Salmon stock structure – update: Pink salmon in Prince William Sound

Alaska Department of Fish & Game Gene Conservation Lab

March 2016 AHRP Meeting Anchorage, AK

Study Design: Odd year

	Contemporary 2013	Historical
Natural Pink Salmon	1	
Hatchery Pink Salmon	1	1

Population Structure Analyses

Homogeneity tests

Principle Component Analyses (PCA)

Multidimensional Scaling (MDS)

• Fixation indices (FsT)

Study Design

	Contemporary	Historical
Natural Pink Salmon	1	
Hatchery Pink Salmon	1	1

Homogeneity tests

H₀: Each collection in Prince William Sound was drawn from a single homogeneous source.

$$p = 3.05 \times 10^{-70} (\alpha = 0.05)$$

Conclusion: Not all collections from the same population.

Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS)

Study Design

	Contemporary	Historical
Natural Pink Salmon	1	
Hatchery Pink Salmon	1	1

Comparison between contemporary and historical hatchery collections

Hatchery	Year	P-value (α=0.05)	Conclusion
AFK	2013 vs. 1991	0.077	Can not reject H ₀ .
CANN	2013 vs. 1991	0.278	Can not reject H ₀ .
VFDA	2013 vs. 1991	0.308	Can not reject H ₀ .
KRAA	2013 vs. 2009	0.109	Can not reject H ₀ .

13

Fixation index (F_{ST})

 The proportion of total variation that can be accounted for by differences among populations

•
$$0 \le F_{ST} \le 1$$

Marker	Geography	Pops/Sites	Spatial scale (km)	F _{ST}
Microsatellite	PWS, AK	22	~10-200	0.002 (odd year)
				scale (km)

Study	Marker	Geography	Pops/Sites	Spatial scale (km)	F _{ST}
Cheng et al.	Microsatellite	PWS, AK	22	~10-200	0.002 (odd year)
Seeb et al. (1999)	Allozyme	PWS,AK	22	~10-200	G _{st} =0.007 (even year)
Hawkins et al. (2002)	Allozyme	Asia	25	~10-3700	0.006 (odd year)
Olsen, et al. (1998)	Microsatellite	AK,BC, and WA	12	~50-4700	$\widehat{oldsymbol{ heta}}$ =0.022 (odd year)
Beacham <i>et al.</i> (2012)	Microsatellite	BC and WA	146 (odd year) 116 (even year)	~1,400	0.005 (odd year) 0.002 (even year)

Summary

- Kodiak vs. Prince William Sound (PWS)
 - Significantly different
- Population Structure in PWS
 - Significantly
- VFDA Hatchery
 - Divergent
- Early run vs. late run
 - Maybe different
- Hatchery stocks temporal stability
 - Stable over time

2015 collections

Even Year collections (2014 + Historical data)

Future Study

- Odd-year analysis
- Fish with different run timing
- Contemporary vs. historical in natural populations

Acknowledgements

- Hatcheries
 - PWSAC, VFDA, KRAA
- Prince William Sound Science Center
- Fisheries and Oceans Canada
 - Pacific Biological Station
- Alaska Department of Fish and Game
- Alaska Hatchery Research Program Science Panel
- University of Alaska Fairbanks Juneau Center