Chum Salmon Stock Status and Escapement Goals in Southeast Alaska through 2019

by

Andrew W. Piston

and

Steven C. Heinl

December 2020

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc.)$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
,	<i>y</i>	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	log ₂ etc.
degrees Celsius	°C	Federal Information		minute (angular)	32,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_0
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	рH	U.S.C.	United States	population	Var
(negative log of)	F		Code	sample	var
parts per million	ppm	U.S. state	use two-letter	F	
parts per thousand	ppt,		abbreviations		
L ber measure	% %		(e.g., AK, WA)		
volts	V				
watts	W				

SPECIAL PUBLICATION NO. 20-10

CHUM SALMON STOCK STATUS AND ESCAPEMENT GOALS IN SOUTHEAST ALASKA THROUGH 2019

By

Andrew W. Piston and Steven C. Heinl Alaska Department of Fish and Game, Division of Commercial Fisheries, Ketchikan

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

> > December 2020

The Special Publication series was established by the Division of Sport Fish in 1991 for the publication of techniques and procedures manuals, informational pamphlets, special subject reports to decision-making bodies, symposia and workshop proceedings, application software documentation, in-house lectures, and became a joint divisional series in 2004 with the Division of Commercial Fisheries. Special Publications are intended for fishery and other technical professionals. Special Publications are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/sf/publications/. This publication has undergone editorial and peer review.

Andrew W. Piston and Steven C. Heinl, Alaska Department of Fish and Game, Division of Commercial Fisheries, 2030 Sea Level Drive, Suite 205, Ketchikan, Alaska 99901, USA

This document should be cited as follows:

Piston, A. W., and S. C. Heinl. 2020. Chum salmon stock status and escapement goals in Southeast Alaska through 2019. Alaska Department of Fish and Game, Special Publication No. 20-10, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203
Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage AK 99518 (907) 267-2375.

TABLE OF CONTENTS

		Page
LIST OF	F TABLES	i
LIST OF	F FIGURES	ii
LIST OF	F APPENDICES	iii
ABSTR	ACT	1
INTROI	DUCTION	1
	ASSESSMENT	
Escapen	nent Monitoring	3
-	num Salmon Stocks	
Hatchery	y Chum Salmon Stocks	5
Harvest.		8
ESCAPI	EMENT GOALS	11
STOCK	STATUS	14
Southern	n Southeast Summer-Run Chum Salmon	14
Northern	n Southeast Inside Summer-run and Fall-run Chum Salmon	14
	n Southeast Outside Summer-Run Chum Salmon	
	ndeley Sound Fall-Run Chum Salmon	
	nden Fall-Run Chum Salmon	
•	Bay Fall-Run Chum Salmon	
	on River Fall-Run Chum Salmon	
	River Fall-Run Chum Salmon.	
	ver Fall-Run Chum Salmon	
	SSION	
Hatchery	y Chum Salmon Straying	32
ACKNO	OWLEDGEMENTS	34
REFERI	ENCES CITED	35
APPENI	DIX A: SOUTHEAST ALASKA CHUM SALMON ESCAPEMENT INDICES	39
APPENI	DIX B: SOUTHEAST ALASKA CHUM SALMON HARVEST	71
	LIST OF TABLES	
Table		Page
1.	Summary of escapement goals for Southeast Alaska chum salmon stocks	3
2.	Four tiers recommended by Bue and Hasbrouck to set sustainable escapement goals based on percentiles of observed escapement counts.	12
3.	Three tiers recommended by Clark et al. to set sustainable escapement goals based on percentiles of	
4	observed escapement counts for stocks that experience low to moderate harvest rates.	13
4.	Proportions of stray hatchery chum salmon from samples collected in select streams in the Northern Southeast Outside Subregion of Southeast Alaska in 2018 and 2019.	18

LIST OF TABLES (Continued)

Table		Page
5.	Total escapement of Chilkat River fall chum salmon, based on mark-recapture studies and expanded fish wheel catches, and estimated annual commercial harvests, total runs, and harvest rates,	
	1990–2016	29
	LIST OF FIGURES	
Figure		Page
1.	Annual common property harvest of chum salmon in Southeast Alaska from 1900 to 2019 showing	
	estimated harvests of both hatchery-produced and wild chum salmon.	2
2.	Mean run-timing of chum salmon in the Lynn Canal commercial drift gillnet fishery, illustrated by plotting the mean weekly proportion of the total annual harvest of chum salmon in the fishery, 1960–2019.	5
3.	Locations of ADF&G chum salmon index streams and summer chum salmon stock groups in	
٥.	Southeast Alaska.	6
4.	Locations of ADF&G regulatory districts in Southeast Alaska.	
5.	Number of hatchery-produced chum salmon fry released annually in Southeast Alaska, 1975–2019	
6.	Map of Southeast Alaska showing major towns and current hatchery chum salmon release sites	
7.	Annual releases of chum salmon by nonprofit hatcheries in Southeast Alaska, 1980–2019	10
8.	Escapement index for wild summer-run chum salmon in the Southern Southeast stock group and the	
	annual common property harvest of chum salmon in the Southern Southeast Subregion, Districts 1–8,	
9.	1960–2019 Escapement index for wild summer-run chum salmon in the Northern Southeast Inside stock group an	
9.	the harvest of chum salmon in the Northern Southeast Inside Subregion of Southeast Alaska,	ıu
	1960–2019.	16
10.	Harvest of fall-run chum salmon in the Northern Southeast Inside Subregion, 1960–2019.	
11.	Escapement index for wild summer-run chum salmon in the Northern Southeast Outside stock group,	
	1982–2019, and harvest of chum salmon in the Northern Southeast Outside Subregion, 1960–2019	19
12.	Annual escapement index and sustainable escapement goal range of wild fall-run chum salmon in	
	Cholmondeley Sound, and purse seine harvest of fall chum salmon in adjacent subdistrict 102-40	
13.	Annual escapement index and sustainable escapement goal range of wild fall-run chum salmon in Por	
1.4	Camden, and purse seine harvest of fall chum salmon in adjacent subdistrict 109-43	
14.	Annual escapement index and sustainable escapement goal range of wild fall-run chum salmon in Salr Chuck Creek, and purse seine harvest of fall chum salmon in adjacent Security Bay subdistrict 109-45	
15.	Annual escapement index and sustainable escapement goal range of wild fall-run chum salmon in the	23
15.	Excursion River, and purse seine harvest of fall chum salmon in adjacent Excursion Inlet subdistrict	
	114-80.	26
16.	Annual commercial drift gillnet harvest and catch-per-boat-day of fall chum salmon in Lynn Canal,	
	1960–2019.	
17.	Annual peak aerial survey counts of spawning chum salmon in the Chilkat and Klehini Rivers, 1969-	
1.0	2019, and estimated total escapement of chum salmon in the Chilkat River in 1990 and 1994–2019	28
18.	Annual escapement estimates and sustainable escapement goal range of Chilkat River fall chum	20
19.	salmon, 1990 and 1994–2019 Annual commercial drift gillnet harvest of wild fall-run chum salmon in Taku Inlet	
20.	Annual commercial drift gillnet catch-per-boat-day of fall-run chum salmon in Taku Inlet plotted with	3U
20.	the Taku River fish wheel catch of all chum salmon	
21.	Exvessel values of the pink and chum salmon harvest in Southeast Alaska, and average price per	
	pound of chum salmon in Southeast Alaska, 1994–2019.	32
22.	Location of Crawfish Inlet and sites related to hatchery chum salmon straying in the Northern	
	Southeast Outside Subregion in Southeast Alaska.	34

LIST OF APPENDICES

Apper	ndix	Page
A1.	Peak escapement index series for 15 Southern Southeast summer-run chum salmon index streams, by survey type, 1960–2019	40
A2.	Peak escapement index series for 63 Northern Southeast Inside summer-run chum salmon index	
	streams, 1960–2019	46
A3.	Peak escapement index series for nine Northern Southeast Outside summer-run chum salmon index	
	streams, 1982–2019	62
A4.	Peak escapement index series for Cholmondeley Sound fall-run chum salmon index streams, 1980-2019	66
A5.	Peak escapement index series for Northern Southeast Subregion fall-run chum salmon index streams,	
	1964–2019	67
A6.	Peak aerial survey counts of Chilkat and Klehini river fall-run chum salmon, 1969–2019	69
B1.	Harvest of chum salmon in the Southern Southeast Subregion, 1960–2019	72
B2.	Harvest of chum salmon in the Northern Southeast Inside Subregion, 1960–2019.	75
B3.	Harvest of chum salmon in the Northern Southeast Outside Subregion, 1960–2019	78
B4.	Total harvest of chum salmon in Southeast Alaska, 1960–2019.	
B5.	Terminal harvest of fall-run chum salmon in Southeast Alaska, 1960–2019	84

ABSTRACT

In Southeast Alaska, chum salmon (Oncorhynchus keta) spawn in more than 1,200 streams. The Alaska Department of Fish and Game maintains a standardized survey program to index spawning chum salmon abundance at 87 summerrun and seven fall-run streams. Lower-bound sustainable escapement goals are established for summer-run stocks comprising aggregates of index streams over three broad subregions (Southern Southeast, Northern Southeast Inside, and Northern Southeast Outside), and sustainable escapement goal ranges are established for five fall-run stocks that support directed fisheries (Cholmondeley Sound, Port Camden, Security Bay, Excursion River, and Chilkat River). Summer-run chum salmon escapement goals were met in all of the past five years in the Southern Southeast Subregion, four of the past five years in the Northern Southeast Inside Subregion, and three of the past five years in the Northern Southeast Outside Subregion. Escapement goals were met for the five fall-run stocks 83% of the time over the past five years. No Southeast Alaska stocks of chum salmon currently meet the criteria for stocks of concern as defined by the State of Alaska's Policy for the Management of Sustainable Salmon Fisheries (5 AAC 39.222). We reviewed chum salmon escapement goals and recommend no changes at this time. The annual common property harvest of chum salmon in Southeast Alaska averaged 7.7 million fish per year since 2010; hatchery-produced fish accounted for an average 86% of that harvest. Increased straying of hatchery chum salmon into streams in the Northern Southeast Outside Subregion from a new release site at Crawfish Inlet has complicated the assessment of wild chum salmon in that subregion and additional sampling is needed to determine the variation and geographic extent of straying from the new release site.

Key words: chum salmon, *Oncorhynchus keta*, escapement goals, escapement index, stock status, Chilkat River, Cholmondeley Sound, Crawfish Inlet, Excursion Inlet, Lynn Canal, Port Camden, Security Bay, Southeast Alaska, Straving, Taku River

INTRODUCTION

Chum salmon (*Oncorhynchus keta*) spawn in more than 1,200 streams in Southeast Alaska. Chum salmon are harvested primarily in commercial net fisheries and to a lesser extent by commercial troll fisheries, as well as sport, personal use, and subsistence fisheries. Annual commercial harvests of chum salmon in Southeast Alaska were historically at high levels in the early to mid-1900s, then gradually declined to their lowest levels in the late 1970s (Figure 1). The total harvest of chum salmon increased dramatically in the 1990s, including a peak total harvest of 16.0 million fish in 1996, and averaged 10.5 million fish over the most recent 10 years, 2010–2019. The common property harvest (total harvest minus hatchery cost recovery) of chum salmon during this same period averaged 7.7 million fish, and the total exvessel value of that harvest averaged \$65 million a year—well ahead of the next most valuable species, pink salmon (O. gorbuscha), at \$46 million a year. Much of this increase was due to the production of hatchery fish, which accounted for an average 86% of the commercial common property harvest of chum salmon from 2010 to 2019. Despite an increase in wild chum salmon abundance in the 1990s, abundance (as indicated by harvest) did not rebound to nearly the same degree as pink salmon (Zadina et al. 2004) and wild coho salmon (O. kisutch; Shaul et al. 2004), and remained well below harvest levels of the early 20th century (Van Alen 2000). Annual harvests of wild chum salmon have recently declined to the low levels previously observed in the late 1970s (Figure 1).

Stock-specific harvest information is not available for the vast majority of wild chum salmon stocks in Southeast Alaska, which are predominantly harvested in mixed stock fisheries far from their spawning grounds. Chum salmon are primarily harvested incidentally to other species in common property fisheries, which are managed based on abundance of other target species; for example, wild summer-run chum salmon stocks in Southeast Alaska are harvested incidentally in directed pink salmon purse seine fisheries. Some chum salmon runs are harvested directly in terminal or near-terminal fisheries, which allows for some accounting of stock-specific harvest;

however, in many cases these fish also migrate through mixed stock fisheries where the stock composition may not be known.

Figure 1.—Annual common property harvest of chum salmon in Southeast Alaska from 1900 to 2019 showing estimated harvests of both hatchery-produced and wild chum salmon. (Data prior to 1960 are from Byerly et al. 1999).

The Alaska Department of Fish and Game (ADF&G) developed a standardized program to estimate an annual index of spawning chum salmon abundance based primarily on aerial surveys (Heinl et al. 2004; Heinl 2005; Eggers and Heinl 2008). The trends in these indices provide a meaningful indicator of trends in the relative abundance of spawning chum salmon in Southeast Alaska. These indices also formed the basis of the first escapement goals for chum salmon in Southeast Alaska, which were established in 2009 (Eggers and Heinl 2008) and subsequently modified in 2012, 2015, and 2017 (Piston and Heinl 2011, 2014, 2017). Lower-bound sustainable escapement goals were developed for three broad regional aggregates of streams for summer-run chum salmon stocks, and sustainable escapement goal ranges were established for five additional fall-run chum salmon stocks.

In 2000 and 2001, the Alaska Board of Fisheries adopted the *Policy for the Management of Sustainable Salmon Fisheries* (5AAC 39.222) and the *Policy for Statewide Salmon Escapement Goals* (5 AAC 39.223) into state regulation to ensure that the state's salmon stocks would be conserved, managed, and developed using the sustained yield principle. These policies require ADF&G to report on salmon stock status and escapement goals to the board on a regular basis, document and review existing salmon escapement goals, establish goals for stocks for which escapement can be reliably measured, and prepare scientific analyses with supporting data when goals are created or modified. In order to meet requirements of these policies, Heinl et al. (2004) and Heinl (2005) produced ADF&G's first reports on stock status of chum salmon in Southeast

Alaska. They did not identify any chum salmon stocks in Southeast Alaska for which existing information was sufficient to establish escapement goals. Eggers and Heinl (2008) provided an update on stock status and recommendations on the first formal escapement goals for chum salmon in Southeast Alaska, which were updated by Piston and Heinl (2011, 2014, 2017). This report represents an update concerning the status of chum salmon in the region through 2019, including an evaluation of current escapement goals (Table 1).

Table 1.—Summary of escapement goals for Southeast Alaska chum salmon stocks.

Stock Unit	Enumeration Method	Current Escapement Goal	Escapement Goal Type	
Southern Southeast Summer-Run	Aggregate Peak Surveys	62,000	Lower-Bound SEG ^a	
Northern Southeast Inside Summer-Run	Aggregate Peak Surveys	107,000	Lower-Bound SEG	
Northern Southeast Outside Summer-Run	Aggregate Peak Surveys	25,000	Lower-Bound SEG	
Cholmondeley Sound Fall-Run	Aggregate Peak Surveys	30,000–48,000	SEG	
Port Camden Fall-Run	Aggregate Peak Surveys	2,000–7,000 SEG		
Security Bay Fall-Run	Peak Aerial Survey	5,000–15,000 SEG		
Excursion River Fall-Run	Peak Aerial Survey	4,000–18,000 SEG		
Chilkat River Fall-Run	Expanded Fish Wheel Count	75,000–250,000	SEG	

^a SEG=sustainable escapement goal.

STOCK ASSESSMENT

ESCAPEMENT MONITORING

There are more than 1,200 streams and rivers in Southeast Alaska for which ADF&G has a record of at least one annual adult chum salmon spawning count since 1960 (ADF&G Integrated Fisheries Database). Counts of 1,000 or more chum salmon were obtained at approximately 450 of those streams prior to 1985, when hatchery production of chum salmon began on a large scale. However, long time series of escapement information are not available for a majority of those streams. Summer chum salmon are most easily observed early in the season when there are few pink salmon present. It is often not possible to estimate numbers of chum salmon in streams that have substantial populations of pink salmon, and high pink salmon abundance in some years may have masked chum salmon escapements in many areas (Van Alen 2000). Of the chum salmon populations that have been consistently monitored, most have been monitored through aerial surveys, though several have been monitored annually by foot surveys. Inriver fish wheel counts have been used to monitor salmon escapements to the Taku and Chilkat Rivers, two large glacial mainland river systems.

In their review of available ADF&G chum salmon escapement survey data, 1960–2002, Heinl et al. (2004) identified 82 chum salmon streams, 76 summer-run and six fall-run, that had

sufficient survey information to be useful for assessing trends in spawning populations. Another three stocks were also examined but treated separately (Fish Creek–Hyder, Taku River, and Chilkat-Klehini River). Efforts have been made to continue to monitor this set of streams on an annual basis. Piston and Heinl (2014) updated these indices and increased the number of chum salmon index streams to 87 summer-run and seven fall-run systems upon which current escapement goals are based.

Heinl et al. (2004) pointed out the many limitations of these survey counts. In addition to the challenge of separating pink and chum salmon during routine aerial surveys, these subjective survey counts can only be used as is and it is not possible to adjust them to account for counting bias among observers or convert them to estimates of total escapement. An escapement estimate is a statistically reliable measure of escapement magnitude; i.e., the total number of fish in the escapement. An escapement estimate is approximately in the same units as the estimates of harvest, and harvest estimates and escapement estimates can logically be added together to produce an estimate of total run size. Alternatively, an escapement index is a relative measure of escapement, useful for year-to-year comparisons. The maximum survey counts used here underestimate the true escapement and can only be considered a relative indicator of escapement level.

WILD CHUM SALMON STOCKS

Southeast Alaska chum salmon index streams were grouped into appropriate stock groups by area and run-timing based on marine-tagging and genetic studies (Eggers and Heinl 2008). Chum salmon populations in Southeast Alaska are generally divided into two runs based on migration timing: summer-run fish peak during the period mid-July to mid-August and fall-run fish peak in September or later (Figure 2). Allozyme studies by Kondzela et al. (1994), Phelps et al. (1994), and Wilmot et al. (1994) suggested that run-timing is an isolating mechanism for chum salmon populations: "reproductive isolation between summer-run and fall-run chum salmon is an important component of the genetic diversity of this species" (Phelps et al. 1994). Marine tagging experiments conducted in the 1900s (e.g., Rich 1926; Rich and Suomela 1929; Rich and Morton 1930) demonstrated that Southeast Alaska chum salmon populations are mostly segregated into northern and southern components: northern fish migrated to inside waters via the entrances to Icy and Chatham Straits, whereas southern fish migrated to spawning areas through the entrance to Sumner Strait and Dixon Entrance. Genetic studies of Southeast Alaska and northern British Columbia chum salmon by Kondzela et al. (1994) also supported this separation of northern and southern components.

Southeast Alaska summer-run chum salmon index streams were grouped into three stock groups that comprise aggregates of index streams across broad subregions (Eggers and Heinl 2008; Piston and Heinl 2014). The Southern Southeast Subregion includes 15 index streams located primarily on inner islands and the mainland from Sumner Strait south to Dixon Entrance (Districts 1–7; Figures 3 and 4). The Northern Southeast Inside Subregion includes 63 index streams located on inside waters north of Sumner Strait (Districts 8–12, 14–15, and District 13 subdistricts 51–59; Figures 3 and 4). The Northern Southeast Outside Subregion includes nine index streams located on the outside waters of Chichagof and Baranof Islands in northern Southeast Alaska (District 13, excluding Peril Straits and Hoonah Sound subdistricts 51–59; Figures 3 and 4). Southeast Alaska fall-run chum salmon index streams were grouped into stocks that support, or have supported, terminal commercial fisheries in the past. These stocks include Cholmondeley Sound, Security Bay, Port Camden, Excursion Inlet, and the Chilkat River.

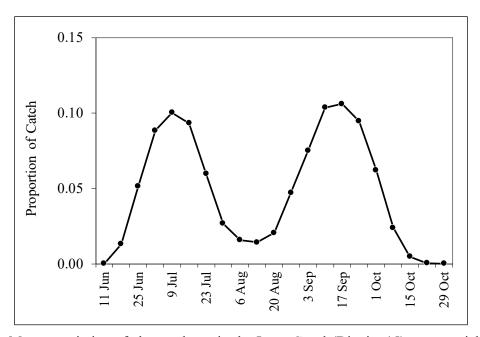


Figure 2.—Mean run-timing of chum salmon in the Lynn Canal (District 15) commercial drift gillnet fishery, illustrated by plotting the mean weekly proportion of the total annual harvest of chum salmon in the fishery, 1960–2019. All chum salmon harvested in this fishery from statistical week 34 (average midweek date 19 August) and later are considered fall-run fish.

We have compiled annual peak aerial and foot survey data for all of the index streams. If a particular index stream was missing escapement counts for any given year, an iterative expectation-maximization algorithm (McLachlan and Krishnan 1997) was used to interpolate a missing value in order to maintain a set of index counts that is comparable across all years. Values were interpolated based on the assumption that the expected count for a given year was equal to the sum of all counts for a given stream, times the sum of all the counts in a given year for all the streams in the unit of interest, divided by the sum of all counts over all years for all the streams in the unit of interest. Data were arranged in a matrix and the interpolated value was calculated as the row total times column total divided by grand total—in this case, the unit of interest is the stock group, and interpolations for missing values were made at the stock group level. This method is based on an assumed multiplicative relation between yearly count and unit count, with no interaction.

HATCHERY CHUM SALMON STOCKS

Hatchery production of chum salmon in Southeast Alaska has increased substantially over the past four decades. In 1980, hatchery operators in Southeast Alaska released 8.7 million chum salmon fry at eight locations; by 2019, this number had risen to 524 million fry released at 23 locations (Figures 5 and 6). Seven new release sites for chum salmon have been approved in Southeast Alaska since 2012: Crawfish Inlet (Northern Southeast Regional Aquaculture Association [NSRAA]), Thomas Bay (NSRAA), Port Malmesbury (NSRAA); Port Lucy (Armstrong-Keta, Inc), Burnett Inlet (Southern Southeast Regional Aquaculture Association [SSRAA]; former Alaska Aquaculture Inc. release site through 1995), McLean Arm (alternate year releases occurring between Kendrick and McLean; SSRAA), and Port Asumcion (SSRAA). As of 2019, chum salmon releases have occurred at all the new sites except Port Malmesbury and Port Lucy (Figure 6).

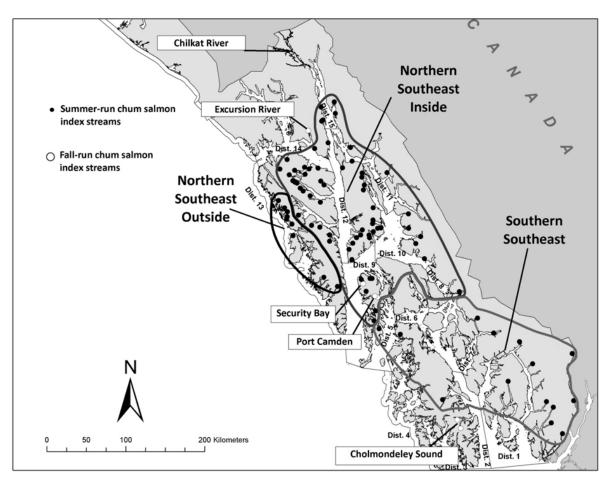


Figure 3.–Locations of ADF&G chum salmon index streams and summer chum salmon stock groups in Southeast Alaska.

Significant hatchery runs of chum salmon have been produced in southern Southeast Alaska by Southern Southeast Regional Aquaculture Association (SSRAA). Initial releases occurred in 1980 and production increased to an average of 94 million fry per year in the 1990s (Figure 7). Production gradually increased again, starting in the early 2000s and averaged 153 million fish per year from 2010 to 2019. SSRAA currently releases summer chum salmon at Nakat Inlet, Kendrick Bay, McLean Arm, Neets Bay, Port Asumcion, Anita Bay, and Burnett Inlet. SSRAA also releases fall-run stocks at Nakat Inlet, Neets Bay, and Burnett Inlet, and fall runs averaged roughly 15% of production over the last 10 years. SSRAA has marked nearly 100% of all releases in order to track returns: broods 1979–2002 were marked with coded wire tags, and broods 2002 and later were thermally marked. The 2002 brood was double-marked with both coded wire tags and thermal marks in order to compare estimates of harvest based on analyses using each mark type.

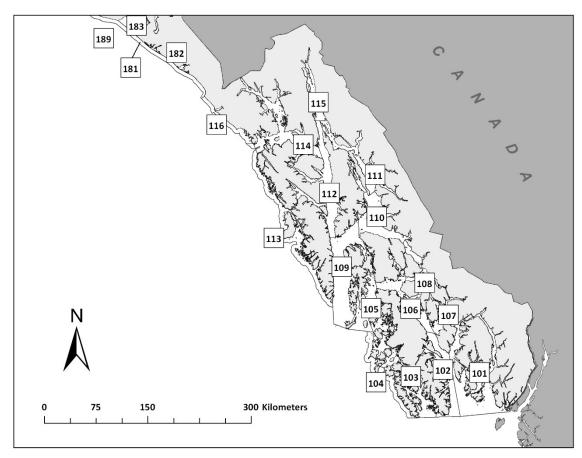


Figure 4.-Locations of ADF&G regulatory districts in Southeast Alaska.

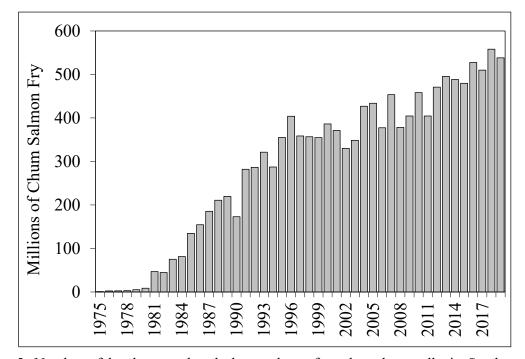


Figure 5.-Number of hatchery-produced chum salmon fry released annually in Southeast Alaska, 1975-2019.

Significant hatchery runs of chum salmon have been produced in northern Southeast Alaska by Northern Southeast Regional Aquaculture Association (NSRAA). Initial releases occurred in 1981 and production increased steadily to an average of 172 million fry per year from 2010 to 2019, making it the largest producer of chum salmon in the state. The largest chum salmon releases have been at Hidden Falls (Kasnyku and Takatz Bays; Figure 6) and Deep Inlet. NSRAA began releasing chum salmon at Southeast Cove, a former Kake Non Profit Fisheries Corporation release site, in 2013. Releases of chum salmon at their most recently permitted release sites began in 2015 at Crawfish Inlet and in 2017 at Thomas Bay (Figure 6). Historically, NSRAA initiated thermal marking with the 1991 brood, and the proportion of releases that were thermally marked averaged 90% since 2004 and reached 100% since 2016 (Figure 7).

Douglas Island Pink and Chum, Inc. (DIPAC) has also produced significant hatchery runs of chum salmon in northern Southeast Alaska. Initial releases occurred in 1977; production increased through the 1980s and has been fairly stable since 1991, with average releases of 100 million fry annually (Figure 7). DIPAC releases chum salmon at Amalga Harbor, Gastineau Channel, Limestone Inlet, and Boat Harbor. DIPAC has consistently marked its releases, initially with coded wire tags (through the 1992 brood) and later with thermal marks (since the 1991 brood), and 100% of its releases have been thermal marked since the 1997 brood.

Smaller numbers of hatchery chum salmon have been released by Kake Non Profit Fisheries Corporation (at Gunnuck Creek and Southeast Cove; now NSRAA sites), Sitka Sound Science Center (at Crescent Bay and Deep Inlet), Armstrong-Keta, Inc. (at Port Armstrong), and Metlakatla Indian Community (at Annette Island). The total releases for these operators combined ranged from 26 to 97 million fish since 1997 (Figure 7). Releases from Armstrong-Keta, Inc. have been 100% thermal marked since 2006, and approximately 90% of the chum salmon released annually from these operators have been thermal marked during the most recent 10-year period (Figure 7).

HARVEST

Commercial harvest data are compiled from ADF&G fish ticket information. Commercial harvest data provide estimates of the total harvest in a fishery, but not stock composition. Wild chum salmon are harvested primarily in mixed stock fisheries, typically some distance from spawning areas, and it is usually not possible to account for stock-specific harvests. Some wild chum salmon runs, particularly fall-run fish, are harvested directly in terminal or near-terminal fisheries, which allows for some accounting of stock-specific harvest; however, in many cases those fish also migrate through mixed stock fisheries where stock composition may not be known.

In addition, our knowledge of the harvest of wild chum salmon, particularly summer-run fish, is imprecise because of the high abundance of hatchery fish in mixed stock commercial fisheries since the early 1990s. Over the past decade, an average 39% of the annual common property chum salmon harvest occurred within hatchery terminal harvest areas (defined in regulation as either terminal harvest areas or special harvest areas) adjacent to hatchery release sites where stock composition is assumed to be entirely hatchery fish. However, substantial harvest of hatchery stocks also occurs in traditional mixed stock common property fisheries.

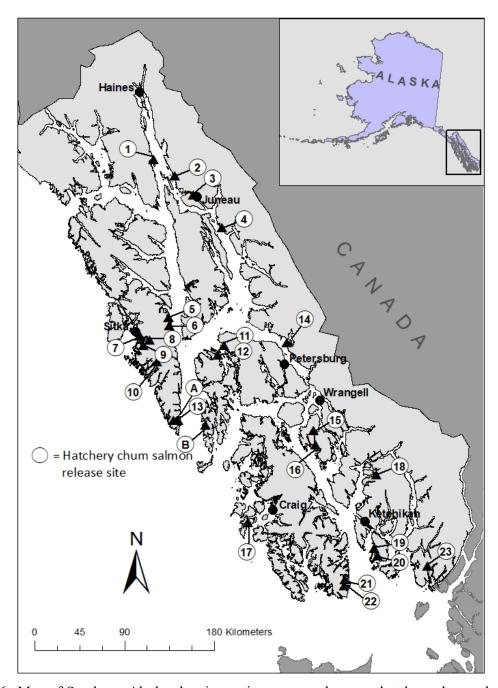


Figure 6.—Map of Southeast Alaska showing major towns and current hatchery chum salmon release sites. Hatchery release sites and operators are represented by numbered circles: 1) Boat Harbor (DIPAC), 2) Amalga Harbor (DIPAC), 3) Gastineau Channel (DIPAC), 4) Limestone Inlet (DIPAC), 5) Kasnyku Bay (NSRAA), 6) Takatz Bay (NSRAA), 7) Crescent Bay (Sitka Sound Science Center), 8) Bear Cove (NSRAA), 9) Deep Inlet (NSRAA), 10) Crawfish Inlet (NSRAA), 11) Kake (NSRAA), 12) Southeast Cove (NSRAA), 13) Port Armstrong (Armstrong-Keta Inc.), 14) Thomas Bay (NSRAA), 15) Anita Bay (SSRAA), 16) Burnett Inlet (SSRAA), 17) Port Asumcion (SSRAA), 18) Neets Bay (SSRAA), 19) Chester Bay (Metlakatla Indian Community), 20) Tamgas Harbor (Metlakatla Indian Community), 21) Kendrick Bay (SSRAA), 22) McLean Arm (SSRAA), and 23) Nakat Inlet (SSRAA). Two recently approved release sites have not had a chum salmon release as of 2019: A) Port Lucy (Armstrong-Keta Inc.) and B) Port Malmesbury (NSRAA).

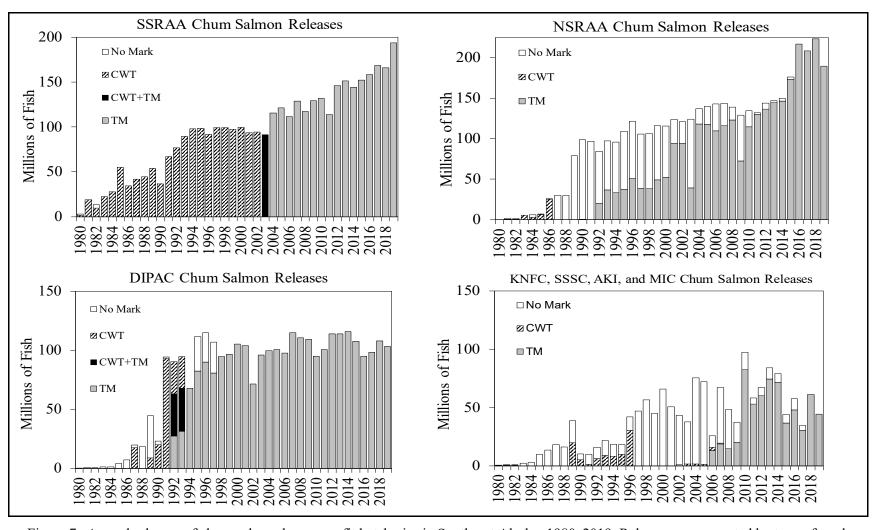


Figure 7.–Annual releases of chum salmon by nonprofit hatcheries in Southeast Alaska, 1980–2019. Releases are presented by type of mark: no mark, coded wire tag (CWT), thermal mark (TM), and coded wire tag and thermal mark combined. (NSRAA = Northern Southeast Regional Aquaculture Association; SSRAA = Southern Southeast Regional Aquaculture Association; DIPAC = Douglas Island Pink & Chum, Inc.; KNFC = Kake Non Profit Fisheries Corp.; SSSC = Sitka Sound Science Center; AKI = Armstrong-Keta, Inc.; MIC = Metlakatla Indian Community. Does not include ADF&G hatchery releases from 1980 to 1991.

Hatchery operators are required to provide ADF&G with estimates of the total number of hatchery chum salmon harvested each year (see Wilson 2020 and previous reports in that series). Methods used to estimate harvests in traditional mixed stock fisheries vary, however, from comprehensive thermal mark sampling (Brunette et al. 2013) to "best estimates" (Davidson et al. 2011), which are sometimes based on consultation between ADF&G management biologists and hatchery operators (Heinl 2005). Rough harvest estimates of wild chum salmon can thus be produced by simply subtracting the reported contribution of hatchery fish in the common property fisheries from the total commercial harvest of chum salmon (Heinl et al. 2004; McGee 2004; Heinl 2005).

Almost all the common property chum salmon harvested in southern Southeast Alaska fisheries (i.e., Districts 1–8) have been sampled for coded wire tags or thermal marks since 1983. SSRAA began thermal marking 100% of their chum salmon releases in 2003 and implemented a sampling program to collect and analyze otoliths from traditional mixed stock net fishery harvest in 2005. This program has provided the best estimates of the harvest of hatchery and wild stock chum salmon in Southeast Alaska. Detailed analysis of the harvest of hatchery and unmarked chum salmon in southern Southeast Alaska net fisheries from 2006 to 2010 were reported by Brunette et al. (2013). Historical harvest estimates for this subregion include harvests of hatchery fish in hatchery terminal areas and estimates of the combined harvests of wild and hatchery fish in traditional mixed stock common property fisheries outside of hatchery terminal areas (Appendix B1). These estimates include summer- and fall-run fish combined. The harvest rate on wild summer chum salmon in traditional mixed stock commercial net fisheries throughout Districts 1–8 is assumed to be at least moderate based on harvest rates achieved on hatchery stocks in those fisheries (Eggers and Heinl 2008).

Little stock-specific harvest data are available for chum salmon in the Northern Southeast Inside Subregion, which includes Districts 9–12, 14–15, and the Hoonah Sound portion of District 13 (subdistricts 51–59). Common property harvests during the summer season (pre-statistical week 34; average midweek date 19 August) in Lynn Canal (District 15) and the Taku-Snettisham area (District 11) have been composed primarily of hatchery fish since 1985, whereas harvests in Districts 10, 12, 13 (Hoonah Sound), and 14 have been composed of mixed hatchery and wild fish. Harvests during the fall-run season (statistical week 34 and later) are considered wild chum salmon because there are no significant hatchery runs of fall chum salmon in the Northern Southeast Inside Subregion (Appendix B2). The harvest rate on wild summer-run chum salmon in traditional, mixed stock commercial net fisheries in the Northern Southeast Inside Subregion is assumed to be at least moderate (Eggers and Heinl 2008).

The Northern Southeast Outside Subregion includes District 13 (except Hoonah Sound). Harvests in this subregion include mixed contributions of wild and hatchery fish in traditional common property fisheries outside of hatchery terminal areas and known harvests of hatchery fish inside hatchery terminal areas (Appendix B3). The harvest rate on Northern Southeast Outside Subregion chum salmon in traditional mixed stock commercial purse seine fisheries is assumed to be at least moderate (Eggers and Heinl 2008).

ESCAPEMENT GOALS

The status of wild chum salmon stocks in Southeast Alaska was judged primarily by performance in meeting established escapement goals. Formal escapement goals are established for eight chum salmon stock groups in the Southeast region, and all are classified as sustainable escapement goals

(Table 1; Piston and Heinl 2017). Escapement goal classifications are defined in the *Policy for the Management of Sustainable Salmon Fisheries* (5 AAC 39.222) under Section (f) as follows:

- "(3) 'biological escapement goal' or '(BEG)' means the escapement that provides the greatest potential for maximum sustained yield..." and
- "(36) 'sustainable escapement goal' or '(SEG)' means a level of escapement, indicated by an index or an escapement estimate, that is known to provide for sustained yield over a 5 to 10 year period, used in situations where a BEG cannot be estimated or managed for..."

The sustainable escapement goal for Chilkat River fall-run chum salmon was based on stock-recruit analysis (Eggers and Heinl 2008; Piston and Heinl 2014). The remaining Southeast Alaska chum salmon escapement goals were derived primarily using a simple "percentile approach" (Clark et al. 2014), due to lack of stock-specific information on harvest, age composition, or total escapement. The percentile approach was developed by Bue and Hasbrouck (*unpublished*)¹ in 2001 and has since been used extensively throughout Alaska (Munro 2019) to develop sustainable escapement goals in situations where stock assessment data are insufficient to estimate the escapement that produces maximum sustained yield, *S*_{MSY}.

As outlined by Clark et al. (2014), the percentile approach is based on the principle that a range of observed escapements, or indices of escapements, that have been sustained over a period of time represents a sustainable escapement goal for a stock that has been fished and likely sustained some unknown level of harvest over that same period. Maintaining escapements within a specified range of percentiles of those observed escapements provides a proxy for the range of escapements that encompasses S_{MSY} (Clark et al. 2014). Bue and Hasbrouck (*unpublished*) recommended 4 tiers that specified percentile ranges based on consideration of contrast in the escapement data (i.e., the ratio of the largest observed escapement to the smallest observed escapement) and the average harvest rate on the stock (Table 2).

Table 2.—Four tiers recommended by Bue and Hasbrouck (*unpublished*) to set sustainable escapement goals based on percentiles of observed escapement counts.

Tier	Escapement contrast and exploitation	Sustainable escapement goal range
Tier 1	High contrast (>8); exploited population	25th to 75th percentiles
Tier 2	High contrast (>8); low exploitation	15th to 75th percentiles
Tier 3	Medium contrast (4–8)	15th to 85th percentiles
Tier 4	Low contrast (<4)	15th percentile to maximum observation

Clark et al. (2014) investigated the theoretical, statistical, and empirical aspects of the 4-tier percentile approach as a proxy for $S_{\rm MSY}$. As a result of their review, Clark et al. (2014) recommended 3 tiers of percentile ranges (Table 3) that performed better with respect to $S_{\rm MSY}$ across a wide range of productivities, serial correlation in escapements, and measurement error in escapements for stocks that experience low to moderate (<0.40) average harvest rates. Clark et al. (2014) further cautioned that the percentile approach is not recommended for stocks that have both very low contrast (\leq 4) and high measurement error or those stocks that experience average harvest

_

Bue, B. G., and J. J. Hasbrouck. *Unpublished*. Escapement goal review of salmon stocks of Upper Cook Inlet. Alaska Department of Fish and Game, Report to the Alaska Board of Fisheries, November 2001 (and February 2002), Anchorage. Subsequently referred to as Bue and Hasbrouck (*unpublished*).

rates ≥0.40; however, it was recommended that if the percentile approach must be used for stocks that experience higher harvest rates, the lower bound of the escapement goal range should be set no lower than the 25th percentile of observed escapements as a precautionary approach to prevent overfishing and the upper bound should be set at the 75th percentile or greater, regardless of the level of measurement error.

Table 3.—Three tiers recommended by Clark et al. (2014) to set sustainable escapement goals based on percentiles of observed escapement counts for stocks that experience low to moderate (<0.40) harvest rates.

Tier	Escapement contrast and measurement error	Sustainable escapement goal range
Tier 1	High contrast (>8); high error (aerial and foot surveys)	20th to 60th percentiles
Tier 2	High contrast (>8); low error (weir and tower counts)	15th to 65th percentiles
Tier 3	Low contrast (≤8)	5th to 65th percentiles

Sustainable escapement goals were initially established for Southeast Alaska chum salmon in 2009 (Eggers and Heinl 2008). The goals for aggregate summer-run stocks and the fall-run Cholmondeley Sound stock were based on survey data from the early 1980s to 2007, and goals for fall-run stocks at Security Bay, Port Camden, and Excursion River were based on survey data from the early 1960s to 2007. These stocks all exhibit high contrast in escapement data (>8) and are thought to experience at least moderate harvest rates; therefore, escapement goals were based on the 25th to 75th percentiles of historical escapement index counts following the criteria outlined at the time by Bue and Hasbrouck (*unpublished*) (Table 2). Lower-bound sustainable escapement goals were established for summer-run chum salmon, rather than ranges, because summer-run fish are harvested in mixed stock commercial fisheries and their escapements cannot be managed to fall within a range.

Southeast Alaska chum salmon escapement goals were subsequently modified following addition of data or new index streams, again using the 4-tier percentile approach of Bue and Hasbrouck (unpublished). In 2011, escapement goals for Southern Southeast and Northern Southeast Inside subregion summer-run chum salmon were re-evaluated using percentiles of historical data back to 1960 in order to provide the broadest time series possible on which to base the goals (Piston and Heinl 2011). These time series included two periods of high productivity in the 1960s and 1980s–1990s, and a period of low productivity in the 1970s (Piston and Heinl 2011). In 2014, the escapement goals for Southern Southeast and Northern Southeast Outside subregion summer-run chum salmon were adjusted to account for the addition of new index streams to those stock groups (Piston and Heinl 2014).

Finally, Piston and Heinl (2017) reviewed all Southeast Alaska percentile-based chum salmon escapement goals with respect to the 3-tier percentile approach recommended by Clark et al. (2014) and incorporated escapement index data through 2016 in the analysis. Southeast Alaska chum salmon stocks would best fit Tier 1 percentile ranges (Table 3), because there is high measurement error and high contrast (>8) in available escapement data. Harvest rates on wild chum salmon are poorly known; however, they are assumed to be moderate and possibly exceed 0.40 in many cases, particularly for summer-run fish (Piston and Heinl 2017). Therefore, using one of the percentile ranges in Table 3 is not advised. In addition, changing the percentiles resulted in only minor changes to current escapement goal ranges for some stocks. As a result, Piston and Heinl (2017) recommend escapement goals for Southeast Alaska chum salmon be based on the 25th to

75th percentiles of historical escapement index counts—a precautionary approach recommended by Clark et al. (2014). Updated stock assessment information through 2016 resulted in changing only the Northern Southeast Inside subregion escapement goal. It was also recommended that Southeast Alaska percentile-based chum salmon escapement goals remain unchanged into the future until indices are modified or stock assessment improves to a point where more rigorous methods can be used to set goals (Piston and Heinl 2017; Heinl et al. 2017).

STOCK STATUS

SOUTHERN SOUTHEAST SUMMER-RUN CHUM SALMON

The Southern Southeast Subregion includes summer-run chum salmon index streams located on the islands and mainland of Southeast Alaska, from Sumner Strait south to Dixon entrance. Peak escapement survey data were available for nine index streams since 1960 and for all 15 index streams since 1980 (Figure 8; Appendix A1). The current lower-bound sustainable escapement goal is 62,000 chum salmon counted on peak surveys to the aggregate set of index streams (Piston and Heinl 2014). Escapement indices were low during the mid-1960s to late 1970s, increased into the 1990s, and have generally remained above the escapement goal over the past two decades, with the exception of poor escapement years from 2008 to 2010 (Figure 8). Escapement indices were above the current escapement goal in each of the past five years, 2015–2019.

Wild chum salmon harvests in the Southern Southeast Subregion were relatively stable and averaged 650,000 fish annually from 1960 to the early 1980s. The total harvest of chum salmon in this subregion increased substantially in the late 1980s and 1990s, primarily due to hatchery production (Figure 8; Appendix B1 and B4). From 1990 to 2019, the chum salmon harvest in traditional mixed stock fisheries averaged 2.3 million fish. Harvests in terminal hatchery areas (not including cost-recovery harvests) averaged an additional 490,000 fish.

NORTHERN SOUTHEAST INSIDE SUMMER-RUN AND FALL-RUN CHUM SALMON

The Northern Southeast Inside Subregion includes summer-run chum salmon index streams located on the inside waters of Southeast Alaska north of Sumner Strait. The current lower-bound sustainable escapement goal is 107,000 chum salmon counted on peak surveys to the aggregate set of index streams (Piston and Heinl 2017). Peak escapement survey data were available for 31 index streams since 1960 and for all 63 index streams since 1982 (Figure 9; Appendix A2). Escapement indices were generally high in the 1960s, and then declined in the 1970s–1980s. The escapement index trended upward into the late 1990s, trended downward through 2010, and has fluctuated considerably since that time (Figure 9). Escapement indices were above the current escapement goal in four of the past five years, 2015–2019.

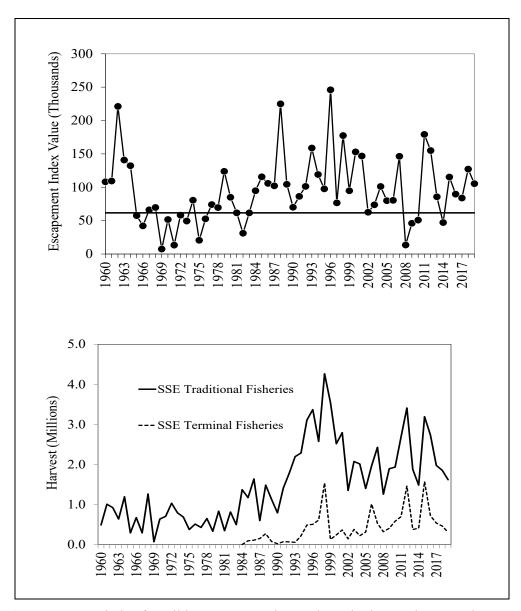


Figure 8.—Escapement index for wild summer-run chum salmon in the Southern Southeast stock group (1980–2019, top) and the annual common property harvest of chum salmon in the Southern Southeast Subregion, Districts 1–8, 1960–2019 (bottom). (Terminal harvests do not include hatchery cost recovery.) The horizontal black line in the escapement figure (top) is the current lower-bound sustainable escapement goal of 62,000 fish.

Hatchery runs of chum salmon in the Northern Southeast Inside Subregion increased rapidly in the early 1990s and have remained high since that time (Figure 9). The estimated summer chum salmon harvest in Northern Southeast Inside Subregion traditional fisheries (traditional fisheries through week 33; Districts 109–112, 113 inside, 114, and 115) increased in the 1990s and 2000s as a result of increased hatchery returns (Figure 9). From 2000 to 2019, the total harvest of summer chum salmon in the subregion's traditional mixed stock fisheries averaged 1.6 million fish (Appendix B2). Harvests in terminal hatchery areas (not including cost-recovery harvests) averaged an additional 1.3 million fish over the same period.

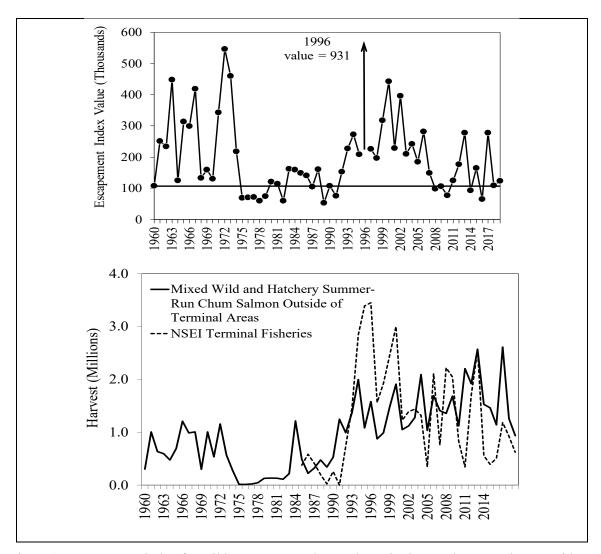


Figure 9.—Escapement index for wild summer-run chum salmon in the Northern Southeast Inside stock group (1960–2019, top) and the harvest of chum salmon in the Northern Southeast Inside Subregion of Southeast Alaska, 1960–2019 (bottom). The harvest of mixed wild and hatchery summer-run chum salmon outside of hatchery terminal areas includes all harvests in Districts 9–12, 14–15, and inside subdistricts of District 13 through statistical week 33 (average midweek date 12 August). The horizontal black line in the escapement figure (top) is the lower-bound sustainable escapement goal of 107,000 fish.

Unlike the Southern Southeast Subregion, which has substantial returns of fall-run hatchery chum salmon, fall-run chum salmon in the Northern Southeast Inside Subregion are primarily wild fish, and we can estimate their harvest by considering fish harvested from statistical week 34 and later as fall-run fish. Wild chum salmon harvests in the fall-run period declined in the early 1990s and have remained low since (Figure 10). Annual fall-run harvests in the Northern Southeast Inside Subregion averaged 430,000 from 1960 to 1990, but only 128,000 since 1995.

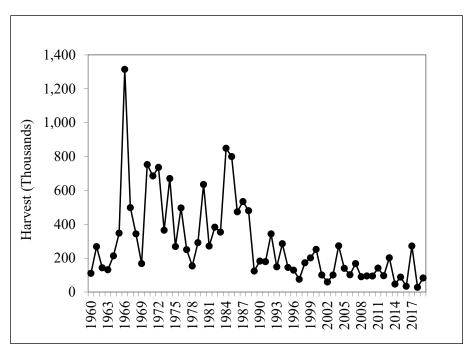


Figure 10.—Harvest of fall-run chum salmon in the Northern Southeast Inside Subregion, 1960–2019. Chum salmon harvested in statistical week 34 (average midweek date 19 August) and later are considered fall-run fish.

NORTHERN SOUTHEAST OUTSIDE SUMMER-RUN CHUM SALMON

The Northern Southeast Outside Subregion includes primarily summer-run chum salmon index streams on the outside waters of Chichagof and Baranof islands in northern Southeast Alaska. Peak escapement survey data were available for nine index streams since 1982 (Appendix A3). The current lower-bound sustainable escapement goal is 25,000 chum salmon counted on peak surveys to nine index streams combined (Piston and Heinl 2014). Escapement indices were above goal in three of the past five years (Figure 11). Total chum salmon harvests were relatively low until the onset of hatchery runs in the early 1980s and greatly increased since the 1990s due to increased hatchery production (Figure 11; Appendix B3 and B4).

In 2018 and 2019, the commercial chum salmon harvest in the Northern Southeast Outside Subregion increased substantially due to very large returns of hatchery chum salmon to the new Crawfish Inlet release site (Figure 6). Total runs were estimated to be 3.5 million fish in 2018 (Stopha 2019) and 2.1 million in 2019 (Wilson 2020). The total subregion harvest of 5.1 million chum salmon in 2018 was the largest since statehood (Figure 11; Appendix B3), and hatchery fish from the Crawfish Inlet release accounted for approximately 66% of that harvest. The chum salmon harvest in Crawfish Inlet and adjacent West Crawfish Inlet in 2018 and 2019 accounted for approximately 29% and 21% of the total Southeast Alaska chum salmon harvest, respectively.

Large numbers of Crawfish Inlet hatchery chum salmon entered West Crawfish Inlet in 2018 and 2019 rather than returning directly to the release site in Crawfish Inlet, which raised concerns about straying of hatchery fish into nearby wild stock streams. Otolith sampling conducted at the West Crawfish NE Arm Head index stream prior to 2018 showed relatively low proportions of stray hatchery fish (maximum 4.2% in 2008; Piston and Heinl 2012), as did the Northern Southeast Outside Subregion index as a whole (<2%; Piston and Heinl 2012). In 2018, otolith samples

collected from carcasses at West Crawfish NE Arm Head (Figure 6) on 27 August, which would represent the timing of spawning for the wild stock, were 62% hatchery origin (Table 4). Additional samples were collected on 28 September after it was noticed that large numbers of chum salmon were still present in the stream and these were found to be 99% hatchery origin. In 2019, otolith sampling was expanded to include West Crawfish NE Arm Head, West Crawfish North Arm NE (non-index stream), and Whale Bay Great Arm Head, which is an index stream located approximately 60 km southeast of the Crawfish Inlet release site (Table 4). Otolith samples collected from carcasses at West Crawfish NE Arm Head on 27 August and 4 September 2019, which would represent the timing of spawning for the wild stock, were 8% and 94% hatchery origin, respectively. Samples collected at West Crawfish North Arm NE on 29 August and 5 September 2019 were 83% and 93% hatchery origin, respectively. Finally, samples collected at Whale Bay Great Arm Head on 19 August and 28 August 2019 were 0% and 62% hatchery origin, respectively.

Table 4.—Proportions of stray hatchery chum salmon from samples collected in select streams in the Northern Southeast Outside Subregion of Southeast Alaska in 2018 and 2019.

Year	ADF&G Stream Number	Stream Name	Sample Date	Otoliths Analyzed	Not Marked	Marked	% Marked
2018	113-32-005	West Crawfish NE Arm Head	8/27/2018	92	35	57	62%
2018	113-32-005	West Crawfish NE Arm Head	9/28/2018	87	1	86	99%
2019	113-32-005	West Crawfish NE Arm Head	8/27/2019	63	58	5	8%
2019	113-32-005	West Crawfish NE Arm Head	9/4/2019	95	6	89	94%
2019	113-32-004	West Crawfish North Arm NE	8/29/2019	95	16	79	83%
2019	113-32-004	West Crawfish North Arm NE	9/5/2019	96	7	89	93%
2019	113-22-015	Whale Bay Great Arm Head	8/19/2019	29	29	0	0%
2019	113-22-015	Whale Bay Great Arm Head	8/28/2019	69	26	43	62%

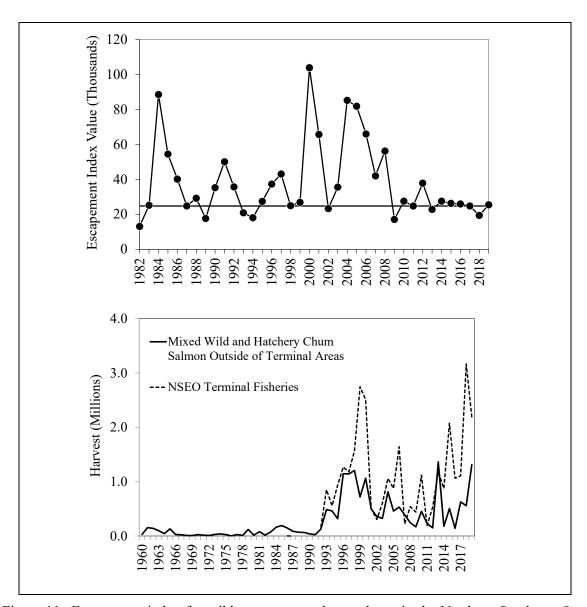


Figure 11.—Escapement index for wild summer-run chum salmon in the Northern Southeast Outside stock group, 1982–2019 (top), and harvest of chum salmon in the Northern Southeast Outside Subregion, 1960–2019 (bottom). The horizontal black line in the escapement figure (top) is the current lower-bound sustainable escapement goal of 25,000 fish.

CHOLMONDELEY SOUND FALL-RUN CHUM SALMON

Cholmondeley Sound (Prince of Wales Island) fall-run chum salmon support a terminal commercial purse seine fishery that has provided commercial fishermen with a valuable opportunity to extend the fishing season beyond the directed pink salmon purse seine season that ends in late August. Harvests of fall chum salmon in Cholmondeley Sound (subdistrict 102-40) averaged 42,000 fish in the 1970s and 1980s but increased to an average of 122,000 fish a year from 1991 to 2004, including a peak harvest of 359,000 chum salmon in 1998. Chum salmon abundance decreased abruptly in 2005 and harvests through 2010 were very low due to conservative management of the fishery (Figure 12; Piston and Brunette 2011). In 2011, the harvest of 73,000 fall chum salmon was above the long-term average, but the 2012 harvest of

41,000 fish was below average, and harvests averaged just 16,000 fish from 2013 to 2019. These fish are also harvested in other mixed stock fisheries prior to reaching the terminal area, so a complete accounting of the total harvest is not possible.

Prior to 2009, management of the fall chum salmon fishery in Cholmondeley Sound was based on an informal escapement target of 30,000 chum salmon at Disappearance Creek (ADF&G stream number 102-40-043) and peak aerial escapement survey counts of 10,000-15,000 fish in Lagoon Creek (ADF&G stream number 102-40-060; Heinl et al. 2004). Those management targets were not escapement goals as defined in the Escapement Goal Policy (5 AAC 39.223), but were based on the best professional judgment of area management staff. The escapement at Disappearance Creek was measured at an adult counting weir operated nearly annually from 1961 to 1984. The weir was typically removed once the escapement target had been met, however, and was not always operated continuously when it was in place (Heinl et al. 2004); thus, all of the weir counts during those years represent minimum escapement estimates. Beginning in 1985, aerial surveys were the primary method used to monitor escapements to Disappearance and Lagoon Creeks to ensure that escapement targets were met (Heinl et al. 2004). Peak escapement survey estimates since 1980 have ranged from 1,800 to 50,000 chum salmon in Disappearance Creek, and 5,000 to 50,000 chum salmon in Lagoon Creek (Appendix A4). The department operated a weir and conducted mark-recapture studies at Disappearance Creek from 2008 to 2010 and obtained total escapement estimates of 55,000 in 2008 (Piston and Heinl 2010a), 61,500 in 2009 (Piston and Heinl 2010b), and 85,600 in 2010 (Piston and Brunette 2011).

In 2009, ADF&G established a sustainable escapement goal of 30,000–48,000 chum salmon counted on peak aerial surveys to Disappearance and Lagoon Creeks combined (Eggers and Heinl 2008). Escapement indices were within or above the current escapement goal range in four of the past five years from 2015 to 2019 (Figure 12).

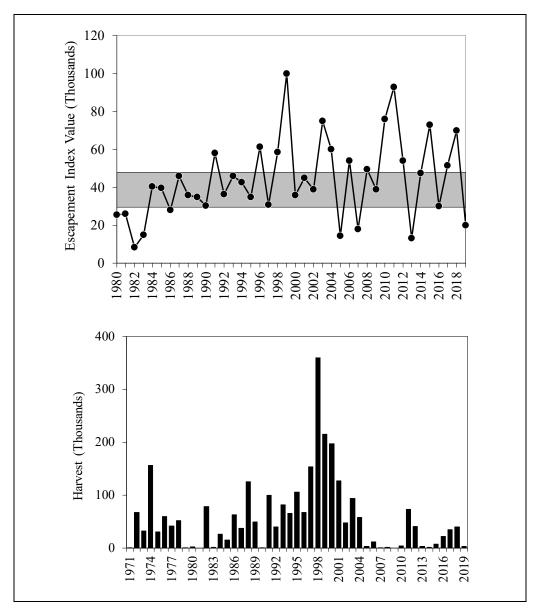


Figure 12.—Annual escapement index and sustainable escapement goal range (shaded area; 30,000–48,000 fish) of wild fall-run chum salmon in Cholmondeley Sound (1980–2019, top), and purse seine harvest of fall chum salmon in adjacent subdistrict 102-40 (1971–2019, bottom). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later were considered fall-run fish.

PORT CAMDEN FALL-RUN CHUM SALMON

Port Camden (Kuiu Island) fall-run chum salmon have been harvested in a terminal commercial purse seine fishery in subdistrict 109-43 in years when run strength appeared adequate to provide a harvest of fish surplus to escapement needs. The chum salmon harvest at Port Camden averaged 12,000 fish in years when the terminal fishery was conducted, with a maximum harvest of 51,000 fish in 1992 (Figure 13; Appendix B5). There has been little or no fall chum salmon harvest at Port Camden since 2000. Port Camden fall chum salmon are likely also harvested in other mixed stock fisheries prior to reaching the terminal area, so a complete accounting of the total harvest is not possible.

Prior to 2009, management of the fishery was based on an informal escapement target of 4,000 chum salmon counted on aerial surveys at each of the two primary fall-run chum salmon streams in Port Camden: Port Camden South Head Creek (ADF&G stream number 109-43-006) and Port Camden West Head Creek (ADF&G stream number 109-43-008; Appendix A5). Both are relatively short streams in terms of spawning habitat; runs average slightly smaller in the west head creek and run timing is about 10–14 days later than in the south head creek (Eggers and Heinl 2008). The management targets were not escapement goals as defined in the Escapement Goal Policy (5 AAC 39.223) but were based on the best professional judgment of area management staff. In 2009, ADF&G established a sustainable escapement goal of 2,000–7,000 chum salmon counted on peak aerial surveys to the two Port Camden streams combined (Eggers and Heinl 2008). The escapement index was within or above the current escapement goal range in four of the past five years (Figure 13).

Enhancement projects were conducted at the two Port Camden streams beginning in the mid-1980s by NSRAA, U. S. Forest Service (USFS), and ADF&G (ADF&G 2004). The goals of the enhancement projects were to rehabilitate fall chum salmon stocks in Port Camden and to provide additional fall chum salmon to the common property fishery. NSRAA constructed and operated instream incubation boxes on the two Port Camden streams, and was permitted to collect up to 10 million chum salmon eggs annually. Fry were released from the incubation boxes from 1986 to 1998, with an average release of more than 4 million fry from 1991 to 1998. In addition, the USFS constructed an intertidal spawning channel in the west head creek in 1989. The channel was designed to allow for easier passage of fish from the intertidal area into the stream and to take advantage of available groundwater in an area not previously used by spawning chum salmon, although little actual spawning occurred in the constructed channel (ADF&G 2004).

The enhancement work at Port Camden did not result in increased production of fall chum salmon and the project was cancelled in 2000. Runs of chum salmon to Port Camden have been poor since the late 1990s and there has not been a significant fall fishery since 2000. The peak survey counts to both index streams combined averaged 6,000 fish per year from 1964 to 1998, but only 2,800 fish per year since 1999.

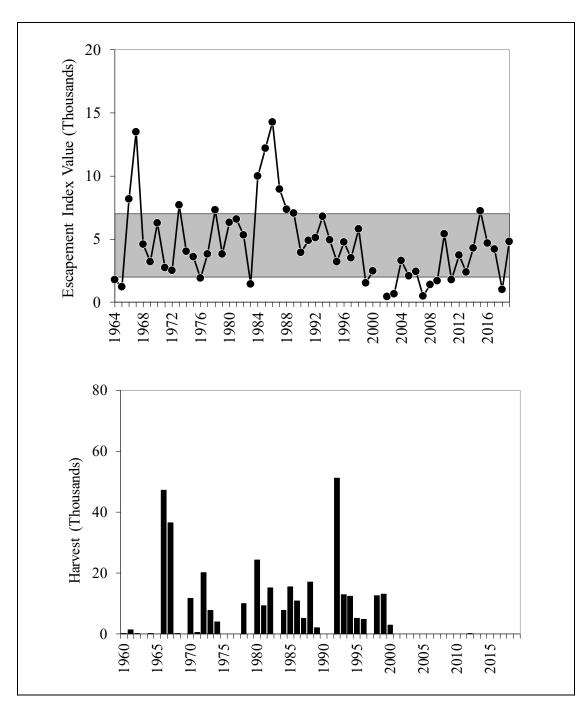


Figure 13.—Annual escapement index and sustainable escapement goal range (shaded area; 2,000–7,000 fish) of wild fall-run chum salmon in Port Camden (1964–2019, top), and purse seine harvest of fall chum salmon in adjacent subdistrict 109-43 (1960–2019, bottom). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later were considered fall-run fish.

SECURITY BAY FALL-RUN CHUM SALMON

Security Bay (Kuiu Island) fall-run chum salmon have been harvested in a terminal commercial purse seine fishery in subdistrict 109-45 during years when the run strength appeared adequate to provide a harvest of fish surplus to escapement needs (Figure 14). The chum salmon harvest at

Security Bay averaged 9,100 fish in years when the terminal fishery was conducted, with a maximum harvest of 71,000 fish in 1984 (Appendix B5). Harvests have been low in all recent years and have averaged less than 1,000 fish over the past decade (Figure 14). These fish are likely also harvested in other mixed stock fisheries prior to reaching the terminal area, so a complete accounting of the total harvest is not possible. Escapements have been assessed through aerial surveys since 1960 at Salt Chuck Creek (ADF&G stream number 109-45-013), the primary chum salmon stream in Security Bay (Figure 14; Appendix A5).

Prior to 2009, management of the fishery at Security Bay was based on an informal escapement target of 10,000–20,000 chum salmon counted on a peak aerial survey at Salt Chuck Creek (Eggers and Heinl 2008). The management target was not an escapement goal as defined in the Escapement Goal Policy (5 AAC 39.223) but was based on the best professional judgment of area management staff. In 2009, ADF&G established a sustainable escapement goal of 5,000–15,000 chum salmon counted on a peak aerial survey at Salt Chuck Creek (Eggers and Heinl 2008). The escapement index was within or above the current escapement goal range in each of the past five years, 2015–2019 (Figure 14).

EXCURSION RIVER FALL-RUN CHUM SALMON

Excursion Inlet fall-run chum salmon have been harvested in a terminal commercial purse seine fishery in subdistrict 114-80 during years when run strength appeared adequate to provide a harvest of fish surplus to escapement needs. These fish are probably also harvested in other mixed stock fisheries prior to reaching the terminal area, so a complete accounting of the total harvest is not possible. The area open to seining is limited to section 14-C by the Northern Southeast Seine Salmon Fishery Management Plan (5 AAC 33.366(b)) to minimize the impact openings might have on other migrating stocks (e.g., Chilkat River fall chum salmon). Escapements have been assessed through aerial surveys since 1960 at the Excursion River (ADF&G stream number 114-80-020), the primary chum salmon producing stream in Excursion Inlet (Figure 15; Appendix A5). Survey and harvest data suggest runs were much larger in the 1960s and 1970s than in more recent times. The harvest averaged 95,000 fish from 1960 to 1981 in years when the terminal fishery was conducted but has only averaged 30,000 fish since that time. From 2010 to 2019, the harvest averaged 43,000 fish and no fishery was conducted in six of the ten years. The harvest of 126,000 fall chum salmon in 2017, however, was the largest harvest since 1980 (Figure 15). Peak aerial survey estimates at the Excursion River averaged 20,000 fish from 1960 to 1981, but only 6,800 since 1981. In 2009, ADF&G established a sustainable escapement goal of 4,000–18,000 chum salmon counted on a peak aerial survey at the Excursion River (Eggers and Heinl 2008). The escapement index was within the current escapement goal range in three of the past five years, 2015–2019 (Figure 15; 2019 just below goal).

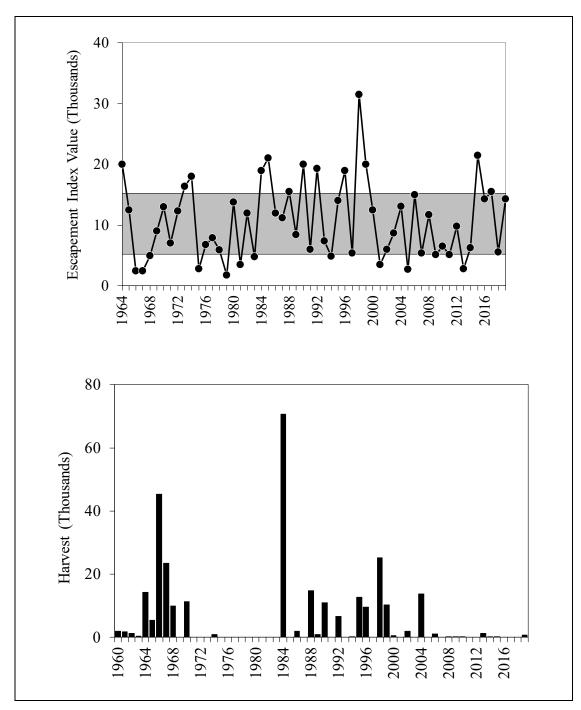


Figure 14.—Annual escapement index and sustainable escapement goal range (shaded area; 5,000–15,000 fish) of wild fall-run chum salmon in Salt Chuck Creek (1964–2019, top), and purse seine harvest of fall chum salmon in adjacent Security Bay subdistrict 109-45 (1960–2019, bottom). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later were considered fall-run fish.

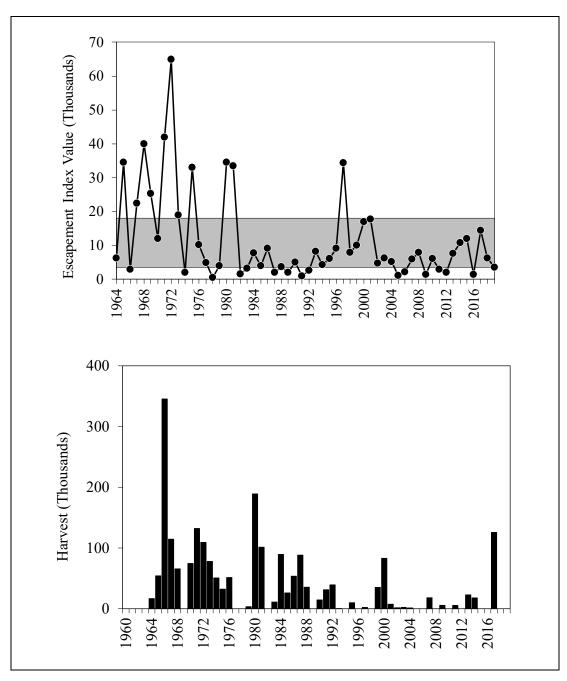


Figure 15.—Annual escapement index and sustainable escapement goal range (shaded area; 4,000–18,000 fish) of wild fall-run chum salmon in the Excursion River (1964–2019, top), and purse seine harvest of fall chum salmon in adjacent Excursion Inlet subdistrict 114-80 (1960–2019, bottom). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later were considered fall-run fish.

CHILKAT RIVER FALL-RUN CHUM SALMON

The Chilkat River drainage near Haines supports the largest fall chum salmon run in the region (Halupka et al. 2000). Most of the spawning takes place in the mainstem and side channels of the Chilkat River (ADF&G stream number 115-32-025) and its major tributary, the Klehini River (ADF&G stream number 115-32-046). Chilkat River fall-run chum salmon are primarily harvested

in the Lynn Canal (District 15) commercial drift gillnet fishery, although they are likely also harvested to some degree in other mixed stock fisheries prior to reaching Lynn Canal.

Harvest and survey data suggest runs were much larger from the 1960s to early 1980s. The commercial harvest of fall chum salmon averaged nearly 300,000 fish per year during the 1970s and 1980s, but harvest and fisheries performance measures declined during the 1990s and the harvest has averaged 61,000 fish per year since 1989 (Figure 16). Harvests were lower in many years in the 1990s due in part to fishery restrictions specifically implemented to protect this stock (Bachman 2005). The number of boat days in the fall fishery declined from an average 3,143 prior to 1990 to 1,724 from 1990 to 2019.

The chum salmon escapement to the Chilkat River drainage was historically monitored via aerial surveys, which also exhibited a decline in the 1990s (Figure 17; Appendix A6); however, the department considers historical aerial surveys of the drainage to be unreliable for indexing escapement due to the highly glacial nature of the system. Drainagewide escapement estimates from 1994 to 2019 are based on inriver fish wheel catches calibrated to total escapement estimated from mark–recapture studies conducted in 1990 and 2002–2005 (Bachman 2005; Eggers and Heinl 2008). Chilkat River fall chum salmon total runs averaged 287,000 fish since 1994, and the harvest rate in the Lynn Canal drift gillnet fishery averaged 24% during that time (Table 5).

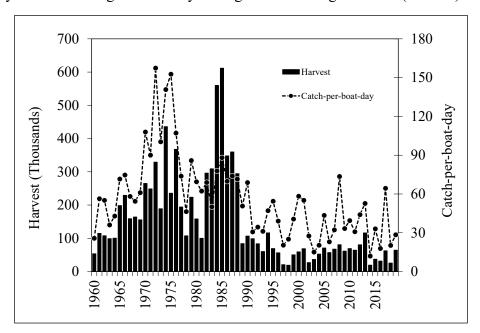


Figure 16.—Annual commercial drift gillnet harvest and catch-per-boat-day of fall chum salmon in Lynn Canal (District 15), 1960–2019. All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later were considered fall-run fish.

In 2014, ADF&G modified the sustainable escapement goal to 75,000–250,000 or, equivalently, a fish wheel index catch of 1,160–3,875 chum salmon, based on an updated stock-recruit analysis of the 1994–2008 brood years (Piston and Heinl 2014). The goal was considered a sustainable escapement goal rather than a biological escapement goal because of uncertainty in escapement estimates for this stock. Estimated escapements were within or above the current escapement goal range annually since 1997 (Figure 18). Fish wheel counts were not expanded to estimated chum

salmon escapement in 2018 due to extremely low water at the fish wheel site that affected the project throughout the season.

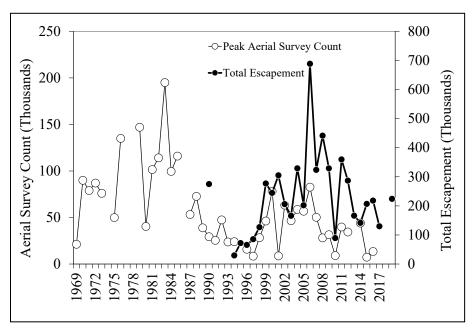


Figure 17.—Annual peak aerial survey counts of spawning chum salmon in the Chilkat and Klehini Rivers, 1969–2019, and estimated total escapement of chum salmon in the Chilkat River in 1990 and 1994–2019 (no escapement estimate in 2018 due to road construction at fish wheel site).

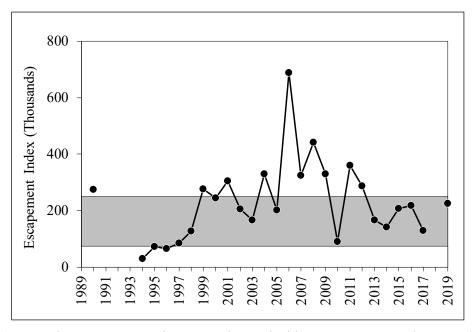


Figure 18.—Annual escapement estimates and sustainable escapement goal range (shaded area; 75,000–250,000 fish) of Chilkat River fall chum salmon, 1990 and 1994–2019 (no escapement estimate in 2018 due to extremely low water at the fish wheel site).

Table 5.–Total escapement of Chilkat River fall chum salmon, based on mark–recapture studies and expanded fish wheel catches, and estimated annual commercial harvests, total runs, and harvest rates, 1990–2016.

	Fish Wheel O ₁	perations	Peak Aerial	Estimated	Commercial	Estimated	Estimated Harvest
Year	Dates	Catch	Survey Count ^a	Escapement ^b	Harvest ^c	Total Run	Rated
1990	14 Aug-25 Oct	3,025	29,350	275,000	106,982	381,982	28%
1994	18 Jun-11 Sept	454e	24,000	29,593	116,599	146,192	80%
1995	18 Jun-11 Sept	1,107e	$\mathrm{ND^f}$	72,158	69,201	141,359	49%
1996	18 Jun-11 Sept	1,010e	16,000	65,835	56,437	122,272	46%
1997	11 Jun-9 Oct	1,311	9,000	85,455	20,850	106,305	20%
1998	8 Jun-13 Oct	1,945	28,000	126,781	19,239	146,020	13%
1999	7 Jun-8 Oct	4,249	46,000	276,963	50,576	327,539	15%
2000	9 Jun-7 Oct	3,754	78,000	244,698	59,365	304,063	20%
2001	6 Jun-7 Oct	4,680	9,000	305,057	68,898	373,955	18%
2002	7 Jun-19 Oct	2,898	63,300	206,000	27,134	233,134	12%
2003	6 Jun-21 Oct	3,846	46,600	166,000	36,640	202,640	18%
2004	7 Jun-19 Oct	4,277	58,700	329,000	52,755	381,755	14%
2005	6 Jun-11 Oct	3,125	51,300	202,000	71,020	273,020	26%
2006	9 Jun-14 Oct	10,563	83,000	688,530	57,363	745,893	8%
2007	7 Jun-9 Oct	4,967	50,250	323,765	68,056	391,821	17%
2008	6 Jun-10 Oct	6,770	28,150	441,290	80,875	522,165	15%
2009	31 May-9 Oct	5,049	31,500	329,110	61,589	390,699	16%
2010	5 Jun-11 Oct	1,369	9,100	89,236	69,362	158,598	44%
2011	4 Jun-10 Oct	5,517	39,800	359,615	64,813	424,428	15%
2012	13 Jun-7 Oct	4,401	34,400	286,871	81,196	368,067	22%
2013	6 Jun-3 Oct	2,550	$\mathrm{ND^f}$	166,217	116,379	282,596	41%
2014	6 Jun-16 Oct	2,175	44,000	141,773	19,558	161,331	12%
2015	8 Jun-6 Oct	3,171	7,300	206,696	37,204	243,900	15%
2016	9 Jun-5 Oct	3,346	13,400	218,103	31,657	249,760	13%
2017	6 Jun-4 Oct	1,991	$\mathrm{ND^f}$	129,780	62,535	192,315	33%
2018	$\mathrm{ND^f}$	ND^{f}	$\mathrm{ND^f}$	ND^{f}	25,689	ND^{f}	ND^{f}
2019	6 Jun-27 Sept	3,440	$\mathrm{ND^f}$	224,230	64,586	288,816	22%
Average		3,844	36,370	230,375	59,132	290,793	24%

^a Drainagewide aerial counts include the Klehini and Chilkat Rivers combined.

TAKU RIVER FALL-RUN CHUM SALMON

The transboundary Taku River (ADF&G stream number 111-32-032) supports fall-run chum salmon that spawn in Canada. Taku River fall chum salmon stocks are primarily harvested in the commercial drift gillnet fishery in Taku Inlet (subdistrict 111-32). The Transboundary Technical Committee of the Pacific Salmon Commission established an interim escapement goal of 50,000–80,000 chum salmon for the Taku River in the 1980s (TTC 1986). There was no scientific

b Escapements for years in bold text are based on mark-recapture studies; in other years, escapement is estimated by expanding fish wheel catch by 1÷0.0153.

^c Commercial harvest of fall chum salmon includes all Lynn Canal (District 15) chum salmon harvested from statistical week 34 through the end of the season.

d Harvest rate considered minimum; stock likely also harvested in mixed stock fisheries prior to entering Lynn Canal.

^e Fish wheel catch was expanded for early closure based on average run timing from 1997–2007.

f ND = No data.

basis for the goal, which was based on professional judgment. The goal was not formally adopted by ADF&G (Heinl et al. 2004), and it was removed from bilateral technical committee management reports in 2015 (TTC 2015). Fish wheels, operated jointly by ADF&G and Department of Fisheries and Oceans Canada (DFO), provide the only index of abundance available for Taku River fall chum salmon. The commercial harvest of fall chum salmon in the Taku Inlet drift gillnet fishery increased in the 1970s and averaged 45,000 fish a year from 1970 to 1985. The harvest then declined through the late 1980s to very low levels in the late 1990s and has averaged only 1,800 fish a year over the past decade (Figure 19). Fish wheel counts also declined sharply in the early 1990s and abundance appears to have remained at low levels since that time (Figure 20). In 2018, new stock assessment methods were implemented at the Taku River fish wheel project that resulted in hourly fish wheel checks and stopping the fish wheels at night, resulting in approximately 18 hours of fish capture a day instead of 24 and corresponding lower catches of salmon (Bednarski et al. 2019).

The department has not recommended Taku River fall chum salmon as a candidate stock of concern (Heinl et al. 2004) due to the lack of reliable escapement information and a formal escapement goal, and because this stock spawns entirely in Canada. Total escapements of chum salmon in the Taku drainage have yet to be estimated, and attempts by ADF&G and DFO to estimate escapement through mark—recapture methods have been unsuccessful due to low rates of tagging. Aerial survey counts are unreliable for measuring abundance due to the highly glacial nature of the Taku River system (Andel 2010). The department will continue to monitor this stock through fishery and fish wheel catch rates. Retention of fall chum salmon in Canadian inriver fisheries has not been permitted since at least 1998 (TTC 1999; TTC 2019).

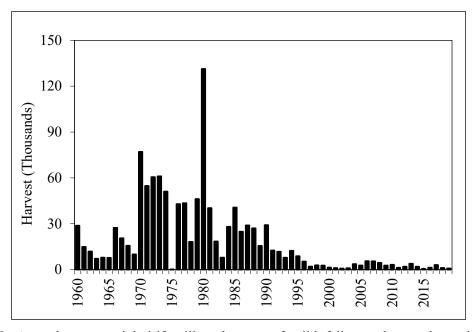


Figure 19.—Annual commercial drift gillnet harvest of wild fall-run chum salmon in Taku Inlet (subdistrict 111-32; 1960–2019). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later are considered fall-run fish.

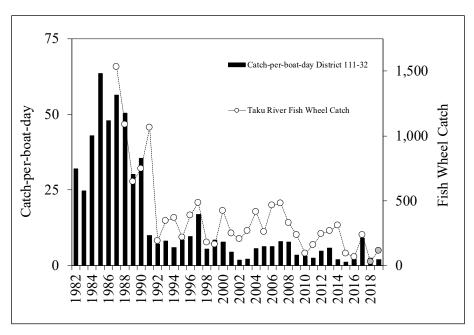


Figure 20.—Annual commercial drift gillnet catch-per-boat-day of fall-run chum salmon in Taku Inlet (subdistrict 111-32; 1982–2019) plotted with the Taku River fish wheel catch of all chum salmon (1987–2019). All chum salmon harvested in statistical week 34 (average midweek date 19 August) and later are considered fall-run fish. Gray shaded circles starting in 2018 represent new stock assessment methods that resulted in reduced fish wheel operational times and proportionally lower total catches.

DISCUSSION

Abundance of wild summer-run chum salmon, as indicated by both escapement indices (Figures 8, 9, and 11) and estimated harvest (Figure 1), have generally declined since reaching recent high levels in the 1990s and have fluctuated greatly over the last decade. Despite lower overall abundance, no stocks of chum salmon currently meet the criteria for stocks of concern as defined by the sustainable salmon fisheries policy. Escapement goals were met in each of the past 5 years in the Southern Southeast Subregion, in 4 of the past 5 years in the Northern Southeast Inside Subregion, and in 3 of the past 5 years in the Northern Southeast Outside subregion (Figures 8, 9, and 11). Escapement goals were met for the five fall-run stocks with formal escapement goals 83% of the time from 2015 to 2019. However, little direct fishing has occurred on many of these fall-run stocks in recent years.

The chum salmon continues to be the most valuable species in Southeast Alaska commercial salmon fisheries. Prices for chum salmon products such as fillets (fresh, frozen, and smoked), canned salmon, and roe and ikura increased significantly in the late 2000s, resulting in a corresponding increase in wholesale value (McDowell Group 2018). Average exvessel prices for net-caught round chum salmon at the dock more than doubled from \$0.27/lb (1994–2007) to \$0.73/lb since 2008 (Figure 21). Increases in wholesale and exvessel prices, coupled with recent increases in chum salmon abundance due to hatchery production, resulted in an increase in exvessel value paid to commercial fishermen from an average of \$25 million a year from 1994 to 2005 to \$58 million per year from 2006 to 2019. In years when purse seine fisheries were curtailed due to low pink salmon abundance, chum salmon fisheries in terminal hatchery areas have provided commercial fishermen a valuable economic safety net.

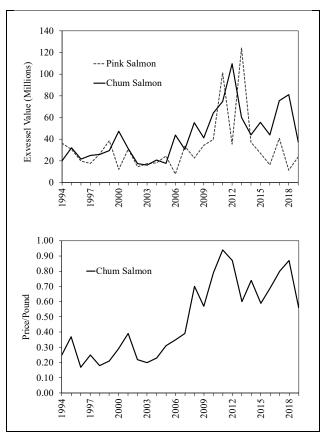


Figure 21.–Exvessel values (in dollars) of the pink and chum salmon harvest in Southeast Alaska (top), and average price per pound of chum salmon in Southeast Alaska (bottom), 1994–2019.

HATCHERY CHUM SALMON STRAYING

In 2018 and 2019, large numbers of hatchery chum salmon from the first returns to the new Crawfish Inlet release site entered adjacent West Crawfish Inlet, where they overlap in run timing with and vastly outnumber wild fish. Major increases of stray Crawfish Inlet hatchery fish in two of the nine Northern Southeast Outside Subregion index streams (West Crawfish NE Arm Head, Whale Bay Great Arm Head; Table 4; Figure 22) present challenges for monitoring wild stock escapements and assessing escapement goal performance as required by the sustainable salmon fisheries policy. Historically, peak survey counts in those two index streams accounted for an average 36% of the total subregion escapement index; thus, the overall proportion of stray hatchery fish in the subregion index has likely increased significantly. The high proportion of stray hatchery fish in Whale Bay Great Arm Head (Table 4), approximately 60 km from the Crawfish Inlet release site, indicates that additional sampling is required to determine the full extent of straying. This is particularly true for chum salmon index streams immediately north of Sitka Sound (e.g., Kalinin Cove Head; Figure 22) that have not been sampled previously for the presence of hatchery origin chum salmon. Given these changes, the department will need to consider how to best assess escapements in the Northern Southeast Outside Subregion. This could include removing chum salmon index streams from index, which would greatly reduce the geographic coverage, or reevaluate how wild chum salmon escapements in the subregion are monitored.

Although the hatchery chum salmon released at Crawfish Inlet (from Nakwasina River broodstock; Figure 22) have later run timing than wild stock chum salmon in West Crawfish Inlet and Whale

Bay, run timing overlaps, making it difficult to easily determine when a survey count could be used to represent wild fish. The high proportions of hatchery fish in otolith samples collected in late August and early September (Table 4) indicates that sometime in the first half of August the chum salmon composition transitions from primarily wild fish to a mix of hatchery and wild fish, and by late August or early September the composition appears to be primarily hatchery fish. Peak chum salmon surveys typically occur from late July to early September at the West Crawfish index stream (average 7 August) and from late July to mid-August at the Whale Bay index stream (average 5 August). Based on an assumed chum salmon stream life of approximately 8 to 11 days (Heinl et al. 2000; Piston and Heinl 2010a, 2010b; Piston and Brunette 2011), hatchery fish sampled as carcasses in late August and early September likely entered streams sometime in the second half of August and would have been present off the mouth of the creek or in the intertidal zone for at least a week prior to that, where they would potentially be counted during a normal peak survey. An estimated 20,000 chum salmon at the mouth of the West Crawfish index stream on 20 August 2019, probably composed almost entirely of hatchery fish, would have nearly met the lower bound escapement goal for the entire Northern Southeast Outside Subregion if it had been included in an index count.

No changes to releases at Crawfish Inlet have been recommended by the Southeast Regional Planning Team (AS 16.10.375) in response to high proportions of strays from the new release site in nearby wild stock index streams. Proposed actions to try to address the issue have primarily focused on increasing harvest opportunity in Crawfish and West Crawfish Inlets. In 2019, common property purse seine fisheries were conducted in West Crawfish Inlet beginning 25 August to harvest a significant number of chum salmon holding at the head of the inlet. The purse seine openings were intended to minimize potential straying and reduce loss in quality of harvested fish, and it was thought that the area of the openings would have minimal impact on wild stock salmon in the inlet. Approximately 707,000 chum salmon were harvested. An additional 243,000 chum salmon were harvested in hatchery cost recovery openings and in the common property troll fishery in West Crawfish Inlet.

Although the additional purse seine openings were conducted specifically to harvest hatchery chum salmon, otolith sampling and survey results indicate large numbers of hatchery chum salmon likely spawned or attempted to spawn during and after the spawning period of wild pink and chum salmon in the West Crawfish NE Arm Head wild stock index stream. The proportion of stray hatchery fish in West Crawfish NE Arm Head index stream was 94% in the 4 September 2019 sample and a total of 9,910 chum salmon were counted during the foot survey, including 410 fish in the intertidal section, 7,500 live chum salmon in the stream, and 2,000 carcasses (fish were also present off the mouth of the stream but numbers were not estimated). Taking into account the relatively short stream life of chum salmon (Heinl et al. 2000; Piston and Heinl 2010a, 2010b; Piston and Brunette 2011), the tendency of observers to undercount numbers of fish (Bevan 1961; Cousens et al. 1982; Symons and Waldichuk 1984; Dangel and Jones 1988; Bue et al. 1998; Jones et al. 1998), and the presence of uncounted fish off the mouth of the creek on 4 September, it is clear that in excess of 10,000 hatchery fish spawned or attempted to spawn in the wild stock index stream. Due to the overlap in run timing between wild and hatchery stocks, it would be difficult to harvest the majority of hatchery chum salmon before they enter the wild stock index stream in West Crawfish Inlet without earlier fishery openings that would potentially drastically increase harvest rates on wild chum salmon in West Crawfish Inlet.

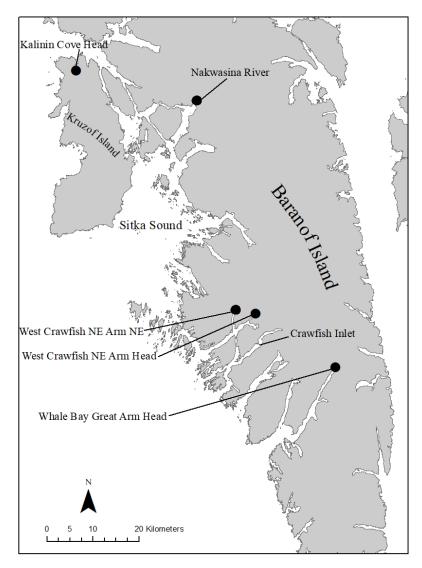


Figure 22.—Location of Crawfish Inlet and sites related to hatchery chum salmon straying in the Northern Southeast Outside Subregion in Southeast Alaska.

ACKNOWLEDGEMENTS

We thank Dave Harris, Aaron Dupuis, and Andrew Munro for their reviews of this report and helpful suggestions that improved our final presentation. We also thank Scott Walker, Bo Meredith, Justin Breese, Paul Salomone, Troy Thynes, Kevin Clark, Tom Kowalske, Aaron Dupuis, Eric Coonradt, Dave Harris, Scott Forbes, Nicole Zeiser, Wyatt Rhea-Fournier, and Mark Sogge for conducting aerial surveys and providing answers to numerous questions regarding chum salmon harvest and escapement in their management areas.

REFERENCES CITED

- ADF&G (Alaska Department of Fish and Game). 2004. Comprehensive salmon enhancement plan for Southeast Alaska: Phase III. Joint Northern/Southern Southeast Regional Planning Team. Alaska Department of Fish and Game, Juneau.
- Andel, J. E. 2010. Distribution of chum salmon in the Taku River drainage, 2004. Alaska Department of Fish and Game, Fishery Data Series No. 10-17, Anchorage.
- Bachman, R. L. 2005. Stock assessment studies of Chilkat River adult sockeye and chum salmon stocks in 2002. Alaska Department of Fish and Game, Fishery Data Series No. 05-36, Anchorage.
- Bednarski, J., A. Foos, R. E. Brenner, S. E. Miller, A. W. Piston, and R. Vinzant. 2019. Operational plan: migration, tagging response, distribution, and inriver abundance of Taku River sockeye salmon. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan ROP.CF.1J.2019.10, Douglas.
- Bevan, D. E. 1961. Variability in aerial counts of spawning salmon. Journal of the Fisheries Research Board of Canada 18:337–348.
- Brunette, M. T., A. W. Piston, S. C. Heinl, and S. K. Doherty. 2013. Hatchery chum salmon contribution to southern Southeast Alaska commercial net fisheries, 2006–2010. Alaska Department of Fish and Game, Fishery Manuscript Series No. 13-10, Anchorage.
- Bue, B. G., S. M. Fried, S. Sharr, D. G. Sharp, J. A. Wilcock, and H. J. Geiger. 1998. Estimating salmon escapement using area-under-the-curve, aerial observer efficiency, and stream-life estimates. Pages 240–250 [*In*] D. W. Welch, D. E. Eggers, K. Wakabayaski, and V. I. Karpenko, editors. Assessment and Status of Pacific Rim Salmonid Stocks. North Pacific Anadromous Fish Commission Bulletin Number 1.
- Byerly, M., B. Brooks, B. Simonson, H. Savikko, and H. J. Geiger. 1999. Alaska commercial salmon catches, 1878–1999. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J99-05, Juneau.
- Clark, R. A., D. M. Eggers, A. R. Munro, S. J. Fleischman, B. G. Bue, and J. J. Hasbrouck. 2014. An evaluation of the percentile approach for establishing sustainable escapement goals in lieu of stock productivity information. Alaska Department of Fish and Game, Fishery Manuscript No. 14-06, Anchorage.
- Cousens, N. B. F., G. A. Thomas, C. G. Swann, and M. C. Healey. 1982. A review of salmon escapement estimation techniques. Canadian Technical Report of Fisheries and Aquatic Sciences 1108.
- Dangel, J. R., and J. D. Jones. 1988. Southeast Alaska pink salmon total escapement and stream life studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J88-24, Juneau.
- Davidson, W., R. Bachman, D. Gordon, A. Piston, K. Jensen, K. Monagle, T. Thynes, and S. Walker. 2011. Annual management report of the 2010 Southeast Alaska commercial purse seine and drift gillnet fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 11-27, Anchorage.
- Eggers, D. M., and S. C. Heinl. 2008. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 08-19, Anchorage.
- Halupka, K. C., M. D. Bryant, M. F. Willson, and F. H. Everest. 2000. Biological characteristics and population status of anadromous salmon in Southeast Alaska. United States Forest Service. General Technical Report. PNW-GTR-468
- Heinl, S. C. 2005. Chum salmon stock status and escapement goals in Southeast Alaska 2005 [in] Der Hovanisian, J. A., and H. J. Geiger, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska 2005. Alaska Department of Fish and Game, Special Publication No. 05-22, Anchorage.
- Heinl, S. C., J. F. Koerner, and D. J. Blick. 2000. Portland Canal chum salmon coded wire tagging project, 1988-1995.
 Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J00-16, Juneau.

REFERENCES CITED (Continued)

- Heinl, S. C., T. P. Zadina, A. J. McGregor, and H. J. Geiger. 2004. Chum salmon stock status and escapement goals in Southeast Alaska. Pages 317–362 [*In*] H. J. Geiger and S. McPherson, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska. Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Special Publication No. 04-02, Anchorage.
- Heinl, S. C., E. L. Jones III, A. W. Piston, P. J. Richards, L. D. Shaul, B. W. Elliott, S. E. Miller, R. E. Brenner, and J. V. Nichols. 2017. Review of salmon escapement goals in Southeast Alaska, 2017. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-11, Anchorage.
- Jones, E. L., III, T. J. Quinn, II, and B. W. Van Alen. 1998. Observer accuracy and precision in aerial and foot survey counts of pink salmon in a Southeast Alaska stream. North American Journal of Fisheries Management. 18:832–846.
- Kondzela, C. M., C. M. Guthrie, S. L. Hawkins, C. D. Russell, and J. H. Helle. 1994. Genetic relationships among chum salmon populations in southeast Alaska and northern British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 51(Suppl. 1):50–64.
- McDowell Group. 2018. Economic Impacts of the Southern Southeast Regional Aquaculture Association (SSRAA). Prepared for Southern Southeast Regional Aquaculture Association, Ketchikan. http://www.adfg.alaska.gov/static/fishing/PDFs/hatcheries/ssraa report 17.pdf.
- McGee, S. G. 2004. Salmon hatcheries in Alaska—plans, permits, and policies designed to provide protection for wild stocks. American Fisheries Society Symposium 44:317–331.
- McLachlan, G. J., and T. Krishnan. 1997. The EM Algorithm and Extensions. John Wiley and Sons. New York.
- Munro, A. R. 2019. Summary of Pacific salmon escapement goals in Alaska with a review of escapements from 2010 to 2018. Alaska Department of Fish and Game, Special Publication No. 19-05, Anchorage.
- Phelps, S. R., L. L. LeClair, S. Young, and H. L. Blankenship. 1994. Genetic diversity patterns of chum salmon in the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences 51(Suppl. 1):65–83.
- Piston, A. W., and M. T. Brunette. 2011. Disappearance Creek chum salmon weir study, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 11-09, Anchorage.
- Piston, A. W., and S. C. Heinl. 2010a. Disappearance Creek chum salmon weir study, 2008. Alaska Department of Fish and Game, Fishery Data Series No. 10-15, Anchorage.
- Piston, A. W., and S. C. Heinl. 2010b. Disappearance Creek chum salmon weir study, 2009. Alaska Department of Fish and Game, Fishery Data Series No. 10-48, Anchorage.
- Piston, A. W., and S. C. Heinl. 2011. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 11-21, Anchorage.
- Piston, A. W., and S. C. Heinl. 2012. Hatchery chum salmon straying studies in Southeast Alaska, 2008–2010. Alaska Department of Fish and Game, Fishery Manuscript Series No. 12-01, Anchorage.
- Piston, A. W., and S. C. Heinl. 2014. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 14-13, Anchorage.
- Piston, A. W., and S. C. Heinl. 2017. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 17-12, Anchorage.
- Rich, W. H. 1926. Salmon-tagging experiments in Alaska, 1924 and 1925. Bulletin of the United States Bureau of Fisheries 42:109–146.
- Rich, W. H., and F. G. Morton. 1930. Salmon-tagging experiments in Alaska, 1927 and 1928. Bulletin of the United States Bureau of Fisheries 45:1–23.
- Rich, W. H., and A. J. Suomela. 1929. Salmon-tagging experiments in Alaska, 1926. Bulletin of the United States Bureau of Fisheries 43 (Part 2):71–104.

REFERENCES CITED (Continued)

- Shaul, L., S. McPherson, E. Jones, and K. Crabtree. 2004. Coho salmon stock status and escapement goals in Southeast Alaska. Pages 215–261 [*In*] H. J. Geiger and S. McPherson, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska. Alaska Department of Fish and Game, Divisions of Sport and Commercial Fisheries, Special Publication No. 04-02, Anchorage.
- Stopha, M. 2019. Alaska fisheries enhancement annual report 2018. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J19-01, Anchorage.
- Symons, P. E. K., and M. Waldichuk. 1984. Proceedings of the workshop on stream indexing for salmon escapement estimation. Canadian Technical Report of Fisheries and Aquatic Sciences 1326.
- TTC (Transboundary Technical Committee). 1986. Report of the Canada/United States Transboundary Technical Committee. Pacific Salmon Commission Report TCTR 86-1, Vancouver.
- TTC (Transboundary Technical Committee). 1999. Salmon management and enhancement plans for the Stikine, Taku, and Alsek rivers, 1998. Pacific Salmon Commission Report TCTR (99)-1, Vancouver.
- TTC (Transboundary Technical Committee). 2015. Salmon management and enhancement plans for the Stikine, Taku, and Alsek rivers, 2015. Pacific Salmon Commission Report TCTR (15)-01, Vancouver.
- TTC (Transboundary Technical Committee). 2019. Salmon management and enhancement plans for the Stikine, Taku, and Alsek rivers, 2019. Pacific Salmon Commission Report TCTR (19)-03, Vancouver.
- Van Alen, B. W. 2000. Status and stewardship of salmon stocks in Southeast Alaska. Pages 161–194 [*In*] E. E Knudsen, C. R. Steward, D. D. McDonald, J. E. Williams, and D. W. Reiser, editors. Sustainable fisheries management: Pacific salmon. CRC Press. Boca Raton.
- Wilmot, R. L., R. J. Everett, W. J. Spearman, R. Baccus, N. V. Varnavskaya, and S. V. Putivkin. 1994. Genetic stock structure of western Alaska chum salmon and a comparison with Russian far east stocks. Canadian Journal of Fisheries and Aquatic Sciences 51(Suppl. 1):84–94.
- Wilson, L. 2020. Alaska salmon fisheries enhancement annual report 2019. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J20-04, Juneau.
- Zadina, T. P., S. C. Heinl, A. J. McGregor, and H. J. Geiger. 2004. Pink salmon stock status and escapement goals in Southeast Alaska and Yakutat. Pages 263–316 [*In*] H. J. Geiger and S. McPherson, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska. Alaska Department of Fish and Game, Divisions of Sport and Commercial Fisheries, Special Publication No. 04-02, Anchorage.

APPENDIX A: SOUTHEAST ALASKA CHUM SALMON ESCAPEMENT INDICES

Appendix A1.—Peak escapement index series for 15 Southern Southeast summer-run chum salmon index streams, by survey type, 1960–2019. (Note: bold values were interpolated.)

District	101	101	101	101	101	101
Management Area	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan
Subregion	SSE	SSE	SSE	SSE	SSE	SSE
Survey Type	Aerial or Foot	Aerial	Foot	Aerial	Aerial	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	101-11-101	101-15-019	101-15-085	101-30-030	101-30-060	101-45-078
Stream Name	Hidden Inlet	Tombstone River	Fish Creek	Keta River	Marten River	Carroll Creek
1960	800	500	-	2,500	1,500	9,452
1961	500	700	_	500	600	9,552
1962	6,551	41,000	_	39,784	10,282	4,800
1963	4,800	9,600	_	9,000	10,000	30,000
1964	15,900	1,500	_	27,000	5,000	8,000
1965	2,000	5,000	=	7,000	2,900	2,000
1966	2,000	6,000	_	5,500	2,000	1,500
1967	1,957	6,114	_	11,882	300	2,400
1968	14,000	4,000	_	12,530	3,238	3,000
1969	800	1,200	_	1,200	700	300
1970	200	1,200	_	15,000	10,000	500
1971	600	1,200	_	400	500	1,156
1972	5,200	3,000	_	10,000	2,000	5,079
1973	6,000	5,350	_	5,680	3,500	2,850
1974	3,100	7,000	_	8,750	500	3,000
1975	605	400	_	550	100	5,575
1976	540	900	_	7,600	400	8,000
1977	1,500	12,025	_	14,500	1,507	4,520
1978	7,700	5,300	_	13,500	200	5,600
1979	1,200	6,500	_	5,300	5,725	10,326
1980	2,900	4,580	9,199	10,000	9,200	8,200
1981	350	1,000	1,797	3,500	400	800
1982	550	550	5,795	3,000	300	11,000
1983	3,600	18,500	4,525	800	500	3,500
1984	800	9,250	3,549	16,500	300	11,000
1985	1,400	5,000	13,598	30,000	1,200	7,500
1986	430	10,000	9,107	46,000	1,000	600
1987	1,500	12,800	28,418	10,100	1,000	6,122
1988	1,400	20,000	23,476	47,000	17,500	44,000
1989	500	12,100	13,593	11,000	5,129	10,000
1990	650	4,400	3,666	30,000	3,436	3,942
1991	150	5,500	1,826	11,000	4,242	12,282

Appendix A1.—Page 2 of 6.

District	101	101	101	101	101	101
Management Area	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan
Subregion	SSE	SSE	SSE	SSE	SSE	SSE
Survey Type	Aerial or Foot	Aerial	Foot	Aerial	Aerial	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	101-11-101	101-15-019	101-15-085	101-30-030	101-30-060	101-45-078
Stream Name	Hidden Inlet	Tombstone River	Fish Creek	Keta River	Marten River	Carroll Creek
1992	500	2,600	15,236	20,000	6,000	13,000
1993	3,287	22,800	25,807	28,000	3,500	5,500
1994	1,500	7,500	7,251	40,100	2,500	3,200
1995	5,000	5,000	3,667	20,000	950	25,000
1996	2,700	5,200	3,243	90,000	4,000	30,000
1997	1,585	5,500	502	15,000	1,500	3,500
1998	4,300	8,000	17,533	43,000	10,100	10,000
1999	800	3,000	1,380	20,000	1,000	10,000
2000	600	4,000	7,648	22,000	1,000	14,000
2001	3,800	4,000	11,775	45,000	7,209	20,000
2002	700	3,000	5,392	20,000	3,072	2,000
2003	1,200	4,000	11,674	16,000	3,619	6,737
2004	550	15,000	23,920	8,000	4,965	2,500
2005	550	3,000	4,485	5,000	3,922	7,302
2006	1,664	4,000	9,100	20,000	5,500	2,000
2007	5,000	20,000	4,285	10,000	40,000	10,000
2008	1,500	200	418	500	1,000	1,229
2009	2,000	10,000	1,680	4,000	4,000	4,207
2010	50	8,000	2,200	12,000	1,000	3,500
2011	16,000	60,000	2,455	20,000	13,000	14,700
2012	5,000	47,000	2,830	26,000	10,000	13,000
2013	1,300	23,000	633	11,900	8,000	2,000
2014	285	10,500	2,466	4,250	500	2,560
2015	4,000	25,000	7,759	10,000	5,200	17,500
2016	2,800	23,800	6,255	6,500	2,850	15,700
2017	208	5,000	1,346	20,000	5,000	3,600
2018	1,260	55,000	14,803	7,000	2,000	12,000
2019	6,500	16,000	7,270	10,000	2,000	10,000

Appendix A1.—Page 3 of 6.

District	101	101	101	101	102	105
Management Area	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Petersburg
Subregion	SSE	SSE	SSE	SSE	SSE	SSE
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial or Foot	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	101-55-020	101-55-040	101-71-04K	101-75-015	102-60-082	105-20-012
Stream Name	Wilson River	Blossom River	King Creek	Eulachon River	Harris River	P Beauclerc S Arm E
1960	_	-	6,098	250	_	_
1961	_	_	5,000	3,000	_	_
1962	-	_	12,465	3,463	-	_
1963	_	_	3,200	1,400	_	_
1964	_		7,500	10,000	-	_
1965	_	_	250	700	_	_
1966	_	_	2,371	2,000	_	_
1967	_		3,723	1,034	-	_
1968	-	_	3,926	1,091	-	_
1969	_		25	410	-	_
1970	-	_	3,000	3,000	-	_
1971	-	_	2,000	650	-	_
1972	_		7,200	4,600	-	_
1973	_		2,700	1,975	-	_
1974	=	=	4,540	1,200	=	_
1975	_		600	600	-	_
1976	_		7,600	500	-	_
1977	=	=	3,000	3,500	=	_
1978	=	=	2,800	1,400	=	_
1979	=	_	2,450	250	=	_
1980	7,578	4,000	7,000	1,500	4,000	1,053
1981	4,000	8,000	600	350	5,675	200
1982	500	200	500	200	600	500
1983	300	3,670	3,554	1,200	5,665	764
1984	8,460	4,100	6,000	6,000	8,715	1176
1985	10,700	8,000	5,000	872	10,626	700
1986	10,000	6,303	3,300	5,000	9,729	400
1987	9,112	6,082	5,890	200	9,386	200
1988	28,000	5,000	10,000	1,000	11,000	2,600
1989	10,800	800	300	1,117	9,600	1,295
1990	10,000	1,100	800	748	6,432	300
1991	5,000	5,000	300	924	7,940	1,071

Appendix A1.—Page 4 of 6.

District	101	101	101	101	102	105
Management Area	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Ketchikan	Petersburg
Subregion	SSE	SSE	SSE	SSE	SSE	SSE
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial or Foot	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	101-55-020	101-55-040	101-71-04K	101-75-015	102-60-082	105-20-012
Stream Name	Wilson River	Blossom River	King Creek	Eulachon River	Harris River	P Beauclerc S Arm E
1992	10,000	4,000	9,200	1,083	2,500	600
1993	5,000	3,500	7,000	1,000	14,597	4,000
1994	23,000	8,000	15,000	800	1,800	1,830
1995	800	12,000	8,000	1,043	500	2,250
1996	21,951	12,000	12,000	300	25,000	5,500
1997	18,000	1,500	10,000	1,000	7,040	1,500
1998	10,000	10,000	35,000	1,000	17,000	1,000
1999	5,000	5,000	8,000	800	8,714	500
2000	16,000	2,000	11,000	200	55,000	2,200
2001	15,000	12,000	4,000	3,200	3,500	800
2002	9,000	5,000	1,500	669	5,750	1,020
2003	6,575	4,388	4,250	788	6,773	327
2004	9,022	5,000	5,831	1,081	15,000	1,000
2005	10,000	8,000	8,000	200	12,000	2,400
2006	10,000	7,000	4,638	400	4,300	800
2007	20,000	12,000	3,000	600	13,452	600
2008	800	3,000	1,000	144	1,000	250
2009	5	5,000	800	2,000	4,229	830
2010	4,000	10,000	2,600	543	3,500	550
2011	4,000	12,000	3,000	1,000	21,000	2,222
2012	10,000	15,000	5,000	500	10,000	3,000
2013	13,000	10,000	5,000	200	1,682	2,498
2014	10,000	2,500	5,000	494	4,240	594
2015	1,000	18,000	7,000	1,000	12,000	1,475
2016	5,000	9,000	5,000	4,500	5,000	1,000
2017	5,000	20,000	8,500	2,000	5,000	200
2018	800	6,000	3,000	1,480	2,000	1,595
2019	1,200	12,500	6,500	1,225	20,000	1,320

Appendix A1.—Page 5 of 6.

District	105	107	107	
Management Area	Petersburg	Petersburg	Petersburg	
Subregion	SSE	SSE	SSE	Southern
Survey Type	Aerial or Foot	Aerial	Aerial	Southeast
Run Type	Summer	Summer	Summer	Subregion
Stream No.	105-42-005	107-40-025	107-40-049	_
Stream Name	Calder Creek	Oerns Creek	Harding River	Index Total ^a (×1,000)
1960	_	5,000	45,000	108
1961	_	2,000	50,000	109
1962	_	2,000	25,000	221
1963	_	4,500	20,000	141
1964	_	2,000	10,000	132
1965	_	700	17,200	57
1966	_	599	5,680	42
1967	_	1,000	15,000	66
1968	_	991	3,000	70
1969	_	105	100	7
1970	_	735	300	52
1971	_	188	2,000	13
1972	_	827	300	58
1973	_	703	3,700	49
1974	_	13,800	11,050	81
1975	_	1,400	3,600	20
1976	_	1,020	8,000	53
1977	_	3,100	5,000	74
1978	_	750	8,500	70
1979	_	4,600	45,000	124
1980	1,416	1,200	13,100	85
1981	620	446	34,000	62
1982	1,799	280	5,300	31
1983	499	445	14,100	62
1984	1,478	1,080	16,400	95
1985	410	590	20,000	116
1986	2,000	765	1,200	106
1987	700	1,300	9,300	102
1988	1,000	490	12,520	225
1989	200	4,000	24,000	104
1990	1,166	530	2,800	70
1991	1,440	700	29,000	86
1992	900	150	15,500	101

Appendix A1.—Page 6 of 6.

District	105	107	107	
Management Area	Petersburg	Petersburg	Petersburg	
Subregion	SSE	SSE	SSE	Southern
Survey Type	Aerial or Foot	Aerial	Aerial	Southeast
Run Type	Summer	Summer	Summer	Subregion
Stream No.	105-42-005	107-40-025	107-40-049	
Stream Name	Calder Creek	Oerns Creek	Harding River	Index Total ^a (×1,000)
1993	2,000	800	32,000	159
1994	1,300	861	4,500	119
1995	2,430	900	10,000	98
1996	3,500	1,600	29,000	246
1997	700	554	8,708	77
1998	3,500	1,100	6,000	178
1999	2,700	2,900	25,000	95
2000	3,000	500	13,800	153
2001	500	1,000	15,000	147
2002	400	50	5,000	63
2003	850	500	6,000	74
2004	3,000	30	6,200	101
2005	3,000	1,000	11,000	80
2006	2,900	100	8,000	80
2007	900	200	6,300	146
2008	1,000	97	1,300	13
2009	1,623	400	5,231	46
2010	1,350	300	1,150	51
2011	7,218	200	2,400	179
2012	2,900	250	4,500	155
2013	1,570	1,400	3,500	86
2014	1,030	800	1,900	47
2015	1,165	400	3,800	115
2016	600	667	1,000	90
2017	4,000	671	3,300	84
2018	6,000	948	13,351	127
2019	4,000	1,200	5,600	105
			Median =	83
			Minimum =	7.4
			Maximum =	246.0
			Contrast =	33.4

Note: En dashes indicate data for streams that were surveyed intermittently prior to 1980 were not used for index calculations.

^a Index total is the sum of all 15 index streams. Values from 1960 to 1979 were calculated using the average proportion of the total index represented by streams with consistent long-term survey data from 1960 to 2013. For an explanation of the calculation of index values from 1960 to 1979, see Piston and Heinl 2014.

Appendix A2.—Peak escapement index series for 63 Northern Southeast Inside summer-run chum salmon index streams, 1960–2019. (Note: bold values were interpolated.)

District	108	109	109	109	109	109	109	109
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Foot	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	108-41-010	109-30-016	109-44-037	109-44-039	109-45-017	109-52-007	109-62-014	109-62-024
Stream Name	North Arm	Tyee Head	Saginaw Bay S	Saginaw	Lookout Point Cr	Rowan	Sample	Petrof Bay W
Stream I tame	Creek	East	Head	Creek	Sec B	Creek	Creek	Head
1960	524							
1961	500	_	_	_		_	_	_
1962	100	_	_	_	_	_	_	_
1963	503	_	_	_	_	_	_	_
1964	572	_	_	_	_	_	_	_
1965	15	_	=	_	=	=	_	=
1966	1,367	_	_	_	_	_	_	_
1967	875	-	-	_	-	_	_	_
1968	1,400	-	-	_	-	_	_	_
1969	731	=	=	_	_	=	_	=
1970	595	_	_	_	_	_	_	_
1971	1,562	_	_	_	_	_	_	_
1972	2,490	_	_	_	_	_	_	_
1973	160	-	-	_	-	-	_	_
1974	100	_	_	_	_	_	_	_
1975	314	=	=	=	=	=	_	=
1976	325	_	_	_	_	_	_	_
1977	295	_	_	_	_	_	_	_
1978	630	_	_	_	_	_	_	_
1979	835	_	_	_	_	_	_	_
1980	1,450	_	_	_	_	_	_	_
1981 1982	643 840	700	350	650	30	_ 50	200	150
1982	812	4,700	885	150	492	1,161	150	495
1984	3,470	4,611	2,590	400	500	500	1,600	485
1985	1,826	400	2,600	455	350	500	700	2,000
1986	1,068	7,000	1,300	350	1,150	1,300	4,500	300
1987	1,040	6,100	1,600	600	600	1,300	500	100
1988	1,280	13,500	500	500	350	700	1,200	700
1989	404	4,000	300	50	1,000	1,300	800	45
1990	4,095	10,000	587	50	800	100	483	328
1991	265	600	416	232	200	546	343	400

Appendix A2.–Page 2 of 16.

District	108	109	109	109	109	109	109	109
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Foot	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	108-41-010	109-30-016	109-44-037	109-44-039	109-45-017	109-52-007	109-62-014	109-62-024
Stream Name	North Arm	Tyee Head	Saginaw Bay	Saginaw	Lookout Point Cr	Rowan	Sample	Petrof Bay
	Creek	East	S Head	Creek	Sec B	Creek	Creek	W Head
1992	708	8,500	600	1,000	463	1,094	600	1,700
1993	926	7,500	1,100	300	800	900	500	695
1994	740	4,500	600	300	400	300	300	400
1995	570	23,300	1,540	50	950	1,200	1,100	636
1996	2530	18,000	3,200	3,300	2,000	650	2,000	2,000
1997	1,420	1,950	300	690	300	2,000	1,017	600
1998	1,115	1,050	1,100	1,000	900	2,000	300	300
1999	1,801	6,300	3,000	969	964	1,400	400	500
2000	2,280	34,000	3,000	800	1,342	3,200	300	500
2001	820	400	400	1,000	696	2,100	1,032	500
2002	881	100	2,164	1,209	400	2,840	1,783	1,210
2003	606	2,500	1,147	641	300	1,505	945	641
2004	800	4,100	500	1,400	735	4,700	2,200	1,400
2005	850	300	1,011	565	700	600	833	350
2006	1,100	4,000	300	860	856	10,000	1,500	1,100
2007	883	1,300	813	300	452	1,067	1,000	300
2008	560	500	540	200	300	708	1,000	200
2009	891	3,048	300	200	323	100	150	50
2010	360	400	417	600	234	543	4,300	200
2011	1,324	3,534	676	300	379	881	660	373
2012	3,627	150	900	750	550	1,400	1,550	1,200
2013	1,981	7,647	1,500	900	500	1,965	1,466	858
2014	650	200	502	1,600	277	658	491	600
2015	1,222	1,200	895	545	494	1,172	875	519
2016	860	1,758	355	216	196	466	347	206
2017	3,000	7,407	1,498	912	827	1,962	1,464	869
2018	710	2,912	589	359	325	2,000	5,000	2,500
2019	804	3,298	667	700	368	894	725	423

Appendix A2.—Page 3 of 16.

District	110	110	110	110	110	110	110	110
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Foot	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	110-13-004	110-22-004	110-22-012	110-22-014	110-23-008	110-23-010	110-23-019	110-23-040
Stream Name	Dry Bay	Amber Creek	Donkey	Cannery Cove	Johnston	Bowman	Snug Cove	East of Snug
	Creek	N Arm Pybus	Creek	Pybus Bay	Creek	Creek	Gambier Bay	Cove
1960	883			_	_			_
1961	2,044	=	=	=	=	=	=	=
1962	1,907	=	=	=	=	=	=	=
1963	3,648	=	=	=	=	_	=	=
1964	1,000	=	=	=	=	=	=	=
1965	2,553	=	=	=	=	=	=	=
1966	2,800	=	=	=	=	=	=	=
1967	7,625	=	=	=	=	=	=	=
1968	395	=	=	=	=	_	=	=
1969	400	=	=	=	=	=	=	=
1970	6,000	=	=	=	=	=	=	=
1971	9,000	=	=	=	=	_	=	=
1972	2,515	=	=	=	=	=	=	=
1973	3,749	_	_	_	_	_	_	_
1974	2,609	=	=	=	=	=	=	=
1975	200	=	=	=	=	=	=	=
1976	581	_	_	_	_	_	_	_
1977	1,854	=	=	=	=	=	=	=
1978	550	_	_	_	_	_	_	_
1979	110	=	=	=	=	_	=	=
1980	2,570	=	=	=	=	=	=	=
1981	1,308	_	_	_	_	_	_	_
1982	568	40	1,600	220	10	20	150	30
1983	177	50	1,300	150	600	80	539	841
1984	928	300	2,600	1,000	2,500	400	750	1,200
1985	870	160	1,455	150	400	474	496	600
1986	823	500	450	350	600	500	700	1,500
1987	1,675	250	3,300	1,515	800	400	300	547
1988	329	300	6,300	3,350	8,000	3,460	2,300	4,300
1989	290	124	600	465	400	100	175	150
1990	1,582	850	2,800	700	2,000	400	950	1,650
1991	56	200	1,200	100	700	242	450	1,150

Appendix A2.–Page 4 of 16.

District	110	110	110	110	110	110	110	110
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg	Petersburg
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Foot	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	110-13-004	110-22-004	110-22-012	110-22-014	110-23-008	110-23-010	110-23-019	110-23-040
Stream Name	Dry Bay	Amber Creek	Donkey	Cannery Cove	Johnston	Bowman	Snug Cove	East of Snug
Stream I vame	Creek	N Arm Pybus	Creek	Pybus Bay	Creek	Creek	Gambier Bay	Cove
1992	1,360	359	1,500	1,500	500	485	700	150
1993	3,218	500	6,000	2,700	1,200	500	800	800
1994		640			,	250	904	
1994	1,055 1,550	600	3,900 7,900	2,400 1,600	1,929 550	300	180	1,411 320
1996	3,771	1,200	13,000	4,800	7,200	2,000	800	1,200
1997	4,200	50	11,000	1,800	500	300	600	1,173
1998	1,344	500	12,000	2,900	600	625	653	400
1999	336	800	10,500	3,400	600	400	450	800
2000	2,579	2,100	15,000	6,200	2,700	1,100	900	1,100
2001	540	450	4,500	2,800	1,050	500	1,000	400
2002	2,312	933	2,100	1,525	2,811	1,259	400	900
2003	355	494	2,500	1,300	1,490	667	698	1,090
2004	1,790	600	8,100	5,200	2,100	900	1,300	400
2005	741	200	4,000	1,800	900	500	420	2,300
2006	1,060	1,150	10,000	3,100	1,000	2,300	1,600	4,000
2007	570	400	2,500	450	300	400	1,200	1,900
2008	139	500	800	600	200	400	100	100
2009	700	700	400	900	747	200	200	546
2010	1,776	1,000	500	780	540	800	700	500
2011	1,371	300	2,700	1,100	200	100	100	641
2012	4,253	500	3,700	1,300	900	1,900	500	700
2013	1,503	723	4,900	1,900	1,200	700	500	1,417
2014	330	242	1,600	300	250	800	298	1,400
2015	912	432	800	200	700	571	531	867
2016	1,841	171	1,400	200	436	227	211	345
2017	1,204	722	4,000	2,050	1,838	1,000	2,500	1,452
2018	300	284	4,000	510	723	377	374	571
2019	2,100	322	800	1,020	300	427	423	300

Appendix A2.–Page 5 of 16.

District	110	110	110	110	111	111	111	111
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	110-32-009	110-33-013	110-34-006	110-34-008	111-13-010	111-15-024	111-15-030	111-16-040
Stream Name	Chuck River	Lauras	Glen	Sanborn	Mole	Windfall	Pack	Swan Cove
	Windham Bay	Creek	Creek	Creek	River	Harbor W Side	Creek	Creek
1960	_	3,200	741	150	_	_	700	_
1961	_	4,919	1,715	3,218		-	3,229	_
1962	_	5,000	3,000	5,000	_	_	7,400	_
1963	-	8,777	4,500	150	-	-	5,762	_
1964	_	2,459	10,000	500	_	_	1,614	_
1965	_	500	2,142	200	_	_	4,033	_
1966	_	45,000	11,000	4,000	_	_	3,857	_
1967	_	20,000	100	35,000	_	_	500	_
1968	_	2,599	906	2,000	_	_	1,706	_
1969	_	3,141	1,095	2,055	_	_	400	_
1970	=	2,559	892	1,674	_	=	700	_
1971	_	25,000	2,000	3,000	_	_	6,000	_
1972	=	25,500	2,000	500	_	=	3,200	_
1973	_	4,000	1,500	3,000	_	_	5,000	_
1974	_	20,000	1,000	900	_	_	5,000	_
1975	_	200	50	100	_	_	80	_
1976	_	300	487	915	_	_	1,100	_
1977	=	300	700	400	_	=	932	_
1978	_	1,800	1,700	500	_	_	500	_
1979	_	300	60	962	_	_	965	_
1980	=	1,500	900	1,400	=	=	200	_
1981	_	600	786	1,200	_	_	1,481	_
1982	316	2,000	50	1,200	400	300	950	350
1983	25	200	766	350	150	713	100	479
1984	700	3,500	1,200	1,900	400	1,500	1,000	2,100
1985	788	900	700	400	500	656	2,400	300
1986	300	1,500	500	900	300	300	700	1,000
1987	557	700	405	2,000	934	200	1,000	200
1988	2,600	3,520	900	3,400	700	350	300	600
1989	279	500	600	500	468	232	77 1	156
1990	600	1,500	507	2,400	500	200	600	550
1991	30	1,050	900	1,000	200	100	200	100

Appendix A2.–Page 6 of 16.

District	110	110	110	110	111	111	111	111
Management Area	Petersburg	Petersburg	Petersburg	Petersburg	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	110-32-009	110-33-013	110-34-006	110-34-008	111-13-010	111-15-024	111-15-030	111-16-040
Stream Name	Chuck River	Lauras	Glen	Sanborn	Mole	Windfall	Pack	Swan Cove
	Windham Bay	Creek	Creek	Creek	River	Harbor W Side	Creek	Creek
1992	1,000	1,800	800	900	300	700	600	452
1993	1,000	1,400	1,600	2,900	200	250	800	674
1994	500	1,500	850	950	4,000	200	3,500	1,200
1995	400	800	500	1,600	340	20	800	617
1996	7,100	2,320	500	14,300	8,247	3,000	8,000	900
1997	2,000	180	3,000	1,000	2,004	995	6,500	200
1998	1,039	500	725	1,000	1,742	3,000	8,000	2,000
1999	300	900	100	700	6,000	1,100	4,000	500
2000	3,050	4,800	4,000	8,200	2,010	600	2,600	625
2001	1,100	1,300	500	2,500	875	2,500	1,500	100
2002	200	2,670	1,800	1,200	3,100	1,950	5,000	1,000
2003	1,110	350	700	1,095	500	4,000	17,000	500
2004	3,000	2,800	3,000	7,300	8,000	1,066	12,500	1,000
2005	979	650	700	6,300	6,000	815	1,000	548
2006	1,400	600	1,000	7,300	3,000	300	4,500	834
2007	500	1,420	1,300	1,700	900	655	1,000	300
2008	400	900	400	1,500	876	300	950	1,000
2009	1,600	722	200	1,200	944	466	1,000	400
2010	600	300	850	700	2,500	300	2,100	238
2011	682	1,088	400	2,000	1,900	400	1,900	900
2012	800	1,200	1,400	900	1,000	769	3,000	2,900
2013	7,100	1,882	1,900	3,400	1,700	1,207	3,100	600
2014	1,800	630	1,500	1,300	841	200	1,349	6,000
2015	4,500	3,500	900	250	1,499	1,500	2,405	714
2016	1,300	500	1,700	1,900	595	291	955	150
2017	1,500	1,975	800	2,500	2,509	1,228	4,025	1,200
2018	600	776	562	1,322	250	0	100	100
2019	1,000	879	636	800	1,200	539	125	524

Appendix A2.–Page 7 of 16.

District	111	111	111	111	112	112	112	112
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Sitka	Sitka
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Foot	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	111-17-010	111-33-010	111-41-005	111-50-069	112-15-062	112-19-010	112-21-005	112-21-006
Stream Name	King Salmon	Prospect Creek	Admiralty	Fish Creek	Robinson	Wilson	Clear River	Ralphs
	River	Speel	Creek	Douglas I.	Creek	River	Kelp Bay	Creek
1960	10,000	_	830	1,010	909	500	600	2,700
1961	3,995	_	1,921	1,500	2,104	2,589	3,000	750
1962	15,200	_	1,792	2,187	1,963	2,415	9,000	4,778
1963	7,128	_	3,428	4,183	3,754	8,000	45,000	12,000
1964	1,997	_	3,000	1,172	1,052	1,294	4,000	200
1965	4,990	_	2,399	2,928	2,628	3,233	31,000	9,000
1966	2,325	_	400	1,219	500	500	12,000	200
1967	2,000	_	300	4,500	920	350	16,699	8,548
1968	2,111	_	4,025	1,239	1,112	1,368	15,000	3,000
1969	1,500	_	1,227	1,200	500	100	5,000	3,271
1970	2,000	_	999	1,220	50	1,347	25,000	1,000
1971	1,500	_	9,600	3,201	3,800	400	15,000	6,994
1972	2,500	_	3,500	3,000	8,200	400	5,000	9,000
1973	14,000	_	10,000	4,299	9,000	4,748	45,000	5,000
1974	6,000	_	800	1,200	1,000	1,900	15,000	1,500
1975	60	_	2,000	185	1,700	350	2,746	1,405
1976	500	_	650	1,342	750	100	500	1,456
1977	100	_	100	850	1,130	747	2,888	1,478
1978	949	_	200	1,366	500	615	1,300	1,217
1979	100	_	500	1,360	800	2,000	4,000	1,531
1980	400	_	1,100	3,200	3,000	400	1,000	900
1981	11,500	_	881	1,200	2,000	1,187	4,588	3,500
1982	500	300	450	1,219	500	200	5,000	3,000
1983	300	75	520	1,466	3,200	2,083	8,000	6,000
1984	4,150	800	5,100	3,380	550	3,800	4,000	1,000
1985	3,200	692	1,500	6,683	500	160	2,000	5,000
1986	4,750	500	1,000	2,047	1,200	500	12,000	4,200
1987	2,000	200	500	281	500	400	23,000	1,000
1988	1,300	1,750	250	609	350	350	25,000	100
1989	300	50	200	1,187	400	500	1,608	3,000
1990	1,050	300	800	1,486	1,200	500	8,000	2,000
1991	1,300	200	200	2,194	1,000	979	2,000	1,822

Appendix A2.–Page 8 of 16.

District	111	111	111	111	112	112	112	112
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Sitka	Sitka
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Foot	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	111-17-010	111-33-010	111-41-005	111-50-069	112-15-062	112-19-010	112-21-005	112-21-006
Stream Name	King Salmon	Prospect Creek	Admiralty	Fish Creek	Robinson	Wilson	Clear River	Ralphs
	River	Speel	Creek	Douglas I.	Creek	River	Kelp Bay	Creek
1992	1,300	400	200	1,839	1,000	1,900	4,000	1,100
1993	1,000	400	500	639	1,800	6,000	3,500	4,000
1994	5,800	500	500	3,943	1,500	2,000	5,000	2,000
1995	2,200	600	200	2,941	400	2,200	8,000	10,800
1996	9,000	4,320	900	6,595	2,750	5,600	5,000	8,395
1997	3,400	321	50	1,890	4,000	500	12,000	7,000
1998	7,100	5,000	700	849	1,000	3,100	3,000	4,000
1999	3,500	500	1,874	1,570	2,000	4,000	15,000	5,000
2000	4,110	2,250	300	7,915	1,350	5,700	4,800	11,300
2001	1,150	1,000	5,500	815	1,621	2,000	5,500	14,400
2002	2,800	3,000	3,500	146	4,750	3,100	3,000	9,000
2003	4,000	400	600	1,150	3,200	10,000	6,401	8,430
2004	5,000	1,100	1,429	2,408	1,000	3,000	3,000	5,600
2005	6,000	860	500	1,841	2,500	5,500	5,644	5,300
2006	3,500	800	2,500	2,710	1,995	10,000	1,100	12,300
2007	1,150	800	4,700	270	1,054	1,000	2,500	4,000
2008	800	1,100	583	888	800	2,900	400	4,000
2009	1,700	1,900	500	1,058	2,400	1,700	3,201	2,200
2010	4,600	2,900	300	764	1,750	1,014	400	2,600
2011	3,000	3,000	731	205	4,000	2,500	1,070	3,350
2012	13,800	1,800	2,600	719	1,700	2,356	200	5,600
2013	4,000	700	1,700	125	2,300	3,500	550	9,300
2014	3,800	550	150	1,426	752	100	900	10,500
2015	12,000	4,300	500	1,541	1,340	1,000	205	1,610
2016	850	1,100	100	612	800	1,300	450	2,500
2017	3,200	1,800	500	1,900	3,800	3,605	400	11,750
2018	2,000	1,700	680	546	909	50	470	6,500
2019	3,100	3,500	4,000	1,049	1,500	1,700	350	2,300

Appendix A2.–Page 9 of 16.

District	112	112	112	112	112	112	112	112
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	112-42-025	112-44-010	112-46-009	112-47-010	112-48-015	112-48-019	112-48-023	112-48-035
Stream Name	Kadashan	Saltery Bay	Seal Bay	Long Bay	Big Goose	Little Goose	West Bay	Tenakee Inlet
	Creek	Head	Head	Head	Creek	Creek	Head Creek	Head
1960	-	700	4,000	10,000	5,000	_	1,000	4,000
1961	_	3,433	3,000	10,000	25,000	_	24,000	10,000
1962	_	1,750	4,400	2,800	7,400	_	3,200	6,000
1963	_	3,000	12,000	1,800	11,000	_	8,000	13,000
1964	_	1,716	6,462	8,570	4,200	_	3,000	320
1965	_	4,288	16,146	17,671	14,196	_	14,763	350
1966	_	3,100	3,500	2,000	4,150	-	13,350	5,200
1967	_	1,800	19,000	17,000	6,000	_	30,700	20,530
1968	=	1,814	1,000	7,475	6,005	=	3,020	4,753
1969	_	2,192	5,000	5,000	10,200	_	4,000	7,500
1970	-	1,786	4,000	3,000	1,100	_	1,800	5,000
1971	_	75	20,000	7,000	18,000	-	9,000	1,200
1972	_	2,900	49,000	35,000	29,000	_	18,000	12,000
1973	_	4,000	33,000	28,000	5,300	-	13,000	12,000
1974	_	2,984	20,500	17,000	5,000	_	6,000	2,500
1975	-	1,500	4,000	4,000	3,000	_	500	500
1976	_	976	10,500	3,000	550	_	150	2,557
1977	-	400	1,000	150	250	_	400	800
1978	=	816	1,000	3,000	1,000	=	2,809	2,138
1979	_	200	1,000	1,650	300	-	3,534	180
1980	_	100	5,000	4,700	2,500	_	5,686	200
1981	_	2,000	2,000	2,000	2,000	-	2,500	1,500
1982	1,567	1,119	2,800	5,000	3,000	10	1,000	300
1983	4,249	12,300	7,700	12,000	14,100	1,606	2,000	4,000
1984	4,168	250	6,200	8,430	7,600	1,576	1,600	1,000
1985	3,000	400	5,000	7,000	10,050	100	15,300	1,900
1986	1,800	1,000	4,500	10,000	10,000	50	2,000	1,050
1987	2,764	300	1,000	1,000	1,300	1,045	1,000	1,100
1988	7,600	200	6,200	6,000	5,400	130	4,300	1,925
1989	1,000	500	1,000	1,200	2,100	523	1,800	1,300
1990	2,100	200	2,700	2,200	3,050	100	500	1,500
1991	1,000	1,000	5,500	3,200	5,000	755	2,000	2,000

Appendix A2.–Page 10 of 16.

District	112	112	112	112	112	112	112	112
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	112-42-025	112-44-010	112-46-009	112-47-010	112-48-015	112-48-019	112-48-023	112-48-035
Stream Name	Kadashan	Saltery Bay	Seal Bay	Long Bay	Big Goose	Little Goose	West Bay	Tenakee Inlet
	Creek	Head	Head	Head	Creek	Creek	Head Creek	Head
1992	2,000	1,100	9,300	10,100	8,300	200	8,400	6,100
1993	3,500	1,050	7,000	7,100	19,700	1,000	10,500	9,200
1994	6,200	2,800	19,000	42,500	39,200	1,500	29,510	18,000
1995	3,600	2,000	7,000	10,000	22,000	500	7,900	13,000
1996	43,000	32,700	89,000	105,000	84,000	2,000	57,000	103,000
1997	3,500	3,500	5,700	19,900	9,400	1,400	15,000	11,000
1998	3,000	400	11,000	15,000	10,000	7,700	23,000	6,700
1999	2,500	1,100	20,000	28,000	21,000	2,150	32,000	15,000
2000	10,800	10,500	22,500	28,500	25,000	4,800	42,000	15,000
2001	700	4,150	5,000	2,275	2,935	1,000	5,200	10,000
2002	19,000	21,000	55,000	42,000	23,000	7,500	23,500	28,500
2003	5,700	700	7,600	4,000	1,100	5,000	5,000	12,000
2004	10,000	4,100	12,000	10,700	4,500	800	20,000	5,500
2005	3,000	2,000	13,000	9,000	1,500	8,000	8,000	4,500
2006	3,500	2,500	8,000	12,200	2,900	6,500	12,800	5,300
2007	3,905	2,500	3,600	12,000	3,500	1,950	12,500	4,000
2008	2,500	1,100	6,050	19,000	900	5,700	5,800	2,800
2009	500	500	3,750	3,800	3,000	5,300	4,200	1,300
2010	800	300	2,800	1,800	1,200	1,800	3,900	1,200
2011	500	2,269	6,500	4,500	2,500	3,000	2,000	2,500
2012	1,250	1,100	9,000	5,050	6,000	1,200	3,700	3,500
2013	21,000	1,550	22,200	17,500	7,000	8,100	8,000	7,500
2014	1,500	800	4,500	7,200	560	1,190	6,200	225
2015	4,414	800	12,000	16,000	400	19,000	950	8,000
2016	1,000	800	5,500	4,520	1,100	900	2,800	6,150
2017	3,000	4,000	14,100	25,000	15,800	1,000	21,600	5,500
2018	4,000	800	1,700	5,900	4,900	200	4,100	4,000
2019	600	3,800	6,000	9,300	6,100	50	2,600	2,800

Appendix A2.–Page 11 of 16.

District	112	112	112	112	112	112	112	113
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Sitka
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	112-50-020	112-50-030	112-65-024	112-72-011	112-73-024	112-80-028	112-90-014	113-53-003
Stream Name	Kennel	Freshwater	Greens	Weir Creek	Weir Creek	Chaik Bay	Whitewater	Saook Bay
	Creek	Creek	Creek	N Arm Hood Bay	S Arm Hood Bay	Creek	Creek	West Head
1960	1,736	_	1,052	1,413	1,445	3,160	1,539	_
1961	4,018	_	2,434	3,270	9,000	7,313	3,560	_
1962	1,750	_	2,271	3,050	5,000	20,000	2,350	_
1963	4,000	_	7,000	5,835	5,968	13,048	6,353	_
1964	2,008	_	3,500	1,635	1,672	8,560	1,780	_
1965	5,018	_	3,040	4,084	4,177	9,133	4,447	_
1966	3,850	_	5,025	3,906	500	2,200	3,211	_
1967	9,500	_	1,500	5,457	300	13,000	6,000	_
1968	6,500	_	1,800	1,728	1,767	1,000	4,000	_
1969	1,400	_	1,000	300	4,200	1,500	500	_
1970	5,900	=	200	150	6,000	1,500	1,200	=
1971	1,500	_	500	500	5,000	2,800	4,862	_
1972	3,500	_	4,100	1,500	3,000	3,860	9,000	_
1973	7,369	_	2,000	400	4,000	12,000	14,000	_
1974	3,000	_	200	500	5,000	3,000	6,000	_
1975	2,000	_	500	50	300	800	500	_
1976	1,100	_	400	40	300	3,500	200	_
1977	1,500	_	4,000	100	1,800	2,111	300	_
1978	300	_	700	100	1,000	1,738	800	_
1979	800	_	6,000	978	100	2,000	400	_
1980	2,000	=	3,200	1,080	1,500	4,000	2,000	=
1981	2,600	=	2,000	1,400	1,000	1,000	200	=
1982	140	250	553	450	500	1,600	300	1,124
1983	500	600	500	700	500	2,000	2,550	3,046
1984	1,400	600	1,800	1,800	1,600	6,900	3,000	1,500
1985	2,000	2,000	4,000	5,000	5,800	2,500	2,000	5,000
1986	2,200	750	6,500	1,300	3,000	8,300	2,000	1,000
1987	450	696	1,750	630	1,800	2,000	700	1,982
1988	1,100	300	800	1,600	620	6,500	1,800	3,500
1989	500	300	500	700	400	2,000	2,000	992
1990	4,050	300	4,150	1,000	500	1,500	1,700	3,500
1991	2,050	100	200	1,000	200	500	1,070	2,000

Appendix A2.–Page 12 of 16.

District	112	112	112	112	112	112	112	113
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Sitka
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
Stream No.	112-50-020	112-50-030	112-65-024	112-72-011	112-73-024	112-80-028	112-90-014	113-53-003
Stream Name	Kennel	Freshwater	Greens	Weir Creek	Weir Creek	Chaik Bay	Whitewater	Saook Bay
	Creek	Creek	Creek	N Arm Hood Bay	S Arm Hood Bay	Creek	Creek	West Head
1992	3,150	1,000	600	8,300	4,300	11,200	5,000	2,000
1993	8,900	1,650	1,000	7,700	2,200	23,600	9,900	4,280
1994	1,300	1,300	1,100	2,300	500	6,500	2,500	500
1995	4,200	6,000	900	650	1,500	6,300	4,100	100
1996	39,300	2,600	11,500	22,000	13,000	21,000	4,500	6,600
1997	7,000	500	2,000	4,003	4,900	8,100	3,000	1,700
1998	2,700	1,297	500	500	550	5,000	2,000	4,000
1999	3,300	2,095	1,200	13,000	6,000	10,000	8,950	5,968
2000	3,000	2,918	2,300	3,000	16,500	21,700	5,300	10,630
2001	5,000	1,000	1,500	3,900	3,600	12,000	1,700	9,500
2002	2,950	4,750	1,450	8,000	4,050	10,750	1,500	5,500
2003	1,000	500	3,000	500	500	3,800	3,700	3,947
2004	2,000	2,400	2,150	2,300	2,500	13,000	4,200	3,500
2005	1,400	1,800	500	4,000	2,500	4,000	2,500	3,481
2006	3,700	1,861	2,610	7,100	3,500	8,700	4,000	17,500
2007	1,500	983	1,000	2,000	2,120	2,500	2,092	6,950
2008	400	1,000	550	1,749	500	4,100	1,500	1,800
2009	1,500	1,500	200	1,887	1,500	1,300	1,000	490
2010	800	700	1,100	1,000	700	900	700	2,400
2011	300	2,000	3,000	500	400	1,800	1,500	1,420
2012	400	20	2,510	6,800	3,200	9,500	1,000	3,240
2013	650	6,000	1,810	3,000	500	19,500	2,300	5,146
2014	1,508	690	876	1,640	1,246	6,500	400	2,300
2015	200	1,500	1,562	2,923	2,221	4,500	2,203	795
2016	1,530	491	100	1,161	300	3,300	875	1,000
2017	4,419	2,068	2,593	4,893	3,695	20,000	3,688	6,000
2018	0	813	300	1,924	0	8,000	300	4,180
2019	300	921	200	2,178	5,000	4,000	600	2,100

Appendix A2.–Page 13 of 16.

District	113	113	114	114	114	114	114	114
Management Area	Sitka	Sitka	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside							
Survey Type	Aerial							
Run Type	Summer							
Stream No.	113-54-007	113-56-003	114-23-070	114-25-010	114-27-030	114-31-013	114-32-004	114-33-023
Stream Name	Rodman	Ushk Bay	Mud Bay	Homeshore	Spasski	Game	Seagull	Neka
	Creek	W End	River	Creek	Creek	Creek	Creek	River
1960	1,503		_	_	2,000	4,179	1,050	5,250
1961	3,477	_	_	_	4,531	9,670	1,200	10,700
1962	600	_	_	_	4,227	9,020	2,200	11,800
1963	6,205	_	_	_	25,000	45,000	4,000	23,500
1964	1,738	_	_	_	750	275	500	7,476
1965	5,000	_	_	_	5,659	12,077	3,089	18,679
1966	4,154	_	_	_	7,400	6,000	8,500	43,500
1967	5,803	_	_	_	9,000	30,000	1,700	9,000
1968	1,837	_	_	_	500	6,000	1,307	3,000
1969	2,221	_	_	_	5,500	9,500	1,580	16,500
1970	3,000	_	_	_	400	1,000	700	8,200
1971	500	_	_	_	2,100	20,000	2,500	43,000
1972	2,360	_	_	_	15,500	40,000	5,383	51,000
1973	1,500	_	_	_	3,000	12,000	4,536	39,000
1974	1,500	_	_	_	300	3,500	2,150	10,000
1975	500	_	_	_	400	400	200	7,000
1976	200	_	_	_	1,500	5,200	300	4,251
1977	1,004	_	_	_	8,000	1,700	2,300	9,000
1978	1,500	=	=	=	2,000	2,000	3,500	1,600
1979	1,040	=	=	=	1,355	7,000	300	9,000
1980	500	_	_	_	5,300	13,300	550	8,500
1981	1,000	=	=	=	4,000	5,500	4,200	6,000
1982	300	1,172	500	339	800	2,500	220	2,500
1983	2,903	3,176	400	550	500	8,000	1,550	24,500
1984	2,849	2,025	220	7,000	3,250	12,200	2,400	10,550
1985	500	500	1,129	846	3,500	4,300	5,300	7,000
1986	1,000	2,000	1,068	515	2,300	3,900	500	12,500
1987	3,000	3,000	150	598	500	8,000	2,300	8,000
1988	500	3,500	100	150	950	5,600	600	4,000
1989	945	1,034	399	100	910	1,500	200	2,800
1990	3,000	300	813	300	2,500	2,000	110	11,000
1991	1,365	3,000	200	600	1,500	2,300	1,200	4,400

Appendix A2.–Page 14 of 16.

District	113	113	114	114	114	114	114	114
Management Area	Sitka	Sitka	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau
Subregion	NSE Inside							
Survey Type	Aerial							
Run Type	Summer							
Stream No.	113-54-007	113-56-003	114-23-070	114-25-010	114-27-030	114-31-013	114-32-004	114-33-023
Stream Name	Rodman	Ushk Bay	Mud Bay	Homeshore	Spasski	Game	Seagull	Neka
	Creek	W End	River	Creek	Creek	Creek	Creek	River
1992	2,734	2,992	50	700	3,000	3,000	1,200	9,700
1993	4,080	4,464	2,000	1,100	3,700	11,900	4,100	12,500
1994	4,872	500	300	2,200	4,600	3,400	1,700	9,300
1995	3,733	4,084	300	4,000	3,200	4,800	1,700	9,700
1996	8,000	1,600	1,100	1,050	9,700	35,100	7,000	24,800
1997	3,500	4,431	1,000	200	4,500	9,000	7,800	9,500
1998	2,500	3,854	200	400	4,200	4,000	300	8,600
1999	3,800	6,224	3,500	500	2,000	7,000	3,000	20,000
2000	6,800	19,000	350	500	900	4,100	1,250	29,000
2001	8,100	12,100	4,500	1,300	9,500	12,100	3,000	23,000
2002	5,500	9,000	2,250	1,100	9,400	2,000	4,500	11,500
2003	9,000	1,500	1,590	800	3,500	15,000	600	16,000
2004	7,500	3,000	3,100	2,200	4,000	5,000	800	7,400
2005	1,410	3,630	5,000	1,500	3,000	2,000	1,820	4,800
2006	8,710	15,500	7,500	1,600	2,500	7,500	2,772	20,000
2007	8,060	2,920	6,500	3,000	3,550	5,300	1,500	8,000
2008	1,800	1,070	600	561	1,500	3,760	75	1,050
2009	370	770	3,000	2,200	2,000	1,500	250	1,700
2010	800	130	900	1,400	1,800	300	600	5,900
2011	520	270	800	2,500	4,000	2,500	500	4,500
2012	3,100	2,000	1,500	500	8,400	8,000	1,667	12,000
2013	15,300	2,000	10,000	3,500	800	15,500	900	10,700
2014	2,200	300	846	607	900	500	851	1,400
2015	1,835	140	3,000	1,082	5,000	5,000	400	2,500
2016	900	500	200	430	2,200	1,050	592	800
2017	15,000	1,000	4,600	1,811	3,500	10,000	2,494	2,900
2018	6,150	2,500	1,000	712	600	2,800	700	5,300
2019	460	300	5,000	806	3,500	6,200	1,000	9,500

Appendix A2.–Page 15 of 16.

District	114	114	115	115	115	115	115	
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	Northern
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Southeast
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Inside Subregion
Stream No.	114-34-010	114-40-035	115-10-042	115-10-046	115-10-080	115-20-010	115-20-052	Subregion
Stream Name	Humpback	Trail	St James Bay	St. James	Endicott	Berners	Sawmill Creek	Index Total a
	Creek	River	NW Side	River	River	River	Berners River	$(\times 1,000)$
1960	2,467	_	_	_	-	-	=	108
1961	5,708	=	=	=	=	=	=	251
1962	12,700	=	=	=	=	=	=	234
1963	5,000	=	=	=	=	=	=	448
1964	2,853	=	=	=	=	=	=	125
1965	7,129	_	_	_	-	_	_	313
1966	500	=	=	=	=	_	=	300
1967	3,000	=	=	=	=	_	=	419
1968	400	=	=	=	=	_	=	133
1969	11,000	=	=	=	=	_	=	160
1970	400	=	=	=	=	=	=	130
1971	9,000	=	=	=	=	_	=	343
1972	21,000	=	=	=	=	=	=	546
1973	10,500	=	=	=	=	_	=	460
1974	3,200	=	=	=	=	_	=	218
1975	11,600	=	=	=	=	=	=	69
1976	5,100	=	=	=	=	_	=	71
1977	3,000	=	=	=	=	=	=	72
1978	3,000	_	_	_	_	_	_	60
1979	2,000	_	_	_	_	_	_	75
1980	4,500	_	_	_	_	_	_	121
1981	7,000	_	_	_	_	_	_	115
1982	2,300	370	400	342	937	515	4,580	60
1983	2,250	3,000	825	5,000	2,539	1,397	250	162
1984	4,000	1,650	800	60	500	800	2,500	159
1985	3,700	500	2,910	100	2,337	5,400	400	149
1986	4,500	400	700	360	210	1,070	600	141
1987	2,500	500	1,000	604	400	600	1,500	106
1988	550	2,500	1,900	492	2,500	406	800	162
1989	800	500	350	302	5,000	100	100	53
1990	1,500	200	750	150	4,600	500	1,150	107
1991	2,800	7,400	1,100	436	900	657	430	76

Appendix A2.–Page 16 of 16.

District	114	114	115	115	115	115	115	
Management Area	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	Juneau	
Subregion	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	NSE Inside	Northern
Survey Type	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Aerial	Southeast
Run Type	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Inside Subregion
Stream No.	114-34-010	114-40-035	115-10-042	115-10-046	115-10-080	115-20-010	115-20-052	Subregion
Stream Name	Humpback	Trail	St James Bay	St. James	Endicott	Berners	Sawmill Creek	Index Total ^a
	Creek	River	NW Side	River	River	River	Berners River	(×1,000)
1992	4,400	400	600	200	2,550	220	450	153
1993	5,500	800	700	250	1,500	800	1,150	228
1994	6,300	300	600	1,558	800	4,000	3,050	272
1995	4,600	1,843	105	1,194	3,265	125	1,388	209
1996	27,000	500	850	2,400	10,000	5,900	5,700	931
1997	5,600	1,400	300	200	3,542	770	1,000	226
1998	4,000	500	100	1,126	2,000	1,025	1,100	197
1999	6,500	8,000	50	510	1,900	780	2,115	318
2000	7,400	4,000	550	72	200	250	2,979	443
2001	6,050	200	959	6,000	1,100	10,000	1,527	229
2002	4,350	6,500	2,800	1,200	3,000	3,400	2,639	397
2003	2,500	1,000	878	5,000	16,100	1,811	550	210
2004	2,500	1,300	1,800	1,387	2,400	1,950	1,000	242
2005	3,500	3,500	1,600	2,050	18,750	1,500	900	185
2006	3,200	1,900	1,179	1,615	2,000	5,400	450	282
2007	2,000	2,500	623	853	2,500	1,000	600	149
2008	500	560	413	100	500	5,800	500	99
2009	900	1,700	500	602	15,800	12,000	1,000	107
2010	1,300	686	323	435	3,500	1,100	200	77
2011	1,300	2,500	120	705	23,000	3,300	2,000	125
2012	9,500	1,500	730	1,000	3,000	2,056	100	177
2013	2,400	4,600	200	1,568	3,000	1,000	1,845	278
2014	1,887	120	370	50	1,945	1,048	617	93
2015	6,000	1,543	5,400	924	4,000	600	1,100	166
2016	630	613	307	367	200	730	437	66
2017	7,800	5,100	1,293	1,546	3,020	3,076	1,451	277
2017	2,900	2,100	508	608	2,229	1,209	501	109
2019	3,200	8,000	200	300	1,200	300	189	123
2019	3,200	0,000	200	300	1,200	300	Median =	161
							Minimum =	53
							Maximum =	931
							Contrast =	17.6

Note: En dashes indicate data for streams that were surveyed intermittently prior to 1980 were not used for index calculations.

^a Index total is the sum of all 63 index streams. Values from 1960 to 1981 were calculated using the average proportion of the total index represented by streams with consistent long-term survey data from 1960 to 2010.

Appendix A3.—Peak escapement index series for nine Northern Southeast Outside summer-run chum salmon index streams, 1982–2019. (Note: bold values were interpolated.)

District	113	113	113	113	113
Management Area	Sitka	Sitka	Sitka	Sitka	Sitka
Subregion	NSE Outside				
Survey Type	Aerial	Aerial or Foot	Aerial or Foot	Aerial or Foot	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer
Stream No.	113-22-015	113-62-009	113-73-006	113-73-010	113-73-012
Stream Name	Whale Bay	Kalinin Cove	Waterfall Cove	Slocum Arm	Khaz
	Great Arm Head	Head	Creek	Head	Creek
1982	3,900	1,200	384	500	1,000
1983	2,500	1,271	741	1,587	966
1984	1,500	4,000	1,000	6,000	3,000
1985	2,000	12,000	500	5,000	6,000
1986	5,500	2,550	1,000	3,000	3,200
1987	4,000	4,000	729	2,000	1,300
1988	6,500	1,000	4,200	4,000	1,000
1989	1,300	60	518	1,108	500
1990	4,000	1,777	2,000	1,000	2,000
1991	8,809	6,000	1,473	3,152	1,500
1992	4,000	1,800	5,000	2,247	2,000
1993	3,677	1,054	500	1,316	1,500
1994	3,400	910	1,000	1,136	600
1995	7,550	685	1,000	3,000	4,000
1996	4,200	800	150	6,000	700
1997	7,000	1,604	3,000	1,000	1,500
1998	1,300	1,600	1,310	1,775	1,135
1999	5,000	250	438	1,000	500
2000	27,000	1,088	1,000	3,900	2,000
2001	18,300	1,270	1,100	4,000	1,000
2002	1,000	968	590	2,000	808
2003	12,800	1,510	4,000	1,680	3,500
2004	11,800	233	1,130	2,000	3,000
2005	23,800	1,110	740	2,360	910
2006	24,000	3,326	780	5,000	182
2007	8,340	1,630	520	4,865	930
2008	4,200	5,140	550	3,400	730
2009	3,000	2,000	215	275	57
2010	2,420	580	1,000	1,733	281
2011	8,550	1,190	210	500	230

Appendix A3.—Page 2 of 4.

District	113	113	113	113	113
Management Area	Sitka	Sitka	Sitka	Sitka	Sitka
Subregion	NSE Outside	NSE Outside	NSE Outside	NSE Outside	NSE Outside
Survey Type	Aerial	Aerial or Foot	Aerial or Foot	Aerial or Foot	Aerial or Foot
Run Type	Summer	Summer	Summer	Summer	Summer
Stream No.	113-22-015	113-62-009	113-73-006	113-73-010	113-73-012
Stream Name	Whale Bay Great Arm	Kalinin Cove	Waterfall Cove	Slocum Arm	Khaz
	Head	Head	Creek	Head	Creek
2012	3,700	1,907	850	4,000	3,000
2013	2,230	1,000	990	1,800	900
2014	1,510	1,500	1,000	2,090	1,265
2015	6,730	1,250	783	1,250	1,200
2016	1,200	180	3,000	360	2,480
2017	4,200	100	430	1,290	2,150
2018	3,300	1,570	210	2,480	1,100
2019	7,100	5,000	1,000	3,090	1,000

Appendix A3.—Page 3 of 4.

District	113	113	113	113	
Management Area	Sitka	Sitka	Sitka	Sitka	
Subregion	NSE Outside	NSE Outside	NSE Outside	NSE Outside	Northern
Survey Type	Aerial	Aerial	Foot	Aerial	Southeast
Run Type	Summer	Summer	Summer	Summer	Outside
Stream No.	113-32-005	113-72-005	113-73-003	113-81-011	Subregion
Stream Name	W Crawfish	Sister Lake	Lake Stream	Black	
	NE Arm Head	SE Head	Ford Arm	River	Index Total
1982	1,933	3,000	645	500	13,062
1983	1,224	4,911	2,000	10,000	25,200
1984	30,000	25,000	1,000	17,000	88,500
1985	2,500	11,000	450	15,000	54,450
1986	18,000	3,500	400	3,000	40,150
1987	4,100	3,000	651	5,000	24,780
1988	3,500	5,000	1,033	3,000	29,233
1989	500	4,000	1,610	8,000	17,595
1990	3,000	18,000	959	2,500	35,236
1991	9,678	17,000	1,456	1,000	50,069
1992	1,000	18,000	1,140	500	35,687
1993	2,000	5,000	1,559	4,291	20,897
1994	3,000	4,000	3,000	1,000	18,046
1995	5,000	4,450	1,416	300	27,401
1996	10,500	12,650	1,271	1,000	37,271
1997	6,000	10,000	2,955	10,000	43,059
1998	7,000	5,750	2,631	2,400	24,901
1999	7,800	1,200	1,697	9,000	26,885
2000	33,000	4,041	844	31,000	103,873
2001	9,177	1,910	5,900	23,000	65,657
2002	3,450	6,550	1,927	6,000	23,293
2003	2,300	2,000	1,770	6,000	35,560
2004	6,000	22,300	1,560	37,150	85,173
2005	32,370	11,270	540	8,700	81,800
2006	8,680	8,000	4,055	11,920	65,943
2007	12,300	6,530	1,280	5,602	41,997
2008	4,300	14,900	8,475	14,500	56,195
2009	3,500	3,000	820	4,200	17,067
2010	8,170	5,240	595	7,500	27,519
2011	4,350	3,000	1,730	5,000	24,760

Appendix A3.–Page 4 of 4.

Northern
Northern
Northern
rotthern
Southeast
Outside
Subregion
Index Total
37,807
22,810
27,550
26,285
25,950
24,780
19,360
25,470
ian = 28
am = 13
am = 104
ast = 8.0
ι

Appendix A4.—Peak escapement index series for Cholmondeley Sound fall-run chum salmon index streams, 1980–2019. (Note: bold values were interpolated.)

District	102	102	
Management Area	Ketchikan	Ketchikan	
Survey Type	Aerial	Aerial	
Run Type	Fall	Fall	
Stream No.	102-40-043	102-40-060	T 1 77 / 1
Stream Name	Disappearance Creek	Lagoon Creek	Index Total
1980	13,500	12,000	25,500
1981	21,000	5,000	26,000
1982	1,800	6,633	8,433
1983	4,000	11,100	15,100
1984	23,401	16,982	40,383
1985	26,000	13,632	39,632
1986	16,000	12,000	28,000
1987	32,500	13,500	46,000
1988	21,000	14,800	35,800
1989	19,800	15,000	34,800
1990	22,000	8,300	30,300
1991	33,000	25,000	58,000
1992	21,000	15,500	36,500
1993	29,000	17,000	46,000
1994	22,700	20,000	42,700
1995	20,000	15,000	35,000
1996	38,000	23,500	61,500
1997	18,000	12,800	30,800
1998	32,500	26,000	58,500
1999	50,000	50,000	100,000
2000	21,500	14,300	35,800
2001	22,000	23,000	45,000
2002	22,000	17,000	39,000
2003	45,000	30,000	75,000
2004	30,000	30,000	60,000
2005	7,600	7,000	14,600
2006	38,000	16,000	54,000
2007	9,500	8,500	18,000
2008	35,500	14,000	49,500
2009	26,000	13,000	39,000
2010	45,000	31,000	76,000
2011	50,000	43,000	93,000
2012	32,000	22,000	54,000
2013	5,200	8,000	13,200
2014	29,500	18,000	47,500
2015	47,000	26,000	73,000
2016	14,000	16,000	30,000
2017	29,000	22,500	51,500
2017	26,000	44,000	70,000
2019	13,000	7,000	20,000
2017	10,000	Minimum =	8
		Maximum =	100
		Contrast =	11.9

Appendix A5.—Peak escapement index series for Northern Southeast Subregion fall-run chum salmon index streams, 1964—2019. (Note: bold values were interpolated.)

District	109	109		109		114	
Management Area	Petersburg	Petersburg		Petersburg		Juneau	
Subregion	NSE Inside	NSE Inside		NSE Inside		NSE Inside	
Survey Type	Aerial	Aerial		Aerial		Aerial	
Run Type	Fall	Fall		Fall		Fall	
Stream No.	109-43-006	109-43-008		109-45-013		114-80-020	
Stream Name	Port Camden	Port Camden		Salt Chuck		Excursion	
	S Head	W Head	Index Total	Security	Index Total	River	Index Total
1964	300	1,500	1,800	20,000	20,000	6,200	6,200
1965	50	1,200	1,250	12,500	12,500	34,500	34,500
1966	8,000	200	8,200	2,500	2,500	3,000	3,000
1967	10,000	3,500	13,500	2,500	2,500	22,500	22,500
1968	4,000	600	4,600	5,000	5,000	40,000	40,000
1969	2,100	1,103	3,203	9,000	9,000	25,300	25,300
1970	5,000	1,300	6,300	13,000	13,000	12,000	12,000
1971	2,000	750	2,750	7,000	7,000	42,000	42,000
1972	2,500	20	2,520	12,300	12,300	65,000	65,000
1973	7,000	700	7,700	16,350	16,350	19,000	19,000
1974	2,630	1,400	4,030	18,001	18,001	2,050	2,050
1975	2,300	1,300	3,600	2,800	2,800	33,000	33,000
1976	1,450	450	1,900	6,810	6,810	10,200	10,200
1977	3,000	800	3,800	7,900	7,900	4,900	4,900
1978	6,100	1,235	7,335	5,875	5,875	450	450
1979	3,300	500	3,800	1,800	1,800	4,000	4,000
1980	4,100	2,220	6,320	13,800	13,800	34,500	34,500
1981	4,100	2,500	6,600	3,500	3,500	33,500	33,500
1982	3,800	1,550	5,350	12,000	12,000	1,640	1,640
1983	771	680	1,451	4,830	4,830	3,300	3,300
1984	6,800	3,200	10,000	19,000	19,000	7,750	7,750
1985	8,700	3,500	12,200	21,000	21,000	4,025	4,025
1986	8,200	6,070	14,270	12,000	12,000	9,150	9,150
1987	7,400	1,550	8,950	11,200	11,200	2,000	2,000
1988	4,100	3,250	7,350	15,500	15,500	3,700	3,700
1989	4,700	2,350	7,050	8,410	8,410	2,050	2,050
1990	3,000	960	3,960	20,040	20,040	5,100	5,100
1991	3,100	1,800	4,900	6,000	6,000	900	900
1992	2,900	2,206	5,106	19,300	19,300	2,700	2,700
1993	5,100	1,700	6,800	7,400	7,400	8,200	8,200
1994	3,800	1,150	4,950	4,900	4,900	4,300	4,300
1995	2,000	1,200	3,200	14,000	14,000	6,140	6,140

District	109	109		109		114	
Management Area	Petersburg	Petersburg		Petersburg		Juneau	
Subregion	NSE Inside	NSE Inside		NSE Inside		NSE Inside	
Survey Type	Aerial	Aerial		Aerial		Aerial	
Run Type	Fall	Fall		Fall		Fall	
Stream No.	109-43-006	109-43-008		109-45-013		114-80-020	
Stream Name	Port Camden	Port Camden		Salt Chuck		Excursion	
	S Head	W Head	Index Total	Security	Index Total	River	Index Total
1996	3,400	1,350	4,750	19,000	19,000	9,200	9,200
1997	2,000	1,500	3,500	5,400	5,400	34,400	34,400
1998	3,600	2,200	5,800	31,500	31,500	8,000	8,000
1999	920	600	1,520	20,000	20,000	10,000	10,000
2000	1,400	1,100	2,500	12,500	12,500	17,000	17,000
2001	ND	ND	ND	3,500	3,500	17,750	17,750
2002	300	150	450	6,000	6,000	4,680	4,680
2003	131	545	676	8,700	8,700	6,300	6,300
2004	1,700	1,600	3,300	13,100	13,100	5,200	5,200
2005	1,820	290	2,110	2,750	2,750	1,100	1,100
2006	2,250	170	2,420	15,000	15,000	2,203	2,203
2007	280	225	505	5,400	5,400	6,000	6,000
2008	1,150	250	1,400	11,700	11,700	8,000	8,000
2009	1,211	500	1,711	5,100	5,100	1,400	1,400
2010	3,900	1,500	5,400	6,500	6,500	6,100	6,100
2011	600	1,200	1,800	5,100	5,100	3,000	3,000
2012	1,900	1,850	3,750	9,800	9,800	2,020	2,020
2013	1,300	1,100	2,400	2,800	2,800	7,600	7,600
2014	1,600	2,700	4,300	6,300	6,300	10,800	10,800
2015	3,200	4,050	7,250	21,500	21,500	12,000	12,000
2016	3,200	1,500	4,700	14,300	14,300	1,400	1,400
2017	2,100	2,100	4,200	15,500	15,500	14,450	14,450
2018	600	400	1,000	5,600	5,600	6,200	6,200
2019	1,100	3,700	4,800	14,300	14,300	3,600	3,600
		Minimum =	0		2		0
		Maximum =	14		32		65
		Contrast =	32		18		144

Appendix A6.–Peak aerial survey counts of Chilkat and Klehini River fall-run chum salmon, 1969–2019. (Note: bold values were interpolated.)

District	115	115	
Management Area	Juneau	Juneau	
Survey Type	Aerial	Aerial	
Run Type	Fall	Fall	
Stream No.	115-32-025	115-32-046	
Stream Name	Chilkat River	Klehini River	Sum of Surveys
1969	17,500	3,756	21,256
1970	80,000	10,000	90,000
1971	73,000	6,000	79,000
1972	85,000	2,000	87,000
1973	65,000	11,000	76,000
1974	ND	ND	ND
1975	40,000	10,000	50,000
1976	120,000	15,000	135,000
1977	ND	ND	ND
1978	ND	ND 25.077	ND
1979 1980	121,000	25,967	146,967
1981	28,000 82,000	12,350 19,500	40,350 101,500
1982	98,000	16,104	114,104
1983	176,000	19,000	195,000
1984	61,000	38,500	99,500
1985	91,000	25,000	116,000
1986	ND	ND	ND
1987	43,801	9,400	53,201
1988	48,700	24,000	72,700
1989	37,700	1,250	38,950
1990	19,500	9,850	29,350
1991	20,969	4,500	25,469
1992	23,450	24,000	47,450
1993	19,571	4,200	23,771
1994	17,000	7,000	24,000
1995	ND	ND	ND
1996	12,300	3,600	15,900
1997	7,000	1,502	8,502
1998	23,298	5,000	28,298
1999	38,070	8,170	46,240
2000	61,200	16,900	78,100
2001	7,222	1,550	8,772
2002	61,800	1,500	63,300
2003 2004	42,600 45,703	4,000	46,600 58 703
2004	45,703 55,400	13,000 1,400	58,703 56,800
2005	68,031	14,600	82,631
2007	29,250	21,000	50,250
2007	25,500	2,650	28,150
2009	25,000	6,500	31,500
2010	7,500	1,603	9,103
2011	31,500	8,263	39,763
2012	15,400	19,000	34,400
2013	ND	ND	ND
2014	36,000	8,016	44,016
2015	6,000	1,336	7,336
2016	11,000	2,449	13,449
2017	ND	ND	ND
2018	ND	ND	ND
2019	ND	ND	ND
		Minimum =	7
		Maximum =	195
		Contrast =	27

APPENDIX B: SOUTHEAST ALASKA CHUM SALMON HARVEST

Appendix B1.-Harvest of chum salmon in the Southern Southeast Subregion, 1960-2019.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
1960	487,048	0	0	0	487,048
1961	1,005,349	0	0	0	1,005,349
1962	918,768	0	0	0	918,768
1963	634,211	0	0	0	634,211
1964	1,192,522	0	0	0	1,192,522
1965	289,062	0	0	0	289,062
1966	671,682	0	0	0	671,682
1967	289,819	0	0	0	289,819
1968	1,261,197	0	0	0	1,261,197
1969	69,259	0	0	0	69,259
1970	635,258	0	0	0	635,258
1971	703,419	0	0	0	703,419
1972	1,029,904	0	0	0	1,029,904
1973	791,673	0	0	0	791,673
1974	684,874	0	0	0	684,874
1975	373,659	0	0	0	373,659
1976	509,270	0	0	0	509,270
1977	425,413	0	0	0	425,413
1978	648,609	0	0	0	648,609
1979	329,390	0	0	0	329,390
1980	832,585	0	639	0	833,224
1981	342,486	0	106	0	342,592
1982	811,452	260	13	778	812,503
1983	493,908	0	152	18,148	512,208
1984	1,368,893	296	783	453,054	1,823,026

Appendix B1.–Page 2 of 3.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
1985	1,168,982	91,417	1,203	132,986	1,394,588
1986	1,637,621	107,513	888	99,213	1,845,235
1987	595,991	149,412	4,034	434,249	1,183,686
1988	1,484,147	270,007	4,435	318,452	2,077,041
1989	1,126,717	73,032	1,257	55,004	1,256,010
1990	789,414	18,493	1,518	89,410	898,835
1991	1,412,948	69,987	5,938	59,676	1,548,549
1992	1,780,482	66,295	996	328,190	2,175,963
1993	2,195,195	52,793	482	689,118	2,937,588
1994	2,284,362	216,040	432	940,366	3,441,200
1995	3,107,883	486,067	896	987,961	4,582,807
1996	3,369,998	502,882	43	1,738,660	5,611,583
1997	2,574,650	610,693	1,598	2,160,667	5,347,608
1998	4,263,534	1,534,267	1,870	2,375,770	8,175,441
1999	3,546,467	126,544	5,149	1,883,802	5,561,962
2000	2,516,475	238,770	12,079	1,634,288	4,401,612
2001	2,792,617	362,733	3,540	878,992	4,037,882
2002	1,350,545	141,214	2,909	663,294	2,157,962
2003	2,073,379	376,802	1,344	1,047,613	3,499,138
2004	2,010,985	218,140	515	763,335	2,992,975
2005	1,397,882	309,847	42	691,178	2,398,949
2006	1,961,534	1,011,078	19	1,042,569	4,015,200
2007	2,428,119	527,929	235	923,212	3,879,495
2008	1,255,726	318,692	19	659,745	2,234,182
2009	1,891,782	404,707	288	761,810	3,058,587

Appendix B1.–Page 3 of 3.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
2010	1,932,098	580,787	569	1,224,351	3,737,805
2011	2,680,668	694,225	978	1,484,606	4,860,477
2012	3,410,258	1,459,036	5,903	1,152,363	6,027,560
2013	1,876,328	373,788	2,767	454,101	2,706,984
2014	1,483,185	406,393	187	554,426	2,444,191
2015	3,189,966	1,569,854	128	582,288	5,342,236
2016	2,732,166	718,826	20,940	599,588	4,071,520
2017	1,974,182	534,074	2,572	702,768	3,213,596
2018	1,852,112	461,557	39	615,001	2,928,709
2019	1,617,196	303,424	3	230,140	2,150,763

^a Includes harvest in traditional fisheries in Districts 1–8, and Annette Island fisheries.

^b Includes common property harvests in terminal hatchery areas.

c Includes spring troll, test fisheries, and other minor harvests of chum salmon.

Appendix B2.-Harvest of chum salmon in the Northern Southeast Inside Subregion, 1960-2019.

		Common Proj	perty Fisheries				
Year	Traditional Summer-Run ^a	Traditional Fall-Run ^b	Traditional Fisheries Total	Terminal Hatchery	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
1960	304,318	110,556	414,874	0	0	0	414,874
1961	1,005,871	268,269	1,274,140	0	0	0	1,274,140
1962	634,442	143,129	777,571	0	0	0	777,571
1963	595,968	131,840	727,808	0	0	0	727,808
1964	475,894	213,560	689,454	0	0	0	689,454
1965	692,967	347,671	1,040,638	0	0	0	1,040,638
1966	1,209,087	1,314,644	2,523,731	0	0	0	2,523,731
1967	988,551	498,316	1,486,867	0	0	0	1,486,867
1968	1,006,675	343,713	1,350,388	0	0	0	1,350,388
1969	298,982	168,339	467,321	0	0	0	467,321
1970	1,006,498	752,240	1,758,738	0	0	0	1,758,738
1971	536,033	685,554	1,221,587	0	0	0	1,221,587
1972	1,156,386	736,074	1,892,460	0	0	0	1,892,460
1973	567,938	364,975	932,913	0	0	0	932,913
1974	273,636	669,892	943,528	0	0	0	943,528
1975	15,293	268,801	284,094	0	0	0	284,094
1976	13,449	496,648	510,097	0	0	0	510,097
1977	22,365	250,487	272,852	0	0	0	272,852
1978	45,129	154,339	199,468	0	0	0	199,468
1979	129,070	291,502	420,572	0	0	0	420,572
1980	133,626	634,974	768,600	0	1,699	752	771,051
1981	131,527	271,472	402,999	0	253	0	403,252
1982	111,147	383,109	494,256	0	332	0	494,588
1983	217,911	353,865	571,776	0	157	31	571,964
1984	1,213,916	848,912	2,062,828	0	870	23	2,063,721
1985	489,594	799,508	1,289,102	376,808	5,002	9	1,670,921

Appendix B2.–Page 2 of 3.

		Common Proj	perty Fisheries				
Year	Traditional Summer-Run ^a	Traditional Fall-Run ^b	Traditional Fisheries Total	Terminal Hatchery	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
1986	223,636	473,508	697,144	585,042	902	0	1,283,088
1987	323,581	534,499	858,080	410,572	3,719	32,919	1,305,290
1988	475,272	480,136	955,408	198,087	5,371	160,979	1,319,845
1989	340,866	124,287	465,153	23,572	2,820	44,018	535,563
1990	528,469	182,528	710,997	257,987	7,681	210,773	1,187,438
1991	1,246,746	179,475	1,426,221	0	15,082	275,505	1,716,808
1992	992,171	343,592	1,335,763	734,129	8,618	251,188	2,329,698
1993	1,370,704	148,761	1,519,465	1,471,182	21,981	233,189	3,245,817
1994	1,997,895	285,391	2,283,286	2,842,059	32,772	440,538	5,598,655
1995	1,082,382	145,374	1,227,756	3,389,558	39,441	585,156	5,241,911
1996	1,579,008	129,096	1,708,104	3,449,235	53,900	2,378,073	7,589,312
1997	876,213	75,682	951,895	1,564,740	24,455	1,293,222	3,834,312
1998	987,925	172,998	1,160,923	1,923,543	34,325	1,272,666	4,391,457
1999	1,480,841	201,953	1,682,794	2,457,081	31,881	1,366,990	5,538,746
2000	1,909,469	251,732	2,161,201	2,999,824	50,712	2,392,694	7,604,431
2001	1,050,487	100,735	1,151,222	1,228,276	86,577	1,101,456	3,567,531
2002	1,119,013	59,766	1,178,779	1,388,273	16,603	1,870,131	4,453,786
2003	1,277,469	100,665	1,378,134	1,438,365	23,328	3,634,329	6,474,156
2004	2,090,840	273,071	2,363,911	1,320,266	31,988	2,288,070	6,004,235
2005	1,034,067	140,142	1,174,209	344,907	6,581	655,173	2,180,870
2006	1,693,384	102,357	1,795,741	2,110,175	26,050	3,105,869	7,037,835
2007	1,408,649	167,991	1,576,640	761,136	19,441	2,231,832	4,589,049
2008	1,356,330	90,686	1,447,016	2,219,317	8,847	2,070,145	5,745,325
2009	1,682,013	95,031	1,777,044	2,046,100	14,052	2,003,341	5,840,537
2010	1,123,791	94,477	1,216,268	828,143	38,911	1,894,126	3,977,448

Appendix B2.–Page 3 of 3.

	Common Property Fisheries						
Year	Traditional Summer-Run ^a	Traditional Fall-Run ^b	Traditional Fisheries Total	Terminal Hatchery	Other Fisheries ^c	Hatchery Cost Recovery	Total Harvest
2011	2,202,343	141,257	2,343,600	343,972	154,777	2,528,151	5,370,500
2012	1,917,928	96,364	2,014,292	1,705,657	40,254	1,853,327	5,613,530
2013	2,570,145	202,339	2,772,484	2,556,816	327,827	1,575,641	7,232,768
2014	1,528,056	46,853	1,574,909	556,964	28,403	898,373	3,058,649
2015	1,460,970	88,217	1,549,187	393,037	38,184	1,615,741	3,596,149
2016	1,140,976	34,191	1,175,167	508,082	22,709	1,596,793	3,302,751
2017	2,609,785	271,787	2,881,572	1,183,833	33,658	1,955,896	6,054,959
2018	1,257,005	28,440	1,285,445	923,380	94,591	1,174,388	3,477,804
2019	936,268	82,909	1,019,177	622,090	58,092	1,798,069	3,497,428

^a Includes harvests in traditional fisheries through statistical week 33 in Districts 109–112, 113 inside, 114, and 115.

b Harvest in traditional fisheries after statistical week 33 in Districts 109–112, 113 inside, 114, and 115.

^c Includes spring troll, experimental fisheries, and other minor harvest of chum salmon.

Appendix B3.-Harvest of chum salmon in the Northern Southeast Outside Subregion, 1960-2019.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Private Hatchery Cost Recovery ^d	Total Chum Salmon Harvest
1960	30,211	0	0	0	30,211
1961	155,730	0	0	0	155,730
1962	139,943	0	0	0	139,943
1963	97,622	0	0	0	97,622
1964	44,201	0	0	0	44,201
1965	131,253	0	0	0	131,253
1966	27,596	0	0	0	27,596
1967	22,718	0	0	0	22,718
1968	10,052	0	0	0	10,052
1969	8,567	0	0	0	8,567
1970	26,687	0	0	0	26,687
1971	15,002	0	0	0	15,002
1972	9,811	0	0	0	9,811
1973	29,466	0	0	0	29,466
1974	37,985	0	0	0	37,985
1975	25,742	0	0	0	25,742
1976	3,178	0	0	0	3,178
1977	27,608	0	0	0	27,608
1978	11,370	0	0	0	11,370
1979	121,016	0	0	0	121,016
1980	15,663	0	65	0	15,728
1981	79,148	0	0	1	79,149
1982	16,447	0	0	0	16,447
1983	71,921	0	0	90	72,011
1984	161,908	0	0	127	162,035
1985	192,853	0	21	56	192,930

Appendix B3.–Page 2 of 3.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Private Hatchery Cost Recovery ^d	Total Chum Salmon Harvest
1986	147,357	849	0	62,579	210,785
1987	87,633	715	1,003	127,395	216,746
1988	69,052	0	22	33,378	102,452
1989	65,642	0	1	85,058	150,701
1990	39,002	0	0	81,462	120,464
1991	25,427	0	0	41,132	66,559
1992	128,733	168,270	0	116,073	413,076
1993	487,670	851,868	4,813	334,489	1,678,840
1994	462,619	556,476	350	336,577	1,356,022
1995	317,793	935,796	79	134,442	1,388,110
1996	1,146,958	1,269,510	697	419,511	2,836,676
1997	1,142,257	1,179,273	91	282,517	2,604,138
1998	1,206,229	1,563,636	198	355,821	3,125,884
1999	720,313	2,747,460	114	361,094	3,828,981
2000	1,063,075	2,512,013	204	326,414	3,901,706
2001	498,352	502,152	1,342	144,942	1,146,788
2002	359,355	305,779	239	176,926	842,299
2003	325,267	607,083	409	207,663	1,140,422
2004	809,838	1,060,636	124	498,714	2,369,312
2005	459,255	875,343	16	512,479	1,847,093
2006	532,866	1,642,890	17	324,887	2,500,660
2007	389,750	224,751	232	329,715	944,448
2008	244,373	540,311	46	287,822	1,072,552
2009	169,633	440,217	1,041	147,490	758,381
2010	455,620	1,120,242	118	180,558	1,756,538

Appendix B3.–Page 3 of 3.

Year	Common Property Traditional Fisheries ^a	Common Property Terminal Hatchery ^b	Other Fisheries ^c	Private Hatchery Cost Recovery ^d	Total Chum Salmon Harvest
2011	230,500	191,124	53	74,427	496,104
2012	150,326	530,065	38	50,036	730,465
2013	1,364,559	1,181,141	13,941	70,198	2,629,839
2014	179,115	874,285	139	122,831	1,176,370
2015	503,574	2,075,662	425	108,925	2,688,586
2016	142,443	1,064,618	228	535,088	1,742,377
2017	627,150	1,107,431	41	426,686	2,161,308
2018	558,277	3,167,660	9,381	1,342,496	5,077,814
2019	1,313,891	2,189,096	12	218,151	3,721,150

a Includes all traditional harvest types in District 113 (outside subdistricts).
b Includes terminal area fisheries only, excluding private hatchery cost-recovery fisheries.
c Includes spring troll, experimental fisheries, and other minor harvest of chum salmon.
d Includes private hatchery cost-recovery fisheries only.

Appendix B4.—Total harvest of chum salmon in Southeast Alaska, 1960–2019.

Year	Southern Southeast	Northern Southeast Inside	Northern Southeast Outside	Grand Total
1960	487,048	414,874	30,211	932,133
1961	1,005,349	1,274,140	155,730	2,435,219
1962	918,768	777,571	139,943	1,836,282
1963	634,211	727,808	97,622	1,459,641
1964	1,192,522	689,454	44,201	1,926,177
1965	289,062	1,040,638	131,253	1,460,953
1966	671,682	2,523,731	27,596	3,223,009
1967	289,819	1,486,867	22,718	1,799,404
1968	1,261,197	1,350,388	10,052	2,621,637
1969	69,259	467,321	8,567	545,147
1970	635,258	1,758,738	26,687	2,420,683
1971	703,419	1,221,587	15,002	1,940,008
1972	1,029,904	1,892,460	9,811	2,932,175
1973	791,673	932,913	29,466	1,754,052
1974	684,874	943,528	37,985	1,666,387
1975	373,659	284,094	25,742	683,495
1976	509,270	510,097	3,178	1,022,545
1977	425,413	272,852	27,608	725,873
1978	648,609	199,468	11,370	859,447
1979	329,390	420,572	121,016	870,978
1980	833,224	770,299	15,728	1,619,251
1981	342,592	403,252	79,149	824,993
1982	812,503	494,588	16,447	1,323,538
1983	512,208	571,964	72,011	1,156,183
1984	1,823,026	2,063,721	162,035	4,048,782
1985	1,394,588	1,670,921	192,930	3,258,439

Appendix B4.–Page 2 of 3.

Year	Southern Southeast	Northern Southeast Inside	Northern Southeast Outside	Grand Total
1986	1,845,235	1,283,088	210,785	3,339,108
1987	1,183,686	1,305,290	216,746	2,705,722
1988	2,077,041	1,319,845	102,452	3,499,338
1989	1,256,010	535,563	150,701	1,942,274
1990	898,835	1,187,438	120,464	2,206,737
1991	1,548,549	1,716,808	66,559	3,331,916
1992	2,175,963	2,329,698	413,076	4,918,737
1993	2,937,588	3,245,817	1,678,840	7,862,245
1994	3,441,200	5,598,655	1,356,022	10,395,877
1995	4,582,807	5,241,911	1,388,110	11,212,828
1996	5,611,583	7,589,312	2,836,676	16,037,571
1997	5,347,608	3,834,312	2,604,138	11,786,058
1998	8,175,441	4,391,457	3,125,884	15,692,782
1999	5,561,962	5,538,746	3,828,981	14,929,689
2000	4,401,612	7,604,431	3,901,706	15,907,749
2001	4,037,882	3,567,531	1,146,788	8,752,201
2002	2,157,962	4,453,786	842,299	7,454,047
2003	3,499,138	6,474,156	1,140,422	11,113,716
2004	2,992,975	6,004,235	2,369,312	11,366,522
2005	2,398,949	2,180,870	1,847,093	6,426,912
2006	4,015,200	7,037,835	2,500,660	13,553,695
2007	3,879,495	4,589,049	944,448	9,412,992
2008	2,234,182	5,745,325	1,072,552	9,052,059
2009	3,058,587	5,840,537	758,381	9,657,505
2010	3,738,660	3,977,448	1,756,538	9,472,646
2011	4,860,477	5,370,500	496,116	10,727,081
2012	6,027,560	5,613,530	730,465	12,371,555
2013	2,706,984	7,232,768	2,629,839	12,569,591

Appendix B4.–Page 3 of 3.

Year	Southern Southeast	Northern Southeast Inside	Northern Southeast Outside	Grand Total
2014	2,444,191	3,058,649	1,176,370	6,679,210
2015	5,342,236	3,596,149	2,688,586	11,626,971
2016	4,071,520	3,302,751	1,742,377	9,116,648
2017	3,213,596	6,054,959	2,161,308	11,429,863
2018	2,928,709	3,477,804	5,077,814	11,484,327
2019	2,150,763	3,497,428	3,721,150	9,369,341

Appendix B5.—Terminal harvest of fall-run chum salmon in Southeast Alaska, 1960–2019 ("-" indicates there were no fall fishery openings).

Year	Cholmondeley Sound	Port Camden	Security Bay	Excursion River	Chilkat River
1960	17,208	22	1,993	0	53,655
1961	0	1,435	1,745	0	115,129
1962	0	127	1,272	0	107,788
1963	32,847	0	409	0	99,232
1964	43,372	316	14,239	16,767	100,708
1965	2,688	0	5,501	54,308	198,647
1966	40,763	47,324	45,293	345,427	229,557
1967	93,223	36,668	23,466	114,606	159,053
1968	61,902	28	9,891	65,780	164,239
1969	9,537	_	0	0	155,816
1970	19,362	11,711	11,308	74,585	265,110
1971	88	646	0	132,249	248,811
1972	66,855	20,304	0	109,257	329,216
1973	31,684	7,850	_	78,031	188,968
1974	155,857	3,959	979	50,749	435,915
1975	30,635	_	_	32,320	235,729
1976	59,363	_	_	51,510	367,779
1977	41,677	_	_	_	194,376
1978	51,410	10,005	_	_	107,611
1979	194	0	0	3,453	223,613
1980	1,983	24,413	0	189,084	158,477
1981	_	9,418	_	101,351	100,186
1982	78,300	15,171	_	_	296,127
1983	1,203	0	_	11,063	309,291
1984	25,811	7,890	70,692	89,431	559,916
1985	15,071	15,506	_	26,106	611,698
1986	62,654	10,994	2,065	53,689	348,080
1987	37,213	5,183	_	88,376	359,686

Appendix B5.–Page 2 of 3.

Year	Cholmondeley Sound	Port Camden	Security Bay	Excursion River	Chilkat River
1988	125,514	17,078	14,769	35,493	294,509
1989	48,739	2,158	995	_	84,308
1990	481	0	10,984	14,538	106,982
1991	99,543	0	_	31,374	99,041
1992	40,136	51,311	6,729	39,383	83,854
1993	81,414	12,932	0	324	60,392
1994	65,414	12,402	56	_	116,599
1995	105,342	5,185	12,819	9,940	69,201
1996	66,991	4,966	9,689	0	56,437
1997	153,833	0	0	2,145	20,850
1998	359,443	12,636	25,267	0	19,239
1999	215,214	13,236	10,368	35,237	50,576
2000	197,016	3,087	621	83,057	59,365
2001	127,258	0	0	7,493	68,898
2002	47,309	_	1,952	1,714	27,134
2003	93,200	_	0	2,360	36,640
2004	57,923	0	13,849	1,413	52,755
2005	2,850	_	0	_	71,020
2006	11,800	_	1,065	0	57,363
2007	389	_	0	18,149	68,056
2008	1,256	_	86	_	80,875
2009	0	_	285	5,697	61,589
2010	4,235	_	226	_	69,362
2011	72,689	_	0	5,479	64,514
2012	40,998	108	0	-	80,606
2013	3,173	_	1,300	22,840	116,356
2014	1,101	0	254	17,856	19,558
2015	7,633	0	20	0	37,204

Appendix B5.–Page 3 of 3.

Year	Cholmondeley Sound	Port Camden	Security Bay	Excursion River	Chilkat River
2016	21,476	_	0	_	31,657
2017	34,527	_	0	125,721	62,535
2018	39,629	_	_	_	25,689
2019	3,060	_	734	_	64,981