with Tajima’s 
D (Tajima 1989). 

COI sequences were used to estimate the timing of trans-
Arctic dispersal in H. nigripes with H. subsessile (Online 
Resource Table S2) as an outgroup. A phylogenetic tree was 
reconstructed with BEAST 1.8.3 (Drummond et al. 2012) 
with the Tamura-Nei (1993) substitution model (Online 
Resource Table S3), a strict clock, and a prior on the root 
node of the tree of 3.7 Ma with an normal distribution and 
a standard deviation of 2.7 to approximate the 95% HPD 
interval of 6.7–1.3 Ma (Starko et al. 2019). The clock rate 
was constrained to 0.1–0.8% Ma−1 with a uniform prior dis-
tribution. The analysis was run for 107 MCMC steps and 
repeated three times, before combining the runs, each with 
a 10% burn-in. 

Results 

Gulf of Alaska 

Cytochrome oxidase I‑5′ (COI) 

COI sequences were available for 6 sites in Alaskan waters 
(Table 1). Eleven polymorphic nucleotides sites along a 
658-bp fragment of COI defned 11 haplotypes among 57 
specimens (Table 1; Fig. 1a). Nine haplotypes were unique 
to a particular location. Haplotype diversity (h) ranged from 
0.0 to 1.0 and was 0.493 ± 0.076 (n = 57) overall. Nucle-
otide diversity (θπ) ranged from 0.0 to 0.0046 and was 
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Fig. 1 Geographical distributions of haplotypes in the NE Pacifc 
Ocean for Hedophyllum nigripes. a Network showing mutational 
relationships among COI haplotypes (658  bp). One connection 
between two haplotypes represents a single nucleotide-site change. 
Small solid circle represents hypothetical, unsampled haplotype. 
Complete list of Genbank Assession numbers appears in Supplemen-
tary Table 1. b Map showing frequencies of mitochondrial COI hap-
lotypes among populations. Circle size is proportional to sample size. 
c Haplotype network of chloroplast rbcL sequences (735 bp). d Fre-
quencies of chloroplast rbcL among samples. e Haplotype networks 
of concatenated COI and rbcL sequences (1393 bp). f Frequencies of 
concatenated COI + rbcL haplotypes among samples 

0.00149 ± 0.0012) (n = 57) overall. Tajima’s test showed 
an overall signifcant departure from neutrality in a pooled 
sample (D = − 1.95, p = 0.006, n = 57) that was due to an 
excess of low-frequency haplotypes. Only 3.77 haplotypes 
were expected under neutralilty, but 10 were observed. 

COI sequences from northern and southern British 
Columbia were added to the collection of Alaskan sam-
ples (Table 1; Figs. 1a, b). No sequence variability was 
observed among kelp from northern British Columbia 
(h =0.0, θπ =0.0, n =15) and one variant haplotype appeared 
among kelp from southern British Columbia and Washing-
ton (h = 0.286 ± 0.196, θπ = 0.00049 ± 0.00067, n = 7). In a 
pooled sample, haplotype (h = 0.091 ± 0.081, n = 22) and 
nucleotide (θπ = 0.00016 ± 0.00033, n = 22) diversities were 
small. A test for neutrality showed no signifcant departure 
(D = − 1.162, p = 0.146, n = 22) in the pooled sample. 

Haplotype frequencies varied strongly among locations 
6–13 in the NE Pacifc (Fig. 1b) with some haplotypes 

widespread and other at low frequencies in only one 
population. Ten private haplotypes appeared at 8 loca-
tions. Some populations were fxed for a particular haplo-
type. Genetic distances between populations ranged from 
ΦST =0.0, between locations fxed for the same haplotype, to 
ΦST =1.0, between locations fxed for alternative haplotypes 
(Table S4). The value of ΦST overall was 0.534 (p = 0.035, 
n = 79). 

Ribulose-1,5-bisphosphate carboxylase/oxygenase large 
subunit-3′ (rbcL) 

Polymorphisms appeared at 4 nucleotide sites in a 735 
base-pair segment of rbcL and defined 5 haplotypes 
(n = 54) among populations 7–11 around the Gulf of Alaska 
(Online Resource Tables S5, S6; Figs. 2c, 2d). One nucleo-
tide site defning haplotypes MT742232, MT742233 and 
MT742234 segregated for both transitions and transver-
sions and formed a closed loop in the haplotype network. 
Haplotype diversity (h) ranged from 0.0 in three locations 
fxed for a single haplotype to 0.667 and was 0.578 ± 0.047 
(n = 54) overall. Nucleotide diversity (θπ) ranged from 0.0 
to 0.0009 and was 0.0001 ± 0.0009) (n = 54) overall (Online 
Resource Table S6). A test for neutralilty overall was not 
signifcant (D = 0.343, p = 0.677, n = 54). Pairwise genetic 
distances (ΦST) between populations ranged from 0.672 
to 1.0, and all were signifcantly larger than 0.0 (p < 0.05) 
(Online Resource Table S7). Overall in the Gulf of Alaska, 
ΦST = 0.769 (p < 0.001, n = 54). 

Concatenated COI‑rbcL sequences 

A total of 10 polymorphic nucleotide sites in concatentated 
sequences (1393 bp) produced 12 haplotypes among samples 
7–11 in the Gulf of Alaska (n = 52) (Tables 2, 3; Figs. 1e, 
f). Values of h ranged from 0.0 in populations fxed for a 
single haplotype to 0.402 among specimens from Halibut 
Point, SE Alaska (sample 9) that had a dominant haplotype 
and 6 singleton haplotypes. θST ranged from 0.0 to 0.00072 
and was 0.00091 ± 0.00065 (n = 52) overall. Tajima’s test 
of neutrality was not signifcant (D = −1.210, p = 0.114, 
n = 52). Haplotype frequencies varied strongly among loca-
tions (Fig. 1f). ΦST between samples ranged from 0.151 to 
1.0 and were signifcant (p < 0.05) for all of the pairwise 
comparisions after correction for multiple tests (Table 4). 

Global phylogeography of COI 

The addition of 77 sequences of COI (576 bp) from 5 local-
ities (1–5, Table 1) in the Canadian Arctic, NW and NE 
Atlantic provided an overview of genetic variability on a 
larger geographical scale. A single haplotype appeared in 
samples from the Svalbard Islands (n = 51) that was one 
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mutation removed from the dominant haplotype in the Cana-
dian Arctic and NW Atlantic (Fig. 2). In the Canadian Arctic 
and NW Atlantic sequences, only a single nucleotide site 
was polymorphic, producing two haplotypes, one occurring 
in a single specimen (Location 4, Table 1, Online Resource 
Tables S8, S9). Overall, haplotype (h = 0.077 ± 0.070, 
n = 26) and nucleotide (θπ = 0.00013 ± 0.00030, n = 26) 
diversity were small. Tajima’s test for neutrality was not 
signifcant (D = − 1.156, p = 0.138, n = 26). 

We used COI divergence between H. nigripes and its sis-
ter taxon, H. subsessile and the Starko et al. (2019) estimate 
of 3.7 Ma for the time to the most recent common ancestor to 
calibrate the trans-Arctic dispersal of H. nigripes into the N 
Atlantic. The mean Tamura and Nei (1993) genetic distance 
between H. nigripes and H. subsessile was d = 0.0339. Dis-
tances between regional groups of H. nigripes were an order 
of magnitude smaller (Online Resource Table S3). Average 
genetic distance between NE Pacifc and Arctic-NW Atlan-
tic populations was d = 0.0046, and between NE Pacifc 
and NE Atlantic (Svalbard Archepelago) was d = 0.0034. 
The genetic distance between populations in Arctic-NW 
Atlantic and the Svalbard Archipelago was d = 0.0026. 
The phylogenetic calibration yielded an estimate of about 
0.922 Ma (posterior probability 1.0, 95% highest density 

probability 1.88–0.27 Ma) for the time since populations 
in the NE Pacifc and Arctic-NW-NE Atlantic began to 
diverge from one another (Fig. 3). Populations in the Gulf 
of Alaska and British Columbia had a common ancestor 
0.568 Ma (probability 0.753, 1.186–0.155 95% HPD). The 
coalescence time to a common ancestor for the NW and 
NE Atlantic was 0.300 Ma (probability 0.718, 1.517–0.150 
95% HPD), 0.324 Ma (probability 0.988, 0.732–0.077 95% 
HPD) for the Gulf of Alaska, and 0.384 Ma (probability 
0.397, 0.858–0.074 95% HPD) for British Columbia and 
Washington. 

Discussion 

Our analysis of genetic markers in split kelp provides several 
insights that are not possible from the analysis of morpho-
logical variability. First, populations in the NE Pacifc are 
genetically subdivided as a result of limitations on present-
day levels of gene fow between populations that maintain 
historical divergences during isolations in northern Pleisto-
cene refugia. Second, the analysis confrms the relationship 
between NE Pacifc and N Atlantic populations and indi-
cates these populations belong to a single species that are 

Fig. 2 Geographical distributions of cytochrome oxidase I haplo- Assession numbers appears in Supplementary Table 1. b Map show-
types (576 base pairs) for Hedophyllum nigripes globally. a Network ing locations of samples and haplotype frequencies within sampled 
showing mutational relationships among COI haplotypes. One step populations. Size of circle is proportional to sample size 
represents a single nucleotide-site change. Complete list of Genbank 

https://1.88�0.27
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Table 2 Summary statistics 
for concatenated sequences of 
cytochrome oxidase I-5′ (COI)
and ribulose-1,5-bisphosphate 
carboxylase/oxygenase large 
subunit-3′ (rbcL) (1393 base
pairs) for populations in the 
Gulf of Alaska 

Location 

7 
8 
9 
10 
11 

N 

4 
7 
9 
27 
5 

Npoly 

2 
0 
1 
7 
0 

NH 

3 
1 
2 
7 
1 

NEH 

3.04 
1.00 
1.52 
2.63 
1.00 

NPH 

1 
0 
2 
6 
1 

h± SD 

0.833± 0.222 
0.0 
0.222± 0.166 
0.402± 0.119 
0.0 

θπ ± SD (%) 

0.072 ± 0.071 
0.0 
0.016 ± 0.023 
0.037 ± 0.036 
0.0 

D 

− 0.710 
– 
−1.088 
− 2.166 
– 

P 

0.285 
– 

0.203 
0.002 
– 

Mean 10.4 2.0 2.8 1.84 2.0 0.291 0.025 – – 
Pooled 52 10 12 8.46 10 0.770± 0.046 0.091 ± 0.065 − 1.210 0.114 

Table 3 Haplotype frequencies 
of contatenated sequences 
of mitochondrial DNA 
cytochrome oxidase I-5′ (COI)
and chloroplast DNA ribulose-
1,5-bisphosphate carboxylase/
oxygenase large subunit-3′ 
(rbcL) (1393 base pairs) for 
populations in the Gulf of 
Alaska 

Location numbers as in Table 1 
N sample size, Npoly number of polymorphic nucleotide sites, NH number of haplotypes, NEH expected 
number of haplotypes under neutrality, NPH number of private haplotypes, h haplotype diversity (Standard 
Deviation), θπ nucleotide diversity (Standard Deviation), D Tajima’s test for neutralilty (Probability) 

Location 

Haplotype 7 8 9 10 11 Total 

1 1 21 22 
2 2 7 9 
3 8 8 
4 5 5 
5 1 1 
6 1 1 
7 1 1 
8 1 1 
9 1 1 
10 1 1 
11 1 1 
12 1 1 
Total 4 7 9 27 5 52 

Location numbers as in Table 1 

connected by trans-Arctic dispersal (McDevit and Saunders 
2010). 

Mosaic population structure in the Gulf of Alaska 

The combined COI-rbcL marker indicates that nearly all the 
populations sampled in the Gulf of Alaska are genetically 
unique. Four of the populations (7–10) were fxed, or nearly 
fxed for one of the four haplotype lineages. However, diver-
gences between lineages were shallow, consisting of only 1 
or 2 mutational steps and producing an overall ΦST of only 
0.0009. Populations of other NE Pacifc kelps, such as Alaria 
marginata and Saccharina latissima also show fxed COI 
and rbcL frequency diferences between many populations 
(Grant et al. unpublished). Diversities within populations 
were small with h averaging 0.291 (mean n = 10.4) among 
populations and θπ averaging only 0.00025 (mean n = 10.4). 

Table 4 Genetic distances (ΦST) between populations in the Gulf 
of Alaska based on concatenated sequences of mitochondrial DNA 
cytochrome oxidase I-5′ (COI) and ribulose-1,5-bisphosphate car-
boxylase/oxygenase large subunit-3′ (rbcL) (1393 base pairs) with the 
Tamura and Nei (1993) model of nucleotide substitution 

8 0.151 
9 0.785 0.933 
10 0.467 0.680 0.794 
11 0.781 1.0 0.949 0.680 

7 8 9 10 
Location 

Location numbers as in Table 1 
Italics 0.05> P>0.01; Bold P< 0.01 

Large frequency diferences beween populations and low 
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within-population diversities may refect the efects of his-
torical events that are maintained by ecological processes. 

On shorter, ecological time scales, the small within-pop-
ulation genetic diversity and large haplotype diferences 
between populations may be explained in part by habitat 
patch extinctions and mode of colonizations. Fecundity and 
reproductive skew act synergistically with patch extinctions 
and colonizations so that habitat patches are colonized by 
propagules from only a few parents (Sargsyan and Wake-
ley 2008; Castorani et al. 2017). Little is known about the 
population dynamics of H. nigripes along NE Pacifc shores, 
but populations of H. nigripes in the NW Atlantic Bay of 
Fundy are ephemeral on decadal time scales (Longtin and 
Saunders 2016), as are populations of Saccharina latissima 
in Europe (Moy and Christie 2012; Christie et al. 2019) and 
Macrocystis pyrifera in California (Reed et al. 2006). 

The addition of COI sequences from British Columbia 
and Washington shows a phylogeographic break between SE 
Alaska and northern British Columbia that roughly coincides 
with a marine biogeographic boundary between the North 
American Pacifc Fijordland and the Gulf of Alaska eco-
region (Spalding et al. 2007), areas that difer in average sea 

surface temperatures (Payne et al. 2012). A similar genetic 
discontinuity has also been observed for marine fshes in this 
area (Withler et al. 2001). These phylogeographic breaks 
may refect adaptive responses to environmental diferences 
between regions, or may represent contact between groups 
previously isolated by Pleistocene glaciations. 

On longer time scales, the chaotic genetic structure of 
populations in the Gulf of Alaska likely refects historical 
isolations between lobes of the Cordilleran ice sheet during 
ice-age maxima (Mann and Hamilton 1995; Carrara et al. 
2007). The greater genetic diversity in the Gulf of Alaska 
relative to neighboring southern populations in British 
Columbia points to northern glacial refugia. During gla-
ciations, the eastward fowing North Pacifc Drift and the 
transition zone were pushed to the south from their present 
position along central British Columbia (Sabin and Pisias 
1996). However, average sea surface temperatures in the 
Gulf of Alaska dropped to only 5–6 °C during the last glacial 
maximum (Moore et al. 1980). These temperatures would 
have been within physiological tolerances of H. nigripes, as 
it presently occurs at high latitudes in subtidal waters that 
experience freezing temperatures in winter (Lydon 2015; 

Fig. 3 Phylogenetic reconstruction of COI lineages in Hedophyllum by Starko et al. (2019). Numbers at nodes represent Ma of divergence 
nigripes with rooting by Hedophyllym subsessile and with the Tamura and 95% Bayesian support for the node. Grey bars represent 95% 
and Nei (1993) model of substitution. Time scale based on divergence highest probability density 
between H. nigripes and H. sessile in a kelp phylogeny reconstructed 
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Filbree-Dexter et al. 2019). The well-studied kelp assem-
blage on ‘boulder patches’ of Alaska’s Arctic coast and 
of Greenland can be considered contemporary analogues 
of a glacial refugial community. Kelps in the Arctic persist 
despite several months of darkness under snow-covered sea 
ice (Dunton 1985; Wilce and Dunton 2014; Küpper et al. 
2016; Bringloe and Saunders 2019b; Filbee-Dexter et al. 
2019). 

The chief genetic evidence for the existence of north-
ern refugia in NE Pacifc H. nigripes is a mosaic popula-
tion structure and greater COI genetic diversity (h = 0.652, 
θπ = 0.0015, n = 57) relative to diversity in southern popula-
tions (h = 0.100, θπ = 0.0002, n = 20) (Table 1). The general 
lack of shared haplotypes between the Gulf of Alaska and 
British Columbia is also consistent with northern glacial 
refugia (Fig. 2b). The lack of samples from western Alaska 
and the northern reaches of the Bering Sea limits our ability 
to determine whether these northern refugia were located 
in the central and eastern Gulf of Alaska, along unglaciated 
shorelines of the Bering Land Bridge, or possibly in the NW 
Pacifc, where this kelp may be listed as S. bongardiana 
(Selivanova et al. 2007). 

Northern refugia are further supported by the discovery 
of coastal ice-age refugia for large mammals and terrestrial 
plants in the NE Pacifc (Peteet and Mann 1994; Heaton 
et al. 1996; Byun et al. 1997; Holder et al. 1999). These 
terrestrial refugia may have been associated with stretches 
of ice-free shorelines. The time-calibrated phylogenetic tree 
places the initial divergences between lineages in the Gulf of 
Alaska at 0.300–0.200 Ma, indicating that populations sur-
vived two or three Croll-Milankovitch climate cycles in local 
refugia. Divergence between populations is mantained by 
contemporary limits on gene fow between populations. Low 
levels of genetic diversities within populations may refect 
population bottlenecks, or local extinction and colonizations. 

Northern refugia in the NE Pacifc have been postulated 
for fshes (Canino et al. 2010; Bigg 2014), intertidal whelks 
(Marko et al. 2010), and other kelps (Lindstrom 2009; Grant 
et al. unpublished). Northern glacial refugia have also been 
postulated for numerous species in the N Atlantic that show 
high levels of genetic diversity at high latitudes (Maggs et al. 
2008) and by ecological niche models that identify suitable 
high-latitude habitats during glacial maxima (Bigg et al. 
2008; Assis et al. 2014, 2018; Bringloe et al. 2020). 

Canadian Arctic, NW Atlantic and NE Atlantic 

Unlike the mosaic population structure in the Gulf of Alaska, 
a single dominant COI haplotype occurred among popula-
tions in the Canadian Arctic and NW Atlantic oceans. This 
dominant haplotype was one mutation removed from the 
dominant haplotype in British Columbia, but two mutations 
from the dominant haplotype in the Gulf of Alaska, a pattern 

that is difcult to explain with the available data. Two hap-
lotypes (MH327950 and MH327952) from the ‘southern’ 
lineage in British Columbia appeared in two kelp from 
the western Gulf of Alaska (Fig. 1a, b) and may indicate 
that southern-lineage haplotypes occur farther to the west. 
Hence, one possibility is that the NW Atlantic haplotype 
is present along the Aleutian Islands, in the Bering Sea, or 
in the NW Pacifc and was carried by migrants across the 
Arctic Ocean. 

The low levels of genetic variability within and homo-
geneity among Canadian Arctic-NW Atlantic populations 
contrast with the greater genetic heterogeneity among NE 
Pacifc populations of H. nigripes. Only a single sequence 
variant was recovered in northern Labrador (location 3; 
Fig. 2). Although samples from the Canadian Arctic-NW 
Atlantic populations were small (n = 26 in total), they 
extended from Hudsons Bay to New Brunswick, Canada, 
so that a conclusion of genetic homogeneity is unlikely to 
change with further sampling. A single dominant haplotype 
in these samples invokes three non-exclusive and plausible 
scenarios: (1) gene fow is much greater in the NW Atlan-
tic than in the NE Pacifc, (2) population structure exists, 
but is not detectable because of low levels of COI sequence 
variability, or (3) populations have expanded recently from a 
single refugium and insufcient time has elapsed for genetic 
diferences among populations to emerge in the COI-5′ gene 
segment. 

Levels of contemporary gene fow between Canadian-
Arctic and NW Atlantic populations, as in scenario 1, are 
unlikely to be greater than those in the NE Pacifc. Short-
lived spores are unlikely to contribute to dispersals over 
long distances (Santelices 1990), and bidirectional long-
distance dispersals of mature plants are also unlikely. In 
scenario 2, the lack of COI polymorphisms may limit the 
ability to detect population structure, if it exists. The use of 
microsatellites or other nuclear markers may provide greater 
resolution of populations structure than mitochondrial or 
plastid DNA, as has been the case for other kelps (Saccha-
rina latissima, Luttikhuizen et al. 2018; Neiva et al. 2018). 
Further sampling and analysis with additional molecular 
markers and genomic methods will provide insights, not 
only into gene-fow patterns, but also into the kelp’s adap-
tive seascape. 

In scenario 3, low levels of genetic diversity and genetic 
homogeneity among Canadian Arctic-NW Atlantic popula-
tions may refect repeated contractions into a glacial refu-
gium and subsequent expansions. The classic southern refu-
gium hypothesis would place a refugium along mid-latitudes 
of North America during glacial maxima. However, northern 
refugia have been postulated for several species of marine 
invertebrates (Maggs et al. 2008). Distributional modelling 
during the last glacial maximum of other N Atlantic kelps 
indicates that northern refugia were possible, particularly 
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along the southern shorelines of Greenland (Assis et al. 
2018; Bringloe et al. 2020). 

The genetic afnity between Arctic-NW and NE Atlantic 
and NE Pacifc populations and the reduced levels of genetic 
diversity in the Arctic-NW and NE Atlantic populations, 
typical of populations founded by a small number of individ-
uals (Nei et al. 1975), support a model of trans-Arctic disper-
sal of migrants from the N Pacifc. Dispersal has periodically 
been possible after Bering Strait frst opened 7.4–4.8 Ma 
(Marincovich and Gladenkov 2001), not only during warm 
interglacial periods in the 0.100 Ma Croll-Milankovich cli-
mate cycle, but also during warm interstadials when rising 
sea levels breached the Bering Land Bridge (Jouzel et al. 
2007). The Bering Sea Strait has been open whenever global 
sea levels rose above −60 m below present-day sea level 
(Hopkins 1959) and has provided trans-Arctic dispersal 
opportunities for about 20% of the Pleistocene (Waelbroeck 
et al. 2002; Spratt and Lisiecki 2016). 

The temporal estimate of trans-Arctic dispersal of H. 
nigripes provides insight into whether Arctic-NW Atlan-
tic populations have only recently been established, or 
whether they have endured one or more ice-age cycles in 
the NW Atlantic. A divergence time between H. nigripes 
and its sister taxon H. subsessile of 3.7 Ma (Starko et al. 
2019) places trans-Arctic dispersal of H. nigripes into the 
N Atlantic at about 0.900 Ma (Fig. 3, probability 1.0, 95% 
HPD: 1.880–0.280 Ma) in the mid-Pleistocene Epoch. The 
mutational progression of haplotypes (Fig. 2a) indicates 
that Svalbard kelps were seeded by kelps in the Arctic NW 
Atlantic. 

In conclusion, Hedophyllum nigripes populations in the 
NE Pacifc show low levels of within-population genetic 
diversity, but strong diferences among populations that may 
have arisen from isolation in multiple northern glacial refu-
gia and maintained by contemporary ecological dynamics. 
The greater amount of genetic diversity among populations 
in the Gulf of Alaska than among southern populations indi-
cates persistence in northern refugia during multiple ice-
age cycles. This conclusion further challenges the traditional 
view that shallow-water, marine species in northern seas 
were displaced into southern refugia (Hewitt 1996, 2004). 
Arctic-NW Atlantic populations are genetically distinctive 
from NE Pacifc populations, have low levels of COI diver-
sity, and are genetically homogeneous. It is uncertain from 
this genetic profle whether N Atlantic populations survived 
in northern glacial refugia or expanded from southern refu-
gia. Together these results again show the profound infu-
ence Pleistocene climate shifts had in shaping the genetic 
population structures of northern marine species. 
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