Key considerations in balancing risk against need in Chinook supplementation

Kerry Naish, School of Aquatic and Fishery Sciences University of Washington

Recent Reviews of Hatchery Programs

Responsible Approach to Marine Stock Enhancement: An Update

KAI LORENZEN,^{1,2,3} KENNETH M. LEBER,³ and H. LEE BLANKENSHIP⁴

Ecological interactions between wild and hatchery salmonids: an introduction to the special issue

Peter S. Rand • Barry A. Berejikian • Todd N. Pearsons • David L. G. Noakes

Factors that contribute to the ecological risks of salmon and steelhead hatchery programs and some mitigating strategies

Kathryn Kostow

Hatcheries, Conservation, and Sustainable Fisheries—Achieving Multiple Goals: Results of the Hatchery Scientific Review Group's Columbia River Basin Review

P. J. Paquet^a, T. Flagg^b, A. Appleby^c, J. Barr^d, L. Blankenship^e, D. Campton^f, M. Delarm^g, T. Evelyn^h, D. Fastⁱ, J. Gislason^j, P. Kline^k, D. Maynard^l, L. Mobrand^m, G. Nandorⁿ, P. Seidel^o& S. Smith^p

Main conclusions from review

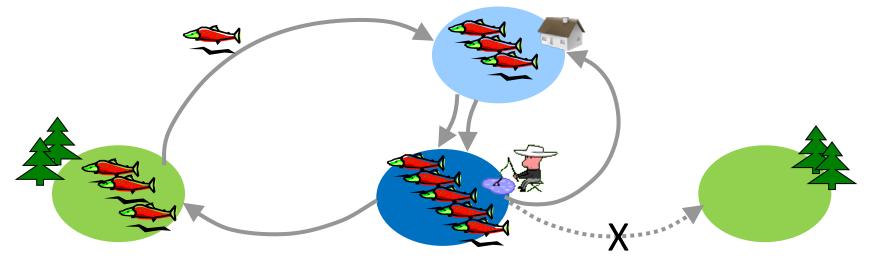
An Evaluation of the Effects of Conservation and Fishery Enhancement Hatcheries on Wild Populations of Salmon¹

Kerry A. Naish,^{*,2} Joseph E. Taylor, III[†] Phillip S. Levin,[‡] Thomas P. Quinn,^{*} James R. Winton,[§] Daniel Huppert,[†] and Ray Hilborn^{*}

Advances in Marine Biology, Volume 53	© 2008 Elsevier Ltd.
ISSN 0065-2881, DOI: 10.1016/S0065-2881(07)53002-6	All rights reserved.

 "A key need in this area..... is the development of a strong understanding of the *degree* to which specific activities pose a risk and whether proposed management approaches are effective at reducing these risks"

Aims

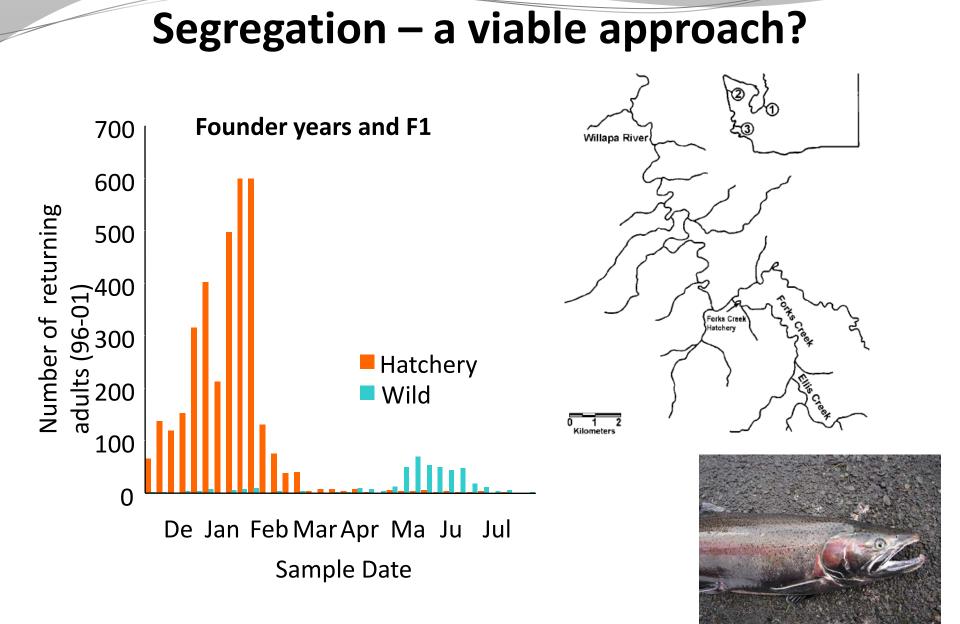

1. Key discussion associated with minimizing risks

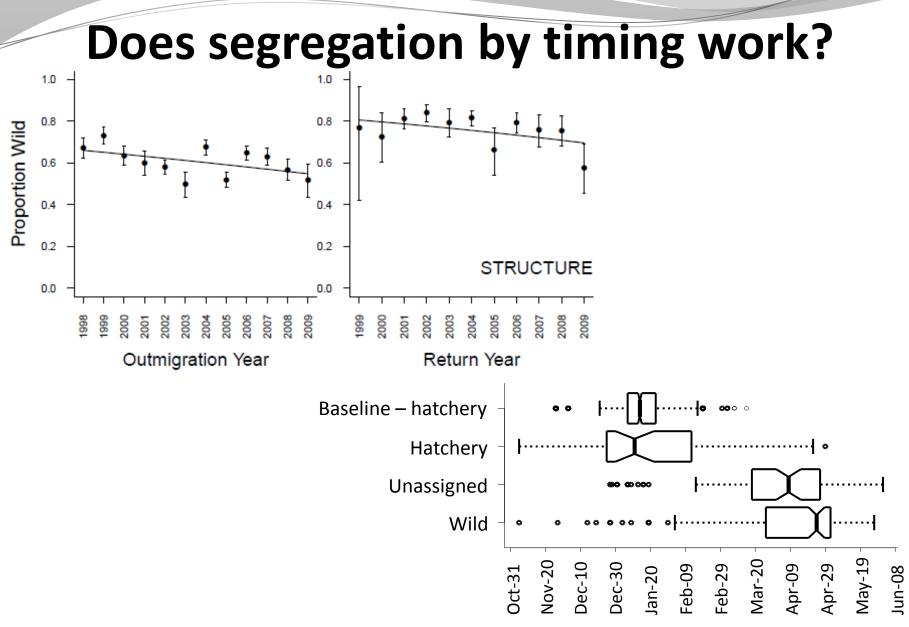
2. Examples of outstanding issues

- 3. Considerations for planning a new program
 - Towards a well designed system that allows research and continual assessment

Release objectives

• Produce surplus fish for fishing opportunity

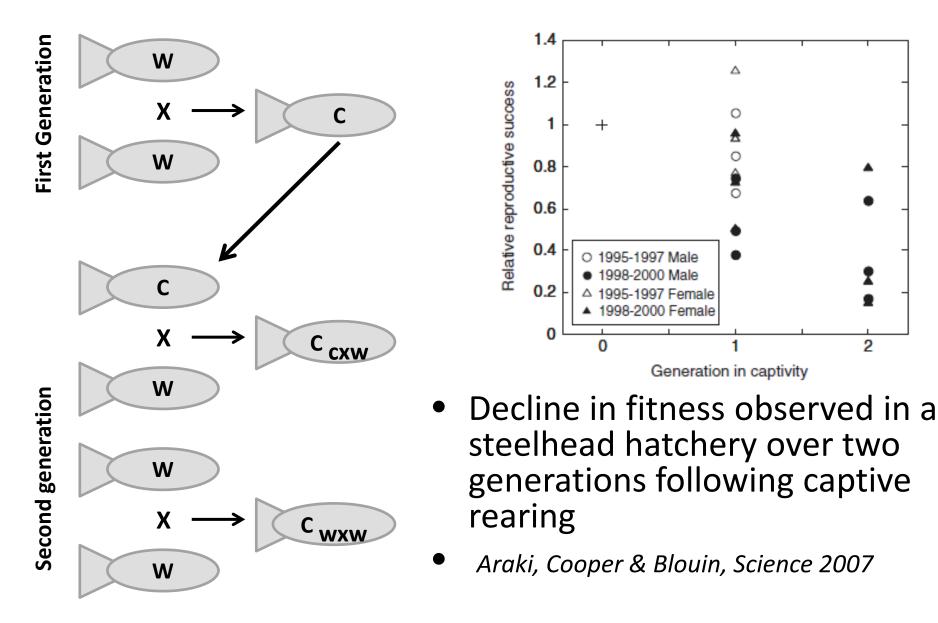

Integrated Hatchery Aims:


- Genetic constitution and fitness as similar as possible to wild population
- Achieved by gene flow:
 - Wild to hatchery > hatchery to wild

Segregated Hatchery Aims:

- Direct fishing effort away from wild populations
- Little or no spawning in the wild

Mobrand et al. 2005



After Seamons et al. 2012, Evolutionary Applications

Day of Year

Integrated hatcheries: number generations?

Integrated: subsequent studies

Species	Outcome	References
Steelhead	 Reduced fitness in H descendants spawning in W reduce d W pop size, Swamping: 40% contributions from W Domestication selection in one generation 	Araki et al. 2008, Christie et al. 2011, Christie et al. 2012
	 No changes in genetic diversity or effective size (Adult to parr) 	Van Doornick et al. 2010
	 Methodology: RRS estimates are upwardly biased 	Kitada et al. 2011
Chum	H &W similar fitness after 3 generations of culture (spawning channel)	Berejikian et al. 2009

Integrated: subsequent studies

Species	Outcome	Reference
Coho	 Rearing environment (natural vs trad) affects fitness No genetic explanation for fitness decrease 	Chittenden et al. 2010
	 H fish had lower RRS Fitness of fry release similar to smolt release Absence of sexual selection in H implicated 	Theriault et al. 2011
Chinook	 No fitness difference after one generation of H rearing (lab) 	Schroder et al. 2010, 2012
	 H fitness lower than W in established supplementation hatchery H fish younger, spawned in different habitat 	Williamson et al. 2011
	 H fish over a single generation provided a demographic boost No significant difference in RRS in H&W spawning in W 	Hess et al. 2012

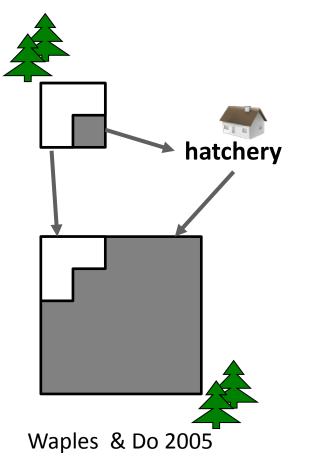
Aim of Talk

1. Key discussion associated with minimizing risks

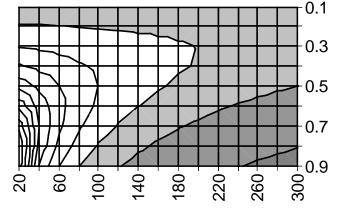
2. Examples of outstanding issues

- 3. Considerations for planning a new program
 - Towards a well designed system that allows research and continual assessment

Integrated: outstanding questions


- What are measures of success in supplementation?
 - Is reduced fitness in descendants of hatchery fish acceptable or even desirable?
- Optimal levels of gene flow between Hatchery and Wild fish? Need for experimental approach
- Effects of broodstock collection on wild fish?
- Does long term integration eventually compromise the genetic diversity of a wild population?
- Are hatcheries at risk of becoming pathogen vectors?

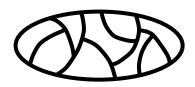
Segregated: outstanding questions


- Are there design strategies that prevent negative interactions between hatchery and wild fishes?
- How much gene flow is acceptable if systems fail?
- Effects of broodstock collection on wild fish?
- Mixed stock fisheries
- Are hatcheries at risk of becoming pathogen vectors?

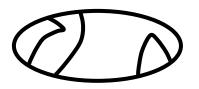
The importance of release sizes

- May affect ability of wild populations to adapt to change
 - Reduction of genetic diversity: the "Ryman Laikre" effect

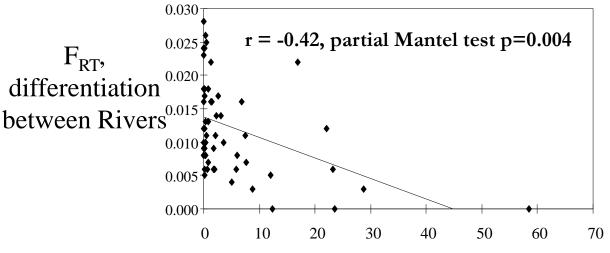
Effective size of hatchery fish = 100

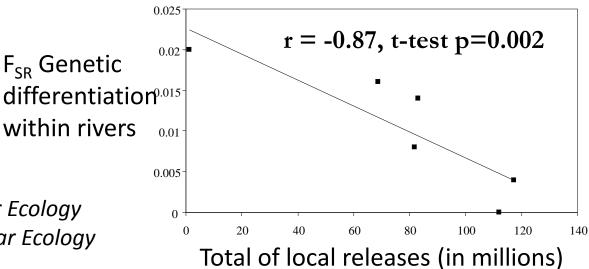

Proportion of hatchery fish in wild population

Effective size of wild population Grey = reduction in effective size


of total population compared to unsupplemented population

The importance of release sizes


• May reduce population structure (Utter, 2004)


No hatchery releases

Hatchery releases

Number of individuals exchanged (millions)

Eldridge and Naish 2007, Molecular Ecology See also Marie et al. 2010, Molecular Ecology

Release sizes: Ecological effects

"Many hatchery management strategies that may decrease genetic risks,, (but they) may not mitigate ecological risk factors, rather they may increase the opportunity for ecological effects to occur." *Kostow 2010*

- Competition, exacerbated by physical differences
- Density dependent mortality
- Residualization
- Carrying capacity, especially in freshwater
- Predation
- Series of recommendations to reduce ecological effects

Release sizes: Ecological effects

"the traditional hatchery paradigm is to release approximately the same number of fish of the same species every year from the same location(s) regardless of ecological conditions. This paradigm occurs in integrated and segregated hatchery programs and generally ignores ecological feedback mechanisms within the environment that can reduce survival of hatchery and wild fish" *Pearsons 2010*

Release strategies should consider;

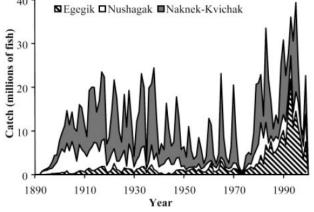
- Risks to non-target taxa
- Carrying capacity
- Ecological feedback mechanisms

Aim of Talk

1. Key discussion associated with minimizing risks

2. Examples of outstanding issues

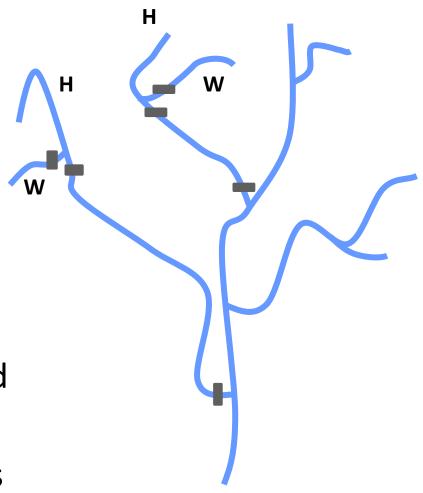
- 3. Considerations for planning a new program
 - Towards a well designed system that allows research and continual assessment


Planning a hatchery program

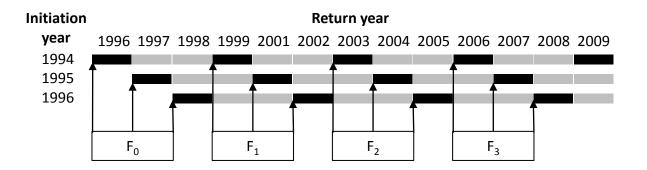
- Stage I: Initial appraisal and goal setting
 - Release objectives
 - Interactions with wild fish
 - Importance of release sizes
- Stage II: Research and technology development including pilot studies
 - Generating population baselines
 - Designing an experimental system
 - Tagging and tracking hatchery and wild fish
- Stage III: Operational implementation and adaptive management

The responsible approach: after Lorenzen et al. 2010

Knowledge gaps: Baseline data sets

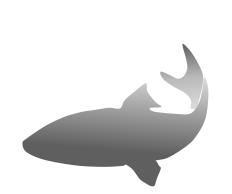

- Maintaining the "portfolio"
 - (Hilborn et al 2003, Schindler et al. 2010)

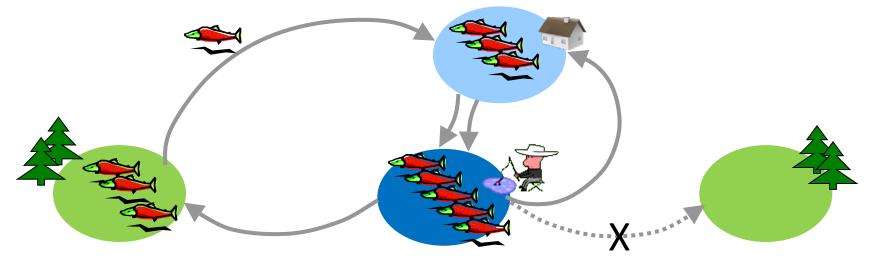
- Evidence for population structure?
- Evidence for local adaptation?
- Evidence for life history variation within and between populations?
- Estimate migration rates between populations
- Evidence for changes in structure over time


Knowledge gaps: feasibility study

- System that permits effective ongoing research
 - Control streams, free of hatchery influence
 - Continual evaluation
 - "Trigger points"
 - Decide how much change is acceptable
 - Willingness to change or end practices
 - Economic and social analysis

The role of comprehensive long term data


• Measuring phenotypes and pedigrees


- Pedigree data beyond RRS :
 - Determine hatchery ancestry and contribution over time (eg Christie et al. 2011)
 - Effective population sizes, rates and impacts of inbreeding (eg Naish et al. Molecular Ecology in press)
 - Estimate selection differentials in hatchery and wild environments (eg Ford et al. 2010, Williamson et al 2011)
 - Estimate stray rates between populations (eg Lin et al. 2011, in prep.)

Summary: balancing risks

Integrated Hatchery Risks:

- Proportion of Hatchery fish breeding in the wild
- Optimal number of generations in program
- Optimal number of wild fish in program (broodstock mining)
- Carrying capacity, competition

Segregated Hatchery Risks:

- Divergent hatchery fish interbreed with wild
- Ecological interactions, carrying capacity
- Mixed stock fisheries and efficacy of mass marking

Summary: Considerations in design

- A research based approach
 - Test principles as well as specifics
 - Continual evaluation
 - "Trigger" points for changing or ending practices

 Comprehensive baselines and monitoring program