

Division of Commercial Fisheries
Forrest R. Bowers, Acting Director
Headquarters Office
PO Box 115526
Juneau, AK 99811-5526

Alaska Department of Fish and Game
Doug Vincent-Lang, Commissioner
PO Box 115526
Juneau, AK 99811-5526
www.adfg.alaska.gov

Released: January 15, 2026

CONTACT:

Matt Olson, Area Management Biologist
Bonnie Borba, Fall Season Research Biologist
(907) 459-7274

2025 Yukon Area Fall Season Summary

This announcement provides a preliminary summary of the 2025 Yukon Area (Figure 1) fall chum and coho salmon season.

2025 Fall Season Outlook

The fall chum salmon run size forecast, using brood year analysis was for 218,000 fish, with a range of 114,000 to 322,000 fish. A preseason run size projection was made in mid-July using the relationship between historical summer and fall chum salmon run size estimates. Using the inseason estimate of 348,000 summer chum salmon, the preseason projection for fall chum salmon was a run size of 196,000 fish. This projection is well below the 1974–2024 historical average run size of 944,000 fall chum salmon.

The coho salmon outlook for 2025 was for a below average run size, where average (1995–2024 excluding 1996 and 2009) was 211,000 fish. The outlook assumed an average survival of fish from the 2021 parent year, for which most escapements were below average. Additionally, the recent trend in overall run sizes has been below average.

Preseason Management Strategy

Management of the Yukon Area fall season salmon fisheries are in accordance with the *Yukon River Drainage Fall Chum Salmon Management Plan* (5 AAC 01.249). The plan requires that when a projected run size is less than 300,000 chum salmon, all subsistence, personal use, sport, and commercial directed chum salmon fisheries close. Directed chum salmon subsistence fisheries may open if the drainagewide or individual escapement goals are projected to be achieved. The plan also requires a run size of at least 550,000 chum salmon to allow commercial fishing on surplus fish above that level. There are three U.S. escapement goals for fall chum salmon; Yukon River drainagewide (300,000–600,000), Teedriinjik (85,000–234,000), and Delta River (7,000–20,000), and two Canadian treaty objectives; Yukon River Mainstem (70,000–104,000 plus harvest shares) at the Canadian Border near Eagle and Fishing Branch River (22,000–49,000) in the Canadian portion of the Porcupine River drainage.

Based on the preseason projection of 196,000 fall chum salmon and a below average run of coho salmon, preseason management strategies included the following:

- Subsistence fishing would remain closed until inseason fall chum salmon projections indicated escapement goals would be met.
- If escapement goals were projected to be met, harvestable surplus would be evaluated for potential subsistence fishing opportunity.
- Important fall chum spawning tributary drainages would remain closed through December to improve salmon escapement to the spawning grounds.
- Subsistence fishing with nonsalmon gear (including 4-inch and smaller mesh size set gillnets limited to 60 feet or shorter in length) and manned fish wheels would open from noon Thursdays to noon Sundays. Selective gear (dip nets, hook and line, beach seine, and fyke nets) for pink and sockeye salmon would be allowed. If a conservation concern existed for a salmon species, there would be a requirement to release the species from nonsalmon gear excluding gillnets.
- Subsistence fishing for nonsalmon with 6-inch or smaller mesh set gillnets (limited to 60 feet or shorter in length) only in designated areas off the mainstem Yukon River where salmon have not been documented migrating or spawning. The opportunity was designed to target the larger nonsalmon species late in the fall season when meat quality is best and to provide subsistence fishing opportunity in areas where protected salmon species are not likely to be encountered.
- Commercial salmon fishing would not be allowed unless the inseason drainagewide fall chum salmon run projection exceeded 550,000 fish, and a commercial surplus was identified, and reasonable subsistence fishing opportunity had been provided.

2025 Run Assessment

Assessment information collected from projects located in the lower river was used to inform initial management decisions. The Lower Yukon Test Fishery (LYTF) which operated drift gillnet gear out of the community of Emmonak and provided run timing and relative abundance information. Also, a mainstem Yukon River sonar, located near the community of Pilot Station (Pilot Station Sonar), provided fish abundance estimates by species. Stock composition information for chum salmon was provided by genetic samples collected from the species apportionment drift fishery associated with the mainstem Yukon River sonar project. Upriver projects that monitored escapement consisted of a mainstem Yukon River sonar operated near the U.S./Canada border near Eagle (Eagle Sonar); Teedriinjik (Chandalar River) sonar; Sheenjek River sonar; an upper Porcupine River sonar; a weir/sonar project operated in the Fishing Branch River, a Porcupine River headwater tributary; foot surveys conducted in the Delta River and boat surveys in the Delta Clearwater River, both tributaries of the Tanana River. Age, sex, and length information was collected at LYTF, the mainstem Yukon River sonar near the U.S./Canada border, and from the Fishing Branch and Delta rivers.

The transition from summer to fall season management begins by regulation on July 16 in District 1. Chum salmon caught after that date in LYTF are considered fall chum salmon. Based on travel time, Pilot Station sonar began counting fall chum salmon on July 19. The transition of upriver districts and subdistricts to fall season management was based on the migration timing of fall chum salmon. Yukon Delta Fisheries Development Association assisted LYTF operations throughout the season and conducted all drifts in late August through September 10. Preliminary cumulative fall chum salmon catch per unit effort (CPUE) at LYTF was 860.44, which was below the historical

median of 1,258.96. The mainstem Yukon River sonar near Pilot Station ceased operations on September 7.

After July 19, five groups of chum salmon were monitored entering the Yukon River (Figure 2). The early fish that entered in July were predominantly summer chum salmon, while fish entering in August and September were predominantly fall chum salmon. The cumulative chum salmon passage estimate during the fall season at Pilot Station sonar was 341,439 fish (with a 90% confidence interval of 319,317 to 363,561), which was well below the historical median of 653,000 fish. Once mixed stock genetic analysis was applied inseason, the estimated number of fall chum salmon was near 275,000 fish. After the largest pulse entered (August 10) and for the remainder of the season, the projected run size tracked slightly below the 300,000-threshold necessary to consider subsistence fishing opportunities (Figure 2).

Postseason, the preliminary drainagewide estimate of run size was 184,000 fall chum salmon (developed using observed escapements from assessment projects in a Bayesian framework and preliminary harvest estimates). This estimate of run size was the fifth lowest on record compared to a median (1974–2024) of 944,000 fall chum salmon.

Run timing for fall chum salmon in all the assessment projects was 2.3 days later than average. Water levels were above average during the fall salmon migration within the Alaska portion of the Yukon River drainage. Water temperatures were above average through late August dropping below average in September in the lower Yukon River and fish experienced near average water temperatures in the upper Yukon River during their migration.

Coho salmon entered earlier than the last few years but were still weaker than average (Figure 3). Inseason, the cumulative coho salmon passage at Pilot Station sonar was estimated to be 106,200 fish (with a 90% confidence interval of 96,314 to 116,086), well below the historical median of 141,000 fish (Figure 3). Preliminary cumulative coho salmon CPUE at LYTF was 248.51, which was below the historical median of 343.42. Run timing for coho salmon was 3 days earlier than average across all the assessment projects. The postseason run size index was estimated to be 112,000 coho salmon, which includes estimates of passage after the sonar concludes plus preliminary harvest. The median index of abundance is 200,000 coho salmon, making 2025 the fifth lowest on record (1995–2024, excluding 1996 and 2009).

Subsistence Fishery

The fall season began with a preseason projection of 196,000 fall chum salmon based on the summer and fall chum salmon run size relationship. In accordance with the *Yukon River Drainage Fall Chum Salmon Management Plan*, all subsistence, personal use, sport, and commercial fishing was closed. Subsistence fishing for nonsalmon, pink, and sockeye salmon was allowed using 4-inch or smaller mesh gillnets and manned fish wheels from noon Thursdays to noon Sundays, and selective gear, including dip nets, beach seines, and hook and line, 24 hours per day, 7 days per week. Due to salmon conservation, 4-inch or smaller mesh size gillnets were limited to operation as a set net and restricted to 60 feet or shorter in length to reduce incidental harvest of fall chum. Chinook, chum, and coho salmon were required to be released alive from selective gears.

As the season progressed, the fall chum salmon run projection remained below the drainagewide escapement goal and subsistence fishing closures for chum salmon remained in place. Starting August 17, subsistence fishing opened for nonsalmon in designated areas off the mainstem Yukon

River with 6-inch or smaller mesh set gillnets. The coho salmon run came in better than expected and coho salmon retention was allowed starting on August 21.

Once the tail end of the salmon runs had passed, subsistence salmon fishing restrictions were relaxed starting October 9 in the Lower Yukon and progressed to upriver districts based on migration timing of fall chum salmon. However, to protect spawning salmon, important spawning tributaries for fall chum and coho salmon remained closed to subsistence salmon fishing through December. This included the Koyukuk, Teedriinjik, Porcupine, Nenana, and Kantishna river drainages.

The preliminary subsistence harvest estimate of fall chum salmon was 4,498 fish (25% from test fishery projects) and was well below the 2015–2024 average harvest of 40,889 fish (Table 1). The preliminary subsistence harvest estimate of coho salmon was 1,194 fish (22% from test fishery projects), which is below the 2015–2024 average of 5,496 fish (Table 2). Salmon caught in the test fisheries were donated to local communities and are reported in the total subsistence harvest estimate. This was the sixth consecutive year of subsistence salmon fishing closures in the fall season. The average subsistence harvest has declined dramatically due to closures to protect low returns of fall chum and coho salmon.

Commercial Fishery

In 2025, no commercial fisheries occurred for fall chum or coho salmon in the Yukon Area. This was the sixth year of consecutive commercial salmon fishery closures during the fall season. Prior to the recent poor years, the commercial harvest from 2012–2019 averaged 305,757 fall chum salmon and 110,620 coho salmon. Historical harvest, value, and numbers of permits in the fall chum and coho salmon fishery can be found in the 2021 Yukon Area Annual Management Report <https://www.adfg.alaska.gov/FedAidPDFs/FMR22-29.pdf>.

Salmon Escapement

Fall Chum Salmon Escapement

In 2025, the preliminary estimate of the drainagewide total run size is approximately 184,000 fall chum salmon. This was the fifth smallest run on record back to 1974 and higher than the return in 2024. With the removal of the estimated total harvests this season, the drainagewide escapement is estimated to be approximately 180,000 fall chum salmon, which is below the sustainable escapement goal (SEG) range of 300,000 to 600,000 fish.

All the escapements for fall chum salmon in the upper Yukon River (Teedriinjik, Fishing Branch, and mainstem Yukon) were below their respective escapement goals. In the Teedriinjik River, the estimated escapement of 65,817 fall chum salmon (including expansions to estimate the run after the sonar project ended) was only 77% of the lower bound of the sustainable escapement goal (SEG) range of 85,000 to 234,000 fish (Table 3). The Fishing Branch River weir estimate was approximately 7,858 fall chum salmon, which was 36% below the lower end of the Interim Management Escapement Goal (IMEG) range of 22,000–49,000 fish (Table 3). The fall chum salmon passage estimate at Eagle sonar was 18,404 fish (90% CI: 18,133–18,675) for the dates August 26 through October 6. The fall chum salmon estimate was subsequently adjusted to include 1,170 fish, which were estimated to pass after the project was concluded for winter. The preliminary escapement for the mainstem Yukon River in Canada is derived by subtracting the U.S. and Canadian fall chum salmon harvests upstream of Eagle sonar (no harvests reported in this area in 2025) from the expanded sonar estimate. The preliminary mainstem Yukon River

escapement estimate of 19,574 fall chum salmon was only 28% of the lower end of the IMEG range of 70,000 to 104,000 fish (Table 3) and is the second lowest on record. The average escapement to the mainstem Yukon River from 1980–2019 (prior to the recent declines) was 117,000 fall chum salmon. The estimated escapement in the Delta River, a tributary of the Tanana River, was 6,972 fall chum salmon and just below the SEG range of 7,000 to 20,000 fish (Table 3).

Upper Yukon River systems without escapement goals were also well below historical averages. The Sheenjek River had an estimated run size of 19,083 fall chum salmon (based on sonar); the highest observed since 2022 when the project resumed operations. However, escapements in the last four years are all well below the historical average of 93,000 (1974–2012; Table 3). Assessment in the upper Porcupine River using sonars located downstream of Old Crow in Canada, estimated 11,918 fall chum salmon which was well below the historical average of 25,000 (2011–2024, excluding 2018 and 2020).

Fall Chum Salmon Age, Sex, Length and Stock Composition

Stock composition estimates for chum salmon were provided by USFWS Conservation Genetics Laboratory using tissue samples (fin clips) collected from salmon captured in the Pilot Station sonar test net fishery. Chum salmon genetic samples processed from four strata between July 19 and September 7 (fall season) indicated that the stocks represented were approximately 20% summer, 33% Border U.S. (Teedriinjik/Sheenjek/Draanjik), 10% Canadian, and 37% Tanana.

In 2025, the weighted proportion of age-3 (5%) and age-4 (78%) fall chum salmon were above average whereas age-5 (17%) and age-6 (none) were below average based on samples collected at LYTF using 6-inch mesh drift gillnets. Females comprised 59% of the samples which was near the 2001 to 2024 average. Fall chum salmon length samples in 2025 averaged 576 mm, well below the 2001–2024 average of 583 mm.

Coho Salmon Escapement

There are few coho salmon assessment projects in the Yukon River drainage because of funding limitations and late timing relative to onset of winter. Pilot Station sonar estimated a passage of 106,200 coho salmon (90% CI: 96,314–116,086) which is below the (2015–2024) historical average of 104,000 fish. A boat survey was conducted on the Delta Clearwater River, on October 17, providing an escapement estimate of 9,760 coho salmon (Table 4), which was above the 2015–2024 average of 4,900 fish. Escapement estimates for coho salmon were also conducted by aerial surveys in late October and early November on the Nenana, Toklat, and upper Tanana river drainages; all these spawning area counts were below their respective 2015–2024 averages (Table 4).

Coho Salmon Age, Sex and Length Composition

In 2025, the proportion of age-3 (40%) coho salmon was above average, age-4 fish (59%) and age-5 (1.6%) were both below average, based on samples collected at LYTF using 6-inch mesh drift gillnets. The proportion of age-3 coho salmon was notably higher than average and may indicate increased survival compared to observations the past few years. Females comprised 48% of the samples which is near the historical average (2001 to 2024). Coho salmon length samples in 2025 averaged 562 mm which was near the 2001–2024 average and larger than 2024. Sex and length information were also taken from coho salmon (n=1,206) from the Pilot Station sonar test fishery.

Coho salmon at the sonar project averaged 559 mm in length, which was above the 1995–2024 average of 553 mm and was much larger than 2024 as well.

Federal Special Action

The Alaska Department of Fish and Game (ADF&G) and the U.S. Fish and Wildlife Service (USFWS) have coordinated on this season summary announcement. The Federal manager issued Federal emergency special actions to restrict the subsistence fishing opportunities for coho salmon to federally-qualified subsistence users within federal public waters. For information regarding Federal subsistence fishing regulations contact the USFWS Yukon River Subsistence Fishery Manager Holly Carroll at 907-351-3029.

Perspectives on Low Salmon Returns

As the salmon decline continues, the offspring from the beginning of the salmon decline in 2020 are returning to the Yukon River this past year. In 2025, the dominant age classes of fall chum salmon were age-4 (returning from 2021) and age-5 (returning from 2020). In 2021, the drainagewide escapement goal was not met despite fishery closures, and the total run size was lowest on record at 93,000 fall chum salmon. In 2020, estimated run size of 183,000 fall chum salmon was also well below the drainagewide escapement goal. Beginning in 2016, production has been below 1 offspring for each adult fall chum salmon that successfully spawned, with the lowest return per spawner of 0.08 occurring from the 2017 brood year. Production has been gradually increasing (2017–2020), with indications that the 2021 parent year is estimated to have exceeded 2 return per spawner, which is higher than the historical (1974–2019) average of 1.62 return per spawner. This indicates an increase in survival, although overall fish numbers were still low in 2025. Looking forward to 2026, the fall chum salmon run will be composed of offspring from the primary parent year escapements of 93,000 fish in 2021 and 171,000 fish in 2022, which were previously two of the three lowest fall chum salmon run sizes on record.

It is unclear what is driving the low returns of fall chum salmon to the Yukon River drainage. Returns per spawner can be affected by many factors, including spawning success, rearing and overwintering environmental changes, outmigration timing, and their 2–4 years residency in the ocean. However, marine research surveys focused on the juvenile life stage or the first year at sea have helped us understand the early life history of Yukon River fall chum salmon. ADF&G and National Oceanic and Atmospheric Administration (NOAA) have completed these surveys annually from 2003 to 2025, except 2008 and 2020.

One of the products of these marine surveys is an index of juvenile fall chum salmon abundance using annual catch and effort data. The fall chum salmon that would have returned as adults in 2025 were juveniles in 2021 and 2022. The index of fall chum salmon abundance in 2021 was the highest observed in the time series, but the 2022 index was well below average. Juvenile chum salmon in both 2021 and 2022 had above-average energy density, a measure of how much fat is stored in their bodies in preparation for their first winter at sea. We expect that juveniles with higher energy density will have a higher chance of surviving their first winter in the ocean. While abundance and energy density appeared adequate for juveniles entering their first winter in the ocean in 2021, it is possible these fall chum salmon experienced higher mortality in the marine environment before returning as adults to the Yukon River in 2025. These 2021 juveniles would have returned as age-5 adults in 2025, and the age-5 component of fall chum as well-below the long-term average.

The juvenile fall chum salmon abundance index from the 2025 Northern Bering Sea survey was below average. Estimates of energy density for these juveniles are not yet available. However, the low abundance index suggests that fall chum salmon returns may not improve over the next few years. Juvenile chum salmon caught in the 2025 survey will return as adults primarily in the 2028 and 2029 runs. ADF&G staff are leading the development of juvenile chum salmon forecast models in hopes that future run sizes of Yukon River fall chum salmon can be predicted. The results of model progress will be shared in future public meetings.

ADF&G is committed to investigating the cause of the recent Pacific salmon declines, especially regarding returns to the Yukon Area. If you have further questions on upcoming marine salmon research efforts, contact Sabrina Garcia at sabrina.garcia@alaska.gov. Research updates are shared on <https://www.facebook.com/ADFGUnderseaWorldOfSalmonAndSharks>.

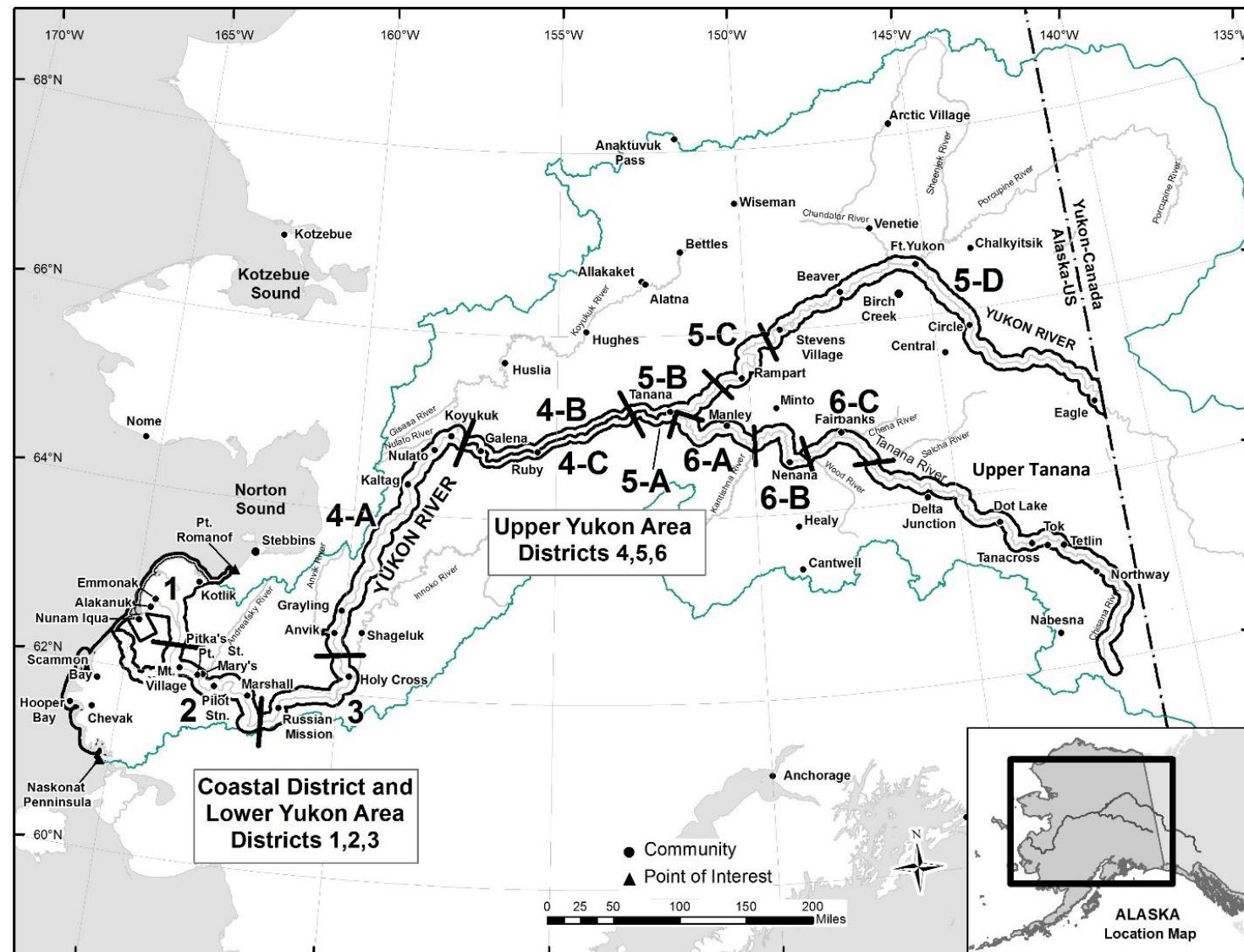


Figure 1.—Alaska portion of the Yukon River drainage showing communities and fishing districts.

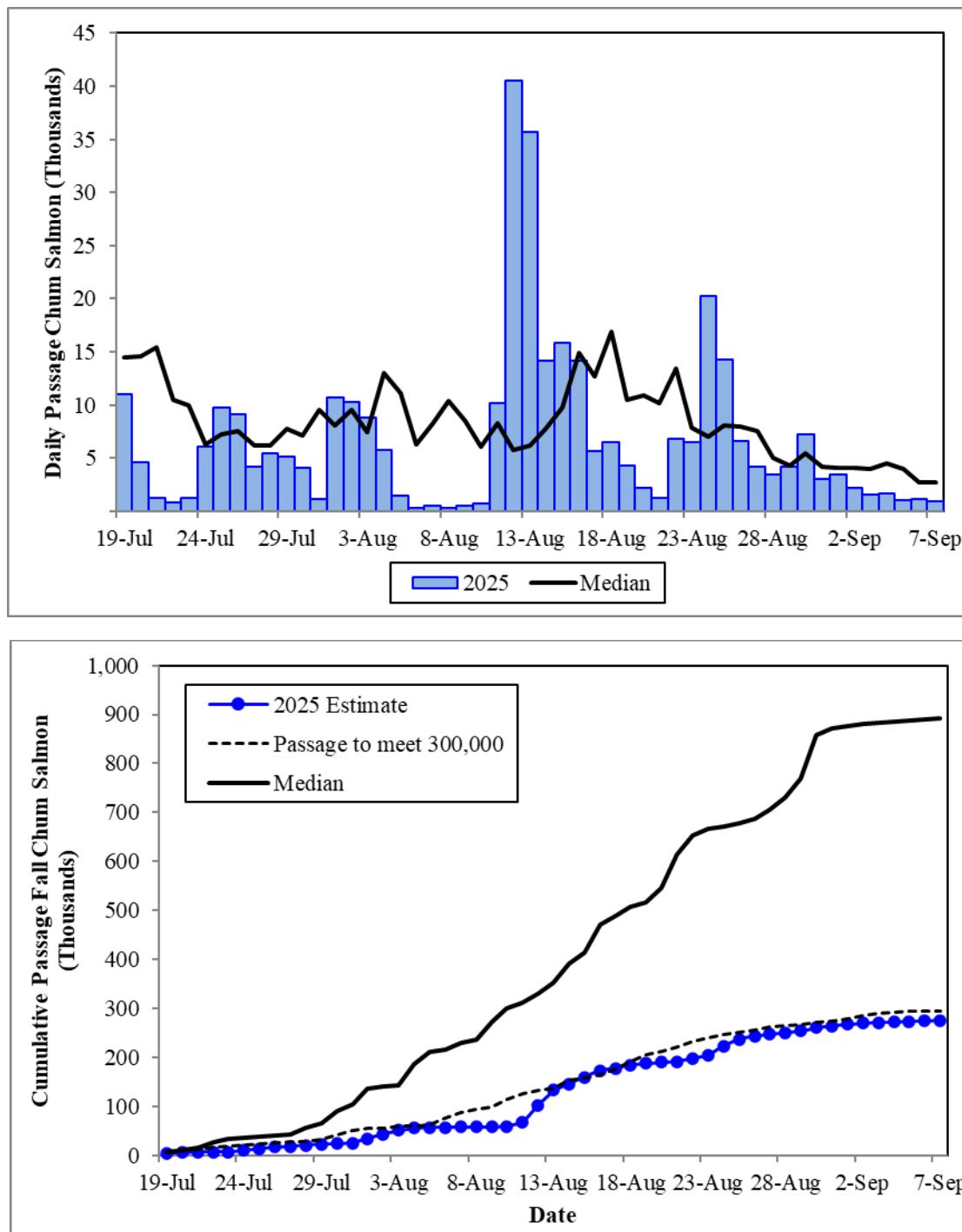


Figure 2.—Estimated daily passage of chum salmon (top) based on the Yukon River mainstem sonar (Pilot Station) and cumulative fall chum salmon based on genetics for 2025 (bottom), compared to historical (1995, 1997–2008, and 2010–2024) median run size. The dashed line is the passage required to meet the minimum management requirement of 300,000 fish to allow subsistence fishing.

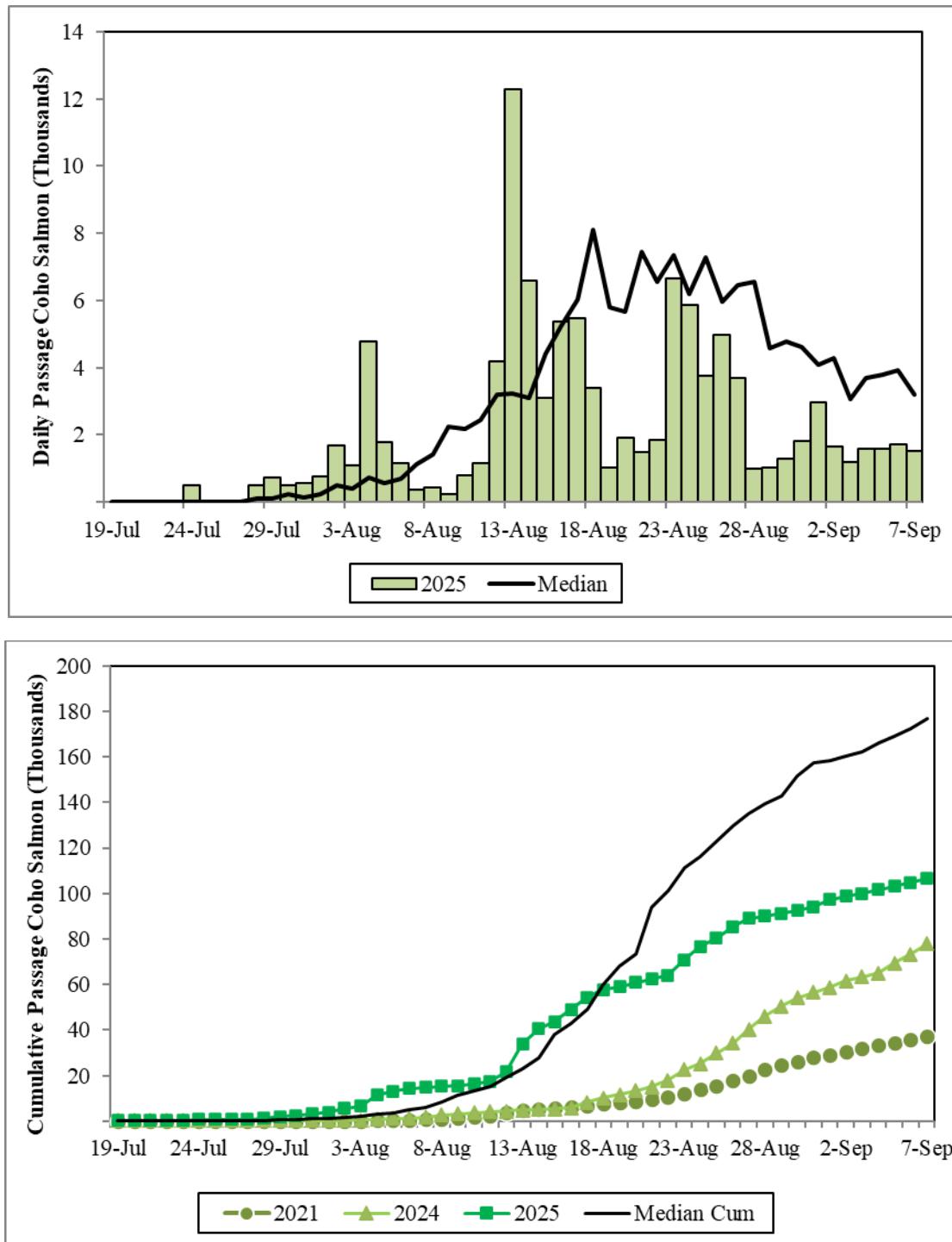


Figure 3.—Estimated daily passage of coho salmon (top) based on the Yukon River mainstem sonar (Pilot Station), 2025 compared to historical (1995, 1997–2008, and 2010–2024) median run size index. Cumulative passage of coho salmon (bottom) at the mainstem Yukon River sonar project (Pilot Station) in 2025 compared to historical median, 2021, and 2024.

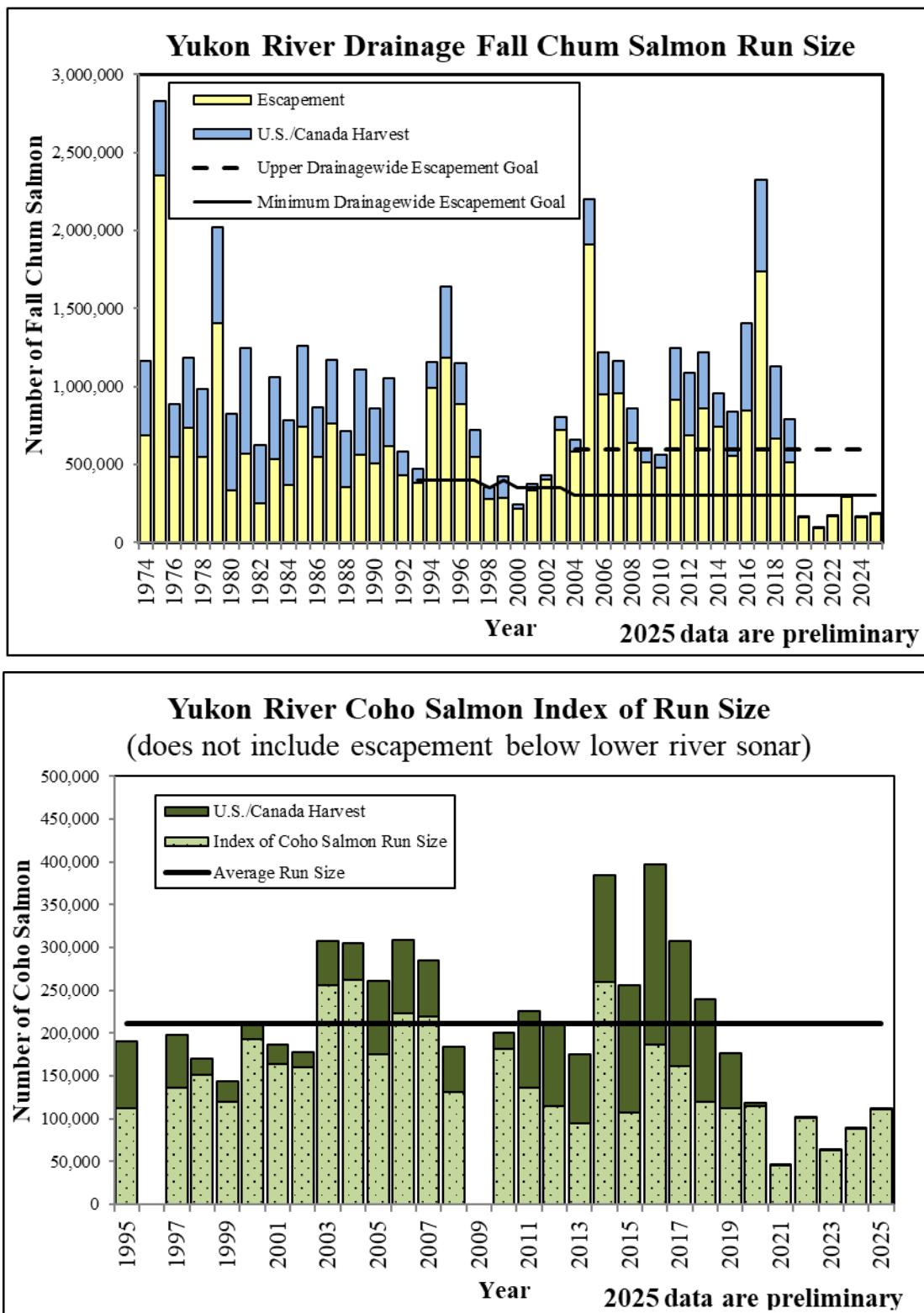


Figure 4.—Estimated drainagewide run size of fall chum salmon (top) and index of run size of coho salmon (bottom) in the Yukon River drainage.

Table 1.—Fall chum salmon subsistence harvest estimates, including donated test fishery harvests, by district, Yukon Area, 2005–2025.

Year	Lower Yukon					Upper Yukon				Yukon total
	Coastal	District 1	District 2	District 3	Subtotal	District 4	District 5	District 6	Subtotal	
2005	70	2,889	3,257	1,304	7,450	9,405	51,663	22,946	84,014	91,534
2006	187	3,902	4,015	480	8,397	6,335	52,158	16,925	75,418	84,002
2007	234	4,390	3,472	925	8,787	8,576	53,731	29,893	92,200	101,221
2008	386	2,823	3,522	1,821	8,166	7,412	57,258	16,135	80,805	89,357
2009	158	1,917	1,563	937	4,417	7,382	38,083	16,079	61,544	66,119
2010	186	3,202	1,419	1,325	5,946	6,788	44,334	11,391	62,513	68,645
2011	315	3,434	2,578	354	6,366	7,260	51,885	14,376	73,521	80,202
2012	11	7,622	3,332	637	11,591	18,055	54,350	15,302	87,707	99,309
2013	149	3,673	4,878	1,764	10,315	15,191	76,098	11,640	102,929	113,393
2014	252	4,072	5,817	2,457	12,346	15,936	51,197	12,798	79,931	92,529
2015	198	5,877	6,258	1,388	13,523	13,274	50,260	9,345	72,879	86,600
2016	762	4,572	4,539	997	10,108	10,034	58,831	4,882	73,747	84,617
2017	553	4,581	4,082	1,284	9,947	9,573	61,444	4,622	75,639	86,139
2018	522	3,665	2,985	699	7,349	5,944	45,988	9,404	61,336	69,207
2019	815	4,251	3,804	754	8,809	4,232	44,946	4,932	54,110	63,734
2020	652	1,594	937	26	2,557	365	1,952	202	2,519	5,728
2021	39	143	435	0	578	0	71	17	88	705
2022	236	1,208	512	25	1,745	86	708	19	813	2,794
2023	158	1,963	1,436	130	3,529	78	2,270	2	2,350	6,037
2024	175	994	926	131	2,051	6	1,025	70	1,101	3,327
2025 ^a	58	1,080	427	1	1,508	3	2,869	60	2,932	4,498
Average										
2015–2024	411	2,885	2,591	543	6,020	4,359	26,750	3,350	34,458	40,889
2020–2024	252	1,180	849	62	2,092	107	1,205	62	1,374	3,718

Source: Numbers of fish harvested are based on reports from OceanAK (accessed 1/8/2026), applicable annual footnotes are within the database.

^a Values are preliminary until the project report is published.

Table 2.—Coho salmon subsistence harvest estimates, including donated test fishery harvests, by district, Yukon Area, 2005–2025.

Year	Lower Yukon					Upper Yukon				Yukon total
	Coastal	District 1	District 2	District 3	Subtotal	District 4	District 5	District 6	Subtotal	
2005	279	976	1,110	217	2,303	2,971	2,159	19,538	24,668	27,250
2006	335	1,177	2,459	83	3,719	1,302	3,779	10,571	15,652	19,706
2007	110	2,265	2,347	739	5,351	2,952	3,366	7,845	14,163	19,624
2008	116	1,211	1,997	410	3,618	1,490	3,203	8,428	13,121	16,855
2009	246	847	1,057	321	2,225	3,986	2,498	7,051	13,535	16,006
2010	124	1,122	557	353	2,032	1,730	3,604	5,555	10,889	13,045
2011	55	1,127	823	36	1,986	2,072	1,389	6,842	10,303	12,344
2012	93	3,350	1,346	556	5,252	3,556	3,092	9,540	16,188	21,533
2013	287	1,224	1,080	371	2,675	4,940	1,298	5,257	11,495	14,457
2014	204	1,782	1,769	340	3,891	3,062	2,030	7,911	13,003	17,098
2015	174	2,100	3,002	428	5,530	1,941	2,462	8,000	12,403	18,107
2016	355	1,231	1,131	140	2,502	826	861	4,271	5,958	8,815
2017	424	1,044	1,396	497	2,937	526	1,012	2,515	4,053	7,414
2018	865	967	591	154	1,712	1,580	1,449	2,661	5,690	8,267
2019	804	1,962	642	232	2,836	497	612	1,069	2,178	5,818
2020	339	552	494	20	1,066	138	196	591	925	2,330
2021	50	36	126	0	162	0	31	53	84	296
2022	291	301	272	30	603	108	27	59	194	1,088
2023	288	665	323	58	1,046	5	52	8	65	1,399
2024	183	323	289	158	770	406	43	24	473	1,426
2025 ^a	134	415	208	0	623	2	203	232	437	1,194
Average										
2015–2024	377	918	827	172	1,916	603	675	1,925	3,202	5,496
2020–2024	230	375	301	53	729	131	70	147	348	1,308

Source: Numbers of fish harvested are based on reports from OceanAK (accessed 1/8/2026), applicable annual footnotes are within the database.

^a Values are preliminary until the project report is published.

Table 3.—Fall chum salmon passage or escapement estimates for selected spawning areas, Yukon River drainage, 2005–2025.

Year	Alaska						Canada		
	Tanana River drainage			Upper Yukon River drainage		Yukon River mainstem (Eagle) passage estimate ^f	Mainstem escapement estimate ^g		Porcupine River sonar ^h
	Yukon River drainagewide escapement estimate ^a	Delta River ^b	Bluff Cabin Slough ^c	Teedriunjik (Chandalar) River ^d	Sheenjek River ^e		Mainstem escapement estimate ^g	Porcupine River sonar ^h	
2005	1,910,000	28,132	11,964	526,838	485,890	—	437,498 ^j	—	119,058
2006	945,700	14,055	1,180	254,778	175,620	245,290	220,898 ^j	—	30,954
2007	956,900	18,610	666	243,805	69,183	265,008	236,987 ^j	—	32,150
2008	638,200	23,055	1,198	178,278	50,350	185,409	167,898	—	19,086
2009	511,300	13,492	2,900	—	54,125	101,734	93,626	—	25,828
2010	480,900	17,993	1,610	167,532	24,669 ^k	132,930	117,789	—	15,413
2011	915,350	23,639	2,655	298,223	97,976	224,355	205,566	14,640	13,085
2012	689,600	9,377 ^l	—	205,791	104,702	153,248	137,662	33,469	22,399
2013	859,550	31,955	5,554	252,710	—	216,791	200,262	35,615	—
2014	742,200	32,480 ^l	4,095	221,421	—	172,887	156,796	17,244	—
2015	554,100	33,401 ^l	6,020	171,742	—	125,095	108,658	21,397	8,351
2016	846,850	21,913 ^l	4,936	302,869	—	161,027	145,267	54,395	29,397
2017	1,737,500	45,238 ^l	—	515,216	—	419,099	401,585	67,818	48,524
2018	663,650	39,225	5,822	170,413	—	168,798	154,126	—	10,151
2019	514,600	51,748 ^l	4,664	116,141	—	113,256	99,866	27,447	18,171
2020	163,900	11,105	1,124	—	—	23,512	23,512	—	4,795
2021	92,450	1,613	1,085	21,162	—	23,170	23,170	3,486	2,413
2022	168,000	5,709	1,844	67,434	13,957	22,075	22,034	3,804	2,934
2023	292,600	13,366	—	141,120	15,958	22,179	22,090	15,649	11,528
2024	161,000	16,880	3,732	58,457	14,319	16,204	16,174	8,799	5,933
2025 ^m	179,600	6,972	3,114	65,817	19,083	19,574	19,574	11,918	7,858
Average									
2015–2024	519,465	24,020	3,653	173,839	14,745	109,442	101,648	25,349	14,220
2020–2024	175,590	9,735	1,946	72,043	14,745	21,428	21,396	7,935	5,521
SEG Range	300,000	7,000 ⁿ	—	85,000 ⁿ	— ^o	—	> 80,000 ^p	—	50,000 ^p
	600,000	20,000	—	234,000	—	—	—	120,000 ^p	—
Interim Management Escapement Goal						70,000–104,000 ^q	70,000–104,000 ^q	22,000–49,000 ^r	22,000–49,000 ^r

-continued-

Table 3.–Page 2 of 2.

Note: En dash indicates no data were collected or calculated. SEG indicates "sustainable escapement goal" with lower and upper ranges.

^a Escapement estimates are derived from Bayesian State-Space model as posterior medians.

^b Population estimate generated from replicate foot surveys and stream life data using AUC (area-under-curve method) unless otherwise indicated.

^c Aerial survey count, unless otherwise indicated.

^d Split beam sonar estimate (2005–2006). Dual frequency IDentification SONar (DIDSON) from 2007–present. Includes expansions to the end of the run (October 9, October 13 in 2018).

^e DIDSON sonar (2005–2012 and 2022–present). Includes expansions to the end of the run (October 9). Two bank operations unless otherwise indicated.

^f Sonar estimates include an expansion for fish that may have passed after operations ceased, through October 18, except 2018 was expanded through October 23 for an extremely late run.

^g Estimated mainstem Yukon River Canadian escapement is derived from Eagle sonar expanded estimate minus harvest upstream of project from Eagle community and including Canadian harvests (2006–present), unless otherwise indicated.

^h Porcupine River Sonar is located near Canadian border, downstream of community of Old Crow. Includes expansions to the end of the run.

ⁱ Weir located within the Canadian portion of the Porcupine River drainage. Includes expansions to the end of the run.

^j Estimated mainstem Canadian escapement derived from mark-recapture project minus Canadian mainstem harvest.

^k Right bank only operations.

^l Peak counts from foot surveys unless otherwise noted.

^m Data are preliminary.

ⁿ Escapement goal revised to a Sustainable Escapement Goal (SEG) in 2019 based on percentile method.

^o Sheenjek escapement goal 50,000–104,000 was discontinued in 2016 (was right bank only dataset).

^p Escapement goal as written in the Pacific Salmon Treaty.

^q Interim Management Escapement Goal (IMEG) range of 70,000 to 104,000 was established for 2010 to present is based on Canadian stock Ricker model.

^r IMEG established 2008 and is based on percentile method.

Table 4.—Coho salmon passage or escapement estimates for selected spawning areas, Yukon River drainage, 2005–2025.

Year	Yukon River index of drainagewide escapement ^a	Nenana River drainage				Upper Tanana River drainage		
		Lost Slough	Nenana Mainstem ^b	Wood Creek	Seventeen Mile Slough	Delta Clearwater River ^c	Clearwater Lake and Outlet	Richardson Clearwater River
2005	175,268	430 (h)	325 (h)	1,030 (h)	3,890 (h)	34,293 (b)	2,100 (b)	2,024 (h)
2006	223,236	194 (h)	160 (h)	634 (h)	1,916 (h)	16,748 (b)	4,375 (b)	271 (h)
2007	218,871	63 (h)	520 (h)	605 (h)	1,733 (h)	14,650 (b)	2,075 (b)	553 (h)
2008	131,184	1,342 (h)	1,539 (h)	578 (h)	1,652 (h)	7,500 (b)	1,275 (b)	265 (h)
2009	^d	410 (h)	—	470 (h)	680 (h)	16,850 (b)	5,450 (b)	155 (h)
2010	181,415	1,110 (h)	280 (h)	340 (h)	720 (h)	5,867 (b)	813 (b)	1,002 (h)
2011	135,914	369 (h)	—	—	912 (h)	6,180 (b)	2,092 (b)	575 (h)
2012	115,094	—	106 (h)	—	405 (h)	5,230 (b)	396 (h)	515 (h)
2013	94,385	721 (h)	—	55 (h)	425 (h)	6,222 (b)	2,221 (h)	647 (h)
2014	260,251	333 (h)	378 (h)	649 (h)	886 (h)	4,285 (b)	434 (h)	1,941 (h)
2015	106,988	242 (h)	1,789 (h)	1,419 (h)	3,890 (h)	19,533 (b)	1,621 (h)	3,742 (h)
2016	186,399	334 (h)	1,680 (h)	1,327 (h)	2,746 (h)	6,767 (b)	1,421 (h)	1,350 (h)
2017	161,213	1,278 (h)	862 (h)	2,025 (h)	1,942 (h)	9,627 (b)	—	—
2018	119,646	1,822 (h)	241 (h)	361 (h)	347 (h)	2,884 (b)	2,465 (h)	976 (h)
2019	112,177	—	749 (h)	184 (h)	424 (h)	2,043 (b)	258 (h)	300 (h)
2020	115,396	28 (h)	206 (h)	231 (h)	507 (h)	2,557 (b)	210 (h)	475 (h)
2021	45,213	126 (h)	104 (h)	226 (h)	213 (h)	913 (b)	130 (h)	17 (h)
2022	100,486	—	—	—	—	1,750 (b)	101 (h)	57 (h)
2023	63,241	—	—	—	—	1,794 (b)	—	—
2024	88,408	—	349 (h)	—	—	1,455 (b)	708 (h)	395 (h)
2025 ^e	111,086	535 (h)	87 (h)	628 (h)	213 (h)	9,760 (b)	—	333 (b)
Average								
2015–2024	109,917	638	748	825	1,438	4,932	864	914
2020–2024	82,549	77	220	229	360	1,694	287	236

-continued-

Table 4.–Page 2 of 2.

Note: Only peak counts presented. Survey rating is fair to good, unless otherwise noted. Denotations of survey methods include (b)=boat and (h)=helicopter. En dash indicates no data available.

- ^a Index of drainagewide escapement based on Pilot Station sonar, which is expanded by portion of the run missed using nearby test fisheries, plus harvest below sonar site, then subtracts total drainage harvest to estimate escapement. Does not include the escapements to the Andreafsky River (East Fork was monitored 1995–2005 and averaged 8,000 coho salmon).
- ^b Index area includes mainstem Nenana River between confluences of Lost Slough and Teklanika River.
- ^c Index area is lower 17.5 miles of system. A biological escapement goal of greater than 9,000 fish existed from 1993 to 2003, replaced with a sustainable escapement goal range of 5,200–17,000, then goal was discontinued in 2023.
- ^d Could not be derived as extreme low water levels were experienced in 2009, affecting species apportionment at Pilot Station sonar, which is the basis of this index.
- ^e Data are preliminary.