AYK REGION
Chinook Salmon Stock Separation Report \# 3

ORIGINS OF CHINOOK SALMON IN THE AREA OF THE JAPANESE MOTHERSHIP SALMON FISHERY

by
Donald E. Rogers, Kenneth J. Bruya, Katherine W. Myers, and Tsutomu Nishida

ANNUAL REPORT
Contract No. 82-0421
October 1, 1982 to June 30, 1982
Alaska Department of Fish and Game Commercial Fisheries Division

UNIVERSITY OF WASHINGTON COLLEGE OF FISHERIES FISHERIES RESEARCH INSTITUTE

FISHERIES RESEARCH INSTITUTE School of Fisheries University of Washington Seattle, Washington 98195

ORIGINS OF CHINOOK SALMON IN THE AREA OF THE JAPANESE MOTHERSHIP SALMON FISHERY

by
Donald E. Rogers, Kenneth J. Bruya, Katherine W. Myers, and Tsutomu Nishida

> ANNUAL REPORT
> Contract No. 82-0421
> October 1, 1982 to June 30, 1982
> Alaska Department of Fish and Game Commercial Fisheries Division

Approved

Page
LIST OF TABLES iv
LIST OF FIGURES vi
INTRODUCTION 1
RESULTS 1
North American Chinook Scale Collection 1
Asian Chinook Scale Collection 2
Abundance and Age 5
Scale Measurements and Data Management 23
Scale Characters to be Examined 23
Microcomputer Software 29
Scale Measurement Procedures 32
Criteria for Interpreting Chinook ScaleMeasurements34
Chinook Scale Samples 36
Chinook Scale Sampling by U.S. Observerson Japanese Motherships 36
Japanese Fishery in the Bering Sea 36
Mothership Fishery 36
Research Vessel Catch 39
Research Vessel "A" Net 44
Research Vessel "C" Net 44
SUMMARY 57
BIBLIOGRAPHY 58
APPENDIX 1 75
Table Page

1. Numbers of North American chinook salmon scale samples collected at FRI 3
2. Commercial catches of chinook salmon in thousands of fish, 1961-1980 6
3. Commercial catches of chinook salmon in thousands of fish, 1961-1981 7
4. Estimates ${ }^{1}$ of chinook salmon escapements (wild and hatchery), 1976-1980. (Fish in thousands) 9
5. Estimates of Bristol Bay chinook salmon runs (numbers of fish in thousands), 1961-81 14
6. Mean lengths of chinook salmon in the Nushagak catches (mid-eye to tail fork, mm) 18
7. Annual catches (in hundreds) of chinook salmon in the Nushagak District by age as estimated by a composite sample for each year, 1956-1965 19
8. Catches of chinook salmon (in hundreds) in the Nushagak District by sex and age, 1966-1981 20
9. Nushagak chinook salmon fishery statistics 21
10. Age compositions (\%) by sex of chinook salmon from U.S.S.R. in-river catch samples 24
11. Age composition (\%) of chinook salmon from U.S.S.R. in-river catch samples 25
12. Mean weights (kg) of chinook salmon from U.S.S.R. in-river catch samples 26
13. Mean lengths (tip of snout to tail fork, mm) of chinook salmon from U.S.S.R. in-river catch samples 27
14. Equations to convert chinook salmon length mea- surements between mid-eye to tail fork (ME-TF) and tip of snout to tail fork (TS-TF). Lengths in mm 28
15. Data format, codes, and explanation for the Fisheries Research Institute's multi-purpose scale digitizing program, SALMON 30
16. Alaska Department of Fish and Game Statewide Stock Separation Project's outline of criteria used to interpret scale growth zones 35
17. Region, location, age class, year, sample size, and $C P / M$ file name of digitized chinook salmon scale samples 37
18. Percent of CPUE by age class for the Japanese mothership chinook catch 40
19. Percent of CPUE by age class for the Japanese research vessel catch, tye A net 45
20. Percent of CPUE by age class for the Japanese research vessel catch, type C net 51
Fig. Page
21. Annual commercial catches of chinook salmon in the northern (top) and southern (bottom) regions of the North Pacific, 1961-80 8
22. Annual commercial catches of chinook salmon by 5-year periods beginning 1921-1925 and ending 1976-1980 10
23. Catches of chinook salmon by 5-year periods beginning 1961-1965 and ending 1976-1980 11
24. Annual commercial catches of chinook salmon by area and gear, 1960-1981 13
25. Annual catches of chinook salmon in the Nushagak District during the chinook season (left) and sockeye season (right) by ocean age and sex (males - open bar, females - solid bar), 1966-80 16
26. Plot of the mean lengths of chinook salmon (by age and sex) caught during the sockeye season (sockeye gear) on the mean lengths of chinook salmon caught by chinook gear, 1967-81 (exclud- ing 1974-75, 77 and 80) 17
27. Annual catches (commercial and subsistence) of chinook salmon from the Yukon and Kuskokwim Rivers and estimates of the runs (catch and escapement) to the Nushagak River 1952-81 22
28. Comparison of the header format of the Alaska Department of Fish and Game's (ADF\&G) flexible format digitizing program, SCALE 3, and the Fisheries Research Institute's (FRI) multi- purpose digitizing program, SALMON 33
29. Delineation of the geographical zones in the Bering Sea used to analyze the Japanese mother- ship chinook catch data, 1972-1980 38
30. Delineation of the geographical zones in the Bering Sea used to analyze the Japanese research vessel chinook catch data, 1972-1980 38
31. Histograms of average CPUE for the mothership fish- ery, 1972-1980, by major age-maturity categories 41
32. Hystograms of average CPUE for the mothership fish- ery, by month (top), by area in the western Bering Sea, by major age-maturity categories 42
33. Histograms of average CPUE for the mothership fish- ery, by area in the central Bering Sea and all data combined (bottom), by major age-maturity categories 43
34. Histograms of average CPUE for the research vessel (type A-net), 1972-1980, by major age-maturity categories 46
35. Histograms of average CPUE for the research vessel (type A-net), by month, by major age-maturity categories 47
36. H1stograms of average CPUE for the research vessel (type A-net), by area in the western Bering Sea, by major age-maturity categories 48
37. H1stograms of average CPUE for the research vessel (type A-net), by area in the central Bering Sea, by major age-maturity categories 49
38. Histograms of average CPUE for the research vessel (type A-net), by area in the eastern Bering Sea, and all data combined (bottom), by major age- maturity categories 50
39. Histograms of average CPUE for the research vessel (type C-net), 1972-1980, by major age-maturity categories 52
40. Histograms of average CPUE for the research vessel (type C-net), by month, by major age-maturity categories 53
41. H1stograms of average CPUE for the research vessel (type C-net), by area in the western Bering Sea, by major age-maturity categories 54
42. Histograms of average CPUE for the research vessel (type C-net), by area in the central Bering Sea, by major age-maturity categories 55
43. Histograms of average CPUE for the research vessel (type C-net), by area in the eastern Bering Sea and all data combined (bottom), by major age- maturity categories 56

ORIGINS OF CHINOOK SALMON IN THE AREA OF THE JAPANESE MOTHERSHIP SALMON FISHERY

Annual Report for October 1,1981 to June 30, 1982

INTRODUCTION

This was the first year of a 3-year study to determine the origins of stocks of chinook salmon caught by the Japanese mothership and research vessels in the Bering Sea and North Pacific Ocean. This. work is conducted concurrently with a study funded by the North Pacific Fisheries Management Council (NPFMC) to determine the stocks of chinook salmon incidentally caught in the foreign trawl fishery in the Alaska Fishery Conservation Zone (FCZ), and some of the information submitted to the NPFMC in Quarterly Reports (Rogers et al. 1982 a, b) will be included in this report.

The objectives of the first segment of the study were to: 1) collect and organize the acetate impressions of chinook scales and associated biological data from Asian and North American known origin chinook from 1975 to the present for the Fisheries Research Institute (FRI) and the Stock Separation Lab of Alaska Department of Fish and Game (ADF\&G). The standards will be determined from these known origin fish and used to analyze the unknowns from the mothership and foreign trawl fisheries; 2) identify the weak points in chinook scale sampling and recommend improvements in the sampling coverage for future years; 3) obtain and summarize information on North Pacific chinook populations, especially age compositions and abundance data from the different geographical areas; 4) coordinate methods of scale measurement and data collection with the ADF\&G Stock Separation Lab; 5) analyze the biological data collected from chinook caught in the $1972-1980$ research and commercial operations of the Japanese mothership fishery; and 6) review and summarize published and unpublished information on the origins and biology of chinook in the past and present mothership fishery area.

This report summarizes the work completed toward these objectives. Because funding was late and there was an unexpected level of requests from fishery agencies to have our personnel collect the scale impressions, work on these objectives will continue into the first part of the next funding period. Additional information will then be presented in our future reports (1983).

RESULTS

North American Chinook Scale Collection

We have completed the search for historical chinook scale collections and sent the explanation of the goals and needs of FRI's and

ADF\&G's separation studies, as well as the subsequent request for scales to the various agencies that have scale collections. At the beginning of this project, we assumed most of the scale impressions would be provided by the agencies, but, with the exception of Alaska and a few small samples from Washington, all other agencies requested that we send a person to review their scale collections to obtain the samples we needed and make the impressions for us and Alaska at their offices.

Additional acetate was ordered to make the needed impressions of the chinook scales and our first supplier provided us with an acetate substitute called PETG (although we ordered acetate) which bonded or laminated to the gummed cards in the heated press. Acetate was reordered through a different supplier and no lamination problem has occurred.

The approximate number of scale samples that has been collected is listed in Table l. This table was based on the numbers of fish scales in our files that were aged by the various agencies, but it does not reflect the numbers of regenerated scales that are not usable for scale pattern analysis.

The number of scales from stocks in Western Alaska is quite large; however, the frequency of regenerated scales is very high. Due to the importance of these stocks, and all of Alaskan stocks from known origins, we recommend that in future scale sampling, two scales be taken from each fish sampled. If one scale was taken from the preferred area on each side of the fish, this would increase the chances of obtaining a useful scale. We are also implementing this technique through the observer program to increase the numbers of usable, unknown scale samples and we will make a similar request to TINRO for the Russian samples, if they wish to send us impressions instead of scales.

The other weak point in the present scale collection is the lack of historical chinook samples from southeastern Alaska. At the present time we have not sent requests to the various southeastern $A D F \& G$ offices to locate these samples, but we will coordinate our efforts with the Stock Separation Lab to determine the best way to obtain these samples.

In this report we have included Appendix 1 which contains a listing of the scale samples we have at $F R I$, organized by river, card number, and date of sampling. Missing from Table 1 and Appendix 1 are the recently received scale samples from central Alaskan rivers. Also, the last areas to be sampled for the completion of the North American west coast chinook collection are the Columbia River and the coastal streams of Oregon. These scales are scheduled to be collected after the completion of this report.

Asian Chinook Scale Collection

Presently our Asian chinook scale samples are from two major rivers, the Kamchatka and Bol'shaya (Appendix 1). We have approximately 200 samples from each river from 1975, 1976, 1978, 1979, and 1980 at FRI.

Table 1. Numbers of North American chinook salmon scale samples collected at FRI.

Table 1. Numbers of North American chinook salmon scale samples collected at FRI - continued.

	1975	1976	1977	1978	1979	1980	1981
Southeastern Alaska							
Stikine River							
Little Tahltan \& Nakina Rivers	35	160	20	10	130	120	760
Alsek River							
Klukshu River		70	120	110	100	60	60
British Columbla							
Yakoun River				15	45	60	25
Nass River			25	40	70	140	80
Skeena River	100	160	90	130	180	120	140
Hella Coola		30	120	150	110	120	160
Robertson Creek Htchy.	230	120	160	70	80	80	70
Fraser River	460	370	380	370	390	350	430
Washington							
Quileute River			180	220	*	*	*
Quinault River	10	40	200	200	200	200	200
Queets River	70	80	200	200	200	200	200
Humptulips River	15	20	30	70	15	200	150
Chehalis River		20	50	200		200	160
Gray's Harbor	130	80				100	
Willapa Bay	170	230			70		160
Nooksack \& Samish Rivers	150	170	170	150	170	160	140
Skagit River	140	180	180			160	170
Stillaguamish \& Snohomish Rivers	110	70	50	170	150	160	160
Lake Washington Stocks	140	40	160				
Duwamish \& Green Rivers	140	150	150	90	80	180	140
Puyallup River						.	100
Hood Canal Stocks	120	170	220	150	160	170	140
California							
Klamath River					200	200	200
Sacramento River				70	200	200	200

* Denotes collection not complete

Abstract

Mr. Bruya attended a meeting at Friday Harbor on May 28 th and 29th, 1982, to discuss our stock separation study with Dr. Burgner (FRI) and Drs. Konovalov and Tumanov from Russia. The Russian scientists were questioned about the fact that we have chinook scale samples from only two river systems in Russia. They said there was one other major chi-nook-producing river in the Oliutorskii area (the Apuka River) which produces $5-7$ metric tons of chinook per year, but besides the Kamchatka area, no other major catch of chinook is reported from their commercial operations. A verbal agreement was given to our request for samples from the Oliutorskil area, as well as continued samples from the Bol'shaya and Kamchatka rivers for 1981, 1982, and 1983. They asked that a formal request be sent, describing what we would like to receive from them, in detail, including what biological information, number of scale samples, run size information, etc. They also requested we send them a supply of acetate with a description of our methodology so that they could do the pressings to our specifications and send us the acetate impressions. We have ordered 5,000 $2.5^{\prime \prime} \times 5^{\prime \prime}$ pieces of acetate to be cut for their use in Russia and are planning to send the formal request, acetate, and methodology to them via one of their vessels which will be leaving Seattle for Russia around July.

Abundance and Age

The regional and temporal distributions of chinook salmon abundance are important for the construction of scale standards since the probability that a fish from a particular stock (river system) is caught by the mothership fishery is likely to depend on the abundance, location, and migratory behavior of the stock. The annual abundance of a stock is the sum of the catch and escapement. Unfortunately, a high proportion of the world chinook salmon catch is not made near coastal spawning areas but rather in high seas gill-net or offshore troll fisheries, and most of the fish caught by these fisheries are immature (Tables 2 and 3; Fig. 1). Escapements for most chinook salmon stocks are either unknown or imprecisely known (Table 4); therefore, we must rely largely on catch statistics to estimate the relative abundances of the various stocks contributing to the mixed stocks fisheries.

Commercial catches of chinook salmon recently have declined in Oregon, southeastern Alaska, and central Alaska. (In the latter area, the decline is caused largely by severe restrictions on the Cook Inlet fishery since the 1960^{\prime} s.) Catches in California and Washington have changed little since 192l; however, catches in British Columbia have increased dramatically (Fig. 2). Based on commercial catches, it appears that British Columbia now produces the largest abundance of chinook salmon around the North Pacific, but this is unlikely because most of the British Columbia catch comes from troll fisheries that catch predominantly immature and maturing fish (Fig. 3).

Chinook salmon from southern regions tend to migrate north in their seaward migration and are distributed as far north and westward as the

Table 2. Commercial catches of chinook salmon in thousands of fish, 1961-1980.

Year	S.E. Alaska		British Columbia		Washington		Oregon		$\frac{\text { California }}{\text { Troll }}$
	Troll	Net	Troll	Net	Troll	Net*	Troll	Net	
1961	204	26	449	237	109	262	132	152	774
62	174	32	446	254	90	240	52	196	556
63	244	14	540	263	129	268	132	196	662
64	329	28	615	352	105	244	67	296	687
65	259	28	678	302	69	248	58	242	705
66	282	26	867	297	115	250	81	150	554
67	275	26	768	363	113	243	100	170	338
68	304	28	770	312	147	247	126	123	472
69	290	24	837	263	170	280	161	178	551
70	301	21	818	395	214	328	165	240	517
71	311	23	1270	323	252	313	103	212	434
72	243	44	1223	327	203	283	127	197	492
73	309	35	1091	334	317	367	363	295	816
74	322	25	1178	289	353	259	224	116	527
75	287	14	1103	310	274	407	225	166	579
76	231	11	1248	293	361	420	184	118	540
77	272	38	1111	386	267	420	340	157	563
78	375	14	1033	334	166	344	192	113	519
79	338	36	988	346	148	283	245	102	659
80	299	28	1006	236	133	360	209	82	575
81	259	-	-	-	-	-	-	-	-

*Includes Puget Sound troll catches, 1961-69.

Fig. 1. Anmual commercial catches of chinook salmon in the northern (top) and southern (bottom) regions of the North Pacific, 1961-80.

Abstract

Mr. Bruya attended a meeting at Friday Harbor on May 28th and 29th, 1982, to discuss our stock separation study with Dr. Burgner (FRI) and Drs. Konovalov and Tumanov from Russia. The Russian scientists were questioned about the fact that we have chinook scale samples from only two river systems in Russia. They said there was one other major chi-nook-producing river in the Oliutorskil area (the Apuka River) which produces $5-7$ metric tons of chinook per year, but besides the Kamchatka area, no other major catch of chinook is reported from their commercial operations. A verbal agreement was given to our request for samples from the Oliutorskii area, as well as continued samples from the Bol'shaya and Kamchatka rivers for 1981, 1982, and 1983. They asked that a formal request be sent, describing what we would like to receive from them, in detail, including what biological information, number of scale samples, run size information, etc. They also requested we send them a supply of acetate with a description of our methodology so that they could do the pressings to our specifications and send us the acetate impressions. We have ordered $5,0002.5^{\prime \prime} \times 5^{\prime \prime}$ pieces of acetate to be cut for their use in Russia and are planning to send the formal request, acetate, and methodology to them via one of their vessels which will be leaving Seattle for Russia around July.

Abundance and Age

The regional and temporal distributions of chinook salmon abundance are important for the construction of scale standards since the probability that a fish from a particular stock (river system) is caught by the mothership fishery is likely to depend on the abundance, location, and migratory behavior of the stock. The annual abundance of a stock is the sum of the catch and escapement. Unfortunately, a high proportion of the world chinook salmon catch is not made near coastal spawning areas but rather in high seas gill-net or offshore troll fisheries, and most of the fish caught by these fisheries are immature (Tables 2 and 3; Fig. 1). Escapements for most chinook salmon stocks are either unknown or 1mprecisely known (Table 4); therefore, we must rely largely on catch statistics to estimate the relative abundances of the various stocks contributing to the mixed stocks fisheries.

Commercial catches of chinook salmon recently have declined in Oregon, southeastern Alaska, and central Alaska. (In the latter area, the decline is caused largely by severe restrictions on the Cook Inlet fishery since the 1960's.) Catches in California and Washington have changed little since 1921; however, catches in British Columbia have increased dramatically (Fig. 2). Based on commercial catches, it appears that British Columbia now produces the largest abundance of chinook salmon around the North Pacific, but this is unlikely because most of the British Columbia catch comes from troll fisheries that catch predominantly immature and maturing fish (Fig. 3).

Chinook salmon from southern regions tend to migrate north in their seaward migration and are distributed as far north and westward as the

Table 2. Commercial catches of chinook salmon in thousands of fish, 1961-1980.

Year	S.E. Alaska		British Columbia		Washington		Oregon		$\frac{\text { California }}{\text { Troll }}$
	Troll	Net	Troll	Net	Troll	Net*	Troll	Net	
1961	204	26	449	237	109	262	132	152	774
62	174	32	446	254	90	240	52	196	556
63	244	14	540	263	129	268	132	196	662
64	329	28	615	352	105	244	67	296	687
65	259	28	678	302	69	248	58	242	705
66	282	26	867	297	115	250	81	150	554
67	275	26	768	363	113	243	100	170	338
68	304	28	770	312	147	247	126	123	472
69	290	24	837	263	170	280	161	178	551
70	301	21	818	395	214	328	165	240	517
71	311	23	1270	323	252	313	103	212	434
72	243	44	1223	327	203	283	127	197	492
73	309	35	1091	334	317	367	363	295	816
74	322	25	1178	289	353	259	224	116	527
75	287	14	1103	310	274	407	225	166	579
76	231	11	1248	293	361	420	184	118	540
77	272	38	1111	386	267	420	340	157	563
78	375	14	1033	334	166	344	192	113	519
79	338	36	988	346	148	283	245	102	659
80	299	28	1006	236	133	360	209	82	575
81	259	-	-	-	-	-	-	-	-

*Includes Puget Sound troll catches, 1961-69.

Table 4. Estimates ${ }^{1}$ of chinook salmon escapements (wild and hatchery), 1976-1980. (Fish in thousands.)

Year	California	OregonWashington	British Columbia	Southeast Alaska	Total
1976	$258 *$	593	164	18	1,033
1977	258*	660	224	30	1,172
1978	290	702	196	20	1,208
1979	269	581	177	25	1,052
1980	216	643	190*	39	1,088
Average 1976-80	258	636	190	26	1,111
Average catch (all gear)	671	1,361	1,719**	339	4,090
*Estimate **1976-1978 ${ }^{1}$ Data sour	Fredin (1980, INPFC (1979), Major et al. (1978), INPFC Statistical Yearbooks, PFMC proposed management plan for 1981, and personal communication with fisheries agencies (1978-1980 data).				

Fig. 2. Annual commercial catches of chinook salmon by 5-year periods beginning 1921-1925 and ending 1976-1980.

Fig. 3. Catches of chinook salmon by 5-year periods beginning 1961-1965 and ending 1976-1980. (Russian fishery is seine and trap.)
central Aleutians during their ocean residence. ${ }^{1}$ Then, while maturing, they tend to migrate south along the North American coast and are thus vulnerable to several offshore and some coastal fisheries (Major et al. 1978). The center of chinook salmon production in the southern region is in the Oregon-Washington area (to include the Columbia River) based on estimated escapements and the location of catches (Table 4). For the entire region, the annual abundance in recent years was about 5 million and the rate of exploitation was nearly 80%.

Initially we are assuming that chinook salmon caught in the Bering Sea are from either Asian (USSR) or western Alaskan stocks. The 19761980 average catch of chinook salmon in the northern region (including high seas catches, 38%) was about 1.3 million and, assuming a rate of exploitation of 65%, the average annual abundance was about 2 million. Inshore catches of USSR and western Alaskan chinook salmon have both increased in recent years, but the increase was been relatively greater for the USSR stocks. If the inshore catches reflect abundances of the stocks, then there may have been a significant change in the proportions of Asian and Alaskan stocks in the Bering Sea fisheries between the 1960^{\prime} s and the late 1970° s.

The annual fluctuations in the catches of chinook salmon generally have been much less than the fluctuations in the catches of other species of salmon; however, the high seas catch of chinook salmon in 1980 (prlmarily immature fish) coupled with the western Alaska catch in. 1981 (USSR catch in 1981 is presently unknown) provide a major exception. The annual commercial catches since 1960 are shown by area and gear in Fig. 4. The 1981 catches are unavailable except for Alaska. Catches in 1973 were exceptionally high in the southern region but exceptionally low in the northern region, and there is some indication of an inverse relationship between the abundances in the two regions. The 1980 catch on the high seas (including the trawl catch) was nearly 1 million and was thus higher than any recent catch of any inshore fishery with the exception of the British Columbia troll fishery.

One of our objectives is to estimate the annual abundances of western Alaskan chinook salmon stocks. In the Nushagak and Togiak Districts of Bristol Bay, annual aerial surveys have been conducted to estimate the escapements of chinook salmon. The estimates were obtained from the Annual Management Report, 1980, Bristol Bay Area (ADF\&G) and were made by Michael L. Nelson, Senior Area Management Biologist. Estimates of the annual Bristol Bay runs since 1966 were made from these data, and estimates for some earlier years were made by applying the average rates of exploitation to the catches (Table 5).
$1_{\text {Of }}$ the four inshore recoveries of chinook salmon tagged near Adak, one each was recovered from Kamchatka, Bristol Bay, southeastern Alaska, and the Columbia River.

Fig. 4. Annual commercial catches of chinook salmon by area and gear, 1960-1981.

Table 5. Estimates of Bristol Bay chinook salmon runs (numbers of fish in thousands), 1961-81.

Year	Nushagak District				Togiak District			$\begin{gathered} \text { Other } \\ \text { Districts, } \end{gathered}$		Total	
	Catch		$\begin{gathered} \text { Escape- } \\ \text { ment } \end{gathered}$	Run ${ }^{1}$	Catch	Escape-					
	Comm.	Subsist.				ment	Run ${ }^{1}$	Catch Run ${ }^{2}$		Catch	Run
1961	61	4	-	120	11	-	21	17	39	93	180
62	61	4	-	120	9	-	17	14	32	88	169
63	46	4	-	93	6	-	12	10	23	66	128
64	109	3	-	207	11	-	21	21	48	144	276
65	86	5	-	167	11	-	21	16	36.	118	224
66	58	4	40	102	10	-	19	10	21	82	142
67	96	4	65	165	14	10	24	8	16	122	205
68	78	7	70	155	14	16	30	12	29	111	214
69	81	7	35	123	21	8	29	24	39	133	191
70	87	7	50	144	29	15	44	24	44	147	232
71	83	4	-	117	28	20	48	13	23	128	188
72	46	4	25	75	21	14	35	4	8	75	118
73	30	7	35	72	11	11	23	3	7	51	102
74	32	8	70	110	12	15	27	4	13	56	150
75	22	7	70	99	8	11	19	3	12	40	130
76	61	7	100	168	30	14	44	6	14	104	226
77	85	5	65	155	36	20	56	12	24	138	235
78	119	6	130	255	57	40	97	17	39	199	391
79	155	9	95	259	31	20	51	17	33	212	343
80	64	12	141	217	13	12	25	20	59	109	301
81.	195	12	(150)	357	25	(21)	46	21	44	253	447

$1_{\text {Runs }}$ in 1961-65, 71 estimated from catch and average rate of exploitation
(1966-80) of 54%.
${ }^{2}$ Runs estimated from catch and the average rate of exploitation in Nushagak and Togiak minus 10%.

The runs in the Nushagak District (primarily the Nushagak River) have constituted about 71% of the chinook salmon runs to Bristol Bay since 1961 and about 73% of the large runs since 1978. Rates of exploitation have ranged from . 29 to .72 and over all years have been independent of the size of the run (only since 1975 is there a positive correlation between exploitation and size of run).

The most extensive data on chinook salmon from western Alaska come from the Nushagak District of Bristol Bay. Scale samples have been collected from the commercial catch (gillnets) each year since 1956. Sample sizes were relatively small in early years (50-400), but since 1967, the annual scale sample sizes have ranged from 500 to 2,500 fish. 2 The Nushagak chinook salmon run usually beings in early June, reaches a peak in mid- to late-June, and continues on through July. Prior to about June 20, the fishery uses large mesh (about $81 / 2^{\prime \prime}$) and after that, smaller mesh is used (about $53 / 8^{\prime \prime}$) because the more abundant sockeye and chum salmon runs begin then.

The change in mesh size is usually accompanied by a change in the age composition in the catch; particularly evident is an increase in the percentage of the small age . 2 fish (Fig. 5). With the change from large to small mesh, the mean lengths of age .4 and age .3 females tends to increase, whereas the mean lengths of age . 3 males decreases (Fig. 6). Annual mean lengths by sex for the major age groups are given in Table 6. The annual age compositions of the Nushagak catches are affected by the proportions of the catch made with chinook and sockeye gear (ocean age) and the person aging the scales (freshwater age). The age compositions for the 1956-1965 catches were estimated from a composite scale sample for each year (sexes combined) and applied to the year's catch to estimate the annual commercial catches by age (Table 7). For the years after 1966, the age compositions by sex for periods within each year were welghted by the period catches to obtain estimates of the annual catches by sex and age (Table 8). Finally, catch and effort statistics were compiled to estimate CPUE for the chinook and sockeye seasons since 1966 (Table 9).

Only catch statistics are available for the Kuskokwim and Yukon Rivers (Fig. 7). Since the 1960's, when commercial fishing became significant in the Kuskokwim area, the commercial catches of chinook salmon have been about half of the total catch. The Kuskokwim subsistence fishery for chinook salmon is the largest in Alaska. It is unlikely that the annual catches in the Kuskokwim reflect annual variation in the runs, nor the abundance of the runs relative to the Nushagak River, since the commercial fishery has been on almost a quota basis, and typically, only about 24 hours of fishing time has been allowed during the chinook season.

[^0]

Fig. 5. Anmual catches of chinook salmon in the Nushagak District during the chinook season (left) and sockeye season (right) by ocean age and sex (males - open bar, females - solid bar), 1966-80.

Fig. 6. Plot of the mean lengths of chinook salmon (by age and sex) caught during the sockeye season (sockeye gear) on the mean lengths of chinook salmon caught by chinook gear, 1967-81 (excluding 1974-75, 77 and 80).

Table 6. Mean lemgths of chinook salmon in the Nushagak catches (mid-eye to tail fork, mm).

Year	$\frac{\text { Age } 1.2}{M}$	Age 1.3			Age 1.4			Age 1.5		
		M	F	X	M	F	$\overline{\mathrm{X}}$	M	F	X
1967	547	711	800	721	865	885	877	952	916	926
68	559	742	799	749	862	880	873	948	927	932
69	596	753	808	772	870	883	879	948	914	922
70	590	771	822	788	894	893	893	955	923	930
71	557	741	802	754	858	898	881	933	906	913
72	543	715	762	731	861	870	867	904	924	917
73	521	756	793	767	849	860	855	917	903	909
74	573	754	789	760	838	891	869	910	928	923
75	581	769	776	772	872	870	871	936	905	912
76	558	743	787	762	881	884	883	983	911	954
77	581	769	812	780	878	867	872	880	921	910
78	583	745	803	754	881	893	888	962	937	947
79	588	747	817	782	924	915	919	1070	1003	1019
80	563	745	768	753	850	867	863	912	919	918
Means	567	749	796	760	870	883	878	944	923	931

Table 7. Annual catches (in hundreds) of chinook salmon in the Nushagak District by age as estimated by a composite sample for each year, 1956-1965.

Year	Age										Total
	0.2	1.2	0.3	1.3	2.3	0.4	1.4	2.4	0.5	1.5	
1956		179	26	187	4	10	159	4		4	573
57		93	24	242	4	50	347	2		30	792
58		65	14	225	4	29	488	4	3	41	873
59		44	12	185	4	7	256		4	32	544
60		33	30	343	7	26	357		2	16	814
61	2	64	6	142	4	29	352	4		6	609
62		42	2	91		9	417	7		44	612
63^{*}		210		60			140			50	460
64		546		196		10	293		5	36	1086
65		106	7	313	4		363			67	860

Table 8. Catches of chinook salmon (in hundreds) in the Nushagak District by sex and age, 1966-1981.

Year		Age														Total
	Sex	1.1	0.2	1.2	2.2	0.3	1.3	2.3	0.4	1.4	2.4	0.5	1.5	2.5	1.6	
1966	M			131		2	177			94	1		2			407
	F						20			148	1		6			175
67	M			208		9	229	2	8	162	+	1	13			632
	F			+		2	30	1	10	250	1	1	34		+	329
68	M	4		57	1	8	216	1	4	146		1	17		1	456
	F					+	29		11	229	1	2	52			324
69	M	+	1	190		1	103	1	2	114	3		9			424
	F			13		4	56		13	263	3	1	30		+	383
70	M			64		31	351	1	1	61	+	1	4			514
	F			1		15	173	1	8	145	+	1	16		1	361
71	M			45		1	146		8	185	1		1	+		387
	F			,			7		20	252	1		5			286
72	M		1	81		4	66	+	4	88			7		+	251
	F			2		1	34	+	6	149			14			206
73	M			6			52			95	1	1	11		1	167
	F						23	1	1	97	1	+	15			138
74	M			6			40			80	1		11	1	1	140
	F			1			8			116	+		54		2	181
75	M			3			66			21	1		4		1	96
	F			2			59	2		44	1		11			119
76	M			118	1		112	2	1	106	1		6			347
	F			8			86	2		158	+		4			258
77	M			22		3	213	7		226	3		7			481
	F			3			76			270	3		17			369
78	M	3		92		1	278	11		209	3		22			619
	F			12			49			320	24		33	3		441
79	M	9		533	10		205			288	11		10			1066
	F			3			50			376	24		30			483
80	M			22			284			42			4			352
	F						142			116			33			291
81	M			609	8		460	12		277	8		5			1379
	F			7			140	8		405	4		7			571

+Les s than 100.

Table 9. Nushagak chinook salmon fishery statistics.

Year	Chinook season					Sockeye season				
	Dates	Fishing days ${ }^{1}$	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { boats } 2 \end{gathered}$	Chinook catch	CPUE ${ }^{3}$	Dates ${ }^{4}$	$\begin{gathered} \text { Fish- } \\ \text { ing } \\ \text { days } \\ \hline \end{gathered}$	Average boats	Chinook catch	CPUE
1966	6/ 6-18	10	93	26,600	29	6/20-7/9	و	264	30,100	13
67	6/ 5-17	10	177	32,200	18	6/20-7/10	5.5	443	28,000	12
68	6/ 3-18	11	140	41,700	27	6/21-7/10	4.5	235	10,900	10
69	6/ 2-19	12	165	53,600	27	7/1-11	3	312	17,200	18
70	6/ 1-19	13	195	50,300	20	6/22-7/8	10.7	215	33,700	15
71	6/ 7-23	12	181	20,700	10	6/25-7/10	6	290	56,200	32
72	6/12-24	9	180	28,200	17	6/26-7/10	3	260	14,000	18
73	6/ 4-20	11	178	24,000	12	6/22-7/10	1.5	229	3,000	9
74	6/ 3-18	11	103	25,700	23	7/ 4-7	3	168	3,100	6
75	6/9-21	8	162	12,600	10	7/ 8-12	4	294	4,400	4
76	6/7-18	8	155	29,600	24	6/22-7/10	2.5	299	23,100	31
77	6/ 6-22	10.5	252	71,300	27	7/1-10	1	356	3,200	
78	6/ 5-16	9 .	250	74,000	33	6/20-7/8	6.5	374	22,900	9
79	6/ 4-15	9	365	72,000	22	6/19-7/10	16.5	(367)	59,000	10
80	6/ 2-23	9.5	371	56,900	16	7/ 2-10	8	360	2,700	1
81	6/1-17	10	(370)	78,300	21	6/19-7/10	18	(360)	94,500	15

$1_{\text {Number }}$ of days (24 hour periods) open to fishing during the dates indicated (excludes openings for the Igushik section only and dates open for fishing but no fishing took place because of a strike).
$2_{\text {Average number of drift gill net boats fishing (excludes set net effort) } 1500000}$ fathom gill nets or equivalent.
${ }^{3}$ Catch divided by days x boats.
4 Between the last date of the chinook season and the first date of the sockeye season there was no fishing. Last date for the sockeye season was chosen as 7/7-12 depending on the timing of the chinook run.

[^1]From the magnitude of the catches and its size, the Yukon River probably has the largest stock of chinook salmon in western Alaska, but the annual escapements and rates of exploitation are unknown. The larger catches in recent years probably reflect larger runs since large runs of all species, and in most areas, have been typical for western Alaska since 1978. We have not yet compiled age composition data for the Yukon or Kuskokwim River stocks.

In Russian rivers, mature chinook salmon start their upstream migration as soon as the ice is gone. Though this species is found in streams from the Anadyr River ($64^{\circ} 05^{\prime} \mathrm{N}$) in the north to the Amur River ($53^{\circ} \mathrm{N}$) in the south, there are only three major chinook rivers. These rivers, the Kamchatka, Bol'shaya and Apuka, produce the largest commercial catches of chinook in Russia. ${ }^{3}$ In the Kamchatka River, chinook enter between mid-May to September and peak during the second half of June. They enter the Bol'shaya River during the first of May through the end of July, and entrance timing on the Oliutorskii region (Apuka River) is from the second half of June to the second half of July (Atkinson 1981). Because of their entrance timing, most of these mature fish would be out of the present mothership fishing area by early spring.

Presently we have scale samples from two important chinook salmon rivers in the USSR which were received via the Japan Fishery Agency. The samples have been aged by two readers and we plan to make a third reading by a different person to determine the variability in aging. Preliminary age compositions from the first reader were calculated (Tables 10 and 11). Mean weights and lengths by sex and ocean age are presented in Tables 12 and 13. The USSR fisheries are believed to be non-selective (for age and size) seine and trap fisheries. The Kamchatka River samples from 1980 included both mid-eye to tall fork and tip of snout to tail fork measurements. Regressions were calculated from these data, as well as from some 1979 Nushagak catch samples to convert between the two length measurements (Table 14).

Scale Measurements and Data Management

Project personnel visited the ADF\&G Stock Separation Lab in Anchorage on December 16-18 to receive Alaska scale samples and to consult with lab personnel regarding scale characters to be examined, microcomputer software required, scale measurement procedures, and criteria for interpreting chinook scale growth zones. The main objective of this coordination was to standardize techniques so that exchanged data will be compatible. The following sections describe the results of this coordination effort and the materials and methods that will be used in FY 82-83.

Scale Characters to be Examined

The ADF\&G lab personnel at Anchorage have decided to measure the following growth zones on the scales of chinook salmon:

[^2]Table 10. Age compositions (\%) by sex of chinook salmon from U.S.S.R. in-river catch samples.

Year	River	Males								Females						
		n	1.2	1.3	1.4	1.5	2.2	2.3	2.4	n	1.2	1.3	1.4	1.5	2.3	2.4
1975	Kamchatka	103	25.2	52.4	20.4	0	0	1.0	1.0	53	0	50.9	45.3	0	0	3.8
	Bolshaya	77	16.9	57.1	20.8	5.2	0	0	0	87	0	42.5	52.9	3.4	1.2	0
1976	Kamchatka	92	8.7	78.3	10.9	0	0	2.1	0	85	0	64.7	29.4	0	5.9	0
	Bolshaya	117	40.2	32.5	26.5	0	. 8	0	0	62	1.6	25.8	62.9	6.5	1.6	1.6
1978	Kamchatka	106	17.9	50.0	24.5	1.0	0	6.6	0	61	0	31.1	65.6	0	0	3.3
	Bolshaya	77	5.2	45.5	44.2	3.9	0	0	1.2	69	0	8.7	84.1	4.3	0	2.9
1979	Kamchatka	77	7.8	64.9	23.4	1.3	0	2.6	0	49	0	36.7	63.3	0	0	0
	Bolshaya	92	3.3	50.0	45.7	1.0	0	0	0	79	0	19.0	77.2	3.8	0	0
1980	Kamchatka	90	28.9	47.8	21.1	0	2.2	0	0	68	0	29.4	64.7	0	1.5	4.4
	Bolshaya	65	23.1	10.8	61.5	0	0	1.5	3.1	63	0	6.3	92.1	0	0	1.6
Means	Kamchatka		17.7	58.7	20.1	0.5	. 4	2.5	.2		0	42.6	53.7	0	1.5	2.3
	Bolshaya		17.7	39.2	39.7	2.0	. 2	. 3	. 9		. 3	20.5	73.8	3.6	. 6	1.2

Table 11. Age composition (\%) of chinook salmon from U.S.S.R. in-river catch samples.

Year	R1ver	Age								
		1.2	1.3	1.4	1.5	2.2	2.3	2.4	$\begin{gathered} \text { Aged } \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { Tot al } \\ \mathrm{n} \\ \hline \end{gathered}$
1975	Kamchatka	15.5	52.0	30.0	0	0	0.5	1.5	156	200
	Bolshaya	8.5	50.0	37.0	4.0	0	0.5	0	164	200
1976	Kamchatka	4.5	71.5	20.0	0	0	4.0	0	177	200
	Bolshaya	26.6	30.3	39.4	2.1	0.5	0.5	0.5	179	188
1978	Kamchatka	11.4	43.1	39.5	0.6	0	4.2	1.2	167	199
	Bolshaya	2.7	28.1	63.0	4.1	0	0	2.1	146	149
1979	Kamchatka	4.7	54.0	39.3	0.7	0	1.3	0	126	150
	Bolshaya	1.5	36.0	60.5	2.0	0	0	0	171	200
1980	Kamchatka	16.5	39.9	39.9	0	1.3	. 6	1.8	158	197
	Bolshaya	11.0	8.5	77.5	0	0	1.0	2.0	128	200
Means	Kamehatka	10.5	52.1	33.7	0.3	0.3	2.1	0.9		
	Bolshaya	10.1	30.6	55.5	2.4	0.1	. 4	0.9		

Table 12. Mean weights (kg) of chinook salmon from U.S.S.R. in-river catch samples.

Year	River	Males					Females					Al1
		.2	.3	. 4	.5	A11*	. 2	. 3	. 4	. 5	A11*	
1975	Kamchatka	3.37	8.45	13.56	-	8.35	-	9.83	12.83	-	10.85	9.33
	Bolshaya	3.62	8.06	12.81	18.30	8.78	\cdots	10.63	12.78	16.03	12.00	10.41
1976	Kamchatka	3.98	9.60	11.28	-	9.33	-	9.48	12.02	-	10.32	9.81
	Bolshaya	3.90	7.24	12.13	-	7.52	6.30	10.62	12.66	14.65	12.19	9.13
1978	Kamchatka	3.24	6.64	10.33	13.10	7.00	-	8.59	9.71	-	9.18	7.84
	Bolshaya	4.20	7.20	14.97	14.27	10.88	-	10.77	13.02	15.67	13.00	11.89
1979	Kamchatka	4.07	7.10	10.83	15.40	8.08	-	8.80	11.10	-	10.54	9.06
	Bolshaya	3.30	7.74	11.66	12.60	9.71	-	10.21	13.07	15.90	12.73	11.10
1980	Kamchatka	2.87	6.25	10.74	-	6.24	-	9.45	11.02	-	10.46	8.10
	Bolshaya	3.57	6.60	13.22	-	9.97	-	9.68	13.08	-	13.14	11.60
Means	Kamchatka	3.51	7.61	11.35	14.25	7.80	-	9.23	11.34	-	10.27	8.83
	Bolshaya	3.72	7.37	12.96	15.06	9.37	-	10.38	12.92	15.56	12.61	10.83

[^3]Table 13. Mean lengths (tip of snout to tail fork, mm) of chinook salmon from U.S.S.R. in-river catch samples.

Year	River	Males					Females					A11
		. 2	. 3	. 4	. 5	A11*	. 2	. 3	. 4	. 5	A11*	
1975	Kamchatka	679	839	991	-	834	-	876	963	-	907	862
	Bolshaya	691	880	1013	1150	886		955	1022	1067	998	943
1976	Kamehatka	623	873	922	-	858	-	867	953	-	894	875
	Bolshaya	638	798	952	-	784	760	903	977	1035	959	845
1978	Kamchatka	606	782	918	980	786	-	847	888	-	872	819
	Bolshaya	654	804	1031	1030	908	-	916	982	1029	980	942
1979	Kamchatka	637	811	928	1050	835	-	859	933	-	908	864
	Bolshaya	660	858	980	1080	916	-	929	1017	1090	1008	958
1980	Kamchatka	635	812	959	-	791	-	926	983	-	963	867
	Bolshaya	658	838	1040	-	941	-	920	1012	-	1013	978
Means	Kamchatka	636	823	944	1015	821	-	875	944	-	909	857
	Bolshaya	660	836	1003	1087	887	-	925	1002	1055	992	933

*Including unaged fish.

Table 14. $\overrightarrow{\mathrm{c} q u a t i o n s ~ t o ~ c o n v e r t ~ c h i n o o k ~ s a l m o n ~ l e n g t h ~}$ measurements between mid-eye to tall fork (ME-TF) and tip of snout to tail fork (TS-TF). Lengths in mm .
A. Samples from 1979 Nushagak catch

1. Males $n=152$ Ranges:
ME-TF 412-1094
TS-TF 437-1205
```
ME-TF = 32.3 + .877 (TS-TF)
Sy.x = 7.1
```

$\mathrm{TS}-\mathrm{TF}=34.4+1.137(\mathrm{ME}-\mathrm{TF})$
Sy.x $=8.1$
2. Females $n=76$
$\mathrm{ME}=\mathrm{TF}=13.7+.940(\mathrm{TS}-\mathrm{TF})$
Ranges:
Sy. $x=10.4$
ME-TF 618-1055
TS-TF 678-1131

$$
\begin{aligned}
& T S-T F=35.9+1.039(M E-T F) \\
& S y \cdot x=10.9
\end{aligned}
$$

B. Samples from 1980 Kamchatka River catch

1. $\frac{\text { Males }}{\text { Ranges : }}=110$

ME-TF 520-1065
TS-TF 575-1 185

$$
\begin{aligned}
& \mathrm{ME}-\mathrm{TF}=21.6+.879(\mathrm{TS}-\mathrm{TF}) \\
& \mathrm{Sy} \cdot \mathrm{x}=4.9 \\
& \mathrm{TS}-\mathrm{TF}=-23.5+1.137(\mathrm{ME}-\mathrm{TF}) \\
& \mathrm{Sy} \cdot \mathrm{x}=5.6
\end{aligned}
$$

2. | Females $\mathrm{n}=87$ | $\mathrm{ME}-\mathrm{TF}=13.0+.899$ (TS-TF) |
| ---: | :--- |
| Ranges $: ~$ | $\mathrm{Sy} \cdot \mathrm{x}=5.0$ |
| $\mathrm{ME}-\mathrm{TF} 710-1025$ | |
| $\mathrm{TS}-\mathrm{TF} 780-1125$ | $\mathrm{TS}-\mathrm{TF}=-7.2+1.104(\mathrm{ME}-\mathrm{TF})$ |
| | |
| | |

Zone $1=\begin{aligned} & \text { center of focus through last circulus in the freshwater } \\ & \text { annulus. }\end{aligned}$
Zone 2 = first circulus in freshwater plus growth zone through last freshwater circulus.

Zone 3 = first ocean circulus through last circulus in first ocean annulus.

Within these zones, measurements are made to the outer edge of every circulus. After Zone 3, they measure the total distance to each successive readable marine year.

Because of the smaller size of the digitizing tablets at FRI (35 x 35 cm of usable area), the second marine year is often the last readable year on chinook scales magnified at 100 x . Therefore, we have decided not to measure past the second marine year on the scale. In a few cases, the second marine year will not fit completely onto our digitizing screen. Therefore, we decided to measure the distance to each readable circulus in this zone (Zone 4). The number of circuli in Zone 4 (if any) that could not be digitized will also be noted. Zones 1-3 will be the same as those defined by ADF\&G.

Microcomputer Software

During our visit to the Anchorage Lab, we were provided with a copy of their FORTRAN digitizing program (SCALE 3). However, because there are differences between operating systems, this program would not work on our computer. Therefore, a new digitizing program (SALMON) was constructed by Mr. Colin Harris and Mr. Robert Walker.

SALMON is a general purpose scale digitizing program patterned after ADF\&G's flexible format program, SCALE 3. SALMON can be used for any species and at different magnifications. The function of the numbered digitizer keys (1-9) are undefined and can be assigned to nine different growth zones. The program has two different formats, a detailed format that stores distances between each pair of circuli and an alternative format that stores only circulus count and total zone width for nine possible zones. The Chinook Origins Project wlll use the detailed format.

The detailed data format, codes, and explanations for the multipurpose scale digitizing program are shown in Table 15. On the first record for a fish, the first 40 columns contain header information, including sample identifier and biological data. The last 40 columns are for 10 fields of four columns. The first position in the field is the key or zone code, and the second is distance in units of inches (. 001 inches at 100x) from the previous point. The points are located at the intersections of circuli with the measurement axis of the scale. On subsequent (up to 8) records, there are 20 (key, distance) fields. The last record for each fish is blank filled after the last data point.

Table 15. Data format, codes, and explanation for the Fisheries Research Institute's multi-purpose scale digitizing program, SALMON.

Table 15. Data format, codes, and explanation for the Fisheries Research Institute's multi-purpose scale digitizing program, SALMON - continued.

IDENTIFIER	COLUMN(S)	EXPLANATION
Length type code	28	ADF\&G length codes are used: 1 = Snout to fork of tail 2 = Mid-eye to fork of tail $3=$ Orbit to fork of tail 4 = Mid-eye to hypural plate 5 = Orbit to hypural plate
Length	29-32	Fish body length in mm
Age	33-34	Koo system: Col. 33 = number of freshwater annuli Col. $34=$ number of ocean annuli
Supplementary Age Code	35	Codes used to describe appearance of edge of scale and to clarify interpretation and age designation by indidvidual readers: $P=$ Plus growth is present at the edge of the scale, and one year was added to ocean age of fish. $C=A$ check is present at the edge of the scale, and this check was included in the ocean age of the fish. $G=$ Plus growth is present at the edge of the scale, and one year was not added to the ocean age of the fish. $A=A$ check is present at the edge of the scale, and this check was not included in the ocean age of the fish. Other codes may be established.
Scale type	36	INPFC codes that designate position on body sampled: $A=$ preferred area $B=$ adjacent to preferred area $C=$ other or Codes that indicate the condition or appearance of a scale sample: $\mathrm{R}=$ scale may be slightly regenerated $X=$ scale slightly damaged Other codes may be established.
Reader	37	A number identifying the individual who digitized the scale.
No. of data pairs (No. of circuli)	38-40	Up to 210 data pairs for a total of 11 records of 80 columns each.
Key		Each zone (up to 9 zones) is designated by a different cursor key (Keys 1-9). Chinook key code: $1=$ Focus to outer edge of last circulus in first freshwater annulus. $2=$ Outer edge of first circulus in freshwater plus growth zone to outer edge of last freshwater circulus. $3=$ Outer edge of first ocean circulus in first ocean year to outer edge of last circulus in first ocean annulus. $4=$ Outer edge of first circulus in second ocean year to outer edge of last circulus in second ocean annulus.
Incremental distance	42-44	Incremental distance between each successive pair of circuli in units of .001 inches at l00x.
Key	77	Same as above.
Incremental distance	78-80	Same as above.

(Up to 10 subsequent records have 20 fields of 4 for data (key, distance) pairs.)

The header format of FRI's SALMON is not identical to the header format of ADF\&G's SCALE 3, but it contains all of the same information (Fig. 8). Several additional identifiers were included in the header format of SALMON. A sample number (scale card number) and a fish number were included to allow identification of which scale on a card was digitized. One column was reserved for a supplementary age code, and is currently being used to describe the appearance of the edge of the scale and to clarify interpretation and age designation by individual readers. A column for ADF\&G length type codes was included; and a column for a scale type code was included to designate position on the body sampled or to indicate the condition or appearance of a scale sample (Table 15).

Codes for various identifiers will also vary somewhat between the two programs. ADF\&G district, subdistrict, stream, and location codes will be used when digitizing Alaskan samples; however, new codes will be established for standards from non-Alaskan areas. To save space, International North Pacific Salmon Fisheries Commission (INPFC) codes will be used to designate species, sex and maturity (Table 15). Age will be designated by the Koo system (European method, Koo 1962).

Scale Measurement Procedures

A chinook scale file will consist of samples of one age class from a particular sample location in the same year. The scale files are named with a three-letter abbreviation for the river, a two-number code designating the age class, and a two-number code designating the year that the sample was collected. For example, YUK1375.DAT is the CP/M file name for age 1.3 chinook sampled in the Yukon in 1975.

The scales will be rear-projected onto the digitizing surface at a 100x magnification, and the system will be calibrated periodically to verify precision.

After a scale of the correct age is chosen from the age-weightlength form (AWL), the reader will examine the scale to determine if he agrees with the age designation and to determine if the scale can be digitized. Scales that are regenerated, damaged, resorbed, dirty, or those with bad fmpressions will not be used unless there are not enough scales to complete the number needed for a standard sample. If a scale that is slightly regenerated or damaged is used, this will be coded in column 36 of the header information (Table 15). If the reader does not agree with the age on the AWL form, the scale will not be digitized and the reader will note his age determination on the AWL form. When a sample consists of scales from more than one date, scale samples will be distributed evenly among the AWL's included. An attempt will also be made to distribute the samples evenly among the sexes, although this will not be possible for age classes or samples where one sex predominates.

When a scale has been chosen for digitizing, the image is aligned on the digitizing screen so that the measurement axis (the perpendicular to the posterior edge of the sculptured field) bisects the focus of the scale. Header information is filled out on the form displayed on the

Fig. 8. Comparison of the header format of the Alaska Department of Fish and Game's (ADF\&G) flexible format digitizing program, SCALE3, and the Fisheries Research Institute's (FRI) multipurpose digitizing program, SALMON.

ADF\&G SCALE 3:

FRI SALMON:

CRT screen. The growth zones are marked on the scale image with a water soluble overhead projection pen; and the digitizer keys are depressed to establish the focus (key 0) and to measure to the outer edge of each circulus in the four growth zones (keys 1-4). The digitized data are displayed on the CRT, and if correct, is saved on the data diskette. After the scale has been measured, a check mark is made on the AWL to show that the scale has been digitized.

Fisheries Research Institute readers using these scale measurement procedures have been able to digitize an average of 10 chinook scales per hour.

Raw scale data will be stored on magnetic media and will be provided to ADF\&G upon request.

Criteria for Interpreting Chinook Scale Growth Zones

In general, age determinations and interpretation of growth zones on chinook scales will be made by the well-known techniques for salmon scales described by Clutter and Whitesel (1956) and Major et al. (1972). We have also gained a considerable amount of experience and insight into techniques and problems specifically associated with chinook salmon scales by reviewing historical and recent literature on chinook salmon scales (Gilbert 1912; Fraser 1917; Rich 1920, 1925; Snyder 1922; Rich and Holmes 1928; Mottley 1929; Pritchard 1940; Koo and Isarankura 1967; Reimers 1973; Schluchter and Lichatowich 1977; Tutty and Yole 1978).

Fisheries Research Institute scale readers are attempting to use the same criteria for interpreting chinook scale growth zones that are used by the ADF\&G Stock Separation Lab. The only criterion that we are somewhat hesitant to use is identifying the end of the freshwater zone by a change in direction of circuli "tails" (3.c, Table 16). Welander's (1940) study of the development of chinook salmon scales showed that at approximately 80 mm standard length, the epidermis begins to fold in under the scale, cutting off direct contact of the scale with the dermis. The result is that no circuli are formed in the posterior field. If this results in the apperance of a change in the direction of circuli "tails," then this criterion may show only that the fish has reached a particular size, rather than that the fish has left freshwater.

During our December visit to Anchorage, we met with the Lab's chinook scale reader, Ms. Debbie Hicks, and spent one day with her examining scales, observing measurement techniques, and discussing criteria for interpreting chinook scale growth zones. In addition, Ms. Hicks has provided us with photographs of chinook scales with marks placed at her interpretations of the boundaries of growth zones. After examining these photographs, we think that the only major source of variability in interpretation may arise when defining the end of freshwater growth. Many chinook scales have a gradual increase in thickness and spacing of circuli after the freshwater annulus or have one or more bands of circuli of thickness and spacing intermediate between typical freshwater or ocean

Table 16. Alaska Department of Fish and Game Statewide Stock Separation Project's outline of criteria used to interpret scale growth zones.

A. Freshwater Zone

1. Focus
a. Center of circle or elipse defined by innermost recognizable circuli.
2. First freshwater winter check.
a. Decrease in circuli spacing
b. Breakage and inter-braiding of circuli
c. Thinner circuli
d. Pinching together of circuli at their ends or "tails"
3. End of freshwater zone
a. Sudden increase in circuli spacing
b. Sudden increase in circuli thickness
c. Change in direction of circuli "tails"
B. Ocean Zone
4. Marine winter checks
a. Closer spacing of circuli
b. Thinner circuli
c. Increase in breakage and braiding of circuli (especially at beginning and end of checks)
d. Pinching together of circuli or sudden change in direction of circuli "tails"
thickness and spacing. Because of these characters, delimiting the end of freshwater growth is often very subjective, and, because there is variability in these characters between fish, it may even be difficult for individual readers to remain consistent in their interpretations. To avoid these inconsistencies in interpretation, measurements coded as zone 2 (freshwater plus growth zone) could be combined with zone 3 measurements (first ocean zone). This zone would represent the entire year in which the fish first emigrated to the ocean, and would include measurements from the outer edge of the first circulus after the freshwater annulus (from the focus in the case of age 0 . chinook) through the last circulus in the first ocean annulus.

Chinook Scale Samples

We have only recently begun digitizing chinook scales, and so relatively few samples are available. These are listed in Table 17. The number of scales from a particular location, age class, and year needed to create a regional standard will vary, depending on estimates of abundance. However, for the present, we are collecting data on up to 100 scales for each major stream, age class, and year (1975 - present). Because ages 1.3 and 1.4 appear to be the predominant age classes of returning adults in Asian and Alaskan samples, our initial data collection will be limited primarily to fish of those age classes.

Chinook Scale Sampling by U.S. Observers on Japanese Motherships
Because of personnel time and budget restrictions on the FRI High Seas Salmon Project, the Chinook Origins Project provided for chinook scale sampling by U.S. observers on Japanese motherships during the 1982 season. A new computer-coded data form was designed; and observers were provided with data forms printed on waterproof paper, gummed scale cards, forceps, and metal scale card holders. Scale sampling instructions to observers were similar to those given in 1981 except that observers were requested to sample two scales per fish instead of one.

Japanese Fishery in the Bering Sea

The Japanese high seas fishery has been in operation since 1952 and the changes in the areas fished have previously been described by Rogers (1981b). The catch and effort data we will discuss in this section concerns the fishery and areas fished in the Bering Sea from 1972 to 1980 and has been supplied by the Fishery Agency of Japan (1981a).

Mothership Fishery

The area fished by the mothership fleet has changed from 1972 to 1980. To account for this change in areas and to provide us with larger sample sizes, we divided the fishing area into zones shown by Fig. 9. We analyzed the chinook fishery from each zone over the years and months that fishing occurred.

Table 17. Region, location, age class, year, sample size, and $C P / M$ file name of digitized chinook salmon scale samples.

REGION	LOCATION	AGE CLASS	YEAR SAMPLED	SAMPLE SIZE*	CP/M FILE NAME
Asia	Bolshaya R.	1.3	1980	22	BOL1380.DAT
Asia	Bolshaya R.	1.4	1980	100	BOL1480.DAT
Asia	Kamchatka R.	1.3	1980	59	KAM1380.DAT
Asia	Kamchatka R.	1.4	1980	69	KAM1480.DAT
Western Alaska	Nushagak	1.3	1980	100	NUS1380.DAT
Western Alaska	Nushagak	1.4	1980	66	NUS1480.DAT
Western Alaska Western Alaska	Yukon	1.3	1980	100	Yuki380.DAT

*When sample size is less than 100 , all readable scales for this location, age class, and year were digitized.

Fig. 9. Delineation of the geographical zones in the Bering Sea used to analyze the Japanese mothership chinook catch data, 1972-1980.

Fig. 10. Delineation of the geographical zones in the Bering Sea used to analyze the Japanese research vessel chinook catch data, 1972-1980.

Though the age and maturity data for the mothership fishery from 1972 to 1980 were provided by the Fishery Japan Agency (1981a), the catch and effort data were obtained from statistical yearbooks and other INPFC documents (Gunstrom 1975; Forrester 1975, 1977, 1978, 1979, 1981a and b; Fishery Agency of Japan 1980 and 1981c).

The numbers of fish of each particular age class-maturity category (e.g. 1.1 immature, 1.2 immature) for the $2^{0} \times 5^{0}$ areas and $1^{\circ} \times 1^{\circ}$ areas reported in the data sources were calculated from the proportion of fish of that particular age class-maturity classification x the total chinook caught in the same area and time period and summed to obtain the numbers of those fish for the eight zones (Fig. 9). The effort (number of tans fished) was similarly summed and the catch per unit effort (CPUE) was calculated by dividing the numbers of fish of each category by the accumulated effort x 1,000 .

The percent of the total CPUE $x 1,000$ for fish from the major agematurity categories is presented in Fable 18. These results show the mothership catch is primarily composed of 1.2 immature chinook for all areas fished during each month and year fishing occurred, with the exception of area 2 N . This zone, which is next to the Kamchatka coast, was fished with a relatively low pressure, 183,000 tans, with a resulting catch of 5,000 fish. This difference may or may not be representative of the zone due to the small numbers of fish (24) that were aged from the catches collected in the four months over the three years that fishing occurred.

Immature 1.3 fish were the next major age component of the mothership catch followed by 1.2 mature fish.

The other category which showed a major difference from the other age compositions in Table 18 was that 1.2 mature fish comprised 30% of the CPUE during May. The supposition that mature fish are in the Bering Sea at this time of year is again suspect due to the small sample of fish aged (18), small area fished (8 N and 8 S), small catch (650 fish from 76,000 tans), and that the May fishery only occurred in one year (1974).

Figures 11 to 13 depict the ranges of CPUE for these different age classes. The dramatic rise in the chinook catch is reflected in the CPUE data from 1979 and 1980. The CPUE differences between the catch of 1.2 immature chinook and the other age categories is clearly shown by these figures.

Research Vessel Catch

The CPUE data in the research vessel age class-catch as provided by the Fishery Agency of Japan (1981a) was used to analyze the research vessels catches. The CPUE data per age class for the chinook catch were added for each category and divided by the number of times fishing occurred in that category to determine the average CPUE.

Table 18. Percent of CPUE by age class for the Japanese mothership chinook catch.

	$\begin{gathered} \text { \% CPUE } \\ 1.2 \\ \text { Immature } \end{gathered}$	$\begin{gathered} \% \text { CPUE } \\ 1.3 \\ \text { Immature } \\ \hline \end{gathered}$	$\begin{gathered} \% \text { CPUE } \\ 1.2 \\ \text { Mature } \\ \hline \end{gathered}$	\% CPUE All other age classes mature and immature	$\begin{gathered} \text { Total } \\ \text { CPUE } \\ \times \quad 1000) \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Catch } \\ \text { (\#'s fish) } \end{gathered}$
Years						
1972	62.66	33.20	2.67	1.47	83.78	181,396
1973	52.83	29.88	10.19	7.10	21.67	19,944
1974	91.35	3.20	3.43	2.02	117.00	210,506
1975	89.39	2.40	7.33	0.88	81.48	101,729
1976	86.10	6.06	2.90	4.94	62.10	91,272
1977	80.09	10.66	7.90	1.35	39.18	52,526
1978	91.16	6.77	1.66	5.82	42.31	8,388
1979	97.64	1.92	0.22	0.22	187.44	67,950
1980	87.85	10.89	0.36	0.90	650.55	412,716
Months						
May	70.88		28.77	0.35	8.54	652
June	77.45	14.47	5.92	2.16	51.30	174,613
July	88.24	8.97	1.21	1.58	145.87	971,112
Areas						
Western Bering Sea						
2	22.44	49.02	10.92	17.62	28.11	5,115
4N	71.89	8.92	14.47	4.72	37.55	39,032
6N	85.14	6.58	4.16	4.12	86.15	73,380
6 S	86.24	5.90	5.79	2.07	71.55	32,039
Central Bering Sea						
8N	84.80	13.68	0.64	0.88	170.10	394,110
8S	84.12	10.57	3.11	2.20	18.89	27,765
10N	91.63	6.94	0.37	1.06	157.95	484,128
10S	84.13	11.08	3.79	1.00	119.23	89,808
All data	85.07	10.54	2.64	1.75	113.08	1,146,377

Fig. 11. Histograms of average CPUE for the mothership fishery, 1972-1980, by major age-maturity categories.

Fig. 13. Histograms of average CPUE for the mothership fishery, by area in the central Bering Sea and all data combined (bottom), by major age-maturity categories.

Fig. 12. Histograms of average CPUE for the mothership fishery, by month (top), by area in the western Bering Sea, by major age-maturity categories.

The research vessels did not have the same area limitations as the mothership fishery. To analyze these data, we used similar zones to those used in the mothership fishery analysis and these zones are depicted in Fig. 10.

The research vessels use two different net types. Type " A " net is basically the same as the mothership net, mesh size of 121 mm and 130 mm . Type "C" net is a variable mesh net with 10 mesh sizes of $48,55,63,72$, 82, $93,106,121,138$, and 158 mm (Ito and Takagi 1981), and catches from this net are different than those from "A" net. We will discuss the catch from "A" net first, due to its similarity to the mothership catch, and then discuss the results from the " C " net catches.

Research Vessel "A" Net
The percent of CPUE by age class for the Japanese research vessel "A" net catch is given in Table 19. The shifts in the percent of 1.3 immature fish as shown by the mothership data (yearly range 1.92% to $33.20 \% \bar{x}=10.54 \%$) are shown to a greater degree in the research vessels catch (yearly range 0.22% to $53.82 \% \mathrm{x}=11.12 \%$) with a greater than average catch of 1.3 fish occurring in the central Bering Sea zones of 8 N and 8 S , for both the research vessel " A " net and the mothership catches.

Figs. 14 to 18 depict the CPUE for these different age classes. The increase in chinook catch, as in the mothership fishery, for the years 1979 to 1980 are shown by these histograms.

Research Vessel "C" Net
The percent of CPUE by age class for the Japanese research vessel "C" net is given in Table 20. The difference in age classes caught by the " C " net versus the " A " net is due to the catch of 1.1 fish (2.49% of total CPUE for reserach vessel "A" net versus 49.02% of total CPUE for research vessel "C" net). The varlation between immature age classes is more pronounced with the " C " net. catches than the " A " net catches. The catch is mainly composed of 1.1 immature chinook (5 out of 9 years) and 1.2 immature chinook are the second largest catch (major composition of catch 3 out of 9 years). The catch of mature 1.2 chinook was small for all years, months, and areas except for zone 16 S , which had a 100% mature catch ($66.67 \% 1.1$ mature and $33.33 \% 1.2$ mature).

The research vessels fish further east than the mothership boats, and the catches in the eastern Bering Sea appear to be different. They are reporting a catch of primarily 1.3 fish, and both the catches from " A " net and " C " nets concur.

Figures 19 to 23 depict the CPUE for the different major age classes. These histograms show the increase in the 1.2 immature fish for 1979 and 1980, which was the major composition of the " A " net catches in those years. However, the " C " net catches show a higher total CPUE in 1979

Table 19. Percent of CPUE by age class for the Japanese research vessel catch, type A net.

Category		Immature \%			$\begin{gathered} \begin{array}{c} \text { Mature } \\ (\%) \end{array} \\ \hline 1.2 \\ \hline \end{gathered}$	Others$(\%)^{1}$	Number of days(n)	Average$\text { CPUE }{ }^{2}$
		1.1	1.2	1.3				
Total		2.49	83.51	11.12	0.76	2.12	650	36.29
	1972	0.00	58.91	28.84	2.72	9.53	111	13.90
	1973	0.00	36.05	53.82	2.82	7.31	99	6.08
	1974	0.00	86.69	6.13	3.03	4.15	96	15.81
	1975	0.97	87.26	8.18	0.95	2.64	108	45.86
Year	1976	0.00	68.00	18.67	6.67	6.66	116	0.65
	1977	0.00	71.77	27.31	0.42	0.50	44	54.09
	1978	10.19	82.05	5.47	0.00	2.29	30	94.53
	1979	5.13	94.14	0.22	0.00	0.51	26	172.46
	1980	0.40	89.04	10.12	0.23	0.21	20	259.95
	May	0.00	90.16	0.00	0.00	9.84	7	17.43
	June	0.00	75.55	18.65	2.23	3.58	232	23.02
Month	July	3.18	85.80	9.22	0.32	1.48	298	57.01
	August	4.22	85.94	5.27	0.44	4.13	112	10.16
	Sept.	0.00	0.00	0.00	0.00	0.00	1	0.00
	2N	100.00	0.00	0.00	0.00	0.00	15	0.33
	2S	-	-	-	-	-	0	-4
Western	4N	5.34	51.15	7.63	0.00	35.88	53	2.47
Bering	4S	0.00	0.00	0.00	0.00	0.00	8	0.00
	6N	0.78	83.80	10.16	0.99	4.27	63	30.48
	6S	0.00	85.37	9.49	3.39	1.75	20	36.60
Central Bering Sea	8N	0.60	83.46	12.34	1.19	2.41	114	47.99
	8 S	0.00	71.99	25.26	1.18	1.57	42	36.38
	10N	4.82	84.43	8.93	0.35	1.47	180	60.86
	10S	0.00	90.41	. 8.37	0.45	0.77	67	33.00
	12N	0.00	78.84	18.43	1.37	1.36	27	10.85
	12S	0.00	81.46	11.92	0.00	6.62	18	16.78
Eastern Bering Sea	14 N	0.00	0.00	0.00	0.00	0.00	4	0.00
	14S	0.00	10.81	89.19	0.00	0.00	5	7.40
	16N	0.00	0.00	0.00	0.00	0.00	26	0.00
	16S	0.00	0.00	0.00	0.00	0.00	8	0.00
3		-	-	-	\rightarrow	\rightarrow	-	_4

$1_{\text {All }}$ other age classes mature and immature.
$2^{\text {Average CPUE }}=\frac{\sum_{1}^{n} \text { CPDE }}{n} \times 1000$
${ }^{3}$ South of Aleutian Islands.
${ }^{4}$ No fishing.

Fig. 14. Histograms of average CPUE for the research vessel (type A.-net) 1972-1980, by major age-maturity categories.

Fig. 15. Histograms of average CPUE for the research vessel (type A-net) by month, by major age-maturity categories.

Fig. 16. Histograms of average CPUE for the research vessel (type A-net) by area in the western Bering Sea, by major age-maturity categories.

Fig. 17. Histograms of average CPUE for the research vesse1 (type A-net) by area in the central Bering Sea, by major age-maturity categories.

Fig. 18. Histograms of average CPUE for the research vessel (type A-net) by area in the eastern Bering Sea, and all data combined (bottom), by major age-maturity categories.

Table 20. Percent of CPUE by age class for the Japanese research vessel catch, type C net.

Category		Immature \%			Mature (\%)	$\begin{gathered} \text { Others } \\ (\%)^{1} \\ \hline \end{gathered}$	Number of days (n)	$\begin{gathered} \text { Average } \\ \text { CPUE }^{2} \\ \hline \end{gathered}$
		1.1	1.2	1.3	1.2			
Total		49.02	38.51	6.13	2.41	3.93	652	18.68
	1972	36.15	29.65	17.22	4.80	12.18	115	13.20
Year	1973	73.39	14.48	2.08	3.35	6.70	98	11.28
	1974	53.20	36.66	4.35	1.44	4.35	96	23.93
	1975	64.21	29.80	1.08	1.24	3.67	107	28.54
	1976	33.33	66.67	0.00	0.00	0.00	116	0.52
	1977	52.17	37.08	10.74	0.00	0.01	44	35.55
	1978	0.00	0.00	0.00	0.00	0.00	30	0.00
	1979	27.30	68.04	0.00	4.67	0.00	26	55.23
	1980	16.37	65.87	13.88	3.89	0.00	20	54.05
Month	May	0.00	0.00	0.00	0.00	0.00	7	0.00
	June	62.64	27.67	6.51	1.51	1.67	229	21.94
	July	37.34	48.18	5.32	3.25	5.91	297	22.49
	August	69.10	17.33	13.57	0.00	0.00	118	4.06
	Sept.	0.00	0.00	0.00	0.00	0.00	1	0.00
Western Bering Sea	2N	100.00	0.00	0.00	0.00	0.00	14	2.86
	2 S	-	-	-	-	-	0	
	4N	86.39	0.00	13.61	0.00	0.00	56	3.02
	4 S	0.00	0.00	0.00	0.00	0.00	8	0.00
	6 N	39.66	33.38	5.51	0.00	21.45	70	9.33
	6 S	54.47	38.97	6.56	0.00	0.00	22	22.86
Central Bering Sea	8 N	34.67	50.46	4.88	5.15	4.84	113	23.04
	85	86.30	12.23	1.47	0.00	0.00	40	34.13
	10N	44.68	42.05	8.99	2.14	2.14	178	26.24
	10N	51.85	39.86	2.20	2.20	3.89	66	15.17
	12 N	58.40	33.33	8.27	0.00	0.00	26	15.35
	12 S	50.00	50.00	0.00	0.00	0.00	17	35.29
Eastern Bering Sea	14N	100.00	0.00	0.00	0.00	0.00	5	6.60
	14 S	0.00	0.00	100.00	0.00	0.00	5	6.60
	16 N	0.00	5.71	94.29	0.00	0.00	24	4.63
	16 S	0.00	0.00	0.00	33.33	66.67	8	0.00
3		-	-	-	-	-	-	- ${ }^{4}$

${ }^{1}$ All other age classes mature and immature.
${ }^{2}$ Average CPUE $=\frac{\sum_{n}^{n} \text { CPUE }}{n} \times 1000$
${ }^{3}$ South of Aleutian Islands.
${ }^{4}$ No fishing.

Fig. 19. Histograms of average CPUE for the research vessel (type C-net) 1972-1980, by major age-maturity categories.

Fig. 20. Histograms of average CPUE for the research vessel (type C-net) by month, by major age-maturity categories.

Fig. 21. Histograms of average CPUE for the research vessel (type C-net) by area in the western Bering Sea, by major age-maturity categories.

Fig. 22. Histograms of average CPUE for the research vessel (type C-net) by area in the central Bering Sea, by major agematurity categories.

Fig. 23. Histograms of average CPUE for the research vessel (type C-net) by area in the eastern Bering Sea and all data combined (bottom), by major age-naturity categories.
than in 1980, which was not shown by the mothership or research " A " net catches.

The greatest CPUE occurs in the months of June and July for chinook in the mothership catch and the research vessel "A" and "C" net catches. The July "C" net average CPUE is higher than June's by 0.55 CPUE, which is lower than the 33.99 CPUE difference between these months for the research vessel " A " nets CPUE and the 94.57 CPUE difference between July and June for the mothership.

The highest CPUE for the research vessel " C " nets occurs in the central Bering Sea zones which concurs with the research vessel "A" nets CPUE and the mothership CPUE.

Differences occurred in all three catches of chinook (mothership and research "A" and "C" nets) in the Bering Sea, but important similarities in the data show areas of highest chinook concentrations (central Bering Sea), increases in CPUE between the various years and months the fishery occurs in the Bering Sea, and that the catch shifts from primarily 1.1 and 1.2 immature chinook in the western and central Bering Sea to 1.3 immature chinook in the eastern Bering Sea.

SUMMARY

Scales from chinook of known rivers of origin have been collected from Russia to California from 1972 to 1981. Only the Columbia River and coastal Oregon have not been sampled, but sampling is scheduled early in the next funding period. Additional samples from Russia are being requested, also. An appendix which contains the list of scales at FRI is included with this report.

We recommend that two chinook scales be taken in future sampling, one from the preferred area on each side of the fish, because we frequently encountered regenerated scales in our samples. Regenerated scales are unsuitable for scale pattern measurements. The methods of scale measurement and data collection have been coordinated with the Stock Separation Lab, ADF\&G.

The mothership fishery age distribution-catch data have been weighted by effort to examine trends in the Bering Sea fishery. Additional analysis will occur' after the complete data is received from the Fishery Agency of Japan.

A review of the biology and information on the origins of chinook in the past and present mothership fishery area is discussed and this report contains a bibliography which references information collected during the first year of the study.

BIBLIOGRAPHY

Alaska Department of Fish and Game．1975．Prince William Sound area annual management report．Alaska Dept．Fish and Game，Div．Comm． Fish．，～100 p．\＃39＊

Alaska Department of Fish and Game．1977．Annual management report － 1977 －Bristol Bay area．Alaska Dept．Fish and Game，Div．Comm． Fish．非38．

Alaska Department of Fish and Game．1980a．Alaska commercial salmon catches， 1878 －1980．Alaska Dept．Fish and Game，Div．Comm．Fish． 54p．（mimeo，Dec．1980），非36．

Alaska Department of Fish and Game．1980b．Annual management report － 1980 －Yukon area．Alaska Dept．Fish and Game，Div．Comm．Fish． 145p．（mimeo），非47．

Alaska Department of Fish and Game．1980c． 1980 Alaska commercial salmon fisheries review．6p．（mimeo），非40．

Alaska Department of Fish and Game．1981a．Alaska 1979 catch and production－commercial fisheries statistics．Alaska Dept．Fish and Game，Div．Comm．Fish．，Stat．Leaf．32． 36 p．非51．

Alaska Department of Fish and Game．1981b．A review of gillnet mesh selectivity studies as related to chinook salmon fisheries of Cook Inlet，Alaska．Report to Alaska Board of Fisheries，January，1981， Alaska Dept．Fish and Game，Div．Comm．Fish．，Juneau．101p．\＃91．

Alaska Department of Fish and Game．1981c．Proposed management plan for southeastern Alaska chinook salmon runs in 1981，Alaska Dept． Fish and Game，S．E．Region．Fisheries Management Divisions．31p． \＃32．

Anon．1982．Lake Quinault hatchery．Quinault Resources，5（2）：6－7． \＃87．

Atkinson，C．1981．Chinook salmon－Oncorhynchus tschawytscha．15p． （Unpublished draft manuscript）．\＃24．

Bali，J．M．1959．Scale analysis of steelhead trout，Salmo gaird－ nerii gairdnerii Richardson，from various coastal watersheds of Oregon．M．S．Thesis，Oregon State University，Corvallis，Ore． 189p．非85．

Baranski，C．1979．Maturity rates for Puget Sound chinook stocks． Wash．Dept．Fish．，Tech．Rep．43．13p．\＃33．

[^4]Bauersfeld, K. 1978. The effect of dally flow fluctuations on spawning fall chinook in the Columbia River. Wash. Dept. Fish., Tech. Rep. 38. 32p.

Berggren, T. J., and J. T. Lieberman. 1978. Relative contribution of Hudson, Chesapeake, and Roanoke striped bass, Morone saxatilis, stocks to the Atlantic Coast fishery. Fish. Bull. 76(2):335-345. \#62.

Bernhardt, J. 1971. Relative immaturity of troll chinook salmon caught along the north Washington coast in 1962. Wash. Dept. Fish., Suppl. Prog. Rep., 12p.

Bethe, M. Jan. 20, 1978. Letter to Russ Redick, Reg. Sup., Alaska Dept. Fish and Game, Anchorage, on stock separation of Cook Inlet chinook salmon. \#57.

Bilton, H. T. 1975. Factors influencing the formation of scale characters. Int. N. Pac. Fish. Comm., Bull. 32:102-108.

Bilton, H. T., D. W. Jenkinson, and M. P. Shephard. 1964. A key to five species of Pacific salmon (genus Oncorhynchus) based on scale characters. J. Fish. Res. Bd. Canada 21(5):1267-1288.

Bilton, H. T., and S. A. M. Ludwig. 1966. Times of annulus formation on scales of sockeye, pink, and chum salmon in the Gulf of Alaska. J. Fish. Res. Bd. Canada 23(a):1403-1410.

Bilton, H. T., and G. L. Robins. 1971. Effects of feeding level on circulus formation on scales of young sockeye salmon, (Oncorhynchus nerka). J. Fish. Res. Bd. Can. 28(6):861-868.

Blair, A. A. 1938. Factors affecting the growth of the scales of salmon (Salmo salar). Ph.D. dissertation, Univ. of Toronto, Canada, 227p.

Bohn, B. R., and H. E. Jensen. 1971. Investigation of scale patterns as a means of identifying races of spring chinook salmon in the Columbia River. Fish. Comm. Oregon, Res. Rep. 3:28-36.

Burck, W. A. 1971. Growth of juvenile spring chinook salmon in Lookingglass Creek. Fish. Comm. Oregon, Res. Rep. 3:37-48.

Canadian Department of Fisheries and Environment. 1979a. Annual summary of British Columbia catch statistics 1978. Dept. Fisheries and Oceans, Pacific Region, Fisheries Management Division. 22p. 非68.

Canadian Department of Fisheries and Oceans．1979b．British Columbia catch statistics by area and type of gear 1978．Dept．Fisheries and Oceans，Pacific Region．Fisheries Management Division．215p．非 7 。

Canadian Dept．of Fisheries and Oceans．1980a．Annual summary of British Columbia catch statistics 1979．Dept．Fisheries and Oceans，Pacific Region，Fisheries Management Division．22p．\＃67．

Canadian Department of Fisheries and Oceans．1980b．British Columbia catch statistics by area and type of gear 1979．Dept．Fisheries and Oceans，Pacific Region，Fisheries Management Division．223p．非70。

Canadian Department of Fisheries and Oceans．1981a．Annual summary of British Columbia catch statistics 1980．Dept．Fisheries and Oceans，Pacific Region，Fisheries Management Division．22p．非6．

Canadian Dept．of Fisheries and Oceans．1981b．British Columbia catch statistics by area and type of gear 1980．Dept．Fisheries and Oceans，Pacific Region，Fisheries Management Division．223p．非70．

Chitwood，S．A．1981．Water quality，salmonid fish，smelt，crab，and subtidal studies at the Quillayute River Navigation Project．U．S． Army Corps of Engineers，Seattle District，DACW 67－79－C－0900，120p．非86．

Churikov，A．A．1975．［Characteristics of the downstream migration of young salmon of the genus Oncorhynchus from the rivers of the northeast coast of Sakhalin．］Vopr．Ikhtiol．15（6）：1078－1085．

Cleaver，F．C．1969．Effects of ocean fishing on the 1961－brood fall chinook salmon from Columbia River hatcheries．Fish．Comm．Oregon， Res．Rep．l（1）：1－76．

Clutter，R．I．and L．E．Whitesel．1956．Collection and interpretation of sockeye salmon scales．Int．Pac．Salmon Fish．Comm．，Bull． 9. 159p．

Cook，R．C．Estimating subpopulation mixing proportions with the result of classifying individuals．Unpublished manuscript．Univ．Wash． 31p．非21．

Cook，R．C．1981．Information concerning the management needs of the southeast Alaska troll fishery for chinook salmon．Pacific Fisheries Foundation．42p．（Processed Report）．

Cook, R. C., K. W. Myers, R. V. Walker, and C. H. Harris. 1981. The mixing proportion of Asian and Alaskan sockeye salmon in and around the landbased driftnet fishery area, 1972-1976. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, November, 1980). 58p. Fisheries Research Institute, Univ. of Washington, Seattle. \#80.

Cook, R. C., and G. E. Lord. 1978. Identification of stocks of Bristol Bay sockeye salmon, Oncorhynchus nerka, by evaluating scale patterns with a polynomial discriminant method. Fish. Bull. 76(2):415-423. \$63.

Cummings, T. E. 1976. Estimates of 1974 sport harvest of Fall chinook and coho salmon, Tillamook Bay, Oregon. Mgmt. Sec., Oregon Dept. Fish and Wildl. 12p. 非.

Dahlberg, M. L. 1980. Catches of sockeye salmon of Bristol Bay origin, 1978 and 1979 and chinook salmon of western Alaska origin by the Japanese mothership fishery, 1956-1979. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, September 1980). 12 p. Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Serv., NOAA, Auke Bay Laboratory, P.O. Box 155, Auke Bay, AK 99821.

Dahlberg, M. L. 1981a. Report of the incidence of coded-wire tagged salmonids in catches of foreign commercial and research vessels operating in the north Pacific Ocean during June and July 19801981. (Document submitted to annual meeting of the Interntional North Pacific Fisheries Commission. Vancouver, British Columbia, Canada, November, 1981). 6p. Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Ser., NOAA, Auke Bay Laboratory, P.O. Box 155, Auke Bay, AK 99821. \#15.

Dahlberg, M. L. 1981b. Catch and effort of the Japanese mothership fishery and estimated interceptions of western Alaska salmon in 1980. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Vancouver, B.C., Canada, November 1981). 15p. Northwest and Alaska Fisheries Center, Nat'l. Mar. Fish. Serv., NOAA, Auke Bay Laboratory, P.O. Box 155, Auke Bay, AK 99821. \#20.

Daisy, D. 1978. Annual management report - upper Cook Inlet area, Region II. Alaska Dept. Fish and Game, Div. Comm. Fish. 49p. \#50.

DiDonato, G. 1970. The number, age, and size of Washington's troll caught chinook salmon (Oncorhynchus tshawytscha), 1956-1962. Washington Dept. Fish., Tech. Rep. 4:21-40.

Egan, R. 1981. Puget Sound salmon spawning ground data report. Wash. Dept. Fish. Prog. Rep. 146. 138p. 非28.

Fish Commission of Oregon and Washington. Department of Fisheries. 1971. Columbia River fish runs and commercial fisheries, 1938-70. 1(1):87p.

Fishery Agency of Japan. 1980. Salmon catch statistics for Japanese mothership and landbased fisheries 1979. (Submitted to the International North Pacific Fisheries Commission, February 1980). 25p. Fishery Agency of Japan, Tokyo, Japan 100.

Fishery Agency of Japan. 1981a. Age and maturity data of chinook salmon sampled from mothership and research vessel catches in the Bering Sea during 1972-1980. Div. N. Pac. Res., Far Seas Fish. Res. Lab., Fishery Agency of Japan. 282p.

Fishery Agency of Japan. 1981b. Changes in recent years in operations of Japan's offshore salmon fisheries. (Document submitted to the International North Pacific Fisheries Commission in October, 1981). 21p. Fishery Agency of Japan, Tokyo, Japan 100. \#22.

Fishery Agency of Japan. 1981c. Salmon catch statistics for Japanese mothership and landbased fisheries 1980. (Submitted to the International North Pacific Fisheries Commission in February 1981). 30 pp . Fishery Agency of Japan, Tokyo, Japan 100

Forrester, C. R. 1975. Statistical yearbook. 1973. International North Pacific Fisheries Commission, Vancouver, Canada. 95p.

Forrester, C. R. 1977. Statistical yearbook. 1974. International North Pacific Fisheries Commission, Vancouver, Canada. 95p.

Forrester, C. R. 1978. Statistical yearbook. 1975. International North Pacific Fisheries Commission, Vancouver, Canada. 91p.

Forrester, C. R. 1979. Statistical yearbook. 1976. International North Pacific Fisheries Commission, Vancouver, Canada. 100p.

Forrester, C. R. 1981a. Statistical yearbook 1977. International North Pacific Fisheries Commission, Vancouver, Canada. 96p.

Forrester, C. R. 1981b. Statistical yearbook 1978. International North Pacific Fisheries Commission, Vancouver, Canada. 123p.

Fraser, C. McL. 1916. Growth of the spring salmon. Trans. Pacific Fish. Soc., Second annual meeting, 1915:29-35.

Fraser, C. McL. 1917. On the scales of the spring salmon, 1915-1916. Contr. Can. Biol. 38a:21-32.

Fredin, R. A., R. L. Major, R. G. Bakkala, and G. K. Tanonaka. 1977. Pacific salmon and the high seas salmon fisheries of Japan. Northwest and Alaska Fisheries Center, Nat. Mar. Fish. Serv. (Processed Report). 324p.

French, R., R. Nelson, Jr., and J. Wa11. 1981. Observations of foreign and joint venture fishing fleets off the coast of Washington, Oregon, and California, 1980. (Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Vancouver, Canada, October 1981). 18p. Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98122, \#14.

Fuss, H., T. Tasch, and C. Johnson. 1981. A review of the experiments with the 1972 brood spring and fall chinook salmon (Oncorhynchus tshawytscha) released from eighteen Washington Department of Fisheries hatcheries. Wash. Dept. Fish., Prog. Rep. \#143, 334p.

Fukuhara, F. M. 1971. An analysis of the biological and catch statistics of the Japanese mothership salmon fishery. Ph. D. dissertation, Univ. Washington, Seattle, 238p.

Funk, F. 1981. Analyses of southeastern Alaska troll fisheries data. Nat. Pac. Fish. Man. Coun., Council Document \#17, 103p. plus appendices, May, 1981.

Gilbert, C. H. 1912. Age at maturity of the Pacific coast salmon of the genus Oncorhynchus. U.S. Bur. Fish., Bull. 32:4-22.

Gilbert, C. H. 1922. The salmon of the Yukon River. U.S. Bur. Fish., Bull. 38:317-322. 非94.

Godfrey, H. 1968. Review of information obtained from the tagging and marking of chinook and coho salmon in coastal waters of Canada and the United States. Fish. Res. Bd. Can., MS Rep., Ser. 952. 174p.

Godfrey, H. 1971. Production of chinook and coho salmon by U.S. hatcheries. Fish. Res. Bd. Can., Circ. 90. 31 p.

Godfrey, H., D. D. Worlund, and H. T. Bilton. 1968. Tests on the accuracy of ageing chinook salmon (Onchorhynchus tshawytscha) from their scales. J. Fish. Res. Bd. Canada 25:1971-1982.

Gunstrom, G. K. 1975. Statistical yearbook 1972. International North Pacific Fisheries Commission, Vancouver, Canada. 96p.

Habbema, J. D. F., J. Hermans, and K. van den Broek. 1974. A step-wise discriminant analyses program using density estimation. Compstat. 1974, Proc. Computational Stat. Physica Verlag. Vienna. Pp.101-110.

Hammarstrom, S. L. 1981. Evaluation of chinook salmon fisheries of the Kenai Peninsula. In: Annual Report of Progress 1980-1981. Alaska Dept. Fish. Game, Fed. Aid Fish Restor., Project F-9-13, 22(G-II-I): 4 of 27 p . 非43.

Harris, C. K. 1980. Asian and North American pink and chum catch statistics. Contribution to the 1980 Northeast Pink and Chum Salmon Workshop. 14 p. \#92.

Harris, C. K., S. L. Marshall, R. C. Cook, R. H. Conrad, J. P. Graybill, and R. L. Burgner. 1980. Monitoring migrations and abundance of salmon at sea 1979. In: Annual Report 1979, International North Pacific Fisheries Commission, Vancouver, Canada. 95p.

Harris, C. K., R. H. Conrad, K. W. Myers, R. V. Walker, R. W. Tyler, and R. L. Burgner. 1980. Monitoring migrations and abundance of salmon at sea - 1980. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, USA, November 1980.) 37p. Fish. Res. Inst., Univ. Washington, Seattle.

Haymin, R. 1982. Quileute gill net catch of chinook, 1975-1981. Pers. Comm., 13p. \#95.

Henry, K. A. 1971. Estimates of maturation and ocean mortality for Columbia River hatchery fall chinook salmon and the effect of no ocean fishing on yield. Fish. Comm. Oregon, Res. Rep. 3:12-13.

Henry, K. A. 1978. Estimating natural and fishing mortalities of chinook salmon, Onchorhynchus tshawytscha, in the ocean based on recoveries of marked fish. Fish. Bull. 76(1):45-57.

Heyamoto, H., and S. G. Wright. 1970. Age-length-weight studies of Washington's troll-caught chinook salmon (Oncorhynchus tshawytscha), 1950-1955. Wash. Dept. Fish., Tech. Rep. 4. 20p. \#1.

Hile, R. 1970. Body-scale relation and calculation of growth in fishes. Trans. Am. Fish. Soc. 99:468-474.

Huffman, P. 1982. Timing of the peak of the chinook runs and peak fishing effort on the Queets and Quinault Rivers, 1975-1980. Pers. Comm., lp. \#81.

Hoines, L. J., W. D. Ward, and G. D. Nye. (Composite, collected from 1971-1979) Sport catch report. Wash. Dept. Fish. 38p. of tables. \#35.

Hoines, L. J., W. D. Ward, and G. D. Nye. 1980. Washington State sport catch report 1980. Wash. Dept. Fish. 65p. \#55.

Houston, W. R., K. R. Allen, D. R. Johnson, and L. A. Verhoeven. 1969. Informal committee on chinook and coho. Reports by the United States and Canada on the status, ocean migrations, and exploitation of northeast Pacific stocks of chinook and coho salmon, to 1964. Vol. II. Report by the Canadian section. 111p. plus appendices. \#93.

International North Pacific Fisheries Commission. 1979. Historical catch statistics for salmon of the north Pacific Ocean. Bull. 39. 166p.

Ito, J., and K. Takagi. 1981. Biological information on chinook salmon in the Bering Sea. (Documented submitted to the International North Pacific Fisheries Commission in September, 1981). 20p. Fishery Agency of Japan, Tokyo, Japan 100. \#16.

Ito, J., K. Takagi, and S. Ito. 1974. The identification of maturing and immature chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the off-shore stage and some related information. Far Seas Fish. Res. Lab. Bull. 11:68-75.

Jensen, A. J., and B. O. Johnsen. 1982. Difficulties in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) from cold rivers due to lack of scales as yearlings. Can. J. Fish. Aquat. Sci. 39:321-325. \#98.

Kepshire, B. M., Jr., and W. J. McNeil. 1972. Growth of pre-migratory chinook salmon in seawater. Fish. Bull. 70(1):119-123.

Khalturin, D. K. 1978. [The age of smolt and the duration of marine period of life in salmons (Salmonidae).] Vopr. Ikhtiol. 18(6):983-999.

Kissner, P. 1973. A study of chinook salmon in southeast Alaska. Alaska Dept. Fish and Game, Div. Sport Fish, Anadromous Fish Studies, July l, 1973 to June 30, 1974. Study AFS-4l-2. 30p.

Kissner, P. 1978. A study of chinook salmon in southeast Alaska. Alaska Dept. Fish and Game, Sport Fish Div., Anadromous Fish Studies, (AFS-41-6), Vol. 19. 25p. 非75.

Kissner, P. 1979. A study of chinook salmon in southeast Alaska. Alaska Dept. Fish and Game, Sport Fish Div., Anadromous Fish Studies (AFS-41-7), Vol. 20. 34p. \#76.

Kissner, P. 1980. A study of chinook salmon in southeast Alaska. Alaska Dept. Fish and Game, Sport Fish. Div., Fed. Aid. Fish. Rest. (AFS-41-8), Vol. 21. 34p. \#77.

Kissner, P., and M. Bethers. 1980. A study of chinook salmon in southeast Alaska. Alaska Dept. of Fish and Game. Annual report of progress 1980-1981. Project F-9-12 (AFS-4l-8). 3p. \#45.

Kissner, P. D. and M. R. Bethers. l98la. A study of chinook salmon in southeast Alaska. Alaska Dept. Fish and Game. Fed. Aid. Fish. Rest., Anadromous Fish Studies. Vol. 22. 36p. \#31.

Kissner, P. D. and M. R. Bethers. 1981b. Status of important native chinook salmon stocks in southeastern Alaska. Alaska Dept. of Fish and Game, Sport Fish Investigations - A study of chinook salmon in southeastern Alaska (AFS-41), Segment No. AFS-41-9. 36p. \#90.

Kjelson, M. A., P. F. Raquel, and F. W. Fisher. 1982. Life history of fall-run juvenile chinook, Onchorhynchus tshawytscha, in the Sacramento-San Joaquin estuary, California. Draft, U.S. Fish and Wildlife Service, Stockton, CA. 37p. \#73.

Klemp, S., and W. Harper. 1982. Age analysis of Klamath River chinook for 1979, 1980, 1981. 3p. Pers. Comm.

Klinge, R. W. 1980. Scale analysis of the 1977 chinook salmon commercial catch in the Quileute River. Report for the Quileute Indian Tribe, Lapush, WA, 7p (mimeo). \#64.

Konovalov, S., and V. Tumanov. 1982. Pers. Comm. in form of notes taken at meeting in Friday Harbor, May $28 \& 29$, 1982, with Mr. K. Bruya and Dr. R. Burgner.

Koo, T. S. Y. 1962a. Age designation in salmon. Univ. Washington, Publ. Fish., New Ser. 1:41-48.

Koo, T. S. Y. 1962b. Differential scale characters among species of Pacific salmon. Univ. of Washington, Publ. Fish., New Ser. 1:125-135.

Koo, T. S. Y., and A. Isarankura. 1967. Objective studies of scales of Columbia River chinook salmon, Oncorhynchus tshawytscha (Walbaum). Fish. Bull. 66(2):165-179.

Krasnowski, P. and M. Bethe. 1978. Stock separation studies of Alaskan salmon based on scale pattern analysis. Alaska Dept. Fish and Game, Info. Leaflet 175. 37p.

Kubik, S. 1980. Upper Cook Inlet chinook salmon fishery. Alaska Dept. Fish and Game. 12p. \#44.

Kubik, S. W. 1981. Inventory and cataloging of sport fish and sport fish waters of the lower Susitna River and central Cook Inlet drainages. Alaska Dept. Fish and Game, Fed. Aid. Fish Restor., Annual Report of Progress 1980-1981, Project F-9-13, 22(G-I-H). 27p. \#48.

Lander, R. H. -1970. Distribution in marine fisheries of marked chinook salmon from the Columbia River hatchery program, 1963-1966. Fish. Comm. Oregon, Res. Rep. 2(1):28-55.

Lapi, L. A., and T. J. Mulligan. I981. Salmon stock identification using a micro-analytical technique to measure elements present in freshwater growth region of scales. Can. J. Fish. Aquat. Sciences 38(7):744-751.

Lestelle, L., G. McMinds, and J. De La Cruz. 1981. Quinault Indian Nation fisheries management. Final Report, FY 80. 193p. plus appendices.

Levy, D. A., and T. G. Northcote. 1982. Juvenile salmon residency in a marsh area of the Fraser River estuary. Can. J. Fish. Aquat. Sci. 39:270-276. \#99.

McBride, D. 1981. Yukon River chinook salmon stock separation studies. Legislative Report 1981. Alaska Dept. Fish and Game, Div. Comm. Fish. 9p. (Processed Report).

McCormack, M. L. and R. M. Carpenter. 1982. California trout, salmon, and warmwater fish production and costs, 1979-1980. Calif. Dept. Fish and Game, Inland Fisheries, Admin. Rept. No. 82-5. 50p.

Machidori, S. 1981. Photographic atlas of the scales and otoliths of coho salmon caught in the North Pacific Ocean. (Document submitted to the International North Pacific Fisheries Commission, September, 1981). 19p. Fishery Agency of Japan, Tokyo, Japan 100. \#10.

Major, R. L. and J. L. Migheli. 1969. Egg-to-migrant survival of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River, Washington. Fish. Bull. 67(2):347-359.

Major, R. L., S. Murai, and J. Lyons. 1975. Scale studies to identify Asian and western Alaskan chinook salmon. In. International Northern Pacific Fisheries Commission. Annual Rep. 1973. p. 80-97.

Major, R. L., S. Murai, and J. Lyons. 1977a. Scale studies to identify Asian and western Alaskan chinook salmon: the 1969 and 1970 Japanese mothership samples. In. International Northern Pacific Fisheries Commission. Annual Rep. 1974. p. 78-81.

Major, R. L., S. Murai, and J. Lyons. 1977b. Scale studies to identify Asian and western Alaskan chinook salmon. In. International Northern Pacific Fisheries Commission. Annual Rep. 1975. p. 68-71.

Major, R. L., J. Ito, and M. Godfrey. 1978. Distribution and origin of chinook salmon (Oncorhynchus tshawytscha) in offshore waters of the North Pacific Ocean. International Northern Pacific Fisheries Commission Bull. 38:1-54.

Major, R. L., K. H. Mosher, and J. E. Mason. 1972. Identification of stocks of Pacific salmon by means of their scale features. In R. C. Simon and P. A. Larkin (eds.). The stock concept in Pacific salmon. Univ. of British Columbia, Vancouver, Canada. p.209-231.

Manzer, J. I., T. Ishida, A. E. Peterson, and M. G. Hanavan. 1965. Salmon of the north Pacific Ocean - Part V. Offshore distribution of salmon. International Northern Pacific Fisheries Commission Bul1. 15:1-452.

Mason, J. E. 1965. Salmon of the north Pacific Ocean. Part IX. Coho, chinook, and masu salmon in offshore waters. No. 2: Chinook salmon in offshore waters. International Northern Pacific Fisheries Commission Bull. 16:41-73.

Mattson, R., and W. Wood. 1978. Spring-summer chinook management plan for the 1978 Holt River gill net fishery. Wash. Dept. Fish., Prog. Rep. 58. 11 p .

Meacham, C. P. 1980. : Summary of western Alaska chinook salmon catch and escapement data. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, September 1980). 20p. Alaska Dept. Fish and Game.

Meehan, W. R., and D. B. Siniff. 1966. A study of the downstream migrations of anadromous fishes in the Taku River, Alaska. Trans. Amer. Fish. Soc. 91(4):399-407.

Middleton, K. 1982. Upper Cook Inlet status report. Alaska Dept. Fish and Game, Div. Comm. Fish. (in press). \#41.

Miller, M. C. 1979. Trends in catch, timing and distribution of the Washington commercial troll salmon fishery, 1960-1975. Wash. Dept. Fish., Tech. Rep. 49. 56p. \#4.

Mills, M. J. 198la. Annual performance report for Alaska statewide sport fish harvest studies -1979 data. Alaska Dept. Fish and Game, Sport Fish Div., SW-I-A, Vol. 22, Part B. 78p. \#52.

Mills, M. J. l981b. Alaska statewide sport fish harvest studies 1980 data. Alaska Dept. Fish and Game, Sport Fish Div., SW-1-A, Vol. 22, C, 107p. \#53.

Milner, G. B., D. B. Teel, and F. M. Utter. 1982. Genetic identification study annual progress report, FY 81. Coastal Zone and Estuary Studies Division, Northwest and Alaska Fisheries Center, Nat'l Mar. Fish. Serv., Bonneville Power Administration, DE-Al79-81 BP 28044. 12p. 非88.

Milner, G. B., D. J. Teel, F. M. Utter, and C. L. Burley. 1981. Columbia River stock identification study: validation of genetic method. Coastal Zone and Estuarine Studies Division, Northwest and Alaska Fisheries Center, Nat'l. Mar. Fish. Serv., Bonneville Power Adminstration, DE-Al79-80BP18488. 35p. plus appendices. \#89.

Mottley, C. McC. 1929. Report of the study of the scales of the spring salmon, Oncorhynchus tshawytscha, tagged in 1926 and 1927 off the west coast of Vancouver Island. Contr. Can. Biol. Fish., New Ser. 4:473-493.

Mundy, P. R. 1982. Migratory timing of adult chinook salmon (Oncorhynchus tshawytscha) in the lower Yukon, Alaska with respect to fisheries management. Dept. of Ocean., Old Dominion University, Norfolk, VA., Tech. Rep. 82-1. 52p. \#96.

Myers, K. W., R. C. Cook, R. V. Walker, C. K. Harris. 1981. The continent of origin of coho salmon in the Japanese landbased drift net fishery area in 1979. (Document submitted to annual meeting of the International Northern Pacific Fisheries Commission, Vancouver, B.C., Canada, November, 1981). 34p. Fisheries Research Institute, Univ. Washington, Seattle. 非19.

Nelson, D. 1980. Russian River recreational sockeye salmon fishery, 1980. Alaska Dept. Fish and Game. 9p.

Nelson, Jr., R., R. French, J. Wall, and D. Hennick. 1978. Summary of U.S. observer sampling on foreign fishing vessels in Bering Sea/ Aleutian Islands areas, 1977. Nat'l Mar. Fish. Serv., Northwest and Alaska Fish. Center, Unpublished Manuscript. 73p.

Nelson, Jr., R., R. French, and J. Wall. 1979. Summary of U.S. observer sampling on foreign fishing vessels in Bering Sea/Aleutian Islands regions, 1978. Nat'l Mar. Fish. Serv., Northwest and Alaska Fish. Center, Unpublished Manuscript. 75p.

Nelson, Jr., R., R. French, and J. Wall. 1980a. Summary of U.S. observer sampling on foreign fishing vessels in Bering Sea/Aleutian Islands region, 1979. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, October, 1980). 85p. Northwest and Alaska Fisheries Center, Nat'l Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA. 98112.

Nelson, Jr., R., R. French, and J. Wall. 1980b. Summary of U.S. observer sampling on foreign vessels in the Bering Sea/Aleutian Islands region, 1980. (Documented submitted to the annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, September 1981). Northwest and Alaska Fisheries Center, Nat'l Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112. \#11.

O＇Grady，K．T．1981．The resorption of zinc from scales of sea trout （Salmo trutta）during the upstream spawning migration．Freshwater Biol．11：561－565．

Okada，K．1981a．Incidental catch of chinook salmon by Japanese ground－ fish fisheries in the Bering Sea／Aleutian region in 1981（January to March）．（Document submitted to the International North Pacific Fisheries Commission，August 1981）．9p．Fishery Agency of Japan， Tokyo，Japan 100．\＃8．

Okada，K．1981b．Results of experiments in 1981 （January to March）in modifying traditional trawl gear and techniques to reduce the inci－ dental catch of chinook salmon by Japanese groundfish fisheries in the Bering Sea．（Document submitted to the International North Pacific Fisheries Commission，August 1981）．12p．Fishery Agency of Japan，Tokyo，Japan 100．\＃9．

Ottaway，E．M．and K．Simkiss．1977．A method for assessing factors influencing false check formation in fish scales．J．Fish．Biol． 11：681－687．

Pella，J．J．，and T．L．Robertson．1979．Assessment of composition of stock mixtures．Fish．Bull．77（2）：387－398．

Perry，T．1982．Chinook salmon．Some factors in the survival of hatchery and wild marked releases．Canadian Dept．Fisheries and Oceans．10p．（Unpublished manuscript）．\＃54．

Phinney，L．A．and M．C．Miller．1979．Status of Washington＇s ocean sport salmon fishery in the mid－1970＇s．Wash．Dept．Fish．，Tech． Rep．24．72p．$⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5．

Pritchard，A．L．1940．Studies on the age of the coho salmon（Onco－ rhynchus kisutch）and the spring salmon（ 0 ．tshawytscha）in British Columbia．Trans．Roy．Soc．Can．3rd Ser．34（5）：99－120．

Pulford，E．F．1970．Estimated contribution of Columbia River hatchery fall chinook salmon to sport and commercial fisheries．Fish．Comm． Oregon，Res．Rep．2（1）：1－27．

Rasch，T．，and R．Foster．1978a．Hatchery returns and spawning data for Puget Sound，1960－1976．Wash．Dept．Fish．，Prog．Rep． 59. 283p．\＃27．

Rasch，T．，and R．Foster．1978b．Hatchery returns and spawning data for the Straits and coast，1960－1976．Wash．Dept．Fish．，Prog． Rep．60．150p．\＃26．

Reimers，P．E．1973．The length of residence of juvenile fall chinook salmon in Sixes River，Oregon．Fish．Comm．Oregon，Res．Rep． 4（2）：1－43．\＃29．

Rich, W. H. 1920. Early life history and seaward migration of chinook salmon in the Columbia and Sacramento Rivers. U.S. Bur. Fish., Bul1. 37:1-73.

Rich, W. H. 1925. Growth and degree of maturity of chinook salmon in the ocean. U.S. Bur. Fish., Bull. 41:15-90.

Rich, W. H., and H. B. Holmes. 1928. Experiments in marking young chinook salmon on the Columbia River, 1916 to 1927. U.S. Bur. Fish., Bull. 44:215-264.

Ricker, W. E. 1972. Hereditary and environmental factors affecting certain salmonid populations. In R. C. Simon and P. A. Larkin, eds. The Stock Concept in Pacific Salmon. H. R. MacMillan Lectures in Fisherles, Univ. British Columbia. P. 27-160.

Ricker, W. E. 1980. Causes of the decrease in age and size of chinook salmon (Onchorhynchus tshawytscha). Can. Tech. Rep., Fish. Aquat. Sci. 944. 25p. 非3.

Riddell, B. E. 1981. Incidental catch of Pacific salmon in British Columbia coastal midwater trawl fisheries, 1977-1980. 21p. (Unpubl. Rep.). Canadian Dept. Fish. and Oceans, Res. Serv. Branch, Pac. Bio. Sta., Nanaimo, B.C. V9R 5K6. 非12.

Rogers, D. E. 1981a. Determination of stock origins of chinook salmon incidentally caught in foreign vessels in the U.S. Eastern Bering Sea and Gulf of Alaska: Proposal to the North Pac. Fish. Management Council. 16p. \#18.

Rogers, D. E. 1981b. Origins of chinook salmon in the area of the Japanese mothership salmon fishery: Proposal to Alaska Dept. Fish and Game. 32p. \#17.

Rogers, D. E., K. W. Myers, and K. J. Bruya. 1982a. Determination of stock origins of chinook salmon incidentally caught in foreign trawls in the Alaska FCZ. Quarterly Rep. Oct.-Dec., 1981, Cont. No. 81-5, North Pac. Fish. Management Council. 24p. Univ. Washington, Fish. Res. Inst., Seattle. \#78.

Rogers, D. E., K. W. Myers, and K. J. Bruya. 1982b. Determination of stock origins of chinook salmon incidentally caught in foreign trawls in the Alaska FCZ. Quarterly Rep. Jan.-Mar., 1982, Cont. No. 81-5, North Pac. Fish. Management Council. 48p. Univ. Washington, Fish. Res. Inst., Seattle. \#79.

Rowell, K. 1981. Pers. Comm. of Dec. 19, 1981. Table 1. Chinook salmon counts - Upper Cook Inlet, 1977. Alaska Dept. of Fish and Game.

Rowland, R. G. 1969. Relation of scale characteristics to river of origin in four stocks of chinook salmon (Oncorhynchus tshawytscha) in Alaska. U.S. Bur. Comm. Fish., Spec. Sci. Rep., Fish. 577. 5p.

Schluchter, M. D., and J. A. Lichatowich. 1977. Juvenile life histories of Rogue River spring chinook salmon, Onchorhynchus tshawytscha (Walbaum) as determined by scale analysis. Oregon Dept. Fish Wildl. Res. Sec., Infor. Rep. Ser., Fish. 77-5. 24p.

Semko, R. S. 1960. The stocks of west Kamchatka salmon and their commercial utilization. U.S. Fish and Wildl. Serv., Trans. Ser. 30. 131p.

Simpson, K. S., J. R. Carmichael, and C. Groot. 1978. Index to Pacific Biological Station archives. Fish. Mar. Ser. MS Rep. 1443. 95p. \#58.

Specht, D. F. 1966. Generation of polynomial discriminant functions for pattern recognition. Stanford Univ. Tech. Rep. 6764-5. 127p.

Simenstad, C. A., and H. Buechner. 1981. Appendix F - Food habits of Juvenile chinook (Oncorhynchus tshawytscha) and coho salmon (0 . kisutch) from the Quillayute River and estuary. 92-page Appendix in S. A. Chitwood, ed. Water Quality, Salmonid Fish, Smelt, Crab, and Subtidal Studies at the Quillayute River Navigation Project. \#86.

Snyder, J. O. 1922. The return of marked king salmon grilse. Calif. Fish and Game 8(1):102-107.

Snyder, J. O. 1923. A second return of king salmon marked in 1919, in Klamath River. Calif. Fish and Game 9(1):1-9.

Starr, Paul. 1980. A review of the current status of the Fraser River chinook salmon. Draft, Canadian Dept. Fish. and Oceans. 16p. \#65.

Tutty, B. D., and F. Y. E. Yole. 1978. Overwintering chinook salmon in the upper Fraser River system. Canadian Dept. Fish. and Environ., Fish. Mar. Ser. MS Rep. 1460. 24p.
U.S. Fish and Wildife Service. 1980. Tehama-Colusa fish facility, Red Bluff, CA. U.S. Gov. Printing Office: 1980-697-461. lp. 非74.
U.S. Fish and Wildlife Service. 1981. Annual report Klamath River fisheries investigation program, 1980. U.S. Fish and Wildl. Serv., Fish. Asst. Office, Arcata, CA. \#82.
U.S. Fish and Wildlife Service. 1982. Annual report Klamath River fisheries investigation program. 1981. Draft. U.S. Fish and Wildlife Serv., Fish. Asst. Office, Arcata, CA. 非83.

Utter, F. M., G. Milner, and D. Teel. 1979. Genetic variations of proteins in chum and chinook salmon from the Bering Sea: II. Analyses of 1978 collections and additional data from Asian populations. 1979. (Unpublished manuscript submitted to the International North Pacific Fisheries Commission, October 1979). 12p. Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Van Hyning, J. M. 1973. Factors affecting the abundance of fall chinook salmon in the Columbia River. Fish Comm. Oregon, Res. Rep. 4(1):1-87.

Vronski1, B. B. 1972. [Reproductive biology of the Kamchatka River chinook salmon (Oncorhynchus tshawytscha (Walbaum))]. Vop. Ikhtiol. 12:293-308. \#23.

Wahle, R. J., and R. R. Vreeland. 1978. Bioeconomic contribution of Columbia River hatchery fall chinook salmon, 1961 through 1964 broods, to the Pacific salmon fisheries. Fish. Bull. 76(1):179-208. \#61.

Wahle, R. J., and E. Chaney. 1981. Establishment of nonindigenous runs of spring chinook salmon, Oncorhynchus tshawytscha, in the Wind River drainage of the Columbia River, 1955-63. Fish. Bull. 79(3):507-516.

Wahle, R. J., E. Chaney, and R. E. Pearson. 1981. Areal distribution of marked Columbia River Basin spring chinook salmon recovered in fisheries and at parent hatcheries. Mar. Fish. Rev. 43(12):1-9.

Waite, 0. C. 1979. Chinook enhancement on the Kenai Peninsula. Anadromous Fish Studies AFS-46-1, Alaska Dept. Fish and Game. 52p.

Wall, J., R. French, R. Nelson, Jr., and D. Hennik. 1978. Data from the observations of foreign.fishing fleets in the Gulf of Alaska, 1977. Nat'l Mar. Fish. Serv., Northwest and Alaska Fisheries Center, Unpublished mansucript. 28p.

Wall, J., R. French, and R. Nelson, Jr. 1979. Observations of foreign fishing fleets in the Gulf of Alaska, 1978. Nat'l. Mar. Fish. Serv., Northwest and Alaska Fisheries Center, Unpublished manuscript. 60p.

Wall, J., R. French, and R. Nelson, Jr. 1980. Observations of foreign fishing fleets in the Gulf of Alaska, 1979. (Document submitted to annual meeting of the International North Pacific Fisheries Commission, Anchorage, Alaska, September 1980) 78p. Northwest and Alaska Fisheries Center, Nat'l Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Wa11, J., R. French, and R. Ne1son, Jr. 1981. Observations of foreign fishing fleets in the Gulf of Alaska, 1980. (Document submitted to the annual meeting of the International North Pacific Fisheries Commission, Vancouver, B.C., Canada, September, 1981). 60p. Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112. \#13.

Wallis, J. 1980. Monitoring of Kachemak Bay subsistence fishery for harvest of steelhead trout. Alaska Dept. Fish and Game, Report to the Board of Fisheries. 13p. 非46.

Washington Department of Fisheries. 1978. 1978 status of Puget Sound summer-fall chinook salmon and recommendations for management. Wash. Dept. Fish., Harvest Management Div., Prog. Rep. 70. 16p. \#29。

Washington Department of Fisheries. 1979. 1979 status of Puget Sound summer-fall chinook and pink salmon and recommendations for management. Wash. Dept. Fish., Harvest Management Div., Prog. Rep. 89. 20p. \#30.

Welander, A. D. 1940. A study of the development of the scale of the chinook salmon (Oncorhynchus tshawytscha). M,S. Thesis, Univ. Washington, Seattle. 59p.

Winans, G. 1982. Multivariate morphometric measurements from juvenile chinook used for stock separation. Pers. Comm., Northwest and Alaska Fisheries Center, Nat'1. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112. 7p. \#81.

Worlund, D. D., R. J. Wahle, and P. D. Zimmer. 1969. Contribution of Columbia River hatcheries to harvest of fall chinook salmon (Oncorhynchus tshawytscha). Fish. Bull. 67(2):361-391.

Wright, S. G. 1976. Status of Washington's commercial troll salmon fishery in the mid-1970's. Wash. Dept. Fish., Tech. Rep. \#21. 50p. \#6.

Wright, S. and J. Bernhardt. 1972. Maturity rates of ocean caught chinook salmon. Pac. Mar. Fish. Comm. Bull. 8:50-54.

Wright, S. G., and R. Brix. 1972. Geographic origin, trends, and timing of Washington's troll salmon (Oncorhynchus) catches, 1960-1969. Pac. Mar. Fish. Comm. Bull. 8:31-36.

Yancey, R. M., and F. V. Thorsteinson. 1963. The king salmon of Cook Inlet, Alaska. U.S. Fish and Wildl. Serv., Spec. Sci. Rep. Fish. 440. 18p. $\# 60$.

Young, F. R., and W. L. Robinson. 1974. Age, size, and sex of Columbia River chinook, 1960-69. Fish. Comm. Oregon, Data Rep. Ser. 4. 3lp. \#25.

Sample Site		cdill	Date
Western Alaska			
Lower Yukon R.			
Emmonak	8-1/2	1-4	1975
Emmonak	in mesh		
"	1	6-7	1
"	"	9-15	"
"	"	17-18	11
"	"	23-29	"
"	"	34-39	"
"	"	40	"
"	"	45-51	"
Emmonak	8-1/2	1	1976
"	in mesh	3-8	"
1	"	11-17	"
"	"	22-28	"
11	"	34-39	"
"	'	44-50	"
Enmonak	8-1/2	1-12	1977
"	in mesh	17-23	1
-	"	28-34	"
"	"	54	"
11	"	58	"
"	$\begin{gathered} 5-1 / 2 \\ \text { in mesh } \\ \text { ! } \end{gathered}$		"
		40-41	
*		54-55	'
"	"	60	11
	"	65	"
Emmonak	5-1/2	1	1978
Preseason	in mesh	3	1
"	"	7	11
18	8-1/2	10	11
	in mesh		11
Enmonak Commercial	1	17-20	"
			"
*	"	25-29	"
"	"	$34-40$ $45-46$	"
"	"	51-57	"
"	"	62-63	"
"	5-1/2	62	"
	in mesh		"
"		68	
"	"	70-74	4

Sample Site		cd	Date
Western Alaska			
Lower Yukon R.			
Emononak	5-1/2	45	1976
Commercial	in mesh	50	1976
Flat Island	8-1/2	1	1977
Test Fishing	in mesh		
	"	6-8	"
14	"	12	"
"	"	16	"
"	"	21	"
"	"	25	$"$
"	"	29	"
"	"	32	"
"	11	36	"
"	"	39	"
"	1	43	"
"	11	47	"
"	"	51	"
"	1	55	11
\%	"	59	"
"	1	63	"
"	"	67	1
"	"	69	"
"	"	73	1
"	"	75	1
"	"	78	"
"	"	80	"
"	"	83	1
11	5-1/2	10	"
	in mesh	10	
"	${ }^{\prime \prime}$	15	"
"	${ }^{\prime \prime}$	23	1
"	11	27	11
11	+	32	"
"	"	37	"
"	"	41	"
"	"	45	"
"	11	49	11
*	"	53	"
"	11	62	1
"	" 2	$\begin{aligned} & \text { unrdbl } \\ & \text { \#'s } \end{aligned}$	"
Flat Island Comercial	"	71	"
	"	77	"
"	"	84	"

Sample Sitecd \# Date
Western Alaska
Middle Yukon R.
Salcha R. Escap. from 1-63 1981
Big Eddy Creek 1-19 $"$

Sample Site
Yukon Territory
Upper Yukon R. Dawson

Dawson Studies

Dawson Fishway
Dawson Fishery

Yukon R. (Dead Recov)
Fresno Cr.

Bk \# Date

Sample Site	Bk 韭	Date
Yukon Territory		
Upper Yukon R.		
Yukon R. Mainstem	one	4 Aug 1977
Whitehorse fshwy	1	17 Aug
	2	Aug
	3	
10-14 mi downstream Yukon, Dawson	2	29 July
28 mi downstream Yukon, Dawson	3	
Yukon-Dawson	4	5 Aug
28-35 mi downstream Yukon, Dawson	5	5 "
10 ml downstream Yukon, Dawson	6	5 "
10 mi downstream Yukon, Dawson	7	6 "
10 mi downstream Yukon, Dawson	8	6 "
3.5 mi downstream Yukon, Dawson	9	$6^{\prime \prime}$
35 mi downstream Yukon, Dawson	10	6 "
10 mi downstream Yukon, Dawson	11	6 "
12-15 mi downstream Yukon, Dawson	12	
Chanidu Cr.	2	29 July 1978
	3	30 "
	4	30 "
	8	30 "
	9	31 "
Woodchopper Cr.	W-1	8 Aug
	W-2	1978
	W-3	5 Aug
	5	30 Jul
	6	30 "
	7-1	28 "
	7-2	30
	10	31 "
	13	4 Aug
	14	4 Aug
Whitehorse fishway	1	Aug
	2	7 Aug
	3	8 Aug?
	4	Aug
	5	
	6	Sept
	7	Aug
Dawson	11	2-3 Aug
	12	4 Aug
	15	4 "
	16	4 "
	A	1978
Yukon		1978
	c	1978
	D	1978
	E	1978

Sample Site	Bk \#	Date
Yukon Territory		
Upper Yukon R.		
Yukon	1	9 July 1980
	2	10 July
	5	19 July
	6	21 July
	7	21 July
Cassiar Cr.	9	28 July
Yukon	10	28 July
	12	30 July
	13	30 July
Woodchopper Cr.	1	31 July
	2	
	1	11 Aug
Cassiar Cr.	III	31 July
Cliff Cr.	4	1 Aug
	5	1 Aug
Yukon (Cliff?)	6	1 Aug
Christian Camp	1	2 Aug
Peterson's, Yukon	2	4 Aug
	4	1 Aug
Fresno Cr.	1	25 Aug
Cassiar Cr.	2	7 Aug
	3	8 Aug
Yukon	1	3 July 1981
	2	3 July
	4	4 July
	6	4-5 July
	10	8 July
	13	9-11 July
	14	11 July
	15	11 July
	16	13 July
	18	13 July
	19	13 July
	22	14 July
	23	15 July
	27	16 July
	42	25 July
	43	27 July
	45	28 July
	58	10 Ang
	59	12 Aug
	60	14 Aug
Dawson Comin	1-8	1981
	2 \#9 ${ }^{\text {5* }}$	"
	10-30	"
	42-43	1
Whitehorse Fishway	1-34	1

*Two cards, same number, with different scales

[^5]| Sample Site | cd \# | Date |
| :---: | :---: | :---: |
| Southeast Alaska | | |
| Crystal Cr. | 1-27 | $\begin{aligned} & \text { July 27- } \\ & \text { Aug 18, } \\ & 1981 \end{aligned}$ |
| Steep Cr. | 1-2 | $\begin{aligned} & \text { Aug 10, } \\ & 1981 \end{aligned}$ |
| Little Tahltan R. | 1-35 | $\begin{aligned} & \text { Aug 4-11, } \\ & 1981 \end{aligned}$ |
| " | 37-90 | $\begin{aligned} & \text { Aug 11-12, } \\ & 1981 \end{aligned}$ |
| Sashin Cr. | 1-44 | $\begin{aligned} & \text { Aug 6- } \\ & \text { Sept } 5 \text {, } \\ & 1981 \end{aligned}$ |
| Andrew Cr. | 1F-6F | $\begin{aligned} & \text { July 16- } \\ & \text { Aug } 21 \text {, } \\ & 1981 \end{aligned}$ |
| " | IM-5M | $\begin{aligned} & \text { July 16- } \\ & \text { Aug 17, } \\ & 1981 \end{aligned}$ |
| " | 1-12 | $\begin{aligned} & \text { Aug 6-20 } \\ & 1981 \end{aligned}$ |
| Nahlin R. | 1-12 | $\begin{aligned} & \text { Aug } 3 \text {, } \\ & 1981 \end{aligned}$ |
| Carroll R. | 1 | $\begin{aligned} & \text { July 21- } \\ & \text { Aug 8, } \\ & 1981 \end{aligned}$ |
| Cripple Cr. | 1-13 | $\begin{aligned} & \text { Aug 7-15, } \\ & 1981 \end{aligned}$ |

Taku R.

Sample Site	Bk	Date
Taku R Pier	1	25 June 1980
Taku R Barge	2	
"	3	"
"	4	29 June
Taku R Canyon	1	12 July 1981
Taku R Barge	1	29 June
"	2	"
"	3	7-12 July
"	4	13 July
"	5	3 Aug

Sample Site	Bk	Date
Stikine R	one	7-131975
	1-A	9 July
	2	13 June
	3	8 July
	4	12 July
Blanchard R	Al	July, Aug 1976
Bucks Bar	SR-2	2 8-28 July
Stikine R	1	27 May 1977
	19	30 June
	25	4 July
	10011	11-21 July
	101	21 July
Stikine R	1	9 July 1979
	2	
	1	23 July
	1	30 July
Lower Stikine	I	23 June 1980
	IV	24 June
	V	"
	VI	"
	11	30 June
	12	1
	13	1
	16	2 July
	17	"
	18	7 July
	19	8 July
	20	9 July
	22	15 July
	23	15 July
	24	16 July
	26	12 Aug
	27	2 Sep
Stikine		
Upper Fish.	2	2 July
	3	3 July
Lower Stikine	1	1 July 1981
	2	2-7 July
	3	7-8 July
	4	9-21 July
	5A	22 July - 1-17 Aug
	5B	1-17 Aug
Upper Stikine	1	25 June
	2	29 June
	3	2 July

Klukshu River

Yakoun River

Sample Site	Bk		Date
Yakoun	1	5	0ct 78
	4		Oct
	5		"
	6		"
	7		"
	8		11
Yakoun R			
Branch 47	two	24	Sept 79
	three	25	Sept
Yakoun R			
(holding pen)) four	29	Sept
Yakoun R	5	4	Oct
	six	5	Oct
Yakoun R (holding pen)) seven		Oct
$\begin{aligned} & \text { Yakoun } R \\ & \text { (mile } 22 \end{aligned}$			
Fridge)	elght	9	Oct
Yakoun R.			
(Beach seine)) 1		Aug 80
	2		
	1	18	Sept
Yakoun (area 1)) 2	23	Sept
	3	24	Sept
	4	25	Sept
	5	26	Sept
	6	30	Sept
	7	30	Sept
	8		
Yakoun 2 W	9	1	Oct
Yakoun R	10	"	
	11	"	
	12	"	
	13	3	Oct

Nass River

Sample Site	Bk	Date	Sample Site	Bk		Date
3 2-Nass	1	1 July,1977	Greenville	10		Jul
	2	5 July		11	3	July
	3	7 July		12	"	
	4	13 July		13		July
	5	14 July				
$3 \text { Z-Nass }$	1A	19 June, 1978				
	3	28 June				
$\begin{array}{ll} 3 & 2 \\ 3 & Y \end{array}$	13	$12 \mathrm{Ju} \mathrm{l}^{\text {a }}$				
	4	3 July				
Meziadin R	1	23 Sept.				
	2	11				
	3	"				
	4	"				
Meziadin R	1	Sum/Fall 1979				
	2					
	3	20 Aug				
Cranberry R Tseax R	1	Fall				
	1	${ }^{\prime \prime}$				
	2	11				
	3	"				
	4	"				
	5	"				
	6	11				
Cranberry R	02	11,12 July 1980				
	11	21 July				
	18	25 July				
	23	27,28 July				
	28	29,30 July				
Greenville R	2	19 July		-		
	3	18				
	4	"				
	5	"				
	6	"				
	7	"				
	B	"				
	9	"				
	10	11				
Meziadin R	1	2-17 July				
	2	18-24 July.				
Tseax R	1	25 July				
	3	16-17 Aug				
	4	17 Aug				
	6	30 Aug				
Greenville R	1	19 June 1981				
	2	"				
	3	11				
Nass R @ Grnvl	4	20 June				
	5	20 June				
	6	20 June				
	7	27 June				
	8	"				
Greenville	9	1 July				

Skeena R.

Sample Site	Bk	Date	Sample Site	Bk	Date
Tyee-Skeena	$3 \mathrm{C}-2$	19 June 1975	Tyee (Skeena)	14	5,7,8 July 1977
	$3 \mathrm{C}-9$	7-10 July		15	7-10 July
	$3 \mathrm{C}-10$	11-13 "		16	10-11 July
	$3 \mathrm{C}-11$	13-14 "		17	11-12 July
	$3 \mathrm{C}-12$	15 "		18	12-16 July
	$3 \mathrm{C}-13$	16-17 "		19	16-17 July
	$3 \mathrm{C}-14$	17 "		20	16,18 July
	$3 \mathrm{C}-15$	18 "		21	18,19, 21 July
	$3 \mathrm{C}-15$	July		22	20-21 July
	$3 \mathrm{C}-16$	18-19 July	Skeena-Tyee	1	14 June 1978
	$3 \mathrm{C}-17$	19 July	Skeena Test	2	19 June
	$3 \mathrm{C}-18$	20-27 July		3	24 June
	$3 \mathrm{C}-19$	27-29 July		4	26 June
Skeena Test	1	16 June 1976		5	28 June
	2	22-27 June		6	29 June
	3	26-30 "		7	30 June
	4	2-5 July		8	2 July
	5	6-7 July	Skeena	9	4 July
	6	7-9 July	Skeena Test	10	10 July
	7	9-11 July		11	10-14 July
	8	11-12 July		12	15-18 July
	9			13	19-23 July
	10	14-16 July		14	23-24 July
	11	16-17 Júly		15	29 July-1 Aug
	12	17-18 July	Skeena Test		
	13	19 July	Jack	1	4-21 July
	14	20 July	Skeena Test	2	11-14 June 1979
	15	20-22 July		3	17-19 June
	16	22-24 July		4	19-20 June
	17	24-26 July		5	20-22 June
	18	27 July-1 Aug		7	24 June
	19	1-4 Aug		8	25 June
Tyee (Skeena)	Chin 1	15-19 June 1977		9	26 June
	Chin 2	19-22 June		10	27-29 June
	Chin 3	22-24 June .		11	29 June-1 July
	Chin 4	25-26 June	,	13	2-3 July
	Chin 5	26-29 June		15	5-6 July
	Chin 6	27-28 June		16	6-7 July
	Chin 7	28-29 June		17	6-7 July
	8	29-30 June		20	9-10 July
	9	30 June-1 July		21	10-12 July
	10	30 June-2 July		22	13 July
	11	2 July		24	15 July
	12	2-4 July		25	16-18 July
	13	4-5 July		27	19-21 July
				29	23-28 July
				30	30 July-3 Aug

Skeena R.

Sample Site	Bk	Date
Skeena Test	1	12-15 June 1980
	2	15-17 June
	3	18-20 June
	4	21-22 June
	5	23-25 June
	6	26-28 June
	7	1-4 July
	8	5-6 July
	9	7-8 July
	10	10-11 July
	11	12-13 July
	12	14-18 July
	13	18-20 July
	. 14	20 July
	15	23-27 July
	16	28 July-2 Aug
	17	3-5 Aug
	18	6-8 Aug
Skeena Test	4	21-23 June 1981
	∇ (5)	23-26 June
	VI(6)	26-27 "
	7	27-28 "
	8	28 "
	9	$29^{\prime \prime}$
	10	" "
	11	1 July
	12	1-3"
	13	4-5 ${ }^{\prime \prime}$
	14	$6^{\prime \prime}$
	15	$7^{\prime \prime}$
	16	7-8
	17	8-9 "
	18	10-11 ${ }^{\prime \prime}$
	19	11-12
	20	13-19 "
	21	20-26 ${ }^{\text {t }}$
	22	4-6 Aug
	23	15 Aug

Appendix 1 (cont.'d)

Bella Coola

Sample Site	Bk	Date	Sample Site	Bk	Date
Bella Coola	1	Dec 1976,	Bella Coola	20	3 Jun 1979
		Jan \& Feb 77		21	4 Jun
	1	19 Jul 76		46	13 Jum
	2	19 Jul 76		47	9-11 Jun
	3	19 Jul 76		56	22-28 Jun
				103	19 Ju
Bella Coola	1	23 May 1977		122	10 Jul
	3	24 May		9	12-20 May (80?)
	4	24 May			
	5	24 May	Bella Coola	1	7 May 1980
	1	14 Jun		2	14 May
	4	27 Jun		1	20 May
	6	21 Jun	Bella Coola-		
	7	19 Jun	Atnarko	2	24 May
	1	3 Jul	Bella Coola	3	28 May
	2	4 Jul		4	28 May
	3	4 Jul		1-5	3-24 Jum
	4	6 Jul		1	18 May, 2 Jun
	A	25 Jun		2	11 Jun
	1	7 Jul		3	11 Jun
	1	Jun		4	11 Jun
	2	3 Jul		2	29 Jun-11 Jul
				1	26 Jun-16 Jul
Bella Coola	1	5? Jun 1978		1	1 Jul
	2	5 Jun		2	1 Jul
	3	6 Jup		3	1 Jul
	1-A	4-5 Jun		9	12-20 May (79?)
	2	3-6 Jun			
	3	7 Jun	Bella Coola	1	18 May 1981
	4	7-8 Jun		2	18 May
	5	8-11 Jun		4	18 May
	6	11-13 Jum		1	25 May
	7	14,15,18 Jun?		2	25 May
	8	18 Jum		3	25 May
	9	20,21, 22, 25 Jun		1	1 Jun
	10	25-28 Jun		2	1 Jun
	11	29 Jun.		3	1 Jun
		2-4 Jul		4	1 Jun
	12	4-6 Jul		4	8 Jun
	13	9,10,11 Jul		5	8 Jun
	14	11-13,16 Jul		6	8 Jun
	15	16-17,23 Jul		7	8 Jun
	16	23 Jul - 10 Aug		1	15 Jun
	1	25 Jun		2	15 Jun
Bella Coola				1	$25 \text { Jun }$
	2 12	6 May 1979 $\text { 20, } 27 \text { May }$		2	29 Jun
	16	30 May		3	$29 \text { Jun }$ $7 \mathrm{Jul}$
	18	6 Jun		1	13 Jul

Appendix 1 (cont.'d)

Robertson Htchy (Area 23)

Fraser R.

Sample Site	Bk		Date	Sample Site	Bk	Date
Fraser R	1	15	Apr 1975	Glenrose	1	4 May 1976
	2	1	${ }^{\prime \prime}$		2	" "
	3	"	"		3	" ${ }^{\prime \prime}$
	4		"		4	" "
	6	"	"		5	" "
	6-2		"		1	11 May
	7	"	"		2	" "
	8	"	"		3	" "
	9	"	"		4	118
	10	"	"		5	" "
Glenrose	1		May		1	25 May
	2		"		2	" "
	3	"	"		3	" "
	4	"	"		4	"
	5	"	11		5	" "
	6	"	"		1	1 June 1976
	7	11	"		2	" "
	1	27			3	" "
	2	"	${ }^{\prime \prime}$		4	" "
	3	"	"		5	" "
	4	11	1		1	8 June
	5		"		2	
	6	11	11		3	" "
	7	"	$"$		4	" "
	1	10	June		5	" "
	2	"	"	,	1	15 June
	3	"	11		2	" \quad "
	4	"	0		3	$1{ }^{\prime \prime}$
	5	"	1		4	" "
	6	${ }^{\prime \prime}$	"		5	" "
	7	"	"		1	29 June
	1	23	July		2	" "
	2	"	"		3	
	3	"	11		4	" "
	4	"	"		5	" "
	5	"	11		1	6 July
	1	26	Aug		2	
	2	"	"	-	3	
	3	"	"		4	" "
	4	"	1		5	" "
	5	"	"		6	
	1	3	Sept		1	21 July
	2	1	"		2	" "
	3	1	"		3	
	4	"	1		4	"
	5	"	"		5	
					1	28 July
					2	" "
					3	" "
					4	" "
					5	

Appendix 1 (cont.'d)

Fraser R.

Appendix 1 (cont.'d)

Fraser R.

Sample Site	Bk	Date
Glenrose	216	11 Sept 1978
	217	" ${ }^{\prime \prime}$
	218	" "
	219	" "
Albion	1	7 Oct 1978
	2	" "
Whonnock	4	12,13 Oct 1978
	5	13,14 Oct
	6	14 Oct
	7	14,15 Oct
	8	15,16 Oct
	9	17 Oct
Albion	10	18 Oct 1978
	11	20 Oct
	12	22,23,30,31 Oct
	13	31 Oct, 1,3,4,5,9 Nov
	14	9,10,11,18,19,21 Nov
	15	5,9,16 Dec

Appendix 1 (cont. 'd)

Fraser River, 1979 and 1980

Appendix 1 (cont.'d)

Fraser River, 1980 and 1981

Sample Site	Bk	Date	Sample Site	Bk	Date
F.R.T.F.					
Albion	13	19 Jun 1980	Albion	20	9 Jun 1981
	16	21 Jun		22	
	17	24 Jun		24	11
	19	26 Jun		26	11 Jun
	21	28 Jun		28	13 Jun 81?
	22	2 Jul		30	18 Jun
	24	3 Jul		32	20 Jun
	26	5 Jul		34	23 Jun
	27	8 Jul		36	25 Jun
	29	10 Jul		38	25,27 Jun
	32	12 Jul		40	27,30 Jun
	33	17 Jul		42	3 Jul
	34	15 Ju1		44	
	37	19 Jul		46	Jul
	39	24 Jul		48	14 Jul
	43	26 Jul		50	18 Jul
	44	29 Jul		52	23 Jul
	45	1 Aug		54	25,28 Jul
	46	5 Aug		56	30 Jul
	47	7 Aug		58	1,3 Aug
	48	B Aug		60	
5-7/8" mesh	1	4 Aug		62	8 Aug
	49	12 Aug		64	
	50	14 Aug		66	1981
	51	16 Aug		68	18 Aug
	53	18 Aug		70	20 Aug
	54	20 Aug		72	27,29 Aug
	55	28 Aug		74	3 Sep
	57	30 Aug		76	$8,10,12$
	58	6 Sep			15 Sep
	59	6 Sep		78	
	63	13 Sep		80	17,19 Sep
	66	20 sep		82	24 Sep
	68	23 Sep		84	26 Sep
F.R. Albion	72	25 Sep		86	29 Sep
10	04	8,9 Oct	-	88	
10	06	17,23 Oct		1	30 Sep
Albion	2	11,14 Apr 81		3	2 Oct
	4	23,25,28,	.	05	
		30 Apr ,		07	$7,8 \text { oct }$
		2,4 May		09	14 Oct
	6	2,5 May			
	8	5 May			
	10	7,9 May			
	12	12,16,19 May			
	14	21 May			
	16	26 May			
	18	1 Jun			

Quileute. R.

Sample Site	Bk	Date
Quileute	2000-2009	1977
"	2010-2019	"
"	2030-2039	"
"	2040-2049	1
"	2100-2109	"
11	2110-2119	"
"	2140-2149	"
"	2200-2209	"
"	2210-2219	"
"	2240-2249	1
${ }^{\prime \prime}$	2270-2279	"
"	2300-2309	11
"	2310-2319	"
"	2380-2389	"
"	2400-2409	11
"	2410-2419	"
"	2490-2499	11
"	2480-2489	'
"	2500-2509	"
"	2510-2519	"
Quileute	3000-3009	1978
"	3010-3019	
"	3020-3029	"
1	3030-3039	"
4	3040-3049	"
11	3050-3059	"
"	3060-3069	"
"	3070-3079	"
"	3080-3089	"
"	3090-3099	"
"	3100-3109	"
11	3110-3119	"
1	3120-3129	"
"	3130-3139	"
"	3140-3149	"
"	3150-3159	"
"	3160-3169	"
11	3170-3179	"
${ }^{1+}$	3180-3189	"
"	3190-3199	11
"	3200-3209	"
"	3210-3219	"

Quinault R.

Sample Site	Card \#	Date	Samole Site	Card \#	Date
Quinault R.	1	Oct 9, 1975	Quinault R.	1/1	Oct 24, 1979
"	3	Oct $30{ }^{\prime \prime}$	"	1/1	Nov 6 "
"		Nov 14 "		1/2	Dec 6 "
"		Nov 17 "	Quinault R.	1/1	April 15, 1980
Quinault R.		May 1, 1976	"	1/1	June 17 "
	1/1	May 24 "	\%	1/1	July 9
" -		May 26 "	"	1/1	July 11
"		June 2 "	"	$1 / 1$	Aug 11
4	1	June 9 "	1	1/1	Aug 25
11	1/2	Sept 3"	"	1/1	Sept 2
"	2/2	" " "	"	1/1	Sept 15
"	1/1	Nov 2 "	"	1/1	Sept 24
Quinault R.	1	June 6, 1977	"	1/2	Sept 30
"	1	June 17 "	"	1/1	Oct 10
1	1	June 23 "	11	1/1	Oct 15
*	1/3	June 29 "	1	1/1	Oct 23
"	1/1	Sept 14 "	1	1/1	Oct 28
1	1/2	Sept 20 "	$1{ }^{11}$	1/1	Nov 4
!	2/2	" " "	1	1/1	Nov 12
Ir	1	Sept 27 "	Quinault R.	1/1	May 4, 1981
"	1	Sept 30 "	1	2/2	June 3 "
"	1/1	Oct 6 "	"	1/1	June 18 "
"	1/1	Oct 11 "	"	1/1	July 8 "
4	1/1	Oct 12 "	'	1/1	July 24 "
"	1/1	Oct 27 "	14	1/1	Aug 11 "
"	1/1	Nov 4 "	W	1/2	Aug 17 "
"	1/1	" "1	"	1/2	Sept 1 "
"	1/1	Nov 16 "	"	1/4	Sept 8 "
Quinault R.	1/1	Sept 19, 1978	"	2/4	Sept 15 "
	1/2	Sept 20 "	H	1/2	Sept $25^{\prime \prime}$
"	2/2	" " "	1	1/3	Oct 2 "
$1{ }^{\prime \prime}$	1/2	Sept 29	${ }^{*}$	1/2	Oct 8 "
"11	2/2	" " "	11	1/2	Oct 20 /
1	1/2	Oct 16	${ }^{\prime \prime}$	1	Oct 23 "
11	1/1	Oct 24 "	"	1/3	Oct 28 "
1	1/1	Oct 25	1	1/1	Nov 19 "
"	1/1	Oct 26 "	Queets R.	1/2	1975
"	1/2	Oct 30	"	2/2	"
${ }^{\prime \prime}$	2/2	" 11	"	1/1	Oct 101975
"	1/1	Oct 31	"	1/2	Oct 20 "
"	1/1	Nov 1	"	2/2	" " "
"	1/1	Nov 3	"		Oct 29
"	1/1	Nov 7 "	Queets R.	1/6	1976
Quinault R.	1/1	April 20, 1979	"	2/6	"
"	1/1	May 21 "	"	3/6	11
"	1/1	June 5 "	"	4/6	\%
H	1/1	June 21 "	"	5/6	*
"	1/1	July 9	"	6/6	*
"	1/1	July 18	Queets R.	1/2	June, 1977
1	1/1	July 31	1	2/2	" 1
${ }^{\prime \prime}$	1/1	Aug 20	${ }^{4}$	1	June 23"
"	1/2	Aug 27 "	1	1/2	July "
"	1/2	Sept 1	11	2/2	"
"	1/2	Oct 8	"	1/2	July 12"
"	1/2	Oct 15	1	2/2	$1{ }^{\prime \prime}$
${ }^{\prime}$	1/1	Oct 19 "	*	1/2	Aug 1 "

Sample Site	Card \#	Date	
Queets R.	1/1	Sept 30,	1980
"	1/1	Oct	"
"	1/2	Oct 27	"
"	1/3	Nov 3	"
11	2/8	" ${ }^{\prime}$	1
${ }^{\prime \prime}$	1/2	Nov 6	"
Queets R.	1/1	June 3,	1981
"	1/1	June 22	"
"	1/1	July 8	"
"	1/2	Sept 3	"
"	2/3	Sept 4	"
"	1/2	Sept 15	"
"	1/2	Sept 23	"
"	1/1	Oct 1	"
"	2/4	Oct 7	"
11	1/3	Oct 22	"
"	1/8	Oct 29	"
"	2/8	" "	"
"	3/8	" 1	"
"	6/8	" "	"
"	1/1	Nov 18	1
Humptulips R. "		Oct 29, Nov 7	1975
Humptulips R. 11	1	$\text { Oct } 5,1$	$\begin{gathered} 1976 \\ 11 \end{gathered}$
Humptulips R.	1	Sept 27,	1977
1	1	Sept 29	
"	1	Sept 30	1
"	1	Oct 18	1
Humptulips R.	1	Oct 11,	1978
"	1/2	Oct 16	!
"	2/2	" ${ }^{\prime}$	11
"	1/1	Nov 2	"
"	1/2	Nov 8	"
"	2/2	" "	"
1	1	Nov 15	1
Humptulips R. "	1/1	Nov 16, Nov 21	$\begin{gathered} 1979 \\ 11 \end{gathered}$
$1{ }^{\prime \prime}$	1/1	Nov 29	"
"	1/1	Dec 5	"
Humptulips R.	1/1	Sept 22,	1980
"	1/1	Oct 14	"
"	1/1	Oct 21	1
18	1/1	Oct 23	"
"	1/1	Nov 10	"
"	1/1	Nov 12	1
1	1/1	Nov 21	"
Humptulips R.	1/1	Sept 21,	1981
1	1/1	Sept 22	"
"	1/1	Oct 6	"
"	1/2	Oct 8	"
"	2/2	" "	"
11	1/2	Oct 9	"
"	2/2	"	1
"	1/2	Oct 14	"

Sample Site	Card \#	Date		Sample Site	Card \#	Date	
Humptulips R.	2/2	Oct 14, 1981		2 D	1	Oct 7, 1	1976
11	1/2	Oct 26 "		"	1	Oct 11	"
1	2/2	" " 1		4	1	Oct 12	"
Chehalis R.		Oct 18, 1976		"	2	" "	1
Chehalis R.	1/1	Sept 30, 1977		"	1	Oct 14	"
"	1/1	Oct 5 "		"	I	" "	1
"	1/1	Oct 18 "		"	1	"	"
Chehalis R.	1/2	Oct 3, 1978		"	1	Oct 25	11
"	2/2	" " "		"	1	Oct 27	"
11	1/1	Oct 5		"	2	" 1	4
"	1/1	Oct 11 "		"		Oct 28	"
"	1	Oct 12 "		"	II	Nov 1	'
"	1/1	Oct 15		1	39	Dec 12	"
"	1/1	Oct 16 "		2 B	3	Sept 25,	, 1980
"	1/1	Oct 17 "		11	1	Oct 3	
Chehalis R.	1/1	Dec 6, 1979		2 D	1	Sept 25	"
Chehalis R.	1/2	Sept 22, 1980		"	2	17	"
"	1/1	Sept 24 "		"	1	Sept 26	"
"	1/1	Sept 29		"	1	Oct 1	"
"	1/1	Oct 7 "		1	1	Oct 2	"
"	1/1	Oct 10 "		"	1	Oct 3	"
"'	1/1	Oct 15		"	2	" "	"
"	1/1	Oct 21 "		Willapa Bay	1	(wk 36),	, 1975
Chehalis R.	1/2	Sept 22, 1981		\square	2	"	"
11	1/2	Oct 6 "		"	3	11	"
"	1/2	Oct 9		1	1	(wk 37)	"
"	1/2	Oct 13		"	2	"	"
"	2/2	" 1 "		"	3	"	"
"	1	Oct 26		"	1	(wk 38)	"
Gray 's Harbor	1	(week 39), 1975		"	2		"
	2			"	1	(wk 39)	"
"	1	Sept 29 (Wk 40)		"	2	"	18
"	2	Oct 2 "		"	1	(wk 40)	"
"	3	Oct 3		"	1	(wk 41)	${ }^{1}$
"	4	"		"	2	"	"
"	7	"		"	3	"	"
"	1	(wk 41)		2	29	Oct 6\&7,	, 1976
"	3	"		2G	1	Sept 2	1
"	4	"		"	1	" "	"
"	5	Oct 6		"	2	" 1	"
"	6	Oct 8 "		"	2	$1{ }^{\prime}$	"
"	8	(wk 42)		"	1	Sept 6	"
"	1	(wk 45)		"	1	"	1
West Port	1	Oct 27 (wk 44),	1976	"	2	"	"
(Gray's Harbor)				2 G \& 2 J	1	Sept 9	"
$2 \mathrm{~B} \& \mathrm{C}$	1	Oct 18	"	2 G	1	Sept 13	11
2 C	1	Oct 25	"	${ }^{\prime \prime}$	1	Oct 18	"
"	. 2	" ${ }^{\prime}$	"	"	1	Oct 20	"
"	I	Nov 1	"	2 H	30	Oct 7	"
2 D	1	Sept 16	"	2 J	3	Sept 2	"
"	1	Sept 20	"	11	2	Sept 6	"
"	1	Sept 23	${ }^{11}$	2 G	3	Sept 6,	1979
"	1	" "	"	"	1	Sept 10	"
"	1	Sept 27	"	"	1	Sept 17	"
"	1	Oct 4	"	11	2	" "	1

Appendix (cont.'d)

Sample Site Card \#		Date			Sample Site Card ${ }^{\text {S }}$		Date	
Hood Canal	cks				12 C	5	Aug 13,	1980
"	2	Aug 16,	1975		"	1	Aug 18	
Hood Canal					"	2	,	"
(12 D)	1	Aug 20	11		"	1	Aug 19	"
Hood Canal	4	Aug 21 ((wk 34)	1975	"	3	Aug 20	"
"	1	Aug 27		11	"	1	Aug 27	"
Hood Canal					"	1	Sept 2	4
(12 D)	1	Sept 3 (wk 36)		"	"	2	"	1
Hood Canal	3	Sept 4	1	"	"	1	$\text { Sept }_{\text {II }} 16$	"
	3	Sept 8	(wk 37)	"	1	2		
12 D	7	July 30,	, 1976		$12 \mathrm{~B} \mathrm{\& C}$	1	Aug 17,	1981
'	1	Aug 2	"		"	2		
1	8	Aug 5	"		"	3	"	1
"	5	Aug 6	"		"	4	"	"
1	9	Aug 12	"		"	5	"	"
"	5	Aug 18	"		12,12 B\&C	1	Aug 24	1
"	7	Aug 20	"		11	4	"	"
1	2	Aug 23	11		"	6	"	"
"	2	Sept 7	"		Mx: 12 C	1	Aug 25	
11	4	Sept 9	"		"	2		"
"	1	Sept 27	"					
"	2	Sept 28	11					
12 D	1	July 25,	, 1977					
"	1	July 26	1					
"	1	Aug 2	"					
11	1	Aug 3	"					
"	1	Aug 4	"					
"	1	Aug 8	"					
"	1	Aug 9	"					
"	1	Aug 10	"					
"	1	Aug 16	11					
"	1	Aug 17	"					
"	1	Aug 24	"					
*	2	*	"					
"	3	4	"					
1	4	"	"					
12 D	168	July 19,	, 1978					
"	256	Aug 2	"					
"	1(254)	Aug 8	"					
"	43	Aug 15	11					
"	58	Aug 18	"					
"	1(76)	Aug 22	"	.				
"	1(39)	Aug 23	"					
"	1 (164)	"	"					
"	2(165)	"	"					
1	1 (38)	Aug 24	"					
11	1(186)	Aug 27	11					
12 C	2	July 30,	, 1979					
"	1	July 31	"					
11	1	Aug 7	"					
"	2	Aug 10	"					
"	3	"	"					
"	2	Aug 13	"					
"	2	Aug 17	"					
"	3		"					
"	1	Aug 22	"					
"	2		"					

[^0]: ${ }^{2}$ Data provided by $\operatorname{ADF\& G}$ (D. McBride) and collected by Mr. M. Nelson.

[^1]: Fig. 7. Annual catches (commercial and subsistance) of chinook salmon from the Yukon and Kuskokwim rivers and estimates of the runs (catch and escapement) to the Nushagak River 1952-81.

[^2]: 3 Personal communication with Dr. Stanislav Konovalov and Dr. Victor Tumanov, TINRO.

[^3]: *Including unaged fish.

[^4]: ＊Reference number of the article in our publications file．

[^5]: *Two cards, same number, with different scales.

