Fishery Data Series No. 91-69

Estimates of Total Return by Age for Kenai River Chinook Salmon, 1986-1990

by
Sandra Sonnichsen
and
Marianna Alexandersdottir

FISHERY DATA SERIES NO. 91-69

ESTIMATES OF TOTAL RETURN BY AGE FOR KENAI RIVER CHINOOK SALMON, 1986-1990¹

By
Sandra Sonnichsen and
Marianna Alexandersdottir

Alaska Department of Fish and Game
Division of Sport Fish
Anchorage, Alaska

November 1991

1 This information was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-6, Job No. S-32-2.

The Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication libraries, agencies, and individuals. This publication has undergone editorial and peer review.

The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, religion, color, national origin, age, sex, or handicap. Because the department receives federal funding, any person who believes he or she has been discriminated against should write to:

[^0]
Page

LIST OF TABLES ii
LIST OF FIGURES iv
LIST OF APPENDICES v
ABSTRACT 1
INTRODUCTION 2
METHODS 3
Estimation of Total Run Strength and Escapement 3
Early Run 3
Late Run. 5
Estimation of Brood Year Returns 8
Deep Creek Marine Sport Fishery 8
Commercial Fisheries 9
Educational Gill Nets 10
In-River Return 10
Kenai River Sport Harvest 11
Hook and Release Mortality 11
Spawning Escapement 11
Relationships Between Ages Within a Brood Year 11
RESULTS 13
Early Run 13
Late Run 20
DISCUSSION 31
ACKNOWLEDGEMENTS 31
LITERATURE CITED 32
APPENDIX A 36
APPENDIX B 53
APPENDIX C 88

1. Total return and spawning escapement for Kenal River chinook salmon, 1985-1990 7
2. Estimates by age class of the total number of early-run Kenai River chinook salmon, 1986-1990 14
3. Estimates by age class of the early-run Kenai River chinook salmon spawning escapement, 1986-1990 15
4. Estimates by age class of the number of early run chinook salmon harvested in the Kenai River sport fishery, 1986-1990 16
5. Number of early-run Kenai River chinook salmon returning from each brood year, 1986-1990 17
6. Sibling return ratios for early-run Kenai River chinook salmon from brood years 1980-1986 18
7. Expected and observed 1990 return and expected 1991 return of early-run Kenai River chinook salmon 21
8. Estimates by age class of the total number of late-run Kenai River chinook salmon, 1986-1990 22
9. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net fishery, 1986-1990 23
10. Estimates by age class of the number of late-run chinook salmon harvested in the Deep Creek marine sport fishery, 1986-1990 24
11. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1986-1990 25
12. Estimates by age class of the late-run Kenai River chinook salmon spawning escapement, 1986-1990 26
13. Estimates by age class of the number of late-run chinook salmon harvested in the Kenai River sport fishery, 1986-1990 27

LIST OF TABLES (Continued)

Table

Page
14. Number of late-run Kenai River chinook salmon returning from each brood year, 1986-1990 28
15. Sibling return ratios for late-run Kenai River chinook salmon from brood years 1980-1986 29
16. Expected and observed 1990 return and expected 1991 return of late-run Kenai River chinook salmon. 30

Page

1. Map of Cook Inlet showing commercial fishing areas and the Kenai River.................................... 4
2. Ratio of age 6 to age 5 compared to returns at age 5 for early and late-run, brood years 1981-1985...
Appendix Page
A1. Estimates by age class of the number of early run chinook salmon in the in-river return to the Kenai River, 1986 37
A2. Estimates by age class of the number of early run chinook salmon in the in-river return to the Kenai River, 1987 39
A3. Estimates by age class of the number of early run chinook salmon in the in-river return to the Kenai River, 1988 41
A4. Estimates by age class of the number of early run chinook salmon in the in-river return to the Kenai River, 1989 43
A5. Estimates by age class of the number of early run chinook salmon in the in-river return to the Kenai River, 1990 45
A6. Estimates by age class of the number of early run chinook salmon harvested in educational gill nets, 1989-1990 47
A7. Estimates by age class of the number of early run chinook salmon harvested in the Kenai River sport fishery, 1976-1990 48
A8. Estimates of early-run Kenai River chinook salmon hook and release mortality from the Kenai River sport fishery, 1986-1990 52
B1. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1986 54
B2. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set gill net commercial fisheries, 1987 56
B3. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1988 61

LIST OF APPENDICES (Continued)

Appendix Page
B4. Estimates by age class of the number of chinook salmon harvested in the Upper Subdistrict of the Central District set net commercial fishery, 1989 64
B5. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1990 66
B6. Estimates by age class of the number of late run Kenai River chinook salmon harvested in the Deep Creek Marine sport fishery, 1976-1989 68
B7. Estimates by age class of the number of late run chinook salmon harvested in educational gill nets, 1989-1990 72
B8. Estimates by age class of the number of late run chinook salmon in the in-river return to the Kenai River, 1986 73
B9. Estimates by age class of the number of late run chinook salmon in the in-river return to the Kenai River, 1987 75
B10. Estimates by age class of the number of late run chinook salmon in the in-river return to the Kenai River, 1988 77
B11. Estimates by age class of the number of late run chinook salmon in the in-river return to the Kenai River, 1989 79
B12. Estimates by age class of the number of late run chinook salmon in the in-river return to the Kenai River, 1990 81
B13. Estimates by age class of the number of late run Kenai River chinook salmon harvested in the Kenai River sport fishery, 1976-1990 83
B14. Estimates of late-run Kenai River chinook salmon hook and release mortality from the Kenai River sport fishery, 1986-1990 87
C1. Data files used to produce this report 89

Abstract

Age composition and run strength data for early and late-run Kenai River chinook salmon Oncorhynchus tshawytscha from 1976 through 1990 are compiled to be available for future estimation of return per spawner ratios. Return per spawner ratios can not be calculated for any brood years to date because spawning escapement can only be estimated for returns beginning in 1985, however, the effect of strong brood years can be followed across years in the data we have now.

In 1986 through 1990, both the early and late runs of Kenai River chinook salmon have been dominated by age 1.3 and age 1.4 fish. The total run strength of the early run of chinook salmon to the Kenai River from 1985 to 1990 has ranged from 27,080 fish in 1986 to 10,808 in 1990. Complete brood year returns are only available for 1982 and 1983 brood years; these were 30,970 and 16,911 fish respectively. The return from the 1981 brood year was at least 28,923 , with the abundance of age 4 unknown. The large returns from the 1981 and 1982 brood years were largely responsible for the strength of the early run in the Kenai River in 1986 through 1988.

The total run strength of the late run from 1985 through 1990 has ranged from 39,656 chinook salmon in 1990 to 79,837 in 1986. For the late run, the 1981 brood year return was at least 92,586 , with the abundance of age 3 and age 4 fish unknown, and the return from the 1982 brood year was 90,723 with the abundance of age 3 fish unknown. As for the early run, the 1981 and 1982 brood years are responsible for the large late runs of chinook salmon in the Kenai River in 1986 through 1988.

KEYWORDS: Kenai River, chinook salmon, Oncorhynchus tshawytscha, age composition, return per spawner.

INTRODUCTION

The Kenai River is a glacial stream located in southcentral Alaska on the Kenai Peninsula. The Kenai River supports the largest sport fishery in Alaska (Mills 1990), with chinook salmon Oncorhynchus tshawytscha being the target of a large portion of the sport fishing effort. The sport harvest of chinook salmon from the Kenai River is the largest in the state, with a record harvest of 41,961 fish in 1988 (Hammarstrom 1989).

The Kenai River has two stocks of chinook salmon: an early run which enters the river from mid-May until late June, and a late run which enters the river from late June through early August (Burger et al. 1985). In 1988, the Alaska Board of Fisheries chose to delineate the early and late runs arbitrarily at 1 July for the purpose of stock allocation and in-season management. Although the definitions of the early run (mid May to 30 June) and the late run (1 July to mid August) are convenient representations of the timing of the runs, in reality there is overlap in their timing.

Management of the recreational fishery for chinook salmon in the Kenai River is complicated by the relatively large harvests of Kenai River chinook salmon by sport and commercial fisheries in the marine waters of Cook Inlet. By 1988, the growth of the major fisheries that harvest Kenai River chinook salmon fueled severe allocation disputes and heightened both public and agency concerns that stocks were vulnerable to over-exploitation. To address these concerns, in December of 1988 the Board of Fisheries adopted management plans for the early and late returns of chinook salmon to the Kenai River. These plans stipulate both the specific escapement goal by which the fisheries will be managed, and the manner in which selected fisheries are to be managed in the event of a conservation shortfall. The Kenai River chinook salmon fishery has been managed on the basis of these mangagement plan escapement goals since 1989.

The Board set the escapement goals at 9,000 spawning fish for the early run, and 22,300 for the late run. Determination of escapement goals for Pacific salmon is largely a matter of compiling return statistics and estimating the resulting production from a given brood or escapement. For the Kenai River, a simple model to estimate the necessary escapement to produce a desired level of return was used (McBride et al. 1989):
Escapement Goal = Desired Total Return / Average Rate of Return per Spawner. The key parameter in this model is the average rate of return per spawner. In order to estimate average return per spawner, managers must have several years of known spawning escapements, coupled with known returns from those escapements. Such a data base was not available for the Kenai River in 1988, so an average rate of return of 3 to 1 was chosen as the most likely estimate of long term production, based on available information from other west coast chinook salmon stocks (McBride et al. 1989). This 3 to 1 ratio was used in conjunction with known returns from 1984 through 1988 to determine the escapement goals included in the early and late-run management plans.

It is, of course, more desirable to base escapement goals (and therefore management of the fishery) on known return per spawner ratios from the Kenai River. With this in mind, a program was begun in 1984 to estimate the total
return and spawning escapement by age class of chinook salmon in the Kenai River.

The objective of this report is to compile historic age composition, harvest, and escapement data. This report is intended to serve as a baseline reference document and starting point for future return-per-spawner analysis.

METHODS

Chinook salmon pass through the marine waters of Cook Inlet and return to the Kenai River during May through August. The fisheries to which they may be vulnerable in Cook Inlet include the recreational fishery off the mouth of Deep Creek from May through July, the commercial drift net fishery targeting sockeye salmon Oncorhynchus nerka during July and August, and the commercial set net fishery along the east side of Cook Inlet, also targeting sockeye salmon during July and August. Once the runs enter the Kenai River, they are vulnerable to in-river sport and subsistence fisheries.

Estimation of Total Run Strength and Escapement

Total run strength of chinook salmon is defined as the total number of mature fish from all brood years that return in a single year (for instance all the chinook salmon that return in 1985). Escapement is defined as those salmon which escape all marine and in-river fisheries and, therefore, are potential spawners. Total brood year return is defined as the total number of mature chinook salmon that are produced from the spawning escapement.

In order to estimate run strength, the harvest in each of the marine and inriver fisheries must be estimated, as well as the final spawning escapement.

Early Run:
Early-run fish are harvested in both marine and freshwater fisheries. Marine harvests are from mixed-stock recreational fisheries. The largest marine sport fishery occurs during May and June in waters off of Deep Creek (Figure 1) and has averaged approximately 2,500 fish since 1972 (Hammarstrom and Larson 1986, Hammarstrom et al. 1987, Mills 1988-1990). The harvest consists of a mix of stocks that originate from throughout Upper Cook Inlet, and the contribution of early-run fish from the Kenai River is unknown. A large number of other stocks of upper Cook Inlet origin are available at the Deep Creek Fishery during this time; in particular, stocks destined for the Susitna River (Figure 1), which outnumber early-run Kenai River stocks by an order of magnitude (McBride et al. 1985). Other stocks of similar run timing that are likely contributors include those bound for the Anchor River, Deep Creek, Ninilchik River, and Kasilof River. Given these factors, it is unlikely that an accounting of the contribution of early-run Kenai River fish in the Deep Creek fishery would alter any conclusions regarding stock status (McBride et al. 1989). We therefore chose not to include any of the early-run Deep Creek harvest in our estimates of total return.

Figure 1. Map of Cook Inlet showing commercial fishing areas and the Kenai River.

Migration of early-run fish is relatively unimpeded from the Deep Creek fishery until they enter the lower Kenai River. Near the mouth of the river a few chinook salmon have been harvested since 1989 by educational gill nets. This harvest is taken by native Kenaitze tribal members as a subsitiute for a subsistence harvest. This harvest may increase as legal subsistence fishing rights for Kenai River stocks are established, but through 1990 the reported harvest has been less than 100 fish.

Total in-river return above the educational gill nets has been estimated by two independent methods, tagging and hydroacoustic assessment (sonar), since 1984. A mark-recapture tagging study was initiated for the late run in 1984 and was expanded to include the early run in 1985 (Hammarstrom et al. 1985, Hammarstrom and Larson 1986, Conrad and Larson 1987, Conrad 1988, Carlon and Alexandersdottir 1989, Alexandersdottir and Marsh 1990). Fish to be tagged were captured with drift gill nets in the lower portion of the river and subsequently recaptured in the in-river sport fishery. The tagging project continued from 1985 through 1990, but in 1990 closures of the in-river sport fishery resulted in very few recaptures of tagged fish and therefore no estimate of abundance from tagging was madc.

The feasibility of using hydroacoustics (sonar) to estimate in-river return was investigated beginning in 1984, although the first useable estimates were only achieved during the late run of 1987. Sonar has since been accepted as the best estimate of in-river abundance. Currently, estimates of variance are not available for these estimates however, a large fraction of the migration (approximately 33\%) is sampled by this gear and the variances for the seasonal estimate of abundance is low relative to the estimate (D. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Estimates of total run strength for the early run are simply the sum of the in-river return plus the harvest in the educational gill nets.

Estimates of the in-river sport harvest are available from on site creel surveys since 1974 (Hammarstrom 1974-1981, 1988-1991; Hammarstrom and Larson 1982-1984, 1986; Hammarstrom et al. 1985; Conrad and Hammarstrom 1987). Annual harvest of the early run in this fishery has averaged 5,000 fish since 1974 and a record harvest of 13,281 fish was taken in 1987. Total release of early-run fish in the sport fishery has been estimated since 1986, and has ranged from 3,200 to 5,900 fish annually. The rate of mortality due to hook and release during the early run was measured in 1990 and 1991 (Bendock and Alexandersdottir 1991, and In prep) and averaged 6.4\% ($\mathrm{SE}=3.4$). Spawning escapement is the difference between the total in-river return and the sport harvest (including hooking mortality).

Late Run:
Late-run Kenai River chinook salmon are harvested in several marine fisheries in addition to the freshwater sport fishery. Most of the marine harvest of late-run fish occurs during July and early August in the commercial set gill net fishery along the east side of upper Cook Inlet (Figure 1). Harvests from commercial fisheries are measured through sales receipts (fish tickets). Estimates of stock contribution to this fishery are available only for 1984 (McBride et al. 1985). During 1984, the contribution of late-run Kenai River
chinook salmon to the 3 -ocean and 4 -ocean components of the set net harvest was estimated to be 79%. Those age components comprised 70% of the harvest during that year. Given this estimate, we consider the contributions of other stocks to this fishery to be inconsequential and have not attempted to partition the harvest by stock (McBride et al. 1989). Reported harvests in the set net fishery have been declining since 1985, and have averaged roughly 14,000 chinook salmon (Table 1). Harvests in the upper Cook Inlet drift net fishery are also believed to be comprised primarily of late-run Kenai River origin, and have averaged roughly 2,000 fish since 1985. A small number of chinook salmon are caught by commercial fishermen and retained for their own use; the reported harvest was only 4 fish in 1989, and in 1990 it was 91 fish.

Sport harvest in the Deep Creek marine recreational fishery during July also probably consists primarily of late-run Kenai River fish (McBride et al. 1989). The chinook salmon harvest in the Deep Creek marine sport fishery has been estimated since 1972 (Hammarstrom and Larson 1986, Hammarstrom et al. 1987, Mills 1988-1990). From 1972 through 1986, harvest was estimated via an on-site creel survey, yielding estimates of early and late-run chinook salmon harvest. From 1987 through 1990, harvests were estimated via a state-wide postal harvest survey. The state-wide postal survey yields estimates for the entire season, not segregated into early and late runs. We segregated estimates from the state-wide postal survey into early and late runs using the mean contribution of each run to the total harvest from 1972 through 1986. Estimates of the variance associated with the harvest estimates from the creel survey are only available for 1987. Variance estimates were not calculated for the state-wide postal survey estimates.

As with the early run, small numbers of late-run fish are harvested by native educational gill nets in the lower river. This harvest has taken place since 1989 and, to date, has been less than 50 fish each year (S. Hammarstrom, Alaska Department of Fish and Game, Soldotna, personal communication).

Total in-river return above the educational gill nets for the late run has been estimated as for the early run with a mark-recapture tagging project and sonar counts. Estimates from the mark-recapture tagging project for the late run are available for 1984 through 1989 (Hammarstrom et al. 1985, Hammarstrom and Larson 1986, Conrad and Larson 1987, Conrad 1988, Carlon and Alexandersdottir 1989, Alexandersdottir and Marsh 1990). Estimates from the sonar project are available from 1987 through 1990, and are the considered the best estimates of in-river abundance for year they are available. The total in-river return has ranged from 29,035 to 57,563 from 1984 through 1990 (Table 1). Estimates of total run strength for the late run are the sum of the commercial set net harvest, the commercial drift net harvest, the Deep Creek marine recreational harvest, the educational gill net harvest, and the inriver return (Table 1).

Estimates of the in-river sport harvest of the late run are available since 1974 (Hammarstrom 1974-1981, 1988-1991; Hammarstrom and Larson 1982-1984, 1986; Hammarstrom et al. 1985; Conrad and Hammarstrom 1987). Harvest of the late run in this fishery has averaged roughly 7,000 fish since 1974 and peaked at 17,512 in 1988. Total release in the sport fishery has been estimated since 1986 and has ranged from 2,390 to 6,372 . The rate of mortality due to

Table 1. Total return and spawning escapement for Kenai River chinook salmon, 1984-1990.

Year	Deep Creek Marine	Set net Harvest	Drift net Harvest	Commercial Personal Use	Educational Gill Net	In-River Return	Total Return	Sport Harvest	Hook and Release Mortality ${ }^{\text {a }}$	Spawning Escapement
Early Run										
1985						15,972	15,972	7,971	$N A^{\text {b }}$	8,001
1986						27,080	27,080	7,561	292	19,227
1987						25,643	25,643	13,281	374	11,988
1988						20,880	20,880	12,747	377	7,756
1989					73	17,992	18,065	7,256	169	10,640
1990					40	10,768	10,808	1,735	285	8,788
Late Run										
1984	835	6,165	1,377			$39,172^{\text {c }}$	47,549	7,376	$N A^{\text {b }}$	31,796
1985	1,731	17,723	2,046			29,763	51,263	8,055	$N A^{\text {b }}$	21,708
1986	630	19,810	1,834			57,563	79,837	9,004	522	48,037
1987	1,097	20,588	4,551			48,123	74,359	12,237	368	35,518
1988	1,262	12,870	2,217			52,008	68,357	17,512	472	34,024
1989	1,294	10,919	0		22	29,035	41,270	9,127	327	19,581
1990	1,318	4,139	621	91	13	33,474	39,656	6,247	141	27,086

a See Appendix A7 and Appendix B14.
b Estimates of sport catch, and therefore of hook and release mortality, are not available for 1984 and 1985.
c Does not include returns after 31 July. Hammarstrom et al. (1985) estimated that the August segment of the run was 25% of the July segment, or 9,783 fish.
hook and release during the late run was measured in 1989 and 1990 (Bendock and Alexandersdottir 1990, 1991), and averaged 8.3\% (SE=3.3). Spawning escapement is the difference between the total in-river return and the sport harvest (including hooking mortality).

Estimation of Brood Year Returns

Kenai River chinook salmon spend 0 to 2 (usually 1) years in fresh water and 1 to 6 years in salt water, but three age classes, 1.3-1.51 (one freshwater winter and three to five saltwater winters, or $4-6$ total years) make up the majority of the return. Inputs to estimate total return from any brood year are estimates of numbers by age of Kenai River chinook salmon in significant marine commercial and sport fisheries and from the in-river return over several years. Age composition samples are taken annually from many sport and commercial chinook salmon fisheries in Cook Inlet. Age compositions are known to change within a season, so most samples for age composition are stratified by some combination of weeks within the season.

Deep Creek Marine Sport Fishery:
The age composition of the late-run sport harvest in the Deep Creek marine sport fishery was published annually from 1976 through 1986 (Hammarstrom 1977 - 1981; Hammarstrom and Larson 1982-1984, 1986; Hammarstrom et al. 1985, 1987). For years after 1986, we used the age composition from the Kenai River late-run sport harvest to estimate harvest of each age class at Deep Creek. For 1983 through 1986, the age compositions of the late-run Deep Creek marine harvest and the late-run Kenai River sport harvest were not significantly different at $\alpha=0.05$ in any year.

Letting pad equal the estimated proportion of age class a in a sample, the variance of p ad was estimated as:

$$
\begin{equation*}
\hat{\mathrm{V}}\left(\hat{\mathrm{p}}_{\mathrm{ad}}\right)=\left(\hat{\mathrm{p}}_{\mathrm{ad}}\right)\left(1-\hat{\mathrm{p}}_{\mathrm{ad}}\right) /(\mathrm{n}-1) \tag{1}
\end{equation*}
$$

where:
$\hat{\mathrm{P}}_{\mathrm{ad}}=$ the estimated proportion of age class a in the Deep Creek sample, and
$n=$ the number of chinook salmon sampled for age.
The number of chinook salmon in the Deep Creek harvest in each age class was then estimated by:

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{ad}}=\hat{\mathrm{p}}_{\mathrm{ad}} \hat{\mathrm{H}}_{\mathrm{d}} \tag{2}
\end{equation*}
$$

Where:

[^1]$\hat{\mathrm{H}}_{\mathrm{ad}}=$ the estimated number of fish in the Deep Creek harvest in age class a for a run,
$\hat{H}_{\mathrm{d}}=$ the estimate of total late-run harvest from Deep Creek.
From the method of Goodman (1960), the variance of H_{ad} is equal to:
\[

$$
\begin{equation*}
\hat{\mathrm{V}}\left(\hat{\mathrm{H}}_{\mathrm{ad}}\right)=\hat{\mathrm{V}}\left(\hat{\mathrm{H}}_{\mathrm{d}}\right) \hat{\mathrm{p}}_{\mathrm{ad}}^{2}+\hat{\mathrm{V}}\left(\hat{\mathrm{p}}_{\mathrm{ad}}\right) \hat{\mathrm{H}}_{\mathrm{d}}^{2}-\hat{\mathrm{V}}\left(\hat{\mathrm{H}}_{\mathrm{d}}\right) \hat{\mathrm{V}}\left(\hat{\mathrm{p}}_{\mathrm{ad}}\right) \tag{3}
\end{equation*}
$$

\]

For years with no estimate of the variance of the harvest, the harvest was treated as a constant and the above formula reduces to the formula for the variance of a constant times a random variable:

$$
\begin{equation*}
\hat{\mathrm{V}}\left(\hat{\mathrm{H}}_{\mathrm{ad}}\right)=\hat{\mathrm{V}}\left(\hat{\mathrm{p}}_{\mathrm{ad}}\right) \mathrm{H}_{\mathrm{d}}^{2} \tag{4}
\end{equation*}
$$

This is an underestimate of the variance of $H_{a d}$.
Commercial Fisheries:
The age composition of chinook salmon in the commercial set net fishery has been estimated since 1983 (Cross 1985, Cross et al. In Press, Waltemyer 1989, D. Waltemyer, Alaska Department of Fish and Game, Soldotna, personal communication). No age composition information is available for the Central District drift net fishery, so the set net age compositions were applied to the drift net harvest.

The proportion of each age class in each sampling strata and its variance was calculated as for the Deep Creek data, using equations 1, 2, and 4, substituting commercial harvest from fish tickets for the sport harvest (H_{d})

The number of fish in each age class for all strata combined was simply the sum of the number of fish in each strata. The variance was also summed across strata. The proportion of fish in each age class for all strata combined was:

$$
\begin{equation*}
\hat{\mathrm{P}}_{\mathrm{ac}}=\hat{\mathrm{H}}_{\mathrm{ac}} / \sum_{\mathrm{k}=1}^{\mathrm{s}} \mathrm{H}_{\mathrm{ck}} \tag{5}
\end{equation*}
$$

where:
$\hat{H}_{a c}=$ The estimate of the number of fish in age class a for all strata combined in the commercial set net harvest, and
$H_{c k}=$ The number of fish in the commercial set net harvest in strata k, and,
$\mathbf{s} \quad=$ The total number of strata.

With variance (Scheaffer et al. 1979):

$$
\begin{equation*}
\left.\hat{\mathrm{V}}\left(\hat{\mathrm{p}}_{\mathrm{ac}}\right)=\sum_{\mathrm{k}=1}^{\mathrm{s}} \hat{\mathrm{~V}}\left(\hat{\mathrm{H}}_{\mathrm{ack}}\right) / \sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{H}_{\mathrm{ck}}\right)^{2} \tag{6}
\end{equation*}
$$

where:

$$
\hat{H}_{a c k}=\text { the estimated commercial set net harvest of age class a in }
$$ strata k.

The proportions of each age class in all strata combined in the commercial set net harvest were used to estimate the harvest of each age class in the drift net harvest and in the commercial personal use harvest (which were not sampled).

$$
\begin{equation*}
\hat{\mathrm{H}}_{\mathrm{af}}=\hat{\mathrm{p}}_{\mathrm{ac}} \mathrm{H}_{\mathrm{f}} \tag{7}
\end{equation*}
$$

where:
$\hat{H}_{\text {af }}=$ the estimated harvest of age class a in the commercial drift net or commercial personal use fishery, and
$H_{f}=$ the total harvest in the commercial drift net or commercial personal use fishery.

The variance of $H_{a f}$ is calculated as for the Deep Creek marine sport harvest (equation 4), substituting $P_{a c}$ for $P_{a d}$ and H_{f} for H_{d}.

Educational Gill Nets:

No age composition samples have been taken from the harvest in the educational gill nets. For the early run we assumed that the age composition of the educational gill net harvest was the same as the age composition of the inriver return. For the late run, we assumed the age composition was the same as the commercial set net harvest. Total harvest by age class was calculated as for the Deep Creek harvest, substituting the proportion from either the inriver return or the commercial set nets for $P_{a d}$, and the total educational gill net harvest for H_{d}.

In-River Return:

Estimates of age composition of the in-river return from the mark-recapture project sampling are available since 1986 and are published in the same reports as the mark-recapture population estimates (Conrad and Larson 1987, Conrad 1988, Carlon and Alexandersdottir 1989, Alexandersdottir and Marsh 1990).

The proportion of each age class and the number of fish in each age class in each sampling strata of the in-river return and their variances were calculated as for the Deep Creek marine data, using equations 1-3. For strata
in which the sonar counts were used to estimate the in-river return, the return is treated as a constant and equation 4 is used to estimate the variance.

Estimates of the number of fish in each age class and their variances for each sampling strata were then summed across strata to give estimates of in-river return by age class for the entire run.

Kenai River Sport Harvest:
The number of fish of each age class in each sampling strata of the Kenai River sport harvest and its variance were calculated as for the Deep Creek marine data, using equations 1-3, substituting Kenai River sport harvest for the Deep Creek marine sport harvest. Estimates of harvest by age class and their variances were summed across strata. The proportion of fish in each age class for all strata combined was calculated as for the commercial set net data, using equations 5 and 6 .

Hook and Release Mortality:
The rate of mortality among fish caught and released during the sport fishery is known to vary by sex and size of fish (Bendock and Alexandersdottir 1990, 1991). The age composition of these mortalities is unknown, so we did not attempt to apportion the mortalities among age classes.

Spawning Escapement:
Spawning escapement by age was calculated by subtracting the sport harvest for each age class from the in-river return. In cases where this resulted in a negative number for minor age classes, the spawning escapement was set to zero. The variance of the spawning escapement was calculated as the sum of the variance of the sport harvest and the variance of the in-river return for each age.

Relationships Between Ages Within a Brood Year

Age structure is a conservative trait in salmonids, the age classes represented within brood years in a stock do not change drastically across years. The distribution of numbers returning in each age class within a brood year may also be a stable character within a stock. This relationship between ages within a brood year, or sibling relationships, may be used to estimate expected return in future years for a brood year.

A sibling ratio, r_{a}, is the ratio of one age to one or more younger ages in a brood year. For any brood year b, the number that have returned to date is:

$$
\begin{equation*}
\mathrm{n} \cdot \mathrm{~b}=\sum_{\mathrm{j}=3}^{\mathrm{a}-1} \mathrm{n}_{\mathrm{jb}} \tag{9}
\end{equation*}
$$

where,

$n_{j b}=$ number returning at age j (j begins at 3 since no Kenai River fish return at ages younger than 3),

and the sibling ratio of the abundance returning at age a to the total abundance of preceding ages in a brood year is,

$$
\begin{equation*}
r_{a b}=n_{a b} / n \cdot b \tag{10}
\end{equation*}
$$

where,

$$
\mathrm{n}_{\mathrm{ab}}=\text { number returning at age } a .
$$

The variance of the sum of abundances at ages 3 to a-1 is the sum of the variances of each abundance at age:

$$
V[n \cdot b]=\underset{j=3}{a-1} V\left[n_{j b}\right]
$$

and the variance of the sibling ratio is:

$$
\begin{equation*}
V\left[r_{a b}\right]=r_{a b}^{2}\left(\frac{V\left[n_{a b}\right]}{n_{a b}^{2}}+\frac{V[n \cdot b]}{n \cdot 2}\right) \tag{12}
\end{equation*}
$$

Sibling ratios for each age can be estimated for all brood years for which data are available and an average ratio estimated, by:

$$
\begin{equation*}
\bar{r}_{a}=\sum_{h=1}^{m} r_{a b} / m \tag{13}
\end{equation*}
$$

where,
$m \quad=$ number of brood years for which $r_{a b}$ is available.
The complete variance for the sibling ratio for age a is:

$$
V\left[r_{a}\right]=\frac{\sum_{b=1}^{m}\left(r_{a b}-\bar{r}_{a}\right)^{2}}{m(m-1)}+\frac{\sum_{b=1}^{m} V\left[r_{a b}\right]}{m}
$$

The second component accounts for variation from estimated age compositions while the first represents variation among brood years.

The expected return in year k of fish of age a from brood year b can be estimated using this ratio and the sum of returns from brood year b in previous years. The return to date is estimated by:

$$
\begin{equation*}
\hat{n} \cdot \mathrm{~b}=\sum_{j=3}^{a-1} n_{j b}, \tag{15}
\end{equation*}
$$

and the expected return at age a is estimated by:

$$
\begin{equation*}
\hat{\mathrm{n}}_{\mathrm{ab}}=\overline{\mathrm{r}}_{\mathrm{ab}} \hat{\mathrm{n}}_{\cdot \mathrm{b}} \tag{16}
\end{equation*}
$$

and its variance by:

$$
\begin{equation*}
\mathrm{V}\left[\hat{n}_{a b}\right]=\bar{r}_{a b}^{2} V[\hat{n} \cdot b]+\mathrm{V}\left[\bar{r}_{a b}\right] \hat{n}^{2} \cdot b-V\left[\bar{r}_{a b}\right] \hat{V}[\hat{n} \cdot \mathrm{~b}] . \tag{17}
\end{equation*}
$$

We used mean sibling ratios to estimate the 1990 run strength, and compared this estimate to the known 1990 run strength. A predictive model of returns should not include as a variable the sibling ratios calculated from the predicted year's returns. Thus, only the mean of the sibling ratios from 1985 through 1989 returns was used to estimate the 1990 expected returns. The expected returns for 1991 were estimated using the mean of the sibling ratios from 1985 through 1990 returns.

RESULTS

Early Run

The total run strength has ranged from 27,080 chinook salmon in 1986 to 10,808 in 1990 (Table 1). Age 1.4 fish usually dominate the in-river return and spawning escapement (Tables 2 and 3 and Appendices Al-A5). The only exception was in 1986 when age 1.3 fish were more numerous. The dominant age class in all years in the sport fishery has been 1.4 (Table 4, Appendix A6).

Complete brood year returns for the early-run chinook salmon are only available for the 1982 and 1983 brood years; these were 30,970 and 16,911 fish, respectively (Table 5). The return from the 1981 brood year was at least 28,923, with the abundance of age 4 fish unknown (Table 5). The majority of Kenai River early-run chinook salmon return at ages 4 to 7 , with age 6 fish having the largest representation followed by the age 5 fish (Table 5). The large return from the 1981 and 1982 brood years was largely responsible for the strength of the runs in the Kenai River in 1986-1988 (Table 2).

Sibling ratios from the 1985 through 1990 returns were highly variable (Table 6). The ratio of age 6 to age 5 is of particular interest because these two ages account for the majority of each brood year's return. A pattern of high ratios for brood years with low age 5 return and low ratios for years with high age 5 returns has begun to develop (Figure 2). If this pattern continues as we collect more data, a more accurate model of brood year returns may be developed. The percent difference between observed and expected returns expressed as a percentage of the expected return ranged from $14-47 \%$ for the

Table 2. Estimates by age class of the total number of early-xun Kenai River chinook salmon, 1986-1990.

Year	0.2	0.3	0.4	0.5	1.1	1.2	1.3	Age Class			2.1	2.2	2.3	2.4	Total
								1.4	1.5	1.6					
1986															
Estimated Number	0	0	0	0	0	4,554	11,730	8,880	1,908	0	0	0	0	7	27,080
SE						1,755	4,239	3,195	703					19	9,799
1987															
Estimated Number	0	0	0	0	0	386	9,653	14,883	589	0	0	0	31	101	25,643
SE						125	2,080	3,732	226				31	56	5,928
1988															
Estimated Number	0	0	0	0	0	358	3,088	15,077	2,279	57	0	0	21	0	20,880
SE						97	260	335	237	40			21		0
1989															
Estimated Number	0	0	0	0	0	759	2,853	12,789	1,665	0	0	0	0	0	18,065 ${ }^{\text {a }}$
SE						137	250	311	195						0
1990															
Estimated Number	0	0	0	0	0	800	2,818	6,540	648	0	0	0	0	0	$10,808^{\text {b }}$
SE						133	214	241	114						0

a Includes 73 fish harvested in educational gill nets.
b Includes 40 fish harvested in educational gill nets.

Table 3. Estimates by age class of the early-run Kenai River chinook salmon spawning escapement, 19861990.

Year	Age Class														Total Aged ${ }^{\text {a }}$	Hook and Release Mortality ${ }^{\text {b }}$	Total
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4			
1986																	
Estimated Number	0	0	0	0	0	4,014	8,989	5,289	1,233	0	0	0	0	7	19,519	292	19,227
SE					14	1,757	4,245	3,207	710					19	9,810	161	9,811
1987																	
Estimated Number	0	0	0	0	0	273	5,519	6,558	0	0	0	0	31	16	12,362	374	11,988
SE						137	2,117	3,783	264				31	74	5,992	214	5,996
1988																	
Estimated Number	0	0	0	0	0	114	1,533	5,061	1,413	57	0	0	21	0	8,133	377	7,756
SE					22	122	325	694	277	40			21	31	722	209	752
1989																	
Estimated Number	0	0	0	0	0	518	938	8,177	1,182	0	0	0	0	0	10,809	169	10,640
SE					56	168	369	519	238						517	100	527
1990																	
Estimated Number	0	0	0	0	0	699	2,710	5,222	402	0	0	0	0	0	9,073	285	8,788
SE						142	220	330	140						277	97	293

a For some age classes in some years, the estimate of the number harvested in the sport fishery is greater than the estimate of the number in the in-river return. The spawning escapement for the age class in this case was set to zero. When this occurred, the total spawning escapement (calculated by subtracting total sport harvest from total in-river return) is not the sum of the spawning escapements across age classes.
b The rate of mortality due to hook and release is known to vary by size and sex of fish, but the exact age composition of fish killed by hook and release is unknown.

Table 4. Estimates by age class of the number of early-run chinook salmon harvested in the Kenai River sport fishery, 1986-1990.

Year	Age Class														
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	Total
1986															
Estimated Number	0	0	0	0	14	540	2,741	3,591	675	0	0	0	0	0	7,561
SE					14	89	229	274	100						470
1987															
Estimated Number	0	0	0	0	0	113	4,134	8,325	623	0	0	0	0	85	13,281
SE						57	392	621	136					49	871
1988															
Estimated Number	0	0	0	0	22	244	1,555	10,016	866	0	0	0	0	44	12,747
SE					22	74	195	608	143					31	722
1989															
Estimated Number	0	0	0	0	79	238	1,903	4,560	476	0	0	0	0	0	7,256
SE					56	97	272	416	137						517
1990															
Estimated Number	0	0	0	0	0	98	98	1,295	244	0	0	0	0	0	1,735
SE						50	50	225	81						277

Table 5. Number of early-run Kenai River chinook salmon returning 1986-1990 by brood year.

Brood Year	Spawning Escapement	Return at Age						Total
		3	4	5	6	7	8	
1978								
Estimate	$N A^{\text {a }}$						0	0
SE								
1979								
Estimate	$N A^{a}$					1,915	0	1,915
SE						703		703
1980								
Estimate	NA ${ }^{\text {a }}$				8,880	690	57	9,627
SE					3,195	233	40	3,204
1981								
Estimate	NA ${ }^{\text {a }}$			11,730	14,914	2,279	0	28,923
SE				4,239	3,732	237		5,653
1982								
Estimate	- A^{a}		4,554	9,653	15,098	1,665	0	30,970
SE			1,755	2,080	336	195		2,749
1983								
Estimate	- $\mathrm{AA}^{\text {a }}$	0	386	3,088	12,789	648		16,911
SE			125	260	311	114		439
1984								
Estimate	- $\mathrm{AA}^{\text {a }}$	0	358	2,853	6,540			9,751
SE			97	250	241			360
1985								
Estimate	8,001	0	759	2,818				3,577
SE	NA		137	214				254
1986								
Estimate	19,227	0	800					800
SE	9,811		133					133
1987								
Estimate	- 11,988	0						0
SE	5,996							

a Spawning escapements for 1978-1984 are not available.

Table 6. Sibling return ratios for early-run Kenai River chinook salmon from brood years 1980-1986.

Brood Year	Age 5/ Age 4	Age 6/	Age 6/ Age 4+5	Age 7/ $\text { Age } 6$	Age 7/ Age $5+6$	Age 7/ Age $4+5+6$
1980	$\mathrm{NA}^{\text {a }}$	NA	NA	0.08	NA	NA
1981	NA	1.27	NA	0.15	0.09	NA
1982	2.12	1.56	1.06	0.11	0.07	0.06
1983	8.00	4.14	3.68	0.05	0.04	0.04
1984	8.00	2.29	2.04	NA	NA	NA
1985	3.71	NA	NA	NA	NA	NA

Mean sibling ratio using 1985-1990 return datab

Mean	5.45	2.32	2.26	0.10	0.06	0.05
SD	3.52	1.35	1.30	0.05	0.03	0.01
\%CV	65	58	59	54	41	30
Maximum	8.00	4.14	3.68	0.15	0.09	0.06
Minimum	2.12	1.27	1.06	0.05	0.04	0.04

Mean sibling ratio using 1985-1989 return datad

Mean	6.03	2.33	2.37	0.11	0.08	0.06
SD	3.98	1.64	1.87	0.05	0.02	

a $N A=$ not available.
b Used to predict 1991 returns.
c Percent coefficient of variation.
d Used to predict 1990 returns.

Figure 2. Ratio of age 6 to age 5 compared to returns at age 5 for early and late run, brood years 1981-1985.
individual ages and was 28% for the total return. The observed total run strength was 10,806 for the early run in 1990 , which was 4,114 higher than the expected return of 14,920 salmon (Table 7). The observed return was well within the confidence of the forecast.

We used sibling ratios estimated from data collected during the 1985 through 1990 seasons to estimate the 1991 early-run return. The expected early-run return in 1991 is 14,291, with relative precision of the 95% confidence interval at 48% (Table 7).

Late Run

The total run strength of the late run has ranged from 39,656 chinook salmon in 1990 to 79,837 in 1986 (Table 1). The spawning escapement has ranged from 19,581 in 1989 to 48,037 in 1986 (Table 1).

Age classes $1.2,1.3,1.4$ and 1.5 are the major age classes in the late run, although a wide range of age classes are represented (Tables 8-11, Appendices B1-B12). The 1.4 age class was the most numerous in all years except 1986 when, as in the early run, age 1.3 returned in higher numbers (Tables 8-11). The spawning escapements were also dominated by age 1.4 except in 1986 (Table 12). Age 1.4 was the dominant age class in the in-river sport harvest for all years from 1986-1990 (Table 13, Appendix B13). Age 1.4 in 1988 was the largest age class for all years in the in-river sport harvest.

The majority of Kenai River late-run chinook salmon return at ages 4 to 7, with age 6 fish having the largest representation followed by the age 5 fish (Table 14). A few age 3 and age 8 chinook salmon have been identified in the late run. The return from the 1981 brood year was at least 92,586 , with the abundance of age 3 and 4 fish unknown (Table 14) and the return from the 1982 brood year was at least 90,723 with agc 3 fish unaccounted for. As for the early run, these two brood years are responsible for the large late runs of chinook salmon in the Kenai River in 1986, 1987 and 1988 (Tables 8 and 14). The weak returns from the 1983, 1984 and 1985 brood years have contributed to the small late runs seen in the Kenai River in 1989 and 1990 (Tables 8 and 14).

A mean of sibling ratios estimated using data collected during the 1985-1989 seasons (Table 15) was used to calculate expected returns by age class for the 1990 season and compared to the observed return in 1990 (Table 16). The percent difference between observed and expected returns expressed as a percentage of the expected return ranged from $29-447 \%$ for the individual ages but was only 19% for the total return. The observed total run strength was 39,656 for the late run in 1990 , which was 6,445 higher than the expected return of 33,517 salmon (Table 16). The observed return was well within the confidence of the forecast.

We used sibling ratios estimated from data collected during the 1985 through 1990 seasons to estimate the 1991 late-run return. The expected late-run return in 1991 is 43,482, with relative precision of the 95% confidence interval at 30% (Table 16).

Table 7. Expected and observed 1990 return and expected 1991 return of early-run Kenai River chinook salmon

	Return at age				Total
	4	5	6	7	
1990					
Expecteda	$1,514^{\text {b }}$	4,576	7,616	1,213 ${ }^{\text {c }}$	14,920
SE	1,017	1,905	4,280	232	5,113
Observed	800	2,818	6,540	648	10,806
Difference					-4,114
\% of Exp.	47	38	14	47	28
1991					
Expected ${ }^{\text {d }}$	1, $371{ }^{\text {a }}$	4,363	8,085	$471{ }^{\text {e }}$	14,291
SE	801	1,568	2,741	100	3,632

a Expected returns for 1990 were calculated using using sibling ratios calculated from the 1985-1989 returns.
b Mean of previous returns at age 4.
c Calculated using ratio of age 7 to age $5+6$ because SE could not be calulated for 1985-1989 mean ratio of age 7 to age $4+5+6$.
d Expected returns for 1991 were calculated using sibling ratios calculated from the 1985-1990 returns.
c Calculated using ratio of age 7 to age $4+5+6$.

Table 8. Estimates by age class of the total return of late-run Kenai River chinook salmon, 1986-1990.

Year	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	Age Class						Total
									1.5	1.6	2.1	2.2	2.3	2.4	
1986															
Estimated Number	43	43	22	22	260	12,017	35,314	29,039	2,774	22	43	43	152	43	79,837
SE	24	24	17	17	60	3,436	9,106	6,482	776	17	24	24	46	24	19,458
1987															
Estimated Number	0	0	0	0	361	3,635	22,427	46,813	775	99	51	44	97	58	74,359
SE					75	315	796	823	173	70	51	23	57	50	0
1988															
Estimated Number	0	0	35	0	454	2,235	4,116	51,233	10,120	0	0	46	15	101	68,356
SE			17		72	241	375	820	735			23	13	36	0
1989															
Estimated Number	0	0	0	0	108	5,052	6,193	24,906	4,887	76	0	34	0	13	41,270
SE					38	438	468	662	456	69		24		13	0
1990															
Estimated Number	0	11	11	0	65	5,749	6,572	25,237	1,841	0	45	23	23	79	39,656
SE		10	10		22	480	519	655	307		19	14	14	26	0

Table 9. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net fishery, 1986-1990.

Year	0.2	0.3	0.4	0.5	1.1	1.2	1.3	Age Class			2.1	2.2	2.3	2.4	Total
								1.4	1.5	1.6					
1986															
Estimated Number	43	43	22	22	260	4,978	8,008	7,251	714	22	43	43	152	43	21,644
SE	24	24	17	17	60	238	300	289	99	17	24	24	46	24	0
1987															
Estimated Number	0	0	0	0	356	2,726	8,770	12,897	241	0	0	44	97	8	25,139
SE					75	236	386	400	73			23	57	6	0
1988															
Estimated Number	0	0	35	0	445	1,604	2,186	10.381	273	0	0	46	15	101	15,086
SE			17		72	137	158	206	59			23	13	36	0
1989															
Estimated Number	0	0	0	0	100	1,906	2,313	5,608	958	0	0	34	0	0	10,919
SE					37	155	163	198	110			24			0
1990															
Estimated Number	0	11	11	0	57	1,413	1,425	1,606	158	0	45	23	23	79	4,851
SE		10	10		22	92	92	95	36		19	14	14	26	0

Table 10. Estimates by age class of the number of late-run chinook salmon harvested in the Deep Creek marine sport fishery, 1986-1990.

Year	Age Class														
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	Total
1986															
Estimated Number	0	0	0	0	0	30	165	375	60	0	0	0	0	0	630
SE						22	72	144	35						230
1987															
Estimated Number	0	0	0	0	5	11	250	797	34	0	0	0	0	0	1,097
SE					3	5	21	22	9						NA
1988															
Estimated Number	0	0	0	0	9	3	42	992	215	0	0	0	0	0	1,262
SE					5	3	11	25	23						NA
1989															
Estimated Number	0	0	0	0	0	13	141	922	205	0	0	0	0	13	1,294
SE						13	73	418	101					13	NA
1990															
Estimated Number	0	0	0	0	8	128	209	819	155	0	0	0	0	0	1,318
SE					5	21	26	35	23						NA

Table 11. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1986-1990.

Year	0.2	0.3	0.4	0.5	1.1	1.2	1.3	Age Class			2.1	2.2	2.3	2.4	Total
								1.4	1.5	1.6					
1986															
Estimated Return	0	0	0	0	0	7,009	27,141	21,413	2,000	0	0	0	0	0	57,563
SE						3,428	9,101	6,474	769						19,457
1987															
Estimated Return	0	0	0	0	0	898	13,407	33,119	500	99	51	0	0	50	48,123
SE						209	696	719	157	70	51			50	0
1988															
Estimated Return	0	0	0	0	0	628	1,888	39,860	9,632	0	0	0	0	0	52,008
SE						198	340	793	732						0
1989															
Estimated Return	0	0	0	0	8	3,129	3,734	18,365	3,722	76	0	0	0	0	29,035
SE					8	409	437	629	440	69					0
1990															
Estimated Return	0	0	0	0	0	4,204	4,934	22,808	1,528	0	0	0	0	0	33,474
SE						471	510	647	304						0

Table 12. Estimates by age class of the late-run Kenai River chinook salmon spawning escapement, 19861990.

Year	Age Class														Total Aged ${ }^{\text {a }}$	Hook and Release Mortality ${ }^{\text {b }}$	Total
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4			
1986																	
Estimated Number	0	0	0	0	0	6,096	23,634	17,340	1,525	0	0	0	0	0	48,559	522	48,037
SE					26	3,431	9,105	6,480	175						19,462	220	19,463
1987																	
Estimated Number	0	0	0	0	0	771	10,620	24,226	120	99	51	0	0	50	35,886	368	35,518
SE					36	217	755	944	186	70	51			50	769	174	788
1988																	
Estimated Number	0	0	0	0	0	586	1,299	26,095	6,643	0	0	0	0	0	34,496	472	34,024
SE					73	202	375	1,190	819						1,036	225	1,060
1989																	
Estimated Number	0	0	0	0	8	3,039	2,740	11,859	2,276	76	0	0	0	0	19,908	327	19,581
SE					8	419	525	859	559	69				90	582	148	601
1990																	
Estimated Number	0	0	0	0	0	3,429	3,821	19,218	794	0	0	0	0	0	27,227	141	27,086
SE					26	467	519	716	32.7						445	65	450

a For some age classes in some years, the estimate of the number harvested in the sport fishery is greater than the estimate of the number in the in-river return. The spawning escapement for the age class in this case was set to zero. When this occurred, the total spawning escapement (calculated by subtracting total sport harvest from total in-river return) is not the sum of the spawning escapements across age classes.
b The rate of mortality due to hook and release is known to vary by size and sex of fish, but the exact age composition of fish killed by hook and release is unknown.

Table 13. Estimates by age class of the number of late-run chinook salmon harvested in the Kenai River sport fishery, 1986-1990.

Year	Age Class														
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	Total
1986															
Estimated Number	0	0	0	0	37	913	3,507	4,073	475	0	0	0	0	0	9,004
SE					26	131	266	289	94						458
1987															
Estimated Number	0	0	0	0	51	127	2,787	8,893	380	0	0	0	0	0	12,237
SE					36	57	292	611	99						769
1988															
Estimated Number	0	0	0	0	126	42	589	13,765	2,989	0	0	0	0	0	17,512
SE					73	42	159	887	368						1,036
1989															
Estimated Number	0	0	0	0	0	90	994	6,506	1,446	0	0	0	0	90	9,127
SE						90	291	585	345					90	582
1990															
Estimated Number	0	0	0	0	37	605	989	3,884	733	0	0	0	0	0	6,247
SE					26	109	142	322	121						445

Table 14. Number of late-run Kenai River chinook salmon returning from each brood year, 1986-1990.

Brood SYear	Spawning	Return at Age						
	Escapement	3	4	5	6	7	8	Total
1978								
Estimate	NA ${ }^{\text {a }}$						22	22
SE							17	17
1979								
Estimate	$N A^{a}$					2,818	99	2,917
SE						776	70	780
1980								
Estimate	$N A^{a}$				29,212	833	0	30,045
SE					6,482	181	0	6,485
1981								
Estimate	$N A^{\text {a }}$			35,379	46,910	10,221	76	92,586
SE				9,106	825	736	69	9,173
1982								
Estimate	$N A^{\text {a }}$		12,104	22,471	51,248	4,900	0	90,723
SE			3,473	796	820	456	0	3,650
1983								
Estimate	- $N A^{a}$	303	3,686	4,197	24,906	1,920		35,013
SE		64	319	376	662	308		884
1984								
Estimate	- 31,796	361	2,235	6,227	25,259			34,082
SE		75	241	469	655			844
1985								
Estimate	21,708	454	5,052	6,606				12,112
SE	NA	72	438	519				683
1986								
Estimate	- 48,037	108	5,806					5,914
SE	19,463	38	481					482
1987								
Estimate	35,518	65						65
SE	788	22						22

a Spawning escapements for 1978-1983 are not available.

Table 15. Sibling return ratios for late-run Kenai River chinook salmon from brood years 1980-1986.

Brood Year	Age 4/ Age 3	Age 5/ Age 4	Age 6/ Age 5	Age 6/ Age 4+5	Age 7/ Age 6	Age 7/ Age 5+6	Age 7/ Age 4+5+6
1980	NA $^{\text {a }}$	NA	NA	NA	0.03	NA	NA
1981	NA	NA	1.32	NA	0.22	0.12	NA
1982	NA	1.86	2.28	1.48	0.10	0.07	0.06
1983	12.17	1.14	5.93	3.16	0.08	0.07	0.06
1984	6.19	2.79	4.06	2.99	NA	NA	NA
1985	11.12	1.31	NA	NA	NA	NA	NA
1986	53.76	NA	NA	NA	NA	NA	NA

Mean sibling ratio using 1985-1990 return data ${ }^{\text {a }}$

Mean	20.81	1.77	3.40	2.54	0.10	0.09	0.06
SD	22.22	0.82	2.06	1.08	0.08	0.04	0.01
\%CVb	107	46	61	42	78	42	14
Maximum	53.76	2.79	5.93	3.16	0.22	0.12	0.06
Minimum	6.19	1.14	1.33	1.48	0.03	0.07	0.06

Mean sibling ratio using $1985-1989$ return data ${ }^{\text {c }}$

Mean	9.83	1.93	3.18	2.32	0.11	0.10	0.06
SD	3.89	0.91	2.46	1.20	0.10	0.04	

a $\mathrm{NA}=$ not available.
b Used to predict 1991 returns.
c Percent coefficient of variation.
d Used to predict 1990 returns.
$\begin{array}{llll}\text { Table 16. } & \text { Expected and observed } 1990 & \text { return } & \text { and } \\ \text { 1991 return of late-run } \\ \text { salmon. }\end{array}$

	Age at return					Total
	3	4	5	6	7	
1990						
Expected ${ }^{\text {a }}$	$306{ }^{\text {b }}$	1,061	9,736	19,639	2,775 ${ }^{\circ}$	33,517
SE	146	437	2,778	7,274	881	7,848
Observed	65	5,806	6,606	25,259	1,920	39,656
Difference Obs. - Exp.	-242	4,745	-3,130	5,620	-855	6,445
\% of exp	79	447	32	29	31	19
1991						
Expected ${ }^{\text {d }}$	258 ${ }^{\text {b }}$	1,353	10,289	29,637	1,950 ${ }^{\text {e }}$	43,488
SE	166	819	2,512	7,453	196	7,912

a Expected returns for 1990 were calculated using sibling ratios calculated from the 1985-1989 returns.
b Mean of previous returns at age 3 .
c Calculated using ratio of age 7 to age $5+6$ because SE could not be calculated for 1985-1989 ratio of age 7 to age 4+5+6.
d Expected returns for 1991 were calculated using sibling ratios calculated from the 1985-1989 returns.
e Calculated using ratio of age 7 to age 4+5+6.

Age compositions for the in-river return are only available since 1986 and so the first brood year returns available are for the 1979 spawners. Total return and spawning escapement are only available for the Kenai River chinook salmon since 1985. The estimated spawning escapement has been under the escapement goals set in 1988 in two of six years since 1985 for the early run (1985 and 1988) and once for the late run (1989). The estimated escapements have exceeded the goal by over 50% in one year (1986) for the early run and three years (1986-1988) for the late run. Complete returns are available for the 1982 and 1983 brood years, and the first complete brood year return for a known escapement, 1985, will be available after the 1992 season. This database will eventually provide return-per-spawner estimates and allow the evaluation of the escapement goals.

The trends in brood year return are similar for both the early and late runs. Although the data are incomplete it is obvious that the returns from the 1981 and 1982 escapements were large (Tables 5 and 14), but the size of those escapements are unknown. Subsequent brood year returns, from escapements in 1983 and later, are smaller in size. The sibling ratios observed for the early and late runs are very variable, and it is too early to evaluate their usefulness in the prediction of the total size of a brood year return.

ACKNOWLEDGEMENTS

We thank Steve Hammarstrom for his review of this report and for his assistance with getting all the right numbers. We also thank Doug McBride for his careful review of our report and his many suggestions which improved the quality of our final draft.

LITERATURE CITED

Alexandersdottir, M. and L. Marsh. 1990. Abundance estimates of the escapement of chinook salmon into the Kenai River, Alaska, by analysis of tagging data, 1989. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 90-55, Anchorage.

Bendock, T. and M. Alexandersdottir. 1990. Hook and release mortality of chinook salmon in the Kenai River recreational fishery. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 90-16, Anchorage.

Bendock, T. and M. Alexandersdottir. 1991. Hook and release mortality of chinook salmon in the Kenai River recreational fishery. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 91-39, Anchorage.

Bendock, T. and M. Alexandersdottir. In prep. Hook and release mortality of chinook salmon in the Kenai River recreational fishery. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series, Anchorage.

Burger, C. V., R. L. Wilmot, and D. B. Wangaard. 1985. Comparison of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 42(4):693-700.

Carlon, J. and M. Alexandersdottir. 1989. Abundance estimates of the escapement of chinook salmon into the Kenai River, Alaska, by analysis of tagging data, 1988. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 107.

Conrad, R. H. 1988. Abundance estimates of the escapement of chinook salmon (Oncorhynchus tshawytscha) into the Kenai River, Alaska, by analysis of tagging data, 1987. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 67. Juneau.

Conrad, R. H. and S. L. Hammarstrom. 1987. Harvest of chinook salmon Oncorhynchus tshawytscha and coho salmon O. kisutch and angler-effort by the lower Kenai River recreational fisheries, 1986. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 6.

Conrad, R. H. and L. L. Larson. 1987. Abundance estimates for chinook salmon (Oncorhynchus tshawytscha) in the escapement into the Kenai River, Alaska, by analysis of tagging data, 1986. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 34.

Cross, B. 1985. Abundance, age, sex, and size data for Upper Cook Inlet sockeye, chinook, coho, chum, and pink salmon, 1983. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report No. 159.

LITERATURE CITED (Continued)

Cross, B., W. E. Goshert, and B. L. Stratton. In Press. Catch, age, sex, and length data for Upper Cook Inlet chinook, coho, and chum salmon 19841986. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report.

Goodman, L. A. 1960. On the exact variance of products. Journal American Statistical Association 55:708-713.

Hammarstrom, S. 1976. Inventory and cataloging of Kenai Peninsula, Cook Inlet drainages and fish stocks. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1975-1976, Project F-9-8, 17 (G-I-C):35-62.
\qquad . 1977. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1976-1977, Project F-9-9, 18 (G-II-L):29-46.
\qquad . 1978. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1977-1978, Project F-9-10, 19 (G-II-L):42-56.
. 1979. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1978-1979, Project F-9-11, 20 (G-II-L):49-96.
. 1980. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1979-1980, Project F-9-12, 21 (G-II-L):59-90.
. 1981. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1980-1981, Project F-9-13, 22 (G-II-L):33-61.
. 1988. Angler effort and harvest of chinook salmon Oncorhynchus tshawytscha and coho salmon O. kisutch by the recreational fisheries in the lower Kenai River, 1987. Alaska Department of Fish and Game. Division of Sport Fish, Fishery Data Series No. 50. Juneau.
\qquad . 1989. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1988. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 100. Juneau.
. 1990. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1989. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 90-22. Anchorage.

LITERATURE CITED (Continued)

. 1991. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1990. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 91-44. Anchorage.

Hammarstrom, S. L. and L. L. Larson. 1982. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1981-1982, Project F-9-14, 23 (G-II-L):1-47.
\qquad . 1983. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1982-1983, Project F-9-15, 24 (G-II-L):36-67.
\qquad . 1984. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1983-1984, Project F-9-16, 25 (G-II-L):1-39.
. 1986. Cook Inlet chinook and coho salmon studies. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Performance Report, 1985-1986, Project F-9-18, 27 (G-32-1,2,4,5):1-56.

Hammarstrom, S. L., L. L. Larson, and D. T. Balland. 1987. Fisheries statistics for selected sport fisheries on the lower Kenai Peninsula, Alaska, 1986, with emphasis on chinook salmon (Oncorhynchus tshawytscha). Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 36. Juneau.

Hammarstrom, S. L., L. L. Larson, M. Wenger, and J. Carlon. 1985. Kenai River chinook and coho salmon studies/Kenai River chinook salmon hook and release study. Alaska Department of Fish and Game, Federal Aid in Fish Restoration/Anadromous Fish Study, Annual Performance Report, 1984-1985, Project F-9-17/AFS-50, 26 (G-II-L).

Jones and Stokes Associates, Inc. 1987. Southcentral Alaska sport fishing economic study. Sacramento, California. Prepared for Alaska Department of Fish and Game, Division of Sport Fish, Anchorage, AK.

Koo, T. S. Y. 1962. Age designation in salmon. pages $37-48$ in T. S. Y. Koo, ed. Studies of Alaska salmon. University of Washington Press, Seattle, Washington.

McBride, D. N., R. D. Harding, B. A. Cross, and R. H. Conrad. 1985. Origins of chinook salmon (Oncorhynchus tshawytscha Walbaum) in the commercial catches from the Central District eastside set gillnet fishery in Upper Cook Inlet, 1984. Alaska Department of Fish and Game, Informational Leaflet No. 251. Juneau.

McBride, D. N., M. Alexandersdottir, S. Hammarstrom, and D. Vincent-Lang. 1989. Development and implementation of an escapement goal policy for the return of chinook salmon to the Kenai River. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 8. Juneau.

Mills, M. J. 1988. Alaska statewide sport fisheries harvest report 1987. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 52. Juneau.
. 1989. Alaska statewide sport fisheries harvest report 1988. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 122. Juneau.
1990. Harvest and participation in Alaska sport fisheries during 1989. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 90-44. Anchorage.

Ruesch, P. H. 1991. 1990 Upper Cook Inlet annual management report. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S91-1.

Scheaffer, R. L., W. Mendenhall, and L. Ott. 1979. Elementary survey sampling. Duxbury Press, North Scituate, Mass.

Waltemyer, D. L. 1989. Age and size composition of chinook, sockeye, coho, and chum salmon returning to Upper Cook Inlet, Alaska, in 1987. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fishery Report No. 89-18. Juneau.

APPENDIX A
EARLY-RUN AGE COMPOSITION TABLES

Appendix A1. Estimates by age class of the number of early-run chinook salmon in the in-river return to the Kenai River, 1986.a

	Age Class								
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	All
Strata 1 (5/17-5/31)									
Female									
Sample Size	0	20	49	14	0	0	0	1	84
Percent	0.00	12.58	30.82	8.81	0.00	0.00	0.00	0.63	52.83
SE Percent	0.00	2.64	3.67	2.25	0.00	0.00	0.00	0.63	3.97
Return	0	74	182	52	0	0	0	4	313
SE Return	0	149	370	104	0	0	0	4	637
Male									
Sample Size	10	26	29	9	0	0	0	1	75
Percent	6.29	16.35	18.24	5.66	0.00	0.00	0.00	0.63	47.17
SE Percent	1.93	2.94	3.07	1.84	0.00	0.00	0.00	0.63	3.97
Return	37	97	108	34	0	0	0	4	279
SE Return	73	195	218	66	0	0	0	4	568
Combined									
Sample Size	10	46	78	23	0	0	0	2	159
Percent	6.29	28.93	49.06	14.47	0.00	0.00	0.00	1.26	100.00
SE Percent	1.93	3.61	3.98	2.80	0.00	0.00	0.00	0.89	
Return	37	171	290	86	0	0	0	7	592
SE Return	73	347	591	172	0	0	0	12	1,208
Strata 2 (6/01-6/15)									
Female									
Sample Size	4	138	156	30	0	0	0	0	328
Percent	0.52	18.09	20.45	3.93	0.00	0.00	0.00	0.00	42.99
SE Percent	0.26	1.39	1.46	0.70	0.00	0.00	0.00	0.00	1.79
Return	77	2,657	3,004	578	0	0	0	0	6,315
SE Return	47	1,088	1,228	252	0	0	0	0	2,560
Male									
Sample Size	113	201	97	24	0	0	0	0	435
Percent	14.81	26.34	12.71	3.15	0.00	0.00	0.00	0.00	57.01
SE Percent	1.29	1.60	1.21	0.63	0.00	0.00	0.00	0.00	1.79
Return	2,176	3,870	1,868	462	0	0	0	0	8,376
SE Keturn	895	1,576	771	205	0	0	0	0	3,388
Combined									
Sample Size	117	339	253	54	0	0	0	0	763
Percent	15.33	44.43	33.16	7.08	0.00	0.00	0.00	0.00	100.00
SE Percent	1.31	1.80	1.71	0.93	0.00	0.00	0.00	0.00	
Return	2,253	6,527	4,871	1,040	0	0	0	0	14,691
SE Return	926	2,645	1,979	438	0	0	0	0	5,928

- continued -

Appendix A1. (Page 2 of 2).

	Age Class								All
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 3 (6/16-6/30)									
Female									
Sample Size	16	60	64	14	0	0	0	0	154
Percent	3.79	14.22	15.17	3.32	0.00	0.00	0.00	0.00	36.49
SE Percent	0.93	1.70	1.75	0.87	0.00	0.00	0.00	0.00	2.35
Return	447	1,677	1,789	391	0	0	0	0	4,305
SE Return	304	1,106	1,179	267	0	0	0	0	2,821
Male									
Sample Size	65	120	69	14	0	0	0	0	268
Percent	15.40	28.44	16.35	3.32	0.00	0.00	0.00	0.00	63.51
SE Percent	1.76	2.20	1.80	0.87	0.00	0.00	0.00	0.00	2.35
Return	1,817	3,355	1,929	391	0	0	0	0	7,492
SE Return	1,198	2.201	1,271	267	0	0	0	0	4,900
Combined									
Sample Size	81	180	133	28	0	0	0	0	422
Percent	19.19	42.65	31.52	6.64	0.00	0.00	0.00	0.00	100.00
SE Percent	1.92	2.41	2.26	1.21	0.00	0.00	0.00	0.00	
Return	2,264	5,032	3,718	783	0	0	0	0	11,797
SE Return	1,489	3,295	2,438	523	0	0	0	0	7,708

Strata 1, 2, and 3 Combined

Female

Return	524	4,409	4,975	1,021	0	0	0	4	10,933
SE Return	307	1,559	1,742	381	0	0	0	4	3,862
Percent	1.9	16.3	18.4	3.8	0.0	0.0	0.0	0.0	40.4
SE Percent	1.14	5.76	6.43	1.41	0.00	0.00	0.00	0.01	14.26

Male

Return	4,030	7,322	3,905	887	0	0	0	4	16,147
SE Return	1,497	2,714	1,502	343	0	0	0	4	5,984
Percent	14.9	27.0	14.4	3.3	0.0	0.0	0.0	0.0	59.6
SE Percent	5.53	10.02	5.55	1.27	0.00	0.00	0.00	0.01	22.10
Combined									
Return	4,554	11,730	8,880	1,908	0	0	0	7	27,080
SE Return	1,755	4,239	3,195	703	0	0	0	12	9,799
Percent	16.8	43.3	32.8	7.0	0.0	0.0	0.0	0.0	100.0
SE Percent	6.48	15.65	11.80	2.60	0.00	0.00	0.00	0.04	

a Estimates of the total in-river return for each strata are taken from the mark-recapture tagging project (Conrad and Larson 1987). Age samples were also taken from the markrecapture tagging project. The number of fish sampled in each age class was taken directly from the project data files (Appendix C1).

Appendix A2. Estimates by age class of the number of early-run chinook salmon in the in-river return to the Kenai River, 1987.a

					Age Class				
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	All

- continued -

Appendix A2. (Page 2 of 2).

	Age Class								A11
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 3 (6/15-6/30)									
Female									
Sample Size	0	54	68	1	0	0	1	0	124
Percent	0.00	22.22	27.98	0.41	0.00	0.00	0.41	0.00	51.03
SE Percent	0.00	2.67	2.89	0.41	0.00	0.00	0.41	U.00	3.21
Return	0	1,685	2,122	31	0	0	31	0	3,870
SE Return	0	570	707	31	0	0	31	0	1,255
Male									
Sample Size	6	50	62	1	0	0	0	0	119
Percent	2.47	20.58	25.51	0.41	0.00	0.00	0.00	0.00	48.97
SE Percent	1.00	2.60	2.80	0.41	0.00	0.00	0.00	0.00	3.21
Return	187	1,560	1,935	31	0	0	0	0	3,713
SE Return	93	531	649	31	0	0	0	0	1,206
Combined									
Sample Size	6	104	130	2	0	0	1	0	243
Percent	2.47	42.80	53.50	0.82	0.00	0.00	0.41	0.00	100.00
SE Percent	1.00	3.18	3.21	0.58	0.00	0.00	0.41	0.00	
Return	187	3,245	4,057	62	0	0	31	0	7,583
SE Return	93	1,059	1,313	46	0	0	31	0	2,417

Strata 1, 2, and 3 Combined
Female

Return	0	4,711	8,154	198	0	0	31	50	13,144
SE Return	0	1,028	2,052	99	0	0	31	36	3,038
Percent	0.0	18.4	31.8	0.8	0.0	0.0	0.1	0.2	51.3
SE Percent	0.00	4.01	8.00	0.39	0.00	0.00	0.12	0.14	11.85
Male									
Return	386	4,942	6,730	391	0	0	0	50	12,499
SE Return	125	1,111	1,728	153	0	0	0	36	2,940
Percent	1.5	19.3	26.2	1.5	0.0	0.0	0.0	0.2	48.7
SE Percent	0.49	4.33	6.74	0.60	0.00	0.00	0.00	0.14	11.47

Combined

Return	386	9,653	14,883	589	0	0	31	101	25,643
SE Return	125	2,080	3,732	226	0	0	31	56	5,928
Percent	1.5	37.6	58.0	2.3	0.0	0.0	0.1	0.4	100.0
SE Percent	0.49	8.11	14.56	0.88	0.00	0.00	0.12	0.22	

a Estimates of the total in-river return for each strata are taken from the mark-recapture tagging project (Conrad 1988). Age samples were also taken from the mark-recapture tagging project. The number of fish sampled in each age class was taken directly from the project data files (Appendix C1).

Appendix A3. Estimates by age class of the number of early-run chinook salmon in the in-river return to the Kenai River, 1988.a

					Age Class				
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL

- continued -

Appendix A3. (Page 2 of 2).

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 3 (6/16-6/30)									
Female									
Sample Size	0	15	102	9	0	0	0	0	126
Percent	0.00	6.41	43.59	3.85	0.00	0.00	0.00	0.00	53.85
SE Percent	0.00	1.60	3.25	1.26	0.00	0.00	0.00	0.00	3.27
Return	0	499	3,395	300	0	0	0	0	4,194
SE Return	0	125	252	98	0	0	0	0	254
Male									
Sample Size	5	12	78	13	0	0	0	0	108
Percent	2.14	5.13	33.33	5.56	0.00	0.00	0.00	0.00	46.15
SE Percent	0.95	1.45	3.09	1.50	0.00	0.00	0.00	0.00	3.27
Return	166	399	2,596	433	0	0	0	0	3,595
SE Return	74	112	240	117	0	0	0	0	254
Combined									
Sample Size	5	27	180	22	0	0	0	0	234
Percent	2.14	11.54	76.92	9.40	0.00	0.00	0.00	0.00	100.00
SE Percent	0.95	2.09	2.76	1.91	0.00	0.00	0.00	0.00	
Return	166	899	5,992	732	0	0	0	0	7,789
SE Return	74	163	215	149	0	0	0	0	0
Strata 1, 2, and 3 Combined									
Female									
Return	0	1,286	8,942	555	0	0	0	0	10,784
SE Return	0	182	375	127	0	0	0	0	378
Percent	0.0	6.2	42.8	2.7	0.0	0.0	0.0	0.0	51.6
SE Percent	0.00	0.87	1.80	0.61	0.00	0.00	0.00	0.00	1.81
Male									
Return	358	1,802	6,135	1,724	57	0	21	0	10,096
SE Return	97	200	346	207	40	0	21	0	378
Percent	1.7	8.6	29.4	8.3	0.3	0.0	0.1	0.0	48.4
SE Percent	0.46	0.96	1.66	0.99	0.19	0.00	0.10	0.00	1.81
Combined									
Return	358	3,088	15,077	2,279	57	0	21	0	20,880
SE Return	97	260	335	237	40	0	21	0	0
Percent	1.7	14.8	72.2	10.9	0.3	0.0	0.1	0.0	100.0
SE Percent	0.46	1.24	1.61	1.13	0.19	0.00	0.10	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken from the mark-recapture tagging project (Carlon and Alexandersdottir 1989). The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix C1).

Appendix A4. Estimates by age class of the number of early-run chinook salmon in the in-river return to the Kenai River, 1989.a

	Age Class								All
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 1 (5/17-5/31)									
Female									
Sample Size	0	11	63	4	0	0	0	0	78
Percent	0.00	6.96	39.87	2.53	0.00	0.00	0.00	0.00	49.37
SE Percent	0.00	2.03	3.91	1.25	0.00	0.00	0.00	0.00	3.99
Return	0	272	1,555	99	0	0	0	0	1,925
SE Return	0	79	152	49	0	0	0	0	155
Male									
Sample Size	1	12	57	10	0	0	0	0	80
Percent	0.63	7.59	36.08	6.33	0.00	0.00	0.00	0.00	50.63
SE Percent	0.63	2.11	3.83	1.94	0.00	0.00	0.00	0.00	3.99
Return	25	296	1,407	247	0	0	0	0	1,975
SE Return	25	82	149	76	0	0	0	0	155
Combined									
Sample Size	1	23	120	14	0	0	0	0	158
Percent	0.63	14.56	75.95	8.86	0.00	0.00	0.00	0.00	100.00
SE Percent	0.63	2.81	3.41	2.27	0.00	0.00	0.00	0.00	
Return	25	568	2,962	346	0	0	0	0	3,900
SE Return	25	109	133	88	0	0	0	0	0

STRATA 2 ($6 / 01-6 / 15$)
Female

Sample Size	0	19	115	10	0	0	0	0	144
Percent	0.00	7.22	43.73	3.80	0.00	0.00	0.00	0.00	54.75
SE Percent	0.00	1.60	3.06	1.18	0.00	0.00	0.00	0.00	3.08
Return	0	544	3,294	286	0	0	0	0	4,125
SE Return	0	120	230	89	0	0	0	0	231

Male

Sample Size	14	34	64	7	0	0	0	0	119
Percent	5.32	12.93	24.33	2.66	0.00	0.00	0.00	0.00	45.25
SE Percent	1.39	2.07	2.65	0.99	0.00	0.00	0.00	0.00	3.08
Return	401	974	1,833	201	0	0	0	0	3,409
SE Return	104	156	199	75	0	0	0	0	231

Combined

Sample Size	14	53	179	17	0	0	0	0
Percent	5.32	20.15	68.06	6.46	0.00	0.00	0.00	0.00
SE Percent	1.39	2.48	2.88	1.52	0.00	0.00	0.00	0.00
Return	401	1,518	5,128	487	0	0	0	0
SE Return	104	186	217	114	0	0	0	7.534

Appendix A4. (Page 2 of 2).

	Age Class								All
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
STRATA 3 (6/16-6/30)									
Female									
Sample Size	0	12	99	13	0	0	0	0	124
Percent	0.00	4.32	35.61	4.68	0.00	0.00	0.00	0.00	44.60
SE Percent	0.00	1.22	2.88	1.27	0.00	0.00	0.00	0.00	2.99
Return	0	283	2,335	307	0	0	0	0	2,925
SE Return	0	80	188	83	0	0	0	0	196
Male									
Sample Size	14	20	98	22	0	0	0	0	154
Percent	5.04	7.19	35.25	7.91	0.00	0.00	0.00	0.00	55.40
SE Percent	1.31	1.55	2.87	1.62	0.00	0.00	0.00	0.00	2.99
Return	330	472	2,312	519	0	0	0	0	3,633
SE Return	86	102	188	106	0	0	0	0	196
Combined									
Sample Size	14	32	197	35	0	0	0	0	278
Percent	5.04	11.51	70.86	12.59	0.00	0.00	0.00	0.00	100.00
SE Percent	1.31	1.92	2.73	1.99	0.00	0.00	0.00	0.00	
Return	330	755	4,647	826	0	0	0	0	6,558
SE Return	86	126	179	130	0	0	0	0	0

Strata 1, 2, and 3 Combined

Female									
Return	0	1,099	7,185	692	0	0	0	0	8,976
SE Return	0	165	334	131	0	0	0	0	340
Percent	0.0	6.1	39.9	3.8	0.0	0.0	0.0	0.0	49.9
SE Percent	0.00	0.91	1.86	0.73	0.00	0.00	0.00	0.00	1.89
Male									
Return	756	1,742	5,552	966	0	0	0	0	9,016
SE Return	137	203	312	150	0	0	0	0	340
Percent	4.2	9.7	30.9	5.4	0.0	0.0	0.0	0.0	50.1
SE Percent	0.76	1.13	1.73	0.84	0.00	0.00	0.00	0.00	1.89
Combined									
Return	756	2,841	12,737	1,658	0	0	0	0	17,992
SE Return	137	250	311	195	0	0	0	0	0
Percent	4.2	15.8	70.8	9.2	0.0	0.0	0.0	0.0	100.0
SE Percent	0.76	1.39	1.73	1.08	0.00	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken from the mark-recapture tagging project (Alexandersdottir and Marsh 1990). The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix C1).

Appendix A5. Estimates by age class of the number of early-run chinook salmon in the in-river return to the Kenai River, 1990.a

Strata 1	Age Class								All
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 1 (5/16-5/31)									
Female									
Sample Size	3	11	27	3	0	0	0	0	44
Percent	3.70	13.58	33.33	3.70	0.00	0.00	0.00	0.00	54.32
SE Percent	2.11	3.83	5.27	2.11	0.00	0.00	0.00	0.00	5.57
Return	58	212	520	58	0	0	0	0	847
SE Return	33	59	82	33	0	0	0	0	86
Male									
Sample Size	2	2	25	8	0	0	0	0	37
Percent	2.47	2.47	30.86	9.88	0.00	0.00	0.00	0.00	45.68
SE Percent	1.73	1.73	5.16	3.34	0.00	0.00	0.00	0.00	5.57
Return	38	38	481	154	0	0	0	0	712
SE Return	27	27	80	52	0	0	0	0	86
Combined									
Sample Size	5	13	52	11	0	0	0	0	81
Percent	6.17	16.05	64.20	13.58	0.00	0.00	0.00	0.00	100.00
SE Percent	2.69	4.10	5.36	3.83	0.00	0.00	0.00	0.00	
Return	96	250	1,001	212	0	0	0	0	1,559
SE Return	42	64	83	59	0	0	0	0	0

Strata 2 (6/01-6/15)									
Female									
Sample Size	2	40	68	7	0	0	0	0	117
Percent	0.85	17.09	29.06	2.99	0.00	0.00	0.00	0.00	50.00
SE Percent	0.60	2.47	2.97	1.12	0.00	0.00	0.00	0.00	3.28
Return	43	851	1,447	149	0	0	0	0	2,491
SE Return	30	123	148	55	0	0	0	0	163
Male									
Sample Size	13	43	54	7	0	0	0	0	117
Percent	5.56	18.38	23.08	2.99	0.00	0.00	0.00	0.00	50.00
SE Percent	1.50	2.54	2.76	1.12	0.00	0.00	0.00	0.00	3.28
Return	277	915	1,149	149	0	0	0	0	2,491
SE Return	75	126	137	55	0	0	0	0	163
Combined									
Sample Size	15	83	122	14	0	0	0	0	234
Percent	6.41	35.47	52.14	5.98	0.00	0.00	0.00	0.00	100.00
SE Percent	1.60	3.13	3.27	1.55	0.00	0.00	0.00	0.00	
Return	319	1,767	2,597	298	0	0	0	0	4,981
SE Return	80	156	163	77	0	0	0	0	0

Appendix A5. (Page 2 of 2).

Strata 1	Age Class								All
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 3 (6/16-6/30)									
Female									
Sample Size	4	8	56	2	0	0	0	0	70
Percent	2.58	5.16	36.13	1.29	0.00	0.00	0.00	0.00	45.16
SE Percent	1.28	1.78	3.87	0.91	0.00	0.00	0.00	0.00	4.01
Return	109	218	1,528	55	0	0	0	0	1,909
SE Return	54	75	163	38	0	0	0	0	169
Male									
Sample Size	10	21	51	3	0	0	0	0	85
Percent	6.45	13.55	32.90	1.94	0.00	0.00	0.00	0.00	54.84
SE Percent	1.98	2.76	3.79	1.11	0.00	0.00	0.00	0.00	4.01
Return	273	573	1,391	82	0	0	0	0	2,319
SE Return	83	116	160	47	0	0	0	0	169
Combined									
Sample Size	14	29	107	5	0	0	0	0	155
Percent	9.03	18.71	69.03	3.23	0.00	0.00	0.00	0.00	100.00
SE Percent	2.31	3.14	3.73	1.42	0.00	0.00	0.00	0.00	
Return	382	791	2,919	136	0	0	0	0	4,228
SE Return	97	132	157	60	0	0	0	0	0
ALL Strata	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL
Female									
Return	209	1,281	3,495	261	0	0	0	0	5,247
SE Return	70	156	235	75	0	0	0	0	250
Percent	1.9	11.9	32.5	2.4	0.0	0.0	0.0	0.0	48.7
SE Percent	0.65	1.44	2.18	0.70	0.00	0.00	0.00	0.00	2.32
Male									
Return	588	1,527	3,022	385	0	0	0	0	5,521
SE Return	115	174	225	89	0	0	0	0	250
Percent	5.5	14.2	28.1	3.6	0.0	0.0	0.0	0.0	51.3
SE Percent	1.07	1.61	2.09	0.83	0.00	0.00	0.00	0.00	2.32
Combined									
Return	797	2,808	6,516	646	0	0	0	0	10,768
SE Return	133	214	241	114	0	0	0	0	0
Percent	7.4	26.1	60.5	6.0	0.0	0.0	0.0	0.0	100.0
SE Percent	1.23	1.99	2.24	1.06	0.00	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken with large mesh gill nets as part of the mark-recapture tagging project. The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix C1).

Appendix A6. Estimates by age class of the number of early-run chinook salmon harvested in educational gill nets, 1989-1990.a

	Age Class								A11
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
1989									
Female									
Harvest	0	4	29	3	0	0	0	0	36
SE Harvest	0	1	1	1	0	0	0	0	1
Male									
Harvest	3	7	23	4	0	0	0	0	37
SE Harvest	1	1	1	1	0	0	0	0	1
Combined									
Harvest	3	12	52	7	0	0	0	0	73
SE Harvest	1	1	1	1	0	0	0	0	0
1990									
Female									
Harvest	1	5	13	1	0	0	0	0	19
SE Harvest	0	0	1	0	0	0	0	0	1
Male									
Harvest	2	6	11	1	0	0	0	0	21
SE Harvest	0	0	1	0	0	0	0	0	1
Combined									
Harvest	3	10	24	2	0	0	0	0	40
SE Harvest	0	1	1	0	0	0	0	0	0

a Total harvest data is from S. Hammarstrom (Alaska Department of Fish and Game, Soldotna, personal communication). The age composition of chinook salmon harvested in educational gill nets during the early run is assumed to be the same as the age composition of the fish sampled in all strata combined of the in-river return.

Appendix A7. Estimates by age class of the number of early-run chinook salmon harvested in the Kenai River sport fishery, 1976-1990.a

	Age Class									Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5		
1976											
Number	8	54	49	86	5	0	2	0	0		204
Percent	3.9	26.5	24.0	42.2	2.5	0.0	1.0	0.0	0.0		
SE \%	1.4	3.1	3.0	3.5	1.1		0.7				
Estimated Harvest	61	411	373	655	38		15				1,554
SE Harvest	21	48	47	54	17		11				NA
1977											
Number	0	29	61	108	3	0	1	3	1		206
Percent	0.0	14.1	29.6	52.4	1.5	0.0	0.5	1.5	0.5		
SE \%		2.4	3.2	3.5	0.8		0.5	0.8	0.5		
Estimated Harvest		306	643	1,139	32		11	32	11		2,173
SE Harvest		53	69	76	18		11	18	11		NA
1978											
Number	0	11	13	45	0	0	0	0	0	0	69
Percent	0.0	15.9	18.8	65.2	0.0	0.0	0.0	0.0	0.0	0.0	
SE \%		4.4	4.7	5.8							
Estimated Harvest		246	291	1,006							1,542
SE Harvest		68	73	89							NA
1979											
Number	0	6	32	54	12	0	0	0	0	0	104
Percent.	0.0	5.8	30.8	51.9	11.5	0.0	0.0	0.0	0.0	0.0	
SE \%		2.3	4.5	4.9	3.1						
Estimated Harvest		154	819	1,382	307						2,661
SE Harvest		61	121	131	84						NA
1980											
Number	0	20	33	155	14	0	0	0	0	0	22.2
Percent	0.0	9.0	14.9	69.8	6.3	0.0	0.0	0.0	0.0	0.0	
SE \%		1.9	2.4	3.1	1.6						
Estimated Harvest		175	289	1,359	123						1,946
SE Harvest		37	47	60	32						NA
1981											
Number		32	70	112	7					5	226
Percent		14.2	31.0	49.6	3.1					2.2	
SE \%		2.3	3.1	3.3	1.2					1.0	
Estimated Harvest		641	1,402	2,242	140					100	4,525
SE Harvest		105	139	151	52					44	NA

- continued -

Appendix A7. (Page 2 of 4).

	Age Class									Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.3	2.4	2.5		
1982											
Number		10	37	99	7					6	159
Percent		6.3	23.3	62.3	4.4					3.8	
SE \%		1.9	3.4	3.9	1.6					1.5	
Estimated Harvest		344	1,272	3,403	241					206	5,466
SE Harvest		106	184	211	89					83	NA
1983											
Number		5	10	44	3					8	70
Percent		7.1	14.3	62.9	4.3					11.4	
SE \%		3.1	4.2	5.8	2.4					3.8	
Estimated Harvest		454	909	3,998	273					727	6,360
SE Harvest		197	268	370	155					244	NA
1984											
Number	0	10	81	180	20	0	0	0	0		291
Percent	0.0	3.4	27.8	61.9	6.9	0.0	0.0	0.0	0.0		
SE \%		1.1	2.6	2.9	1.5						
Estimated Harvest		170	1,380	3,066	341						4,956
SE Harvest		53	130	141	74						NA
1985											
Number	0	18	39	225	12	0	0	0	0		294
Percent	0.0	6.1	13.3	76.5	4.1	0.0	0.0	0.0	0.0		
SE \%		1.4	2.0	2.5	1.2						
Estimated Harvest		488	1,057	6,100	325						7,971
SE Harvest		112	158	197	92						NA
1986											
Female											
Number	0	5	94	170	24	0	0	0	0		293
Percent	0.0	0.9	16.8	30.4	4.3	0.0	0.0	0.0	0.0		52.3
SE \%		0.4	1.6	1.9	0.9						2. 1
Estimated Harvest		68	1,269	2,295	324						3,956
SE Harvest		30	143	205	68						293
Male											
Number	1	35	109	96	26	0	0	0	0		267
Percent	0.2	6.3	19.5	17.1	4.6	0.0	0.0	0.0	0.0		47.7
SE \%	0.2	1.0	1.7	1.6	0.9						2.1
Estimated Harvest	14	473	1,472	1,296	351						3,605
SE Harvest	14	83	156	145	71						275
Combined											
Number	1	40	203	266	50	0	0	0	0		560
Percent	0.2	7.1	36.3	47.5	8.9	0.0	0.0	0.0	0.0		
SE \%	0.2	1.1	2.0	2.1	1.2						
Estimated Harvest	14	540	2,741	3,591	675						7,561
SE Harvest	14	89	229	274	100						470

- continued

Appendix A7. (Page 3 of 4).

					Age Class						

- continued -

Appendix A7. (Page 4 of 4).

Appendix A8. Estimates of early-run Kenai River chinook salmon hook and release mortality from the Kenai River sport fishery, 1986-1990a.

Year	Sport Catch	Sport Harvest	Number Released	$\begin{gathered} \text { SE } \\ \text { Release } \end{gathered}$	Percent Mortality	$\begin{gathered} \text { SE } \\ \text { Percent } \end{gathered}$	Hook and Release Mortality	$\begin{gathered} \text { SE } \\ \text { Mortality } \end{gathered}$
1986	12,117	7,561	4,556	845	$6.4{ }^{\text {b }}$	3.39	292	161
1987	19,119	13,281	5,838	1,492	$6.4{ }^{\text {b }}$	3.39	374	214
1988	18,643	12,747	5,896	1,129	$6.4{ }^{\text {b }}$	3.39	377	209
1989	9,901	7,256	2,645	831	$6.4{ }^{\text {b }}$	3.39	169	100
1990	4,973	1,735	3,238	630	8.8	2.50	285	97

a Catch and harvest estimates from Conrad and Hammarstrom 1987, and Hammarstrom 1988-1991. Percent mortality from Bendock and Alexandersdottir 1990, 1991, and In prep; and M. Alexandersdottir (Alaska Department of Fish and Game, Anchorage, personal communication).
b Percent mortality for 1986-1989 is the average of the measured 1990 percent mortality (8.8), and the measured 1991 percent mortality of 4.0 .

APPENDIX B

LATE-RUN AGE COMPOSITION TABLES

Appendix B1. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1986.a

	Age Class														
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net Harvest															
Female ($n=538$)															
Percent	0.0	0.0	0.1	0.1	0.0	3.2	18.7	16.2	1.6	0.0	0.0	0.2	0.4	0.1	40.6
SE Percent	0.00	0.00	0.09	0.09	0.00	0.48	1.07	1.01	0.34	0.00	0.00	0.12	0.17	0.09	1.35
Harvest	0	0	20	20	0	634	3,704	3,209	317	0	0	40	79	20	8,043
SE Harvest	0	0	17	17	0	96	212	201	68	0	0	24	34	17	267
Male ($\mathrm{n}=786$)															
Percent	0.2	0.2	0.0	0.0	1.2	19.8	18.3	17.3	1.7	0.1	0.2	0.0	0.3	0.1	59.4
SE Percent	0.12	0.12	0.00	0.00	0.30	1.10	1.06	1.04	0.36	0.09	0.12	0.00	0.15	0.09	1.35
Harvest	40	40	0	0	238	3,922	3,625	3,427	337	20	40	0	59	20	11,767
SE Harvest	24	24	0	0	59	217	211	206	70	17	24	0	30	17	267
Combined															
Percent	0.2	0.2	0.1	0.1	1.2	23.0	37.0	33.5	3.3	0.1	0.2	0.2	0.7	0.2	100.0
SE Percent	0.12	0.12	0.09	0.09	0.30	1.16	1.33	1.30	0.49	0.09	0.12	0.12	0.23	0.12	
Harvest	40	40	20	20	238	4,556	7,330	6,636	654	20	40	40	139	40	19,810
SE Harvest	24	24	17	17	59	229	263	257	97	17	24	24	45	24	0

Appendix B1. (Page 2 of 2).

	Age Class														
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Drift Net Harvest															
Female															
Harvest	0	0	2	2	0	59	343	297	29	0	0	4	7	2	745
SE Harvest	0	0	2	2	0	9	20	19	6	0	0	2	3	2	25
Male															
Harvest	4	4	0	0	22	363	336	317	31	2	4	0	6	2	1,089
SE Harvest	2	2	0	0	5	20	19	19	7	2	2	0	3	2	25
Combined															
Harvest	4	4	2	2	22	422	679	614	61	2	4	4	13	4	1,834
SE Harvest	2	2	2	2	5	21	24	24	9	2	2	2	4	2	0
Set Net and Drift Net Combined															
Female															
Harvest	0	0	22	22	0	693	4,047	3,506	346	0	0	43	87	22	8,787
SE Harvest	0	0	17	17	0	96	213	202	69	0	0	24	35	17	269
Male															
Harvest	43	43	0	0	260	4,286	3,961	3,744	368	22	43	0	65	22	12,857
SE Harvest	24	24	0	0	60	218	211	207	71	17	24	0	30	17	269
Combined															
Harvest	43	43	22	22	260	4,978	8,008	7,251	714	22	43	43	152	43	21,644
SE Harvest	24	24	17	17	60	238	300	289	99	17	24	24	46	24	

a Age compositions are based on samples taken from the set net fishery (Cross et al. In press). Age composition in the drift net fishery is assumed to be the same as the set net fishery. Total harvest figures are taken from Ruesch (1991).

Appendix B2. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set gill net commercial fisheries, 1987.a

Age Class									
1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4

Set Net Harvest
Strata 1 (7/01-7/06)

Female											
Sample Size	0	19	32	43	0	0	0	1	0	1	96
Percent	0.00	10.22	17.20	23.12	0.00	0.00	0.00	0.54	0.00	0.54	51.61
SE Percent	0.00	2.23	2.77	3.10	0.00	0.00	0.00	0.54	0.00	0.54	3.67
Harvest	0	117	197	264	0	0	0	6	0	6	590
SE Harvest	0	25	32	35	0	0	0	6	0	6	42
Male											
Sample Size	5	10	18	55	2	0	0	0	0	0	90
Percent	2.69	5.38	9.68	29.57	1.08	0.00	0.00	0.00	0.00	0.00	48.39
SE Percent	1.19	1.66	2.17	3.36	0.76	0.00	0.00	0.00	0.00	0.00	3.67
Harvest	31	61	111	338	12	0	0	0	0	0	553
SE Harvest	14	19	25	38	9	0	0	0	0	0	42
Combined											
Sample Size	5	29	50	98	2	0	0	1	0	1	186
Percent	2.69	15.59	26.88	52.69	1.08	0.00	0.00	0.54	0.00	0.54	100.00
SE Percent	1.19	2.67	3.26	3.67	0.76	0.00	0.00	0.54	0.00	0.54	
Harvest	31	178	307	602	12	0	0	6	0	6	1,143
SE Harvest	14	30	37	42	9	0	0	6	0	6	0
Strata 2 (7/07-7/13)											
Female											
Sample Size	0	36	29	53	1	0	0	0	0	0	119
Percent	0.00	16.14	13.00	23.77	0.45	0.00	0.00	0.00	0.00	0.00	53.36
SE Percent.	0.00	2.47	2. 2.6	2.86	0.45	0.00	0.00	0.00	0.00	0.00	3.35
Harvest	0	375	302	553	10	0	0	0	0	0	1,241
SE Harvest	0	57	52	66	10	0	0	0	0	0	78
Male											
Sample Size	13	10	28	51	2	0	0	0	0	0	104
Percent	5.83	4.48	12.56	22.87	0.90	0.00	0.00	0.00	0.00	0.00	46.64
SE Percent	1.57	1.39	2.22	2.82	0.63	0.00	0.00	0.00	0.00	0.00	3.35
Harvest	136	104	292	532	21	0	0	0	0	0	1,084
SE Harvest	37	32	52	66	15	0	0	0	0	0	78
Combined											
Sample Size	13	46	57	104	3	0	0	0	0	0	223
Percent	5.83	20.63	25.56	46.64	1.35	0.00	0.00	0.00	0.00	0.00	100.00
SE Percent	1.57	2.72	2.93	3.35	0.77	0.00	0.00	0.00	0.00	0.00	
Harvest	136	480	594	1,084	31	0	0	0	0	0	2,325
SE Harvest	37	63	68	78	18	0	0	0	0	0	0

- continued -

Appendix B2. (Page 2 of 5).

	Age Class										
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net Harvest (continued)											
Strata 3 (7/14-7/20)											
Female											
Sample Size	0	3	27	37	0	0	0	0	0	0	67
Percent	0.00	2.33	20.93	28.68	0.00	0.00	0.00	0.00	0.00	0.00	51.94
SE Percent	0.00	1.33	3.60	4.00	0.00	0.00	0.00	0.00	0.00	0.00	4.42
Harvest	0	122	1,099	1,506	0	0	0	0	0	0	2,727
SE Harvest	0	70	189	210	0	0	0	0	0	0	232
Male											
Sample Size	1	7	24	30	0	0	0	0	0	0	62
Percent	0.78	5.43	18.60	23.26	0.00	0.00	0.00	0.00	0.00	0.00	48.06
SE Percent	0.78	2.00	3.44	3.73	0.00	0.00	0.00	0.00	0.00	0.00	4.42
Harvest	41	285	977	1,221	0	0	0	0	0	0	2,524
SE Harvest	41	105	181	196	0	0	0	0	0	0	232
Combined											
Sample Size	1	10	51	67	0	0	0	0	0	0	129
Percent	0.78	7.75	39.53	51.94	0.00	0.00	0.00	0.00	0.00	0.00	100.00
SE Percent	0.78	2.36	4.32	4.42	0.00	0.00	0.00	0.00	0.00	0.00	
Harvest	41	407	2,076	2,727	0	0	0	0	0	0	5,251
SE Harvest	41	124	227	232	0	0	0	0	0	0	0
Strata 4 ($7 / 21-7 / 24$)											
Female											
Sample Size	0	10	22	29	1	0	0	1	0	0	63
Percent	0.00	5.75	12.64	16.67	0.57	0.00	0.00	0.57	0.00	0.00	36.21
SE Percent	0.00	1.77	2.53	2.83	0.57	0.00	0.00	0.57	0.00	0.00	3.65
Harvest	0	150	330	435	15	0	0	15	0	0	945
SE Harvest	0	46	66	74	15	0	0	15	0	0	95
Male											
Sample Size	3	11	44	50	2	0	0	1	0	0	111
Percent	1.72	6.32	25.29	28.74	1.15	0.00	0.00	0.57	0.00	0.00	63.79
SE Percent	0.99	1.85	3.30	3.44	0.81	0.00	0.00	0.57	0.00	0.00	3.65
Harvest	45	165	660	750	30	0	0	15	0	0	1,664
SE Harvest	26	48	86	90	21	0	0	15	0	0	95
Combined	3	21	66	79	3	0	0	2	0	0	174
Percent	1.72	12.07	37.93	45.40	1.72	0.00	0.00	1.15	0.00	0.00	100.00
SE Percent	0.99	2.48	3.69	3.79	0.99	0.00	0.00	0.81	0.00	0.00	
Harvest	45	315	990	1,185	45	0	0	30	0	0	2,609
SE Harvest	26	65	96	99	26	0	0	21	0	0	0

Appendix B2. (Page 3 of 5).

	Age Class										
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net Harvest (continued)											
Strata 5 (7/25-7/31)											
Female											
Sample Size	0	8	17	22	1	0	0	0	0	0	48
Percent	0.00	6.06	12.88	16.67	0.76	0.00	0.00	0.00	0.00	0.00	36.36
SE Percent	0.00	2.08	2.93	3.26	0.76	0.00	0.00	0.00	0.00	0.00	4.20
Harvest	0	316	672	870	40	0	0	0	0	0	1,897
SE Harvest	0	109	153	170	40	0	0	0	0	0	219
Male											
Sample Size	1	9	30	41	1	0	0	0	2	0	84
Percent	0.76	6.82	22.73	31.06	0.76	0.00	0.00	0.00	1.52	0.00	63.64
SE Percent	0.76	2.20	3.66	4.04	0.76	0.00	0.00	0.00	1.07	0.00	4.20
Harvest	40	356	1,186	1,621	40	0	0	0	79	0	3,321
SE Harvest	40	115	191	211	40	0	0	0	56	0	219
Combined											
Sample Size	1	17	47	63	2	0	0	0	2	0	132
Percent	0.76	12.88	35.61	47.73	1.52	0.00	0.00	0.00	1.52	0.00	100.00
SE Percent	0.76	2.93	4.18	4.36	1.07	0.00	0.00	0.00	1.07	0.00	
Harvest	40	672	1,858	2,490	79	0	0	0	79	0	5,218
SE Harvest	40	153	218	228	56	0	0	0	56	0	0
Strata 6 (8/01-8/14)											
Female											
Sample Size	0	6	20	43	0	0	0	0	0	0	69
Percent	0.00	4.48	14.93	32.09	0.00	0.00	0.00	0.00	0.00	0.00	51.49
SE Percent	0.00	1.79	3.09	4.05	0.00	0.00	0.00	0.00	0.00	0.00	4.33
Harvest	0	181	603	1,297	0	0	0	0	0	0	2,081
SE Harvest	0	72	125	164	0	0	0	0	0	0	175
Male											
Sample Size	0	0	25	39	1	0	0	0	0	0	65
Percent	0.00	0.00	18.66	29.10	0.75	0.00	0.00	0.00	0.00	0.00	48.51
SE Percent	0.00	0.00	3.38	3.94	0.75	0.00	0.00	0.00	0.00	0.00	4.33
Harvest	0	0	754	1,176	30	0	0	0	0	0	1,961
SE Harvest	0	0	137	159	30	0	0	0	0	0	175
Combined											
Sample Size	0	6	45	82	1	0	0	0	0	0	134
Percent	0.00	4.48	33.58	61.19	0.75	0.00	0.00	0.00	0.00	0.00	100.00
SE Percent	0.00	1.79	4.10	4.23	0.75	0.00	0.00	0.00	0.00	0.00	
Harvest	0	181	1,357	2,473	30	0	0	0	0	0	4,042
SE Harvest	0	72	166	171	30	0	0	0	0	0	0

Strata 6 ($8 / 01-8 / 14$)
Female

Male

Harvest
Combined

- continued -

```
Appendix B2. (Page 4 of 5).
```

	Age Class										
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net Harvest All Strata											
Female											
Harvest	0	1,261	3,203	4,924	65	0	0	21	0	6	9,841
SE Harvest	0	167	288	333	44	0	0	16	0	6	387
Percent	0.0	6.1	15.6	23.9	0.3	0.0	0.0	0.1	0.0	0.0	46.1
SE Percent	0.00	0.81	1.40	1.62	0.21	0.00	0.00	0.08	0.00	0.03	1.88
Male											
Harvest	291	971	3,979	5,638	133	0	0	15	79	0	11,107
SE Harvest	74	167	314	349	57	0	0	15	56	0	387
Percent	1.4	4.7	19.3	27.4	0.6	0.0	0.0	0.1	0.4	0.0	53.9
SE Percent	0.36	0.81	1.52	1.70	0.28	0.00	0.00	0.07	0.27	0.00	1.88
Combined											
Harvest	291	2,233	7,182	10,562	198	0	0	36	79	6	20,588
SE Harvest	74	230	377	390	71	0	0	22	56	6	0
Percent	1.4	10.8	34.9	51.3	1.0	0.0	0.0	0.2	0.4	0.0	100.0
SE Percent	0.36	1.12	1.83	1.90	0.35	0.00	0.00	0.11	0.27	0.03	
Drift Net Harvest											
Female											
Harvest	0	279	708	1,089	14	0	0	5	0	1	2,096
SE Harvest	0	37	64	74	10	0	0	4	0	1	85
Male											
Harvest	64	215	880	1,246	29	0	0	3	17	0	2,455
SE Harvest	16	37	69	77	13	0	0	3	12	0	85
Combined											
Harvest	64	494	1,588	2,335	44	0	0	8	17	1	4,551
SE Harvest	16	51	83	86	16	0	0	5	12	1	

- continued -

Appendix B2. (Page 5 of 5).

	Age Class										
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net and Drift Net Combined											
Female											
Harvest	0	1,540	3,911	6,013	79	0	0	26	0	8	11,577
SE Harvest	0	172	294	341	45	0	0	17	0	6	396
Male											
Harvest	356	1,186	4,859	6,884	162	0	0	18	97	0	13,562
SE Harvest	75	171	321	358	58	0	0	15	57	0	396
Combined											
Harvest	356	2,726	8,770	12,897	241	0	0	44	97	8	25,139
SE Harvest	75	236	386	400	73	0	0	23	57	6	
Age (Walte be the fisher harves	osi r 1 ame T does	ons 9) . the al h not in	e ba ge c ge vest lude	ed on mposit posit igure ish ha	mpl in fr re ste				set y in (1 0	SS e $1 y$	shery ed to t net Total

Appendix B3. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1988.

	Age Class											All
	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	
Set Net Harvest ${ }^{\text {a }}$												
Strata 1 (7/01-7/18)												
Female												
Sample Size	1	4	37	34	156	5	0	0	2	1	2	242
Percent	0.21	0.83	7.69	7.07	32.43	1.04	0.00	0.00	0.42	0.21	0.42	50.31
SE Percent	0.21	0.41	1.22	1.17	2.14	0.46	0.00	0.00	0.29	0.21	0.29	2.28
Harvest	13	53	487	448	2,055	66	0	0	26	13	26	3,187
SE Harvest	13	26	77	74	135	29	0	0	19	13	19	145
Male												
Sample Size	0	21	17	27	166	5	0	0	1	0	2	239
Percent	0.00	4.37	3.53	5.61	34.51	1.04	0.00	0.00	0.21	0.00	0.42	49.69
SE Percent	0.00	0.93	0.84	1.05	2.17	0.46	0.00	0.00	0.21	0.00	0.29	2.28
Harvest	0	277	224	356	2,186	66	0	0	13	0	26	3,148
SE Harvest	0	59	53	67	137	29	0	0	13	0	19	145
Combined												
Sample Size	1	25	54	61	322	10	0	0	3	1	4	481
Percent	0.21	5.20	11.23	12.68	66.94	2.08	0.00	0.00	0.62	0.21	0.83	100.00
SE Percent	0.21	1.01	1.44	1.52	2.15	0.65	0.00	0.00	0.36	0.21	0.41	
Harvest	13	329	711	803	4,241	132	0	0	40	13	53	6,335
SE Harvest	0	64	91	96	136	41	0	0	23	13	26	0
Strata 2 (7/19-8/15)												
Female												
Sample Size	1	0	13	18	112	3	0	0	0	0	2	149
Percent	0.26	0.00	3.35	4.64	28.87	0.77	0.00	0.00	0.00	0.00	0.52	38.40
SE Percent	0.26	0.00	0.91	1.07	2.30	0.45	0.00	0.00	0.00	0.00	0.36	2.47
Harvest	17	0	219	303	1,886	51	0	0	0	0	34	2,510
SE Harvest	17	0	60	70	151	29	0	0	0	0	24	162
Male												
Sample Size	0	3	26	45	162	3	0	0	0	0	0	239
Percent	0.00	0.77	6.70	11.60	41.75	0.77	0.00	0.00	0.00	0.00	0.00	61.60
SE Percent	0.00	0.45	1.27	1.63	2.51	0.45	0.00	0.00	0.00	0.00	0.00	2.47
Harvest	0	51	438	758	2,729	51	0	0	0	0	0	4,025
SE Harvest	0	29	83	106	164	29	0	0	0	0	0	162
Combined												
Sample Size	1	3	39	63	274	6	0	0	0	0	2	388
Percent	0.26	0.77	10.05	16.24	70.62	1.55	0.00	0.00	0.00	0.00	0.52	100.00
SE Percent	0.26	0.45	1.53	1.87	2.32	0.63	0.00	0.00	0.00	0.00	0.36	
Harvest	17	51	657	1,061	4,615	101	0	0	0	0	34	6,535
SE Harvest	17	29	100	123	151	41	0	0	0	0	24	0

- continued -

Appendix B3. (Page 2 of 3).

Age Class											
0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL

Set Net Harvest All Strata

Female												
Harvest	30	53	706	751	3,941	116	0	0	26	13	60	5,697
SE Harvest	21	26	98	102	202	41	0	0	19	13	30	217
Percent	0.2	0.4	5.5	5.8	30.6	0.9	0.0	0.0	0.2	0.1	0.5	44.3
SE Percent	0.17	0.20	0.76	0.79	1.57	0.32	0.00	0.00	0.14	0.10	0.23	1.68
Male												
Harvest	0	327	662	1,114	4,915	116	0	0	13	0	26	7,173
SE Harvest	0	66	99	125	214	41	0	0	13	0	19	217
Percent	0.0	2.5	5.1	8.7	38.2	0.9	0.0	0.0	0.1	0.0	0.2	55.7
SE Percent	0.00	0.51	0.77	0.98	1.66	0.32	0.00	0.00	0.10	0.00	0.14	1.68
Combined												
Harvest	30	380	1,368	1,864	8,856	232	0	0	40	13	86	12,870
SE Harvest	17	70	135	156	203	58	0	0	23	13	35	0
Percent	0.2	2.9	10.6	14.5	68.8	1.8	0.0	0.0	0.3	0.1	0.7	100.0
SE Percent	0.13	0.55	1.05	1.21	1.58	0.45	0.00	0.00	0.18	0.10	0.28	

Drift Net Harvest

Female												
Harvest	5	9	122	129	679	20	0	0	5	2	10	981
SE Harvest	4	5	17	18	35	7	0	0	3	2	5	37
Male												
Harvest	0	56	114	192	846	20	0	0	2	0	5	1,235
SE Harvest	0	11	17	22	37	7	0	0	2	0	3	37
Combined												
Harvest	5	65	236	321	1,525	40	0	0	7	2	15	2,216
SE Harvest	3	12	23	27	35	10	0	0	4	2	6	

- continued -

Appendix B3. (Page 3 of 3).

	Age Class											
	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net and Drift Net Combined												
Female												
Harvest	35	62	828	880	4,620	136	0	0	31	15	70	6,678
SE Harvest	22	27	99	103	205	42	0	0	19	13	31	220
Male												
Harvest	0	383	776	1,305	5,761	136	0	0	15	0	31	8,408
SE Harvest	0	67	100	127	217	42	0	0	13	0	19	220
Combined												
Harvest	35	445	1,604	2,186	10,381	273	0	0	46	15	101	15,086
SE Harvest	17	72	137	158	206	59	0	0	23	13	36	
a Age compositions are based on samples taken from the set net fishery (Waltemyer 1990). Age composition in the drift net fishery is assumed to be the same as the age composition from all strata combined in the set net fishery. Total harvest figures are taken from Ruesch (1991).												

Appendix B4. Estimates by age class of the number of chinook salmon harvested in the Upper Subdistrict of the Central District set net commercial fishery, 1989.a

	Age Class											All
	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	
Strata 1 (7/03-7/26)												
Female												
Sample Size	0	2	44	50	96	12	0	0	1	0	0	205
Percent	0.00	0.44	9.59	10.89	20.92	2.61	0.00	0.00	0.22	0.00	0.00	44.66
SE Percent	0.00	0.31	1.38	1.46	1.90	0.75	0.00	0.00	0.22	0.00	0.00	2.32
Harvest	0	34	752	854	1,640	205	0	0	17	0	0	3,502
SE Harvest	0	24	108	114	149	58	0	0	17	0	0	182
Male												
Sample Size	0	2	53	48	126	24	0	0	1	0	0	254
Percent	0.00	0.44	11.55	10.46	27.45	5.23	0.00	0.00	0.22	0.00	0.00	55.34
SE Percent	0.00	0.31	1.49	1.43	2.09	1.04	0.00	0.00	0.22	0.00	0.00	2.32
Harvest	0	34	905	820	2,152	410	0	0	17	0	0	4,338
SE Harvest	0	24	117	112	163	82	0	0	17	0	0	182
Combined												
Sample Size	0	4	97	98	222	36	0	0	2	0	0	459
Percent	0.00	0.87	21.13	21.35	48.37	7.84	0.00	0.00	0.44	0.00	0.00	100.00
SE Percent	0.00	0.43	1.91	1.91	2.34	1.26	0.00	0.00	0.31	0.00	0.00	
Harvest	0	68	1,657	1,674	3,792	615	0	0	34	0	0	7,840
SE Harvest	0	34	150	150	183	98	0	0	24	0	0	0

Strata 2 (7/27-8/14)
Female

Sample Size	0	1	8	18	102	20	0	0	0	0	0
Percent	0.00	0.25	2.03	4.56	25.82	5.06	0.00	0.00	0.00	0.00	0.00
SE Percent	0.00	0.25	0.71	1.05	2.20	1.10	0.00	0.00	0.00	0.00	0.00
Harvest	0	8	62	140	795	156	0	0	0	0	0
SE Harvest	0	8	22	32	68	34	0	0	0	0	0
S			0	0	75						

Male

Sample Size	0	3	24	64	131	24	0	0	0	0	0
Percent	0.00	0.76	6.08	16.20	33.16	6.08	0.00	0.00	0.00	0.00	0.00
SE Percent	0.00	0.44	1.20	1.86	2.37	1.20	0.00	0.00	0.00	0.00	0.00
Harvest	0	23	187	499	1,021	187	0	0	0	0	0
SE Harvest	0	13	37	57	73	37	0	0	0	0	0

Combined

Sample Size	0	4	32	82	233	44	0	0	0	0	0
Percent	0.00	1.01	8.10	20.76	58.99	11.14	0.00	0.00	0.00	0.00	0.00
SE Percent	0.00	0.50	1.37	2.04	2.48	1.59	0.00	0.00	0.00	0.00	0.00
Harvest	0	31	249	639	1,816	343	0	0	0	0	0
SE Harvest	0	16	42	63	76	49	0	0	0	0	0

Appendix B4. (Page 2 of 2).

	Age Class											
	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	Al1
All Strata												
Female												
Harvest	0	42	814	994	2,435	361	0	0	17	0	0	4,663
SE Harvest	0	25	110	119	164	68	0	0	17	0	0	197
Percent	0.0	0.4	7.5	9.1	22.3	3.3	0.0	0.0	0.2	0.0	0.0	42.7
SE Percent	0.00	0.23	1.01	1.09	1.50	0.62	0.00	0.00	0.16	0.00	0.00	1.80
Male												
Harvest.	0	58	1,092	1,319	3,173	597	0	0	17	0	0	6,256
SE Harvest	0	28	123	126	179	90	0	0	17	0	0	197
Percent	0.0	0.5	10.0	12.1	29.1	5.5	0.0	0.0	0.2	0.0	0.0	57.3
SE Percent	0.00	0.25	1.12	1.15	1.64	0.82	0.00	0.00	0.16	0.00	0.00	1.80
Combined												
Harvest	0	100	1,906	2,313	5,608	958	0	0	34	0	0	$10,919{ }^{\text {b }}$
SE Harvest	0	37	155	163	198	110	0	0	24	0	0	0
Fercent	0.0	0.9	17.5	21.2	51.4	8.8	0.0	0.0	0.3	0.0	0.0	100.0
SE Percent	0.00	0.34	1.42	1.49	1.82	1.01	0.00	0.00	0.22	0.00	0.00	

a There was no harvest of chinook salmon by the Central District drift net fleet in 1989 due to the Exxon Valdez oil spill. Age compositions and harvests are from D. Waltemyer (Alaska Department of Fish and Game, Soldotna, personal communication). Total harvest does not include 4 chinook salmon caught and retained by commercial fishermen for their own use (S. Hammarstrom, Alaska Department of Fish and Game, Soldotna, personal communication).

Appendix B5. Estimates by age class of the number of chinook salmon harvested in the Central District drift net and Upper Subdistrict set net commercial fisheries, 1990.a

	Age Class												
	0.3	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	ALL
Set Net Harvest													
Female													
Sample Size	1	0	0	49	38	39	6	0	0	0	1	2	136
Percent	0.2	0.0	0.0	11.4	8.9	9.1	1.4	0.0	0.0	0.0	0.2	0.5	31.7
SE Percent	0.23	0.00	0.00	1.54	1.37	1.39	0.57	0.00	0.00	0.00	0.23	0.33	2.25
Harvest	10	0	0	473	367	376	58	0	0	0	10	19	1,312
SE Harvest	10	0	0	64	57	58	23	0	0	0	10	14	93
Male													
Sample Size	0	1	5	76	88	103	8	0	4	2	1	5	293
Percent	0.0	0.2	1.2	17.7	20.5	24.0	1.9	0.0	0.9	0.5	0.2	1.2	68.3
SE Percent	0.00	0.23	0.52	1.85	1.95	2.06	0.65	0.00	0.46	0.33	0.23	0.52	2.25
Harvest	0	10	48	733	849	994	77	0	39	19	10	48	2,827
SE Harvest	0	10	21	76	81	85	27	0	19	14	10	21	93
Combined													
Sample Size	1	1	5	125	126	142	14	0	4	2	2	7	429
Percent	0.2	0.2	1.2	29.1	29.4	33.1	3.3	0.0	0.9	0.5	0.5	1.6	100.0
SE Percent	0.23	0.23	0.52	2.20	2.20	2.27	0.86	0.00	0.46	0.33	0.33	0.61	
Harvest	10	10	48	1,206	1,216	1,370	135	0	39	19	19	68	4,139
SE Harvest	10	10	21	91	91	94	36	0	19	14	14	25	0

Drift Net Harvest

Female													
Harvest	1	0	0	71	55	56	9	0	0	0	1	3	197
SE Harvest	1	0	0	10	9	9	4	0	0	0	1	2	14
Male													
Harvest	0	1	7	110	127	149	12	0	6	3	1	7	424
SE Harvest	0	1	3	11	12	13	4	0	3	2	1	3	14
Combined													
Harvest	1	1	7	181	182	206	20	0	6	3	3	10	621
SE Harvest	1	1	3	14	14	14	5	0	3	2	2	4	

[^2]Appendix B5. (Page 2 of 2).

Set Net, Drift Net, and Commercal Personal Use Combined

Female	11	0	0	554	430	441	68	0	0	0	11	23
Harvest	10	0	0	64	57	58	24	0	0	0	10	14
SE Harvest												

a Age composition is from D. Waltemyer (Alaska Department of Fish and Game, Soldotna, personal communication), based on samples taken from the set net fishery. Age composition in the drift net fishery is assumed to be the same as the set net fishery. Total harvest in the set net fishery is taken from D. Waltemyer (personal communication). Total harvest in the drift net fishery is from Ruesch (1991).
b Fish caught and retained by commercial fishermen for their own use. Age composition is assumed to be the same as the set net fishery. Total commercial personal use harvest is from S. Hammarstrom (Alaska Department of Fish and Game, Soldotna, personal communication).

Appendix B6. | Estimates by age class of the number of late-run |
| :--- |
| Kenai River chinook salmon harvested in the Deep |
| Creek Marine sport fishery, 1976-1989. |

Age Class											
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4	Other	Total
1976											
Number		6	16	89	9	0	0	0	0		120
Percent		5.0	13.3	74.2	7.5						
SE Percent		2.0	3.1	4.0	2.4						
Harvest		69	184	1,025	104						1,382
SE Harvest ${ }^{\text {b }}$		28	43	55	33						NA
1977											
Number		0	19	65	3	1		0			88
Percent			21.6	73.9	3.4	1.1					
SE Percent			4.4	4.7	1.9	1.1					
Harvest			79	270	12	4					366
SE Harvest b			16	17	7	4					NA
1978											
Number		2	5	79	4						90
Percent		2.2	5.6	87.8	4.4						
SE Percent		1.6	2.4	3.5	2.2						
Harvest		60	150	2,364	120						2,693
SE Harvest b		42	65	93	59						NA
1979											
Number		1	7	53	13						74
Percent		1.4	9.5	71.6	17.6						
SE Percent		1.4	3.4	5.3	4.5						
Harvest		16	110	834	204						1,164
SE Harvest ${ }^{\text {b }}$		16	40	61	52						NA
1980											
Number		0	4	23	5						32
Percent			12.5	71.9	15.6						
SE Percent			5.9	8.1	6.5						
Harvest			93	537	117						747
SE Harvest ${ }^{\text {b }}$			44	60	49						NA
1981											
Number		0	2	14	3					0	19
Percent			10.5	73.7	15.8						
SE Percent			7.2	10.4	8.6						
Harvest			18	125	27						170
SE Harvest ${ }^{\text {b }}$			12	18	15						NA

Appendix B6. (Page 2 of 4).

	Age Class									Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4		
1982											
Number		0	3	26	9					0	38
Percent			7.9	68.4	23.7						
SE Percent			4.4	7.6	7.0						
Harvest			93	803	278						1,173
SE Harvest ${ }^{\text {b }}$			52	90	82						NA
1983											
Number		3	8	77	5					2	95
Percent		3.2	8.4	81.1	5.3					2.1	
SE Percent		1.8	2.9	4.0	2.3					1.5	
Harvest		54	144	1,384	90					36	1,707
SE Harvest ${ }^{\text {b }}$		31	49	69	39					25	NA
1984											
Number		6	8	75	11						100
Percent		6.0	8.0	75.0	11.0						
SE Percent		2.4	2.7	4.4	3.1						
Harvest		50	67	626	92						835
SE Harvest b		20	23	36	26						NA
1985											
Number		1	9	60	8					0	78
Percent		1.3	11.5	76.9	10.3						
SE Percent		1.3	3.6	4.8	3.5						
Harvest		22	200	1,332	178						1,731
SE Harvest ${ }^{\text {b }}$		22	63	83	60						NA
1986											
Female											
Number		0	7	13	3						23
Percent		0.0	16.7	31.0	7.1						54.8
SE Percent		0.0	5.8	7.2	4.0						7.8
Harvest		0	105	195	45						345
SE Harvest		0	51	83	29						134
Male											
Number		2	4	12	1						19
Percent		4.8	9.5	28.6	2.4						45.2
SE Percent		3.3	4.6	7.1	2.4						7.8
Harvest		30	60	180	15						285
SE Harvest		22	35	78	15						114
Combined											
Number		2	11	25	4						42
Percent		4.8	26.2	59.5	9.5						
SE Percent		3.3	6.9	7.7	4.6						
Harvest		30	165	375	60						630
SE Harvest		22	72	144	35						230

[^3]Appendix B6. (Page 3 of 4).

	Age Class									Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4		
1987											
Female											
Percent ${ }^{\text {c }}$	0.2	0.4	11.6	38.1	0.6	0.0	0.0	0.0	0.0		50.9
SE Percent	0.2	0.3	1.5	2.2	0.4						2.3
Harvest d	2	5	127	418	7						559
SE Harvest ${ }^{\text {b }}$	2	3	16	24	4						25
Male											
Percent ${ }^{\text {c }}$	0.2	0.6	11.2	34.6	2.5	0.0	0.0	0.0	0.0		49.1
SE Percent	0.2	0.4	1.4	2.2	0.7						2.3
Harvest d	2	7	123	379	27						538
SE Harvest ${ }^{\text {b }}$	2	4	16	24	8						25
Combined											
Percent ${ }^{\text {c }}$	0.4	1.0	22.8	72.7	3.1	0.0	0.0	0.0	0.0		
SE Percent	0.3	0.5	1.9	2.0	0.8						
Harvest d	5	11	250	797	34						1,097
SE Harvest b	3	5	21	22	9						NA
1988											
Female											
Percent ${ }^{\text {c }}$	0.0	0.0	1.0	43.5	9.1	0.0	0.0	0.0	0.0		53.6
SE Percent			0.5	2.4	1.4						2.4
Harvest d			12	549	115						677
SE Harvest b			6	31	18						27
Male											
Percent ${ }^{\text {c }}$	0.7	0.2	2.4	35.1	7.9	0.0	0.0	0.0	0.0		46.4
SE Percent	0.4	0.2	0.8	2.3	1.3						2.4
Harvest d	9	3	30	443	100						585
SE Harvest b	5	3	9	30	17						31
Combined											
Percent ${ }^{\text {c }}$	0.7	0.2	3.4	78.6	17.1	0.0	0.0	0.0	0.0		
SE Percent	0.4	0.2	0.9	2.0	1.8						
Harvest d	9	3	42	992	215						1,262
SE Harvest b	5	3	11	25	23						NA

[^4]Appendix B6. (Page 4 of 4).

	Age Class									Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4		
1989											
Female											
Percent ${ }^{\text {c }}$	0.0	0.0	6.9	35.6	5.0	0.0	0.0	0.0	1.0		48.5
SE Percent			2.5	4.8	2.2				1.0		5.0
Harvest d			90	461	64				13		628
SE Harvest b			33	62	28				13		65
Male											
Percent ${ }^{\text {c }}$	0.0	1.0	4.0	35.6	10.9	0.0	0.0	0.0	0.0		51.5
SE Percent		1.0	2.0	4.8	3.1						5.0
Harvest d		13	51	461	141						666
SE Harvest ${ }^{\text {b }}$		13	25	62	40						65
Combined											
Percent ${ }^{\text {c }}$	0.0	1.0	10.9	71.3	15.8	0.0	0.0	0.0	1.0		
SE Percent		1.0	3.1	4.5	3.7				1.0		
Harvest d		13	141	922	205				13		1,294
SE Harvest ${ }^{\text {b }}$		13	40	59	47				13		NA
1990											
Female											
Percent	0.0	2.3	5.9	29.3	5.6	0.0	0.0	0.0	0.0		43.1
SE \%	0.0	0.8	1.3	2.5	1.2						2.7
Estimated Harv	0	31	77	387	73						568
SE Harvest	0	11	17	33	16						35
Male											
Percent	0.6	7.3	10.0	32.8	6.2	0.0	0.0	0.0	0.0		56.9
SE \%	0.4	1.4	1.6	2.5	1.3						2.7
Estimated Harv	8	97	131	433	81						750
SE Harvest	5	19	21	34	17						35
Combined											
Percent	0.6	9.7	15.8	62.2	11.7	0.0	0.0	0.0	0.0		
SE \%	0.4	1.6	2.0	2.6	1.7						
Estimated Harv	8	128	209	819	155						1,318
SE Harvest	5	21	26	35	23						NA

a Data from Hammarstrom (1977-81); Hammarstrom and Larson (198284, 1986); Hammarstrom et al. (1985, 1987); and Mills (19881991).
b For 1976-1985 and 1987-1989 the variance of the estimate of sport harvest is unknown. For those years, the total harvest is treated as a constant in the calculation of the standard error of the harvest of each age class.
c Age data was not collected from the Deep Creek marine sport harvest after 1986. The age composition of the in-river sport harvest was applied to the total Deep Creek harvest to calculate harvest by age class.
d Total harvest estimates for 1987-1990 are from the statewide postal harvest survey (Mills 1988-1991). The statewide postal survey yields estimates for the entire year. The estimates for the late run alone were calculated by using the mean contribution of the late run to the total harvest from 1972 through 1986 (29\%).

Appendix 37 . Estimates by age class of the number of late-run chinook salmon harvested in educational gill nets, 1989-1990.a

	Age Class												
	0.3	0.4	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	A11
1989													
Female													
Harvest		0	0	2	2	5	1	0	0	0	0	0	9
SE Harvest		0	0	0	0	0	0	0	0	0	0	0	0
Male													
Harvest		0	0	2	3	6	1	0	0	0	0	0	13
SE Harvest		0	0	0	0	0	0	0	0	0	0	0	0
Combined													
Harvest		0	0	4	5	11	2	0	0	0	0	0	22
SE Harvest		0	0	0	0	0	0	0	0	0	0	0	0
1990													
Female													
Harvest	0	0	0	1	1	1	0	0	0	0	0	0	4
SE Harvest	0	0	0	0	0	0	0	0	0	0	0	0	0
Male													
Harvest	0	0	0	2	3	3	0	0	0	0	0	0	9
SE Harvest	0	0	0	0	0	0	0	0	0	0	0	0	0
Combined													
Harvest	0	0	0	4	4	4	0	0	0	0	0	0	13
SE Harvest	0	0	0	0	0	0	0	0	0	0	0	0	0

a Total harvest data is from S. Hammarstrom (Alaska Department of Fish and Game, Soldotna, personal communication). The age composition of chinook salmon harvested in educational gill nets during the late run is assumed to be the same as the age composition of the fish sampled in all strata combined of the commercial set net harvest.

Appendix B8. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1986.

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 4 (7/01-7/15)									
Female									
Sample Size	12	104	99	9	0	0	0	0	224
Percent	2.08	18.02	17.16	1.56	0.00	0.00	0.00	0.00	38.82
SE Percent	0.59	1.60	1.57	0.52	0.00	0.00	0.00	0.00	2.03
Return	88	766	729	66	0	0	0	0	1,650
SE Return	291	2,608	2,482	215	0	0	0	0	5,631
Male									
Sample Size	103	151	84	15	0	0	0	0	353
Percent	17.85	26.17	14.56	2.60	0.00	0.00	0.00	0.00	61.18
SE Percent	1.60	1.83	1.47	0.66	0.00	0.00	0.00	0.00	2.03
Return	758	1,112	619	110	0	0	0	0	2,599
SE Return	2,583	3,792	2,104	366	0	0	0	0	8,880
Combined									
Sample Size	115	255	183	2.4	0	0	0	0	577
Percent	19.93	44.19	31.72	4.16	0.00	0.00	0.00	0.00	100.00
SE Percent	1.66	2.07	1.94	0.83	0.00	0.00	0.00	0.00	
Return	817	1,878	1,348	177	0	0	0	0	4,249
SE Return	2,885	6,411	4,598	593	0	0	0	0	14,522

Strata 5 ($7 / 16-7 / 28$)
Female

Sample Size	2	124	89	6	0	0	0	0	221
Percent	0.40	24.90	17.87	1.20	0.00	0.00	0.00	0.00	44.38
SE Percent	0.28	1.94	1.72	0.49	0.00	0.00	0.00	0.00	2.23
Return	175	10,833	7,776	524	0	0	0	0	19,308
SE Return	129	3,313	2,414	256	0	0	0	0	5,802
Male									
Sample Size	65	122	82	8	0	0	0	0	277
Percent	13.05	24.50	16.47	1.61	0.00	0.00	0.00	0.00	55.62
SE Percent	1.51	1.93	1.66	0.56	0.00	0.00	0.00	0.00	2.23
Return	5,679	10,659	7,164	699	0	0	0	0	24,200
SE Return	1,798	3,262	2,234	313	0	0	0	0	7,238

Combined									
Sample Size	67	246	171	14	0	0	0	0	498
Percent	13.45	49.40	34.34	2.81	0.00	0.00	0.00	0.00	100.00
SE Percent	1.53	2.24	2.13	0.74	0.00	0.00	0.00	0.00	
Return	5,853	21,492	14,939	1,223	0	0	0	0	43,508
SE Return	1,849	6,443	4,519	476	0	0	0	0	12,906

- continued -

Appendix B8. (Page 2 of 2).

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 6 (7/29-8/14)									
Female									
Sample Size	2	123	159	23	0	0	0	0	307
Percent	0.35	21.50	27.80	4.02	0.00	0.00	0.00	0.00	53.67
SE Percent	0.25	1.72	1.87	0.82	0.00	0.00	0.00	0.00	2.09
Return	34	2,109	2,726	394	0	0	0	0	5,263
SE Return	24	284	348	91	0	0	0	0	608
Male									
Sample Size	16	97	140	12	0	0	0	0	265
Percent	2.80	16.96	24.48	2.10	0.00	0.00	0.00	0.00	46.33
SE Percent	0.69	1.57	1.80	0.60	0.00	0.00	0.00	0.00	2.09
Return	274	1,663	2,400	206	0	0	0	0	4,543
SE Return	74	237	314	63	0	0	0	0	534
Combined									
Sample Size	18	220	299	35	0	0	0	0	572
Percent	3.15	38.46	52.27	6.12	0.00	0.00	0.00	0.00	100.00
SE Percent	0.73	2.04	2.09	1.00	0.00	0.00	0.00	0.00	
Return	309	3,772	5,126	600	0	0	0	0	9,806
SE Return	79	456	594	117	0	0	0	0	1,067
Strata 4, 5, and 6 Combined									
Female									
Return	297	13,708	11,230	985	0	0	0	0	26,220
SE Return	319	4,226	3,480	346	0	0	0	0	8,107
Percent	0.5	23.8	19.5	1.7	0.0	0.0	0.0	0.0	45.6
SE Percent	0.55	7.34	6.05	0.60	0.00	0.00	0.00	0.00	14.08
Male									
Return	6,712	13,433	10,183	1,015	0	0	0	0	31,343
SE Return	3,148	5,007	3,085	486	0	0	0	0	11,468
Percent	11.7	23.3	17.7	1.8	0.0	0.0	0.0	0.0	54.4
SE Percent	5.47	8.70	5.36	0.84	0.00	0.00	0.00	0.00	19.92
Combined									
Return	7,009	27,141	21,413	2,000	0	0	0	0	57,563
SE Return	3,428	9,101	6,474	769	0	0	0	0	19,457
Percent	12.2	47.2	37.2	3.5	0.0	0.0	0.0	0.0	100.0
SE Percent	5.95	15.81	11.25	1.34	0.00	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the mark-recapture tagging project (Conrad and Larson 1987). Age samples were also taken from the markrecapture tagging project. The number of fish sampled in each age class was taken directly from the project data files (Appendix Cl).

Appendix B9. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1987.a

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 4 (7/01-7/28)									
Female									
Sample Size	1	71	262	3	0	0	0	0	337
Percent	0.14	9.87	36.44	0.42	0.00	u.00	0.00	0.00	46.81
SE Percent	0.14	1.11	1.80	0.24	0.00	0.00	0.00	0.00	1.86
Return	50	3,532	13,033	149	0	0	0	0	16,764
SE Return	50	398	642	86	0	0	0	0	666
Male									
Sample Size	15	129	230	5	2	0	0	1	382
Percent	2.09	17.94	31.99	0.70	0.28	0.00	0.00	0.14	53.13
SE Percent	0.53	1.43	1.74	0.31	0.20	0.00	0.00	0.14	1.86
Return	746	6,417	11,441	249	99	0	0	50	19,003
SE Return	191	512	622	111	70	0	0	50	666
Combined									
Sample Size	16	200	492	8	2	0	0	1	719
Percent	2.23	27.82	68.43	1.11	0.28	0.00	0.00	0.14	100.00
SE Percent	0.55	1.67	1.73	0.39	0.20	0.00	0.00	0.14	
Return	796	9,949	24,475	398	99	0	0	50	35,767
SE Return	197	598	620	140	70	0	0	50	0

Strata 5 (7/29-8/11)									
Female									
Sample Size	0	32	120	1	0	0	0	0	153
Percent	0.00	13.17	49.38	0.41	0.00	0.00	0.00	0.00	62.96
SE Percent	0.00	2.17	3.21	0.41	0.00	0.00	0.00	0.00	3.10
Return	0	1,627	6,102	51	0	0	0	0	7,780
SE Return	0	268	396	51	0	0	0	0	383
Male									
Sample Size	2	36	50	1	0	1	0	0	90
Percent	0.82	14.81	20.58	0.41	0.00	0.41	0.00	0.00	37.04
SE Percent	0.58	2.28	2.60	0.41	0.00	0.41	0.00	0.00	3.10
Return	102	1,831	2,542	51	0	51	0	0	4,576
SE Return	72	282	320	51	0	51	0	0	383
Combined									
Sample Size	2	68	170	2	0	1	0	0	243
Percent	0.82	27.98	69.96	0.82	0.00	0.41	0.00	0.00	100.00
SE Percent	0.58	2.89	2.95	0.58	0.00	0.41	0.00	0.00	
Return	102	3,458	8,644	102	0	51	0	0	12,356
SE Return	72	356	363	72	0	51	0	0	0

[^5]Appendix B9. (Page 2 of 2).

Age Class									
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL
Strata 4 and 5 Combined									
Female									
Return	50	5,159	19,135	200	0	0	0	0	24,544
SE Return	50	480	754	100	0	0	0	0	768
Percent	0.1	10.7	39.8	0.4	0.0	0.0	0.0	0.0	51.0
SE Percent	0.10	1.00	1.57	0.21	0.00	0.00	0.00	0.00	1.60
Male									
Return	848	8,248	13,984	300	99	51	0	50	23,579
SE Return	204	584	700	122	70	51	0	50	768
Percent	1.8	17.1	29.1	0.6	0.2	0.1	0.0	0.1	49.0
SE Percent	0.42	1.21	1.45	0.25	0.15	0.11	0.00	0.10	1.60
Combined									
Return	898	13,407	33,119	500	99	51	0	50	48,123
SE Return	209	696	719	157	70	51	0	50	0
Percent	1.9	27.9	68.8	1.0	0.2	0.1	0.0	0.1	100.0
SE Percent	0.44	1.45	1.49	0.33	0.15	0.11	0.00	0.10	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken from the mark-recapture tagging project (Conrad 1988). The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix C1).

Appendix B10. Estimates by age class of the number of laterun chinook salmon in the in-river return to the Kenai River, 1988.a

	Age Class								
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL
Strata 4 (7/01-7/15)									
Female									
Sample Size	0	5	203	22	0	0	0	0	230
Percent	0.00	1.02	41.51	4.50	0.00	0.00	0.00	0.00	47.03
SE Percent	0.00	0.46	2.23	0.94	0.00	0.00	0.00	0.00	2.26
Return	0	160	6,511	706	0	0	0	0	7,376
SE Return	0	71	349	147	0	0	0	0	354
Male									
Sample Size	7	16	188	48	0	0	0	0	259
Percent	1.43	3.27	38.45	9.82	0.00	0.00	0.00	0.00	52.97
SE Percent	0.54	0.81	2.20	1.35	0.00	0.00	0.00	0.00	2.26
Return	225	513	6,029	1,539	0	0	0	0	8,307
SE Return	84	126	345	211	0	0	0	0	354
Combined									
Sample Size	7	21	391	70	0	0	0	0	489
Fercent	1.43	4.29	79.96	14.31	0.00	0.00	0.00	0.00	100.00
SE Percent	0.54	0.92	1.81	1.59	0.00	0.00	0.00	0.00	
Return	225	674	12,540	2,245	0	0	0	0	15,683
SE Return	84	144	284	248	0	0	0	0	0
STRATA 5 (7/16-7/31)									
Female									
Sample Size	0	2	160	16	0	0	0	0	178
Percent	0.00	0.66	52.81	5.28	0.00	0.00	0.00	0.00	58.75
SE Percent	0.00	0.47	2.87	1.29	0.00	0.00	0.00	0.00	2.83
Return	0	161	12,917	1,292	0	0	0	0	14,370
SE Return	0	114	702	314	0	0	0	0	692
Male									
Sample Size	5	10	72	38	0	0	0	0	125
Percent	1.65	3.30	23.76	12.54	0.00	0.00	0.00	0.00	41.25
SE Percent	0.73	1.03	2.45	1.91	0.00	0.00	0.00	0.00	2.83
Return	404	807	5,813	3,068	0	0	0	0	10,092
SE Return	179	251	598	465	0	0	0	0	692
Combined									
Sample Size	5	12	232	54	0	0	0	0	303
Percent	1.65	3.96	76.57	17.82	0.00	0.00	0.00	0.00	100.00
SE Percent	0.73	1.12	2.44	2.20	0.00	0.00	0.00	0.00	
Return	404	969	18,730	4,360	0	0	0	0	24,462
SE Return	179	274	595	538	0	0	0	0	0

[^6]Appendix B10. (Page 2 of 2).

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
STRATA 6 (8/01-8/11)									
Female									
Sample Size	0	2	78	10	0	0	0	0	90
Percent	0.00	1.38	53.79	6.90	0.00	0.00	0.00	0.00	62.07
SE Percent	0.00	0.97	4.15	2.11	0.00	0.00	0.00	0.00	4.04
Return	0	164	6,381	818	0	0	0	0	7,363
SE Return	0	115	491	250	0	0	0	0	478
Male									
Sample Size	0	1	27	27	0	0	0	0	55
Percent	0.00	0.69	18.62	18.62	0.00	0.00	0.00	0.00	37.93
SE Percent	0.00	0.69	3.24	3.24	0.00	0.00	0.00	0.00	4.04
Return	0	82	2,209	2,209	0	0	0	0	4,500
SE Return	0	82	384	384	0	0	0	0	478
Combined									
Sample Size	0	3	105	37	0	0	0	0	145
Percent	0.00	2.07	72.41	25.52	0.00	0.00	0.00	0.00	100.00
SE Percent	0.00	1.19	3.72	3.63	0.00	0.00	0.00	0.00	
Return	0	245	8,590	3,027	0	0	0	0	11,863
SE Return	0	140	440	429	0	0	0	0	0
Strata 4, 5, and 6 Combined									
Female									
Return	0	485	25,809	2,815	0	0	0	0	29,110
SE Return	0	177	925	427	0	0	0	0	912
Percent	0.0	0.9	49.6	5.4	0.0	0.0	0.0	0.0	56.0
SE Percent	0.00	0.34	1.78	0.82	0.00	0.00	0.00	0.00	1.75
Male									
Return	628	1,402	14,051	6,816	0	0	0	0	22,898
SE Return	198	293	790	639	0	0	0	0	912
Percent	1.2	2.7	27.0	13.1	0.0	0.0	0.0	0.0	44.0
SE Percent	0.38	0.56	1.52	1.23	0.00	0.00	0.00	0.00	1.75
Combined									
Return	628	1,888	39,860	9,632	0	0	0	0	52,008
SE Return	198	340	793	732	0	0	0	0	0
Percent	1.2	3.6	76.6	18.5	0.0	0.0	0.0	0.0	100.0
SE Percent	0.38	0.65	1.52	1.41	0.00	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken from the mark-recapture tagging project (Carlon and Alexandersdottir 1989). The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix C1).

Appendix B11. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1989.a

	Age Class									
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL
Strata 4 (7/01-7/15)										
Female										
Sample Size	0	8	15	86	22	1	0	0	0	132
Percent	0.00	3.28	6.15	35.25	9.02	0.41	0.00	0.00	0.00	54.10
SE \%	0.00	1.14	1.54	3.06	1.84	0.41	0.00	0.00	0.00	3.20
N hat	0	546	1,024	5,872	1,502	68	0	0	0	9,013
SE Nhat	0	190	256	510	305	68	0	0	0	531
Male										
Sample Size	0	22	16	61	13	0	0	0	0	112
Percent	0.00	9.02	6.56	25.00	5.33	0.00	0.00	0.00	0.00	45.90
SE \%	0.00	1.84	1.59	2.78	1.44	0.00	0.00	0.00	0.00	3.20
N hat	0	1,502	1,092	4,165	888	0	0	0	0	7,647
SE Nhat	0	305	264	462	240	0	0	0	0	531
Combined										
Sample Size	0	30	31	147	35	1	0	0	0	244
Percent	0.00	12.30	12.70	60.25	14.34	0.41	0.00	0.00	0.00	100.00
SE \%	0.00	2.11	2.14	3.14	2.25	0.41	0.00	0.00	0.00	
N hat	0	2,048	2,117	10,037	2,390	68	0	0	0	16,660
SE Nhat	0	350	355	522	374	68	0	0	0	0
Strata 5 (7/16-7/31)										
Female										
Sample Size	0	6	19	100	15	0	0	0	0	140
Percent	0.00	2.60	8.23	43.29	6.49	0.00	0.00	0.00	0.00	60.61
SE \%	0.00	1.05	1.81	3.27	1.62	0.00	0.00	0.00	0.00	3.22
N hat	0	293	927	4,879	732	0	0	0	0	6,830
SE Nhat	0	118	204	367	183	0	0	0	0	362
Male										
Sample Size	0	14	12	55	10	0	0	0	0	91
Percent	0.00	6.06	5.19	23.81	4.33	0.00	0.00	0.00	0.00	39.39
SE \%	0.00	1.57	1.46	2.81	1.34	0.00	0.00	0.00	0.00	3.22
N hat	0	683	585	2,683	488	0	0	0	0	4,440
SE Nhat	0	177	165	316	151	0	0	0	0	362
Combined										
Sample Size	0	20	31	155	25	0	0	0	0	231
Percent	0.00	8.66	13.42	67.10	10.82	0.00	0.00	0.00	0.00	100.00
SE \%	0.00	1.85	2.25	3.10	2.05	0.00	0.00	0.00	0.00	
N hat	0	976	1,512	7,562	1,220	0	0	0	0	11,270
SE Nhat	0	209	253	348	230	0	0	0	0	0

- continued

Appendix B11. (Page 2 of 2).

	Age Class									ALL
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 6 (8/01-8/07)										
Female										
Sample Size	1	1	6	60	9	0	0	0	0	77
Percent	0.13	0.73	4.38	43.80	6.57	0.00	0.00	0.00	0.00	56.20
SE \%	0.73	0.73	1.75	4.25	2.12	0.00	0.00	0.00	0.00	4.25
N hat	8	8	48	484	13	0	0	0	0	621
SE Nhat	8	8	19	47	23	0	0	0	0	47
Male										
Sample Size	0	12	7	35	5	1	0	0	0	60
Percent	0.00	8.76	5.11	25.55	3.65	0.73	0.00	0.00	0.00	43.80
SE \%	0.00	2.42	1.89	3.74	1.61	0.73	0.00	0.00	0.00	4.25
N hat	0	97	56	282	40	8	0	0	0	484
SE Nhat	0	27	21	41	18	8	0	0	0	47
Combined										
Sample Size	1	13	13	95	14	1	0	0	0	137
Percent	0.73	9.49	9.49	69.34	10.22	0.73	0.00	0.00	0.00	100.00
SE \%	0.73	2.51	2.51	3.95	2.60	0.73	0.00	0.00	0.00	
N hat	8	105	105	766	113	8	0	0	0	1,105
SE Nhat	8	28	28	44	29	8	0	0	0	0
Strata 4, 5, and 6 Combined										
Female										
N hat	8	847	2,000	11,235	2,307	68	0	0	0	16,464
SE Nhat	8	224	328	630	357	68	0	0	0	645
Percent	0.0	2.9	6.9	38.7	7.9	0.2	0.0	0.0	0.0	56.7
SE \%	0.03	0.77	1.13	2.17	1.23	0.23	0.00	0.00	0.00	2.22
Male										
N hat	0	2,282	1,734	7,131	1,416	8	0	0	0	12,571
SE Nhat	0	354	312	561	284	8	0	0	0	645
Percent	0.0	7.9	6.0	24.6	4.9	0.0	0.0	0.0	0.0	43.3
SE \%	0.00	1.22	1.07	1.93	0.98	0.03	0.00	0.00	0.00	2.22
Combined										
N hat	8	3,129	3,734	18,365	3,722	76	0	0	0	29,035
SE Nhat	8	409	437	629	440	69	0	0	0	0
Percent	0.0	10.8	12.9	63.3	12.8	0.3	0.0	0.0	0.0	100.0
SE \%	0.03	1.41	1.50	2.17	1.52	0.24	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken from the mark-recapture tagging project (Alexandersdottir and Marsh 1990). The number of fish sampled in each age class was taken directly from the tagging project data files (Appendix Cl).

Appendix B12. Estimates by age class of the number of late-run chinook salmon in the in-river return to the Kenai River, 1990.a

	Age Class								
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	ALL
Strata 4 (7/01-7/15)									
Female									
Sample Size	8	6	37	3	0	0	0	0	54
Percent	5.13	3.85	23.72	1.92	0.00	0.00	0.00	0.00	34.62
SE \%	1.77	1.54	3.42	1.10	0.00	0.00	0.00	0.00	3.82
N hat	545	409	2,519	204	0	0	0	0	3,677
SE Nhat	188	164	362	117	0	0	0	0	405
Male									
Sample Size	30	31	38	3	0	0	0	0	102
Percent	19.23	19.87	24.36	1.92	0.00	0.00	0.00	0.00	65.38
SE\%	3.17	3.21	3.45	1.10	0.00	0.00	0.00	0.00	3.82
N hat	2,043	2,111	2,587	204	0	0	0	0	6,945
SE Nhat	335	339	365	117	0	0	0	0	405
Combined									
Sample Size	38	37	75	6	0	0	0	0	156
Percent	24.36	23.72	48.08	3.85	0.00	0.00	0.00	0.00	100.00
SE \%	3.45	3.42	4.01	1.54	0.00	0.00	0.00	0.00	
N hat	2,587	2,519	5,107	409	0	0	0	0	10,622
SE Nhat	365	362	425	164	0	0	0	0	0
Strata 5 ($7 / 16-7 / 31$)									
Female									
Sample Size	4	8	92	2	0	0	0	0	106
Percent	1.53	3.05	35.11	0.76	0.00	0.00	0.00	0.00	40.46
SE \%	0.76	1.06	2.95	0.54	0.00	0.00	0.00	0.00	3.04
N hat	238	475	5,468	119	0	0	0	0	6,300
SE Nhat	118	166	459	84	0	0	0	0	472
Male									
Sample Size	21	26	101	8	0	0	0	0	156
Percent	8.02	9.92	38.55	3.05	0.00	0.00	0.00	0.00	59.54
SE\%	1.68	1.85	3.01	1.06	0.00	0.00	0.00	0.00	3.04
N hat	1,248	1,545	6,003	475	0	0	0	0	9,272
SE Nhat	261	288	468	166	0	0	0	0	472
Combined									
Sample Size	25	34	193	10	0	0	0	0	262
Percent	9.54	12.98	73.66	3.82	0.00	0.00	0.00	0.00	100.00
SE\%	1.82	2.08	2.73	1.19	0.00	0.00	0.00	0.00	
N hat	1,486	2,021	11,471	594	0	0	0	0	15,572
SE Nhat	283	323	424	184	0	0	0	0	0

- continued -

Appendix B12. (Page 2 of 2).

	Age Class								ALL
	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	
Strata 6 (8/01-8/15)									
Female									
Sample Size	0	0	62	1	0	0	0	0	63
Percent	0.00	0.00	55.86	0.90	0.00	0.00	0.00	0.00	56.76
SE\%	0.00	0.00	4.73	0.90	0.00	0.00	0.00	0.00	4.72
N hat	0	0	4.066	66	0	0	0	0	4.132
SE Nhat	0	0	343	65	0	0	0	0	342
Male									
Sample Size	2	6	33	7	0	0	0	0	48
Percent	1.80	5.41	29.73	6.31	0.00	0.00	0.00	0.00	43.24
SE \%	1.27	2.16	4.36	2.32	0.00	0.00	0.00	0.00	4.72
N hat	131	394	2,164	459	0	0	0	0	3,148
SE Nhat	92	156	316	168	0	0	0	0	342
Combined									
Sample Size	2	6	95	8	0	0	0	0	111
Percent	1.80	5.41	85.59	7.21	0.00	0.00	0.00	0.00	100.00
SE \%	1.27	2.16	3.35	2.47	0.00	0.00	0.00	0.00	
N hat	131	394	6,231	525	0	0	0	0	7,280
SE Nhat	92	156	243	179	0	0	0	0	0
Strata 4, 5, and 6 Combined									
Female									
N hat	782	884	12,054	389	0	0	0	0	14,109
SE Nhat	222	233	678	158	0	0	0	0	710
Percent	2.3	2.6	36.0	1.2	0.0	0.0	0.0	0.0	42.1
SE \%	0.66	0.70	2.02	0.47	0.00	0.00	0.00	0.00	2.12
Male									
N hat	3,422	4,050	10,755	1,139	0	0	0	0	19,365
SE Nhat	435	471	672	263	0	0	0	0	710
Percent	10.2	12.1	32.1	3.4	0.0	0.0	0.0	0.0	57.9
SE\%	1.30	1.41	2.01	0.79	0.00	0.00	0.00	0.00	2.12
Combined									
N hat	4,204	4,934	22,808	1,528	0	0	0	0	33,474
SE Nhat	471	510	647	304	0	0	0	0	0
Percent	12.6	14.7	68.1	4.6	0.0	0.0	0.0	0.0	100.0
SE\%	1.41	1.52	1.93	0.91	0.00	0.00	0.00	0.00	

a Estimates of the total in-river return for each strata are taken from the sonar project (D. L. Burwen, Alaska Department of Fish and Game, Anchorage, personal communication). Age samples were taken with large mesh gill nets as part of the mark-recapture tagging project. The number sampled in each age class was taken directly from the project data files (Appendix Cl).

Appendix B13. Estimates by age class of the number of late-run Kenai River chinook salmon harvested in the Kenai River sport fishery, 1976-1990.a

	Age Class										Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4	2.5		
1976												
Sample Size	33	83	56	123	11	0	1	2	0	0		307
Percent	10.7	27.0	18.2	40.1	3.6	0.0	0.3	0.7	0.0	0.0		
SE Percent	1.8	2.5	2.2	2.8	1.1		0.3	0.5				
Estimated Harvest	481	1,210	817	1,794	160		15	29				4,477
SE Harvest	79	114	99	125	48		15	21				NA
1977												
Sample Size	0	20	72	78	3	0	0	0	1	0		174
Percent	0.0	11.5	41.4	44.8	1.7	0.0	0.0	0.0	0.6	0.0		
SE Percent		2.4	3.7	3.8	1.0				0.6			
Estimated Harvest		592	2,130	2,308	89				30			5,148
SE Harvest		125	193	195	51				30			NA
1978												
Sample Size	0	22	14	136	3	0	0	0	0	0		175
Percent	0.0	12.6	8.0	77.7	1.7	0.0	0.0	0.0	0.0	0.0		
SE Percent		2.5	2.1	3.2	1.0							
Estimated Harvest		701	446	4,335	96							5,578
SE Harvest		140	115	176	55							NA
1979												
Sample Size	0	11	13	40	9	0	0	0	0	0		73
Percent	0.0	15.1	17.8	54.8	12.3	0.0	0.0	0.0	0.0	0.0		
SE Percent		4.2	4.5	5.9	3.9							
Estimated Harvest		698	825	2,539	571							4,634
SE Harvest		195	209	272	180							NA
1980												
Sample Size	0	59	60	139	21	0	0	0	0	0		279
Percent	0.0	21.1	21.5	49.8	7.5	0.0	0.0	0.0	0.0	0.0		
SE Percent		2.4	2.5	3.0	1.6							
Estimated Harvest		763	776	1,798	272							3,608
SE Harvest		88	89	108	57							NA
1981												
Sample Size	0	15	26	73	3	0	0	0	0	0	0	117
Percent	0.0	12.8	22.2	62.4	2.6	0.0	0.0	0.0	0.0	0.0	0.0	
SE Percent		3.1	3.9	4.5	1.5							
Estimated Harv		678	1,174	3,297	136							5,285
SE Harvest		164	204	238	78							NA

- continued -

Appendix B13. (Page 2 of 4).

	Age Class										Other	Total
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4	2.5		
1982												
Sample Size		14	31	70	2						2	119
Percent		11.8	26.1	58.8	1.7						1.7	
SE Percent		3.0	4.0	4.5	1.2						1.2	
Estimated Harvest		566	1,253	2,829	81						81	4,810
SE Harvest		143	194	218	57						57	NA
1983												
Sample Size	0	3	4	70	2	0	0	0	2	0		81
Percent	0.0	3.7	4.9	86.4	2.5	0.0	0.0	0.0	2.5	0.0		
SE Percent		2.1	2.4	3.8	1.7				1.7			
Estimated Harvest		340	453	7,928	227				227			9,174
SE Harvest		194	222	351	159				159			NA
1984												
Sample Size	0	43	78	305	62	0	0	0	0	0		488
Percent	0.0	8.8	16.0	62.5	12.7	0.0	0.0	0.0	0.0	0.0		
SE Percent		1.3	1.7	2.2	1.5							
Estimated Harvest		650	1,179	4,610	937							7,376
SE Harvest		95	122	162	111							NA
1985												
Sample Size		18	59	339	37						8	461
Percent		3.9	12.8	73.5	8.0						1.7	
SE Percent		0.9	1.6	2.1	1.3						0.6	
Estimated Harvest		315	1,031	5,923	646						140	8,055
SE Harvest		73	125	166	102						49	NA
1986												
Female												
Sample Size	0	2	88	115	13	0	0	0	0	0		218
Percent	0.0	0.4	17.8	23.3	2.6	0.0	0.0	0.0	0.0	0.0		44.2
SE Percent		0.3	1.7	1.9	0.7							2.2
Estimated Harvest		37	1,607	2,100	237							3,981
SE Harvest		26	175	202	66							286
Male												
Sample Size	2	48	104	108	13	0	0	0	0	0		275
Percent	0.4	9.7	21.1	21.9	2.6	0.0	0.0	0.0	0.0	0.0		55.8
SE Percent	0.3	1.3	1.8	1.9	0.7							2.2
Estimated Harvest	37	877	1,899	1,972	237							5,023
SE Harvest	26	128	192	195	66							325
Combined												
Sample Size	2	50	192	223	26	0	0	0	0	0		493
Percent	0.4	10.1	38.9	45.2	5.3	0.0	0.0	0.0	0.0	0.0		
SE Percent	0.3	1.4	2.2	2.2	1.0							
Estimated Harvest	37	913	3,507	4,073	475							9,004
SE Harvest	26	131	266	289	94							458

- continued -

Appendix B13. (Page 3 of 4).

Age Class												
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4	2.5	Other	Total
1987												
Female												
Sample Size	1	2	56	184	3	0	0	0	0	0		246
Percent	0.2	0.4	11.6	38.1	0.6	0.0	0.0	0.0	0.0	0.0		50.9
SE Percent	0.2	0.3	1.5	2.2	0.4							2.3
Estimated Harvest	25	51	1,419	4,662	76							6,233
SE Harvest	25	36	199	398	44							480
Male												
Sample Size	1	3	54	167	12	0	0	0	0	0		237
Percent	0.2	0.6	11.2	34.6	2.5	0.0	0.0	0.0	0.0	0.0		49.1
SE Percent	0.2	0.4	1.4	2.2	0.7							2.3
Estimated Harvest	25	76	1,368	4,231	304							6,004
SE Harvest	25	44	195	375	89							469
Combined												
Sample Size	2	5	110	351	15	0	0	0	0	0		483
Percent	0.4	1.0	22.8	72.7	3.1	0.0	0.0	0.0	0.0	0.0		
SE Percent	0.3	0.5	1.9	2.0	0.8							
Estimated Harvest	51	127	2,787	8,893	380							12,237
SE Harvest	36	57	292	611	99							769
1988												
Female												
Sample Size	0	0	4	181	38	0	0	0	0	0		223
Percent	0.0	0.0	1.0	43.5	9.1	0.0	0.0	0.0	0.0	0.0		53.6
SE Percent			0.5	2.4	1.4							2.4
Estimated Harvest			168	7,619	1,600							9,387
SE Harvest			84	620	265							701
Male												
Sample Size	3	1	10	146	33	0	0	0	0	0		193
Percent	0.7	0.2	2.4	35.1	7.9	0.0	0.0	0.0	0.0	0.0		46.4
SE Percent	0.4	0.2	0.8	2.3	1.3							2.4
Estimated Harvest	126	42	421	6,146	1,389							8,125
SE Harvest	73	42	134	548	246							644
Combined												
Sample Size	3	1	14	327	71	0	0	0	0	0		416
Percent	0.7	0.2	3.4	78.6	17.1	0.0	0.0	0.0	0.0	0.0		
SE Percent	0.4	0.2	0.9	2.0	1.8							
Estimated Harvest	126	42	589	13,765	2,989							17,512
SE Harvest	73	42	159	887	368							1,036

- continued -

Appendix B13. (Page 4 of 4).

Appendix B14. Estimates of late-run Kenai River chinook salmon hook and release mortality from the Kenai River sport fishery, 1986-1990a.

Year	Sport Catch	Sport Harvest	Number Released	$\begin{gathered} \text { SE } \\ \text { Release } \end{gathered}$	Percent Mortality	SE Percent	Hook and Release Mortality	$\begin{gathered} \text { SE } \\ \text { Mortality } \end{gathered}$
1986	15,331	9,004	6,327	872	$8.3{ }^{\text {b }}$	3.32	522	220
1987	16,701	12,237	4,464	1,214	$8.3{ }^{\text {b }}$	3.32	368	174
1988	23,238	17,512	5,726	1,590	$8.3{ }^{\text {b }}$	3.32	472	225
1989	12,210	9,127	3,083	1,097	10.6	3.30	327	148
1990	8,637	6,247	2,390	709	5.9	2.20	141	65

a Catch and harvest estimates from Conrad and Hammarstrom 1987, and Hammarstrom 1988-1991. Percent mortality from Bendock and Alexandersdottir 1990, 1991, and In prep; and M. Alexandersdottir (Alaska Department of Fish and Game, Anchorage, personal communication).
b Percent mortality for 1986-1988 is the average mortality of the two measured years, 1989 and 1990 .

DATA FILES USED TO PRODUCE THIS REPORT

Appendix C1. Data Files Used to Produce This Report.

Kenai River creel survey age composition files:

P0001ZBB.DTA 1986 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from downstream and upstream sections.

00010BF7.DTA 1987 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from the downstream section.

00030BH7.DTA 1987 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from the upstream section.

00010BH8.DTA 1988 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from downstream and upstream sections.

00010BH9.DTA 1989 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from the downstream section.

00020BC9.DTA 1989 early and late run age and length samples taken from Kenai River chinook salmon sport harvest from the upstream section.

00010BC0.DTA 1990 early-run age and length samples from the chinook salmon sport harvest from the downstream and upstream sections.

00010BD0.DTA 1990 late-run age and length samples from the chinook salmon sport harvest from the downstream and upstream sections.

Kenai River tagging project age composition files:

P00010BG.DTA 1986 early and late run age and length samples from the tagging gill nets.

00010BG7.DTA 1987 early and late run age and length samples from the tagging gill nets.

00010BG8.DTA 1988 early and late run age and length samples from the tagging gill nets.

00010BF9.DTA 1989 early-run age and length samples from the tagging gill nets.

00010BG9.DTA 1989 late-run age and length samples from the tagging gill nets.

Appendix C1. (Page 2 of 2).

00010BEO.DTA $\begin{aligned} & 1990 \text { early-run age and length samples from the tagging gill } \\ & \text { nets. }\end{aligned}$
00010BFO.DTA $\quad \begin{aligned} & 1990 \text { late-run age and length samples from the tagging gill } \\ & \text { nets. }\end{aligned}$

[^0]: O.E.O.
 U.S. Department of the Interior Washington, D.C. 20240

[^1]: 1 Age class is defined using the European system (Koo 1962), where the first number represents the number of freshwater winters and the second number represents the number of saltwater winters. The total age of the fish at return is the sum of the freswater and saltwater winters plus one.

[^2]: - continued -

[^3]: - continued -

[^4]: - continued

[^5]: - continued -

[^6]: - continued -

