
a)

b)

Table  1
Loci for
which
SNP
assays
were
developed:

PCR-RFLP10Cytochrome p450AADFG|Ots_P450

PCR-RFLP10somatolactinADFG|Ots_SL

DNA sequence9transferrinADFG|Ots_Tnsf

DNA sequence8Microsatellite Ots2 flanking regionADFG|Ots_Ots2

DNA sequence7Major histocompatibility complex class II β1 domainADFG|Ots_MHC2

DGGE6Major histocompatibility complex class I α2 domainADFG|Ots_MHC1

PCR-RFLP5Growth hormone II intron DADFG|Ots_GH2

PCR-RFLP4P53ADFG|Ots_P53

DNA sequence3Prolactin IIADFG|Ots_Prl2

PCR-RFLP2Mitochondrial cytochrome oxidase IIIADFG|Ots_C3N3

Published assay typeLocus descriptionAssay Name
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DGGE6Major histocompatibility complex class I α2 domainADFG|Ots_MHC1

PCR-RFLP5Growth hormone II intron DADFG|Ots_GH2

PCR-RFLP4P53ADFG|Ots_P53

DNA sequence3Prolactin IIADFG|Ots_Prl2

PCR-RFLP2Mitochondrial cytochrome oxidase IIIADFG|Ots_C3N3
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Allele frequencies for
an allozyme locus (1a)
and a microsatellite
locus (1b).
Populations (x-axis)
correspond to those
shown in Fig 4.  The
size of each bubble
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frequency of the
corresponding allele.
Colors indicate larger
geographic regions.
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Fig 1.  Allozyme and microsatellite alleles both
distinguished known lineages of Chinook salmon

Much is known of the freshwater life history and ecology of
Chinook salmon; far less is known of the oceanic migration
patterns and relative marine survival of individual stocks.  Migra-
tion following stock-specific corridors may lead to differing
marine survival and varying rates of return among stocks during
periods of fluctuating marine conditions.  We are developing
markers based on single nucleotide polymorphisms (SNPs) to
rapidly genotype large number of individual from high seas
samples.  Nuclear and mitochondrial SNPs provide useful and
complementary information.  We compare SNPs from represen-
tative populations originating from throughout the range of
Chinook salmon to equivalent data from allozymes and
microsatellite markers.  Results to date show that SNP markers
have the potential of becoming a rapid and cost effective ap-
proach to the analysis of large numbers of samples from
complex mixtures.

Abstract Nuclear and mitochondrial SNPs provide high-throughput resolution for migratory studies of
Chinook salmon

Christian T. Smith, William D. Templin, James E. Seeb and Lisa W. Seeb

Gene Conservation Laboratory
Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, Alaska 99518, USA
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PCR, it takes less than 5
minutes to genotype a plate of
384 wells (fish).  The axis on
the resulting scatter plot
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allele-specific probe was
cleaved.  Each dot represents
one fish, the genotype of which
is inferred by its position
relative to dots from individuals
of known genotypes

Fig 3. Rapid analysis of raw SNP data
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Fig 7.  Comparison of the times required to analyze a
single collection using each of the marker types
The SNP loci
developed for
this study
required less
time to run than
either of the
other two marker
types.  This is
because the
SNP assays
require no
electrophoresis
(Fig 2), and
much less
interpretation of
raw data (Fig 3)
than do
microsatellites
or allozymes.
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Fig 6.  FST values observed for each locus

Average FST estimates14 were
similar for allozyme and
microsatellite markers, but
were higher for SNPs.
Maximum FST estimates for
microsatellite loci will be
reduced as the number of
alleles increase.  Higher FST
and genetic distance
estimates for SNPs, however,
are likely due to the fact that
we intentionally developed
assays for highly informative
loci (Table 1).

StoneyStoney

JohnsonSp

MethowSp

DeschutesF

Chickamin

Unuk
Andrew

KingSalmon

BigBoulder

Tahini

Kenai

Susitna

Ayakulik

Nushugak

Togiak

Bistraya

Allozymes
JohnsonSp

MethowSp

DeschutesF

Chickamin

Unuk
Andrew

KingSalmon

BigBoulder

Tahini

Kenai

Susitna

Ayakulik

Nushugak

Togiak

Bistraya

Allozymes

SNP

JohnsonSp

MethowSp

DeschutesF
Chickamin

Unuk

Andrew

KingSalmon
BigBoulder

Tahini

Kenai

Susitna

Ayakulik

Nushugak

Togiak

Stoney

BistrayaSNP

JohnsonSp

MethowSp

DeschutesF
Chickamin

Unuk

Andrew

KingSalmon
BigBoulder

Tahini

Kenai

Susitna

Ayakulik

Nushugak

Togiak

Stoney

Bistraya

Microsatellites

Kenai

Nushugak

JohnsonSp

MethowSp

DeschutesF

Chickamin
Unuk Andrew

KingSalmon

BigBoulder Tahini

Susitna

Ayakulik

Togiak

Stoney

BistrayaMicrosatellites

Kenai

Nushugak

JohnsonSp

MethowSp

DeschutesF

Chickamin
Unuk Andrew

KingSalmon

BigBoulder Tahini

Susitna

Ayakulik

Togiak

Stoney

Bistraya

Kenai

Nushugak

JohnsonSp

MethowSp

DeschutesF

Chickamin
Unuk Andrew

KingSalmon

BigBoulder Tahini

Susitna

Ayakulik

Togiak

Stoney

Bistraya

Kenai

Nushugak

JohnsonSp

MethowSp

DeschutesF

Chickamin
Unuk Andrew

KingSalmon

BigBoulder Tahini

Susitna

Ayakulik

Togiak

Stoney

Bistraya

JohnsonSp

MethowSp

DeschutesF

Chickamin
Unuk Andrew

KingSalmon

BigBoulder Tahini

Susitna

Ayakulik

Togiak

Stoney

Bistraya

Fig 5. Multidimensional
scaling plots of genetic
distances13 between
populations
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Fig 4.  SNPs revealed geographic groupings similar to the
ones indicated by the other marker types
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Conversion of genetic markers from PCR-RFLP, DNA sequencing and DGGE to high-throughput SNP
genotyping assays was successful.  These SNP assays are cheaper and faster to run than genetic
markers presently being used for stock structure analyses (Fig 7).  Further, since the required number
of individuals in baseline samples increases with increasing numbers of alleles per locus, SNP
baselines should be relatively smaller and thus cheaper to produce.

A second advantage of SNP markers over microsatellites and allozymes is that SNP data are discrete
(nucleotide bases) rather than continuous (relative mobilities).  This allows immediate standardization
of SNP allele definitions among laboratories, an exercise that has proven difficult and expensive (in
some cases prohibitively so) in multi-agency studies of microsatellite and allozyme variation.

Mean genetic distance and FST estimates were higher for SNPs than for the other two loci (Fig 6),
reflecting the fact that SNP loci were chosen based on a priori knowledge of their information content.

Patterns of variation revealed by the three marker types were largely concordant (Fig 5).  The correla-
tion was higher between allozymes and SNPs (r2=0.57) than between either allozymes and
microsatellites (r2=0.35) or between SNPs and microsatellites (r2=0.23).  All correlations were highly
significant (P<0.01)

Given that the time and monetary requirements for running SNP genotyping assays are low relative to
other classes of genetic markers and that a wealth of previously described polymorphisms may be
accessed using these new technologies, it is likely that SNPs will become increasingly important tools
for population genetic studies in fisheries.
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from fishery analyses are
desirable under very tight
time-constraints.

Several genetic markers
described in the literature
provide information potentially
of great use to management.
Many of these markers are
never exploited for conserva-
tion or management, because
assays are too slow and/or
expensive.

Studies of the ecological genetics
of fish may require the analysis of
thousands of individuals at many
loci to characterize populations
and estimate the composition of
complex fisheries.  Often results

Introduction

Ten 5’-nuclease reaction SNP
genotyping assays (Fig 2) were
developed in order to facilitate
large-scale examination of several
loci known a priori to be
informative in Chinook salmon on
smaller scales (Table 1).  These
10 assays were tested on 1473
individuals from 16 sites around
the Pacific basin (Fig 4).  Data
from the SNP loci were compared

to data from other genetic
markers commonly used for
high-throughput fishery
applications: allozymes and
microsatellites.  Microsatellite
loci examined in this study were:
One9, One102, One13, Ots100,
Ots107 and µsat73.  A total of 29
allozyme loci were also analyzed
in all samples.  Genetic
distances based on the three
different marker types were
compared graphically with
multidimensional scaling plots
and statistically by examining
correlations between matrices of
genetic distances between all
populations.  Statistical
significance of each correlation
was tested using a permutation
procedure1.

Methods
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Results and Conclusions

Allele frequencies for
an example SNP
locus:
ADFG|Ots_C3N3

T/CT/C

The genotyping assays used for this study utilize the 5’-exonuclease activity
of DNA polymerase to digest allele-specific probes in the course of the
PCR11.  The use of fluorogenic probes in a real-time PCR machine allowed
amplification and genotyping to take place simultaneously12 without any need
for electrophoresis.
Components of the 5’-exonuclease reaction:

Template DNA:

Allele-specific oligonucleotide probes:

DNA polymerase featuring 5’ 3’ exonuclease activity:

Usual PCR reagents: buffer, dNTPs, etc...
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Fig 2.  Genotyping without gels
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