YUKON RIVER SALMON 2020 SEASON SUMMARY AND 2021 SEASON OUTLOOK

Prepared by

THE UNITED STATES AND CANADA YUKON RIVER JOINT TECHNICAL COMMITTEE

March 2021 Regional Information Report 3A21-01 Alaska Department of Fish and Game 333 Raspberry Road Anchorage, AK 99518, USA

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	(F, t, χ^2 , etc
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	- HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
yara	yu	et cetera (and so forth)	etc.	logarithm (natural)	_ ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	\log_2 etc.
degrees Celsius	°C	Federal Information	8-	minute (angular)	1082, etc.
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H _O
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols	int of fong	probability	P
second	S	(U.S.)	\$,¢	probability of a type I error	
second	3	months (tables and	4, 7	(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	a
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	AC A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	р "
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of	J.D.	standard deviation standard error	SE SE
	hp	America (noun)	USA	variance	9E
horsepower	-	U.S.C.	United States	variance population	Var
hydrogen ion activity (negative log of)	pН	J.J.C.	Code	sample	var var
parts per million	nnm	U.S. state	use two-letter	sample	vai
parts per thousand	ppm		abbreviations		
parts per tilousand	ppt, ‰		(e.g., AK, WA)		
volte	700 V		· ·		
volts	W W				
watts	w				

REGIONAL INFORMATION REPORT 3A21-01

YUKON RIVER SALMON 2020 SEASON SUMMARY AND 2021 SEASON OUTLOOK

The United States and Canada Yukon River Joint Technical Committee

Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road, Anchorage, Alaska, 99518-1565 March 2021 The Regional Information Report Series was established in 1987 and was redefined in 2007 to meet the Division of Commercial Fisheries regional need for publishing and archiving information such as area management plans, budgetary information, staff comments and opinions to Alaska Board of Fisheries proposals, interim or preliminary data and grant agency reports, special meeting or minor workshop results and other regional information not generally reported elsewhere. Reports in this series may contain raw data and preliminary results. Reports in this series receive varying degrees of regional, biometric and editorial review; information in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author or the Division of Commercial Fisheries if in doubt of the level of review or preliminary nature of the data reported. Regional Information Reports are available through the Alaska State Library and on the Internet at: http://www.adfg.alaska.gov/sf/publications/.

This document should be cited as follows:

JTC (Joint Technical Committee of the Yukon River U.S./Canada Panel). 2021. Yukon River salmon 2020 season summary and 2021 season outlook. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A21-01, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648,

(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

TABLE OF CONTENTS

TABLE OF CONTENTS	Page :
LIST OF TABLES	
LIST OF FIGURES	
LIST OF APPENDICES	v
1.0 ABSTRACT	1
2.0 INTRODUCTION	1
Yukon River Salmon Agreement Management Performance Summary	2
2020 Total Run Size, Harvest, and Escapement of Canadian-origin Chinook Salmon	2
2020 Total Run Size, Harvest, and Escapement of Canadian-origin Fall Chum Salmon	2
2021 Outlooks	
3.0 ALASKA MANAGEMENT OVERVIEW	
3.1 Chinook and Summer Chum Salmon	
Preseason Management Strategy Planning	
Chinook and Summer Chum Salmon Inseason Management	
3.2 Fall Chum And Coho Salmon	6
Fall Chum Salmon Management Overview	
Coho Salmon Management Overview	
4.0 ALASKA HARVEST SUMMARIES	
4.1 Subsistence Salmon Fishery	
4.2 Commercial Fishery	
Summer Season Harvest	
4.3 Sport Fishery	
4.4 Personal Use Fishery	
5.0 CANADIAN MANAGEMENT OVERVIEW	
5.1 Chinook Salmon	
Inseason Management Yukon River Mainstem Chinook Salmon	
5.2 Fall Chum Salmon	
Mainstem Yukon River	
Inseason Management Mainstem Yukon Fall Chum Salmon	
Fishing Branch (Porcupine) River Fall Chum Salmon	
Inseason Management Fishing Branch (Porcupine) Fall Chum Salmon	
6.1 First Nation Subsistence Fisheries	
Mainstem Yukon River Chinook Salmon	
Mainstem Yukon River Fall Chum Salmon	17
Porcupine River Chinook, Fall Chum, and Coho Salmon	
6.2 Commercial Fishery	
6.3 Domestic Subsistence Fishery	17

TABLE OF CONTENTS (Continued)

	Page
6.4 Licensed Public Angling Fishery	18
7.0 TOTAL RUN, ESCAPEMENT, AND HARVEST SHARE ASSESSMENTS FOR 2020	18
7.1 Chinook Salmon	18
7.2 Summer Chum Salmon Alaska (U.S. Only)	
7.3 Fall Chum Salmon	
Mainstem Yukon River Canadian-origin Fall Chum Salmon	
Porcupine River (Including the Fishing Branch River) Canadian-origin Fall Chum Salmon	
8.0 PROJECT SUMMARIES	22
8.1 Alaska, U.S.	22
Lower Yukon Test Fishery	
Pilot Station Sonar	
Chinook Salmon Genetic Sampling, 2020	
Mixed Stock Analysis of Yukon River Chinook Salmon Sampled at the Pilot Station Sonar, 2005–2020	
Mixed Stock Analysis of Yukon River Chinook Salmon Harvested in Alaska, 2020	
Yukon River Chum Salmon Mixed Stock Analysis, 2020	
Environmental Conditions Report	
8.2 Eagle Sonar	
8.3 Yukon, Canada	28
Yukon River (Mainstem) Adult Chinook Salmon Assessment	28
Big Salmon Sonar	28
Pelly River Sonar	
Klondike River Sonar	
Whitehorse Rapids Fishway Chinook Salmon Enumeration	
Whitehorse Hatchery Operations	
Porcupine River Investigations	
Porcupine River Sonar	
Fishing Branch River Chum Salmon Weir	
Kluane River Aerial Survey	
Mainstem Yukon River Aerial Survey	
Genetic Stock Identification and Stock Composition of Canadian Yukon River Chinook and Fall Chum S	
	32
Environmental Conditions Report	
November 2019 to April 2020.	
May 2020 to July 2020	
August 2020 to November 2020.	
Summary	
9.0 MARINE FISHERIES INFORMATION	
10.0 RUN OUTLOOKS 2021	35
10.1 Yukon River Chinook Salmon	35
Canadian-origin Brood Table	35
Canadian-origin Yukon River Chinook Salmon	36

TABLE OF CONTENTS (Continued)

	Page
Dynamic Sibling Model	36
Spawner-recruit Model	
Juvenile-based Forecast	
2021 Canadian-origin Chinook Salmon Forecast	
10.2 Yukon River Summer Chum Salmon	
10.3 Yukon River Fall Chum Salmon	39
Drainagewide Fall Chum Salmon	39
Canadian-origin Upper Yukon River Fall Chum Salmon	40
Canadian-origin Porcupine River Fall Chum Salmon	41
10.4 Yukon River Coho Salmon	41
11.0 STATUS OF ESCAPEMENT GOALS	41
11.1 Spawning Escapement Target Options in 2021	41
Canadian-origin Mainstem Yukon River Chinook Salmon	42
Canadian-origin Mainstem Yukon River Fall Chum Salmon	42
Fishing Branch River Fall Chum Salmon	
12.0 REFERENCES CITED	42
TABLES AND FIGURES	45
APPENDIX A: TABLES	81
APPENDIX B: TABLES	95
APPENDIX C: BERING SEA-ALEUTIAN ISLANDS BYCATCH SUMMARY AND IMPACT RIVER CANADIAN-ORIGIN SALMON	
APPENDIX D: DEVELOPMENT OF CHINOOK SALMON YUKON RIVER SALMON AREPORT CARD	

LIST OF TABLES

Table	P	age
1	Yukon Area regulatory subsistence salmon fishing schedule.	
2	Yukon River drainage fall chum salmon management plan overview.	
3	Inseason fishery management decision matrix for Yukon River mainstem Chinook salmon in Canada, 2020	47
4	Inseason fishery management decision matrix for mainstem Yukon River fall chum salmon in Canada, 2020	
5	Cumulative fish passage estimates by species with 90% confidence intervals (CI), at the Pilot Station sonar in 2020.	
6	Yukon River Chinook salmon age and female percentage estimated from samples collected at the Pilot Station and Eagle sonar projects, 2020.	
7	Summary of 2020 Chinook salmon escapement estimates in Alaska tributaries compared to existing escapement goals.	
8	Summary of 2020 summer chum salmon escapement estimates in Alaska compared to existing escapement goals.	
9	Summary of 2020 preliminary fall chum salmon escapement counts, in comparison with existing escapement goals in Alaska.	
10	Summary of 2020 preliminary fall chum salmon escapement counts to Canada in comparison with	
	existing international interim management escapement goals (IMEG)	
11	Pilot Station sonar Chinook salmon passage and Canadian-origin proportion by strata, 2005–2020	51
12	Microsatellite baseline is comprised of 37 stocks used to estimate stock composition from chum	
	salmon sampled in the test drift gillnet program at the Pilot Station sonar in 2020.	53
13	Preseason Canadian-origin Yukon River Chinook salmon outlooks for 2013–2021 and the observed run sizes for 2013–2020.	53
14	Forecasted 2021 total run size of fall chum salmon based on parent year escapement for each brood year and predicted return per spawner (R/S) rates, Yukon River, 2015–2018	5.4
15	Preseason Yukon River drainagewide fall chum salmon outlooks 1998–2021 and estimated run sizes for 1998–2020.	
16	Preseason Canadian-origin mainstem Yukon River fall chum salmon outlooks for 1998–2021 and observed run sizes for 1998–2020.	
17	Preseason Fishing Branch River fall chum salmon outlooks for 1998–2021 and observed run sizes for 1998–2020.	56
Figure	Map of the Alaska (U.S.) portion of the Yukon River drainage showing communities and fishing	age
2	districts Primary assessment projects operated in the U.S. and Canada used to assess Chinook and fall chum salmon run strength or escapement.	57
3	Daily (top) and cumulative (bottom) catch per unit effort (CPUE) for Chinook salmon in the Lower	
A	Yukon set gillnet test fishery at Big Eddy in 2020.	
4	U.S. (Alaska) harvest of Chinook salmon, Yukon River, 1961–2020.	
5	U.S. (Alaska) harvest of fall chum salmon, Yukon River, 1961–2020.	
6	U.S. (Alaska) harvest of coho salmon, Yukon River, 1961–2020	
7	Commercial fishing boundaries, tributaries, and major towns within the Yukon Territory, Canada	
8	Canadian harvest of Chinook salmon, Yukon River, 1961–2020.	64
9	Spawning escapement estimates for Canadian-origin Yukon River mainstem Chinook salmon, 1982–	- -
10	2020	
	portion of the Yukon River drainage, 1986–2020.	
11	Estimated drainagewide escapement of fall chum salmon, Yukon River, 1974–2020	68

LIST OF FIGURES (Continued)

Figure	Pa _i	ge
12	Fall chum salmon escapement estimates for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1972–2020	69
13	Canadian harvest of fall chum salmon, Yukon River, 1961–2020.	70
14	Spawning escapement estimates for Canadian-origin fall chum salmon at the Fishing Branch River and the mainstem Yukon River, 1971–2020.	71
15	Daily passage estimates of Chinook salmon at the Pilot Station sonar in 2020 (top) and cumulative passage estimate, including 90% confidence intervals (bottom), 2020 compared to historical average	
16	Daily passage estimates of chum salmon at the Pilot Station sonar in the fall season in 2020 (top), cumulative passage estimates, including 90% confidence intervals (bottom), compared to median passages.	
17	Daily passage estimates of coho salmon at the Pilot Station sonar in 2020 (top), cumulative passage estimates, including 90% confidence intervals (bottom), compared to median passages.	
18	Lower Yukon daily water temperatures, comparing 2020 to historical minimum, maximum, and average temperatures.	
19	Expected versus observed number of Canadian-origin Chinook salmon returning to spawn, 2000–2020	76
20	Yukon River Canadian-origin Chinook salmon recruits versus spawners, Ricker curve (thick solid line), and 1:1 replacement line (thin light dotted line). Brood years 1982–2014 are included	
21	Juvenile abundance estimates of Canadian-origin Chinook salmon from the Yukon River based on pelagic trawl research surveys in the northern Bering Sea (2003–2019).	
22	The relationship between juvenile abundance estimated from surface trawl surveys and adult returns for Canadian-origin Chinook salmon from the Yukon River. Data labels indicate juvenile year, gray shaded area indicates the 80% confidence interval, and black dashed lines indicate the 80% prediction	
23	interval	
	LIST OF APPENDICES	
Apper	ndix Pa ₃	_
Apper A1	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82
	ndix Pa ₃	82
A1	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82 83
A1 A2	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in	82 83 84
A1 A2 A3	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year	82 83 84 86
A1 A2 A3 A4	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in Alaska, 2020 Yukon River Chinook salmon age, female percentage, and mean length from Eagle sonar project, 2005–2020 Yukon River Chinook salmon harvest percentage by stock group for U.S. harvest, U.S. and Canada	82 83 84 86 87
A1 A2 A3 A4 A5	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in Alaska, 2020 Yukon River Chinook salmon age, female percentage, and mean length from Eagle sonar project, 2005–2020 Yukon River Chinook salmon harvest percentage by stock group for U.S. harvest, U.S. and Canada harvest combined, and the percentage of the upper stock group harvest by each country, 1981–2020 Stock group percentage by major stock and by country, from chum salmon beginning July 19 at the	82 83 84 86 87
A1 A2 A3 A4 A5	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in Alaska, 2020 Yukon River Chinook salmon age, female percentage, and mean length from Eagle sonar project, 2005–2020 Yukon River Chinook salmon harvest percentage by stock group for U.S. harvest, U.S. and Canada harvest combined, and the percentage of the upper stock group harvest by each country, 1981–2020	82 83 84 86 87 88
A1 A2 A3 A4 A5 A6	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020	82 83 84 86 87 88 89
A1 A2 A3 A4 A5 A6 A7	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82 83 84 86 87 88 89 90
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82 83 84 86 87 88 89 90 92 94 96
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82 83 84 86 87 88 89 90 92 94 96 99
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020 Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020 Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in Alaska, 2020 Yukon River Chinook salmon age, female percentage, and mean length from Eagle sonar project, 2005–2020 Yukon River Chinook salmon harvest percentage by stock group for U.S. harvest, U.S. and Canada harvest combined, and the percentage of the upper stock group harvest by each country, 1981–2020 Stock group percentage by major stock and by country, from chum salmon beginning July 19 at the Pilot Station sonar, Yukon River, 1999–2020	82 83 84 86 87 88 89 90 92 94 96 99 02
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2	Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020	82 83 84 86 87 88 89 90 92 94 96 99 02 05

LIST OF APPENDICES (Continued)

Appeı	ndix	Page
B7	Canadian harvest of Yukon River Chinook salmon, 1961–2020.	113
B8	Canadian harvest of Yukon River fall chum salmon, 1961–2020.	116
B9	Chinook salmon aerial survey indices for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1961–2020.	
B10	Chinook salmon escapement counts and percentage females counted for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1986–2020.	
B11	Estimated run size and spawning escapement of Canadian-origin Yukon River mainstem Chinook salmon, 1982–2020.	
B12	Chinook salmon escapement counts for selected spawning areas in the Canadian (Yukon) portion of the Yukon River drainage, 1961–2020.	125
B13	Summer chum salmon escapement counts for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1973–2020.	
B14	Fall chum salmon abundance estimates or escapement estimates for selected spawning areas in the U.S. (Alaska) portions of the Yukon River drainage, 1971–2020	
B15	Fall chum salmon escapement estimates for selected spawning areas in Canadian (Yukon) portions of the Yukon River drainage, 1971–2020.	f
B16 B17	Estimated spawning escapement of Canadian-origin Yukon River fall chum salmon, 1980–2020 Coho salmon passage estimates or escapement estimates for selected spawning areas in the U.S.	
	(Alaska) portion of the Yukon River drainage, 1972–2020.	140
B18	Yukon River Salmon Agreement specified obligations for harvest shares, border passage and spawning escapement for mainstem Canadian-origin Yukon River Chinook salmon, 2001–2020	ng
B19	Summary of management and conservation measures implemented in the U.S. (Alaska) and Canada, 2001–2020.	
C1	Bering Sea-Aleutian Islands Bycatch Summary and impact on Yukon river Canadian-origin salmon. Prepared by NOAA, in coordination with ADF&G, at the request of the Yukon River Panel	
D1	Development of Chinook salmon Yukon River Salmon Agreement report card.	

1.0 ABSTRACT

The Yukon River Joint Technical Committee (JTC) of the United States and Canada meets twice a year to analyze and discuss harvest and escapement goals, management trends, postseason reviews, preseason outlooks, and results of cooperative research projects for Canadian-origin Yukon River salmon. This report summarizes the status of Chinook *Oncorhynchus tshawytscha*, coho *O. kisutch*, and summer and fall chum salmon *O. keta* stocks in 2020, presents a 2021 season outlook, and provides data about salmon harvests in commercial, subsistence, aboriginal, personal use, domestic, and sport or recreational fisheries. Summaries of Yukon River research projects are also included. For 2020, the preliminary estimate of Chinook salmon (mainstem) spawning escapement in Canada was 30,967 fish, which was below the interim management escapement goal (IMEG) range of 42,500–55,000 fish. A preliminary estimate of the total Canadian-origin Chinook salmon run was 45,501 fish. The preliminary estimate of fall chum salmon spawning escapement in the Canadian mainstem Yukon River was approximately 23,512 fish, which was below the IMEG range of 70,000–104,000 fish. The preliminary estimate of fall chum salmon spawning escapement in the Fishing Branch River (Porcupine River), obtained from a weir count was 4,795 fish, which was below the IMEG range of 22,000–49,000 fish. Recommended interim management escapement goals for Canadian-origin mainstem Yukon River Chinook and fall chum salmon and Fishing Branch (Porcupine River) fall chum salmon in 2021 remain the same as for 2020.

Key words: Chinook salmon *Oncorhynchus tshawytscha*, chum salmon *O. keta*, coho salmon *O. kisutch*, Yukon River, Yukon River Salmon Agreement, Joint Technical Committee, escapement, escapement goal, interim management escapement goal IMEG, management strategy, season outlook.

2.0 INTRODUCTION

The purpose of this annual Yukon River Season Summary and Season Outlook report is to present data for the Canadian-origin Yukon River salmon stocks subject to the Yukon River Salmon Agreement (YRSA). After 16 years of negotiations, Canada and the United States reached a consensus on the elements of a draft YRSA, which was finalized and signed in December 2002. The YRSA continues to represent an international commitment to the restoration, conservation, and management of Canadian-origin Yukon River salmon. The YRSA also established the Yukon River Panel (YRP) as the main instrument to implement the Treaty and the Joint Technical Committee (JTC) as the body responsible for acquiring the best science and management expertise possible to support the YRP.

The JTC was established as an international advisory committee to evaluate management plans and escapement goals for the transboundary stocks of salmon within the Yukon River drainage. The JTC is comprised of representatives from both State, Territorial, and Federal agencies, and local and regional organizations in the U.S. and Canada. The JTC meets twice a year and is charged with various tasks related primarily to Yukon River salmon stock assessment and management, including reporting on preseason outlooks and postseason reviews, examining management regimes and recommending how they may be improved to achieve management and escapement goals, and evaluating the status of Canadian-origin salmon stocks and making recommendations for adjustments to rebuilding programs. This report fulfills several of the JTC's functions outlined in the YRSA and serves as a repository for important data related to Canadian-origin Yukon River salmon stocks. This repository is used by fisheries managers, Tribal and Yukon First Nation governments, fishers, and other stakeholders as the primary record for Yukon River salmon.

This report focuses on Chinook *Oncorhynchus tshawytscha*, fall chum *O. keta*, and coho salmon *O. kisutch* stocks that originate in Canadian waters and are covered by the *Yukon River Salmon Agreement*. Summer chum salmon occur entirely within the U.S. portion of the Yukon River drainage and have overlapping run timing with Chinook salmon and fall chum salmon. Where they overlap, the management of summer chum salmon is affected by the management of Chinook

salmon and vice versa. As such, this report contains information about summer chum salmon to provide context for fisheries assessment and management decisions that affect Canadian-origin Chinook and fall chum salmon. Few coho salmon are bound for the upper reaches of the Yukon River in Canada, therefore discussion of coho salmon is primarily limited to the Porcupine River population. This annual report covers salmon fishery and management topics addressed by the JTC following the 2020 season and preceding the 2021 season.

YUKON RIVER SALMON AGREEMENT MANAGEMENT PERFORMANCE SUMMARY

The following is a summary of information contained in the main body of the report, tables, figures, and appendices. This information is provided at the request of the YRP to summarize specific outcomes of the 2020 season, size of the 2021 salmon runs, and 2021 escapement goal recommendations related to the YRSA.

2020 Total Run Size, Harvest, and Escapement of Canadian-origin Chinook Salmon

The preliminary estimate of the 2020 Canadian-origin Chinook salmon run in the mainstem Yukon River was 45,501 fish and was below the 2020 preseason outlook range of 59,000–90,000 fish. The total allowable catch (TAC) was calculated postseason to be 0 to 3,001 fish. The harvest of Canadian-origin Chinook salmon in the U.S. was estimated to be 12,171 fish, which was above the U.S. harvest share of 0 to 2,401 fish. The estimated U.S./Canada border passage of Chinook salmon was 33,330 fish. The mainstem harvest of Chinook salmon in Canada was estimated to be 2,363 fish, which was above the Canada harvest share of 0 to 780 fish. The spawning escapement of mainstem Canadian-origin Yukon River Chinook salmon was estimated to be 30,967 fish, which was below the lower end of the interim management escapement goal (IMEG) range of 42,500–55,000 fish.

2020 Total Run Size, Harvest, and Escapement of Canadian-origin Fall Chum Salmon

The preliminary estimate of the 2020 Canadian-origin fall chum salmon run in the mainstem Yukon River was approximately 25,073 fish and was substantially lower than the preseason outlook range of 207,000–261,000 fish. The preliminary harvest estimate of mainstem Canadian-origin fall chum salmon in the U.S. was approximately 1,561 fish. The U.S. harvest is not known with certainty and was approximated as 25% of the total U.S. harvest of fall chum salmon $(6,244 \times 0.25 = 1,561 \text{ fish})$ plus the fall chum salmon harvested between the Eagle sonar and U.S./Canada border (zero fish). The estimated U.S./Canada border passage of mainstem fall chum salmon was 23,512 fish. The harvest of mainstem fall chum salmon in Canada was zero. The spawning escapement of mainstem Canadian-origin fall chum salmon was estimated to be 23,512 fish and was well below the IMEG range of 70,000–104,000 fish.

The total run size estimate for 2020 Fishing Branch fall chum salmon was 5,103 fish and is highly uncertain. Total harvest of Fishing Branch fall chum salmon in the U.S. was approximately 250 fish and assumed that 4% of the total U.S. harvest of fall chum salmon were bound for the Fishing Branch River. The total harvest of Fishing Branch fall chum salmon in Canada was reported as 100, of which 63% were estimated to be bound for the Fishing Branch River. Escapement past the Fishing Branch River weir was 4,795 fall chum salmon and was well below the IMEG range of 22,000–49,000 fish.

2021 Outlooks

The preseason outlook range presented by the JTC for Canadian-origin salmon stocks:

• Chinook salmon: 42,000–77,000

Mainstem fall chum salmon: 136,000–191,000
Fishing Branch fall chum salmon: 22,000–30,000

2021 Escapement Goals

The JTC recommends no changes to the IMEGs for any Yukon River salmon stocks subject to the *Yukon River Salmon Agreement*. IMEG recommendations for the 2021 season are:

• Chinook salmon: 42,500–55,000

• Mainstem fall chum salmon: 70,000–104,000

• Fishing Branch fall chum salmon: 22,000–49,000

3.0 ALASKA MANAGEMENT OVERVIEW

3.1 CHINOOK AND SUMMER CHUM SALMON

The Yukon River drainage in Alaska (Yukon Area) is divided into fishery districts and subdistricts for management purposes (Figure 1). Management of the Yukon Area summer season commercial salmon fisheries is in accordance with 5 AAC 39.222 *Policy for the Management of Sustainable Salmon Fisheries*, 5 AAC 05.360 *Yukon River Drainage King Salmon Management Plan*, and 5 AAC 05.362 *Yukon River Summer Chum Salmon Management Plan*. The summer chum salmon management plan establishes run size thresholds needed to allow subsistence, commercial, sport, and personal use fishing, prioritizing subsistence among uses, and prioritizing escapement over consumptive uses. Because summer chum and Chinook salmon migrate concurrently, regulations in the management plans allow for using selective gear types that target summer chum salmon during times of Chinook salmon conservation and allow immediate, live release of Chinook salmon back to the water.

During the "summer season" (early May–July 15 in District 1), management and research staff focus on assessing and managing the summer chum and Chinook salmon runs. After July 15, in Emmonak, Chinook salmon are nearly done entering the river and the summer chum salmon run transitions to the fall chum salmon run. On July 16, management transitions to the "fall season" and assessment and management become focused on fall chum and coho salmon runs.

Throughout most of the fishing season, the Yukon River Drainage Fisheries Association (YRDFA) facilitated weekly teleconferences to provide managers, fishermen, tribal/traditional council representatives, and other stakeholders the opportunity to share information, provide input, and discuss inseason management options. During these weekly teleconferences, Alaska Department of Fish and Game (ADF&G) and U.S. Fish and Wildlife Service (USFWS) staff provided inseason run assessment information from various assessment projects (Figure 2). Managers also relayed information about upcoming management strategies and subsistence fishermen reported on fishing effort and water conditions in their respective communities along the river.

Preseason Management Strategy Planning

The 2020 JTC preseason forecast for Canadian-origin Chinook salmon was for a run of approximately 59,000–90,000 fish, and the ADF&G preseason forecast for the Yukon River

drainagewide run (U.S. and Canada stocks combined) was 144,000–220,000 fish. For Canadian-origin Chinook salmon, the IMEG range recommended by the YRP was 42,500–55,000 fish

The summer chum salmon outlook was projected to be approximately 1.9 million fish, which was a run size sufficient to meet escapement and subsistence needs and provide a harvestable surplus for commercial fisheries. However, the management of a summer chum salmon-directed commercial fishery would be affected by the need to conserve Chinook salmon and would depend on Chinook salmon run timing and abundance.

Additional considerations in 2020 included travel limitations related to COVID-19. Under State of Alaska health mandates, commercial and subsistence fishing activities were considered essential, however subsistence, commercial, and assessment activities were impacted by reduced airline and freight services, local travel guidelines, and concerns for crew and community health and safety. The East Fork Andreafsky River weir, Anvik River sonar, Gisasa River weir, Henshaw Creek weir, and Salcha River tower/sonar projects did not operate in 2020 due to COVID-19 related travel restrictions or funding concerns. However, key projects such as the Pilot Station and Eagle sonars operated successfully and provided estimates of salmon passage for the entirety of the 2020 season. The Lower Yukon test fishery (LYTF) was operated at a reduced capacity and provided indices of relative abundance.

Initial fishery management would be conservative until inseason assessment indicated the Chinook salmon run size would be toward the upper end of the projected range and expected to meet U.S./Canada border passage objectives, tributary escapement goals in Alaska, and provide a harvestable surplus for Alaskan fisheries. Before the season began, YRDFA facilitated a teleconference with U.S. management agencies, fishermen, tribal/traditional council representatives, and other stakeholders to discuss the preseason plan and season outlook. Preseason management strategies were developed based on Pilot Station sonar being able to operate fully and provide assessment information.

An annual informational flyer detailing the outlooks for Chinook, chum, and coho salmon and fishery management strategies was mailed preseason to approximately 2,730 Yukon River households and distributed as an advisory announcement in early May.

Chinook and Summer Chum Salmon Inseason Management

Based on the forecasts, managers expected to provide some restricted subsistence harvest opportunity for Chinook salmon and liberal subsistence and commercial opportunity for summer chum salmon.

During the 2018 Board of Fisheries meeting, the regulation requiring full fishing closures during the first pulse of Chinook salmon in Districts 1 and 2 was removed when projected run sizes are adequate to meet escapements. Instead, the management strategy has been to reduce fishing schedules to half the regulatory time to protect part of each pulse to account for inseason uncertainty about the size and timing of the Chinook salmon run (Table 1). This management action, even in years when abundance appears to be above average, is a good inseason tool to spread the harvest across the run and the various stocks.

Due to much support at the 2019 Board of Fisheries meeting for the traditional and religious importance of harvesting the first salmon, the management strategy continued to allow fishing on the early trickle of Chinook salmon that come in prior to the first pulse in all districts. This also

provides early opportunity to target sheefish when only small numbers of Chinook salmon are in the area. Based on run timing at the Lower Yukon Test Fishery (LYTF), after the first fish were expected to reach most districts, fishing schedules with reduced time and 6-inch or smaller mesh gillnets were announced (Figure 3). Yukon Area fishermen reported this early fishing opportunity did not result in good catches because of high water levels, debris, poor weather, or not finding good numbers of fish. Similar reports of poor fishing conditions persisted throughout the summer season.

By mid-June, it appeared that the first pulse of Chinook and summer chum salmon runs were late, and fishing in most districts was closed or restricted to selective gear types. The summer chum salmon run often comes into the river concurrent with Chinook salmon, although the peak of that run is slightly later than the Chinook salmon run. In 2020, the summer chum salmon run was close to a week late, giving managers concerns about the strength of the run.

The first pulse of Chinook salmon was counted at Pilot Station sonar starting June 23. Over the next two weeks, nearly 100,000 Chinook salmon were counted, and fishing was re-opened in most districts on reduced schedules with 6-inch mesh gillnets. Passage of summer chum salmon also increased, with the first day of counts over 20,000 fish also taking place on June 23. Summer chum salmon continued to enter the river during the first part of the fall season, however, on July 18 (the administrative cross over date between summer and fall seasons), less than 700,000 summer chum salmon had been counted at Pilot Station sonar, which was well below the historical cumulative median of 1.9 million fish.

The management strategies used for 2020 were formulated from lessons learned during previous seasons and were similar to actions taken in 2018 and 2019. Near the midpoint of the 2020 run (around June 26 for late years) the projected end-of-season total at Pilot Station sonar was over 160,000 Chinook salmon; based on genetic analysis 77,000 (90% CI \pm 13,000) Chinook salmon were estimated to be of Canadian-origin. It was determined that there should be a harvestable surplus of Chinook salmon available to provide most households with about half the harvest taken last year.

However, despite very conservative management and widespread reports of poor harvests, inseason passage counts at the Eagle sonar project indicated that like 2019, fewer Canadian-origin Chinook salmon were going to make it to the border than were projected by the Pilot Station sonar genetic estimates. Historically, the midpoint of late Chinook salmon runs at Eagle sonar is around July 28. In 2020, Chinook salmon passage was only 16,300 fish on this date, which was well below average. Projections indicated it was unlikely the escapement goal at the border (42,500–55,000 fish) would be met. Fishing for salmon in District 5 closed on July 28 and remained closed for the rest of the summer season. Additional closures for 4-inch or smaller mesh gillnet gear were implemented throughout the drainage to avoid any harvest of Chinook salmon. This action caused considerable hardship for dog mushers and other subsistence users that rely on 4-inch or smaller mesh gillnet gear to target non-salmon species. Harvest opportunities for summer chum salmon were also limited due to the late and weak run, persistent high water levels, and closures to protect Chinook salmon. More detail on management and conservation measures implemented are summarized in Appendix B19.

To look up advisory announcements for Yukon River fisheries in the U.S. go to the following website: http://www.adfg.alaska.gov/index.cfm?adfg=cfnews.search

As run size estimates were refined inseason, the management team subtracted the IMEG (42,500–55,000) from the inseason estimate of Canadian-origin Chinook salmon and multiplied that result by the midpoint of the U.S. harvest share (77%) to estimate a harvest range of Canadian-origin fish available for Alaskan fishermen. Near the midpoint of the Chinook salmon run at Pilot Station sonar, ADF&G estimated the U.S. harvest share of Canadian-origin Chinook salmon to be approximately 22,000–34,500 fish. In 2018 (a year with a similar drainagewide run size as 2020), Alaskans harvested less than 20,000 Canadian-origin salmon and delivered enough fish to the Canadian border to meet the IMEG and harvest share obligations. Therefore, it was assumed that if 2020 management actions were similar to 2018, then the U.S. harvest would fall within or below the inseason estimated harvest share and enough fish would remain to meet border passage objectives as outlined in the YRSA.

It is not certain why the 2019 and 2020 inseason projections of Canadian-origin Chinook salmon based on Pilot Station sonar passage and application of genetics did not align well with the estimates at the Eagle sonar. In recent years (2014-2018), inseason projection methods have provided enough information to enable managers to restrict harvest sufficiently to achieve or exceed both the lower end of the border escapement IMEG and provide for the Canadian harvest share. The U.S. harvest alone does not account for the difference between inseason projections and the abundance estimated at the border in 2019 and 2020. Based on preliminary harvest estimates and genetic analysis, an estimated 12,171 Canadian-origin Chinook salmon were harvested in the U.S. in 2020 (Appendix B18). In 2019, high water temperatures were recorded throughout the Yukon River and heat stress possibly contributed to en route mortality. However, in 2020, water temperatures were close to average but high water levels were more notable, and increased levels of Ichthyophonus infections were observed (Stan Zuray, fisherman, Tanana; personal communication). In addition, one confirmed case of Ichthyophonus out of 10 samples was documented on the Salcha River (Jayde Ferguson, Division of Commercial Fisheries Fish Pathologist, ADF&G, Anchorage; personal communication). Ichthyophonus infections combined with high water levels may have contributed to an increased level of en route mortality of Chinook salmon headed for Canada. Though the number of fish that die during migration before making it to the border cannot currently be measured, more research is being planned in this area.

3.2 FALL CHUM AND COHO SALMON

Management of the Yukon Area fall season salmon fisheries is in accordance with 5 AAC 39.222 *Policy for the Management of Sustainable Salmon Fisheries*, 5 AAC 01.249 *Yukon River Drainage Fall Chum Salmon Management Plan*, 5 AAC 05.369 *Yukon River Coho Salmon Management Plan*, and 5 AAC 05.367 *Tanana River Salmon Management Plan*. The intent of these plans is to align management objectives with the established escapement goals, provide flexibility in managing subsistence harvests when stocks are low, and bolster salmon escapement as run abundance increases (Table 2). The sustainable escapement goal (SEG) range for the entire Yukon River drainage is 300,000–600,000 fall chum salmon (Fleischman and Borba 2009). The threshold number of fall chum salmon needed to allow commercial fishing is 550,000 fish, and commercial fishing is considered only on the surplus projected above that level.

Management also incorporates conditions found in the *Yukon River Salmon Agreement*. Those conditions include treaty objectives for border passages, and harvest shares of fall chum salmon. The IMEG for Canadian-origin mainstem Yukon River is 70,000–104,000 fall chum salmon, and the IMEG for Fishing Branch River is 22,000–49,000 fall chum salmon.

The coho salmon management plan allows for a coho salmon-directed commercial fishery if the incidental catch of fall chum salmon remains above the 500,000 fish threshold and a harvestable surplus of coho salmon is identified, or a commercial fishery will not have a significant impact on fall chum salmon escapement and allocation. The Tanana River plan specifies that commercial fishing in Subdistrict 5-A and District 6 are based on the assessment and timing of salmon stocks bound for the Tanana River drainage as both areas are considered terminal harvest areas.

Fall Chum Salmon Management Overview

By regulation, the fall season began in District 1 on July 16. Assessment information collected from projects located in the lower river were used to inform management decisions. The projects included two lower river drift gillnet test fisheries that provided run timing and relative abundance information, and a mainstem Yukon River sonar, located near the community of Pilot Station, that provided fish abundance estimates. Stock composition information for chum salmon was provided by genetic samples collected at the mainstem Yukon River sonar.

Upriver projects that monitored escapement consisted of a mainstem Yukon River sonar operated at Eagle near the U.S./Canada border, a weir/video project operated in the Fishing Branch River (Porcupine River headwater), foot surveys conducted in the Delta River (a tributary of the Tanana River), boat surveys in the Delta Clearwater River (a tributary of the Tanana River), and aerial surveys in the Tanana River drainage. Sonars in the Teedriinjik River and in the Canadian portion of the Porcupine River, did not operate in 2020 because of travel restrictions related to pandemic protocols. Age, sex, and length information was collected at the lower river test fisheries, the Eagle sonar near the U.S./Canada border, and from the Fishing Branch and Delta rivers.

The preseason forecast was revised to a preseason run size projection in mid-July, using the relationship between historical summer and fall chum salmon run size estimates. Based on an estimate of 782,000 summer chum salmon, the preseason drainage projection for fall chum salmon was a run size of less than 450,000 fish.

Preseason management strategies included the following: concurrent with the fall chum salmon migration upriver, all Yukon Area districts and subdistricts would be placed on regulatory subsistence fishing schedules; to improve fall chum salmon escapement to the spawning grounds, the department anticipated implementing a complete closure of subsistence salmon fishing in the Alaska portion of the mainstem Porcupine River as the fall chum salmon migration reached that area; commercial salmon fishing would not be allowed unless the inseason drainagewide fall chum salmon run projection exceeded 550,000 fish, and a commercial surplus was identified.

Subsistence salmon fishing in Districts 1–3 were placed on regulatory schedules of two 36-hour periods per week to start off the fall season. From July 16 through the last week of July, the drainagewide fall chum salmon run size was tracking to be 400,000 fish. On July 27, subsistence salmon fishing in District 4 opened on their regulatory schedule of two 48-hour periods per week.

By the end July, the drainagewide fall chum salmon run was tracking between 350,000 and 400,000 fish. The drop in projection allowed for a limited subsistence harvest; therefore, subsistence salmon fishing schedules in Districts 1–4 were restricted to two 18-hour periods per week. Additionally, a subsistence fishing period was skipped in Districts 1-3. By August 12, the drainagewide fall chum salmon run projection dropped below 300,000 fish and all fishing for fall chum salmon in the Yukon Area was closed by regulation. Subsistence fishing for fall chum

salmon in Subdistrict 5-D (including the Porcupine River drainage) was closed for the entire fall season.

Subsistence fishermen in all districts could use 4-inch mesh or less gillnets to target non-salmon species during the fall chum salmon closure. In addition, subsistence fishermen in Districts 1–4, Subdistrict 5-A, and District 6, could use selective gear, such as of live-release (manned) fish wheels and dip nets, to target other salmon and non-salmon fish species.

By September 8, subsistence salmon fishing restrictions were lifted in Districts 1–3. Restrictions were subsequently lifted in upriver districts and subdistricts as the tail end of the fall chum salmon run reached those areas.

The preliminary subsistence harvest of fall chum salmon was estimated to be 6,207 fish which is well below the 2015–2019 average of 76,940 fish.

Coho Salmon Management Overview

The coho salmon run overlaps with much of the fall chum salmon run. While subsistence fishing for fall chum salmon was closed for most of the season, fishermen in Districts 1–4, Subdistrict 5-A, and District 6 could use selective gear to target coho salmon, while releasing fall chum salmon alive. Also, subsistence fishermen had the opportunity to harvest coho salmon with all allowable gear types once the end of the fall chum salmon run passed through their district or subdistrict.

The coho salmon run appeared to be weak and late, and information from lower river assessment projects showed a below average coho salmon run. The preliminary coho salmon run size was estimated to be 108,000 fish, which was below the historical median of 209,000 fish. The preliminary subsistence harvest of coho salmon was estimated to be 3,000 fish which is below the 2015–2019 average of 9,000 fish.

4.0 ALASKA HARVEST SUMMARIES

4.1 SUBSISTENCE SALMON FISHERY

Subsistence salmon fishing activities in the Yukon River drainage typically begin in late May and continue through mid-October (Jallen et al. 2017). Fishing opportunity in the Lower Yukon Area (Districts 1–3) in May and the Upper Yukon Area (Districts 4–6) in October is highly dependent upon river ice conditions. Throughout the drainage, most Chinook salmon harvested for subsistence use are dried, smoked, or frozen for later human consumption. Summer chum, fall chum, and coho salmon harvested in the lower Yukon River are primarily utilized for human consumption. In the Upper Yukon Area, summer chum, fall chum, and coho salmon are also an important human food source, but a larger portion of the harvest is fed to dogs used for recreation and transportation (Andersen 1992).

Documentation of the subsistence salmon harvest is necessary to determine if sufficient salmon are returning to the Yukon Area and enough fishing opportunities are being provided to meet subsistence needs. In years with fishery restrictions, estimates of harvest can be used to assess the effect of the management actions taken to meet escapement goals to maintain future salmon production. The primary method of estimating subsistence harvest is voluntary participation in the annual subsistence salmon harvest survey program conducted by ADF&G, Division of Commercial Fisheries. The survey is conducted in 33 communities (including the 2 coastal communities of Hooper Bay and Scammon Bay) during the fall, after most households have

completed fishing for salmon. Additional information about harvest timing is obtained from harvest calendars that are sent to households and filled out voluntarily. Fishing permits also provide information about harvest timing for areas of the river where permits are required (District 6 and portions of District 5 and the Koyukuk River).

In 2020, subsistence harvest surveys identified approximately 2,691 households in the Yukon Area in 33 communities. Of these, an estimated 1,084 households fished for salmon. Permits are not required for subsistence fishing throughout most of the Yukon Area, except for the urban areas around Fairbanks and other areas accessible by road. Therefore, the largest share of subsistence harvest in the Yukon Area is estimated from the postseason survey results. A total of 372 salmon fishing permits were issued in 2020, approximately 78% of the subsistence salmon permits had been returned at the time of this publication, and 126 salmon permits reported fishing.

All 2020 subsistence harvest data are considered preliminary as of the publication date of this report. Final results will be included in an ADF&G Fishery Data Series publication after the analysis is completed and reviewed. Based on postseason survey and permit data, the 2020 preliminary subsistence salmon harvest in the Alaska portion of the Yukon River drainage was estimated to be 22,668 Chinook; 42,597 summer chum; 6,207 fall chum; and 2,922 coho salmon (Figures 4–6; Appendices B2–B5). For comparison, recent 2015–2019 average subsistence salmon harvest estimates were 29,486 Chinook; 79,845 summer chum; 76,940 fall chum; and 8,950 coho salmon (Appendices B2–B5) from communities in the Alaska portion of the Yukon River drainage. In 2020, Chinook, summer chum, fall chum and coho salmon all fell below their respective ranges of amounts reasonably necessary for subsistence (ANS) as defined by Alaska Board of Fisheries (Brown and Jallen 2012).

Due to travel restrictions in response to the COVID-19 pandemic, subsistence salmon harvest surveys were conducted remotely via telephone, mail, and internet. An electronic version of the survey was created to provide subsistence users an avenue to self-report harvests online. To improve survey response rate, attempts were made to contact all known households. The survey questions largely remained the same as previous years. The 2020 estimates and 95% CI were $19,406 \pm 4,709$ Chinook; $39,547 \pm 3,532$ summer chum; $3,767 \pm 1,064$ fall chum; and $1,861 \pm 547$ coho salmon. It is important to restate the estimates and 95% CI provided here are preliminary and will change as additional mail surveys are entered and quality control measures are conducted. Survey estimates are a subtotal of the overall subsistence harvest estimates provided above and 95% CI only apply to survey estimates.

4.2 COMMERCIAL FISHERY

Summer Season Harvest

The commercial summer chum salmon season in Districts 1 and 2 began June 27, which was later than usual. The summer chum salmon run entered the river late, and it was not clear how much harvestable surplus would be available. Three periods were announced with selective gear during which Chinook salmon were required to be released alive. Three periods with 6-inch gillnets were announced in District 1 in the first week of July; however, the final period was cancelled due to low summer chum salmon abundance, poor harvest in previous openings, and poor fishing conditions due to high water. Catches of Chinook salmon were low, since the bulk of the run had already passed the lower river and commercial fishing time was very limited. This season there was one processor purchasing chum salmon in Districts 1 and 2. No commercial fishing occurred in other districts.

For the thirteenth consecutive year, no commercial periods targeting Chinook salmon were allowed in the Yukon Management Area during the summer season. During the 2020 summer season, the total commercial harvest in the Alaska portion of the Yukon River drainage was 13,955 summer chum salmon (Appendices A2 and B3). The summer chum salmon harvest was 97% below the recent 5-year (2015–2019) average harvest of 448,994 fish and was the lowest harvest since 2003 (Appendix B3).

Commercial fishermen were required to report all Chinook salmon caught during the chum salmon commercial fishery. During openings with selective gear, 795 Chinook salmon were released alive, and a total of 362 Chinook salmon were reported on fish tickets as caught but not sold during two gillnet openings. Those Chinook salmon were retained for personal use and accounted for as part of the total subsistence harvest estimate.

Fall Season Harvest

There was no commercial fishing in the Yukon Area during the 2020 fall season. Historical commercial harvest information of fall chum and coho salmon can be found in Figures 5 and 6, and Appendices B4 and B5.

4.3 SPORT FISHERY

Since 2010, sport fishing effort for wild salmon in the Yukon River drainage has been directed primarily at Chinook, chum, and coho salmon, with lesser numbers of sockeye and pink salmon targeted in the lower Yukon River. Over the past decade, Chinook salmon stocks have experienced periods of low productivity with subsequent restrictions to subsistence fishing opportunities. As a result, Chinook salmon sport fishing restrictions and closures have been implemented during most seasons in the ADF&G Division of Sport Fish Yukon Management Area (YMA, excludes the Tanana River drainage) and Tanana River Management Area (TRMA). All chum salmon harvested in the sport fishery are categorized as summer chum salmon because these fish are mostly caught incidental to Chinook salmon during midsummer in clearwater tributaries. Some harvest of fall chum salmon occurs after Chinook salmon spawning concludes but is considered negligible relative to summer chum salmon harvests. Coho salmon are targeted primarily in the fall.

Alaska sport fishing effort and harvests are monitored annually through the Statewide Harvest Survey (SWHS)². The SWHS is an annual survey of households where at least one person (resident or nonresident) purchased a sport fishing license. Harvest estimates are not available until approximately one calendar year after the fishing season; therefore, 2020 estimates were not available for this report. Total sport harvest of salmon during 2019 in the Alaska portion of the Yukon River drainage (YMA and TRMA) was estimated to be 38 Chinook, 36 chum, and 72 coho salmon (Appendices B2, B3, and B5). The 2015–2019 average sport salmon harvest was estimated to be 58 Chinook, 176 chum, and 434 coho salmon and that for 2010–2019 was estimated to be 175 Chinook, 443 chum, and 583 coho salmon (Appendices B2, B3, and B5). Therefore, over the past decade, sport harvest for all salmon species has been showing a downward trend.

Most sport fishing effort for the Yukon River occurs in the Tanana River along the road system (Baker 2018) due to the proximity of major population centers such as Fairbanks, North Pole,

Alaska Sport Fishing Survey database [Internet]. 1996–2018. Anchorage, AK: Alaska Department of Fish and Game, Division of Sport Fish (cited October 23, 2020). Available from: http://www.adfg.alaska.gov/sf/sportfishingsurvey/.

Delta Junction, etc. On average, 62% and 93% of Chinook salmon harvested during 2010–2019 and 2015–2019 respectively occurred in the Tanana River. During 2015–2019, average sport harvests for chum and coho salmon in the Tanana River represented 4% and 74% of the total for these species respectively for the Yukon River. In the Tanana River, most Chinook and chum salmon sport fishing effort occurs in the Chena and Salcha rivers, whereas most coho salmon are harvested from the Delta Clearwater and Nenana river systems. The majority of sport fishing effort for Chinook, chum, and coho salmon for the rest of the Yukon River drainage takes place in the Anvik and Andreafsky rivers.

During 2006–2016, all freshwater sport fishing guides and guide businesses operating in Alaska were required to be licensed and to report harvest and released (numbers of fish captured and released) in logbooks. From 2012–2016, guided sport harvests in the Yukon River drainage (YMA and TRMA) averaged 34 Chinook and 356 coho salmon.

For 2020, all waters of the YMA and TRMA were closed to sport fishing of Chinook salmon effective May 6, 2020 and June 25, 2020, respectively. These closures were a result of a below average run of Chinook salmon past Pilot Station sonar and subsequent restrictions to the subsistence fishery.

4.4 Personal Use Fishery

The Fairbanks Nonsubsistence Area, located in the middle portion of the Tanana River, contains the only personal use fishery within the Yukon River drainage. Subsistence or personal use permits have been required in this portion of the drainage since 1973. Personal use fishing regulations were in effect from 1988 until July 1990 and from 1992 until April 1994. In 1995, the Joint Board of Fisheries and Game established the Fairbanks Nonsubsistence Area which has subsequently been managed consistently under personal use regulations. Historical harvest data must account for these changes in status. Subdistrict 6-C is completely within the Fairbanks Nonsubsistence Area and therefore falls under personal use fishing regulations. Personal use salmon or whitefish/sucker permits, and a valid resident sport fishing license are required to fish within the Fairbanks Nonsubsistence Area. The harvest limit for a personal use salmon household permit is 10 Chinook, 75 summer chum, and 75 fall chum and coho salmon combined. The personal use salmon fishery in Subdistrict 6-C has a harvest limit of 750 Chinook; 5,000 summer chum; and 5,200 fall chum and coho salmon combined.

In 2020, the personal use salmon fishery followed the regulatory fishing schedule of two 42-hour periods per week. A total of 81 personal use salmon permits were issued. The 2020 preliminary harvest results, based on 96% of the personal use salmon permits returned in Subdistrict 6-C, included 112 Chinook, 67 summer chum, 37 fall chum, and 79 coho salmon. The 2015–2019 average personal use harvest was 126 Chinook, 327 summer chum, 382 fall chum, and 162 coho salmon (Appendices B2–B5) in the Alaska portion of the Yukon River drainage.

5.0 CANADIAN MANAGEMENT OVERVIEW

5.1 CHINOOK SALMON

The Yukon River drainage in Canada contains numerous tributaries, towns, and commercial fishing boundaries (Figure 7). The total run of Canadian-origin mainstem Yukon River Chinook salmon in 2020 had a preseason outlook range of 59,000–90,000 fish. This range was well below

historically-observed run sizes (average 153,411, 1982–1997; Appendix B11) and falls within the range of recently-observed run sizes (average 84,594, 1998–2019; Appendix B11).

Prior to the season, Fisheries and Oceans Canada (DFO) hosted virtual meetings with the Yukon Salmon Subcommittee (YSSC), Yukon First Nation Governments, Renewable Resources Councils, and the public to discuss the 2020 forecast and potential management scenarios. The below average preseason forecast coupled with the failure to achieve minimum escapement targets in four of the last 10 years (including 2019) resulted in continued concern over the long-term health and sustainability of Canadian-origin Yukon River Chinook salmon stocks.

Each year, in advance of the salmon season, DFO develops an Integrated Fisheries Management Plan³ (IFMP) for Yukon River Chinook, fall chum and coho salmon. The IFMP, which is in effect from July 1 of the current year to June 30 of the subsequent year, identifies the primary objectives (i.e. YRSA) and requirements for the management of Canadian salmon fisheries in the Yukon River, as well as the management measures that will be used to achieve these objectives in the commercial, domestic (non-aboriginal food fishery) and licensed public angling fisheries.

In accordance with Yukon First Nation self-governing agreements, First Nation fisheries are managed by First Nation governments. In support of this, DFO provides scientific information and management updates to the First Nations on a weekly basis (more frequently if/when requested).

Canadian management decisions were guided by the YRSA, YSSC recommendations, implementing a precautionary approach and the application of inseason assessment information to the *inseason fishery management decision matrix* (a component of the IFMP) and the following management recommendations from the YRP for the 2020 season:

- 1. The Canadian-origin Chinook salmon run should be managed to ensure escapement falls within the 2020 IMEG range (42,500–55,000) and provide for agreed harvest shares in both countries as outlined within the YRSA.
- 2. To provide for Canadian-origin Chinook salmon conservation, limit use of gillnets to 6" mesh or smaller upstream of the Tanana River / Yukon River Mainstem confluence for the duration of the Chinook salmon migration consistent with the regulatory structures in both countries.
- 3. Environmental conditions, in particular extreme events, should be considered in-season to inform fishery management measures implemented and resulting harvest opportunities.
- 4. In the event that in-season assessment programs are unable to operate in 2020 due to circumstances beyond Agency control, fishery harvest opportunities should be provided conservatively based on 2020 pre-season outlooks and associated Total Allowable Catch and harvest share allocations.

Based on the preseason forecast, the 2020 season commenced with an allocation available for the First Nation fisheries. The public angling fishery was prohibited from retaining Chinook salmon and similarly, the commercial and domestic fisheries remained closed (no allocation). The

³ The IFMP is available online at https://waves-vagues.dfo-mpo.gc.ca/Library/40801445.pdf

allowable catch of Chinook salmon in commercial, domestic, and public angling fisheries was set to zero for the beginning of the season.

An allocation to the commercial, domestic and public angling fisheries is subject to run abundance, and opportunities (i.e. allocation) may only be provided if there is sufficient confidence that the abundance of Chinook salmon will meet the upper end of the upper end of the YRP's IMEG (55,000), and if Canada's harvest allocation exceeds the number required for a full allocation to the First Nation fishery.

In consideration of the YRP management recommendations, the conditions of licence in the commercial and domestic salmon fisheries restricted harvesters to a maximum allowable gillnet mesh size of six (6) inches; and the mandated release of incidentally caught Chinook salmon in the chum salmon commercial and domestic fisheries.

Given that opportunities for First Nation fisheries were available prior to having early-season and inseason assessment information (which provides greater certainty of the number of returning Chinook salmon and biological composition of the run) several recommendations for conservation measures were described in the IFMP. These include:

- 1. First Nations who initiate early-season fisheries are requested to initiate their harvest activities in a conservative manner;
- 2. Harvest of Chinook salmon should be directed at smaller (younger) fish this can be achieved through the continued use of smaller-mesh gillnets (i.e., 6-inch or less) or selective release of larger (older) fish from fish wheels and/or hook and line fisheries.

As confidence in inseason abundance improved, fishery management actions proceeded according to the *inseason fishery management decision matrix*. The decision matrix provides guidance for the management of fisheries, is linked to specific inseason run abundance levels, summarizes the management reference points, general allocation plans, and anticipated management responses under different run size scenarios (Table 3).

Inseason Management Yukon River Mainstem Chinook Salmon

Early in the 2020 season, information from the ADF&G assessment projects LYTF near Emmonak and the Pilot Station sonar in the Lower Yukon Area suggested a low return and late run timing. By late June, the midpoint of the run had passed Pilot Station sonar, abundance and projections improved significantly and genetic results indicated that a strong proportion of the run were Canadian stocks. By mid-July, the run at Pilot Station sonar was nearly complete with a cumulative passage estimate of around 74,000 Canadian-origin Chinook salmon and a Canadian run size projection estimate of around 76,000 Chinook salmon, which was near the mid-point of the preseason outlook range of 59,000 to 90,000 fish. Based on information gained from the LYTF and Pilot Station sonar operations and in consideration of the IMEG and harvest share provisions as per the *Pacific Salmon Treaty*, the Canadian fishery allocation was estimated to be between 4,600 and 7,500 Chinook salmon. This amount could provide for a limited First Nation subsistence fishery, however, Canadian public angling, domestic, or commercial fisheries closures were to be maintained and prohibited from harvesting Chinook salmon. Further to this, the Yukon River (and its tributaries) were closed to all salmon angling.

The first Chinook salmon were counted at Eagle sonar (located near the international border) during the first week of July. The returning numbers at Eagle during the early part of the run were

low and slow to increase. As the season progressed the mismatch between the information from the lower river and the observed run size at Eagle sonar became increasingly apparent. DFO hosted a virtual inseason management meeting with Yukon First Nation government representatives to discuss and exchange information about assessment and management actions.

DFO encouraged First Nations to adjust harvest strategies accordingly in the First Nation fishery while DFO maintained the closures in the public angling, commercial and domestic fisheries, enacted a complete salmon angling closure on the Yukon River and its tributaries, and delayed scheduled openings for the chum salmon angling, commercial, and domestic fisheries in order to allow as many Chinook salmon as possible to reach spawning grounds. By late July, it was evident that neither the anticipated border passage nor the IMEG were likely to be achieved. The YSSC recommended to the First Nation governments to cease harvest of Chinook salmon, which DFO's Yukon Transboundary Rivers Area office supported.

The allocations available for commercial, domestic, and public angling fisheries remained at zero and First Nations maintained a conservative approach throughout the Canadian season and ceased harvest when the recommendation was provided. Throughout the run, DFO provided weekly email updates to First Nations and harvesters, hosted, at a minimum, monthly inseason meetings with the YSSC and First Nation Lands and Resources managers as a means to provide a forum to exchange management and assessment updates. DFO staff also provided updates during the weekly YRDFA teleconferences.

The public angling fishery daily catch and possession limits were reduced to zero, effective June 26 to November 30, to coincide with the arrival of Chinook salmon in Canadian portions of the Yukon River. The public angling fishery was closed to salmon fishing from July 29 to November 30. Chinook salmon commercial and domestic fisheries in Canada remained closed throughout the 2020 season. A summary of management and conservation measures implemented in Canada are presented in Appendix B19.

Inseason Management Porcupine River Chinook Salmon

In the absence of stock-specific information about Porcupine River Chinook salmon in Canada, the early season management of this stock is based on information and management of mainstem Yukon River Chinook salmon. Given the below-average outlook for mainstem Chinook salmon in 2020, it was recommended that the First Nation fishery on the Porcupine River proceed in a conservative manner. Consistent with the approach adopted for mainstem Chinook salmon, the fishery was opened early in the season with a recommendation to harvest in a conservative manner. Unfortunately, due to the operational constraints resulting from the COVID-19 pandemic, the Porcupine River sonar assessment program did not operate in 2020. As such, inseason information was based on information and management of mainstem Yukon River Chinook salmon.

The Vuntut Gwitchin Government directs the First Nation fishery in accordance with Yukon First Nation Self-Governing Agreements and is guided by the *Porcupine River Salmon Plan*.

5.2 FALL CHUM SALMON

Mainstem Yukon River

The 2020 preseason forecast for the Canadian-origin fall chum salmon run to the mainstem Yukon River was 207,000 to 261,000 fish. The interim management escapement goal (IMEG) range recommended by the YRP remained at 70,000–104,000 Canadian-origin fall chum salmon.

Canadian management decisions were based on the application of inseason assessment information to the management decision matrix – a component of the IFMP. The decision matrix provides detailed guidance for the management of fisheries linked to specific inseason run abundance levels. The 2020 decision matrix summarized the management reference points, general allocation plans, and anticipated management responses under different run size scenarios (Table 4).

Inseason Management Mainstem Yukon Fall Chum Salmon

Inseason decisions about fishery openings and closures in Canada for fall chum salmon were made in a similar way to those for Chinook salmon. In 2020, inseason information from the summer chum salmon run in the lower Yukon River resulted in a revised fall chum salmon forecast of less than 112,500 Canadian-origin fish. Direct inseason projections of the Canadian component of the fall chum salmon run were then based on run estimates and genetic apportionment of Canadian-origin fall chum salmon from the Pilot Station sonar and assessment information from the LYTF. On August 11, the projection was further reduced to fewer than 75,000 Canadian-origin fall chum salmon. As fall chum salmon approached and entered Canada in mid to late August, Canadian managers began considering passage estimates from the mainstem Yukon River sonar near Eagle.

Due to the lower than expected and potential late run timing of Chinook salmon, DFO had planned to delay openings in the chum salmon public angling, commercial and domestic fisheries to allow any late running Chinook salmon to reach the spawning grounds.

In consideration and implementation of the YRP's management recommendations the conditions of license in the commercial and domestic chum salmon fisheries included the following:

- All incidentally caught Chinook salmon in the chum salmon commercial and domestic fisheries must be released, and;
- The maximum allowable gillnet mesh size is 6 inches in both the commercial and domestic chum salmon fisheries.

The intention of management actions in 2020 was to ensure that the IMEG range of 70,000–104,000 fall chum salmon was achieved. However, with an inseason projection of less than 75,000 Canadian-origin chum salmon, there would likely not be sufficient abundance to provide for a Canadian chum salmon allocation.

By early August, information from the Pilot Station sonar and LYTF data indicated that the total run would be far below the preseason forecast range, which was later supported by Eagle sonar passage estimates that indicated that the run into Canada would not meet the IMEG. Given the poor return, First Nation governments were advised that there would not be a Canadian allocation and to adjust their management plans accordingly. The YSSC recommended to First Nation governments to cease fall chum salmon harvest and DFO maintained the closures in the public angling, commercial and domestic fall chum salmon fisheries for the entirety of the salmon season. First Nation governments were receptive and responsive to the recommendation.

Fishing Branch (Porcupine) River Fall Chum Salmon

The 2020 preseason forecast estimate for Fishing Branch-origin fall chum salmon was 33,000–42,000 fish. The current IMEG for the Fishing Branch River recommended by the YRP is 22,000–49,000 adult fall chum salmon. Considering that the IMEG has only been achieved in 6 of the last 10 years, a precautionary approach was warranted. The IFMP recommended that, until an inseason projection for Fishing Branch chum exceeded 22,000 fish, a conservative approach to harvest be

taken in the Porcupine River First Nation fishery. Important to note is that in accordance with Yukon First Nation Self-Governing Agreements, the Vuntut Gwitchin Government directs the First Nation fishery.

Inseason Management Fishing Branch (Porcupine) Fall Chum Salmon

Canadian fishery management considered early season information from the LYTF and Pilot Station sonar. Estimates of fall chum salmon passage in combination with genetic mixed stock analysis (MSA) cannot be reliably used to project the return to Fishing Branch River. Because the Fishing Branch River component at the Pilot Station sonar is such a small part of the total run, the uncertainty associated with these estimates is very high; therefore, management decisions cannot be based on this information.

Inseason fishery management decisions are largely based on information from the Porcupine River sonar located near the community of Old Crow. The Porcupine River sonar passage projection is the primary indicator used to inform inseason management decisions, however harvest in Alaska before the fish reach Canada is also considered when making management decisions. Unfortunately, the Porcupine River sonar program did not operate in 2020 due to logistic challenges stemming from the COVID-19 pandemic.

As the season progressed, the fall chum salmon run projections were reduced to levels that would not support meeting the Fishing Branch River spawning escapement goal, at which time the Vuntut Gwitchin First Nation asked their citizens to refrain from harvesting fall chum salmon.

In 2020, escapement to the Fishing Branch River was monitored by a combined weir and video counter (new in 2019). Only a portion of the fall chum salmon that return to the Canadian Porcupine River are destined for the Fishing Branch River. Based on concurrent Porcupine River sonar and Fishing Branch River weir counts (2015–2019; Appendix B15) approximately 63% of Canadian-origin Porcupine River fall chum salmon were considered Fishing Branch River origin.

6.0 CANADIAN HARVEST SUMMARIES

6.1 FIRST NATION SUBSISTENCE FISHERIES

Harvest estimates of salmon in the First Nation fisheries on the Yukon and Porcupine rivers are determined from locally-conducted inseason interviews and postseason reports. For additional ease in reporting, DFO provides harvest calendars and harvest reporting forms to First Nation governments' Lands and Resources staff for distribution among harvesters.

Mainstem Yukon River Chinook Salmon

Based on a preseason outlook for a below average run of 59,000 to 90,000 Canadian-origin Yukon Chinook salmon, YSSC recommended a conservative approach early in the 2020 fishing season. Following a slow start to the season, inseason information from the LYTF and Pilot Station sonar projects indicated that the run was returning within the preseason forecast, which would provide for a limited First Nation fishery. Yukon First Nation governments followed conservative management plans throughout the 2020 season, resulting in a significantly reduced harvest compared to long term historical averages. Ultimately, inseason Eagle sonar passage data did not align with Pilot Station sonar projections and was much lower than anticipated. Considering the poor passage at the Eagle sonar, the IMEG was deemed unlikely to be met in 2020. The First Nation harvest of Chinook salmon in the Canadian Yukon River mainstem drainage in 2020 was

estimated to be 2,363 fish (Figure 8; Appendix B7). For comparison, the First Nations long-term (1961–2019) average Chinook salmon harvest is 4,933 fish; the most recent 10-year average (2010–2019) is 2,383; and the most recent 5-year average (2015–2019) is 2,564 fish (Appendix B7).

Mainstem Yukon River Fall Chum Salmon

The preseason outlook for Canadian-origin fall chum salmon in 2020 suggested an average run of 207,000–261,000 fish. By August 11, the inseason projection was revised to fewer than 75,000 Canadian-origin fall chum salmon. Inseason passage estimates at Eagle sonar indicated that the border passage estimate would be considerably less than the 75,000 fall chum salmon projection, and the IMEG would not be achieved. First Nations abstained from harvest in the First Nation fishery on the Yukon River mainstem. There was zero fall chum salmon harvest reported in the First Nation fishery on the mainstem Yukon River drainage in 2020 (Appendix B8). For comparison, the long-term (1961–2019) average First Nation subsistence harvest is 2,211 fish; the most recent 10-year average (2010–2019) is 927 and 5-year average (2015–2019) is 1,000 fish (Appendix B8).

Porcupine River Chinook, Fall Chum, and Coho Salmon

An estimated harvest of 180 Chinook salmon occurred in the in 2020 First Nation subsistence fishery near Old Crow (Appendix B7). For comparison, the long-term (1961–2019) average harvest is 250 fish; the most recent 10-year average (2010–2019) is 215 fish; and, the most recent 5-year average (2015–2019) is 232 fish (Appendix B7).

An estimated harvest of 100 fall chum salmon occurred in the 2020 First Nation subsistence fishery near Old Crow (Appendix B8). For comparison, the long-term (1961–2019) average harvest is 4,173 fish; the most recent 10-year average (2010–2019) is 2,006 fish; and the most recent 5-year average (2015–2019) is 1,749 fish (Appendix B8).

There was no reported harvest of coho salmon on the Porcupine River in 2020.

6.2 COMMERCIAL FISHERY

The commercial Chinook, fall chum, and coho salmon fisheries remained closed throughout the 2020 fishing season (Appendices B7 and B8). The long-term (1961–2019) average commercial harvest of Chinook salmon is 5,717 fish, and there has been 1 or zero Chinook salmon harvested in the most recent 5 years (2015–2019; Appendix B7). For comparison, the long-term (1961–2019) average commercial harvest of fall chum salmon is 9,351 fish, and the most recent 5-year average (2015–2019) is 2,139 fish (Appendix B8). Since 1997, there has been a marked decrease in commercial catches of Upper Yukon River fall chum salmon as a result of a limited market. Between 1961 and 2019, the commercial fall chum salmon catch ranged from a low of 293 fish in 2009, when the run was late and the fishery had been closed for most of season due to conservation concerns, to a high of 40,591 fish in 1987. Note that commercial harvest of coho salmon in the mainstem Yukon River in Canada rarely occurs. This is thought to be due to a combination of low abundance and their late migration timing which limits availability of this species.

6.3 DOMESTIC SUBSISTENCE FISHERY

The domestic fishery was closed during the Chinook and fall chum salmon season (Appendices B7 and B8) and as such, there were no salmon harvested in the domestic fishery in 2020. Openings

in the domestic salmon fisheries are concurrent with commercial fishery openings. For comparison, with respect to harvest of Chinook salmon in the domestic fishery the long-term (1961–2019) average is 393 fish. Domestic harvest of Chinook salmon has been zero since 2010 (Appendix B7). With respect to domestic harvest of fall chum salmon, the long-term (1961–2019) average is 414 fish; the most recent ten-year average (2010–2019) is 10 fish; and the most recent five-year average (2015–2019) is 13 fish (Appendix B8).

6.4 LICENSED PUBLIC ANGLING FISHERY

In 1999, the YSSC introduced a mandatory Yukon Salmon Conservation Catch Card to improve harvest estimates and to serve as a statistical base to ascertain the importance of salmon to the Yukon River public angling fishery. Anglers are required to report their catch and harvest by November 30. The information reported includes the number, species, fate (kept or released), sex, size, date, and location of all salmon caught. From preliminary catch card information received at the time of this publication, no Chinook salmon were caught or retained in the Yukon River or its tributaries in the 2020 public angling fishery, which is consistent with the angling restrictions and closures which were in place for the duration of the 2020 Chinook and chum salmon season.

Over the last 10 years retention (harvest) of Chinook salmon in the public angling fishery was only permitted in 2009 and 2011 (Appendix B7). For the 2020 season, the daily catch and possession limits of fall chum salmon in the public angling fishery were varied to zero prior to the start of the season which was followed by a complete angling closure to salmon on the Yukon River and its tributaries (Appendix B19).

7.0 TOTAL RUN, ESCAPEMENT, AND HARVEST SHARE ASSESSMENTS FOR 2020

7.1 CHINOOK SALMON

In 2020, the total Chinook salmon passage at the Pilot Station sonar was approximately 162,252 fish ±18,967 (90% CI, Table 5, Appendix A1). This is considered an index of the drainagewide Chinook salmon run, rather than a total run size estimate, because some salmon are harvested or enter spawning areas below this sonar site. This passage was below the historical average⁴ of 182,953 fish (Appendix A1). Chinook salmon entered the river in four pulses consisting of 28,089 fish; 36,209 fish; 26,632 fish, and 25,467 fish with an additional 45,855 comprising the beginning and end of the run. The first quarter point, midpoint, and third quarter point for the Pilot Station sonar passage were June 23, June 27, and July 3, respectively. The 2020 Chinook salmon run was four days later than average based on the midpoint at the Pilot Station sonar of June 23rd.

Chinook salmon passage estimated at Eagle sonar in 2020 was 33,550 fish (Appendix B11). The estimated mainstem border passage into Canada was 33,330 fish, which is calculated by subtracting the harvest upriver from the Eagle sonar site (Appendices B11, B18). The estimated spawning escapement of Canadian-origin Yukon River Chinook salmon (mainstem) was 30,967 fish, which is calculated by subtracting Canadian harvest (Figures 8 and 9; Appendices B11 and B18). This escapement was below the lower end of the IMEG of 42,500–55,000 fish. Combining the spawning escapement estimate with the U.S. and Canadian harvests of Canadian-origin

⁻

⁴ Average includes years 1995, 1997, 2000, 2002–2008, and 2010–2019. The sonar did not operate in 1996 and project difficulties occurred in 1998–1999, 2001, and 2009.

Chinook salmon indicates the total mainstem Canadian-origin run size was approximately 45,501 Chinook salmon (Appendix B18).

Postseason calculation of the TAC, based on prescriptions outlined in the YRSA and a total run size estimate of 45,501 Chinook salmon, were for a U.S. harvest share of 0 to 2,401 fish and a Canadian harvest share of 0 to 780 fish (Appendix B18). The U.S. harvest of Canadian-origin Chinook salmon (n=12,171) exceeded the harvest share by 9,770 fish. The number of Chinook salmon that passed into Canada (33,330) was 9,170 fewer fish than what was needed to meet the lower end of the IMEG range (42,500 fish) and provide for the midpoint Canadian harvest share. The Canadian harvest of 2,363 harvest exceeded the harvest share by 1,583 fish.

Age, sex, and length (ASL) composition of Chinook salmon were assessed at both mainstem sonar sites and in various escapement projects (Table 6; Appendices A4–A5). The ASL samples collected at the Pilot Station sonar are thought to be representative of all Chinook salmon stocks passing the site and include both U.S. and Canadian stocks. The ASL samples collected at the Eagle sonar are exclusively from Canadian-origin fish. Gillnet mesh sizes used to sample the runs differ at each location. The Chinook salmon age composition from 614 samples that were aged from the drift gillnet test fishery at the Pilot Station sonar project (all mesh sizes combined) was less than 1% age-3, 11% age-4, 44% age-5, 41% age-6, and 4% age-7 fish (Appendix A4). Females comprised 54% of all fish sampled (including un-ageable samples; Table 6). The age composition for age-4 and age -5 fish were below the recent 10-year average. However, all other age classes were above recent 10-year average with percent female also above average. It is important to note that while the Pilot Station sonar test fishery uses a wide range of gillnet mesh sizes, and likely captures a representative sample across sizes and age classes, the sex is determined visually, and this method has reduced accuracy compared to internal inspection (Table 6; Appendix A4).

The Chinook salmon age composition from 427 samples that were aged from the test fishery at the Eagle sonar project was less than 1% age-3, 5% age-4, 38% age-5, 53% age-6, and 3% age-7 fish (Appendix A4). The 2020 ages were similar to the 2010–2019 averages. Females made up 54% of the fish sampled, which was above the 2010–2019 average of 44% (Table 6). Slight modifications have been made to the drift gillnet mesh sizes used at the Eagle sonar during the first three years of operation (2005–2007); however, mesh sizes measuring 5.25, 6.5, 7.5, and 8.5-inch have been used consistently since 2007. Small fish may be underrepresented in the samples, due to not fishing gillnets smaller than 5.25-inch. mesh.

Due to logistical challenges resulting from the COVID-19 pandemic, projects assessing Chinook salmon escapement in U.S. tributaries were limited to one counting tower and four aerial surveys during the 2020 season making total tributary escapement difficult to quantify. The lone counting tower/sonar at the Chena River experienced frequent periods of inactivity during the season due to persistent high river stage and high debris loads. The resulting estimate of this project is therefore considered a minimum index of escapement and it cannot be used to determine whether the Chena River Tower escapement goal for Chinook salmon was met (Liller and Savereide 2018; Table 7; Appendix B10). In addition, none of the aerial surveys on Andreafsky, Anvik, Nulato, and Gisasa rivers met the lower end of their respective escapement goals, although clarity of the water on some of the aerial surveys was questionable (Appendix B9). The projects that did not operate include the weir projects at the East Fork Andreafsky, Gisasa, and Henshaw rivers and the Salcha River counting tower/sonar (Table 7; Figure 10).

Passage of Chinook salmon to tributaries in Canada was assessed at the Whitehorse Rapids Fishway and sonars operated on the Pelly, Big Salmon, and Klondike rivers (Appendix B12). At the Whitehorse Rapids Fishway, 216 Chinook salmon were counted, which was below the tenyear average count of 1,120 fish, and the second lowest on record. Hatchery-produced fish accounted for 24% of the fish that returned to the Whitehorse Fishway in 2020, compared to 2010–2019 average of 49%. On the Pelly River, Chinook salmon passage was estimated at 5,678 fish, which was lower than the 2017–2019 average of 8,586 fish. On the Big Salmon River, 1,635 Chinook salmon were counted, which was below the 2010–2019 average count of 5,266 fish. On the Klondike River, 470 Chinook salmon were counted (Appendix B12), which was lower than in the previous operating years, 2009–2011 (average of 2,377).

7.2 SUMMER CHUM SALMON ALASKA (U.S. ONLY)

In 2020, an estimated 692,602 summer chum salmon $\pm 36,325$ (90% CI) passed the Pilot Station sonar (Table 5, Appendix A1), which was lower than the 1995–2019 (excluding 1996, 1998, 1999, 2001 and 2009) median of 1.9 million fish for the project. The first quarter point, midpoint, and third quarter point were June 27, July 1, and July 9, respectively, which was one of the later run timings on record. Five pulses of summer chum salmon were detected at the sonar project with the largest group consisting of approximately 272,464 fish and passed between June 23 and June 30. A summer chum salmon drainagewide biological escapement goal (BEG) with a range of 500,000–1,200,000 was adopted in 2016 (Liller and Savereide 2018; Table 8), and the 2020 estimated escapement of 703,000 fish exceeded this goal.

Due to the COVID-19 pandemic, escapement monitoring projects in the East Fork Andreafsky, Anvik, Gisasa, Henshaw, and Salcha drainages did not operate for the 2020 season. Because of this, the best estimate of drainagewide escapement was determined using a combination of passage at Pilot Station sonar, harvest above the sonar, Andreafsky River aerial surveys (Appendix B13), and historical contribution of Andreafsky River to total run. The escapement estimate of 724,000 summer chum salmon, should be considered a best guess scenario with a minimum estimate of 703,000 summer chum salmon, both of which were below average but exceeded the lower end of the drainagewide BEG (Table 8).

7.3 FALL CHUM SALMON

The initial method of determining total drainagewide (i.e., U.S.-origin and Canadian-origin) fall chum salmon run size inseason was based on the Pilot Station sonar passage estimate and the estimated inriver harvest of fall chum salmon downstream of the sonar site. The inseason run size model primarily uses the commercial fishery, which is the largest harvest component below the sonar site, to produce overall projections of abundance used to manage the fishery. In 2020 due to the low returns of fall chum salmon, the commercial fishery was not prosecuted and the subsistence harvest was minimal due to fishery closures; therefore, no harvest was added to the passage estimate. Genetic mixed stock analysis (MSA) was used inseason to account for the strictly fall chum salmon component of the run which transitions from summer to fall runs in mid-July. The inseason total run size using these methods was estimated to be less than 200,000 chum salmon (Figure 11).

⁵ Average excludes sonar estimate from 2016 feasibility study.

Typically, postseason, a Bayesian state-space model would be used to estimate drainagewide escapement (Fleischman and Borba 2009). The model utilizes historical escapement data from the Toklat, Delta, Teedriinjik (Chandalar), Sheenjek, Fishing Branch, and Canadian mainstem Yukon rivers, as well as mark—recapture estimates of abundance from the upper Tanana, and Kantishna projects (Figure 12; Appendices B14–B16). In 2020, due to the pandemic, only three escapement projects were operational including the Yukon River mainstem Eagle sonar and the two small stocks of Fishing Branch and Delta rivers. The escapement estimates of both of the largest stocks the Teedriinjik and Tanana rivers were missing; therefore, the Bayesian model did not perform well and was not used to estimate the drainagewide escapement for 2020.

The total drainagewide fall chum salmon run size in 2020 was derived by adding the total estimated harvest downstream of the Pilot Station sonar to the MSA fall component of the Pilot Station sonar passage estimate. The drainagewide escapement estimate was based on removing the preliminary harvest estimates (U.S. and Canada) from the estimated total run size. This method resulted in a total drainagewide run size estimate of 194,000 fall chum salmon, which was well below the 2020 forecast of 827,000 to 1,045,000 fish. The total run size ended up below the inseason projection of 360,000–485,000 fall chum salmon, which was based on the relationship between summer and fall chum salmon estimated total run sizes. The resulting drainagewide escapement estimate of 187,000 fall chum salmon was below the escapement goal range of 300,000–600,000 fall chum salmon (Liller and Savereide 2018; Table 9; Figure 11).

In 2020, the weighted proportions by age class for fall chum salmon caught in the LYTF were used to represent the drainagewide run and included 3% age-3, 49% age-4, 47% age-5, and 1% age-6 fish. The age-3 and age-4 components were below average while the age-5 was above average, and the age-6 was average when compared to LYTF weighted even-year averages for years 1977–2019. The fall chum salmon samples collected from the test fishery operated at Mountain Village included 2% age-3, 44% age-4 and 52% age-5 (Appendix A10). Fall chum salmon ASL composition estimates from collections in the Delta River included 1% age-3, 48% age-4, and 50% age-5. Samples were also collected for the escapement into Canada based on test fishing near the Eagle sonar site, and included less than 1% age-3, 37% age-4, and 62% age-5 fall chum salmon. Fall chum salmon sampled at the weir on the Fishing Branch River included 2% age-3, 55% age-4 and 43% age-5. All the projects reported proportions of age-5 slightly higher than the age-4 component except for the Fishing Branch River samples. The proportion of females was higher than males in all projects except in the Eagle sonar test fishery (Appendix A10). Fall chum salmon were the longest in the LYTF at 599 mm, measured from mid eye to tail fork, here referred to as fork length (MEFL), and the shortest at the Delta River at 579 mm MEFL.

Mainstem Yukon River Canadian-origin Fall Chum Salmon

The U.S./Canada border passage estimate for fall chum salmon was the second lowest on record, at 23,512 fish. There was no reported fall chum salmon harvest in the U.S. or Canada upstream of Eagle sonar in 2020; the border passage and spawning escapement estimates for Canadian-origin Yukon River mainstem fall chum salmon are also 23,512 (Figure 13; Appendices B8 and B16). For comparison, the 10-year average (2010–2019) escapement is 172,745 (Appendix B16). The 2020 spawning escapement of Canadian-origin Yukon River mainstem fall chum salmon was well below the IMEG of 70,000–104,000 fish (Figure 14, Table 10).

The preliminary reconstruction of the total 2020 Canadian-origin Yukon River mainstem fall chum salmon run was approximately 25,000 fish. Total run size was approximated using the expanded

estimate of fall chum salmon that passed the Eagle sonar near the U.S./Canada border (23,512 fish) plus 25% of the U.S. harvest of fall chum salmon that occurred downstream of Eagle sonar (6,244 \times 0.25 = 1,561 fish) and then rounded to the nearest 1,000. This run size estimate was well below both the preseason outlook range of 207,000–261,000 Canadian-origin Yukon River mainstem fall chum salmon and the inseason run size projections based on the summer chum salmon relationship with fall chum salmon. The final run size, however, was generally aligned with the estimate based on Pilot Station Sonar and genetic stock identification.

Porcupine River (Including the Fishing Branch River) Canadian-origin Fall Chum Salmon

In light of COVID-19 precautions, including travel restrictions to Old Crow, DFO and Vuntut Gwitchin Government did not operate the Porcupine River sonar in 2020.

An estimated 100 chum salmon were harvested in the First Nation fishery at Old Crow (Appendix B8; details are presented in Section 8.3).

DFO operated the Fishing Branch River weir in 2020, using a video counter to monitor fish passage through a constrained opening in the weir. The 2020 spawning escapement estimate for fall chum salmon above the Fishing Branch River weir was 4,795 fish (Figure 14, Table 10 and Appendix B15). The Canadian harvest of Fishing Branch River fall chum salmon in 2020 was estimated at 63 fish (of 100 total chum salmon harvested). This assumes that 63% of the fall chum salmon in the Porcupine River drainage are destined for Fishing Branch River, based on the slope of the regression between Fishing Branch River weir counts and Porcupine sonar estimates (2015–2017, 2019). The total run size estimate for 2020 Fishing Branch fall chum salmon was 5,000 fish. This was calculated as the sum of the weir passage (4,795 fish), the estimated Canadian harvest (63 fish), and the estimated U.S. harvest of Fishing Branch fall chum salmon (4% of the total U.S. fall chum salmon harvest downstream of Eagle sonar, 6,244 x 0.04 = 250 fish) and then rounded to the nearest 1,000.

8.0 PROJECT SUMMARIES

8.1 ALASKA, U.S.

Salmon assessment programs operated throughout the U.S. portion of the Yukon River drainage are collaborative. This report summarizes salmon run, harvest, and escapement monitoring results from numerous projects. Data were provided by various entities including the Mountain Village Test Fishery (G. Sandone Consulting, LLC) and the chum salmon genetic stock identification (USFWS). Other project results were provided by ADF&G Division of Commercial Fisheries and Division of Sport Fisheries. Due to COVID-19, many projects did not operate including: East Fork Andreafsky River weir (USFWS), Gisasa River weir (USFWS), Henshaw Creek weir (Tanana Chiefs Conference and USFWS), Salcha River counting tower/sonar (ADF&G), and Teedriinjik sonar (USFWS). Partner organizations that assisted with data collection include Spearfish Research, Yukon Delta Fisheries Development Association, Yukon River Drainage Fisheries Association, and DFO. A more in-depth overview of select stock assessment programs are described in the following sections of this report.

Lower Yukon Test Fishery

The LYTF program is designed to assess salmon run timing and relative abundance and typically consists of two Chinook salmon test fisheries; an 8.5-inch mesh set gillnet test fishery operated in

the South and Middle mouths of the Yukon River, and an 8.25-inch mesh drift gillnet operated at Big Eddy in the South Mouth, near Emmonak. The LYTF also has a summer chum salmondirected drift gillnet test fishery using 5.5-inch mesh gear operated in the South and Middle mouths. These test fisheries provide catch per unit effort (CPUE), which gives an index of abundance and indicates the presence of large groups of fish, or "pulses", entering the mouths of the river.

The LYTF operated at reduced effort at the South Mouth (Big Eddy) drift and set gillnet sites starting on May 29 and June 3, respectively and Yukon Delta Fisheries Development Association employees conducted drifts all season due to the pandemic, with ADF&G oversight from afar. The Middle Mouth Chinook set gillnet site and summer chum drift gillnet sites did not operate for the 2020 summer season because of travel restrictions due to COVID-19. An 8.5" set gillnet was fished from June 3 through July 3 before switching to a 7.5" set gillnet for remainder of the season. The LYTF set gillnets concluded operations on July 13 in the South Mouth. The cumulative Chinook salmon CPUE for the Big Eddy set gillnet was 17.78. However, this cumulative CPUE is not directly comparable to other years due to changes in gillnet mesh size and net length during the season (Figure 3). The first quarter point, midpoint, and third quarter point of the set nets were on June 11, June 17, and June 29, respectively.

The 8.25-inch drift gillnet project for Chinook salmon operated in Big Eddy until July 15 and provided valuable supplemental run timing information for Chinook salmon entering the South Mouth of the Yukon River. The LYTF drift gillnets for summer chum salmon at the Big Eddy site concluded operations on July 15. The cumulative summer chum salmon CPUE was 4,562.56, which was below the historical median CPUE of 9,945.49. The first quarter point, midpoint, and third quarter point were June 22, June 26, and July 2, respectively.

The LYTF project continues in the fall season after switching to 6-inch drift gillnets on July 16 and completed operations on September 10. The cumulative CPUE for fall chum salmon of 1,171.70 which was near the historical median of 1,614.15 and the cumulative CPUE for coho salmon of 167.81, and was well below the historical median of 433.48. The LYTF was however modified from previous years by only fishing three of the four normal time periods most days (the evening drifts at Middle Mouth were not conducted).

Chinook, chum, and coho salmon caught in the LYTF were either kept, sampled, and distributed to local community members or they were released alive. Fish kept and distributed are included in the subsistence harvest estimates. The fish donation program was coordinated with village tribal councils and with the assistance of Yukon Delta Fisheries Development Association.

Pilot Station Sonar

The goal of the Pilot Station sonar project is to estimate daily upstream passage of Chinook (Figure 15), summer and fall chum (Figure 16), and coho salmon (Figure 17). The project has been in operation since 1986 but data is only reported back to 1995. Due to changes in methodology, data from 1995 to present are the most consistent (Appendix A1). Both split-beam and Adaptive Resolution Imaging Sonar (ARIS)⁶ are used to estimate total fish passage, and CPUE from the drift gillnet test fishing portion of the project is used to estimate species composition. The project's

23

⁶ Product names used in this report are included for scientific completeness, but do not constitute a product endorsement.

sonar equipment and apportionment methodologies have evolved over time (Pfisterer et al. 2017; Dreese and Lozori 2019).

Fish passage estimates at the Pilot Station sonar project are based on a sampling design in which sonar equipment is operated daily in three 3-hour periods and drift gillnets 25 fathoms long with mesh sizes ranging from 7.0 cm to 21.6 cm (2.75- to 8.5-inch), approximately 4.3 fathoms in depth, that are fished twice each day between sonar periods to apportion the sonar counts to species. During the 2020 season, both banks were fully operational on June 7 and continued operations through September 7. The ice went out on the mainstem Yukon River near Pilot Station on May 11, based on National Weather Service data. Test fishing began on June 7; the first Chinook and chum salmon were caught on June 7, and the first coho salmon was caught on July 30.

An estimated 1,821,202 fish passed through the sonar sampling area between June 7 and September 7 (Table 5). Drift gillnetting resulted in a catch of 6,905 fish including 706 Chinook; 1,160 summer chum; 1,097 fall chum; and 925 coho salmon. A total of 3,017 fish of other species were also caught. Chinook salmon were sampled for ASL; while only sex (external) and length were collected from chum, pink *O. gorbuscha*, sockeye *O. nerka*, and coho salmon without aging structures; for all other non-salmon species, only length was collected. Genetic samples were taken from Chinook and chum salmon. Any captured fish that were not successfully released alive were distributed daily to residents in Pilot Station.

Overall in 2020, there were no significant operational problems. Both sonars performed well throughout the season except for a period from 6/9–6/15 when the ARIS malfunctioned, and the split-beam was used to sample the left bank nearshore strata until a replacement was received. Water levels observed near Pilot Station were above the 2010–2019 mean through near the end of season, from June 1 through September 3, then fell below the mean from September 4 through September 7.

In 2020, all project goals were met, and passage estimates were provided to fisheries managers daily during the season. Information generated at the Pilot Station sonar was also discussed weekly through multi-agency international teleconferences that included stakeholders from the lower Yukon River to the headwater communities in Canada. Preliminary daily salmon passage estimates were available online⁸ and disseminated daily to the general public via a listserv.

Chinook Salmon Genetic Sampling, 2020

In 2020, ADF&G and other collaborators successfully collected 1,652 adult Chinook salmon samples for genetic analysis (1,472 tissue samples and 180 scale samples) from test and subsistence fisheries that occurred in the Alaska portion of the Yukon River. Samples collected from Yukon River mainstem test fisheries totaled 1,392 fish, which included 699 fish from the Pilot Station sonar, 513 fish from the Eagle sonar, and 180 fish from the Lower Yukon Test Fishery (LYTF). Samples collected from subsistence fisheries in Alaska totaled 260 fish from 4 locations: 7 from Scammon Bay (Coastal District); 253 from Alakanuk, Emmonak, and Kotlik (District 1). Sample collection from the subsistence harvest was coordinated by Spearfish Research, which contracted individual fishermen to sample their harvest. No Chinook salmon genetic baseline samples were collected from the Yukon River drainage in 2020.

_

https://www.weather.gov/aprfc/breakupDB?site=488

⁸ http://www.adfg.alaska.gov/index.cfm?adfg=commercialbyareayukon.salmon#fishcounts

Mixed Stock Analysis of Yukon River Chinook Salmon Sampled at the Pilot Station Sonar, 2005–2020

The ADF&G Gene Conservation Laboratory (GCL) uses mixed stock analysis (MSA) to estimate inseason stock compositions of Chinook salmon passage at the Pilot Station sonar using genotypes of samples collected from the project's test fishery. These data provide fishery managers an important "first look" at the Canadian-origin Chinook salmon run strength and timing before those fish migrate through most Alaska fisheries. Without genetic MSA of the Pilot Station sonar samples, fishery managers would have no information about the Canadian-origin run until fish arrive at Eagle sonar, when most of the run has already passed through 1,900 kilometers of fisheries. Knowledge of relative abundance and migration timing from this project has aided in inseason projections of total run size of Canadian-origin Chinook salmon and more refined management strategies to meet border passage goals.

Genetic MSA is conducted to provide insight on stock-specific run dynamics and has proven to be a critical component of inseason management of salmon fisheries in Alaska. Pilot Station sonar project data has been used to estimate the total proportion of Canadian-origin Chinook salmon each year since 2005. The weighted postseason estimates from this project indicate that on average (2005–2019) the Canadian stock makes up 41% of the total run and has ranged from 34%–52% (Table 11). Over this 15-year timeframe, the contribution of the Canadian-origin stock to the total run has been relatively stable; however, this project has highlighted a considerable amount of within-year variability in the relative abundance of Canadian-origin Chinook salmon (Table 11). In nearly all years (2005–2019), the proportion of Canadian-origin stocks has been highest, often exceeding 50%, during the early portion of the run, but typically decreases to about 30% or less as the run progresses. This project, combined with the Pilot Station sonar passage estimates, has shown that while the proportion of Canadian-origin stocks are typically highest in the early portion of the run, the abundance (i.e., numbers of fish) of Canadian-origin fish is generally higher during the middle part of the run (Table 11). Analysis of the Pilot Station test fishery samples collected in 2020 conforms to this typical pattern.

Tissue samples were taken from most Chinook salmon caught in the test fishery at the Pilot Station sonar in 2020 and analyzed in 4 strata for genetic MSA. The 4 strata periods were June 7–June 22 (number analyzed (n) = 242), June 23–June 29 (n = 195), June 30–July 6 (n = 132), and July 7–August 17 (n = 116). Target sample size is 190 samples per stratum. Genetic MSA indicated the proportion of the total Chinook salmon passage at the Pilot Station sonar that were Canadian-origin was 63% (approximately 22,000 fish) in stratum 1, 48%, (approximately 31,000 fish) in stratum 2, 44%, (approximately 15,000 fish) in stratum 3, and 37%, (approximately 10,000 fish) in stratum 4. The total season Canadian percentage was 48% (weighted by passage) which is above the 2005–2019 average of 41% (Table 11).

Mixed Stock Analysis of Yukon River Chinook Salmon Harvested in Alaska, 2020

Three broad-scale stock (reporting) groups are used to apportion Chinook salmon harvest by Alaska fisheries within the Yukon River drainage. The Lower and Middle Yukon River stock groups spawn in Alaska and the Upper Yukon River stock group spawns in the Canadian mainstem. Scale pattern analysis, age composition estimates, and geographic distribution were used by ADF&G from 1981–2003 to estimate Chinook salmon stock composition in Yukon River harvests. From 2004 to present, genetic analysis has been the primary method for stock identification (e.g., DuBois 2018). Harvest percentages by stock group for 2014–2020 include the

harvest from the Coastal District, whereas the Coastal District was not included in years prior to 2014.

An estimate of the 2020 total U.S. harvest of Chinook salmon by stock of origin required information about the genetic stock composition of the subsistence harvest, test fish giveaways, and incidental commercial harvest in each district. The Canadian-origin harvests from each district were then summed for a total estimated U.S. harvest of Canadian-origin stocks (e.g., DuBois 2018). There was a limited directed subsistence harvest sampling program in place for 2020 made possible by YRP Restoration and Enhancement Fund (R&E) supported project URE 03-20 to better evaluate the genetic breakdown of the coastal harvest as compared to District 1. Unfortunately, only a limited number of samples were received from the Coastal District for various reasons and not able to be used for analysis. However, a total of 254 samples were successfully collected from District 1 communities, and 188 samples were collected from the LYTF. Samples collected directly from the LYTF were used to determine the stock composition of the test fish giveaway. Samples collected from District 1 were applied to harvests from the Coastal District and District 1. Genetic MSA results from prior year (2006–2018) subsistence harvest sampling programs were used to inform the 2020 subsistence harvest composition for Districts 2 through 5. Chinook salmon harvested in the Black River, Koyukuk drainage, Teedriinjik (Chandalar River), Birch Creek, and District 6 (Tanana River) are presumed to be U.S.origin. Similarly, sport fishery harvests typically occur in Alaskan tributaries and assumed to harvest few if any Canadian-origin fish. Stock apportionment information and assumptions were applied to the total U.S. harvest of Chinook salmon (all stocks) of 22,780 (Appendix B2). An estimate of 12,171 Canadian-origin Chinook salmon were harvested in the U.S in 2020 (Appendix B18). Subsistence harvest and stock composition estimates for 2020 are still considered preliminary as of the publication date of this report.

Genetic MSA results for 2020 indicate that the weighted U.S. harvest of Yukon River Chinook salmon was comprised of 11% Lower, 36% Middle, and 53% Upper (Canadian-origin) stock groups. U.S. harvest composition for 2020 was slightly below the 2015–2019 average for the Lower and Upper stock groups and above the 2015–2019 average for the Middle stock group (Appendix A6).

Yukon River Chum Salmon Mixed Stock Analysis, 2020

Chum salmon were sampled from the Pilot Station sonar from June 7 through September 7 and analyzed by the USFWS gene lab to provide stock composition estimates for most of the summer and fall chum salmon runs. Populations in the baseline are reported in aggregated stock groups (Table 12). Results from analysis of these samples were reported for each pulse or time stratum and distributed by email to fishery managers within 24–48 hours of receiving the samples. For summer chum salmon, the lower river stock group comprised 84% of the run and the middle river stock group comprised 16%. The Tanana component of the middle river stock group comprised 5% of the total summer chum salmon run and peaked in passage at the Pilot Station sonar during the sampling period of July 19–August 2. The run transition from summer to fall chum salmon occurred during the second period of the fall management season (August 3–August 16) when 88% of the mixture was comprised of fall chum salmon. For fall chum salmon, 76% of the run was of U.S.-origin and 24% of Canadian-origin. The composition of the U.S. contribution was 43% Tanana and 33% U.S. border (Teedriinjik-Chandalar, Sheenjek, and Draanjik-Black rivers). The composition of the Canadian contribution was 8% mainstem Yukon, 8% White, 2% Teslin, and 6% Porcupine rivers. Preparations are underway to continue the project for the 2021 season.

Environmental Conditions Report

This U.S. environmental conditions report was added for the first time in 2019. This report differs from the Canadian environmental conditions report, which is much more detailed and was requested by the YRP. Instead, this addition was a first step to document environmental conditions relevant to adult salmon migrating through the U.S. portion of the Yukon River drainage. Currently, environmental monitoring within the U.S. portion of the Yukon River is limited and existing assessment programs are inadequate to quantify environmental impacts to migrating and spawning salmon. Records from LYTF and Pilot Station sonar project sites remain the most reliable and consistent historical inseason data available for the mainstem Yukon River. However, in response to the request for more extensive and spatially thorough Yukon River temperature data, an assortment of Onset® HOBO® Data Loggers⁹ were purchased for deployment in 2020. While the COVID-19 pandemic did prevent wide distribution of loggers for the 2020 season, five new loggers were deployed at experimental locations. With the assistance of the USFWS – Innoko National Wildlife Refuge staff, new loggers were deployed near the communities of Nulato and Galena. In addition, the ADF&G Division of Sport Fish assisted with the deployment of several loggers on the Seventymile and Fortymile rivers near Eagle, Alaska.

Loggers at LYTF in 2020 encountered highly variable water temperatures, which for some periods came close to the bounds of the highest and lowest historic temperatures. The highest water temperatures (by time-of-season) occurred prior to the third week of June and during the latter half of August and into September. The historically warmest parts of the summer in mid-July were near or below historic average temperature levels (Figure 18). The maximum water temperature reached was 17.6°C during the entirety of LYTF operations from late May into September.

Pilot Station sonar temperature loggers encountered similar temperatures to LYTF and the maximum water temperature reached was 18.4°C during the entirety of operations which were of a similar time frame to LYTF. Eagle sonar temperature loggers were deployed from July 2 through October 6 and generally experienced temperatures below (time-of-season) historical averages and the maximum water temperature reached was 16.2°C. Other temperature loggers, while not all deployed early in the season, had no indications of prolonged elevated temperatures occurring during the salmon migration.

8.2 EAGLE SONAR

ADF&G and DFO collaborate to jointly assess the passage of Yukon River mainstem Chinook and chum salmon just downstream of the international border (project is referred to as Eagle sonar). Since 2006, Chinook and fall chum salmon passage has been estimated using split-beam and imaging sonar operated near the community of Eagle, Alaska (McDougall and Lozori 2018). There are effectively two separate fishing efforts at the project. The first is for collecting ASL and genetic samples from Chinook salmon and utilizes 5.25, 6.5, 7.5, and 8.5-inch mesh fished in a rotating schedule. These drifts are conducted twice a day (two fishing periods) until August 1 when one period is discontinued and, in its place, drifts are conducted to determine the crossover date between the Chinook and fall chum salmon runs. The crossover drifts utilize only the 5.25 and 7.5-inch nets and incorporate a beach walk to ensure fall chum salmon are adequately represented in the catches. The drifts for collecting Chinook salmon samples are discontinued August 15 with the crossover drifts continuing through September 30. Although there is some minor overlap, Chinook

⁹ Product names used in this report are included for scientific completeness, but do not constitute a product endorsement.

and fall chum salmon runs are largely discrete in time based on test fishery results, local knowledge of catches, and data collected in Canada.

There was a brief period when the ARIS was not operational on the right bank. This resulted in two days with partial counts and one day with no counts for the right bank. Estimates reported include interpolation of the missing data. The 2020 Chinook salmon passage estimate at the project was 33,550 fish \pm 360 (90% CI) for the dates July 1 through August 27 (Appendix B11). The fall chum salmon passage estimate was 20,766 fish \pm 291 (90% CI) for the dates August 28 through October 6. Because of continued high passage at the termination of the project, the fall chum salmon estimate was subsequently adjusted to 23,512 fish (Appendix B16). This expansion was calculated using a second order polynomial for each day through October 18. Even with the expansion, this estimate is likely a minimum. Counts rose on the last day of operation instead of dropping which could indicate run timing was later than assumed by the expansion date.

8.3 YUKON, CANADA

Yukon River (Mainstem) Adult Chinook Salmon Assessment

Big Salmon Sonar

An ARIS Explorer 1800 multi-beam sonar was used to enumerate the Chinook salmon escapement to the Big Salmon River in 2020. This was the sixteenth year of escapement monitoring at a site approximately 1.5 km upstream of the confluence with the Yukon River. Sonar operation began on July 16 and continued without interruption through August 25, producing a count of 1,574 fish. An expansion was used to estimate the end of the run to September 4, using a logarithmic equation based on daily counts of the previous 10 days. The expansion resulted in a total passage estimate of 1,635 Chinook salmon (Appendix B12). This is the second lowest escapement recorded and was below the 10-year average (2010–2019) estimate of 5,266 fish. The peak daily counts of 83 fish occurred on August 8 and August 11, at which points 51% and 66% of the run passed the sonar site, respectively. Correcting for leap year, approximately 51% of the run had passed the sonar by August 9, 5 days later than the 10-year average (2010–2019) midpoint (August 4). The 2020 Big Salmon sonar project report will be publicly available through the YRP website ¹⁰ after submission to the Pacific Salmon Commission R&E Fund Administrator.

Carcass sample collection efforts were less extensive than previous years as high turbid water levels and low run size impeded collections. Five female and four male carcass samples were collected, with an average MEFL of 795 mm and 776 mm respectively.

Pelly River Sonar

On the Pelly River, an ARIS Explorer 1800 multi-beam (left bank), and an ARIS Explorer 1200 multi-beam (right bank) sonar system were used to estimate the 2020 Chinook salmon passage. This was the fifth year of assessment undertaken by the Selkirk First Nation in collaboration with EDI Environmental Dynamics Inc., (EDI) at a site approximately 20 km upstream of the confluence of the Pelly and Yukon rivers. Sonar operation began on July 9 and concluded on August 24, counting 5,676 Chinook salmon. The sonar program ended several days earlier than scheduled due to high water conditions. A preseason expansion to July 1 and postseason expansion to September 1 brought the total estimate to 5,678 fish (Appendix B12). The peak daily count of 308 fish on August 3 occurred when 53% of the run had passed. Correcting for leap year,

 $^{^{10} \ \ \}underline{\text{https://www.yukonriverpanel.com/restoration-enhancement-fund/r-e-project-reports/}$

approximately 50% of the run had passed by August 4, 7 days later than the 2016–2019 average (July 29). High water levels made test gillnetting challenging, but two females and a single male Chinook salmon were captured in the test fishery (average MEFL of 810 mm and 920 mm respectively). Project reports will be publicly available through the YRP website¹¹ after submission to the Pacific Salmon Commission R&E Fund Administrator.

Klondike River Sonar

A single ARIS Explorer 1200 multi-beam sonar system was installed on the right bank of the Klondike River to estimate the 2020 Chinook salmon passage. The year 2020 was the first season of assessment undertaken by the Tr'ondëk Hwëch'in First Nation and EDI following a trial year in 2019. This project is a continuation of sonar work conducted in 2009–2011 by Mercer and Associates, as supported by the R&E Fund. The 2020 sonar site was located near the Klondike River bridge, and approximately 2.6 km downstream of the 2009–2011 site and 2.1 km from the confluence of Klondike River with the Yukon River. Sonar operation began on July 2 and concluded on August 14, counting 461 Chinook salmon. A postseason expansion to August 23 brought the total estimate to 470 fish (Appendix B12). The peak daily count of 36 fish on July 15 occurred when 38% of the run had passed. Correcting for leap year, approximately 50% of the run had passed by July 21, one day earlier than the 2009–2011 average (July 22). Project reports will be publicly available through the YRP website 12 after submission to the Pacific Salmon Commission R&E Fund Administrator.

Whitehorse Rapids Fishway Chinook Salmon Enumeration

The Whitehorse Rapids Fishway is a fish ladder, owned and operated by Yukon Energy Corporation, that bypasses the Whitehorse dam. It has an observation window into a chamber with upstream and downstream gates. The viewing window allows visual enumeration of migrating adult Chinook salmon. In 2020, Fishway staff counted 216 adult Chinook salmon at the Whitehorse Rapids Fishway between August 1 and September 2 (Appendix B12). This escapement was well below the 2010–2019 average of 1,120 Chinook salmon, and the lowest count recorded since 1976. Of these salmon, 52 (24% of return) were of hatchery origin and 164 (76% of return) were considered to be wild origin. The hatchery component included 5 females and 47 males. The wild component included 50 females and 114 males. Female Chinook salmon made up 25% of the total return to the Fishway.

The Whitehorse Rapids Fishway enumeration program is a joint initiative of the Yukon Fish and Game Association and Yukon Energy Corporation, with support from DFO. Students count all adult salmon migrating through the Fishway, record the sex and size category (small, medium, or large) of each salmon, identify hatchery-origin fish based on the absence of the adipose fin, and describe tags present on migrating salmon. Fishway staff also assist the Whitehorse Rapids Hatchery with broodstock collection at the Fishway.

Whitehorse Hatchery Operations

The Whitehorse Rapids Hatchery, owned and operated by Yukon Energy Corporation, has released Chinook salmon fry upstream of the dam since 1985. The current annual release target of 150,000 (2.0 gram) fry has been in place since 2002; releases since that time have ranged from 85,306 fry

29

¹¹ https://www.yukonriverpanel.com/restoration-enhancement-fund/r-e-project-reports/

¹² https://www.yukonriverpanel.com/restoration-enhancement-fund/r-e-project-reports/

in 2008 to 176,648 fry in 2003. The recent 10-year average (2010–2019) is 138,104 fry clipped and released upstream of the dam (unpublished data on file with Trix Tanner, Restoration Coordinator, DFO, Whitehorse, YT).

In 2020, all Chinook salmon fry released from the Whitehorse Rapids Hatchery into the Yukon River were marked. Fish had their adipose fin removed and were released upstream of the dam. This marking facilitates visual determination of the hatchery contribution to the return during observation of adult Chinook salmon migrating upstream through the viewing chamber at the Whitehorse Rapids Fishway; it also allows hatchery managers to identify hatchery-origin fish during broodstock collection. Fin clipping also enables researchers to distinguish hatchery fry from wild fry when investigating juvenile Chinook salmon habitat use. Marked fish are also recovered in marine studies, in river stock assessment of juvenile and adult Yukon River Chinook salmon, and in harvests. No coded wire tags were applied in 2020, due to logistical difficulties complying with COVID-19 pandemic physical distancing guidelines while tagging.

A total of 123,216 Chinook salmon fry¹³ from the 2019 brood year were reared and marked (adipose fin-clipped) at the Whitehorse Rapids Hatchery and then released to two locations upstream of the Whitehorse Rapids hydroelectric dam (one site in Michie Creek, and one in M'Clintock River) on June 9, 2020. Average weight of all tagged fish at the time of release was 3.06 gram, while release groups average weights ranged from 2.86 grams to 3.36 grams.

Additionally, 1,050 fry from Whitehorse Rapids Hatchery eggs grown in the Stream to Sea classroom incubation program, were marked and released to Wolf Creek, tributary to the Yukon River upstream of the dam, between May 6 and June 4, 2020.

Brood stock collection in 2020 began on August 11, after 8 Chinook salmon had migrated through the Whitehorse Rapids Fishway and ended on September 1¹⁴. A total of 34 males, including 21 wild and 13 adipose-clipped (hatchery) Chinook salmon, were removed from the Fishway for the brood stock program. A total of 6 male Chinook salmon were released back to the Fishway after milt collection. The hatchery removed 21.1% of the total 161 returning Chinook salmon males.

In total, 27 female Chinook salmon (49.1% of the total 80 female Chinook salmon were returned to the Fishway), including 23 wild and 4 adipose-clipped (hatchery) salmon were removed for hatchery brood stock. Eggs were taken between August 20 and September 1, 2020 from 25 full (or nearly full) ripe females, and 2 partially spent or poor condition females. Fecundity estimates, excluding egg takes estimated to be partial, averaged 5,592 eggs, and ranged from 3,625 to 7,661 eggs.

The total estimated egg take was 138,566 green eggs. Preliminary fertilization rate was estimated to be 100%. Removal included 2,036 green eggs with milt samples donated to EDI and Kwanlin Dün First Nation for a salmon incubation study on Wolf Creek and Michie Creek, 270 eggs to assess development, 2,095 dead eggs prior to the eyed stage, and 4,315 dead eggs at shocking (between October 13 and October 31). Green egg to eyed egg survival was estimated at 95%. Thereafter 750 eggs were provided to the Stream to Sea classroom incubation program. During hatching, 2,254 eyed egg and alevin mortalities were removed, resulting in an estimated 126,846

¹³ The fish released are referred to as fry; however, virtually all of them emigrate to the ocean shortly after release, and they may more accurately be referred to as pre-smolts.

¹⁴ Lawrence Vano, Manager, Whitehorse Rapids Fish Hatchery, September 5, 2020, Whitehorse, personal communication.

Chinook salmon alevins in incubators on December 31, 2020 and eyed egg to hatch survival was 98%.

Porcupine River Investigations

Porcupine River Sonar

Due to COVID-19 precautions, including travel restrictions to Old Crow, DFO and Vuntut Gwitchin Government did not operate the Porcupine River sonar in 2020.

Fishing Branch River Chum Salmon Weir

Fall chum salmon returns to the Fishing Branch River have been assessed annually since 1971. A weir has been used in most years, aerial surveys were used in some years, and in 2013–2014 estimates were based on proportion of radio tag recoveries combined with the sonar-based passage estimate on the Porcupine River mainstem (Appendix B15). Previous spawning escapement estimates for the Fishing Branch River have ranged from 5,057–353,282 fall chum salmon in 2000 and 1975, respectively (Appendix B15). In 2020, Fishing Branch River enumeration of fall chum salmon was conducted using a combination of a weir and video counter. An Axis Camera mounted inside a video counter box was installed immediately upstream of the weir opening to record salmon passing through the video box. The video counter was a replacement for sonar estimation, used in 2016–2019 to enumerate salmon migrating through the weir.

Weir installation began September 1 and was completed September 6, with video enumeration beginning September 5, and continuing until weir disassembly began on October 22. No preseason or postseason expansion was applied; passage numbers at the start and end of the monitoring period were sufficiently low that expansion formulae would have provided zero estimates. The final passage estimate of 4,795 fall chum salmon (Appendix B15) was below the Fishing Branch River interim escapement goal range of 22,000–49,000 fish. This escapement was the lowest count in 37 years of weir operation, and 50 years of assessment.

After correction for leap year, the fall chum salmon run had two distinct peaks, with the initial peak daily count of 310 fish occurring on September 18 (25% of the run had passed), and a second peak of 240 fish occurring on September 26 (53% of run had passed). Approximately 50% of the run had passed the weir by September 26; the average midpoint of the run from the past 10 years of weir operation (2008–2012 and 2015–2019) is September 25.

ASL data were collected from 276 fall chum salmon between September 7 and October 20. The mean MEFL was 584 mm for sampled fall chum salmon (574 mm for females and 595 mm for males). Of the 266 samples that were successfully aged, 2% were age-3, 55% were age-4, 43% were age-5, and less than 1% were age-6 (Appendix A10). The sex composition of the combined video assessment and ASL sample was 54% female.

Aerial Surveys

Kluane River Aerial Survey

An aerial survey of the Kluane River was conducted on October 20, 2020. Annual surveys of Kluane River were conducted 1972–2006, and were restarted in 2017 following a river piracy event at the headwaters of Kluane Lake. The Kluane River index for 2020 was 120 fall chum salmon. Fish countability was considered poor due to weather and water clarity. This is one of the lowest aerial counts on record, with counts reaching a maximum of 39,347 in 2003 (Appendix B15).

Mainstem Yukon River Aerial Survey

An aerial survey of the Yukon River mainstem index area (from Tatchun River confluence to Pelly River confluence) was conducted on October 22, 2020. Prior aerial surveys of this area occurred in 1973, 1975, 1983–1998, and 2000–2006. Historical fall chum salmon index counts ranged from 383 (1973) to 16,425 (2005). The 2020 index was 323 fish, the lowest on record (Appendix B15).

Genetic Stock Identification and Stock Composition of Canadian Yukon River Chinook and Fall Chum Salmon

Genetic samples of Chinook and fall chum salmon were collected from the drift gillnet test fishing program at the Eagle sonar project in 2018, 2019 and 2020. Analyses of the samples, however, was not completed prior to the publication of this report; 2018–2020 regional stock contribution estimates are not yet available.

Environmental Conditions Report

This annual summary describes environmental conditions influencing salmon habitat in the Canadian sub-basin of the Yukon River, the area upstream of the Alaska/Yukon border that includes the Yukon and Porcupine rivers. The sub-basin encompasses over 100 documented spawning streams and many more rearing streams.

Due to the spatial scale, specific salmon habitat information is not collected extensively from year to year; the following information is a regional synopsis of what was experienced in the Canadian sub-basin during a given year. Weather records and stream discharge data are examined and compared with historic records to identify anomalies and/or unusual events, and their implications for salmon are considered. This report on environmental conditions is based on scientific evidence, field observations of the public, fishers, consultants, and DFO, and professional judgment.

November 2019 to April 2020

The 2019–2020 winter involved a range of conditions throughout the territory. South and central Yukon were slightly colder than average, while northern Yukon was warmer than average¹⁵. Early winter conditions were variable with November and December seeing several warm anomalies. December was variable across the territory with minimum temperatures ranging from -40°C to 0°C. January was especially cold in central Yukon¹⁶. In March and April northern Yukon started warming to above average temperatures^{17,18}.

Winter precipitation was average to above average in 2020¹⁹. In central Yukon, Dawson and Mayo experienced 157% and 175% of their historical median snowpack. The snowpack was above average around Whitehorse and average to above average in the Porcupine River Basin¹⁶.

Early spring discharge was near average in most areas, except in the Pelly and Stewart river systems where discharge started below average. Melting snowpack led to distinct freshets in most

¹⁵ Environment Canada Feb-Apr Temperature https://weather.gc.ca/saisons/charts_e.html?season=fma&year=2020&type=t

¹⁶ Yukon Snow Survey and Water Forecast Bulletin https://yukon.ca/en/yukon-snow-survey-bulletin-water-supply-forecast-may-2020

¹⁷ Environment Canada Mar-May Temperature https://weather.gc.ca/saisons/charts_e.html?season=mam&year=2020&type=t

¹⁸ Environment Canada Canadian Climate Normals https://climate.weather.gc.ca/climate_normals/results_1981_2010_e.html?searchType=stn
Prov&lstProvince=YT&txtCentralLatMin=0&txtCentralLatSec=0&txtCentralLongMin=0&txtCentralLongSec=0&stnID=1582&dispBack=0

¹⁹ Environment Canada Seasonal Forecasts Feb—Apr 2020 Precipitation https://weather.gc.ca/saisons/charts_e.html?season=fma&year=2020
&type=p

large systems of the Yukon. Minor flooding associated with ice breakup or jams was observed on the Nordenskiold, Klondike, and Porcupine rivers²⁰.

Water temperatures were variable overwinter (from January–March) with some systems colder than average (Ibex, McQuesten, and Nordenskiold rivers), and others remaining closer to average (McIntyre Creek and Tatchun River) or above average (Little Salmon and Takhini rivers). In April, colder systems warmed rapidly to average or above average by the end of the month (e.g. Ibex and McQuesten rivers)²¹. No water temperature data for the Porcupine River were available for this period.

Conditions in this period (November to April) align with Chinook and chum salmon incubation and emergence, and the beginning of outmigration of age-1+ Chinook salmon.

May 2020 to July 2020

Air temperatures during this period were lower than average in central and northern Yukon²². A combination of above average rainfall²³ and prolonged snowpack melting led to a much higher than average water levels across the south and central Yukon for the season²⁴. On June 23, the Klondike River experienced the second highest flow on record since 1966²⁰.

In general, water temperatures were below average in south and central Yukon in May and July. Systems like the McQuesten River, North Klondike, and Yukon River near Whitehorse were unseasonably cool during these months²¹.

For juvenile salmon, May through July corresponds with the downstream migration of age-1+ Chinook salmon, emergence and dispersal to rearing tributaries of age-0+ Chinook salmon, and emergence and downstream migration of chum salmon (age-0+). High water levels and discharge could promote early outmigration of age-1+ Chinook salmon fry, as well as the downstream displacement of newly emerged age-0+ juveniles of both species. Adult Chinook salmon enter the Yukon River in late May/early June and reach the mainstem Canadian border at the beginning of July. Chinook salmon spawning activity peaks in July in the Klondike River and starts in July in many Canadian Yukon River tributaries. Canadian-origin fall chum salmon enter the Yukon River mouth during this time. Cool water conditions appeared favorable for migrating adult salmon, though high water levels may have slowed the adult Chinook salmon migration.

August 2020 to November 2020

The fall season was warmer than average in central and northern Yukon²⁵. Southern Yukon temperatures were closer to average in this period from August through November, with Whitehorse being warmer than average in September, and colder than average in October and November²⁶. There was more precipitation than average in the Kluane and Dawson regions from

²⁰ Benoit Turcottte Hydrometric Blog http://scholar.yukonu.ca/bturcotte/blog/what-happened-2020-0

²¹ Al von Finster, Temperature Monitoring Data collected for the Yukon River Panel Restoration and Enhancement Fund Project CRE-20-20 in 2011-2020

²²Environment Canada Seasonal Forecasts_ May-Jul 2020 Temperature

https://weather.gc.ca/saisons/charts_e.html?season=mjj&year=2020&type=t

²³ Environment Canada Seasonal Forecasts_May-Jul 2020 Precipitation https://weather.gc.ca/saisons/charts_e.html?season=mjj&year=2020&type=p

²⁴ Real-Time Hydrometric Data https://wateroffice.ec.gc.ca/search/real_time_e.html

²⁵ Environment Canada Seasonal Forecasts_ Aug-Oct 2020 Temperature https://weather.gc.ca/saisons/charts_e.html?season=aso&year=2020&type=t

²⁶ Whitehorse Monthly Weather Data https://www.theweathernetwork.com/ca/monthly/yukon/whitehorse?year=2020&month=9&dispt=chart-container-monthly

August to October²⁷. In general, water temperatures were colder than average from August through November, though most systems did warm toward average temperatures for a short period in early September²¹.

Higher than average water levels observed in the summer persisted into the fall season in most areas, except the Porcupine River Basin where water levels were close to average²⁴. In mid-August there was significant rainfall in the Kluane Region; this resulted in the highest recorded flow since 1986 on August 14 in the White River. On August 17, mud slides in steep creeks caused problems along the Alaska Highway at the southern tip of Kluane Lake²⁰. The lake itself remained over 1 m lower than before the 2016 Slims River piracy event.

This period (August to November) corresponds to Chinook and chum salmon migration, spawning, and early egg incubation. High water may have resulted in slower travel speeds, and contributed to a late return of adult Chinook salmon to spawning areas. Colder than average temperature combined with later than average spawning would have resulted in delayed Chinook salmon egg development relative to most years. Chum salmon spawning sites in Yukon are dominated by groundwater; fall chum salmon are generally less susceptible than Chinook salmon to delayed development from cooler overwinter temperatures due to moderating groundwater influences.

Summary

Migration, spawning, and rearing conditions in the Canadian sub-basins of the Yukon River were varied throughout the drainage in 2019–2020, but were dominated by reports of cooler temperatures and higher water levels than normal in south and central Yukon. How these conditions influence salmon varies with age and season. Cold conditions in the spring could delay emergence, and slow juvenile growth, while cooler water in the summer and fall are favorable for adult migrating salmon. High water may have delayed the adult Chinook salmon migration. High water levels may allow adults to enter otherwise inaccessible small channels, but in some circumstances can negatively impact eggs by reducing water quality.

Limited information is available for the Porcupine River watershed, but weather patterns suggest this region differed from other areas of the Yukon. An unseasonably warm spring was associated with high water during spring ice breakup. For most of the year the air temperature remained one or more degrees Celsius above average^{28,15}. Despite summer rainfall, water levels remained near average during the summer and fall. No temperature loggers were in place on the Porcupine River in 2020, so it is difficult to know what thermal conditions migrating salmon experienced. It is possible that river temperatures in the Porcupine River watershed were relatively warm compared to other systems.

With increased climate variability, increased habitat monitoring and assessment in the Yukon River Canadian Sub-basin is encouraged to inform management, research, restoration strategies, and habitat considerations for Yukon River Pacific salmon populations.

-

²⁷ Environment Canada Seasonal Forecasts Aug-Oct 2020 Precipitation <u>https://weather.gc.ca/saisons/charts_e.html?season=aso&year=2020&type=p</u>

²⁸ Old Crow Historical Weather https://www.worldweatheronline.com/old-crow-weather-history/yukon-territory/ca.aspx

9.0 MARINE FISHERIES INFORMATION

Yukon River salmon migrate into the Bering Sea during the spring and summer after spending 0, 1, or 2 winters rearing in fresh water. Information about stock of origin from tagging, scale patterns, parasites, and genetic analysis indicate that Yukon River salmon are present throughout the Bering Sea, in regions of the North Pacific Ocean, south of the Aleutian Chain, and the Gulf of Alaska during their ocean migration (Healey 1991; Salo 1991). Yukon River salmon have the potential to be captured by fisheries that harvest mixed stocks of salmon, other species of fish (bycatch), and by illegal fishing activities throughout their oceanic distribution. Coded-wire tag recoveries in these fisheries and in research surveys provide a key descriptor of the oceanic distribution of Yukon River Chinook salmon. However, genetic stock identification has become the primary tool for identifying Yukon River Chinook salmon in marine habitats (Larson et al. 2013; Guthrie et al. 2016). The U.S. groundfish trawl fisheries in the Gulf of Alaska (GOA) and Bering Sea-Aleutian Islands (BSAI) management areas are managed to limit the incidental harvest (bycatch) of salmon.

Appendix C was prepared by NOAA in coordination with ADF&G at the request of the YRP. It provides background information on BSAI fisheries, bycatch regulations, and information to understand bycatch impacts on Canadian-origin salmon. Recent year and historical bycatch information is provided and will be updated annually as new information becomes available.

10.0 RUN OUTLOOKS 2021

10.1 YUKON RIVER CHINOOK SALMON

Over the years, the JTC has used a range of methods to produce an annual preseason outlook of Canadian-origin Chinook salmon run abundance. Run outlooks are used by fishery managers and stakeholders as a tool for guiding the development of preseason harvest strategies. In general, the Canadian-origin Chinook salmon outlook provided by the JTC has been similar to the observed run size estimated postseason (Figure 19).

Canadian-origin Brood Table

The brood table for Canadian-origin Yukon River Chinook salmon (Appendix A3) is the basis of the current spawner-recruitment model (Figure 20) which is one of the models used to forecast returns in future years. Age-specific returns have been estimated from border passage, harvest and escapement data. Because assessment methods have changed over time, the brood table is constructed from a variety of data sources. For the years 1982–2001, initial border passage estimates were derived from the DFO Chinook salmon mark–recapture program, but information from several sources, reviewed in 2008, indicated that these data were biased low. Subsequently, the 1982–2001 Canadian spawning escapement estimates were reconstructed using a linear regression of the estimated total spawning escapements for 2002–2007 against a 3-area aerial survey index of combined counts from Big Salmon, Little Salmon, and Nisutlin rivers. Spawning escapement estimates for years 2002–2004 were based on radiotelemetry studies. Since 2005, spawning escapement estimates have been estimated by subtracting both Canadian and U.S. harvests that occurred upriver from the sonar project site from the passage estimates at Eagle sonar. A standardized age dataset for Chinook salmon passage at the U.S./Canada border (Hamazaki 2018) was adopted by the JTC in 2019 and used to update the brood table (JTC 2020).

Canadian-origin Yukon River Chinook Salmon

The JTC forecast subcommittee is in the process of updating the Canadian-origin Chinook salmon run-size forecast models to improve the forecast accuracy and to improve methods used to account for uncertainty. The modifications to the 2021 forecast methods are the first step to developing a fully integrated Bayesian forecast model. The 2021 preseason forecast for Canadian-origin Chinook salmon is based on three independent models weighted by forecast performance. The three models include a dynamic sibling model, spawner-recruitment model, and juvenile abundance model based on Northern Bering Sea surface trawl surveys.

Dynamic Sibling Model

The dynamic sibling model predicts the 2021 run size of Canadian-origin Chinook salmon will be approximately 55,400 fish. This model predicts age class returns based on prior years sibling (younger) returns and accounts for change in age at maturity over time. Age-5, age-6, and age-7 predictions were based on the dynamic sibling model using model fits from 1982–2020 whereas age-3, age-4, and age-8 predictions were based on the recent 10-year average return. Age class predictions were summed to produce the total estimated run size. A 10-year (2011–2020) retrospective evaluation demonstrated the dynamic sibling model more closely fit to observed run sizes (average difference 20%) compared to the old sibling model which assumed constant age-class relationships (average difference 60%).

Spawner-recruit Model

The spawner-recruitment model predicts the 2021 run size of Canadian-origin Chinook salmon will be approximately 89,200 fish. This model uses a Ricker relationship based on the number of spawners and recruits from 1982–2014 to calculate the total expected returns from each brood year escapement. Projected returns were apportioned to age based on the recent 5-year average (2016–2020) age composition of brood year returns. The estimated production from each brood year was summed to produce the estimated run size. The current formulation of this model does not account for changes in productivity over time. Over the last 10 years, the spawner-recruitment model has been on average 46% different compared to observed run sizes. Prior to the 2022 forecast, the JTC forecast subcommittee intends to explore the appropriateness of the Ricker model as a forecast tool and consider options to account for changes in productivity to improve performance.

Juvenile-based Forecast

Fisheries and oceanographic research surveys in the northern Bering Sea shelf were initiated in 2002 as part of the Bering-Aleutian Salmon International Survey (BASIS; NPAFC 2001). The BASIS project was developed by member nations of the North Pacific Anadromous Fish Commission (NPAFC; United States, Russia, Japan, Canada, and Korea) to improve our understanding of the marine ecology of salmon in the Bering Sea. These surveys use pelagic rope trawls to sample fish at or near the surface and are referred to as surface trawl surveys and integrated ecosystem surveys. The surveys are designed to support broad-scale marine ecosystem research. Although the investigators, vessels, funding support, and research objectives of these trawl surveys have varied with time, attempts have been made to sample a standardized station grid to improve the consistency of data collected during these research surveys. Stations are typically sampled during September along a systematic latitude and longitude grid with stations separated by approximately 30 nautical miles.

The surface trawl surveys in the northern Bering Sea capture Yukon River salmon stocks during their first summer at sea (juvenile life-history stage). Canadian-origin juvenile Chinook salmon are a large stock component encountered during the northern Bering Sea trawl surveys (Murphy et al. 2009). Since 2003, juvenile Chinook salmon catch from the trawl surveys, coupled with genetic MSA, has been used to provide stock-specific juvenile abundance estimates (Figure 21; Murphy et al. 2017, Howard et al. 2019, Howard et al. 2020). Juvenile Chinook salmon experience relatively stable marine survival following their first summer in the northern Bering Sea, suggesting that cohort strength is determined prior to the surface trawl surveys. As a result of this stable marine survival, the relationship between juvenile Chinook salmon abundance in the northern Bering Sea correlates to adult returns to the Yukon River (Figure 22). This relationship is pivotal to the juvenile-based forecast model used to predict adult returns up to 3 years in advance. Juvenile abundance-based forecasts of Canadian-origin Chinook salmon have been provided to the JTC and YRP since 2013. The juvenile-based forecast has been used to provide auxiliary information about future year run sizes since 2014. Beginning in 2018, the JTC decided to explicitly incorporate the juvenile-based forecast as part of the formal outlook.

Juvenile Chinook salmon in the Bering Sea in 2017 and 2018 (returning as age-6 and age-5, respectively) will be the primary contributors to the 2021 adult run. The 2017 juvenile abundance was below average and marked the beginning of a downward trend in juvenile abundance in the northern Bering Sea (Figure 21). Juvenile abundance models indicate that the projected run size of Canadian-origin Chinook salmon in 2021 should be between 31,000–73,000 fish (point estimate of 52,000 fish). The juvenile forecast ranges are based on an 80% prediction interval calculated from the relationship between juvenile abundance and adult returns. The run-size forecasts and ranges are estimated from predicted returns using a three-year window of average maturity. Early indications suggest Canadian-origin adult returns to Yukon River will continue to decrease in 2022 (Figure 23). Although the juvenile forecast model can forecast adult run sizes up to 3 years in advance, the lack of a northern Bering Sea survey in 2020 due to the COVID-19 pandemic precludes forecasting the 2023 and 2024 Chinook salmon run size.

2021 Canadian-origin Chinook Salmon Forecast

The final forecast for 2021 Canadian-origin Chinook salmon run was developed by inverse variance weighting the point estimates from the dynamic sibling, spawner recruit and juvenile model forecasts. Within sample forecasts for the years 2007–2010 and 2013–2020 were used to calculate the variance between observed and expected run sizes²⁹. Models with low relative variance were given a higher weight in the integrated forecast (and vice versa). The Ricker model had the poorest fit to the observed run sizes (i.e., greatest amount of uncertainty), and a weight of 13% was applied. The dynamic sibling and juvenile models tended to fit similarly well to prior observed run sizes and were assigned weights of 46% and 41%, respectively. This approach resulted in a weighted forecast of 58,600.

The 2021 weighted forecast and the within-sample forecast error (standard deviation) was used to estimate the probability of various run sizes occurring in 2021. The 2021 run size with the highest probability was 57,000. The run size probability distribution was used to represent various levels of forecast uncertainty and create a forecast range for guiding preseason discussions. The JTC recommends using an 80% CI as the basis for an operational forecast range of 42,000–77,000 Canadian-origin Chinook salmon for 2021 (Table 13). The 80% CI implies a 20% percent chance

_

²⁹ The years 2011 and 2012 could not be included because juvenile forecasts were not available.

(1 in 5) that the 2021 run size will fall outside the forecast range based on past model performance. Higher confidence intervals could be applied, and wider forecast ranges could be considered (e.g., 90% CI: 38,000–84,000 or 95% CI: 36,000–91,000), but the wider ranges may have less practical utility for management planning purposes. The lower end of the 2021 outlook range suggests a possible run size smaller than the run size observed in 2020 (Table 13), smaller than the recent 10-year average (2011–2020) of 68,000 Chinook salmon (Appendix B18), and well below the 1982–1997 average of 153,000 Chinook salmon (Appendix B11).

The Chinook salmon runs on the Yukon River are typically dominated by age-5 and age-6 fish. The brood years producing these age classes in 2021 are 2015 (age-6) and 2016 (age-5). The Canadian-origin Yukon River Chinook salmon spawning escapement in 2015 of 82,674 fish was the largest observed since 1982 and the 2016 escapement of 68,798 fish was above the 1982–2013 average escapement of 47,000 fish (Appendix A3; Figure 9). The age-4 (3,160) and age-5 (18,310) estimated returns in 2020 were below the long-term average brood year return of 5,750 and 32,390 fish, respectively (Appendix A3).

10.2 YUKON RIVER SUMMER CHUM SALMON

The strength of the summer chum salmon run in 2021 will be dependent on production from the 2017 (age-4 fish) and 2016 (age-5 fish) escapements, because these age classes generally dominate the run. The drainagewide spawning escapement in 2016 and 2017 was approximately 1.9 million and 3.0 million summer chum salmon, respectively. The return of age-4 fish in 2020 was the second smallest observed since 1978. Below average returns of age-4 chum salmon were also observed in Yukon fall chum salmon, other wild chum salmon stocks throughout Alaska, as well as hatchery stocks of chum salmon in Alaska. The spatial extent of observations in 2020 is evidence that common ocean conditions contributed to the poor run of age-4 chum salmon which indicates the return of age-5 summer chum salmon in 2021 may be poor.

Historically, the drainagewide summer chum salmon forecast was developed by forecasting the run size of the Anvik River component, based on projections of brood year returns and sibling relationships, and then scaling up based on historical contribution of the Anvik River to the total run. Unfortunately, Anvik sonar did not operate in 2020 due to COVID-19 related travel restrictions. However, a drainagewide run reconstruction model was developed in 2016 (Hamazaki and Conitz 2015), the resulting model estimates of escapement and total return (1978–2020) were used to develop a drainagewide brood table and forecast the 2021 summer chum salmon run. The expected 2021 summer chum salmon run is forecast to be 1.2 million (80% CI \pm 500,000) fish, which is slightly larger than the 2020 run of approximately 760,000 fish. The relatively wide forecast range is representative of the uncertainty associated with the poor 2020 age-4 run and implications for the 2021 run.

The 2021 summer chum salmon run is anticipated to provide for escapements, normal subsistence harvest, and a surplus for a limited commercial harvest. Summer chum salmon runs have provided for a harvestable surplus in each of the last 17 years (2004–2020). If inseason indicators of run strength suggest sufficient abundance exists to allow for a commercial fishery, the commercially harvestable surplus could range from 0 to 800,000 summer chum salmon. Similar to the last 5 years, commercial harvests of summer chum salmon in 2021 are expected to be affected by measures taken to protect Chinook salmon from incidental harvest in chum salmon-directed fisheries.

10.3 YUKON RIVER FALL CHUM SALMON

Drainagewide Fall Chum Salmon

Preseason outlooks are determined using estimates of escapement and resulting production (spawner-recruit). Yukon River drainagewide estimated escapement of fall chum salmon for the period 1974 through 2014 have ranged from approximately 224,000 (2000) to 2,200,000 (1975) fish, based on Bayesian analysis of escapement assessments to approximate overall abundance (Fleischman and Borba 2009). Escapements between 1974 and 2014 resulted in subsequent returns that ranged in size from approximately 313,000 (1996 production) to 2,900,000 (2001 production) fish. Corresponding return per spawner rates ranged from 0.3–9.0, averaging 1.8 for all years combined (1974–2014; Appendix A8).

A considerable amount of uncertainty has been associated with these run forecasts, particularly in the last two decades, because of unexpected run failures (1998–2002) followed by strong runs from 2003 through 2008. Weakness in these salmon runs prior to 2003 was generally attributed to reduced productivity in the marine environment and not to low levels of parental escapement. The 2020 run failure also appears to be attributed to the marine environment as it was observed to be widespread in chum salmon throughout Alaska including both hatchery and wild stocks.

Beginning in 1999, Yukon River fall chum salmon preseason outlooks have been presented as a range, to better represent uncertainty in the expected run size. In all years, the expected run size (point estimate) was forecast using estimates of brood year escapement, estimates of returns per spawner (production), and maturity schedules developed for even and odd years based on historical averages. In 1998, the forecast method overestimated run size due to an unexpected poor return. To account for this, the point estimate was used as the upper bound of the forecast range in subsequent years (1999-2005; Brenner et al. 2020). The lower end of the forecast range was generated by adjusting the point estimate based on the average forecast performance (i.e., ratio of observed to predicted). Forecast performance from 1998-2003 were used to inform the 1999-2004 outlooks. As run sizes increased over the early to mid-2000s, the forecast performance improved, and in 2005 the lower bound of the forecast range was based on the 2001-2004 average forecast performance. Beginning in 2006, adjustments to the point estimate were no longer applied. Instead, the outlook range was based on a statistical confidence interval around the point estimate. Since 2006, the annual forecasts have been informed by different odd- and even-year maturity schedules based on the historical averages available at the time and assumptions of stock productivity. For example, in 2006 and 2007 average age composition from years 1974-1983 were used to represent high productivity years, whereas in 2008-2012 data from 1984-2012 was used to represent low productivity years. Since 2013, the average odd- and even-year maturity schedules have been calculated from the complete historical dataset.

The 2021 Yukon River fall chum salmon forecast was based on similar methods used since 2006. The majority of fall chum salmon return at age-4 and age-5, and a smaller proportion return as age-3 and age-6 (Appendix A8). As such, the 2021 run will be composed of brood years 2015–2018 (Table 14). Estimates of returns per spawner (R/S) were used to estimate production for 2015 and 2016, and a Ricker spawner-recruit model was used to predict returns from 2017 and 2018. The average odd and even year maturity schedule was calculated from the complete historical dataset since 1974. That maturity schedule was applied to the estimated production (i.e., returns) for each contributing brood year and summed to estimate the total number of fall chum salmon that are expected to return in 2021. The result was an outlook point estimate of 652,000 fall chum

salmon returning in 2021. The outlook range was based on the 80% confidence bounds for the point estimate. Confidence bounds were calculated using deviation of point estimates and observed returns from 1987 through 2020. Therefore, the 2021 forecasted run size is expressed as a range from 542,000–762,000 fall chum salmon (Table 14). This forecasted drainagewide fall chum salmon run size is below average (1998–2020; Table 15).

The dominant parent year escapements contributing to this outlook are 2016 and 2017. The escapement in both 2016 and 2017 were above the upper end of the drainagewide escapement goal range of 300,000–600,000 fall chum salmon. The major contributor to the 2021 fall chum salmon run is anticipated to be age-4 fish returning from the 2017 parent year (Table 14). The age-5 component is forecasted to set a record low (Table 14 and Appendix A8).

For fall chum salmon, the sibling relationship is best between the age-5 and age-6 component ($R^2 = 0.44$). Typically, the sibling relationship between the age-3 and age-4 fish ($R^2 = 0.39$) is better than the age-4 and age-5 fish ($R^2 = 0.26$). Brood year returns of age-3 fish range from zero to 198,000 fall chum salmon. Returns of age-4 fish from odd-numbered brood years during the time period 1974–2014 average 887,000 fall chum salmon with a range from a low of 243,000 for brood year 1997 to a high of 2,000,000 for brood year 2001. Returns of age-5 fish from the same time period for even-numbered brood years average 208,000 fall chum salmon with a range from a low of 60,000 fish for brood year 1998 to a high of 456,000 fish for brood year 1990. Considering the sibling relationship described, the contribution of age-5 fish should be below the even-numbered year average while the age-4 component should be above the odd-numbered year average.

The forecast models rarely predict extreme changes in production. The fluctuations observed in fall chum salmon run sizes (postseason run size estimates) in comparison with the expected run sizes (preseason outlooks) are reflected in the outlook performance; i.e., proportions of the expected run size, observed for the 1998–2020 period (Table 15).

During the 2021 fall fishing season, estimated strength of the projected run of fall chum salmon will be adjusted using the relationship to summer chum salmon run abundance and assessed based on various inseason monitoring project data. With a forecasted run size range of 542,000–762,000 fall chum salmon (midpoint 652,000 fish; Table 14), it is anticipated that escapement goals will be met while supporting normal subsistence fishing activities. The forecast suggests a limited commercial surplus between 0 and 212,000 fall chum salmon may be available. However, commercially harvestable surpluses will be determined inseason and applied to the guidelines outlined in the management plan with further considerations of fishing effort and buying capacity. The first inseason projection will refine the forecast based on the relationship between the summer and fall chum salmon runs in mid-July at the beginning of the fall season.

Canadian-origin Upper Yukon River Fall Chum Salmon

To develop an outlook for the 2021 Canadian-origin Yukon River fall chum salmon, the drainagewide outlook range of 542,000–762,000 fall chum salmon was multiplied by 25% (the estimated contribution of mainstem Yukon River Canadian-origin fall chum salmon), producing an outlook range of 136,000–191,000 fish with a midpoint of 163,000 fish (rounded to the nearest 1,000; Table 16). Recent genetic stock identification analyses have indicated that the assumption of 25% is reasonable.

Canadian-origin Porcupine River Fall Chum Salmon

In the Canadian section of the Porcupine River, a majority of the production of fall chum salmon originates from the Fishing Branch River. Canadian-origin Porcupine River stocks have been estimated to comprise approximately 5% of the drainagewide run. Fishing Branch River fall chum salmon are estimated to comprise between 40% and 80% of the Canadian-origin Porcupine River stocks, and approximately 4% of the drainagewide run, though estimates have ranged from 1%–7%. Applying the 4% average estimate to the drainagewide outlook range of 542,000–762,000 fish results in a Fishing Branch River outlook of 22,000–30,000 fish, with a midpoint of 26,000 fish (rounded to the nearest 1,000 fish; Table 17). This outlook is considered uncertain due to the high variation in contributions of Fishing Branch River fall chum salmon to drainagewide stocks.

Though the models used to develop forecasts have varied from year-to-year, the postseason run size estimates of Fishing Branch River fall chum salmon have been consistently below preseason outlooks since 1998, except for 2003–2005, 2016, and 2017.

10.4 YUKON RIVER COHO SALMON

Although there is little comprehensive escapement information for Yukon River drainagewide coho salmon, it is known that coho salmon primarily return as age-2.1 fish (4-year-old, age in European notation) and overlap in run timing with fall chum salmon. The major contributor to the 2021 coho salmon run will be age-4 fish returning from the 2017 parent year. Based on the run reconstruction index (1995–2020, excluding 1996 and 2009), the 2017 escapement was estimated to be 167,000 coho salmon, which was near the average (165,000). In 2017, a relatively large amount of coho salmon was harvested incidentally in the directed fall chum salmon commercial fisheries (exploitation estimate at 47%). Subsistence harvest in 2017 was well below the 2012–2016 average of 16,000 coho salmon (Appendix B5). The returns from 2014 through 2018 have been high abundance years (averaging over 300,000 fish) which may indicate good productivity which typically cycles for several years in succession. However, the run sizes have been declining since 2016 with run sizes less than 200,000 coho salmon in both 2019 and 2020, which may indicate a transition to a cycle of lower productivity.

Escapements are primarily monitored in the Tanana River drainage. The Delta Clearwater River (DCR) is a major producer of coho salmon in the upper Tanana River drainage and has comparative escapement monitoring data since 1972 (Appendix B17). The DCR parent year escapement of 9,617 fish in 2017 was within the SEG range of 5,200–17,000 coho salmon. Four other locations in the Tanana River drainage were surveyed for coho salmon specifically; three quarters were above average when compared to the 2015–2019 average escapements. Very informal coho salmon outlooks are made preseason based on average survival of the primary parent year escapement estimate, which in 2021 would indicate that the return would be near average.

11.0 STATUS OF ESCAPEMENT GOALS

11.1 Spawning Escapement Target Options in 2021

Canadian-origin mainstem Yukon River Chinook and fall chum salmon are managed under the umbrella of the YRSA. The YRP meets annually and recommends escapement goals for Canadian-origin stocks to the Canadian and U.S. management agencies.

Canadian-origin Mainstem Yukon River Chinook Salmon

In 2010, the YRP adopted an IMEG range of 42,500–55,000 Chinook salmon. In the absence of a biological escapement goal, i.e., a goal based on a production or population model, the IMEG has been retained each year since then. The JTC is currently undertaking a comprehensive multi-year review of the current IMEG and anticipates presenting the YRP with recommendations during the 2022 YRP preseason meeting. In the interim, the JTC recommends that the current IMEG of 42,500–55,000 be used for the 2021 season.

Canadian-origin Mainstem Yukon River Fall Chum Salmon

In 2010, the YRP adopted an IMEG range of 70,000–104,000 Canadian-origin mainstem Yukon River fall chum salmon. This range was developed as 0.8–1.2 times the estimated spawners at maximum sustained yield (86,600 fish), which was derived prior to the returns from the exceptional 2005 spawning escapement of over 437,000 fall chum salmon. Based on prior recommendations by the JTC, the YRP extended this IMEG for the 3-year period of 2020–2022.

Fishing Branch River Fall Chum Salmon

An IMEG range of 22,000–49,000 fall chum salmon for the Fishing Branch River has been extended for 3-year periods since 2008 (Appendix B15). Based on prior recommendations by the JTC, the YRP extended this IMEG for the 3-year period of 2020–2022.

12.0 REFERENCES CITED

- Andersen, D. B. 1992. The use of dog teams and the use of subsistence-caught fish for feeding sled dogs in the Yukon River drainage. Alaska Department of Fish and Game, Division of Subsistence, Technical Paper No. 210, Juneau.
- Arnason, A. N., C. W. Kirby, C. J. Schwarz, and J. R. Irvine. 1995. Computer analysis of data from stratified mark-recovery experiments for estimation of salmon escapements and other populations. Canadian Technical Report of Fisheries and Aquatic Sciences 2106: 37p, Ottawa.
- Baker, B. 2018. Fishery management report for recreational fisheries in the Tanana River management area, 2017. Alaska Department of Fish and Game, Fishery Management Report No. 18-33, Anchorage
- Brenner, R. E., S. J. Larsen, A. R. Munro, and A. M. Carroll, editors. 2020. Run forecasts and harvest projections for 2020 Alaska salmon fisheries and review of the 2019 season. Alaska Department of Fish and Game, Special Publication No. 20-06, Anchorage.
- Brown, C., and D. Jallen. 2012. Options for amounts reasonably necessary for subsistence uses of salmon: Yukon Management Area; prepared for the January 2013 Anchorage Alaska Board of Fisheries meeting. Alaska Department of Fish and Game, Division of Subsistence, Special Publications No. BOF 2012-08, Fairbanks.
- Dreese, L. M., and J. D. Lozori. 2019. Sonar estimation of salmon passage in the Yukon River near Pilot Station, 2018. Alaska Department of Fish and Game, Fishery Data Series No. 19-16, Anchorage.
- DuBois, L. 2018. Origins of Chinook salmon in the Yukon Area fisheries, 2014. Alaska Department of Fish and Game, Fishery Data Series No. 18-25, Anchorage.
- Fleischman, S. J., and B. M. Borba. 2009. Escapement estimation, spawner-recruit analysis, and escapement goal recommendation for fall chum salmon in the Yukon River drainage. Alaska Department of Fish and Game, Fishery Manuscript No. 09-08, Anchorage.
- Guthrie, C. M., H. T. Nguyen, and J. R. Guyon. 2016. Genetic stock composition analysis of the Chinook salmon bycatch from the 2014 Bering Sea walleye pollock (*Gadus chalcogrammus*) trawl fishery. U.S. Dep. Commerce NOAA Tech. Memo. NMFS-AFSC-310. 25 p.
- Hamazaki, T. 2018. Estimation of U.S.-Canada border age-composition of Yukon River Chinook salmon, 1982–2006. Alaska Department of Fish and Game, Fishery Data Series No. 18-21, Anchorage.

REFERENCES CITED (Continued)

- Hamazaki, T., and J. M. Conitz. 2015. Yukon River summer chum salmon run reconstruction, spawner-recruitment analysis, and escapement goal recommendation. Alaska Department of Fish and Game, Fishery Manuscript Series No. 15-07, Anchorage.
- Healey, M. C. 1991. Life history of Chinook salmon (*Oncorhynchus tshawytscha*). [*In*]: Groot, C. and L. Margolis, editors, Pacific Salmon Life Histories. UBC Press, Vancouver, B.C., Canada, pp. 311-394.
- Howard, K.G., S. Garcia, J. Murphy, and T.H. Dann. 2019. Juvenile Chinook salmon abundance index and survey feasibility assessment in the Northern Bering Sea, 2014–2016. Alaska Department of Fish and Game, Fishery Data Series No. 19-04, Anchorage.
- Howard, K. G., S. Garcia, J. Murphy, and T. H. Dann. 2020. Northeastern Bering Sea juvenile Chinook salmon survey, 2017 and Yukon River adult run forecasts, 2018–2020. Alaska Department of Fish and Game, Fishery Data Series No. 20-08, Anchorage.
- Jallen, D. M., S. K. S. Decker, and T. Hamazaki. 2017. Subsistence and personal use salmon harvests in the Alaska portion of the Yukon River drainage, 2015. Alaska Department of Fish and Game, Fishery Data Series No. 17-39, Anchorage.
- JTC (Joint Technical Committee of the Yukon River U.S./Canada Panel). 2020. Yukon River salmon 2019 season summary and 2020 season outlook. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A20-01, Anchorage.
- Larson, W. A., F. M. Utter, K. W. Myers, W. D. Templin, J. E. Seeb, C. M. Guthrie, A. V. Bugaev, and L. W. Seeb. 2013. Single-nucleotide polymorphisms reveal distribution and migration of Chinook salmon (*Oncorhynchus tshawytscha*) in the Bering Sea and North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences 70:128-141.
- Liller, Z. W., and J. W. Savereide. 2018. Escapement goal recommendations for select Arctic-Yukon-Kuskokwim Region salmon stocks, 2019. Alaska Department of Fish and Game, Fishery Manuscript No. 18-08, Anchorage.
- McDougall, M. J., and J. D. Lozori. 2018. Sonar estimation of Chinook and fall chum salmon passage in the Yukon River near Eagle, Alaska, 2017. Alaska Department of Fish and Game, Fishery Data Series No. 18-20, Anchorage.
- Murphy, J. M., K. G. Howard, J. C. Gann, K. C. Cieciel, W. D. Templin, and C. M. Guthrie. 2017. Juvenile Chinook salmon abundance in the northern Bering Sea: Implications for future returns and fisheries in the Yukon River. Deep Sea Research Part II: Topical Studies in Oceanography 135:156-167.
- Murphy, J. M., W. D. Templin, E. V. Farley, Jr., and J. E. Seeb. 2009. Stock-structured distribution of western Alaska and Yukon juvenile Chinook salmon (*Oncorhynchus tshawytscha*) from United States BASIS surveys, 2002-2007. North Pacific Anadromous Fish Commission Bulletin 5:51-59.
- NPAFC (North Pacific Anadromous Fish Commission). 2001. Plan for NPAFC Bering-Aleutian Salmon International Survey (BASIS) 2002-2006. North Pacific Anadromous Fish Commission Doc. 579. 27 pp. Available at: www.npafc.org.
- Pfisterer, C. T., T. Hamazaki, and B. C. McIntosh. 2017. Updated passage estimates for the Pilot Station sonar project, 1995-2015. Alaska Department of Fish and Game, Fishery Data Series No. 17-46, Anchorage.
- Salo, E. O. 1991. Life history of chum salmon, *Oncorhynchus keta*. [*In*]: Groot, C., and L. Margolis, editors. Pacific Salmon Life Histories. UBC Press, Vancouver, B.C., Canada, pp. 231-309.

TABLES AND FIGURES

Table 1.—Yukon Area regulatory subsistence salmon fishing schedule.

	Regulatory subsistence	
Area	fishing periods	Open fishing times
Coastal District	7 days per week	M/T/W/TH/F/SA/SU - 24 hours/day
District 1	Two 36-hour periods per week	Mon 8 pm to Wed 8 am / Thu 8 pm to Sat 8 am
District 2	Two 36-hour periods per week	Wed 8 pm to Fri 8 am / Sun 8 pm to Tue 8 am
District 3	Two 36-hour periods per week	Wed 8 pm to Fri 8 am / Sun 8 pm to Tue 8 am
District 4	Two 48-hour periods per week	Sun 6 pm to Tue 6 pm / Wed 6 pm to Fri 6 pm
Koyukuk and Innoko Rivers	7 days per week	M/T/W/TH/F/SA/SU - 24 hours/day
Subdistricts 5-A, -B, -C	Two 48-hour periods per week	Tue 6 pm to Thu 6 pm / Fri 6 pm to Sun 6 pm
Subdistrict 5-D	7 days per week	M/T/W/TH/F/SA/SU - 24 hours/day
Subdistrict 6	Two 42-hour periods per week	Mon 6 pm to Wed Noon / Fri 6 pm to Sun Noon
Old Minto Area	5 days per week	Friday 6 pm to Wednesday 6 pm

Note: In the Upper Yukon, fishing times are longer by regulation to help account for longer travel times and lower numbers of fish available as fish leave the mainstem Yukon River to spawn in U.S. tributaries. This schedule was altered during the 2020 season based on Chinook salmon run strength.

Table 2.—Yukon River drainage fall chum salmon management plan overview.

Run size estimate b	Recommended management action ^a Fall chum salmon directed fisheries				Targeted drainagewide
(point estimate)	Commercial	Personal use	Sport	Subsistence	escapement
300,000 or Less	Closure	Closure	Closure	Closure c	300,000
300,001					
to	Closure	Closure c	Closure c	Possible	to
550,000				restrictions c, d	
Greater than				No	
550,001	Open ^e	Open	Open	restrictions	600,000

^a Considerations for the Canadian mainstem interim management escapement goal may require more restrictive management actions.

b Alaska Department of Fish and Game will use the best available data, including preseason projections, mainstem river sonar passage estimates, test fisheries indices, subsistence and commercial fishing reports, and passage estimates from escapement monitoring projects.

^c The fisheries may be opened or less restrictive in areas where indicator(s) suggest the escapement goal(s) in that area will be achieved

^d Subsistence fishing will be managed to achieve a minimum drainagewide escapement goal of 300,000 fall chum salmon.

^e Drainagewide commercial fisheries may be open and the harvestable surplus above 550,000 fall chum salmon will be distributed by district or subdistrict (in proportion to the guidelines harvest levels established in 5 AAC 05.365 and 5 AAC 05.367).

Table 3.–Inseason fishery management decision matrix for Yukon River mainstem Chinook salmon in Canada, 2020.

				Fishery allocations ^c		
CDN total run size	Border passage projection ^a	CDN allowable harvest (CAH) b	Projected escapement b	First Nation	Public angling	Commercial & domestic
0-42,500	0-42,500	0	0-42,500	0	0	0
42,501– 96,848	42,501– 55,000	1–6,250	42,500– 48,750	1– 6,250	0	0
96,849– 141,196	55,001– 65,200	6,251–10,200	48,750– 55,000	6,251– 10,000	0-200 d	0
141,197– 143,804	65,201– 65,800	10,201–10,800	55,000	10,000	201-800	0
143,805– 150,761	65,801– 67,400	10,801–12,400	55,000	10,000	801–1,260	0-1,140 ^d
150,762– 259,891	67,401– 92,500	12,401–37,500	55,000	10,000	1,260–2,515	1,141–24,985
259,892– 292,500	92,501– 100,000	37,501–45,000	55,000	10,000	2,515–2,890	24,986–32,110

^a Border passage projection is Eagle Sonar estimate plus estimated US harvest between sonar and US/Canada border.

Table 4.—Inseason fishery management decision matrix for mainstem Yukon River fall chum salmon in Canada, 2020.

International border passage	Fishery					
(based on Eagle sonar estimate)	First Nation	Public angling	Commercial	Domestic		
	Closed	Closed	Closed	Closed		
< 40,000 (Red zone)	Removal of allocation for conservation purposes	No retention permitted				
	Varies ^a	Closed	Closed	Closed		
40,000 to 73,000 (Yellow zone)	Catch target to vary with abundance within zone	No retention permitted				
	Open	Open ^a	Open ^a	Open ^a		
> 73,000 (Green zone)	Unrestricted	Retention permitted. No catch anticipated	Allocation varies with run size	Allocation varies with run size		

Allocations (harvest opportunities) are subject to run abundance and international harvest sharing provisions (Yukon River Salmon Agreement).

^b Canadian allowable harvest and projected escapement levels may vary within the First Nation fishery depending on the tradeoffs between the two; this is influenced by the priority that First Nations may place on escapement or harvest in any given year.

^c Allocations to fisheries are depicted categories of opportunity, with dark grey representing no fishery opportunities, light grey as limited fishery opportunities, and unshaded as extensive fishery opportunities.

d This fishery allocation represents the level of management precision for that fishery and is the threshold required before considering harvest opportunities.

Table 5.—Cumulative fish passage estimates by species with 90% confidence intervals (CI), at the Pilot Station sonar in 2020.

		90% C	Ι
Species	Total passage	Lower	Upper
Large Chinook ^a	124,905	107,317	142,493
Small Chinook ^b	37,347	30,247	44,447
All Chinook subtotal	162,252	143,285	181,219
Summer chum	692,602	656,277	728,927
Fall chum	262,439	244,629	280,249
Coho	107,680	100,837	114,523
Pink	207,942	189,197	226,687
Cisco	163,546	141,570	185,522
Broad whitefish C. nasus	21,352	18,024	24,680
Humpback whitefish C. pidschian	146,162	127,919	164,405
Sheefish Stenodus leucicthys	24,849	19,488	30,210
Other ^c	32,378	28,351	36,405
Total ^d	1,821,202		

^a Large Chinook salmon >655 mm.

Table 6.—Yukon River Chinook salmon age and female percentage estimated from samples collected at the Pilot Station and Eagle sonar projects, 2020.

	Chinook salmon age or sex composition (percentage of test fishery samples)					
	Pilot Station s	sonar	Eagle sonar			
Age/sex	Historical average (2010–2019)	2020	Historical average (2010–2019)	2020		
Age-4	11.1%	10.6%	7.0%	5.2%		
Age-5	51.7%	44.3%	42.1%	38.4%		
Age-6	34.9%	40.7%	47.7%	52.9%		
Female	41.3%	53.3%	44.0%	54.3%		

Note: Sampling at the Pilot Station sonar uses a range of 6 gillnet mesh sizes (2.75–8.5 inch) whereas sampling at Eagle sonar uses a range of 4 gillnet mesh sizes (5.25–8.5 inch). This difference in gillnet mesh sizes can possibly affect the difference in observed age classes. In addition, sex is determined only through visual inspection of external body characteristics at both projects. Sexual dimorphism is more pronounced by the time fish reach Eagle making sex identification more accurate at that site. These factors need to be considered when comparing between projects. Percent female was calculated using all sampled Chinook salmon including fish that were unable to be aged successfully.

b Small Chinook salmon ≤655 mm.

^c Includes sockeye salmon, burbot Lota, long nose sucker Catostomus catostomus, Dolly Varden Salvelinus malma, and northern pike Esox lucius.

d All Chinook subtotal not included in total passage sum.

Table 7.–Summary of 2020 Chinook salmon escapement estimates in Alaska tributaries compared to existing escapement goals.

Location	Assessment method	Escapement goal (type)	2020 Escapement
East Fork Andreafsky Weir		2,100-4,900 (SEG)	Not operated
West Fork Andreafsky	Aerial survey	640–1,600 (SEG)	508
Anvik (drainagewide)	Aerial survey	1,100–1,700 (SEG)	675
Nulato (forks combined)	Aerial survey	940–1,900 (SEG)	862
Gisasa	Weir	none	Not operated
Henshaw	Weir	none	Not operated
Chena	Tower/Sonar	2,800-5,700 (BEG)	_ a
Salcha	Tower/Sonar	3,300–6,500 (BEG)	Not operated

Note: Biological escapement goal (BEG) and sustainable escapement goal (SEG).

Table 8.—Summary of 2020 summer chum salmon escapement estimates in Alaska compared to existing escapement goals.

Location	Assessment method	Escapement goal (type)	2020 Summer chum salmon escapement
Drainagewide	Sonar	500,000-1,200,000 (BEG)	724,000 a
E. Fork Andreafsky	Weir	>40,000 (SEG)	Not operated
Anvik	Sonar	350,000–700,000 (BEG)	Not operated
Gisasa	Weir	none	Not operated
Henshaw	Weir	none	Not operated
Chena	Tower/sonar	none	_ b
Salcha	Tower/sonar	none	Not operated

Note: Biological escapement goal (BEG) and sustainable escapement goal (SEG).

^a Total escapement could not be determined. Sonar only operated 17 days due to flooding and debris.

^a Drainagewide escapement based on the Pilot Station sonar and estimate of escapement to the Andreafsky River drainage minus harvest estimates above the sonar site.

^b Total escapement could not be determined. Sonar only operated 17 days due to flooding and debris.

Table 9.—Summary of 2020 preliminary fall chum salmon escapement counts, in comparison with existing escapement goals in Alaska.

Location	Assessment method	Escapement goal (type)	2020 Fall chum salmon escapement ^a
Drainagewide	Sonar and harvest	300,000–600,000 (SEG)	187,000
Chandalar River b	Sonar	85,000-234,000 (SEG)	Not operated
Delta River	Ground surveys	7,000–20,000 (SEG)	9,900

Note: Sustainable escapement goal (SEG).

Table 10.—Summary of 2020 preliminary fall chum salmon escapement counts to Canada in comparison with existing international interim management escapement goals (IMEG).

Location	Assessment method	Escapement goal (type)	2020 Fall chum salmon escapement
Fishing Branch River	Weir/video count	22,000–49,000 (IMEG)	4,795
Yukon River Mainstem	Sonar and harvest	70,000–104,000 (IMEG)	23,512
Porcupine River (Canadian portion)	Sonar and harvest	none	Not operated

a Numbers are rounded.

The Chandalar River and North Fork collectively were renamed the Teedriinjik and the Middle Fork was renamed Ch'idriinjik in September of 2015.

Table 11.—Pilot Station sonar Chinook salmon passage and Canadian-origin proportion by strata, 2005—2020.

			Pilot Station	Proportion	Canadian	Estimated number of
Year	Strata	Dates	passage	of run	proportion a	Canadian fish
2005	Stratum 1	06/04-06/17	91,136	0.35	0.60	54,335
2003	Stratum 2	06/18-07/03	119,627	0.46	0.45	53,533
	Stratum 3	07/04-08/20	48,451	0.19	0.29	14,002
	Total		259,214	1.00	0.47	121,871
2006	Stratum 1	06/07-06/24	63,374	0.28	0.44	28,106
	Stratum 2	06/25-07/26	165,389	0.72	0.39	64,312
	Total		228,763	1.00	0.40	92,417
2007	Stratum 1	06/06-06/19	50,083	0.29	0.53	26,629
	Stratum 2	06/20-06/30	62,907	0.37	0.37	23,502
	Stratum 3	07/01-08/16	57,256	0.34	0.21	11,772
	Total		170,246	1.00	0.37	61,903
2008	Stratum 1	06/07-06/23	41,294	0.24	0.47	19,532
	Stratum 2	06/24-06/29	42,554	0.24	0.33	13,958
	Stratum 3	06/30-08/02	90,559	0.52	0.31	27,711
	Total		174,407	1.00	0.35	61,201
2009	Stratum 1	06/09-06/16	7,000	0.04	0.68	4,750
	Stratum 2	06/17-06/22	27,229	0.15	0.53	14,347
	Stratum 3	06/23-06/29	83,866	0.47	0.41	34,509
	Stratum 4	06/30-07/19	59,701	0.34	0.17	10,265
	Total		177,796	1.00	0.36	63,871
2010	Stratum 1	06/12-06/21	28,885	0.21	0.49	14,110
	Stratum 2	06/22-06/27	45,306	0.33	0.50	22,860
	Stratum 3	06/28-09/05	63,708	0.46	0.28	17,891
	Total		137,899	1.00	0.40	54,861
2011	Stratum 1	06/01-06/18	31,273	0.21	0.58	18,148
	Stratum 2	06/19-06/27	67,686	0.45	0.36	24,611
	Stratum 3	06/28-08/07	49,838	0.33	0.16	8,034
	Total		148,797	1.00	0.34	50,792
2012	Stratum 1	06/10-06/24	31,998	0.25	0.45	14,463
	Stratum 2	06/25-07/02	63,648	0.50	0.47	30,042
	Stratum 3	07/03-07/30	31,909	0.25	0.34	10,753
	Total		127,555	1.00	0.43	55,258
2013	Stratum 1	06/14-06/27	78,133	0.57	0.72	56,568
	Stratum 2	06/28-08/02	58,672	0.43	0.26	15,137
	Total		136,805	1.00	0.52	71,706
2014	Stratum 1	06/01-06/14	45,236	0.28	0.49	22,347
	Stratum 2	06/15-06/24	82,146	0.50	0.42	34,255
	Stratum 3	06/25-08/04	36,513	0.22	0.18	6,718
	Total		163,895	1.00	0.39	63,320
2015	Stratum 1	05/30-06/17	30,600	0.21	0.50	15,178
	Stratum 2	06/18-06/26	51,172	0.35	0.37	18,780
	Stratum 3	06/27-08/17	65,087	0.44	0.33	21,218
· <u></u>	Total		146,859	1.00	0.38	55,176

-continued-

Table 11.–Page 2 of 2.

			Pilot Station	Proportion	Canadian	Estimated number of		
Year	Strata	Dates	passage	of run	proportion a	Canadian fish		
2016	Stratum 1	05/30-06/14	37,511	0.21	0.52	19,136		
	Stratum 2	06/15-06/25	86,622	0.49	0.34	29,114		
	Stratum 3	06/26-08/24	52,765	0.30	0.54	28,282		
	Total		176,898	1.00	0.43	76,532		
2017	Stratum 1	05/31-06/13	30,088	0.11	0.43	12,857		
	Stratum 2	06/14-06/20	79,913	0.30	0.49	38,929		
	Stratum 3	06/21-06/25	69,392	0.26	0.43	30,121		
	Stratum 4	06/26-08/11	83,621	0.32	0.41	34,008		
	Total		263,014	1.00	0.44	115,915		
2018	Stratum 1	06/02-06/13	16,275	0.10	0.53	8,621		
	Stratum 2	06/14-06/24	56,344	0.35	0.47	26,357		
	Stratum 3	06/25-07/03	57,070	0.35	0.41	23,227		
	Stratum 4	07/04-08/05	32,209	0.20	0.29	9,402		
	Total		161,831	1.00	0.42	67,609		
2019	Stratum 1	06/02-06/23	82,035	0.37	0.56	45,637		
	Stratum 2	06/24-06/30	73,551	0.33	0.42	30,563		
	Stratum 3	07/01-08/24	64,038	0.29	0.36	22,910		
	Total		219,624	1.00	0.45	99,110		
2020	Stratum 1	06/07-06/22	34,551	0.21	0.63	21,891		
	Stratum 2	06/23-06/29	64,298	0.40	0.48	30,873		
	Stratum 3	06/30-07/06	35,047	0.22	0.44	15,453		
	Stratum 4	07/07-08/17	28,356	0.17	0.37	10,468		
	Total		162,252	1.00	0.48	78,685		
Average	annual proportio	on of Canadian st	ock		0.41			
Minimun	n annual proport	ion of Canadian	stock		0.16			
		tion of Canadian			0.72			
3.7	With the proportion of Cumulatura stock 5.72							

Note: Average, minimum, and maximum values exclude the most recent year data.

^a Total Canadian proportion is weighted with "Proportion of run".

Table 12.—Microsatellite baseline is comprised of 37 stocks used to estimate stock composition from chum salmon sampled in the test drift gillnet program at the Pilot Station sonar in 2020.

Stock aggregate name	Populations in baseline	
Lower	Andreafsky, Anvik, California, Chulinak, Clear, Dakli, Kaltag, Nulato, Gisasa, Melozitna, Rodo, Tolstoi	
Upper Koyukuk+Main	Henshaw, Jim, Middle Fork Koyukuk, South Fork Koyukuk (early and late run), Tozitna	
Tanana Summer	Chena, Salcha	
Tanana Fall	Bluff Cabin, Delta, Nenana, Kantishna, Tanana Mainstem, Toklat	
Border U.S.	Big Salt, Black, Chandalar, Sheenjek	
Porcupine	Fishing Branch	
Mainstem	Big Creek, Minto, Pelly, Tatchun	
White	Donjek, Kluane	
Teslin	Teslin	
Aggregate name	Aggregate within aggregate	
Summer	Lower, Middle	
Middle	Upper Koyukuk+Main, Tanana Summer	
Fall	Tanana Fall, Border U.S., Border Canada, Upper Canada	
Fall U.S.	Tanana Fall, Border U.S.	
U.S.	Lower, Middle, Tanana Fall, Border U.S.	
Border Canada	Porcupine, Mainstem	
Upper Canada	White, Teslin	
Canada	Border Canada, Upper Canada	

Table 13.—Preseason Canadian-origin Yukon River Chinook salmon outlooks for 2013–2021 and the observed run sizes for 2013–2020.

	Outlook range ^a		Postseason estimate	
Year	Low end	High end	Estimated run size ^b	
2013	49,000	72,000	37,000	
2014	32,000	61,000	65,000	
2015	59,000	70,000	87,000	
2016	65,000	88,000	83,000	
2017	73,000	97,000	93,000	
2018	71,000	103,000	76,000	
2019	69,000	99,000	73,000	
2020	59,000	90,000	46,000	
2021	42,000	77,000		

Note: Run sizes are rounded to the nearest 1,000.

^a The outlook range has been calculated using a variety of different methods. Refer to previous published JTC reports for a full description for a particular year.

^b Estimated run size is the border passage estimate plus the U.S. and Canada harvest of Canadian-origin Chinook salmon. U.S. harvest estimates are determined using Canadian stock genetic proportion estimates applied to U.S. harvest.

Table 14.—Forecasted 2021 total run size of fall chum salmon based on parent year escapement for each brood year and predicted return per spawner (R/S) rates, Yukon River, 2015–2018.

Brood		Estimated	Estimated		Contribution	
year	Escapement	production (R/S)	production	Age	based on age	Current return
2015	541,000	1.46	789,860	6	1.0%	6,349
2016	832,200	0.18	149,796	5	6.6%	42,890
2017	1,706,000	0.47	800,124	4	88.4%	576,275
2018	654,300	1.39	910,054	3	4.0%	26,152
Total expe	Total expected run (unadjusted)					651,666
	1					542,000 to 762,000

Note: Escapements are rounded to the nearest 100.

Table 15.—Preseason Yukon River drainagewide fall chum salmon outlooks 1998–2021 and estimated run sizes for 1998–2020.

	Expected run size	Estimated run size	Performance of preseason outlook
Year	(preseason)	(postseason) a	(preseason/postseason)
1998	880,000	352,000	2.50
1999	1,197,000	420,000	2.85
2000	1,137,000	253,000	4.49
2001	962,000	375,000	2.57
2002	646,000	428,000	1.51
2003	647,000	792,000	0.82
2004	672,000	653,000	1.03
2005	776,000	2,181,000	0.36
2006	1,211,000	1,212,000	1.00
2007	1,106,000	1,161,000	0.95
2008	1,057,000	857,000	1.23
2009	791,000	598,000	1.32
2010	690,000	587,000	1.18
2011	740,000	1,239,000	0.60
2012	1,114,000	1,086,000	1.03
2013	1,029,000	1,212,000	0.85
2014	932,000	955,000	0.98
2015	1,060,000	824,000	1.29
2016	666,000	1,389,000	0.48
2017	1,560,000	2,288,000	0.68
2018	1,700,000	1,113,000	1.53
2019	1,045,000	802,000	1.30
2020	936,000	194,000	4.82
2021	652,000		

Note: Run sizes are rounded to the nearest 1,000. The expected run sizes are point estimates (rounded). Ranges were used since 1999 but until 2006 were not always distributed around the point estimate. Starting in 2006, expected run sizes are the midpoint of the outlook range. Refer to previous published JTC reports for a full method description for a particular year.

^a Postseason estimates are updated annually based on the Bayesian space-state modeling of the drainagewide escapement estimates and may include refined harvest estimates.

Table 16.—Preseason Canadian-origin mainstem Yukon River fall chum salmon outlooks for 1998–2021 and observed run sizes for 1998–2020.

Year	Expected run size (preseason)	Estimated run size (postseason)	Performance of preseason outlook (preseason/postseason)
1998	198,000	70,000	2.83
1999	336,000	116,000	2.90
2000	334,000	66,000	5.06
2001	245,000	49,000	5.00
2002	144,000	113,000	1.27
2003	145,000	182,000	0.80
2004	147,000	193,000	0.76
2005	126,000	558,000	0.23
2006	126,000	330,000	0.38
2007	147,000	347,000	0.42
2008	229,000	269,000	0.85
2009	195,000	128,000	1.52
2010	172,000	143,000	1.20
2011	184,000	326,000	0.56
2012	273,000	238,000	1.15
2013	257,000	303,000	0.85
2014	230,000	223,000	1.03
2015	265,000	205,000	1.29
2016	166,000	298,000	0.56
2017	388,000	563,000	0.69
2018	425,000	279,000	1.52
2019	262,000	178,000	1.47
2020	234,000	25,000	9.36
2021	163,000		

Note: Run sizes are rounded to the nearest 1,000. The 2009 through 2020 preseason expected run sizes are the midpoint of the outlook range. Estimated run sizes are calculated by adding estimated U.S. harvest of Canadian-origin fall chum salmon to the mainstem Yukon River Eagle sonar passage estimate. The proportion of Canadian mainstem fall chum salmon in the total U.S. harvest is assumed to be equal to the proportion of Canadian-origin fall chum salmon in the drainagewide escapement (i.e. 25%).

Table 17.—Preseason Fishing Branch River fall chum salmon outlooks for 1998–2021 and observed run sizes for 1998–2020.

Year	Expected run size (preseason)	Estimated run size (postseason) a	Performance of preseason outlook (preseason/postseason)
1998	112,000	25,000	4.48
1999	124,000	24,000	5.17
2000	150,000	13,000	11.54
2001	101,000	33,000	3.06
2002	41,000	19,000	2.16
2003	29,000	46,000	0.63
2004	22,000	32,000	0.69
2005	48,000	186,000	0.26
2006	54,000	48,000	1.13
2007	80,000	50,000	1.60
2008	78,000	30,000	2.60
2009	49,000	40,000	1.23
2010	43,000	20,000	2.15
2011	37,000	28,000	1.32
2012	55,000	50,000	1.10
2013	52,000	39,000 (52,000) ^b	_
2014	46,000	13,000 (24,000) ^b	_
2015	17,000	13,000	1.31
2016	27,000	54,000	0.50
2017	62,000	73,000	0.85
2018	68,000	29,000	2.34
2019	42,000	29,000	1.45
2020	37,000	5,000	7.40
2021	26,000		

Note: Run sizes are rounded to nearest 1,000. The 2009 through 2021 preseason forecasted run sizes are the midpoint of an outlook range. The Fishing Branch River weir monitors the dominant spawning stock within the Porcupine River drainage.

^a The total run size is estimated by adding the estimated Canadian (Porcupine) harvest and U.S. harvest of Fishing Branch River fall chum salmon to the Fishing Branch River weir escapement estimate, unless otherwise noted. In recent years, the proportion of Fishing Branch River fall chum salmon in the total U.S. harvest is assumed to be equal to the proportion of Fishing Branch River fall chum salmon in the drainagewide escapement (i.e. 4%). Starting in 2020, proportion of Fishing Branch-origin fall chum salmon in the total Canadian-origin Porcupine River fall chum salmon harvest was calculated as 63%, estimated by regression of Porcupine sonar to Fishing Branch River weir passage estimates from 2015–2019 (excluding an incomplete Porcupine sonar estimate in 2018). For 2016–2019, Fishing Branch River proportion was considered 80%, based on historical telemetry work. Prior to 2016, 100% of Canadian fall chum salmon harvest in the Porcupine River was included in the Fishing Branch River estimated run size.

b Run size was based on Old Crow sonar counts and proportion of tag recoveries. Numbers in parentheses are the corresponding Canadian-origin Porcupine River sonar-based estimates. Outlook performances are not included due to uncertainty in the assessment methods compared with previous years.

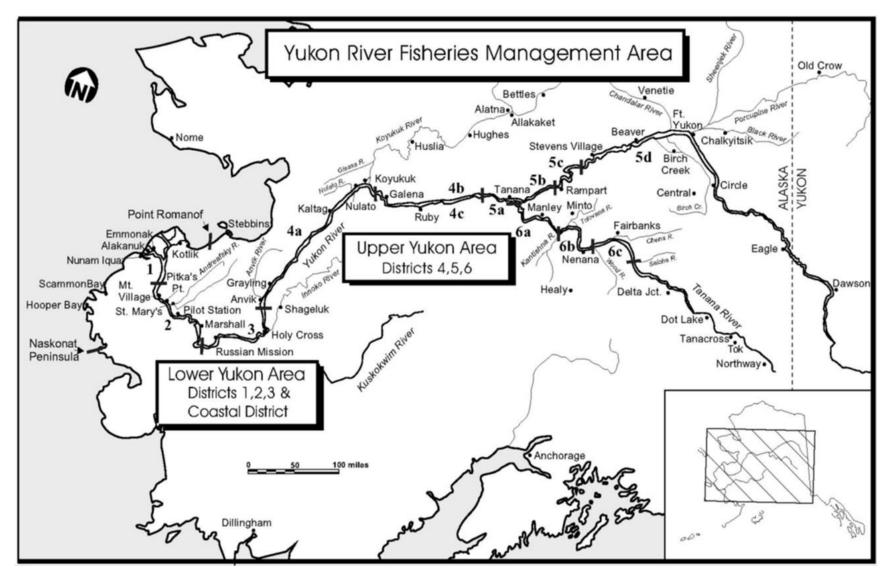


Figure 1.—Map of the Alaska (U.S.) portion of the Yukon River drainage showing communities and fishing districts.

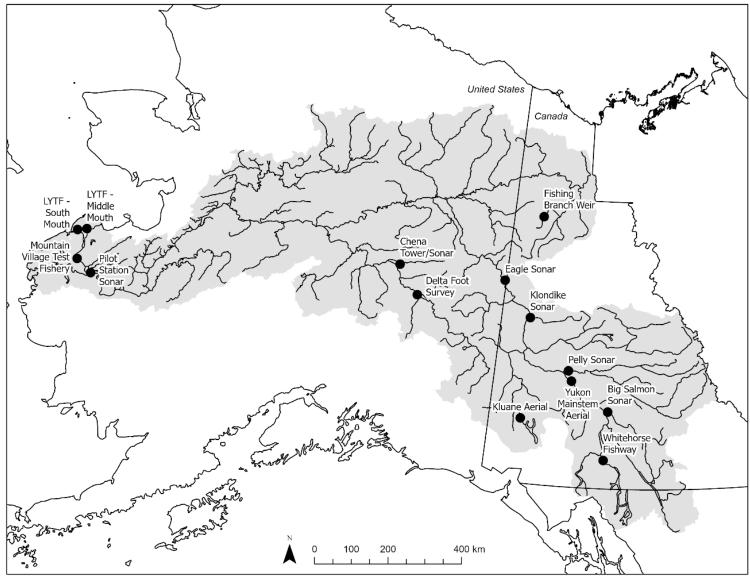


Figure 2.—Primary assessment projects operated in the U.S. and Canada used to assess Chinook and fall chum salmon run strength or escapement.

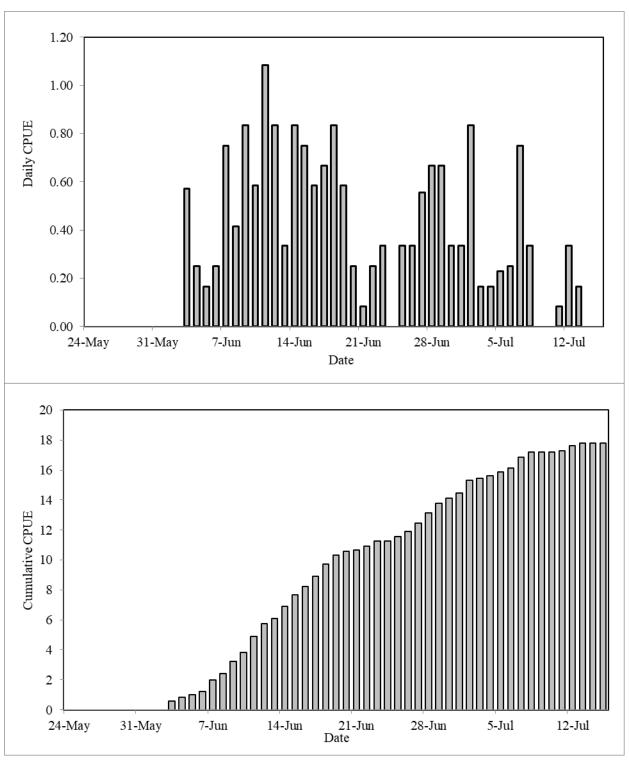


Figure 3.—Daily (top) and cumulative (bottom) catch per unit effort (CPUE) for Chinook salmon in the Lower Yukon set gillnet test fishery at Big Eddy in 2020.

Note: Middle Mouth sites were not operated during 2020. Big Eddy set gillnets were half the normal net length and included various mesh sizes. Therefore, 2020 CPUE is not directly comparable to other years.

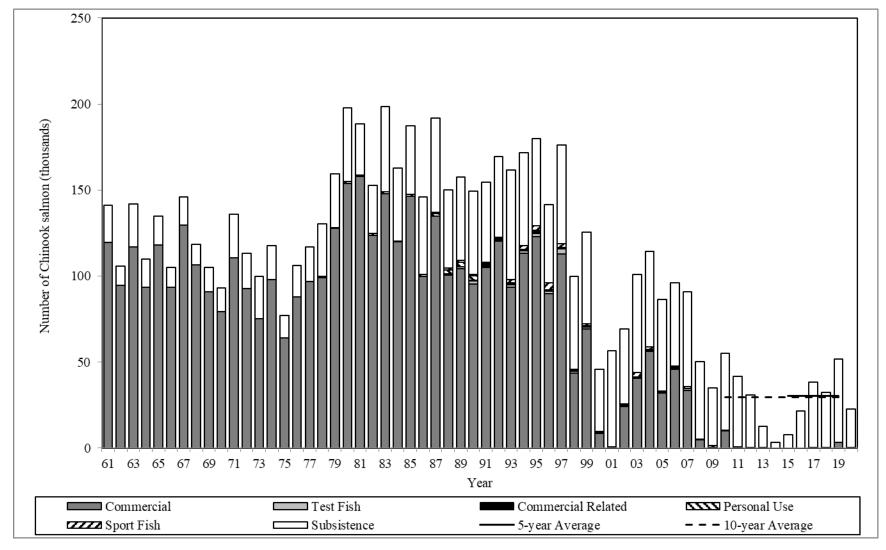


Figure 4.-U.S. (Alaska) harvest of Chinook salmon, Yukon River, 1961-2020.

Note: The 2016–2020 harvest estimates are preliminary. Commercial harvests through 2007 were Chinook salmon-directed commercial fishing. Commercial harvests 2008 to present include Chinook salmon incidentally harvested and sold from the chum salmon directed fisheries. 'Commercial related' refers to the estimated harvest of female Chinook salmon to produce roe sold between 1990 and 2002.

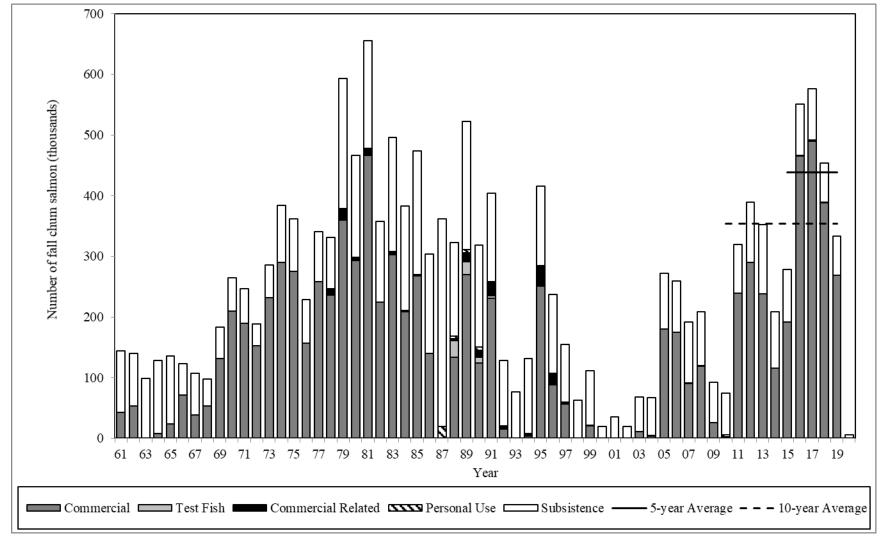


Figure 5.-U.S. (Alaska) harvest of fall chum salmon, Yukon River, 1961-2020.

Note: Subsistence harvest estimates of fall chum salmon are minimal prior to 1979 because of timing of harvest surveys. The commercial fishery was closed in 1963, 1987, 1993, 1998, 2000–2002, and 2020. 'Commercial related' refers to the estimated harvest of female salmon to produce roe sold. The 2016–2020 harvest estimates are preliminary.

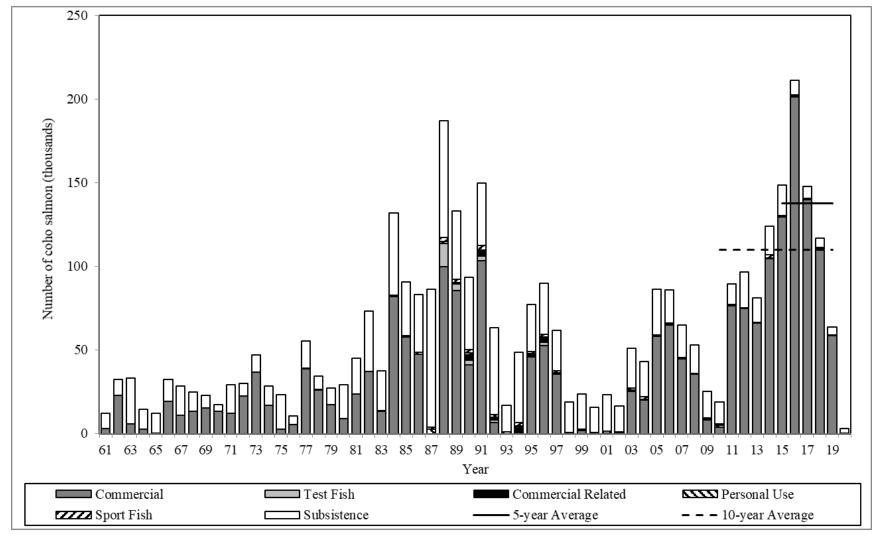


Figure 6.-U.S. (Alaska) harvest of coho salmon, Yukon River, 1961-2020.

Note: Subsistence harvest estimates of coho salmon are minimal prior to 1979 because of timing of harvest surveys. The commercial fishery was closed 1987, 1993, 1998, 2000–2002 and 2020. 'Commercial related' refers to the estimated harvest of female salmon to produce roe sold. The 2016–2020 harvest estimates are preliminary.

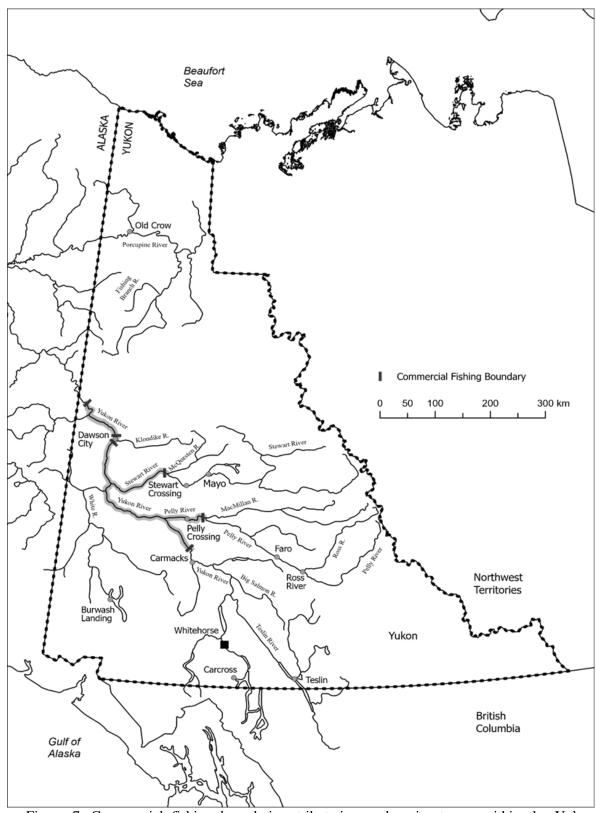


Figure 7.—Commercial fishing boundaries, tributaries, and major towns within the Yukon Territory, Canada.

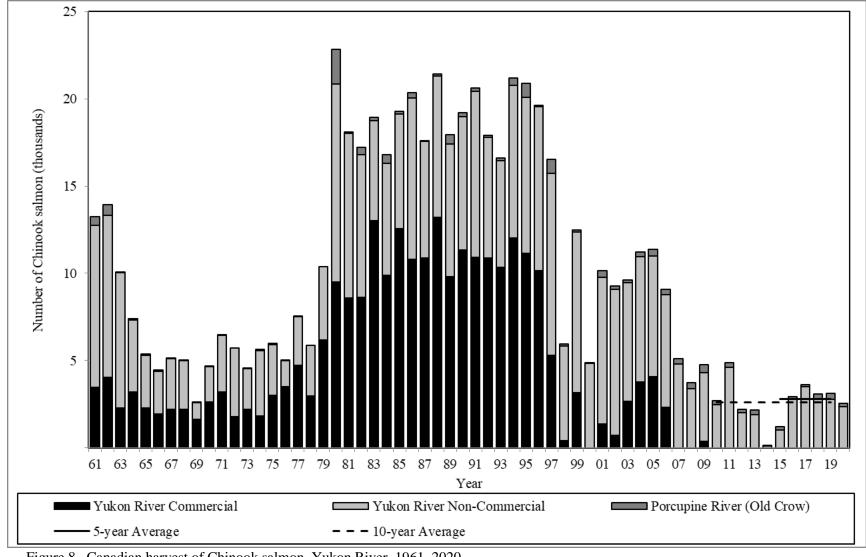


Figure 8.—Canadian harvest of Chinook salmon, Yukon River, 1961–2020.

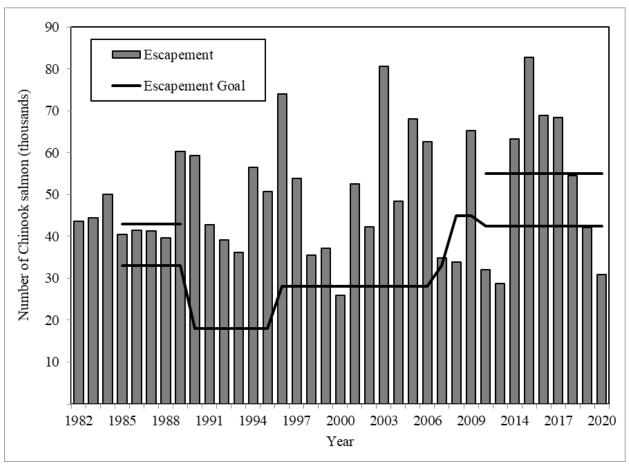


Figure 9.—Spawning escapement estimates for Canadian-origin Yukon River mainstem Chinook salmon, 1982–2020.

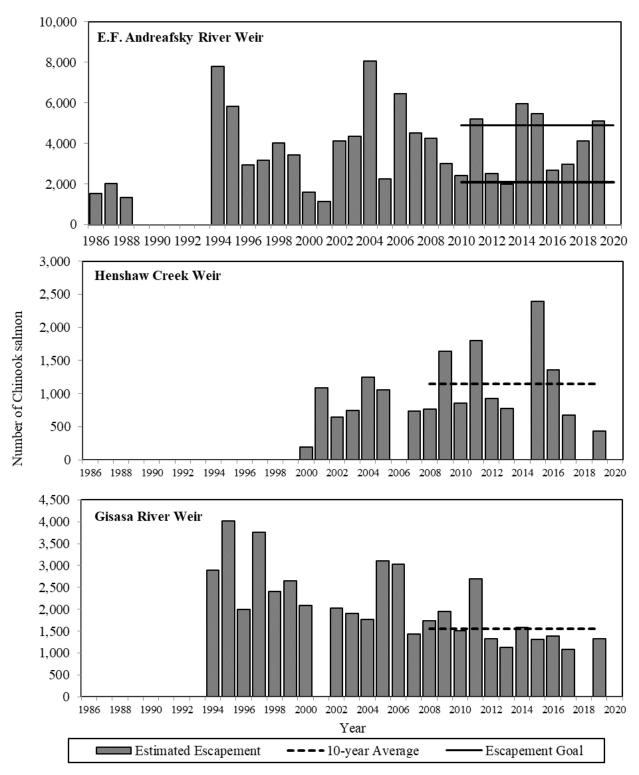


Figure 10.—Chinook salmon ground-based escapement estimates for selected tributaries in the U.S. (Alaska) portion of the Yukon River drainage, 1986–2020.

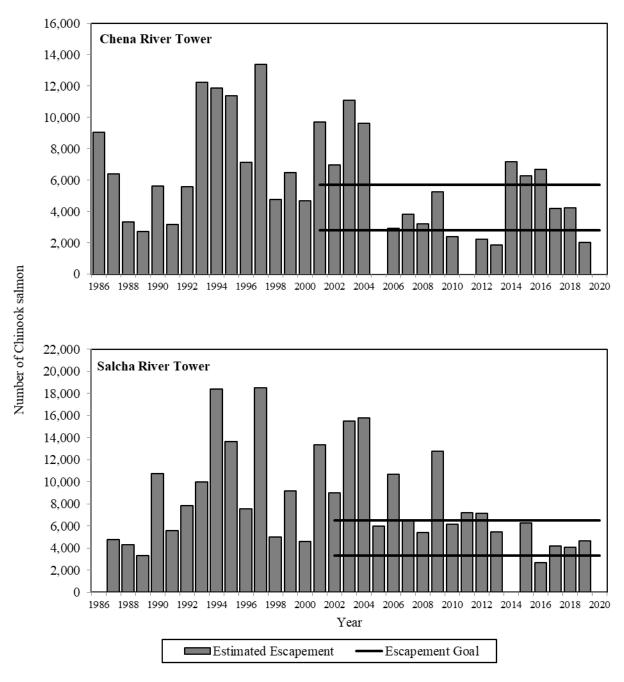


Figure 10.-Page 2 of 2.

Note: Escapement goal range relative to years when the goal was in effect. There are no escapement goals at the Henshaw Creek and Gisasa River weirs. Incomplete counts caused by late installation and/or early removal of project or high-water events are excluded from the graphs. Vertical scale is variable. Many projects did not operate in 2020 due to COVID-19. Chena River tower/sonar only operated 17 days in 2020 due to flooding and debris, and total escapement could not be determined.

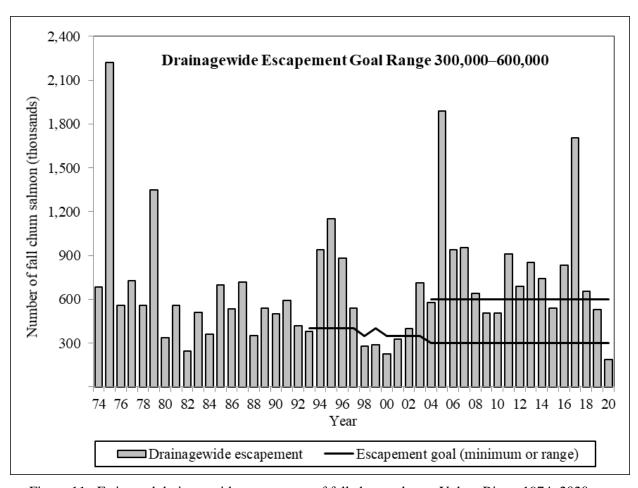


Figure 11.–Estimated drainagewide escapement of fall chum salmon, Yukon River, 1974–2020.

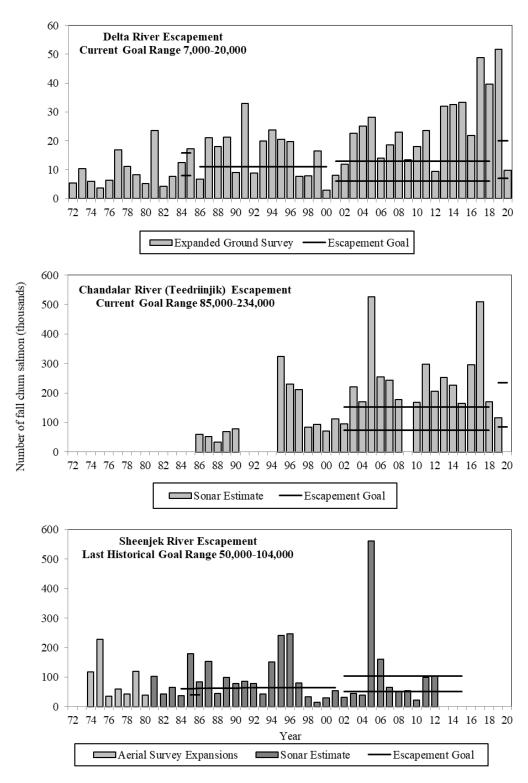


Figure 12.—Fall chum salmon escapement estimates for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1972–2020.

Note: Horizontal lines represent escapement goals or ranges. The vertical scale is variable. Escapement goal is relative to years applied as either minimums or ranges. Sheenjek escapement project was not funded after 2012 and the goal was discontinued in 2016.

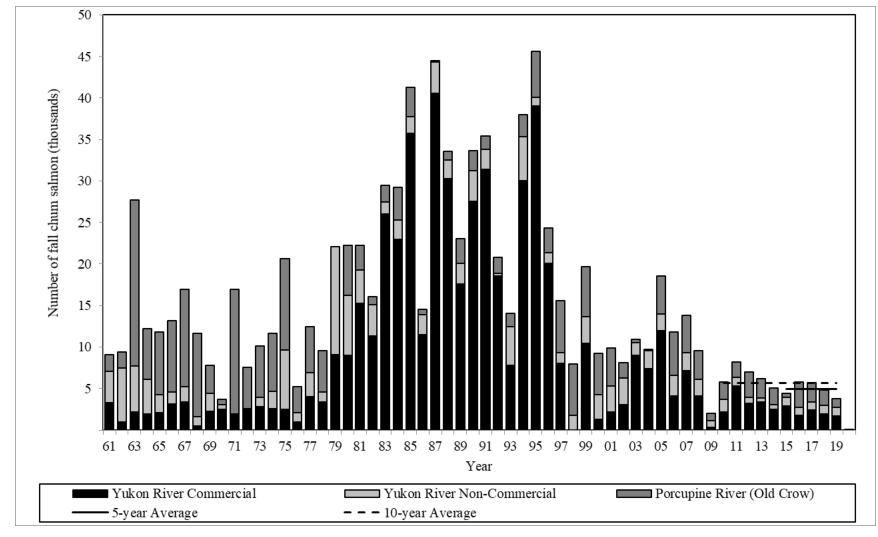


Figure 13.—Canadian harvest of fall chum salmon, Yukon River, 1961–2020.

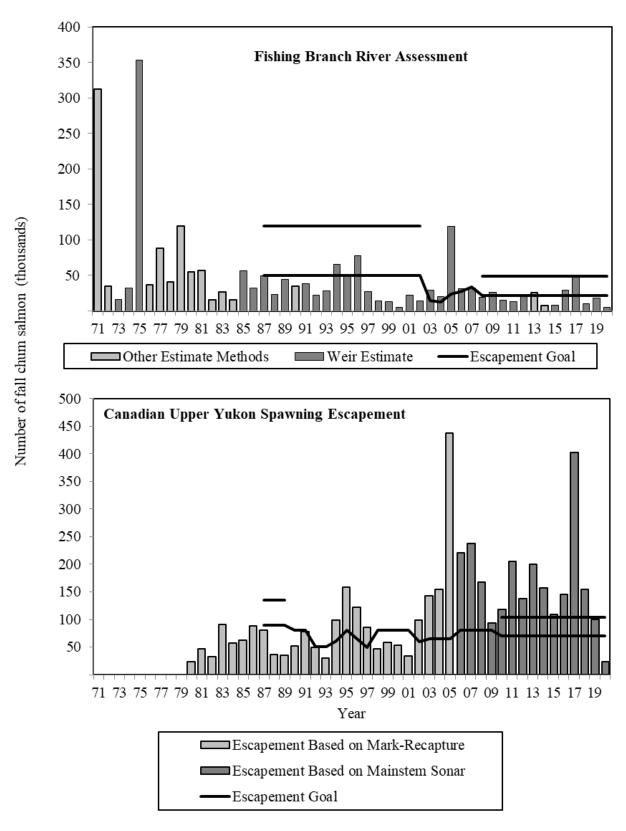


Figure 14.—Spawning escapement estimates for Canadian-origin fall chum salmon at the Fishing Branch River and the mainstem Yukon River, 1971–2020.

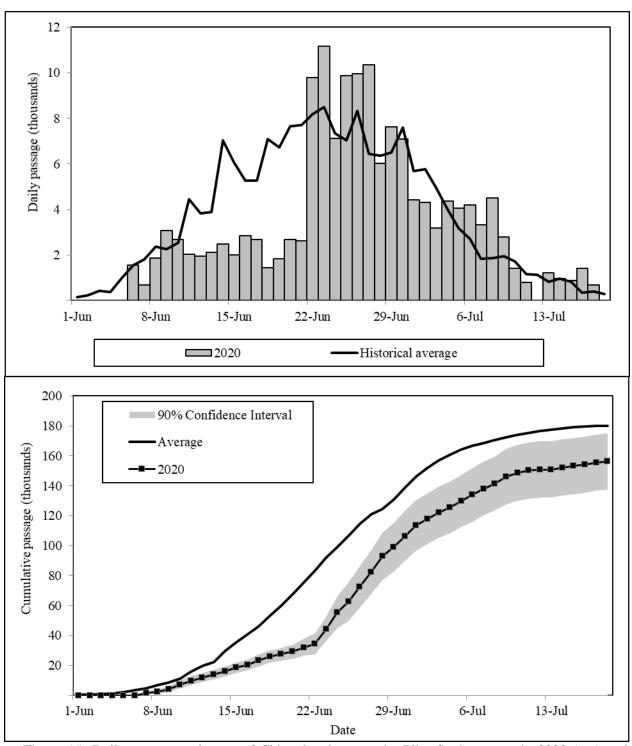


Figure 15.—Daily passage estimates of Chinook salmon at the Pilot Station sonar in 2020 (top) and cumulative passage estimate, including 90% confidence intervals (bottom), 2020 compared to historical average.

Note: Historical average includes 1995, 1997, 2000, 2002–2008, 2010–2019.

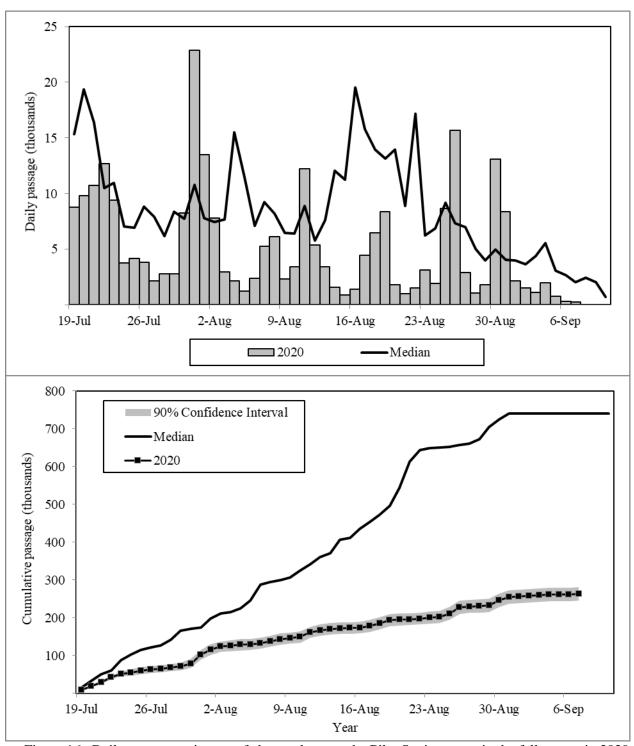


Figure 16.—Daily passage estimates of chum salmon at the Pilot Station sonar in the fall season in 2020 (top), cumulative passage estimates, including 90% confidence intervals (bottom), compared to median passages.

Note: Historical median includes 1995–2019, excluding 1996 and 2009.

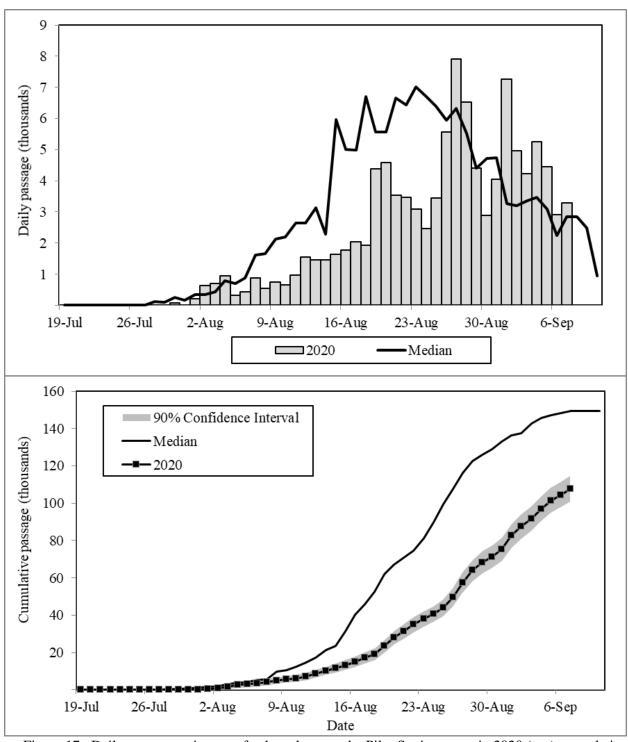


Figure 17.—Daily passage estimates of coho salmon at the Pilot Station sonar in 2020 (top), cumulative passage estimates, including 90% confidence intervals (bottom), compared to median passages.

Note: Historical median includes 1995–2019, excluding 1996 and 2009.

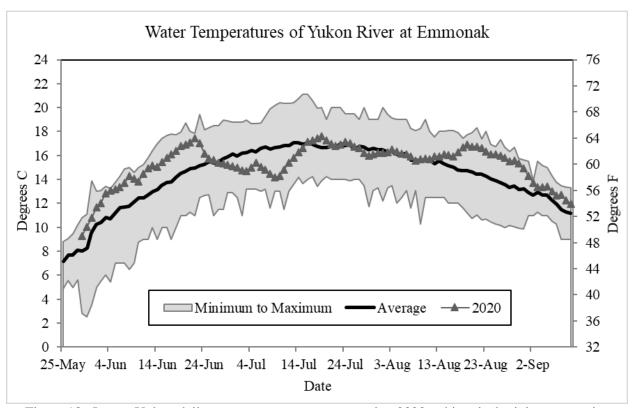


Figure 18.–Lower Yukon daily water temperatures, comparing 2020 to historical minimum, maximum, and average temperatures.

Note: Temperatures were collected in the Yukon River near Emmonak using handheld thermometers (1984–present) and data loggers (2004–present). The years the data types overlap are averaged together.

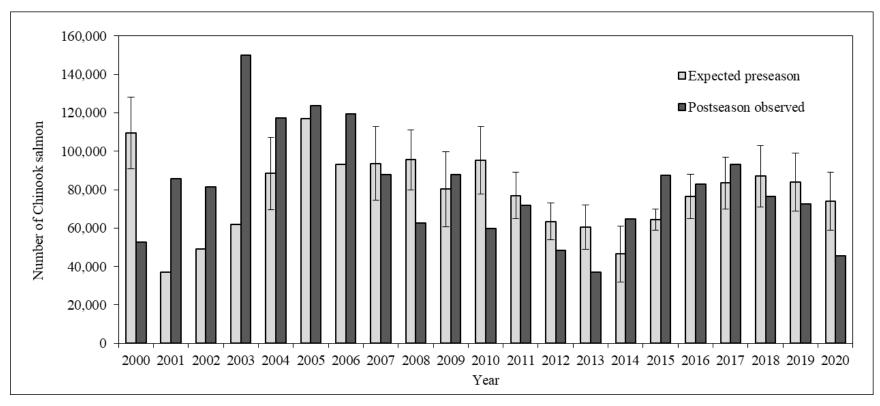


Figure 19.-Expected versus observed number of Canadian-origin Chinook salmon returning to spawn, 2000-2020.

Note: Forecast methods have changed over time and the "expected" value is the published JTC forecast range midpoint. Forecast range error bars are included for years with a published range. The "observed" is estimated Total Canadian-origin run size. This is calculated as the spawning escapement plus estimated U.S. and Canada harvest.

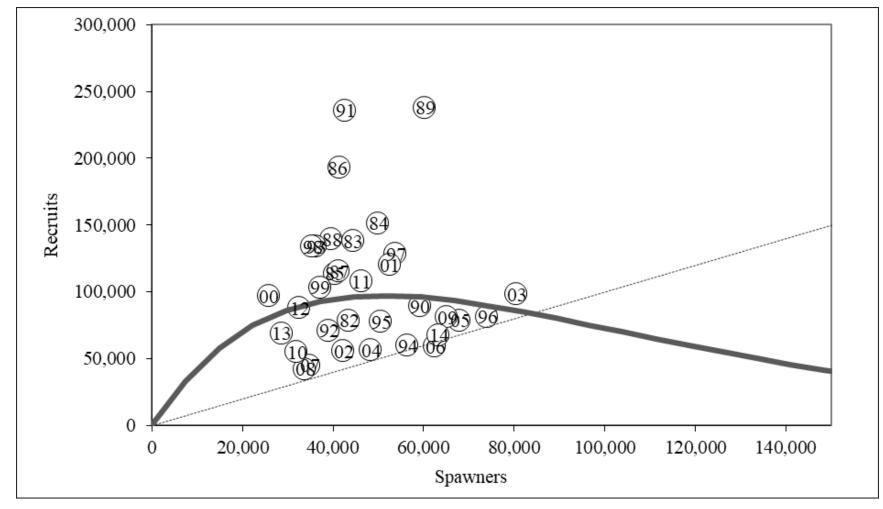


Figure 20.—Yukon River Canadian-origin Chinook salmon recruits versus spawners, Ricker curve (thick solid line), and 1:1 replacement line (thin light dotted line). Brood years 1982–2014 are included.

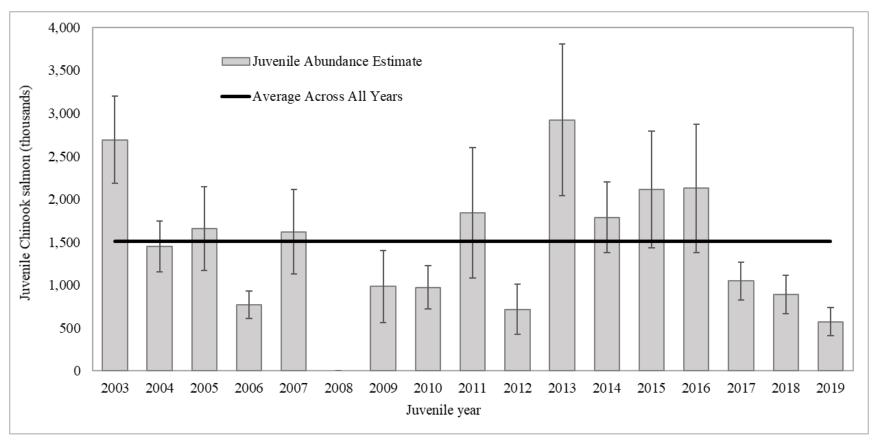


Figure 21.—Juvenile abundance estimates of Canadian-origin Chinook salmon from the Yukon River based on pelagic trawl research surveys in the northern Bering Sea (2003–2019).

Note: Error bars ranges are one deviation above and below the abundance estimates. No survey occurred in 2020 due to the COVID-19 pandemic.

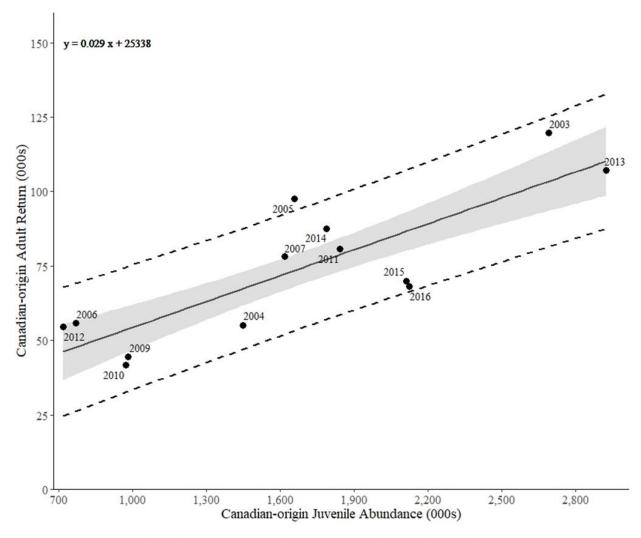


Figure 22.—The relationship between juvenile abundance estimated from surface trawl surveys and adult returns for Canadian-origin Chinook salmon from the Yukon River. Data labels indicate juvenile year, gray shaded area indicates the 80% confidence interval, and black dashed lines indicate the 80% prediction interval.

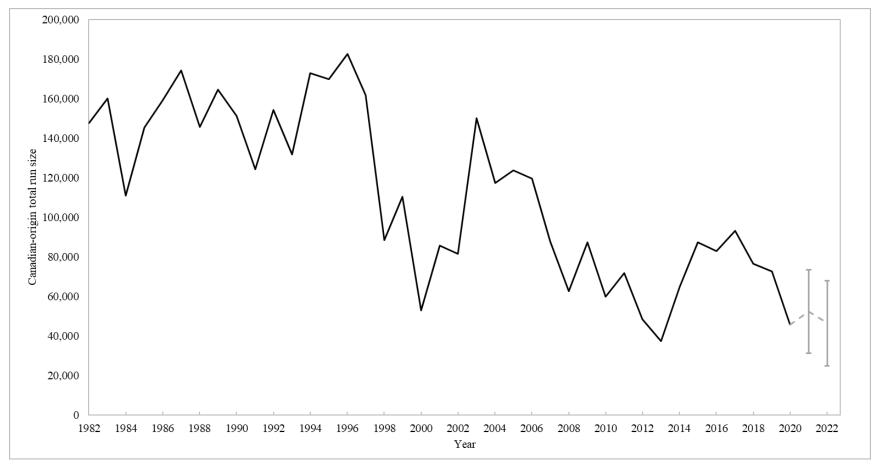


Figure 23.—Historic run size estimates of Canadian-origin Chinook salmon in the Yukon River (solid line 1982–2020) and preliminary projected run sizes based on juvenile abundance (light dashed line 2021–2022).

APPENDIX A: TABLES

Appendix A1.—Passage estimates from the Pilot Station sonar, Alaska, Yukon River drainage, 1995 and 1997–2020.

		Chinook			Chum					
Year a	Large b	Small	Total	Summer	Fall ^c	Total	Coho c	Pink	Other d	Total
1995	164,867	45,874	210,741	3,632,179	1,148,916	4,781,095	119,893	53,277	708,747	5,873,753
1997 ^e	114,519	85,244	199,763	1,359,117	579,767	1,938,884	118,065	3,872	376,841	2,637,425
1998	88,129	19,909	108,038	824,901	375,222	1,200,123	146,365	103,416	210,677	1,768,619
1999	159,805	24,413	184,218	969,459	451,505	1,420,964	76,174	3,947	337,701	2,023,004
2000	48,321	6,239	54,560	448,665	273,206	721,871	206,365	61,389	262,627	1,306,812
2001 f	104,060	17,029	121,089	442,546	408,961	851,507	160,272	2,846	265,749	1,401,463
2002	111,290	40,423	151,713	1,097,769	367,886	1,465,655	137,077	123,698	405,534	2,283,677
2003	287,729	30,359	318,088	1,183,009	923,540	2,106,549	280,552	11,370	379,651	3,096,210
2004	138,317	62,444	200,761	1,344,213	633,368	1,977,581	207,844	399,339	391,939	3,177,464
2005 g	227,154	31,861	259,015	2,570,696	1,893,688	4,464,384	194,372	61,091	364,250	5,343,112
2006	192,296	36,467	228,763	3,780,760	964,238	4,744,998	163,889	183,006	531,047	5,851,703
2007	119,622	50,624	170,246	1,875,491	740,195	2,615,686	192,406	126,282	761,657	3,866,277
2008	138,220	36,826	175,046	1,849,553	636,525	2,486,078	145,378	580,127	306,225	3,692,854
2009 h	128,154	49,642	177,796	1,477,186	274,227	1,751,413	240,779	34,529	589,916	2,794,433
2010	118,335	26,753	145,088	1,415,027	458,103	1,873,130	177,724	917,731	567,454	3,681,127
2011	117,213	31,584	148,797	2,051,501	873,877	2,925,378	149,533	9,754	453,537	3,686,999
2012	106,529	21,026	127,555	2,136,476	778,158	2,914,634	130,734	420,344	464,058	4,057,325
2013	120,536	16,269	136,805	2,849,683	865,295	3,714,978	110,515	6,126	732,009	4,700,433
2014	120,060	43,835	163,895	2,020,309	706,630	2,726,939	283,421	679,126	584,831	4,438,212
2015	105,063	41,796	146,859	1,591,505	669,483	2,260,988	121,193	39,690	853,989	3,422,719
2016	135,013	41,885	176,898	1,921,748	994,760	2,916,508	168,297	1,364,849	355,365	4,981,917
2017	217,821	45,193	263,014	3,093,735	1,829,931	4,923,666	166,320	166,529	796,199	6,315,728
2018	122,394	39,437	161,831	1,612,688	928,664	2,541,352	136,347	689,607	547,959	4,077,096
2019	172,242	47,382	219,624	1,402,925	842,041	2,244,966	86,401	42,353	568,576	3,161,920
2020	124,905	37,347	162,252	692,602	262,439	955,041	107,680	207,942	388,287	1,821,202

Note: Historical passage estimates at the Pilot Station sonar were adjusted in 2016 after the adoption of a new species apportionment model.

^a Estimates for all years were generated with the most current apportionment model and may differ from earlier estimates.

b Chinook salmon >655 mm measured mid eye to tail fork length.

^c This estimate may not include the entire run. Most years operated through August 31, except 1995 (September 3), 1998 (September 9), 2000 (September 14), 2008–2014, 2017–2018, and 2020 (September 7).

^d Includes sockeye salmon, cisco, whitefish, sheefish, burbot, suckers, Dolly Varden, and northern pike.

^e The Yukon River sonar project did not operate at full capacity in 1996 and there are no passage estimates for this year.

f High water levels were experienced on site at Pilot Station in 2001 throughout the season, and passage estimates are considered conservative.

g Estimates include extrapolations for the dates June 10–June 18, 2005 to account for the time before the DIDSON was deployed.

h High water levels were experienced at Pilot Station in 2009 during the summer season and extreme low water occurred during the fall season, and therefore passage estimates are considered conservative.

Appendix A2.-Alaska commercial salmon sales (number of fish) by district and subdistrict, 2020.

	Number of		Summer			
District/Subdistrict	fishermen a	Chinook	chum	Fall chum b	Coho b	Pink
1	151	0	9,600	_	_	4,845
2	36	0	4,355	_	_	0
3 b	_	_	_	_	_	_
Total Lower Yukon	183	0	13,955	0	0	4,845
Anvik River	_	_	_	_	_	_
4-A	_	_	_	_	_	_
4-BC	_	_	_	_	_	_
Subtotal District 4 ^b	0	0	0	0	0	0
5-ABC	_	_	_	_	_	_
_ 5-D	_	_	_	_	_	_
Subtotal District 5 ^b	0	0	0	0	0	0
6-ABC ^b	-	_	_	_	_	_
Total Upper Yukon	0	0	0	0	0	0
Total Alaska	183	0	13,955	0	0	4,845

Note: En dash indicates no commercial fishing activity occurred. Does not include ADF&G test fishery sales.

^a Number of unique permits fished by district, subdistrict, or area. Totals by area may not add up due to transfers between districts or subdistricts.

^b Fishery did not operate in 2020.

Appendix A3.—Yukon River Canadian-origin Chinook salmon total run by brood year and escapement by year.

Brood			Ag	e					
year	3	4	5	6	7	8	Return	Spawners	R/S
1974						4,388			
1975					34,696	278			
1976				82,801	20,859	47			
1977			18,964	107,561	20,000	547	147,071		
1978		5,204	28,339	63,387	32,684	793	130,406		
1979	1,534	3,168	21,293	99,647	44,935	1,202	171,780		
1980	15	6,308	10,976	78,443	30,605	4,332	130,679		
1981	0	1,505	29,105	124,142	65,576	1,076	221,404		
1982	0	5,246	13,141	32,404	27,166	171	78,128	43,538	1.7
1983	560	4,970	32,100	86,220	13,707	108	137,665	44,475	3.1
1984	69	11,041	37,824	81,832	20,060	192	151,018	50,005	3.0
1985	223	11,873	36,643	59,757	4,771	64	113,331	40,435	2.8
1986	356	18,829	42,293	114,716	16,137	138	192,470	41,425	4.6
1987	7	2,142	27,309	69,477	15,988	18	114,941	41,307	2.7
1988	21	6,760	35,595	83,506	12,893	68	138,844	39,699	3.5
1989	471	10,480	68,225	126,578	31,814	0	237,568	60,299	3.9
1990	125	4,665	22,520	56,724	4,836	9	88,880	59,212	1.5
1991	363	7,470	89,841	126,660	11,207	0	235,540	42,728	5.5
1992	309	4,035	24,212	39,924	2,295	0	70,775	39,155	1.8
1993	21	5,860	34,834	84,973	7,450	477	133,615	36,244	3.6
1994	132	2,189	20,831	27,856	8,334	0	59,341	56,449	1.0
1995	119	2,330	15,468	48,952	10,113	10	76,991	50,673	1.5
1996	19	2,069	23,375	43,760	11,789	2	81,013	74,060	1.0
1997	0	4,526	22,321	94,778	6,426	14	128,065	53,821	2.3
1998	0	5,237	41,060	80,818	6,271	0	133,386	35,497	3.7
1999	56	2,330	25,048	73,931	1,411	0	102,775	37,184	2.7
2000	12	4,954	40,562	49,713	1,202	0	96,443	25,870	3.7
2001	0	2,813	63,400	51,278	2,223	0	119,713	52,564	2.2
2002	21	4,962	29,302	20,646	227	9	55,166	42,359	1.3
2003	0	6,118	37,202	52,067	2,261	1	97,649	80,594	1.2
2004	0	2,531	26,680	21,938	4,763	1	55,913	48,469	1.1
2005	9	8,232	29,477	38,855	1,755	0	78,327	67,985	1.1
2006	15	6,009	25,248	25,697	1,567	0	58,536	62,630	0.9
2007	47	2,858	17,737	22,193	1,694	0	44,529	34,904	1.2
2008	1	3,131	11,091	25,750	1,853	1	41,828	33,883	1.2
2009	173	2,325	32,868	44,942	454	0	80,762	65,278	1.2
2010	1	4,379	29,627	19,751	876	0	54,634	32,014	1.7
2011	194	10,645	52,818	42,322	1,209	1	107,188	46,307	2.3

Appendix A3.—Page 2 of 2.

Brood			Ag	e					
year	3	4	5	6	7	8	Return	Spawners	R/S
2012	255	9,650	44,760	31,923	858	1	87,448	32,656	2.68
2013	92	5,116	33,631	29,713	1,453		70,004	28,669	2.44
2014	115	9,566	35,089	22,475			67,245	63,331	1.06
2015	28	6,954	18,310					82,674	
2016	5	3,160						68,798	
2017	102							68,315	
2018								54,474	
2019								42,052	
2020								30,967	
Average 1	982–2012						103,828	46,887	2.35
							Contrast	3.12	

Note: Spawner data are derived from a 3-area aerial survey index of combined counts from Big Salmon, Little Salmon, and Nisutlin rivers (1982–2001), radiotelemetry (2002–2004), and the mainstem Yukon River sonar at Eagle (2005–2020). Shaded values are preliminary estimates by brood year. Average includes the years with complete brood information through age-7. Ages used were from samples collected at the mainstem sonar test fishery (2007–present) and converted fish wheel data based on a length selectivity method for years 1982–2006 (Hamazaki 2018).

Appendix A4.—Chinook salmon age and sex percentages from selected Yukon River monitoring projects operated in Alaska, 2020.

	Sample	_			Age				Mean
Location	size		3	4	5	6	7	Total	length
Pilot Station	614	Male	0.3	9.9	24.8	10.1	1.1	46.3	674
test fishery ^a		Female	0.0	0.7	19.5	30.6	2.9	53.7	772
		Total	0.3	10.6	44.3	40.7	4.1	100.0	726
Eagle test fishery ^a	427	Male	0.0	3.5	24.4	14.8	1.4	44.0	758
		Female	0.2	1.6	14.1	38.2	1.9	56.0	794
		Total	0.2	5.2	38.4	52.9	3.3	100.0	777

Note: Length is measured mid eye to the fork of tail to the nearest millimeter. Male and female percentages are based on the subset of aged samples and may differ from estimates based on all samples.

^a Samples were from test fishing with drift gillnets.

87

Appendix A5.-Yukon River Chinook salmon age, female percentage, and mean length from Eagle sonar project, 2005–2020.

				Percent by age	class			
		Age-3	Age-4	Age-5	Age-6	Age-7		
Year	Sample size	(1.1)	(1.2, 2.1)	(1.3, 2.2)	(1.4, 2.3)	(1.5, 2.4)	Percent female	Mean length
2005	171	0.0	8.2	50.3	38.0	3.5	33.9	779
2006	256	0.0	16.8	60.2	22.7	0.4	37.9	737
2007	389	0.0	5.7	40.1	53.7	0.5	43.4	787
2008	375	0.0	2.7	56.3	36.5	4.5	36.8	780
2009	647	0.0	7.7	33.2	59.0	0.0	39.6	791
2010	336	0.0	7.4	46.4	42.0	4.2	40.5	770
2011	419	0.0	2.1	29.6	60.4	7.9	51.3	809
2012	246	0.4	6.1	29.7	59.3	4.5	49.6	780
2013	265	0.0	4.2	27.5	63.4	4.9	51.7	807
2014	606	0.2	6.6	50.5	40.1	2.6	35.1	763
2015	926	0.3	10.8	34.3	52.4	2.2	42.1	776
2016	666	0.0	9.2	65.0	25.2	0.6	32.4	759
2017	719	0.1	4.2	46.5	48.1	1.1	50.9	797
2018	700	0.0	10.3	43.0	45.0	1.7	43.4	769
2019	554	0.0	8.5	48.4	41.9	1.3	47.8	772
2020	513	0.2	5.2	38.4	52.9	3.3	56.0	777
Average (2005–2019)	485	0	7	44	46	3	42	778
5-yr Average (2015–2019)	713	0	9	47	43	1	43	775

Note: Length is measured mid eye to the fork of tail to the nearest millimeter. Age nomenclature (years in freshwater "." years at sea). Slight modifications have been made to the drift gillnet mesh sizes used at the Eagle sonar during the first three years of operation (2005–2007); however, mesh sizes measuring 5.25, 6.5, 7.5, and 8.5-inch have been used consistently since 2007. Small fish may be underrepresented in the samples, due to not fishing gillnets smaller than 5.25-inch mesh.

Appendix A6.—Yukon River Chinook salmon harvest percentage by stock group for U.S. harvest, U.S. and Canada harvest combined, and the percentage of the upper stock group harvest by each country, 1981–2020.

	Stock gr	roups (U.S.	harvest)	Stock groups	s (U.S. and Car	nada harvest)			
Year	Lower	Middle	Upper	Lower	Middle	Upper	U.S.	Canada	
1981	5.9	59.8	34.3	5.4	54.5	40.1	78.1	21.9	
1982	15.4	27.5	57.1	13.9	24.7	61.4	83.5	16.5	
1983	14.2	37.0	48.9	12.9	33.7	53.3	83.7	16.3	
1984	28.0	44.3	27.7	25.3	40.2	34.5	72.7	27.3	
1985	30.4	24.6	45.1	27.6	22.3	50.1	81.6	18.4	
1986	22.3	10.9	66.8	19.5	9.6	70.9	82.7	17.3	
1987	17.4	21.4	61.2	15.9	19.6	64.5	86.7	13.3	
1988	24.9	18.1	57.0	21.8	15.8	62.5	79.8	20.2	
1989	27.2	17.7	55.1	24.4	15.9	59.7	82.9	17.1	
1990	22.8	28.4	48.8	20.2	25.2	54.7	79.2	20.8	
1991	31.8	28.7	39.6	28.0	25.3	46.7	74.8	25.2	
1992	18.0	24.1	57.8	16.3	21.8	61.9	84.5	15.5	
1993	23.7	28.0	48.3	21.5	25.4	53.1	82.6	17.4	
1994	20.4	24.1	55.5	18.2	21.4	60.4	81.8	18.2	
1995	20.0	25.0	55.0	17.9	22.4	59.7	82.4	17.6	
1996	24.0	11.8	64.2	21.0	10.4	68.6	81.9	18.1	
1997	28.9	18.3	52.8	26.4	16.8	56.9	84.8	15.2	
1998	34.7	18.5	46.8	32.7	17.4	49.8	88.8	11.2	
1999	44.1	6.9	49.0	40.1	6.3	53.6	83.0	17.0	
2000	37.5	13.6	48.9	33.9	12.3	53.8	81.9	18.1	
2001	37.5	19.0	43.5	31.6	16.0	52.4	69.8	30.3	
2002	22.1	33.3	44.6	19.4	29.2	51.4	76.3	23.5	
2003	7.5	31.7	60.8	6.8	28.9	64.3	86.2	13.8	
2004	16.9	31.6	51.5	15.3	28.8	55.9	83.7	16.3	
2005	23.4	24.2	52.4	20.7	21.4	57.9	80.1	19.9	
2006	19.2	30.2	50.5	17.6	27.6	54.9	84.1	15.9	
2007	13.7	32.3	54.0	13.0	30.6	56.4	90.5	9.5	
2008	18.2	30.0	51.8	17.0	28.0	55.0	88.1	11.9	
2009	12.7	35.8	51.6	11.1	31.4	57.5	78.8	21.2	
2010	18.7	34.3	47.0	17.8	32.7	49.5	90.5	9.5	
2011	15.6	33.3	51.1	13.9	29.8	56.3	81.0	19.0	
2012	14.4	37.5	48.2	13.3	34.8	51.9	86.3	13.7	
2013	16.0	25.0	59.0	13.4	21.0	65.6	75.5	24.5	
2014	29.8	26.0	44.3	25.4	27.8	46.8	93.4	6.6	
2015	15.6	36.3	48.1	13.5	31.3	55.2	75.2	24.8	
2016	15.1	33.5	51.5	13.3	29.5	57.2	80.4	19.6	
2017	9.3	35.0	55.6	8.5	32.1	59.3	85.9	14.1	
2018	8.6	31.8	59.6	7.9	29.2	62.9	87.2	12.8	
2019	14.0	32.3	53.7	13.3	30.6	56.1	91.0	9.0	
2020 a	11.1	35.5	53.4	10.0	32.1	57.8	83.7	16.3	
Average				10.0	02.1	27.0	0017	10.0	
2010–2019	15.7	32.5	51.8	14.0	29.9	56.1	84.6	15.4	
2015–2019	12.5	33.8	53.7	11.3	30.6	58.2	83.9	16.1	
Minimum	5.9	6.9	27.7	5.4	6.3	34.5	69.8	6.6	
Maximum	44.1	59.8	66.8	40.1	54.5	70.9	93.4	30.3	
Note: The Lowe			00.0			A lacks portion of		Divor drainaga	

Note: The Lower and Middle stock groups are composed of tributary populations in the Alaska portion of the Yukon River drainage. The Upper stock group is composed of tributary populations in Canada. U.S. fisheries harvest all stock groups, while Canadian fisheries only harvest the Upper (Canadian) stock. Stock composition of U.S. harvest has been estimated annually from dedicated harvest sampling programs. Minimum and maximum values exclude the most recent year data.

^a Data are preliminary.

Appendix A7.—Stock group percentage by major stock and by country, from chum salmon beginning July 19 at the Pilot Station sonar, Yukon River, 1999–2020.

	Season stock	groups	U.S. st	ock groups	Fall stock cou	ıntry groups
Year ^a	Summer	Fall	Tanana fall	Border U.S. b	Fall U.S.	Canada
1999	16.2	83.8	_	_	_	_
2000	12.0	88.0	_	_	_	_
2001	13.3	86.7	_	_	_	_
2002	19.2	80.8	_	_	_	_
2003	_	_	_	_	_	_
2004	13.6	86.4	31.5	27.4	58.8	27.6
2005	11.2	88.8	20.6	42.7	63.3	25.5
2006	18.2	81.8	16.8	36.1	52.9	28.9
2007	21.2	78.8	22.9	25.7	48.6	30.2
2008	16.2	83.8	21.8	31.2	53.1	30.8
2009	24.4	75.6	19.4	30.0	49.4	26.2
2010	24.9	75.1	24.2	19.6	43.8	31.3
2011	13.7	86.3	13.3	38.4	51.7	34.5
2012	20.0	80.0	25.9	31.8	57.8	22.2
2013	11.2	88.8	33.1	23.7	56.7	32.1
2014	9.7	90.3	28.7	32.2	60.9	29.4
2015	22.7	77.3	22.0	28.8	50.8	26.4
2016	20.1	79.9	23.5	28.9	52.5	27.4
2017	11.9	88.1	32.5	33.2	65.6	22.4
2018	17.3	82.7	35.1	22.9	58.0	24.7
2019	34.8	65.2	24.3	19.8	44.2	21.0
2020	30.0	70.0	30.8	22.9	53.7	16.4
Average						
2005–2019	18.5	81.5	24.3	29.7	53.9	27.5
2015–2019	21.4	78.6	27.5	26.7	54.2	24.4
Minimum	9.7	65.2	13.3	19.6	43.8	21.0
Maximum	34.8	90.3	35.1	42.7	65.6	34.5

Note: July 19 is the date when U.S. management switches from a focus on summer chum to fall chum salmon in this section of the river. Minimum and maximum values exclude the most recent year data. En dash indicates no analysis is available.

^a Stock identification methods from 1999 through 2002 were based on allozyme analysis. No samples were collected in 2003. Beginning in 2004, analysis was based on microsatellite baseline.

^b Border U.S. stocks include Big Salt, Teedriinjik (Chandalar), Sheenjek and Draanjik (Black) rivers.

Appendix A8.—Drainagewide Yukon River fall chum salmon estimated brood year production and return per spawner estimates 1974—2020.

Brood		Number o	f salmon by age	, a			Return/
year	3	4	5	6	Return	Spawners b	spawner
1974	112,017	654,046	96,746	0	862,809	685,200	1.26
1975	197,691	1,725,889	67,333	0	1,990,914	2,220,000	0.90
1976	143,742	644,242	138,736	4,889	931,609	557,600	1.67
1977	112,580	1,082,886	196,160	6,351	1,397,976	727,500	1.92
1978	22,321	374,987	106,866	0	504,173	557,400	0.90
1979	45,040	906,515	310,715	4,233	1,266,504	1,351,000	0.94
1980	13,634	411,169	200,180	2,852	627,834	335,850	1.87
1981	51,788	997,034	339,584	8,934	1,397,340	560,450	2.49
1982	12,434	495,669	173,136	782	682,021	247,900	2.75
1983	15,223	935,414	233,352	4,040	1,188,029	508,350	2.34
1984	6,581	427,316	162,759	9,142	605,797	361,350	1.68
1985	47,598	917,968	305,462	2,604	1,273,632	698,400	1.82
1986	1,454	524,145	340,461	5,702	871,763	535,300	1.63
1987	12,165	677,093	347,344	7,733	1,044,335	717,700	1.46
1988	12,138	212,320	161,775	33,287	c 419,520	353,100	1.19
1989	3,286	303,344	410,542	c 20,898	738,069	540,900	1.36
1990	683	665,743	c 455,593	33,287	1,155,306	498,650	2.32
1991	0	c 1,127,210	398,358	13,019	1,538,588	593,200	2.59
1992	7,834	699,580	207,567	4,124	919,104	419,600	2.19
1993	9,889	482,144	107,945	3,258	603,236	382,400	1.58
1994	4,550	237,392	149,212	2,529	c 393,684	940,000	0.42
1995	2,496	266,589	73,353	c 420	342,859	1,150,000	0.30
1996	420	174,530	c 130,130	8,369	313,449	879,800	0.36
1997	2,529	c 243,894	119,474	3,632	369,530	537,200	0.69
1998	440	270,880	59,802	6,308	337,430	281,100	1.20
1999	29,245	719,543	195,655	17,176	961,620	288,100	3.34
2000	9,048	320,241	114,194	0	443,483	224,300	1.98
2001	131,012	2,049,118	718,937	34,751	2,933,817	329,300	8.91
2002	0	464,740	250,284	15,218	730,242	400,200	1.82
2003	27,597	875,066	477,379	17,995	1,398,037	712,800	1.96
2004	0	362,236	155,305	2,524	520,066	576,600	0.90
2005	2,435	398,145	92,321	3,893	496,794	1,890,000	0.26
2006	26,832	397,089	359,551	30,530	d 814,002	940,600	0.87

Appendix A8.–Page 2 of 2.

Brood		Number of	saln	non by age a					Return/	
year	3	4		5		6	Return	Spawners b	spawner	
2007	95,157	862,242		188,603	d	9,065	1,155,067	954,200	1.21	
2008	12,406	854,621	d	414,560		9,476	1,291,064	638,900	2.02	
2009	11,945	d 785,988		426,012		22,616	1,246,561	504,800	2.47	
2010	2,296	496,329		245,677		9,166	753,467	506,900	1.49	
2011	22,952	486,301		181,968		1,775	692,997	910,400	0.76	
2012	69,059	1,168,828		328,388		5,644	1,571,918	689,100	2.28	
2013	29,099	1,901,133		318,686		3,232	2,252,151	853,800	2.64	
2014	57,087	758,789		126,619		2,609	945,103	741,300	1.27	
2015	29,716	663,718		91,059		6,357	790,850	541,000	1.46	e
2016	8,045	94,067		43,751			145,863	832,200	0.18	e
2017	5,854							1,706,000		
2018								654,300		
2019								528,000		
2020								187,000		
Average 19	Average 1974–2014						975,168	678,079	1.76	
Minimum	Minimum						313,449	224,300	0.26	
Maximum							2,933,817	2,220,000	8.91	

Note: Spawner data are derived from Bayesian spawner-recruit model 1974–2019. Average includes the years with complete brood information through age-6. Minimums and maximum indicate the lowest and highest values for each year presented through 2014.

^a Age composition is based on samples from the lower Yukon test fishery gillnets, weighted by test fish catch per unit effort. Prior to 1983 commercial sampling was used to supplement test fishery age samples.

b Contrast in escapement data is 9.90. Values are rounded to the nearest 100.

Based upon expanded test fish age composition estimates for years in which the test fishery terminated early both in 1994 and 2000

^d Combination of Mt. Village test fishery weighted ages with Lower Yukon test fishery to bolster sample sizes.

e Return per spawner includes preliminary estimates from incomplete brood year (shaded value).

Appendix A9.—Escapement, rebuilding and interim goals for Canadian-origin Chinook and fall chum salmon stocks, 1985–2021.

	Chinook salmon	Canadian-origin stock target	um salmon
Year	Mainstem	Mainstem	Fishing Branch River
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 ^a 2004 2005 2006 2007 2008 2009 2010	33,000–43,000		<u> </u>
1986	33,000–43,000		
1987	33,000–43,000	90,000-135,000	50,000-120,000
1988	33,000-43,000	90,000-135,000	50,000-120,000
1989	33,000–43,000	90,000-135,000	50,000-120,000
1990	18,000	80,000	50,000-120,000
1991	18,000	80,000	50,000-120,000
1992	18,000	51,000	50,000-120,000
1993	18,000	51,000	50,000-120,000
	18,000	61,000	50,000–120,000
1995	18,000	80,000	50,000-120,000
1996	28,000	65,000	50,000-120,000
1997	28,000	49,000	50,000-120,000
1998	28,000	80,000	50,000-120,000
1999	28,000	80,000	50,000-120,000
2000	28,000	80,000	50,000-120,000
2001	28,000	80,000	50,000-120,000
2002	28,000	60,000	50,000-120,000
2003a	28,000 b	65,000	15,000
2004	28,000	65,000	13,000
2005	28,000	65,000	24,000
2006	28,000	80,000	28,000
2007	33,000-43,000	80,000	34,000
2008	45000 °	80,000	22,000-49,000
2009	45000	80,000	22,000-49,000
2010	42,500–55,000 e	70,000–104,000 f	22,000-49,000
2011	42,500-55,000	70,000-104,000	22,000-49,000
2012	42,500-55,000	70,000-104,000	22,000-49,000
2013	42,500-55,000	70,000-104,000	22,000-49,000
2014	42,500-55,000	70,000-104,000	22,000-49,000
2015	42,500-55,000	70,000-104,000	22,000-49,000
2016	42,500-55,000	70,000-104,000	22,000-49,000
2017	42,500-55,000	70,000–104,000	22,000-49,000
2018	42,500-55,000	70,000–104,000	22,000–49,000
2019	42,500-55,000	70,000–104,000	22,000-49,000
2020	42,500–55,000	70,000–104,000	22,000-49,000
2021 ^g	42,500–55,000	70,000–104,000	22,000-49,000

Appendix A9.—Page 2 of 2.

Note: As per the Yukon River Salmon Agreement (YRSA), the Yukon River Panel (YRP) may recommend that both parties manage the current year salmon run to achieve annual stabilization/rebuilding/interim spawning escapement goals that differ from the escapement goals outlined in Appendix 1 and 2 of the YRSA. The goals shown in this table document what both parties managed to achieve in each year, based on recommendations by the YRP. All single numbers are considered minimums.

- ^a Treaty was signed by governments in December 2002.
- b In 2003, the Chinook salmon goal was set at 25,000 fish. However, if the U.S. conducted a commercial fishery the goal would be increased to 28,000 fish.
- c Interim management escapement goal (IMEG) assessed using sonar near Eagle (previous years were measured by mark–recapture abundance estimates).
- ^d Interim Management Escapement Goal (IMEG) established for 2008–2010, based on percentile method.
- ^e IMEG of 42,500 to 55,000 fish recommended in 2010, based on levels selected from several unpublished analyses.
- f IMEG established in 2010 based on brood table of Canadian-origin mainstem stocks (1982–2003).
- ^g Chinook salmon interim goal was recommended by the JTC for consideration by the YRP. Fall chum salmon interim goals were approved by YRP in 2020.

Appendix A10.—Fall chum salmon age and sex percentages with average lengths from selected Yukon River monitoring projects, 2020.

				1		Mean			
Location	Sample size	-	3	4	5	6	7	Total	length
Emmonak, Alaska ^a	634	Males	2.5	21.1	22.4	0.5	0.0	46.5	601
		Females	0.6	24.9	27.1	0.8	0.0	53.5	596
		Total	3.2	46.1	49.5	1.3	0.0	100.0	599
Mt. Village, Alaska ^a	222	Males	2.0	22.4	22.9	1.5	0.0	48.8	590
		Females	0.0	22.0	28.8	0.5	0.0	51.2	580
		Total	2.0	44.4	51.7	2.0	0.0	100.0	585
Delta River, Alaska b	160	Males	1.1	22.4	24.1	0.9	0.0	48.5	590
		Females	0.0	25.2	26.3	0.0	0.0	51.5	568
		Total	1.1	47.6	50.4	0.9	0.0	100.0	579
Yukon mainstem	142	Males	0.7	16.9	35.2	0.0	0.0	52.8	613
at Eagle, Alaska a		Females	0.0	20.4	26.8	0.0	0.0	47.2	580
		Total	0.7	37.3	62.0	0.0	0.0	100.0	598
Fishing Branch	266	Males	1.5	21.4	26.3	0.4	0.0	49.6	595
River, Canada ^c		Females	0.8	33.5	16.2	0.0	0.0	50.4	574
		Total	2.3	54.9	42.5	0.4	0.0	100.0	584

Note: Length is measured mid eye to the fork of tail to the nearest millimeter.

^a Samples were from test fishing with drift gillnets, structure is scales.

^b Samples were handpicked carcasses from east and middle channels, structure is vertebra.

^c Samples were collected live at the weir, structure is scales.

APPENDIX B: TABLES

Appendix B1.-Alaskan and Canadian total utilization of Yukon River Chinook, chum, and coho salmon, 1961-2020.

	Alaska/U.S. a, b			Yukon/Canada ^c			Total		
Year	Chinook	Other salmon	Total	Chinook	Other salmon d	Total	Chinook	Other salmon	Total
1961	141,152	461,597	602,749	13,246	9,076	22,322	154,398	470,673	625,071
1962	105,844	434,663	540,507	13,937	9,436	23,373	119,781	444,099	563,880
1963	141,910	429,396	571,306	10,077	27,696	37,773	151,987	457,092	609,079
1964	109,818	504,420	614,238	7,408	12,221	19,629	117,226	516,641	633,867
1965	134,706	484,587	619,293	5,380	11,789	17,169	140,086	496,376	636,462
1966	104,822	309,502	414,324	4,452	13,324	17,776	109,274	322,826	432,100
1967	146,104	352,397	498,501	5,150	16,961	22,111	151,254	369,358	520,612
1968	118,530	270,818	389,348	5,042	11,633	16,675	123,572	282,451	406,023
1969	104,999	424,399	529,398	2,624	7,776	10,400	107,623	432,175	539,798
1970	93,019	585,760	678,779	4,663	3,711	8,374	97,682	589,471	687,153
1971	136,091	547,448	683,539	6,447	17,471	23,918	142,538	564,919	707,457
1972	113,098	461,617	574,715	5,729	7,532	13,261	118,827	469,149	587,976
1973	99,696	779,158	878,854	4,522	10,182	14,704	104,218	789,340	893,558
1974	117,847	1,229,678	1,347,525	5,631	11,646	17,277	123,478	1,241,324	1,364,802
1975	76,959	1,307,037	1,383,996	6,000	20,600	26,600	82,959	1,327,637	1,410,596
1976	105,950	1,026,908	1,132,858	5,025	5,200	10,225	110,975	1,032,108	1,143,083
1977	117,014	1,090,758	1,207,772	7,527	12,479	20,006	124,541	1,103,237	1,227,778
1978	130,476	1,615,312	1,745,788	5,881	9,566	15,447	136,357	1,624,878	1,761,235
1979	159,232	1,596,133	1,755,365	10,375	22,084	32,459	169,607	1,618,217	1,787,824
1980	197,665	1,730,960	1,928,625	22,846	23,718	46,564	220,511	1,754,678	1,975,189
1981	188,477	2,097,871	2,286,348	18,109	22,781	40,890	206,586	2,120,652	2,327,238
1982	152,808	1,265,457	1,418,265	17,208	16,091	33,299	170,016	1,281,548	1,451,564

Appendix B1.–Page 2 of 3.

	Alaska/U.S. a, b				Yukon/Canada c		Total		
Year	Chinook	Other salmon	Total	Chinook	Other salmon d	Total	Chinook	Other salmon	Total
1983	198,436	1,678,597	1,877,033	18,952	29,490	48,442	217,388	1,708,087	1,925,475
1984	162,683	1,548,101	1,710,784	16,795	29,767	46,562	179,478	1,577,868	1,757,346
1985	187,327	1,657,984	1,845,311	19,301	41,515	60,816	206,628	1,699,499	1,906,127
1986	146,004	1,758,825	1,904,829	20,364	14,843	35,207	166,368	1,773,668	1,940,036
1987	192,007	1,276,066	1,468,073	17,614	44,786	62,400	209,621	1,320,852	1,530,473
1988	150,009	2,360,718	2,510,727	21,427	33,915	55,342	171,436	2,394,633	2,566,069
1989	157,632	2,292,211	2,449,843	17,944	23,490	41,434	175,576	2,315,701	2,491,277
1990	149,433	1,055,515	1,204,948	19,227	34,304	53,531	168,660	1,089,819	1,258,479
1991	154,651	1,335,111	1,489,762	20,607	35,653	56,260	175,258	1,370,764	1,546,022
1992	169,642	880,535	1,050,177	17,903	21,312	39,215	187,545	901,847	1,089,392
1993	161,718	362,551	524,269	16,611	14,150	30,761	178,329	376,701	555,030
1994	171,654	567,074	738,728	21,198	38,342	59,540	192,852	605,416	798,268
1995	179,748	1,455,736	1,635,484	20,884	46,109	66,993	200,632	1,501,845	1,702,477
1996	141,649	1,143,992	1,285,641	19,612	24,395	44,007	161,261	1,168,387	1,329,648
1997	176,025	560,777	736,802	16,528	15,900	32,428	192,553	576,677	769,230
1998	99,760	201,480	301,240	5,937	8,168	14,105	105,697	209,648	315,345
1999	125,427	250,198	375,625	12,468	19,736	32,204	137,895	269,934	407,829
2000	45,867	120,424	166,291	4,879	9,283	14,162	50,746	129,707	180,453
2001	56,620	131,500	188,120	10,144	9,872	20,016	66,764	141,372	208,136
2002	69,240	137,688	206,928	9,258	8,567	17,825	78,498	146,255	224,753
2003	101,000	214,323	315,323	9,619	11,435	21,054	110,619	225,758	336,377
2004	114,370	214,744	329,114	11,238	9,930	21,168	125,608	224,674	350,282
2005	86,369	493,542	579,911	11,371	18,583	29,954	97,740	512,125	609,865

Appendix B1.—Page 3 of 3.

	Alaska/U.S. a, b			Yukon/Canada ^c			Total		
Year	Chinook	Other salmon	Total	Chinook	Other salmon d	Total	Chinook	Other salmon	Total
2006	96,067	553,299	649,366	9,072	11,908	20,980	105,139	565,207	670,346
2007	90,753	548,568	639,321	5,094	14,332	19,426	95,847	562,900	658,747
2008	50,362	500,029	550,391	3,713	9,566	13,279	54,075	509,595	563,670
2009	35,111	368,717	403,828	4,758	2,011	6,769	39,869	370,728	410,597
2010	55,092	415,968	471,060	2,706	5,891	8,597	57,798	421,859	479,657
2011	41,625	780,784	822,409	4,884	8,226	13,110	46,509	789,010	835,519
2012	30,831	935,740	966,571	2,200	7,033	9,233	33,031	942,773	975,804
2013	12,741	1,037,537	1,050,278	2,146	6,170	8,316	14,887	1,043,707	1,058,594
2014	3,287	950,408	953,695	103	5,166	5,269	3,390	955,574	958,964
2015	7,595	872,084	879,679	1,204	4,453	5,657	8,799	876,537	885,336
2016 e	21,704	1,376,984	1,398,688	2,946	5,750	8,696	24,650	1,382,734	1,407,384
2017 ^e	38,347	1,370,813	1,409,160	3,631	5,787	9,418	41,978	1,376,600	1,418,578
2018 e	32,213	1,225,903	1,258,116	3,098	4,856	7,954	35,311	1,230,759	1,266,070
2019 ^e	51,733	687,606	739,339	3,104	3,759	6,863	54,837	691,365	746,202
2020 e	22,780	65,864	88,644	2,543	100	2,643	25,323	65,964	91,287
Average									
1961–2019	111,203	886,915	998,118	10,099	15,956	26,055	121,301	902,872	1,024,173
2010-2019	29,517	965,383	994,900	2,602	5,709	8,311	32,119	971,092	1,003,211
2015–2019	30,318	1,106,678	1,136,996	2,797	4,921	7,718	33,115	1,111,599	1,144,714
Minimum	3,287	120,424	166,291	103	2,011	5,269	3,390	129,707	180,453
Maximum	198,436	2,360,718	2,510,727	22,846	46,109	66,993	220,511	2,394,633	2,566,069

Note: Minimum and maximum values exclude the most recent year data.

^a Catch in number of salmon. Includes estimated number of salmon harvested for the commercial production of salmon roe.

b Commercial, subsistence, personal use, test fish retained for subsistence, and sport catches combined. Beginning in 2017 report includes harvest from the Coastal District communities of Scammon Bay and Hooper Bay even though not all stocks are bound for the Yukon River. Coastal District harvest information is included in the following years: 1978, 1987–1989 and 1992 to present.

^c Catch in number of salmon. Commercial, Aboriginal, domestic, and sport catches combined.

d Includes coho salmon harvests in First Nations public angling and commercial fisheries, most of which was harvested in the Old Crow Aboriginal fishery (99.8%).

^e Data are preliminary; particularly not yet published Alaska subsistence harvest data from 2016–2020.

Appendix B2.-Alaska harvest of Yukon River Chinook salmon, 1961-2020.

				Commercial		Personal		Test	Sport	Yukon Area
Year	Subsistence a	Commercial	b	related	c	use	d	fish sales	fish	total
1961	21,488	119,664								141,152
1962	11,110	94,734								105,844
1963	24,862	117,048								141,910
1964	16,231	93,587								109,818
1965	16,608	118,098								134,706
1966	11,507	93,315								104,822
1967	16,448	129,656								146,104
1968	12,004	106,526								118,530
1969	13,972	91,027								104,999
1970	13,874	79,145								93,019
1971	25,584	110,507								136,091
1972	20,258	92,840								113,098
1973	24,343	75,353								99,696
1974	19,758	98,089								117,847
1975	13,121	63,838								76,959
1976	18,174	87,776								105,950
1977	20,101	96,757							156	117,014
1978	30,785	99,168							523	130,476
1979	31,005	127,673							554	159,232
1980	42,724	153,985							956	197,665
1981	29,690	158,018							769	188,477
1982	28,158	123,644							1,006	152,808
1983	49,478	147,910							1,048	198,436
1984	42,428	119,904							351	162,683
1985	39,771	146,188							1,368	187,327
1986	45,238	99,970							796	146,004
1987	55,039	134,760	e			1,706			502	192,007

Appendix B2.–Page 2 of 3.

					Commercial		Personal		Test	Sport	Yukon Area
Year	Subsistence	a	Commercial	b	related	c	use	d	fish sales	fish	total
1988	45,495		100,364				2,125		1,081	944	150,009
1989	48,462		104,198				2,616		1,293	1,063	157,632
1990	48,587		95,247	e	413		2,594		2,048	544	149,433
1991	46,773		104,878	e	1,538				689	773	154,651
1992	47,077		120,245	e	927				962	431	169,642
1993	63,915		93,550		560		426		1,572	1,695	161,718
1994	53,902		113,137		703				1,631	2,281	171,654
1995	50,620		122,728		1,324		399		2,152	2,525	179,748
1996	45,671		89,671		521		215		1,698	3,873	141,649
1997	57,117		112,841		769		313		2,811	2,174	176,025
1998	54,124		43,618		81		357		926	654	99,760
1999	53,305		69,275		288		331		1,205	1,023	125,427
2000	36,404		8,515		-		75		597	276	45,867
2001	55,819		-		-		122		-	679	56,620
2002	43,742		24,128		230		126		528	486	69,240
2003	56,959		40,438		-		204		680	2,719	101,000
2004	55,713		56,151		-		201		792	1,513	114,370
2005	53,409		32,029		-		138		310	483	86,369
2006	48,593		45,829		-		89		817	739	96,067
2007	55,174		33,634		-		136		849	960	90,753
2008	45,186		4,641		-		126		-	409	50,362
2009	33,805		316		-		127		-	863	35,111
2010	44,559		9,897		-		162		-	474	55,092
2011	40,980		82	f	-		89		-	474	41,625
2012	30,415		-		-		71		-	345	30,831
2013	12,533		-		-		42		-	166	12,741
2014	3,286		-		-		1		-	0	3,287

Appendix B2.–Page 3 of 3.

					Commercial		Personal		Test	Sport	Yukon Area
Year	Subsistence	a	Commercial	b	related	c	use	d	fish sales	fish	total
2015	7,577		-		-		5		-	13	7,595
2016	21,627	g	-		-		57	g	_	20	21,704
2017	38,036	g	168	f	-		125	g	-	18	38,347
2018	31,812	g	-		-		201	g	_	200	32,213
2019	48,379	g	3,110	h	-		244	g	-	38	51,733
2020	22,668	g	-		-		112	g	-	_ i	22,780
Averages											
1961-2019	35,132		84,767		669		447		1,192	858	111,203
2010-2019	27,920		3,314		-		100		-	175	29,517
2015-2019	29,486		1,639		-		126		-	58	30,318
Minimum	3,286		82		81		1		310	0	3,287
Maximum	63,915		158,018		1,538		2,616		2,811	3,873	198,436

Note: Minimum and maximum values exclude the most recent year data.

^a Includes test fish harvest and commercial retained fish (not sold) that were utilized for subsistence. Coastal District harvest information is included in the following years: 1975–1978, 1987–1989 and 1992–present even though not all stocks harvested in the Coastal District are bound for the Yukon River.

b Includes ADF&G test fish sales prior to 1988.

^c Includes an estimate of the number of salmon harvested for the commercial production of salmon roe; including carcasses from subsistence caught fish. These data are only available since 1990.

d Regulations did not provide for personal use fisheries in the Yukon River drainage prior to 1987 and in 1990, 1991, and 1994 therefore fishing occurred under subsistence regulations.

e Includes Chinook salmon sold illegally.

No Chinook salmon were sold in the summer season. A total of 82 and 168 Chinook salmon were sold in District 1 and 2 in the fall season in 2011 and 2017 respectively.

g Data are not yet published and are considered preliminary.

h Incidental harvest to chum salmon directed fishery in the summer season and allowed sales in the fall season.

i Data are unavailable at this time.

Appendix B3.-Alaska harvest of Yukon River summer chum salmon, 1970-2020.

V	Subsistence a	Commercial b	Commercial related c	Personal use d	Test	Sport	Yukon Area
Year	Businee	Commercial	related ^c	use d	fish sales	fish	total
1970	166,504	137,006					303,510
1971	171,487	100,090					271,577
1972	108,006	135,668					243,674
1973	161,012	285,509					446,521
1974	227,811	589,892					817,703
1975	211,888	710,295					922,183
1976	186,872	600,894					787,766
1977	159,502	534,875				316	694,693
1978	171,383	1,052,226	25,761			451	1,249,821
1979	155,970	779,316	40,217			328	975,831
1980	167,705	928,609	139,106			483	1,235,903
1981	117,629	1,006,938	272,763			612	1,397,942
1982	117,413	461,403	255,610			780	835,206
1983	149,180	744,879	250,590			998	1,145,647
1984	166,630	588,597	277,443			585	1,033,255
1985	157,744	516,997	417,016			1,267	1,093,024
1986	182,337	721,469	467,381			895	1,372,082
1987	200,346	442,238	180,303	4,262		846	827,995
1988	227,829	1,148,650	468,032	2,225	3,587	1,037	1,851,360
1989	169,496	955,806 ^e	496,934	1,891	10,605	2,132	1,636,864
1990	115,609	302,625	214,552	1,827	8,263	472	643,348
1991	118,540	349,113 e	308,989		3,934	1,037	781,613
1992	142,192	332,313 e	211,264		1,967	1,308	689,044
1993	125,574	96,522	43,594	674	1,869	564	268,797
1994	124,807	80,284	178,457		3,212	350	387,110
1995	136,083	259,774	558,640	780	6,073	1,174	962,524
1996	124,738	147,127	535,106	905	7,309	1,946	817,131

Appendix B3.–Page 2 of 3.

			Commercial	Personal	Test	Sport	Yukon Area
Year	Subsistence a	Commercial b	related ^c	use d	fish sales	fish	total
1997	112,820	95,242	133,010	391	2,590	662	344,715
1998	87,366	28,611	187	84	3,019	421	119,688
1999	83,784	29,389	24	382	836	555	114,970
2000	78,072	6,624	0	30	648	161	85,535
2001	72,155	f	0	146	0	82	72,383
2002	87,056	13,558	19	175	218	384	101,410
2003	82,272	10,685	0	148	119	1,638	94,862
2004	77,934	26,410	0	231	217	203	104,995
2005	93,259	41,264	0	152	134	435	135,244
2006	115,078	92,116	0	262	456	583	208,495
2007	92,926	198,201	0	184	10	245	291,566
2008	86,514	151,186	0	138	80	371	238,289
2009	80,539	170,272	0	308	0	174	251,293
2010	88,373	232,888	0	319	0	1,183	322,763
2011	96,020	275,161	0	439	0	294	371,914
2012	126,992	319,575	0	321	2,412	271	449,571
2013	115,114	485,587	0	138	2,304	1,423	604,566
2014	86,900	530,644	0	235	0	374	618,153
2015	83,567	358,856	0	220	2,494	g 194	445,331
2016	87,992 h	525,809	0	176 h	380	264	614,621
2017	87,437 h	556,516	0	438 h	1,819	186	646,396
2018	76,926 h	576,700	0	509 h	1,028	200	655,363
2019	63,303 h	227,089	0	294 h	230	36	290,916
2020	42,597 h	13,955	0	67 h	0	_ i	56,619

Appendix B3.—Page 3 of 3.

			Commercial	Personal	Test	Sport	Yukon Area
Year	Subsistence a	Commercial b	related ^c	use d	fish sales	fish	total
Averages							
1961-2019	126,534	386,969	130,357	609	2,057	649	617,503
2010-2019	91,262	408,883	0	309	1,067	443	501,959
2015–2019	79,845	448,994	0	327	1,190	176	530,525
Minimum	63,303	6,624	0	30	0	36	72,383
Maximum	227,829	1,148,650	558,640	4,262	10,605	2,132	1,851,360

Note: Minimum and maximum values exclude the most recent year data.

- ^a Includes test fish giveaways and commercial retained fish (not sold) that were utilized for subsistence. Coastal District harvest information is included in the following years: 1987–1989 and 1992–present even though not all stocks harvested in the Coastal District are bound for the Yukon River.
- b Includes ADF&G test fish sales prior to 1988.
- ^c Includes an estimate of the number of salmon harvested for the commercial production of salmon roe; including carcasses from subsistence caught fish.
- d Regulations did not provide for personal use fisheries in the Yukon River drainage prior to 1987 and in 1990, 1991, and 1994 therefore fishing occurred under subsistence regulations.
- ^e Includes illegal sales of summer chum salmon.
- f Summer season commercial fishery was not conducted.
- g Test fish sales includes both the Lower Yukon Test Fishery sales and Purse Seine Test Fishery sales.
- ^h Data are not yet published and are considered preliminary.
- Data are unavailable at this time.

Appendix B4.-Alaska harvest of Yukon River fall chum salmon, 1961-2020.

					Commercial	Personal		Test		Yukon Area
Year	Subsistence	a	Commercial	b	related c	use	d	fish sales	e	total
1961	101,772	f, g	42,461		0					144,233
1962	87,285	f, g	53,116		0					140,401
1963	99,031	f, g								99,031
1964	120,360	f, g	8,347		0					128,707
1965	112,283	f, g	23,317		0					135,600
1966	51,503	f, g	71,045		0					122,548
1967	68,744	f, g	38,274		0					107,018
1968	44,627	f, g	52,925		0					97,552
1969	52,063	f, g	131,310		0					183,373
1970	55,501	f, g	209,595		0					265,096
1971	57,162	f, g	189,594		0					246,756
1972	36,002	f, g	152,176		0					188,178
1973	53,670	f, g	232,090		0					285,760
1974	93,776	f, g	289,776		0					383,552
1975	86,591	f, g	275,009		0					361,600
1976	72,327	f, g	156,390		0					228,717
1977	82,771	g	257,986		0					340,757
1978	84,239	g	236,383		10,628					331,250
1979	214,881		359,946		18,466					593,293
1980	167,637		293,430		5,020					466,087
1981	177,240		466,451		11,285					654,976
1982	132,092		224,187		805					357,084
1983	187,864		302,598		5,064					495,526
1984	172,495		208,232		2,328					383,055
1985	203,947		267,744		2,525					474,216
1986	163,466		139,442		577					303,485
1987	342,819	h		i		19,066				361,885
1988	153,848		133,763		3,227	3,881		27,663	;	322,382
1989	211,303		270,195		14,749	5,082		20,973	;	522,302

Appendix B4.–Page 2 of 3.

	~		Commercial	Personal	Test	Yukon Area
Year	Subsistence a	Commercial b	related ^c	use d	fish sales e	total
1990	167,900	124,174	12,168	5,176	9,224	318,642
1991	145,524	230,852	23,366	0	3,936	403,678
1992	107,808	15,721 ^j	3,301	0	1,407	128,237
1993	76,882	i		163	0	77,045
1994	123,565	3,631	4,368	0	0	131,564
1995	130,860	250,766	32,324	863	1,121	415,934
1996	129,258	88,342	17,288	356	1,717	236,961
1997	95,141	56,713	1,474	284	867	154,479
1998	62,901	i		2	0	62,903
1999	89,940	20,371	0	262	1,171	111,744
2000	19,395	i		1	0	19,396
2001	35,703	i		10	0	35,713
2002	19,674	i		3	0	19,677
2003	56,930	10,996	0	394	0	68,320
2004	62,526	4,110	0	230	0	66,866
2005	91,534	180,249	0	133	87	272,003
2006	84,002	174,542	0	333	0	258,877
2007	101,221	90,677	0	173	0	192,071
2008	89,357	119,265	0	181	0	208,803
2009	66,119	25,876	0	78	0	92,073
2010	68,645	2,550	0	3,209	0	74,404
2011	80,202	238,979	0	347	0	319,528
2012	99,309	289,692	0	410	166	389,577
2013	113,384	238,051	0	383	121	351,939
2014	92,529	115,599	0	278	30	208,436
2015	86,600	191,470	0	80	50	278,200
2016	84,650 k	465,511	0	283 k	668	551,112
2017	85,093 k	489,702	0	626 k	1,246	576,667
2018	64,494 ^k	387,788	0	514 ^k	907	453,703

Appendix B4.—Page 3 of 3.

Year	Subsistence	a	Commercial	b	Commercial related	Personal use	d	Test fish sales	e	Yukon Area total
2019	63,862	k	268,360	1	0	408	k	275		332,905
2020	6,207	k		i	0	37	k	0		6,244
Averages										
1961-2019	103,090		176,342		3,249	1,309		2,238		263,320
2010-2019	83,877		268,770		0	654		346		353,647
2015-2019	76,940		360,566		0	382		629		438,517
Minimum	19,395		2,550		0	0		0		19,396
Maximum	342,819		489,702		32,324	19,066		27,663		654,976

Note: Minimum and maximum values exclude the most recent year data.

- ^a Includes test fish harvest and commercial retained fish (not sold) that were utilized for subsistence. Coastal District harvest information is included in the following years: 1978, 1987–1989 and 1992–present even though not all stocks harvested in the Coastal District are bound for the Yukon River.
- b Includes fish sold in the round and estimated numbers of female salmon commercially harvested for production of salmon roe (see Bergstrom et al. 1992). Includes ADF&G test fish prior to 1988. Beginning in 1999, commercial harvest may include some commercial related harvest.
- ^c Includes an estimate of number of salmon harvested for the commercial production of salmon roe and the carcasses used for subsistence. In prior JTC reports, subsistence plus commercial related harvests are noted as subsistence "use".
- Regulations did not provide for personal use fisheries in the Yukon River drainage prior to 1987 and in 1990, 1991, and 1994 therefore fishing occurred under subsistence regulations.
- ^e Test fish sales is the number of salmon sold by ADF&G test fisheries.
- f Catches estimated because harvests of species other than Chinook salmon were not differentiated.
- g Minimum estimates from 1961–1978 because subsistence surveys were conducted prior to the end of the fishing season.
- h Includes an estimated 95,768 and 119,168 fall chum salmon illegally sold in Districts 5 (Yukon River) and 6 (Tanana River), respectively.
- i Commercial fishery was not conducted.
- ^j Commercial fishery operated only in District 6, the Tanana River.
- ^k Data are not yet published and are considered preliminary.
- 1 Commercial harvest includes an estimated 63,000 summer chum salmon that is removed for the total run size estimate.

Appendix B5.-Alaska harvest of Yukon River coho salmon, 1961-2020.

				Commercial	Personal		Test		Sport		Yukon Area
Year	Subsistence	a	Commercial	b related c	use	d	fish sales	e	fish	f	total
1961	9,192	g, h	2,855	0							12,047
1962	9,480	g, h	22,926	0							32,406
1963	27,699	g, h	5,572	0							33,271
1964	12,187	g, h	2,446	0							14,633
1965	11,789	g, h	350	0							12,139
1966	13,192	g, h	19,254	0							32,446
1967	17,164	g, h	11,047	0							28,211
1968	11,613	g, h	13,303	0							24,916
1969	7,776	g, h	15,093	0							22,869
1970	3,966	g, h	13,188	0							17,154
1971	16,912	g, h	12,203	0							29,115
1972	7,532	g, h	22,233	0							29,765
1973	10,236	g, h	36,641	0							46,877
1974	11,646	g, h	16,777	0							28,423
1975	20,708	g, h	2,546	0							23,254
1976	5,241	g, h	5,184	0							10,425
1977	16,333	h	38,863	0					112		55,308
1978	7,787	h	26,152	0					302		34,241
1979	9,794		17,165	0					50		27,009
1980	20,158		8,745	0					67		28,970
1981	21,228		23,680	0					45		44,953
1982	35,894		37,176	0					97		73,167
1983	23,905		13,320	0					199		37,424
1984	49,020		81,940	0					831		131,791
1985	32,264		57,672	0					808		90,744
1986	34,468		47,255	0					1,535		83,258
1987	82,371	i		j	2,523				1,292		86,186
1988	69,679		99,907	0	1,250		13,720		2,420		186,976
1989	40,924		85,493	0	872		3,945		1,811		133,045

Appendix B5.–Page 2 of 3.

			Commercial	Personal	Test	Sport	Yukon Area
Year	Subsistence a	Commercial b	related c	use d	fish sales e	fish ^f	total
1990	43,460	41,032	3,255	1,181	2,650	1,947	93,525
1991	37,388	103,180	3,506	0	2,971	2,775	149,820
1992	51,980	6,556 k	1,423	0	1,629	1,666	63,254
1993	15,812	j		0	0	897	16,709
1994	41,775	120	4,331	0	0	2,174	48,400
1995	28,377	45,939	1,074	417	193	1,278	77,278
1996	30,404	52,643	3,339	198	1,728	1,588	89,900
1997	23,945	35,320	0	350	498	1,470	61,583
1998	18,121	1	0	9	0	758	18,889
1999	20,891	1,601	0	147	236	609	23,484
2000	14,939	j		0	0	554	15,493
2001	22,122	j		34	0	1,248	23,404
2002	15,489	j		20	0	1,092	16,601
2003	23,872	25,243	0	549	0	1,477	51,141
2004	20,795	20,232	0	233	0	1,623	42,883
2005	27,250	58,311	0	107	0	627	86,295
2006	19,706	64,942	0	279	0	1,000	85,927
2007	19,624	44,575	0	135	0	597	64,931
2008	16,855	35,691	0	50	0	341	52,937
2009	16,006	8,311	0	70	0	964	25,351
2010	13,045	3,750	0	1,062	0	944	18,801
2011	12,344	76,303	0	232	0	463	89,342
2012	21,533	74,789	0	100	39	131	96,592
2013	14,457	66,199	0	109	1	266	81,032
2014	17,098	104,692	0	174	0	1,855	123,819
2015	18,107	129,700	0	145	8	593	148,553
2016	8,822	201,482	0	266 1	11	670	211,251
2017	7,281 1	139,915	0	200^{-1}	63	291	147,750
2018	5,527 1	110,587	0	131 1	48	544	116,837

Appendix B5.–Page 3 of 3.

Year	Subsistence a	Commercial b	Commercial related ^c	Personal use d	Test fish sales ^e	Sport fish ^f	Yukon Area total
2019	5,014	58,591	0	68 1	40	72	63,785
2020	2,922 1	j	0	79 ¹	0	_ m	3,001
Averages							
1961–2019	21,563	41,642	313	331	868	932	61,298
2010-2019	12,323	96,601	0	249	21	583	109,776
2015–2019	8,950	128,055	0	162	34	434	137,635
Minimum	3,966	1	0	0	0	45	10,425
Maximum	82,371	201,482	4,331	2,523	13,720	2,775	211,251

Note: Minimum and maximum values exclude the most recent year data.

- ^a Includes test fish harvest and commercial retained fish (not sold) that were utilized for subsistence. Coastal District harvest information is included in the following years: 1978, 1988, 1989, and 1992–present even though not all stocks harvested in the Coastal District are bound for the Yukon River.
- b Includes fish sold in the round and estimated numbers of female salmon commercially harvested for production of salmon roe (see Bergstrom et al. 1992: 1990 Yukon Area Annual Management Report). Includes ADF&G test fish prior to 1988. Beginning in 1999, commercial harvest may include some commercial related harvest.
- c Includes an estimate of number of salmon harvested for the commercial production of salmon roe and the carcasses used for subsistence.
- d Regulations did not provide for personal use fisheries in the Yukon River drainage prior to 1987 and in 1990, 1991, and 1994 therefore fishing occurred under subsistence regulations.
- ^e Test fish sales is the number of salmon sold by ADF&G test fisheries.
- The majority of the sport-fish harvest is taken in the Tanana River drainage.
- ^g Catches estimated because harvests of species other than Chinook salmon were not differentiated.
- h Minimum estimates from 1961–1978 because subsistence surveys were conducted prior to the end of the fishing season.
- i Includes an estimated 5,015 and 31,276 coho salmon illegally sold in Districts 5 (Yukon River) and 6 (Tanana River), respectively.
- j Commercial fishery was not conducted.
- ^k Commercial fishery operated only in District 6, the Tanana River.
- ¹ Data are not yet published and are considered preliminary.
- m Data are unavailable at this time.

Appendix B6.–Alaskan and Canadian total utilization of Yukon River Chinook and fall chum salmon, 1961–2020.

_		Chinook salmon		Fall chum salmon					
Year	Canada a	Alaska b, c	Total	Canada a	Alaska b, c	Total			
1961	13,246	141,152	154,398	9,076	144,233	153,309			
1962	13,937	105,844	119,781	9,436	140,401	149,837			
1963	10,077	141,910	151,987	27,696	99,031 d	126,727			
1964	7,408	109,818	117,226	12,187	128,707	140,894			
1965	5,380	134,706	140,086	11,789	135,600	147,389			
1966	4,452	104,822	109,274	13,192	122,548	135,740			
1967	5,150	146,104	151,254	16,961	107,018	123,979			
1968	5,042	118,530	123,572	11,633	97,552	109,185			
1969	2,624	104,999	107,623	7,776	183,373	191,149			
1970	4,663	93,019	97,682	3,711	265,096	268,807			
1971	6,447	136,091	142,538	16,911	246,756	263,667			
1972	5,729	113,098	118,827	7,532	188,178	195,710			
1973	4,522	99,696	104,218	10,135	285,760	295,895			
1974	5,631	117,847	123,478	11,646	383,552	395,198			
1975	6,000	76,959	82,959	20,600	361,600	382,200			
1976	5,025	105,950	110,975	5,200	228,717	233,917			
1977	7,527	117,014	124,541	12,479	340,757	353,236			
1978	5,881	130,476	136,357	9,566	331,250	340,816			
1979	10,375	159,232	169,607	22,084	593,293	615,377			
1980	22,846	197,665	220,511	22,218	466,087	488,305			
1981	18,109	188,477	206,586	22,281	654,976	677,257			
1982	17,208	152,808	170,016	16,091	357,084	373,175			
1983	18,952	198,436	217,388	29,490	495,526	525,016			
1984	16,795	162,683	179,478	29,267	383,055	412,322			
1985	19,301	187,327	206,628	41,265	474,216	515,481			
1986	20,364	146,004	166,368	14,543	303,485	318,028			
1987	17,614	192,007	209,621	44,480	361,885 ^d	406,365			
1988	21,427	150,009	171,436	33,565	322,382	355,947			
1989	17,944	157,632	175,576	23,020	522,302	545,322			
1990	19,227	149,433	168,660	33,622	318,642	352,264			
1991	20,607	154,651	175,258	35,418	403,678	439,096			
1992	17,903	169,642	187,545	20,815	128,237 ^e	149,052			
1993	16,611	161,718	178,329	14,090	77,045 ^d	91,135			
1994	21,198	171,654	192,852	38,008	131,564	169,572			
1995	20,884	179,748	200,632	45,600	415,934	461,534			
1996	19,612	141,649	161,261	24,354	236,961	261,315			
1997	16,528	176,025	192,553	15,600	154,479	170,079			
1998	5,937	99,760	105,697	7,954	62,903	70,857			
1999	12,468	125,427	137,895	19,636	111,744	131,380			

Appendix B6.-Page 2 of 2.

_		Chinook salm		Fall chum salmon					
Year	Canada	^a Alaska	b, c	Total	Canada	^a Alaska	b, c	Total	
2000	4,879	45,867		50,746	9,246	19,396	d	28,642	
2001	10,144	56,620	f	66,764	9,872	35,713	d	45,585	
2002	9,258	69,240		78,498	8,092	19,677	d	27,769	
2003	9,619	101,000		110,619	10,905	68,320		79,225	
2004	11,238	114,370		125,608	9,750	66,866		76,616	
2005	11,371	86,369		97,740	18,572	272,003		290,575	
2006	9,072	96,067		105,139	11,796	258,877		270,673	
2007	5,094	90,753		95,847	13,830	192,071		205,901	
2008	3,713	50,362		54,075	9,566	208,803		218,369	
2009	4,758	35,111		39,869	2,011	92,073		94,084	
2010	2,706	55,092		57,798	5,787	74,404		80,191	
2011	4,884	41,625	f	46,509	8,163	319,528		327,691	
2012	2,200	30,831	f	33,031	7,023	389,577		396,600	
2013	2,146	12,741	f	14,887	6,170	351,939		358,109	
2014	103	3,287	f	3,390	5,033	208,436		213,469	
2015	1,204	7,595	f	8,799	4,453	278,200		282,653	
$2016 ^{\mathrm{g}}$	2,946	21,704	f	24,650	5,750	551,112		556,862	
2017^{g}	3,631	38,347	f	41,978	5,716	576,667		582,383	
2018^{g}	3,098	32,213	f	35,311	4,831	453,703		458,534	
2019^{g}	3,104	51,733	f	54,837	3,759	332,905		336,664	
2020 g	2,543	22,780	f	25,323	100	6,244		6,344	
Averages									
1961–2019	10,099	111,203		121,301	15,784	263,320		279,104	
2010–2019	2,602	29,517		32,119	5,669	353,647		359,316	
2015–2019	2,797	30,318		33,115	4,902	438,517		443,419	
Minimum	103	3,287		3,390	2,011	19,396		27,769	
Maximum	22,846	198,436		220,511	45,600	654,976		677,257	

Note: Minimum and maximum values exclude the most recent year data.

^a Catches in number of salmon. Includes commercial, Aboriginal, domestic, and sport catches combined.

Catch in number of salmon. Includes estimated number of salmon harvested for the commercial production of salmon roe (see Bergstrom et al. 1992: 1990 Yukon Area Annual Management Report).

^c Commercial, subsistence, personal-use, test fish, and sport catches combined. Coastal District harvest information is included in the following years: 1975–1978, 1987–1989 and 1992–present even though not all stocks harvested in the Coastal District are bound for the Yukon River.

^d Commercial fishery did not operate within the Alaskan portion of the drainage.

^e Commercial fishery operated only in District 6, the Tanana River.

No Chinook salmon directed commercial fishery was conducted during the summer season.

g Data are preliminary, particularly not yet published Alaska subsistence and personal use harvest data from 2016–2020.

Appendix B7.—Canadian harvest of Yukon River Chinook salmon, 1961–2020.

							_	Porcupine River	
	-			tem Yukon River ha	rvest			Aboriginal	Total
			Aboriginal		Test	Combined		fishery	Canadian
Year	Commercial	Domestic	fishery	Recreational a	fishery	non-commercial	Total	harvest	harvest
1961	3,446		9,300			9,300	12,746	500	13,246
1962	4,037		9,300			9,300	13,337	600	13,937
1963	2,283		7,750			7,750	10,033	44	10,077
1964	3,208		4,124			4,124	7,332	76	7,408
1965	2,265		3,021			3,021	5,286	94	5,380
1966	1,942		2,445			2,445	4,387	65	4,452
1967	2,187		2,920			2,920	5,107	43	5,150
1968	2,212		2,800			2,800	5,012	30	5,042
1969	1,640		957			957	2,597	27	2,624
1970	2,611		2,044			2,044	4,655	8	4,663
1971	3,178		3,260			3,260	6,438	9	6,447
1972	1,769		3,960			3,960	5,729		5,729
1973	2,199		2,319			2,319	4,518	4	4,522
1974	1,808	406	3,342			3,748	5,556	75	5,631
1975	3,000	400	2,500			2,900	5,900	100	6,000
1976	3,500	500	1,000			1,500	5,000	25	5,025
1977	4,720	531	2,247			2,778	7,498	29	7,527
1978	2,975	421	2,485			2,906	5,881		5,881
1979	6,175	1,200	3,000			4,200	10,375		10,375
1980	9,500	3,500	7,546	300		11,346	20,846	2,000	22,846
1981	8,593	237	8,879	300		9,416	18,009	100	18,109
1982	8,640	435	7,433	300		8,168	16,808	400	17,208
1983	13,027	400	5,025	300		5,725	18,752	200	18,952
1984	9,885	260	5,850	300		6,410	16,295	500	16,795
1985	12,573	478	5,800	300		6,578	19,151	150	19,301
1986	10,797	342	8,625	300		9,267	20,064	300	20,364
1987	10,864	330	6,069	300		6,699	17,563	51	17,614
1988	13,217	282	7,178	650		8,110	21,327	100	21,427
1989	9,789	400	6,930	300		7,630	17,419	525	17,944
1990	11,324	247	7,109	300		7,656	18,980	247	19,227

Appendix B7.–Page 2 of 3.

			Maii	nstem Yukon River l	harvest			Porcupine River Aboriginal	Total
			Aboriginal	iistein Tukon Kivei I	Test	Combined		fishery	Canadian
Year	Commercial	Domestic	fishery	Recreational a	fishery	non-commercial	Total	harvest	harvest
1991	10,906	227	9,011	300		9,538	20,444	163	20,607
1992	10,877	277	6,349	300		6,926	17,803	100	17,903
1993	10,350	243	5,576	300		6,119	16,469	142	16,611
1994	12,028	373	8,069	300		8,742	20,770	428	21,198
1995	11,146	300	7,942	700		8,942	20,088	796	20,884
1996	10,164	141	8,451	790		9,382	19,546	66	19,612
1997	5,311	288	8,888	1,230		10,406	15,717	811	16,528
1998	390	24	4,687	-	737	5,448	5,838	99	5,937
1999	3,160	213	8,804	177		9,194	12,354	114	12,468
2000	-	-	4,068	-	761	4,829	4,829	50	4,879
2001	1,351	89	7,421	146	767	8,423	9,774	370	10,144
2002	708	59	7,139	128	1,036	8,362	9,070	188	9,258
2003	2,672	115	6,121	275	263	6,774	9,446	173	9,619
2004	3,785	88	6,483	423	167	7,161	10,946	292	11,238
2005	4,066	99	6,376	436		6,911	10,977	394	11,371
2006	2,332	63	5,757	606		6,426	8,758	314	9,072
2007	-	-	4,175	2	b 617	4,794	4,794	300	5,094
2008	1	c _	2,885	-	513	3,398	3,399	314	3,713
2009	364	17	3,791	125	-	3,933	4,297	461	4,758
2010	-	-	2,455	d 1	e _	2,456	2,456	250	2,706
2011	4	c _	4,550	d 40	-	4,590	4,594	290	4,884
2012	-	-	2,000	d _	-	2,000	2,000	200	2,200
2013	2	c _	1,902	d _	-	1,902	1,904	242	2,146
2014	-	-	100	-	-	100	100	3	103
2015	-	-	1,000	-	-	1,000	1,000	204	1,204
2016	1	c _	2,768	-	-	2,768	2,769	177	2,946
2017	-	-	3,500	-	-	3,500	3,500	131	3,631
2018	1	c _	2,789	-	-	2,789	2,790	308	3,098
2019	-	-	2,764	-	-	2,764	2,764	340	3,104
2020			2,363			2,363	2,363	180	2,543

Appendix B7.—Page 3 of 3.

								Porcupine River	
			Mains	stem Yukon River h	arvest			Aboriginal	Total
			Aboriginal		Test	Combined		fishery	Canadian
Year	Commercial	Domestic	fishery	Recreational a	fishery	non-commercial	Total	harvest	harvest
Averages									
1961-2019	5,717 f	f 393	4,933	342	f 608	5,404	9,861	250	10,099
2010-2019	364 f	f _	2,383	21	-	2,387	2,388	215	2,602
2015-2019	-	-	2,564	=	-	2,564	2,565	232	2,797
Minimum	1	17	100	1	167	100	100	3	103
Maximum	13,217	3,500	9,300	1,230	1,036	11,346	21,327	2,000	22,846

Note: Minimum and maximum values exclude the most recent year data. Dash indicates fishery did not occur.

^a Recreational harvest unknown before 1980.

^b Recreational fishery involved non-retention of Chinook salmon for most of the season thus effectively closed.

^c Closed during Chinook salmon season; harvested in chum salmon fishery.

^d Adjusted to account for underreporting.

^e Fishery was closed, 1 fish mistakenly caught and retained.

f Excluding years when no directed fishery occurred.

Appendix B8.—Canadian harvest of Yukon River fall chum salmon, 1961–2020.

						_	Porcupine River	
			Mainstem Y	ukon River harves	t		Aboriginal	Total
			Aboriginal	Test	Combined		fishery	Canadian
Year	Commercial	Domestic	fishery	Fishery ^a	non-commercial	Total	harvest	harvest
1961	3,276		3,800		3,800	7,076	2,000	9,076
1962	936		6,500		6,500	7,436	2,000	9,436
1963	2,196		5,500		5,500	7,696	20,000	27,696
1964	1,929		4,200		4,200	6,129	6,058	12,187
1965	2,071		2,183		2,183	4,254	7,535	11,789
1966	3,157		1,430		1,430	4,587	8,605	13,192
1967	3,343		1,850		1,850	5,193	11,768	16,961
1968	453		1,180		1,180	1,633	10,000	11,633
1969	2,279		2,120		2,120	4,399	3,377	7,776
1970	2,479		612		612	3,091	620	3,711
1971	1,761		150		150	1,911	15,000	16,911
1972	2,532				0	2,532	5,000	7,532
1973	2,806		1,129		1,129	3,935	6,200	10,135
1974	2,544	466	1,636		2,102	4,646	7,000	11,646
1975	2,500	4,600	2,500		7,100	9,600	11,000	20,600
1976	1,000	1,000	100		1,100	2,100	3,100	5,200
1977	3,990	1,499	1,430		2,929	6,919	5,560	12,479
1978	3,356	728	482		1,210	4,566	5,000	9,566
1979	9,084	2,000	11,000		13,000	22,084		22,084
1980	9,000	4,000	3,218		7,218	16,218	6,000	22,218
1981	15,260	1,611	2,410		4,021	19,281	3,000	22,281
1982	11,312	683	3,096		3,779	15,091	1,000	16,091
1983	25,990	300	1,200		1,500	27,490	2,000	29,490
1984	22,932	535	1,800		2,335	25,267	4,000	29,267
1985	35,746	279	1,740		2,019	37,765	3,500	41,265
1986	11,464	222	2,200		2,422	13,886	657	14,543
1987	40,591	132	3,622		3,754	44,345	135	44,480

Appendix B8.–Page 2 of 3.

			34	W.1 D: 1		-	Porcupine River	m . 1
				Yukon River harvest			Aboriginal	Total
***	G : 1	ъ:	Aboriginal	Test	Combined	TD . 1	fishery	Canadian
Year	Commercial	Domestic	fishery	fishery ^a	non-commercial	Total	harvest	harvest
1988	30,263	349	1,882		2,231	32,494	1,071	33,565
1989	17,549	100	2,462	300	2,562	20,111	2,909	23,020
1990	27,537	0	3,675		3,675	31,212	2,410	33,622
1991	31,404	0	2,438		2,438	33,842	1,576	35,418
1992	18,576	0	304		304	18,880	1,935	20,815
1993	7,762	0	4,660		4,660	12,422	1,668	14,090
1994	30,035	0	5,319		5,319	35,354	2,654	38,008
1995	39,012	0	1,099		1,099	40,111	5,489	45,600
1996	20,069	0	1,260		1,260	21,329	3,025	24,354
1997	8,068	0	1,238		1,238	9,306	6,294	15,600
1998 ^b	=		1,795		1,795	1,795	6,159	7,954
1999	10,402	0	3,234		3,234	13,636	6,000	19,636
2000	1,319	0	2,927		2,927	4,246	5,000	9,246
2001	2,198	3	3,077	1	3,080	5,278	4,594	9,872
2002	3,065	0	3,167	2,756	3,167	6,232	1,860	8,092
2003	9,030	0	1,493	990	1,493	10,523	382	10,905
2004	7,365	0	2,180	995	2,180	9,545	205	9,750
2005	11,931	13	2,035		2,048	13,979	4,593	18,572
2006	4,096	0	2,521		2,521	6,617	5,179	11,796
2007	7,109	0	2,221	3,765	2,221	9,330	4,500	13,830
2008	4,062	0	2,068		2,068	6,130	3,436	9,566
2009	293	0	820		820	1,113	898	2,011
2010	2,186	0	1,523	b	1,523	3,709	2,078	5,787
2011	5,312	0	1,000	b	1,000	6,312	1,851	8,163
2012	3,205	0	700	b	700	3,905	3,118	7,023
2013	3,369	18	500	b	518	3,887	2,283	6,170

Appendix B8.–Page 3 of 3.

								Porcupine River	
			Mainstem	Yuko	n River harve	st		Aboriginal	Total
			Aboriginal		Test	Combined		fishery	Canadian
Year	Commercial	Domestic	fishery		fishery ^a	non-commercial a	Total ^a	harvest	harvest
2014	2,485	19	546			565	3,050	1,983	5,033
2015	2,862	35	1,000	b		1,035	3,897	556	4,453
2016	1,745	0	1,000	b		1,000	2,745	3,005	5,750
2017	2,404	0	1,000	b		1,000	3,404	2,312	5,716
2018	1,957	0	1,000	b		1,000	2,957	1,874	4,831
2019	1,728	31	1,000	b		1,031	2,759	1,000	3,759
2020	0	0	0			0	0	100	100
Averages									
1961-2019	9,351	414	2,211		1,468	2,489	11,682	4,173	15,784
2010-2019	2,725	10	927		-	937	3,663	2,006	5,669
2015-2019	2,139	13	1,000		-	1,013	3,152	1,749	4,902
Minimum	293	0	100		1	0	1,113	135	2,011
Maximum	40,591	4,600	11,000		3,765	13,000	44,345	20,000	45,600

Note: Minimum and maximum values exclude the most recent year data. Dash indicates fishery did not occur.

^a The chum salmon test fishery practiced live-release; therefore, not included in the annual harvest totals.

^b Adjusted to account for underreporting.

Appendix B9.—Chinook salmon aerial survey indices for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1961–2020.

	Andrea	fsky River	_	Anvik River		_		Nu	lato Riv	er		_	Gisasa River	_	
	East	West		Drainagewide		Index		North		South		Both			
Year	Fork	Fork		total		area ^a		Fork b		Fork		forks			
1961	1,003	-		1,226				376	С	167		543		266	С
1962	675	c 762	С	-		-		-		-		-		-	
1963	-	-		-		-		-		-		-		-	
1964	867	705		-		-		-		-		-		-	
1965	-	344	с	650	С	-		-		-		-		-	
1966	361	303		638		-		-		-		-		-	
1967	-	276	С	336	с	-		-		-		-		-	
1968	383	383		310	с	-		-		-		-		-	
1969	274	c 231	с	296	с	-		-		-		-		-	
1970	665	574	c	368		-		-		-		-		-	
1971	1,904	1,682		-		-		-		-		-		-	
1972	798	582	c	418		-		-		-		-		-	
1973	825	788		222		-		-		-		-		-	
1974	-	285	c	-		-		55	c	23	c	78	c	161	
1975	993	301	c	730		-		123		81		204		385	
1976	818	643		1,053		-		471		177		648		332	
1977	2,008	1,499		1,371		-		286		201		487		255	
1978	2,487	1,062		1,324		-		498		422		920		45	c
1979	1,180	1,134		1,484		-		1,093		414		1,507		484	
1980	958	1,500		1,330		1,192		954	c	369	c	1,323	c	951	
1981	2,146	c 231	c	807	c	577	c	-		791	c	791	c		
1982	1,274	851		-				-		-		-		421	
1983	-	-		653	c	376	c	526		480		1,006		572	
1984	1,573	1,993		641	c	574	c	-		-		-		-	
1985	1,617	2,248		1,051		720		1,600		1,180		2,780		735	
1986	1,954	3,158		1,118		918		1,452		1,522		2,974		1,346	
1987	1,608	3,281		1,174		879		1,145		493		1,638		731	
1988	1,020	1,448		1,805		1,449		1,061		714		1,775		797	
1989	1,399	1,089		442	c	212	c	-		-		-		-	
1990	2,503	1,545		2,347		1,595		568	c	430	c	998	c	884	c
1991	1,938	2,544		875	c	625	c	767		1,253		2,020		1,690	
1992	1,030	c 2,052	c	1,536		931		348		231		579		910	
1993	5,855	2,765		1,720		1,526		1,844		1,181		3,025		1,385	
1994	300	c 213	c	913	c	913	c	-		-		-		2,775	
1995	1,635	1,108		1,996		1,147		968		681		1,649		410	
1996		624		839		709		-		100		100	c	-	
1997	1,140	1,510		3,979		2,690		-		-		-		144	c
1998	1,027	1,249	c	709	c	648	c	507		546		1,053		889	c

Appendix B9.–Page 2 of 2.

	Andrea	afsky River	Anvik Riv	er		Nulato Ri	ver	Gisasa River
	East		Drainagewide	Index	North	South		
Year	Fork	West Fork	total	area ^a	Fork ^b	Fork	Both forks	
1999	-	870 °	950 °	950 °	-	-	-	-
2000	1,018	427	1,721	1,394	-	-	-	-
2001	1,059	565	1,420	1,177	1,116	768	1,884 ^d	1,298 °
2002	1,447	917	1,713	1,329	687	897	1,584	506
2003	1,116 °	1,578	973	973 °	-	-	-	-
2004	2,879	1,317	3,679	3,304	856	465	1,321	731
2005	1,715	1,492	2,421	1,922	323	230	553	958
2006	591 °	824	1,886	1,776 e	620	672	1,292	843
2007	1,758	976	1,650	1,497	1,684	899	2,583	593
2008	278 °	262 °	992	827 °	415	507	922	487
2009	84 °	1,678	832	590	1,418	842	2,260	515
2010	537 °	858	974	721	356	355	711	264
2011	620	1,173	642	501	788	613	1,401	906
2012	-	227 °	722	451	682	692	1,374	c
2013	1,441	1,090	940	656	586	532	1,118	201 ^c
2014	-	1,695	1,584	800	(c (c c	c
2015	2,167	1,356	2,616	1,726	999	565	1,564	558
2016	-	-	-	-	-	-	-	-
2017	-	942	1,101	894	500	443	943	
2018	746	455	1,109	800	438	432	870	452
2019	1,547	904	1,432	1,043	656	485	1,141	-
2020	335	508	675	506	459	403	862	419
SEG f	g	640–1,600	1,100-1,700				940-1,900	h
Averages								
1961-2019	1,317	1,101	1,225	1,079	765	564	1,287	711
2010-2019	1,176	967	1,236	844	626	515	1,140	476
2015-2019	1,487	914	1,565	1,116	648	481	1,130	505
Minimum	84	213	222	212	55	23	78	45
Maximum	5,855	3,281	3,979	3,304	1,844	1,522	3,025	2,775

Note: Aerial survey counts are peak counts only. Survey rating was fair or good unless otherwise noted. Minimum and maximum values exclude the most recent year data. Dash indicates no survey.

^a Anvik River Index Area includes mainstem counts between Beaver Creek and McDonald Creek.

b Nulato River mainstem aerial survey counts below the forks are included with the North Fork.

^c Incomplete, poor timing and/or poor survey conditions resulting in minimal, inaccurate, or no counts.

^d In 2001, the Nulato River escapement goal was established for both forks combined.

^e The count represents the index area and an additional 8 river miles downstream of Yellow River confluence.

^f Sustainable Escapement Goal.

^g Aerial escapement goal for Andreafsky River was discontinued in 2010. Note: weir-based goal replaced East Fork Andreafsky River aerial survey goal.

^h Gisasa River aerial escapement goal was discontinued in 2010.

Appendix B10.—Chinook salmon escapement counts and percentage females counted for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1986–2020.

	East Fork A River		Nulato River Henshaw Creek tower weir			Gisasa R	iver weir		a River ⁄/sonar	Salcha River tower/sonar	
Year	No. fish	% Fem.	No. fish	No. fish	% Fem.	No. fish		No. fish	% Fem. a	No. fish	% Fem. a
1986	1,530 b		-	-	-	-	-	9,065 °		-	35
1987	2,011 b	53	-	_	-	-	_	6,404 °	58	4,771 °	63
1988	1,341 b	42	-	_	-	-	_	3,346 °	61	4,322	40
1989	· -	5	-	_	-	-	_	2,730 °	65	3,294	62
1990	_	38	-	_	-	-	_	5,603 °	47	10,728	47
1991	-	28	-	-	-	-	-	3,172 °	32	5,608	47
1992	-	26	-	-	-	-	-	5,580 °	38	7,862 °	34
1993	-	29	-	-	-	-	-	12,241	17	10,008	28
1994	7,801	35	1,795	-	-	2,888	-	11,877	45	18,404	45
1995	5,841	42	1,412	-	-	4,023	46	11,394 °	66	13,643	56
1996	2,955	42	756	-	-	1,991	20	7,153 °	44	7,570 °	51
1997	3,186	37	4,766	-	-	3,764	26	13,390	40	18,514	50
1998	4,034	29	1,536	-	-	2,414	16	4,745	41	5,027	30
1999	3,444	29	1,932	-	-	2,644	26	6,485	66	9,198	55
2000	1,609	32	908	193	30	2,089	34	4,694 °	26	4,595	44
2001	1,148	64	-	1,091	36	3,052	49	9,696	43	13,328	38
2002	4,123 d	21	2,696	649	31	2,025	21	6,967 °	32	9,000 e	35
2003	4,336	48	1,716 f	748	39	1,901	38	11,100	45	15,500 e	42
2004	8,045	35	-	1,248	23	1,774	34	9,645	63	15,761	63
2005	2,239	50	-	1,059	42	3,111	36	_ d	42	5,988	54
2006	6,463	44	-	_ d	_	3,031	29	2,936	46	10,679	43
2007	4,504	45	-	740	43	1,427	41	3,806	40	6,425	36
2008	4,242	39	-	766	27	1,738	15	3,208	44	5,415 e	39
2009	3,004	47	-	1,637	54	1,955	28	5,253	55	12,774	39
2010	2,413	49	-	857	49	1,516	30	2,382	31	6,135	33
2011	5,213	20	-	1,796	34	2,692	19	_ d	32	7,200 e	42
2012	2,517	27	-	922	43	1,323	39	2,220 g	56	7,165	60
2013	1,998	39	-	772	47	1,126	34	1,859 d	40	5,465	50
2014	5,949	48	-	_ d	-	1,589	19	7,192 h	33	_ d	32
2015	5,474	40	-	2,391	41	1,319	30	6,294	55	6,288 i	43
2016	2,676	49	-	1,354	48	1,395	27	6,665 i	23	2,675 i	39
2017	2,970	26	-	677	42	1,083	28	4,201 i	45	4,195 ⁱ	41

Appendix B10.—Page 2 of 2.

	East Fork An	dreafsky	Nulato River	Hensh	aw						
	River w	•	tower	Creek weir		Gisasa River weir		Chena River tower		Salcha River tower	
Year	No. fish	% Fem.	No. fish	No. fish	% Fem.	No. fish	% Fem.	No. fish	% Fem. a	No. fish	% Fem. a
2018 ^j	4,114	25	-	-	_ d	-	-	4,227	55	4,053	56
2019 ^j	5,111	34	-	438	61	1,328	24	2,018	-	^k 4,678	44
2020 j, 1	=	-	-	-	-		-	_ m	=	-	=
SEG ⁿ	2,100-4,900										_
BEG °								2,800-5,700)	3,300-6,500	0
Averages											
1986-2019	3,803	37	1,946	1,020	40	2,128	30	6,173	44	8,321	45
2010-2019	3,844	36	-	1,151	45	1,486	28	4,118	41	5,317	44
2015-2019	4,069	35	-	1,215	48	1,281	27	4,681	45	4,378	45
Minimum	1,148	5	756	193	23	1,083	15	1,859	17	2,675	28
Maximum	8,045	64	4,766	2,391	61	4,023	49	13,390	66	18,514	63

Note: Minimum and maximum values exclude the most recent year data. No. = number; Fem. = female. Dashes indicate no survey or a value cannot be calculated.

- ^a Adjustment factor was applied.
- b Tower counts.
- ^c Mark–recapture population estimate.
- ^d Project operations were hindered by high water most of the season.
- ^e Estimate includes an expansion for missed counting days based on average run timing.
- f Weir count.
- g Estimate includes an expansion for missed counting days based on using 2 DIDSON sonars to assess Chinook salmon passage.
- h Due to high water, DIDSON sonar was used and preliminary species apportionment was estimated using average run timing.
- Final estimate uses a binomial mixed-effects model to create passage estimates for periods of missed counts.
- ^j Preliminary.
- ^k Only 8 fish were sampled for sex; value not presented due to low sample size.
- ¹ Projects did not operate due to COVID-19 or funding.
- ^m Total escapement could not be determined. Sonar only operated 17 days due to flooding and debris.
- ⁿ Sustainable Escapement Goal (SEG).
- Biological Escapement Goal (BEG).

Appendix B11.—Estimated run size and spawning escapement of Canadian-origin Yukon River mainstem Chinook salmon, 1982-2020.

	Historic mark- recapture border	Eagle sonar	U.S. harvest above Eagle	Canadian mainstem border passage		Canadian mainstem	Spawning escapement	Canadian origin total run size
Year	passage estimate ^a	estimate	sonar ^b	estimate		harvest	estimate ^c	estimate d
1982	36,598			60,346	e	16,808	43,538	147,587
1983	47,741			63,227	e	18,752	44,475	160,221
1984	43,911 f	•		66,300	e	16,295	50,005	111,035
1985	29,881			59,586	e	19,151	40,435	145,359
1986	36,479			61,489	e	20,064	41,425	159,082
1987	30,823			58,870	e	17,563	41,307	174,128
1988	44,445			61,026	e	21,327	39,699	145,675
1989	42,620			77,718	e	17,419	60,299	164,516
1990	56,679			78,192	e	18,980	59,212	151,188
1991	41,187			63,172	e	20,444	42,728	124,382
1992	43,185			56,958	e	17,803	39,155	154,219
1993	45,027			52,713	e	16,469	36,244	131,528
1994	46,680			77,219	e	20,770	56,449	172,885
1995	52,353			70,761	e	20,088	50,673	168,502
1996	47,955			93,606	e	19,546	74,060	182,564
1997	53,400			69,538	e	15,717	53,821	161,700
1998	22,588			41,335	e	5,838	35,497	88,282
1999	23,716			49,538	e	12,354	37,184	110,446
2000	16,173			30,699	e	4,829	25,870	52,842
2001	52,207			62,338	e	9,774	52,564	85,663
2002	49,214			51,428	g	9,070	42,358	81,486
2003	56,929			90,040	g	9,446	80,594	149,980
2004	48,111			59,415	g	10,946	48,469	117,246
2005	42,245	81,528	2,566	78,962	h	10,977	67,985	123,612
2006	36,748	73,691	2,303	71,388	h	8,758	62,630	119,485
2007	22,120	41,697	1,999	39,698	h	4,794	34,904	88,018
2008	14,666	38,097	815	37,282	h	3,399	33,883	62,611
2009	-	69,957	382	69,575	h	4,297	65,278	87,221
2010	-	35,074	604	34,470	h	2,456	32,014	59,741
2011	-	51,271	370	50,901	h	4,594	46,307	71,725
2012	-	34,747	91	34,656	h	2,000	32,656	48,498
2013	-	30,725	152	30,573	h	1,904	28,669	37,177
2014	-	63,482	51	63,431	h	100	63,331	64,886
2015	-	84,015	341	83,674	h	1,000	82,674	87,323
2016	-	72,329	762	71,567	h	2,769	68,798	83,043

Appendix B11.—Page 2 of 2.

			U.S.	Canadian mainstem				Canadian origin
	Historic mark-	Eagle	above	border		Canadian	Spawning	total run
	recapture border	sonar	Eagle	passage		mainstem	escapement	size
Year	passage estimate ^a	estimate	sonar ^b	estimate		harvest	estimate ^c	estimate ^d
2017	-	73,313	1,498	71,815	h	3,500	68,315	92,622
2018	-	57,893	629	57,264	h	2,790	54,474	76,530
2019	-	45,560	744	44,816	h	2,764	42,052	72,620
2020		33,550	220	33,330	h	2,363	30,967	45,501
Averages								
1982-2019	40,136	56,892	887	60,410		10,936	49,475	113,569
2009-2019	-	56,215	511	55,704		2,561	53,143	71,035
2014–2019	-	66,099	671	65,428		2,154	63,274	79,504
Minimum	14,666	30,725	51	30,573		100	25,870	37,177
Maximum	56,929	84,015	2,566	93,606		21,327	82,674	182,564

Note: Minimum and maximum values exclude the most recent year data.

^a From 1982–2008, a mark–recapture program was used to determine border passage; fish were sampled and tagged near the border using fish wheels and sampled for marks/tags in upstream fisheries. The Eagle sonar project replaced the mark–recapture program in 2005.

^b U.S. harvests between the sonar site and border prior to 2008 is unknown because subsistence harvest in the Eagle area extended above and below the sonar site but were most likely in the hundreds for Chinook salmon. Starting in 2008, subsistence harvests between the sonar site and the U.S./Canada border were recorded specifically for the purpose of estimating border passage.

^c Canadian spawning escapement estimated as border passage minus Canadian harvest.

d Canadian total origin run size is estimated as the border passage plus the U.S. harvest of Canadian origin fish. In 1984, border passage was estimated using harvest and escapement estimate based on proportion of aerial surveys.

^e Chinook salmon passage for Yukon mainstem at U.S./Canada border from 1982–2001 was reconstructed using a linear relationship with 3-area index (aerial surveys of Little Salmon, Big Salmon, and Nisutlin rivers in 2002–2007) plus Canadian harvests.

f In 1984, border passage was estimated using harvest and escapement estimates based on proportion of aerial surveys.

Border passage estimated in 2002–2004 using escapement estimate from a radio tagging proportion study, plus Canadian harvest.

Since 2005, border passage was estimated as fish counted by the Eagle sonar minus the U.S. harvest upriver from the sonar project.

Appendix B12.—Chinook salmon escapement counts for selected spawning areas in the Canadian (Yukon) portion of the Yukon River drainage, 1961–2020.

			Weirs				Sonars			Whitel	horse Fishway
	Tatchun	Blind	Chandindu	Big	Klondike	Teslin	Pelly	Porcupine	Takhini		% Hatchery
Year	Creek	a Creek	River	Salmon	River	River	River	River	River	Count	contribution
1961										1,068	0
1962										1,500	0
1963										483	0
1964										595	0
1965										903	0
1966	7 ^t	b								563	0
1967										533	0
1968										414	0
1969										334	0
1970	100									625	0
1971	130									856	0
1972	80									391	0
1973	99									224	0
1974	192									273	0
1975	175									313	0
1976	52									121	0
1977	150									277	0
1978	200									725	0
1979	150									1,184	0
1980	222									1,383	0
1981	133									1,555	0
1982	73									473	0
1983	264									905	0
1984	153									1,042	0
1985	190									508	0
1986	155									557	0
1987	159									327	0
1988	152									405	16
1989	100									549	19
1990	643									1,407	24
1991										1,266 °	
1992	106									758 °	

Appendix B12.—Page 2 of 3.

			Wei	eirs					Sonars				Whiteh	orse Fishway
	Tatchun	Bl	ind C	handindu	•	Big	Klondike	Teslin	Pelly	Po	rcupine	Takhini		% Hatchery
Year	Creek	a Cr	eek	River		Salmon	River	River	River		River	River	Count	contribution
1993	183												668 ^c	73 °
1994	477												1,577 °	54 °
1995	397												2,103	57
1996	423												2,958	35
1997	1,198		957										2,084	24
1998	405		373	132									777	95
1999	252		392	239									1,118	74
2000	276	d		4	e								677	69
2001				129	f								988	36
2002					g								605	39
2003		1,	115	185	h								1,443	70
2004		,	792										1,989	76
2005			525			5,618							2,632	57
2006		(577			7,308							1,720	47
2007			304			4,506							427	56
2008			276			1,431							399	54
2009		,	716			9,261	5,147						828	47
2010			270			3,817	803						672	49
2011		,	360			5,156	1,181						1,534	48
2012			157			2,584		$3,454^{i}$					1,030	59
2013			312			3,242		9,916					1,139	67
2014		(502			6,321		17,507			2,951		1,601	78
2015		(964			10,078		20,410			4,623		1,465	60
2016		(564			6,761			5,807	j	6,457		1,556	42
2017			k			5,672			9,081		1,191	1,872		39
2018			512			5,159			9,751		3,414	1,554	691	37
2019						3,874			6,927		4,740	•	282	13
2020^{1}						1,635	470		5,678		,		216	24

Appendix B12.—Page 3 of 3.

			Weirs				Sonars			White	horse Fishway
	Tatchun	Blind	Chandindu	Big	Klondike	Teslin	Pelly	Porcupine	Takhini		% Hatchery
Year	Creek	a Creek	River	Salmon	River	River	River	River	River	Count	contribution
Averages											
1961-2019	235	587	138	5,386	2,377	15,944	7,892	-	-	961	28
2010-2019	-	493	-	5,266	992	15,944	7,892	3,896	-	1,120	49
2015-2019	-	747	-	6,309	-	-	7,892	4,085	1,713	1,044	38
Minimum	7	157	4	1,431	803	9,916	5,807	1,191	1,554	121	0
Maximum	1,198	1,115	239	10,078	5,147	20,410	9,751	6,457	1,872	2,958	95

Note: Minimum and maximum values exclude the most recent year data.

- ^a All foot surveys prior to 1997, except 1978 (boat survey) and 1986 (aerial survey) and weir counts from 1997–2000.
- b Incomplete and/or poor survey conditions resulting in minimal or inaccurate counts.
- ^c Counts and estimated percentages may be slightly exaggerated. In some or all of these years, a number of adipose-clipped fish ascended the Fishway and were counted more than once. These fish would have been released into the Fishway as fry between 1989 and 1994, inclusive.
- ^d Flood conditions caused early termination of this program.
- ^e High water delayed project installation; therefore, counts are incomplete.
- ^f Weir was breached from July 31–August 7 due to high water.
- g Resistance board weir (RBW) tested for 3 weeks.
- ^h Combination RBW and conduit weir tested and operational from July 10–30.
- i No Chinook counted on the left bank due to high water; estimate should be considered a minimum
- ^j Sonar feasibility year.
- ^k High water conditions prevented weir operation.
- ¹ Data are preliminary.

Appendix B13.—Summer chum salmon escapement counts for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1973–2020.

								n:	Rodo		Kaltag						_
			Andreafsky River				Anvik	River	River	_	River		N	Nulato Riv	er		
					West							South		North			
		Eas	st Fork	_	Fork							Fork		Fork ^a		Mainstem	
			Sonar, tower, or				Tower and										
Year	Aerial b		weir counts c		Aerial b		aerial ^d	Sonar	Aerial ^b		Tower	Aerial b		Aerial b		Tower	
1973	10,149				51,835		249,015	-									
1974	3,215	e			33,578		411,133	-	16,137			29,016		29,334			
1975	223,485				235,954		900,967	-	25,335			51,215		87,280			
1976	105,347				118,420		511,475	-	38,258			9,230	e	30,771			
1977	112,722				63,120		358,771	-	16,118			11,385		58,275			
1978	127,050				57,321		307,270	-	17,845			12,821		41,659			
1979	66,471				43,391		-	277,712	-			1,506		35,598			
1980	36,823	e			114,759		-	482,181	-			3,702	e	11,244	e		
1981	81,555		152,665		-		-	1,479,582	-			14,348		-			
1982	7,501	e	181,352		7,267	e	-	444,581	-			-		-			
1983	-		113,328		-		-	362,912	-			1,263	e	19,749			
1984	95,200	e	72,598		238,565		-	891,028	-			-		-			
1985	66,146		-		52,750		-	1,080,243	24,576			10,494		19,344			
1986	83,931		152,730		99,373		-	1,085,750	_			16,848		47,417			
1987	6,687	e	45,221	f	35,535		-	455,876	-			4,094		7,163			
1988	43,056		68,937	f	45,432		-	1,125,449	13,872			15,132		26,951			
1989	21,460	e	-		_		-	636,906	-			-		-			
1990	11,519	e	-		20,426	e	-	403,627	1,941	e		3,196	e, g	1,419	e		
1991	31,886		_		46,657		-	847,772	3,977			13,150		12,491			
1992	11,308	e	-		37,808	e	_	775,626	4,465			5,322		12,358			
1993	10,935	e	-		9,111	e	-	517,409	7,867			5,486		7,698			
1994	-		200,981	g	-		_	1,124,689	-		47,295	-		-		148,762	g
1995	-		172,148		-		_	1,339,418	12,849		77,193	10,875		29,949		236,890	
1996	-		108,450		-		_	933,240	4,380		51,269	8,490	e	-		129,694	

Appendix B13.–Page 2 of 5.

	,	Andreafsky River		Anvik I	Dissor	Rodo River	Kaltag River		Nulato River	
_		t Fork	West Fork	AllVIK	<u> </u>	Kivei	Kivei	South Fork	North Fork a	Mainstem
_	<u> </u>	Sonar, tower, or	TOIR	Tower and			-	TOIR		- Transcom
Year	Aerial ^b	weir counts ^c	Aerial ^b	aerial ^d	Sonar	Aerial b	Tower	Aerial b	Aerial b	Tower
1997	_	51,139	_	_	605,751	2,775 °	48,018	_	_	157,975
1998	_	67,720	_	-	487,300	, <u>-</u>	8,113	-	_	49,140
1999	_	32,587	_	-	437,355	-	5,339	-	_	30,076
2000	2,094 e	24,785	18,989 e	-	196,350	-	6,727	-	_	24,308
2001	, -	2,134 g	, -	-	224,059	-	, =	-	_	-
2002	_	44,194	_	-	459,058	_	13,583	-	_	72,232
2003	_	22,461	_	-	256,920	_	3,056	-	_	19,590 g
2004	_	64,883	_	-	365,354	-	5,247	-	_	-
2005	_	20,127	_	-	525,392	_	22,093	-	_	-
2006	3,100 e	102,260	617	-	605,487	-	-	7,772	11,658	-
2007	· -	69,642	_	-	459,038	_	-	21,825	15,277	-
2008	9,300	57,259	25,850	-	374,933	-	-	12,070	10,715	-
2009	736	8,770	3,877	-	193,098	621	-	2,120	567	_
2010	1,982	72,893	24,380	-	396,174	-	-	1,891	1,038	_
2011	12,889	100,473	10,020	-	642,529	6,011	-	9,454	8,493	-
2012	-	56,680	-	-	484,091	15,606	-	20,600	14,948	-
2013	10,965	61,234	9,685	38,915	577,876	-	-	13,695	13,230	-
2014	-	37,793	9,650	54,061	399,796	-	-	-	-	-
2015	6,004 e	48,809	2,837 e	36,871	374,968	3,685	-	4,102	9,525	-
2016	-	50,362	-	-	337,821	-	-	-	-	-
2017	-	55,532	11,655	38,191	415,139	-	-	4,890	7,882	-
2018	16,206	36,330	13,837	30,309	305,098	-	-	3,930	1,164	-
2019 i	26,048	49,881	17,198	15,499	249,014	-	-	2,612	4,898	-
2020	10,628	=	9,932	8,461	=	-	-	861	722	-
GOAL h		>40,000			350,000–700,	,000				
Average										
1973–2019	41,526	72,920	48,663	246,040	576,502	12,018	26,176	10,727	19,934	96,519
2010-2019	12,349	56,999	12,408	35,641	418,251	8,434	-	7,647	7,647	-
2015-2019	16,086	48,183	11,382	30,218	336,408	3,685	-	3,884	5,867	-
Minimum	736	2,134	617	15,499	193,098	621	3,056	1,263	567	19,590
Maximum	223,485	200,981	238,565	900,967	1,479,582	38,258	77,193	51,215	87,280	236,890

Appendix B13.—Page 3 of 5.

	Henshaw									Tozitna								
	Creek	Gisa	sa R	iver	_	Hogatz	a R	iver		River		Chen	a Ri	ver		Salc	ha R	iver
					-	Clear & Caribou Cr.		Clear Creek	<u>-</u>									
Year	Weir	Aerial ^b		Weir		Aerial ^b		Tower		Weir and Aerial ^b		Aerial b		Tower		Aerial b		Tower
1973												79	e			290		
1974		22,022								1,823		4,349				3,510		
1975		56,904				22,355				3,512		1,670				7,573		
1976		21,342				20,744				725	e	685				6,484		
1977		2,204	e			10,734				761	e	610				677	e	
1978		9,280	e			5,102				2,262		1,609				5,405		
1979		10,962				14,221				-		1,025	e			3,060		
1980		10,388				19,786				580		338				4,140		
1981		-				_				-		3,500				8,500		
1982		334	e			4,984	e			874		1,509				3,756		
1983		2,356	e			28,141				1,604		1,097				716	e	
1984		-				184	e			-		1,861				9,810		
1985		13,232				22,566				1,030		1,005				3,178		
1986		12,114				-				1,778		1,509				8,028		
1987		2,123				5,669	e			-		333				3,657		
1988		9,284				6,890				2,983		432				2,889	e	
1989		_				_				-		714	e			1,574	e	
1990		450	e			2,177	e			36		245	e			450	e	
1991		7,003				9,947				93		115	e			154	e	
1992		9,300				2,986				794		848	e			3,222		
1993		1,581				-				970		168		5,483		212		5,809
1994		6,827		51,116	g	8,247	i			-		1,137		9,984		4,916		39,450
1995		6,458		136,886		-		116,735		4,985		185	e	3,519	g	934	e	30,784
1996		-		158,752		27,090	i	100,912		2,310		2,061		12,810	g	9,722		74,827
1997		686	e	31,800		1,821	e	76,454		428	e	594	e	9,439	g	3,968	e	35,741
1998		-		21,142		120	e	212	g	7	e	24	e	5,901		370	e	17,289
1999		-		10,155		-		11,283		-		520		9,165		150		23,221
2000	24,457	-		11,410		-		19,376		480		105		3,515		228		20,516
2001	34,777	-		17,946		_		3,674		12,527		2		4,773		_		14,900

Appendix B13.–Page 4 of 5.

	Henshaw					Tozitna							
	Creek	Gisas	sa River	Hogatza l	River	River	Chena	River		Salc	ha R	liver	_
				Clear & Caribou Cr.	Clear Creek								
						Weir and							
Year	Weir	Aerial b	Weir	Aerial b	Tower	Aerial b	Aerial b	Tower		Aerial b		Tower	
2002	25,249	_	33,481	-	13,150	18,789	-	1,021	g	78		27,012	j
2003	21,400	-	25,999	-	6,159	8,487	-	573	g	-		-	
2004	86,474	-	37,851	-	15,661	25,003	-	15,163	g	-		47,861	
2005	237,481	-	172,259	-	26,420	39,700	219	16,873	g	4,320		194,933	
2006	-	1,000	261,306	-	29,166 ^j	22,629	469	35,109	g	152		113,960	
2007	44,425	-	46,257	-	6,029 ^j	8,470	-	4,999		4	e	13,069	
2008	96,731	20,470	36,938	-	_	9,133	37	1,300	g	0	e	2,213	g
2009	156,933	1,060	25,904	3,981	_	8,434	-	16,516		-		31,035	
2010	105,398	1,096	47,669	840	-	-	-	7,561		-		22,185	
2011	248,247	13,228	95,796	3,665	-	11,351	4,600	-		1,154		66,564	k
2012	292,082	-	83,423	23,022	_	11,045	1,180	6,882		-		46,252	
2013	285,008	9,300	e 80,055	-	-	-	135	e 21,372		-		60,981	
2014	-	-	32,523	-	_	-	1,317	13,303	e	1993	e	-	e
2015	238,529	5,601	42,747	6,080	-	-	-	8,620		0	e	12,812	
2016	286,780	-	66,670	-	-	-	-	6,493	g	-		2,897	g
2017	360,687	-	73,584	-	_	-	-	21,156	g	-		29,093	g
2018^{1}	-	g 8,058	-	3,307	-	-	-	13,084	g	-		22,782	g
2019^{1}	34,342	-	19,099	-	-	-	-	2,704		-		2,117	
20201	-	754	-	-	=	-	-	357	g	-		-	
GOAL													
Average													
1973–2019	151,706	9,452	64,831	10,186	32,710	6,568	1,008	9,897		2,924		38,332	
2010–2019	231,384	7,457	60,174	7,383	-	11,198	1,808	11,242		1,049		29,520	
2015–2019	230,085	6,830	50,525	4,694				10,411		-		13,940	
Minimum	21,400	334	10,155	120	212	7	2	573		0		2,117	
Maximum	360,687	56,904	261,306	28,141	116,735	39,700	4,600	35,109		9,810		194,933	

Appendix B13.—Page 5 of 5.

Note: Unless otherwise noted blank cells indicate years prior to the project being operational. Dashes indicate years in which no information was collected. Minimum and maximum values exclude the most recent year data.

- ^a Includes mainstem counts below the confluence of the North and South Forks, unless otherwise noted.
- ^b Aerial survey counts are peak counts only, survey rating is fair or good unless otherwise noted.
- ^c East Fork Andreafsky passage estimated with sonar 1981–1984, tower counts 1986–1988; weir counts 1994–present. The project did not operate in 1985, 1989–1993 and 2020.
- ^d From 1972 to 1979, counting tower operated; escapement estimate listed is the tower counts plus expanded aerial survey counts below the tower.
- ^e Incomplete survey and/or poor survey timing or conditions resulted in minimal or inaccurate count.
- f Mainstem counts below the confluence of the North and South Forks of the Nulato River included in the South Fork counts.
- g Incomplete count due to late installation and/or early removal of project or high water events.
- ^h Biological escapement goal (Andreafsky) or sustainable escapement goal (Anvik).
- i Bureau of Land management helicopter survey.
- ^j Project operated as a video monitoring system.
- k Estimate includes an expansion for missed counting days based on average run timing. Minimum documented abundance from successful counting days was 30,411 (standard error not reported).
- ¹ Data are preliminary.

Appendix B14.—Fall chum salmon abundance estimates or escapement estimates for selected spawning areas in the U.S. (Alaska) portions of the Yukon River drainage, 1971–2020.

	Yukon				Ta	nana Rive	r dr	ainage			Upper Yuko	on River draina	ge
	River mainstem sonar	Toklat		Kantishna River abundance		Delta		Bluff Cabin		Upper Tanana River abundance	Teedriinjik- Chandalar	Sheenjek	
Year	estimate a	River	b	estimate	c	River	d	Slough	e	estimate f	River	g River	h
1971													
1972						5,384	i						
1973						10,469	i						
1974		41,798				5,915	i					117,921	j
1975		92,265				3,734						227,935	j
1976		52,891				6,312						34,649	j
1977		34,887				16,876						59,878	j
1978		37,001				11,136	i					42,661	j
1979		158,336				8,355	i					120,129	j
1980		26,346	k			5,137	i	3,190	1			38,093	j
1981		15,623				23,508	i	6,120	1			102,137	n
1982		3,624				4,235	i	1,156				43,042	n
1983		21,869				7,705	i	12,715				64,989	n
1984		16,758				12,411	i	4,017				36,173	m
1985		22,750				17,276		2,655	1			179,727	m
1986		17,976				6,703		3,458			59,313	84,207	n,
1987		22,117				21,180	i	9,395			52,416	153,267	n,
1988		13,436				18,024	i	4,481	1		33,619	45,206	О
1989		30,421				21,342		5,386	1		69,161	99,116	О
1990		34,739				8,992		1,632			78,631	77,750	О
1991		13,347				32,905		7,198				86,496	p
1992		14,070				8,893		3,615	1			78,808	
1993		27,838				19,857	i	5,550	1			42,922	
1994		76,057				23,777		2,277	1			150,565	
1995	1,156,278	54,513	k			20,587	i	19,460		268,173	323,586	241,855	
1996	q	18,264				19,758		7,074	d	134,563	230,450	246,889	
1997	579,767	14,511				7,705		5,707	d	71,661	211,914	80,423	r
1998	375,222	15,605				7,804		3,549	d	62,014	83,899	33,058	
1999	451,505	4,551		27,199		16,534		7,559	d	97,843	92,685	14,229	

Appendix B14.—Page 2 of 3.

		Yukon					Ta	anana Rivo	er d	rainage				Upper Yuko	n Ri	ver drainage	
		River mainstem sonar		Toklat		Kantishna River abundance		Delta		Bluff Cabin		Upper Tanana River abundance		Teedriinjik- Chandalar		Sheenjek	
Year		estimate	a	River	b	estimate	с	River	d	Slough	e	Cstillate	f	River	g	River	h
2000		273,206		8,911		21,450		3,001		1,595		34,844		71,048		30,084	S
2001		408,961		0,007	t	22,992		8,103		1,808	1	70,550	u	112,664		53,932	
2002		367,886		28,519		56,665		11,992		3,116		109,961		94,472		31,642	
2003		923,540		21,492		87,359		22,582		10,600	1	193,418		221,343		44,047	V
2004		633,368		35,480		76,163		25,073		10,270	1	123,879		169,848		37,878	
2005		1,894,078		17,779	j	107,719		28,132		11,964	1	337,755		526,838		561,863	n
2006		964,238				71,135		14,055				202,669		254,778		160,178	n
2007		740,195				81,843		18,610				320,811		243,805		65,435	n
2008		636,525						23,055		1,198	1			178,278		50,353	n
2009			q					13,492		2,900	1				q	54,126	n
2010		458,103						17,993		1,610	1			167,532		22,053	
2011		873,877						23,639		2,655	1			298,223		97,976	n
2012		778,158						9,377	e					205,791		104,701	n
2013		865,295		9,161	1			31,955		5,554	1			252,710			
2014		706,630						32,480	e	4,095	1			226,489			
2015		669,483		8,422	1			33,401	e	6,020	1			164,486			
2016		994,760		16,885	1			21,913	e	4,936	1			295,023			
2017		1,829,931						48,783	e					509,115			
2018		928,664		19,141	1			39,641	e	5,554	1			170,356			
2019		842,041						51,748	e	4,664	1			116,323			
2020	w	262,439		1,330	1			9,854	e	1,124	1						
Escapement	Х	300,000-	у					7,000-	Z					85,000-	Z		
Goal Ranges		600,000						20,000						234,000			
Averages																	
1971–2019		797,900		29,261		61,392		17,740		5,409		158,011		190,165		97,856	
2010–2019		894,694		13,402		-		31,093		4,386		-		240,605		74,910	
2015–2019		1,052,976		14,816				39,097		5,294				251,061			
Minimum		273,206		3,624		21,450		3,001		1,156		34,844		33,619		14,229	
Maximum		1,894,078		158,336		107,719		51,748		19,460		337,755		526,838		561,863	

Appendix B14.—Page 3 of 3.

Note: Minimum and maximum values exclude the most recent year data.

- ^a New model estimates generated in 2015 and applied to dataset back to 1995 and used since.
- b Expanded total abundance estimates for upper Toklat River index area using stream life curve (SLC) developed with 1987–1993 data. Index area includes Geiger Creek, Sushana River, and mainstem floodplain sloughs from approximately 0.25 mile upstream of roadhouse.
- ^c Fall chum salmon abundance estimate for the Kantishna and Toklat River drainages is based on a mark–recapture program. Number of tagging and recovery wheels changed over the years.
- d Population estimate generated from replicate foot surveys and stream life data (area under the curve method), unless otherwise indicated.
- e Peak foot survey, unless otherwise indicated.
- Fall chum salmon abundance estimate for the upper Tanana River drainage is based on a mark—recapture program. Upper Tanana River consists of that portion upstream of the confluence with the Kantishna River. Number of tagging and recovery wheels changed over the years.
- g Single-beam sonar estimate for 1986–1990 (not used in run reconstruction), split-beam sonar estimate 1995–2006, DIDSON in use since 2007, project was aborted in 2009 and not operated in 2020. Sonar counts on the Teedriinjik are extrapolated after conclusion of the project through October 9 from 1995–present, with 2018 expanded to October 14 due to late run timing.
- h Single-beam sonar estimate beginning in 1981, split-beam sonar estimate 2003–2004, and DIDSON 2005–2012. Sonar counts on the Sheenjek River are extrapolated after conclusion of the project through October 9 from 2005–2012.
- ⁱ Estimates are a total spawner abundance, using migratory time density curves and stream life data.
- Total escapement estimate using sonar to aerial survey expansion factor of 2.22.
- Minimal estimate because of late timing of ground surveys with respect to peak of spawning.
- Aerial survey count, unless otherwise indicated.
- m Project started late, estimated escapements expanded for portion missed using average run timing curves based on Teedriinjik (1986–1990) and Sheenjek (1991–1993) rivers.
- ⁿ Sonar counts include both banks in 1985–1987, 2005–2009, and 2011–2012.
- Expanded estimates for period approximating second week of August through fourth week of September, using annual Chandalar River run timing data (1986–1990).
- P Total abundance estimates are for the period approximating second week of August through fourth week of September (1991–2012). Comparative escapement estimates before 1986 are considered more conservative; approximating the period end of August through September.
- ^q Project operated all or partial season, estimate was not useable.
- Data interpolated due to high water from August 29–September 3, 1997 during buildup to peak passage on the Sheenjek River.
- Sheenjek sonar project ended early (September 12) because of low water therefore estimate was expanded based on average run timing (62%).
- ^t Minimal estimate because Sushana River was breached by the main channel and uncountable.
- ^u Low numbers of tags deployed and recovered resulted in an estimate with an extremely large confidence interval (95% CI +/- 41,072).
- V Sheenjek sonar project ended on peak daily passages due to late run timing, estimate was expanded based on run timing (87%) at Rampart.
- w Data are preliminary.
- x Escapement Goals (EG) expressed as ranges.
- y Drainagewide escapement goal is related to mainstem passage estimate based on the sonar near Pilot Station minus upriver harvests.
- ^z Escapement goal revised to a sustainable escapement goal range in 2019 based on percentile method.

Appendix B15–Fall chum salmon escapement estimates for selected spawning areas in Canadian (Yukon) portions of the Yukon River drainage, 1971–2020.

	Porcupin	e Riv	er drainage	Mainstem							
	Fishing		Porcupine	Yukon							
	Branch		River	River		Koidern		Kluane		Teslin	
Year	River	a	sonar	index	b,c	River	b	River	b, d	River	b, e
1971	312,800	f									
1972	35,230	g						198	h,l		
1973	15,991			383				2,500			
1974	31,841							400			
1975	353,282			7,671				362	h		
1976	36,584	f						20			
1977	88,400	f						3,555			
1978	40,800	f						0	h		
1979	119,898	f						4,640	h		
1980	55,268	f						3,150			
1981	57,386	i						25,806			
1982	15,901	f		1,020	j			5,378			
1983	27,200	f		7,560				8,578	h		
1984	15,150	f		2,800	k	1,300		7,200		200	
1985	56,223			10,760		1,195		7,538		356	
1986	31,811			825		14		16,686		213	
1987	49,038			6,115		50		12,000			
1988	23,645			1,550		0		6,950		140	
1989	44,042			5,320		40		3,050		210	1
1990	35,000	m		3,651		1		4,683		739	
1991	37,870			2,426		53		11,675		468	
1992	22,539			4,438		4		3,339		450	
1993	28,707			2,620		0		4,610		555	
1994	65,247			1,429	j	20	j	10,734		209	1
1995	51,971	n		4,701		0		16,456		633	
1996	77,302			4,977				14,431		315	
1997	27,031			2,189				3,350		207	
1998	13,687			7,292				7,337		235	
1999	12,958			0.22	1			5,136		19	i
2000	5,057			933	1			1,442		204	
2001	21,737			2,453				4,884		5	
2002	13,636			973				7,147		64	
2003	29,713			7,982				39,347		390	
2004	20,417			3,440				18,982		167	
2005	119,058			16,425				34,600		585	
2006	30,954			6,553				18,208		620	
2007	32,150	n									
2008	19,086	0									
2009	25,828	0									
2010 2011	15,413	n,o									
2011	13,085 22,399	0									
2012	25,376	p	25 615								
2013	7,304	p	35,615 17,756	1							
		r	17,750								
2015	8,351		21,397								

Appendix B15.-Page 2 of 2.

	Porcupine Riv	Porcupine River drainage								
	Fishing	Porcupine	Yukon							
	Branch	River	River		Koidern		Kluane		Teslin	
Year	River	a sonar	index	b,c	River	b	River	b, d	River	b, e
2016	29,397	54,395								
2017	48,524	67,818					16,265	q		
2018	10,151		r				1,734			
2019	18,171	27,447					928			
2020 s	4,795		323				120			
Goal t	50,000-120,000									
IMEG u	22,000-49,000									
Averages										
1971-2019	46,910	37,405	4,480		223		8,771		317	
2010-2019	19,817	37,405	-		-		6,309		-	
2015-2019	22,919	42,764	=		-		6,309		-	
Minimum	5,057	17,756	383		0		0		5	
Maximum	353,282	67,818	16,425		1,300		39,347		739	

Note: Minimum and maximum values exclude the most recent year data.

- ^a Weir count, unless otherwise indicated. Weir counts 1972–1975, 1985–1989, 1991–1992, and 1996–2012 were expanded to represent the remainder of the run after the project was terminated for the season through October 25.
- b Aerial survey, unless otherwise indicated.
- ^c Index area includes Tatchun Creek to Fort Selkirk.
- d Index area includes Duke River to end of spawning sloughs below Swede Johnston Creek.
- ^e Index area includes Boswell Creek area (5 km below to 5 km above confluence).
- f Total escapement estimated using weir to aerial survey expansion factor of 2.72, unless otherwise indicated.
- Weir installed September 22. Estimate consists of weir count of 17,190 after September 22, and tagging passage estimate of 17,935 before weir installation.
- ^h Foot survey, unless otherwise indicated.
- i Initial aerial survey count doubled before applying the weir/aerial expansion factor of 2.72 because only half of the spawning area was surveyed.
- j Boat survey.
- ^k Total index area not surveyed. Survey included the mainstem Yukon River between Yukon Crossing to 30 km below Fort Selkirk
- ¹ Incomplete and/or poor survey conditions resulting in minimal or inaccurate counts.
- Weir not operated. Although only 7,541 chum salmon were counted on a single survey flown October 26, a population estimate of approximately 27,000 fish was made through date of survey, based upon historic average aerial-to-weir expansion of 28%. Actual population of spawners was reported by DFO as between 30,000–40,000 fish considering aerial survey timing.
- ⁿ Incomplete count caused by late installation and/or early removal of project or high water events.
- On Run timing was late and counts were expanded to represent the remainder of the run after the project was terminated for the season.
- P Fishing Branch River weir did not operate, and escapement was estimated from a sonar operated on the upper Porcupine River minus Old Crow harvest and the proportion of radio tags to Fishing Branch River.
- ^q Aerial surveys resumed following permanent diversion of Kluane Lake headwaters in 2016 by glacial retreat.
- ^r High water in August and early ice up prevented a complete passage estimate for Porcupine River fall chum salmon.
- s Data are preliminary.
- ^t Escapement goal in Pacific Salmon Treaty for Fishing Branch River fall chum salmon.
- ^u Interim Management Escapement Goal (IMEG) established for 2010–2018 based on brood table of Canadian origin mainstem stocks (1982 to 2003).

Appendix B16.–Estimated spawning escapement of Canadian-origin Yukon River fall chum salmon, 1980–2020.

	Eagle sonar	Eagle sonar expanded	U.S. harvest above	U.S./Canada mainstem border		Canadian mainstem	Spawning escapement	
Date	estimate	estimate ^a	Eagle sonar b	passage estimate	b	harvest	estimate	c
1980				39,130		16,218	22,912	
1981				66,347		19,281	47,066	d
1982				47,049		15,091	31,958	
1983				118,365		27,490	90,875	
1984				81,900		25,267	56,633	d
1985				99,775		37,765	62,010	
1986				101,826		13,886	87,940	
1987				125,121		44,345	80,776	
1988				69,280		32,494	36,786	
1989				55,861		20,111	35,750	
1990				82,947		31,212	51,735	
1991				112,303		33,842	78,461	
1992				67,962		18,880	49,082	
1993				42,165		12,422	29,743	
1994				133,712		35,354	98,358	
1995				198,203		40,111	158,092	
1996				143,758		21,329	122,429	
1997				94,725		9,306	85,419	
1998				48,047		1,795	46,252	
1999				72,188	e	13,636	58,552	
2000				57,978	e	4,246	53,732	
2001				38,769	e	5,278	33,491	
2002				104,853	e	6,232	98,621	
2003				153,656	e	10,523	143,133	
2004				163,625	e	9,545	154,080	
2005				451,477		13,979	437,498	
2006	236,386	245,290	17,775	227,515	f,g	6,617	220,898	
2007	235,871	265,008	18,691	246,317	f,g	9,330	236,987	
2008	171,347	185,409	11,381	174,028	f,g	6,130	167,898	
2009	95,462	101,734	6,995	94,739	f	1,113	93,626	
2010	125,547	132,930	11,432	121,498	f	3,709	117,789	
2011	212,162	224,355	12,477	211,878	f	6,312	205,566	
2012	147,710	153,248	11,681	141,567	f	3,905	137,662	
2013	200,754	216,791	12,642	204,149	f	3,887	200,262	
2014	167,715	172,887	13,041	159,846	f	3,050	156,796	
2015	112,136	125,095	12,540	112,555	f	3,897	108,658	

Appendix B16.-Page 2 of 2.

	Eagle sonar	Eagle sonar expanded	U.S. harvest above	U.S./Canada mainstem border		Canadian mainstem	Spawning escapement	
Date	estimate	estimate a	Eagle sonar	passage estimate	b	harvest	estimate	c
2016 ^h	144,035	161,027	13,015	148,012	f	2,745	145,267	
2017^{h}	407,166	419,099	14,110	404,989	f	3,404	401,585	
2018^{h}	136,732	168,798	11,715	157,083	f	2,957	154,126	
2019 ^h	101,678	113,256	10,759	102,497	f	2,759	99,738	
2020 h	20,766	23,512	0	23,512	f	0	23,512	
Goal i							>80,000	
IMEG ^j							70,000-104,000	
Averages								
1980-2019	178,193	191,781	12,732	131,942		14,486	117,456	
2010-2019	175,564	188,749	12,341	176,407		3,663	172,745	
2015-2019	180,349	197,455	12,428	185,027		3,152	181,875	
Minimum	95,462	101,734	6,995	38,769		1,113	22,912	
Maximum	407,166	419,099	18,691	451,477		44,345	437,498	

Note: Table includes information on U.S/Canada border passage estimates, Eagle area subsistence harvest between the sonar and the border (where applicable), and Canadian mainstem harvest. Estimates for subsistence caught salmon between the sonar site and border (Eagle area) prior to 2008 include an unknown portion caught below the sonar site. This number is most likely in the thousands for chum salmon. Starting in 2008, the estimates for subsistence-caught salmon only include salmon harvested between the sonar site and the U.S./Canada border. Minimum and maximum values exclude the most recent year data.

- ^a Sonar estimates include an expansion for fish that may have passed after operations ceased through October 18. In 2018, expanded to October 23 due to late run timing.
- b Border passage estimate is based on a mark-recapture estimate unless otherwise indicated.
- ^c Estimated mainstem border passage minus Canadian mainstem harvest (excludes Fishing Branch River). Current interim management escapement goal is 70,000 to 104,000 fall chum salmon.
- d Escapement estimate based on mark-recapture program unavailable. Estimate based on assumed average exploitation rate.
- ^e From 1999 to 2004, border passage estimates were revised using a Stratified Population Analysis System (Arnason et. al 1995).
- f From 2006 to present, border passage estimate is based on sonar minus harvest from U.S. residents upstream of deployment.
- Mark-recapture border passage estimates include 217,810; 235,956; and 132,048 fish from 2006–2008 respectively, during transition to sonar.
- b Data are preliminary as harvest information is not published yet.
- ⁱ Escapement goal in Pacific Salmon Treaty for mainstem Yukon River Canadian-origin fall chum salmon.
- ^j Interim Management Escapement Goal (IMEG) established for 2008–2012, based on percentile method.

Appendix B17.—Coho salmon passage estimates or escapement estimates for selected spawning areas in the U.S. (Alaska) portion of the Yukon River drainage, 1972–2020.

	Yukon River										Unnor	Tanana Ri	vor dra	inaga	
	mainstem			Nen	ana Rive	er drainage			-	Delta		Clearwa		Richard	lson
	sonar	Lost		Nenan		Wood		Sevente	een	Clearwa		Lake a		Clearw	
Year	estimate a	Slough	h	mainster		Creek		Mile Slo		River		outle		Rive	
1972		~-~- <i>-</i>	-							632	(b)	417	(f)	454	(f) d
1973										3,322	(u)	551	(u)	375	(u)
1974		1,388	(f)					27	(f)	3,954	(h) d	560	(f)	652	(h)
1975		827	(f)					956	(f)	5,100	(b)	1,575	(b)		. ,
1976		118	(f)					281	(f)	1,920	(b)	1,500	(b)	80	(f) d
1977		524	(f) d			310	(g)	1,167	(f)	4,793	(b)	730	(b)	327	(f)
1978		350	(f)			300	(g)	466	(f)	4,798	(b)	570	(b)		, ,
1979		227	(f)				,	1,987	(f)	8,970	(b)	1,015	(b)	372	(f)
1980		499	(f) d			1,603	(g)	592	(f)	3,946	(b)	1,545	(b)	611	(f)
1981		274	(f)			849	(w) e	1,005	(f)	8,563	(u) f	459	(f)	550	(f)
1982						1,436	(w) e		(f)	8,365	(g) f				
1983		766	(f)			1,042	(w)	103	(f)	8,019	(b) f	253	(f)	88	(f)
1984		2,677	(f)			8,826	(w)		(f)	11,061	(b)	1,368	(f)	428	(f)
1985		1,584	(f)			4,470	(w)	2,081	(f)	5,358	(b)	750	(f)		
1986		794	(f)			1,664	(w)	218	(b)	10,857	(b)	3,577	(f)	146	(f) ^d
1987		2,511	(f)			2,387	(w)	3,802	(f)	22,300	(b)	4,225	(b)		
1988		348	(f)			2,046	(w)			21,600	(b)	825	(b)		
1989						412	(w)	824	(f) ^d	11,000	(b)	1,600	(b)	483	(f)
1990		688	(f)	1,308	(f)				(h) d	8,325	(b)	2,375	(b)		
1991		564	(f)	447	(f)			52	(f)	23,900	(b)	3,150	(b)		
1992		372	(f)					490	(f)	3,963	(b)	229	(b)	500	(f)
1993		350	(f)	419	(f)	666	$(w)^g$	581	(h)	10,875	(b)	3,525	(b)		
1994		944	(h)	1,648	(h)	1,317	(w) h	2,909	(h)	62,675	(b)	3,425	(b)	5,800	(f)
1995	119,893	4,169	(f)	2,218	(h)	500	(w)	1,512	(h)	20,100	(b)	3,625	(b)		
1996	i	2,040	(h)	2,171	(h)	201	(u) ^d	3,668	(g/b)	14,075	(b)	1,125	(h) ^d		
1997	118,065	1,524	(h)	1,446	(h)		j	1,996	(h)	11,525	(b)	2,775	(b)		
1998	146,365	1,360	(h) ^d	2,771	(h) ^d		j	1,413	(g/b)	11,100	(b)	2,775	(b)		
1999	76,174	1,002	(h) ^d	745	(h) ^d	370	(h)	662	(h) ^d	10,975	(b)				

Appendix B17.—Page 2 of 3.

	Yukon River										1	Inner	Tanana Riv	vor dre	ninaga	
	mainstem				Nen	ana Rive	r drainage			-	Delta		Clearwa		Richard	son
	sonar	-	Lost		Nenan		Wood		Sevente	en en	Clearwa		Lake ar		Clearwa	
Year	estimate	a	Slough	n	mainster		Creek		Mile Slo		River	С	outlet		River	
2000	206,365		55	(h) ^d	68	(h) ^d		j	879	(h) ^d	9,225	(b)	1,025	(b)	2,175	(h)
2001	160,272		242	(h)	859	(h)	699	(h)	3,753	(h)	46,985	(b)	4,425	(b)	1,531	(f)
2002	137,077		0	(h)	328	(h)	935	(h)	1,910	(h)	38,625	(b)	5,900	(b)	874	(f)
2003	280,552		85	(h)	658	(h)	3,055	(h)	4,535	(h)	102,800	(b)	8,800	(b)	6,232	(h)
2004	207,844		220	(h)	450	(h)	840	(h)	3,370	(h)	37,550	(b)	2,925	(b)	8,626	(h)
2005	194,622		430	(h)	325	(h)	1,030	(h)	3,890	(h)	34,293	(b)	2,100	(b)	2,024	(h)
2006	163,889		194	(h)	160	(h)	634	(h)	1,916	(h)	16,748	(b)	4,375	(b)	271	(h)
2007	192,406		63	(h)	520	(h)	605	(h)	1,733	(h)	14,650	(b)	2,075	(b)	553	(h)
2008	145,378		1,342	(h)	1,539	(h)	578	(h)	1,652	(h)	7,500	(b)	1,275	(b)	265	(h)
2009		i	410	(h)			470	(h)	680	(h)	16,850	(b)	5,450	(b)	155	(h)
2010	177,724		1,110	(h)	280	(h)	340	(h)	720	(h)	5,867	(b)	813	(b)	1,002	(h)
2011	149,533		369	(h)			0	(h) ^j	912	(h)	6,180	(b)	2,092	(b)	575	(h)
2012	130,734				106	(h)	0	(h) ^j	405	(h)	5,230	(b)	396	(h)	515	(h)
2013	110,515		721	(h)			55	(h)	425	(h)	6,222	(b)	2,221	(h)	647	(h)
2014	283,421		333	(h)	378	(h)	649	(h)	886	(h)	4,285	(b)	434	(h)	1,941	(h)
2015	121,193		242	(h)	1,789	(h)	1,419	(h)	3,890	(h)	19,533	(b)	1,621	(h)	3,742	(h)
2016	168,297		334	(h)	1,680	(h)	1,327	(h)	2,746	(h)	6,767	(b)	1,421	(h)	1,350	(h)
2017	166,320		1,278	(h)	862	(h)	2,025	(h)	1,942	(h)	9,617	(b)				
2018	136,347		1,822	(h)	241	(h)	361	(h)	347	(h)	2,884	(b)	2,465	(h)	976	(h)
2019	86,401				749	(h)	184	(h)	424	(h)	2,043	(b)	258	(h)	300	(h)
2020	107,680	k	28	(h)	206	(h)	231	(h)	507	(h)	2,557	(b)	210	(h)	475	(h)
SEG ¹											5,200–17,	,000				
Averages																
1972–2019	159,973		837		929		1,211		1,519		14,915		2,102		1,352	
2010–2019	153,049		776		761		636		1,270		6,863		1,302		1,228	
2015–2019	139,755		903		1,042		1,088		1,811		9,293		1,573		1,544	
Minimum-19	76,174		0		68		0		27		632		229		80	
Maximum-19	283,421		4,169		2,771		8,826		4,535		102,800		8,800		8,626	

Appendix B17.—Page 3 of 3.

Note: Only peak counts presented. Survey rating is fair to good, unless otherwise noted. Denotations of survey methods include: (b)=boat, (f)=fixed wing, (g)=ground/foot, (h)=helicopter, (u)=undocumented, and (w)=weir. Minimum and maximum indicate year with the lowest and highest values through 2019.

- ^a Passage estimates for coho salmon are incomplete. The sonar project is terminated prior to the end of the coho salmon run. New model estimates generated in 2015 and applied to dataset back to 1995 and used since.
- ^b Index area includes mainstem Nenana River between confluences of Lost Slough and Teklanika River.
- ^c Index area is lower 28km (17.5 mi) of system.
- ^d Poor survey resulted in minimal count.
- ^e Weir was operated at the mouth of Clear Creek (Shores Landing).
- ^f Expanded estimate based on partial survey counts and historic distribution of spawners from 1977–1980.
- ^g Weir project terminated on October 4, 1993. Weir normally operated until mid- to late October.
- ^h Weir project terminated September 27, 1994. Weir normally operated until mid- to late October.
- ⁱ Project operated all or partial season, estimate was not useable.
- ^j No survey of Wood Creek due to obstructions in creek or surveyed with zero fish observed.
- ^k Data are preliminary.
- Sustainable escapement goal (SEG) established January 2004 (replaces BEG of greater than 9,000 fish established March 1993), based on boat survey counts of coho salmon in the lower 17.5 river miles during the period October 21–27.

 $Appendix\ B18.-Yukon\ River\ Salmon\ Agreement\ specified\ obligations\ for\ harvest\ shares,\ border\ passage\ and\ spawning\ escapement\ for\ mainstem\ Canadian-origin\ Yukon\ River\ Chinook\ salmon,\ 2001–2020$

		Total								Yukon River		
	Total estimated	allowable	U.S. share (%)		Border		Canad	a share	Canada	Panel goal		
	Canadian-origin	catch (TAC) b	of TAC	U.S.	passage	Border	(%) o	f TAC	mainstem	or IMEG ^f	Spawnin	ng
Year	run size a	From To	0.74 0.8	harvest c	objective d	passage ^e	0.20	0.26	harvest	From To	escapeme	ent ^g
2001	77,354	49,354	36,522 39,483	23,325	39,351	54,029	9,871	12,832	9,774	28,000	h 44,255	5
2002	73,417	45,417	33,609 36,334	30,058	38,446	43,359	9,083	11,808	9,070	28,000	i 34,289	9
2003	118,022	90,022	66,616 72,018	59,940	48,705	58,082	18,004	23,406	9,446	28,000	i 48,636	6
2004	105,942	77,942	57,677 62,354	57,831	45,927	48,111	15,588	20,265	10,946	28,000	j 37,165	5
2005	86,895	58,895	43,582 47,116	44,650	41,546	42,245	11,779	15,313	10,977	28,000	31,268	8
2006	84,845	56,845	42,065 45,476	48,097	41,074	36,748	11,369	14,780	8,758	28,000	27,990	0
2007	70,440	27,440 37,440	20,306 29,952	48,320	40,611	22,120	5,488	9,734	4,794	33,000 43,000	17,326	6
2008 e	62,358	17,358	12,845 13,886	25,329	48,992	37,029	3,472	4,513	3,399	45,000	33,630	0
2009	87,221	42,221	31,244 33,777	17,646	54,711	69,575	8,444	10,977	4,297	45,000	65,278	8
2010	59,736	4,736 17,236	3,505 13,789	25,271	45,214	34,465	947	4,481	2,456	42,500 55,000	32,009	9
2011	71,725	16,725 29,225	12,377 23,380	20,824	47,972	50,901	3,345	7,599	4,594	42,500 55,000	46,307	7
2012	48,498	0 5,998	0 4,798	13,842	43,280	34,656	0	1,559	2,000	42,500 55,000	32,656	6
2013	37,177	0 0	0 0	6,604	42,500	30,573	0	0	1,904	42,500 55,000	28,669	9
2014	64,886	9,886 22,386	7,316 17,909	1,455	46,399	63,431	1,977	5,820	100	42,500 55,000	63,331	1
2015	87,323	32,323 44,823	23,919 35,858	3,649	51,559	83,674	6,465	11,654	1,000	42,500 55,000	82,674	4
2016	82,765	27,765 40,265	20,546 32,212	11,198	50,511	71,567	5,553	10,469	2,769	42,500 55,000	68,798	8
2017	93,188	38,188 50,688	28,259 40,551	21,373	52,908	71,815	7,638	13,179	3,500	42,500 55,000	68,315	5
2018	76,356	21,356 33,856	15,804 27,085	19,092	49,037	57,264	4,271	8,803	2,790	42,500 55,000	54,474	4
2019	72,620	17,620 30,120	13,039 24,096	27,804	48,178	44,816	3,524	7,831	2,764	42,500 55,000	42,052	2
2020	45,501	0 3,001	0 2,401	12,171	42,890	33,330	0	780	2,363	42,500 55,000	30,967	7

Appendix B18.–Page 2 of 2

Note: The table does not represent a dataset, its intent is to represent the information at the time. Data presented for each year is from the assessment methods of that year and represents final values (may not be the same as preliminary values published in that year's annual JTC report, or as retroactively finalized values using revised calculation techniques). Gray shaded boxes indicate Yukon River Salmon Agreement performance obligations that were not met.

- ^a Total estimated Canadian-origin run size is calculated as border passage plus Alaskan harvest of Canadian-origin Chinook salmon. From 2001 to 2012, these values were not specifically presented in annual JTC reports and have been retroactively calculated based on best available historical information from the assessment methods used in that year.
- b Total run size, total allowable catch (TAC) and harvest share calculations are finalized post-season. TAC is calculated by subtracting the IMEG from the total run size. Delivering the IMEG plus the midpoint of Canada's harvest share to the Alaska-Yukon border is part of the U.S. obligation as per the Pacific Salmon Treaty's Yukon River Salmon Agreement.
- ^c Scale pattern analysis was used to determine the U.S. Harvest stock proportions prior to 2004. Since 2004 U.S. Harvest estimates of the Canadian-origin stock were estimated by applying the stock proportions collected from harvest sampling to number of fish harvested in Alaska. Beginning in 2014, the U.S. harvest includes harvest from the Coastal District. Values from 2001-2012 were obtained from the annual ADF&G report "Origins of Chinook Salmon in Yukon Area Fisheries", and values from 2013 onwards have been reported in the annual JTC Report.
- d Border passage objective is calculated post season as the agreed spawning escapement goal plus the mid-point of the Canadian harvest share. For years where the escapement goal is a range, this is represented as the average of the Canadian Harvest Share, plus the lower end of the escapement goal.
- ^e From 2001 to 2007 the border passage was estimated from a mark recapture project. Beginning in 2008 border passage was estimated from the Eagle sonar, minus any Alaskan harvest upstream of the sonar. The bold horizontal line between 2007 and 2008 indicates the JTC's recommendation to use the Eagle sonar as the primary assessment tool for the border passage estimate. Values from this year forward are sonar based.
- f Yukon River Panel goals have changed over time and have been both points and ranges. IMEGs are not biologically based escapement goals.
- g Spawning escapement is calculated as the border passage estimate minus the harvest in Canada using the assessment methods of that year.
- h In the 2001 JTC report, there are some references to a lower goal of 18,000 although further reports state the goal of 28,000 was the only goal for this year.
- i In 2002 and 2003, the Chinook salmon goal was set at 25,000 fish. However, if the U.S. conducted a commercial fishery the goal would be increased to 28,000 fish.
- ^j In 2004, the escapement target for Canadian-origin Upper Yukon Chinook salmon was >28,000 Chinook salmon. If the run was gauged to be sufficiently strong, the escapement target could range up to 38,000 Chinook salmon, although the Panel did not describe what constituted a "strong" run.

Appendix B19.—Summary of management and conservation measures implemented in the U.S. (Alaska) and Canada, 2001–2020.

Year	U.S. management actions (subsistence)	U.S. management actions (commercial)	Canadian management actions (subsistence)	Canadian management actions (commercial, domestic, recreational)
2001		No commercial fishing for Chinook or summer chum salmon.	Unrestricted	Test fishery implemented in early season; commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2002		Chinook commercial fishing shifted to midpoint of run and later.	Unrestricted	Test fishery implemented in early season; commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2003	Subsistence fishing	Chinook commercial fishing shifted to midpoint of run and later.	Unrestricted	Test fishery implemented in early season; commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2004	schedule implemented (and continued in following years).	Chinook commercial fishing shifted to midpoint of run and later.	Unrestricted	Test fishery implemented in early season; commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2005		Chinook commercial fishing shifted to midpoint of run and later.	Unrestricted	Commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2006		Chinook commercial fishing delayed until start of second pulse.	Unrestricted	Commercial/domestic openings determined by weekly estimates of abundance, recreational open.
2007		Short fishing period on historic first quarter point date. Majority of harvest spread over middle 50% of the run.	Unrestricted	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.
2008	Protection on 2nd and 3rd pulses.	Chinook commercial fishing closed.	Voluntary reduction in harvest.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.
2009	1st and 2nd pulse closure.	Chinook commercial fishing closed and no sale of incidental catch; summer chum fishing delayed.	Voluntary reduction in harvest in early season.	Commercial/domestic openings determined by weekly estimates of abundance, recreational open.

Appendix B19.–Page 2 of 9.

Year	U.S. management actions (subsistence)	U.S. management actions (commercial)	Canadian management actions (subsistence)	Canadian management actions (commercial, domestic, recreational)
2010		Chinook commercial fishing closed; summer chum fishing delayed.	Voluntary reduction in harvest.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery.
2011	1st and 2nd pulse closure; additional fishing time reductions in upper districts; 7.5" mesh size restriction all season.	Chinook commercial fishing closed and no sale of incidental catch; summer chum fishing delayed; summer chum fishing restricted to certain areas of low Chinook abundance.	Voluntary reduction in harvest in early season.	Chinook commercial/domestic fishing closed; recreational fishing varied to non-retention in the recreational fishery, angling closure at Tatchun River, recreational restrictions lifted late in the season.
2012	1st and 2nd pulse closure; additional fishing time reductions in upper districts; 6" mesh size restriction after closures.	Chinook commercial fishing closed and no sale of incidental catch; summer chum fishing delayed and restricted to areas of low Chinook abundance; chum fish wheels attended at all times and Chinook released alive.	Voluntary reduction in harvest.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.
2013	1st, 2nd and 3rd pulse closures - limited opportunity in between pulses; additional fishing time reductions in upper districts; 6" mesh size restriction all season.	Chinook commercial fishing closed and no sale of incidental catch. Summer chum fishing with beach seines and dip nets, all Chinook released alive. Gillnet summer chum fishing restricted to 5.5" and 30 meshes; delayed and restricted to areas of low Chinook abundance; chum fish wheels attended at all times and Chinook released alive.	Voluntary reduction in harvest.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River and Teslin River.

Appendix B19.–Page 3 of 9.

Year	U.S. management actions (subsistence)	U.S. management actions (commercial)	Canadian management actions (subsistence)	Canadian management actions (commercial, domestic, recreational)
2014	Entire mainstem river closed to Chinook-directed fishing; no gillnets allowed greater than 4" mesh size to harvest non-salmon species; opportunity to harvest summer chum salmon in Districts 1-4 using elective gear that allows immediate and live release of Chinook allowed (dip nets, beach seines, and fish wheels); short openings with 6" or smaller gillnets allowed in each districts after >90% of Chinook salmon run had passed through; >99% in District 5.	Chinook commercial fishing closed; liberal opportunity for summer chum fishing with beach seines and dip nets - all Chinook released immediately and alive; 6" or smaller gillnet summer chum fishing delayed until majority of Chinook run complete; no sale of incidental Chinook; chum fish wheels had to be attended at all times and all Chinook released immediately to the water; concurrent subsistence and commercial openings.	Regulatory removal of TAC until 3rd quartile, voluntary reduction or closure maintained by majority of First Nations.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River and Teslin River

Appendix B19.–Page 4 of 9.

	U.S. management	U.S. management actions	Canadian management	Canadian management actions (commercial,
Year	actions (subsistence)	(commercial)	actions (subsistence)	domestic, recreational)
2015	Entire river closed to Chinook-directed fishing; no gillnets allowed greater than 4" mesh size to harvest non-salmon species; opportunity to harvest summer chum salmon in Districts 1–4 using selective gear that allows immediate and live release of Chinook (dipnets, beach seines, and fish wheels); short openings with 6" or smaller gillnets allowed in each district between pulses of Chinook salmon when summer chum abundance was high. Subsistence fishing was allowed in Subdistrict 5-D on the early trickle of Chinook salmon. Subsistence schedules liberalized in Districts 4 and 5 once Chinook salmon border escapement was surpassed.	Chinook commercial fishing closed; liberal opportunity for summer chum fishing with beach seines and dipnets - all Chinook released immediately and alive; 6" or smaller gillnet summer chum fishing delayed until majority of Chinook run complete; no sale of incidental Chinook; fish wheels had to be attended at all times and all Chinook released immediately to the water; concurrent subsistence and commercial openings.	Regulatory removal of TAC until 2nd quartile, voluntary reduction or closure maintained by majority of First Nations.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.

Appendix B19.–Page 5 of 9.

Voor	U.S. management	U.S. management actions	Canadian management	Canadian management actions (commercial,
Year 2016	U.S. management actions (subsistence) Early season only: Districts 1–5 using selective gear requiring live release of Chinook (dipnets, beach seines, and fish wheels); Subdistrict 5-D had open fishing on the early trickle with 6" gillnets. Reduced regulatory schedule fishing with gillnets restricted to 6" in most districts. Followed by surgical openings with 7.5" gillnets late in the run. Subsistence schedules liberalized in Districts 4 and 5 once Chinook salmon border escapement was surpassed.	Chinook commercial fishing closed; liberal opportunity for summer chum fishing with selective gear - all Chinook released immediately and alive; 6" or smaller gillnet summer chum fishing delayed until majority of Chinook run complete; no sale of incidental Chinook. No concurrent subsistence and commercial openings.	Aboriginal Fishery open with recommendation for reduced harvest (30%), voluntary reduction or closure maintained by majority of First Nations.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.

Appendix B19.–Page 6 of 9.

Year	U.S. management actions (subsistence)	U.S. management actions (commercial)	Canadian management actions (subsistence)	Canadian management actions (commercial, domestic, recreational)
2017	Early season only: Districts 1–5 placed on regulatory schedule fishing with gillnets restricted to 6" prior to the first pulse. Fishing restricted to selective gear requiring live release of Chinook (dipnets, beach seines, and fish wheels), then reopened to regulatory schedule with 7.5-inch of smaller mesh. Coastal District, Koyukuk and Innoko Rivers, and Subdistrict 5-D remained open with 7.5-inch or smaller mesh all season.	Chinook commercial fishing closed; liberal opportunity for summer chum fishing with selective gear - all Chinook released immediately and alive; 6" or smaller gillnet summer chum fishing delayed until majority of Chinook salmon run had entered the river. No sale of incidental Chinook salmon in summer season; one commercial period occurred in District 1 where Chinook salmon caught during fall chum directed commercial fishing were allowed to be sold. No concurrent commercial and subsistence openings in Districts 1 and 2.	Aboriginal Fishery open with recommendation for reduced harvest, voluntary reduction or closure maintained by majority of First Nations.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.

Appendix B19.-Page 7 of 9.

V	U.S. management	U.S. management actions	Canadian management	Canadian management actions (commercial,
Year	actions (subsistence) Early season: Districts 1–5 placed on half regulatory schedule fishing with gillnets restricted to 6". Two subsistence periods (one per week) were cancelled in Districts 1– 4A. Later in the season,	(commercial) Chinook commercial fishing closed; liberal opportunity for summer chum fishing with selective gear - all Chinook	actions (subsistence) Aboriginal Fishery open	Canadian management actions (commercial, domestic, recreational)
2018	limited opportunity (one reduced time opening per week) was provided with 7.5" mesh in Districts 1-4. District 5 remained restricted to 6" mesh through the third pulse of the Chinook salmon run. Coastal District, Koyukuk and Innoko Rivers remained open with 7.5-inch or smaller mesh all season.	released immediately and alive; 6" or smaller gillnet summer chum fishing delayed until majority of Chinook salmon run had entered the river. No sale of incidental Chinook salmon. No concurrent commercial and subsistence openings in Districts 1 and 2.	with recommendation for reduced harvest; voluntary reduction or closure maintained by majority of First Nations.	Chinook commercial/domestic fishing closed; varied to non-retention in the recreational fishery, angling closure at Tatchun River.

Appendix B19.–Page 8 of 9.

	U.S. management	U.S. management actions	Canadian management	Canadian management actions (commercial,
Year	actions (subsistence)	(commercial)	actions (subsistence)	domestic, recreational)
2019	Most of season: Districts 1-5 placed on half regulatory schedule fishing. 6"or smaller mesh restrictions added for at least 2 periods in Districts 1-6. One subsistence period was cancelled in Districts 1- 4. Fishing was closed for 10 days in Subdistrict 5- D. Coastal District, Koyukuk and Innoko Rivers remained open with 7.5" or smaller mesh all season.	Summer chum commercial fishing delayed due to late run timing; 6" or smaller gillnet summer chum commercial fishing occurred after the majority of Chinook run complete. Sale of incidental Chinook salmon allowed in the summer season after over 200,000 Chinook salmon had been counted at Pilot Station sonar. Sale of incidental Chinook salmon allowed during fall chum-directed commercial fishing. No concurrent commercial and subsistence openings.	Season commenced on July 1 with an opening and full allocation available for First Nation Chinook Fishery. Voluntary reduction or closure maintained by majority of First Nations. First Nation Governments were notified in early August advised to implement additional precautionary measures due to lower than expected passage at Eagle sonar and unlikeliness of achieving the midpoint of the IMEG.	Commercial and Domestic fishery conditions of license limited harvesters to gillnets with a 6" or smaller mesh size; Chinook commercial/domestic fisheries were closed. In advance of the Chinook return, retention varied to zero in the angling (recreational) fishery. A complete angling closure was enacted on the Yukon River and its tributaries as a Chinook conservation measure. Similarly, chum commercial/domestic fishery opening delayed to mid-September due to Chinook late run timing and low returns. Salmon angling fishery reopened in late September.

Appendix B19.—Page 9 of 9.

Year	U.S. management actions (subsistence)	U.S. management actions (commercial)	Canadian management actions (subsistence)	Canadian management actions (commercial, domestic, recreational)
2020	Start of season; Districts 1-4 on half time and 6" or smaller mesh gillnets. Fishing in most districts closed or restricted to selective gear types in late June in response to late run timing. Fishing re- opened in most districts on reduced schedule with 6" mesh. Eagle sonar midpoint projections were poor; District 5 closed in late July for the rest of the summer season. Additional closures of 4" mesh were implemented throughout the drainage to avoid any harvest of Chinook salmon.	Summer chum commercial fishing delayed due to late run timing; 6" or smaller gillnet summer chum commercial fishing occurred after the majority of Chinook run complete. Only 5 commercial periods were fished in the Lower Yukon due to low summer chum salmon run. No Chinook commercial fishing; less than 350 fish retained for subsistence from gillnet openings. No commercial fishing occurred in Upper Yukon Area.	Season commenced July 1 with an opening available for limited First Nation (FN) Chinook Fishery. FN Governments manage FN Fisheries as per Yukon First Nation Self-Governing Agreements. FN's initiate harvest in conservative manner. Late July, FN Governments advised to implement additional precautionary measures due to lower than expected passage at Eagle sonar and unlikeliness of achieving the IMEG. Early August FN Governments implement voluntary Chinook harvest restriction followed by harvest restriction for chum.	Conditions of license in the Commercial and Domestic fisheries obligated harvesters to gillnets with 6" or smaller mesh size; Chinook and chum commercial and domestic fisheries closed for duration of the season. Chinook and chum retention prohibited in the public angling (recreational) fishery from June 26 to November 30 and September 11 to November 30, respectively. Public fishery closed to angling for salmon from July 29 to November 30. Public angling fishery effectively closed for duration of salmon season.

Note: Personal Use (PU) and Sport Fisheries are not listed. PU fisheries which occur only in the Tanana River drainage and Sport Fisheries which occur primarily in US tributaries are therefore of no concern to Canadian Chinook Salmon stocks.

APPENDIX C: BERING SEA-ALEUTIAN ISLANDS BYCATCH SUMMARY AND IMPACT ON YUKON RIVER CANADIAN-ORIGIN SALMON

Appendix C1.—Bering Sea-Aleutian Islands Bycatch Summary and impact on Yukon river Canadian-origin salmon. Prepared by NOAA, in coordination with ADF&G, at the request of the Yukon River Panel.

Yukon River Salmon Bycatch Summary

DRAFT January 2021

The Yukon River Salmon Agreement identifies the need to identify, quantify, and undertake efforts to reduce marine catches and bycatch of Yukon River salmon. This section provides an overview of information on U.S. groundfish fisheries in the Bering Sea-Aleutian Islands (BSAI) management region, bycatch regulations, and bycatch impacts on Yukon River Canadian-origin salmon.

Bycatch impacts on Canadian-origin salmon

Yukon River Canadian-origin salmon are caught as bycatch in BSAI groundfish fisheries along with other salmon stocks from Alaska, the west coast of Canada and the United States, eastern Asia, and Russia. The total number of salmon captured as bycatch is always much larger than the number of returning adult Canadian-origin salmon that are removed from the Yukon River due to bycatch. This is evident when comparing the total annual bycatch of Chinook salmon in BSAI pollock fishery (approximately 5,000 to 125,000 fish from 1995 to 2020, Table 1) with the adult equivalent (AEQ) bycatch of Canadian-origin Chinook salmon over this same time period (approximately 300 to 2,400 fish, Table 2). This is largely due to the mixed-stock nature of salmon bycatch; however, the younger age and immature life-history stage of Chinook salmon captured as bycatch also contributes to this difference. Bycatch numbers of immature salmon require an adjustment for natural mortality before they can be compared to the number of mature adults returning to freshwater. Bycatch estimates that are adjusted for natural mortality are referred to as AEQ bycatch. The average bycatch impact rate of the BSAI pollock fishery is estimated to be 1.0% of the Canadian-origin Chinook salmon run, with an annual rate less than 3.1% (Ianelli and Stram, 2018). The average bycatch impact to western Alaska chum salmon (not Canadian-origin chum salmon) is estimated to be 0.4% with annual rates less than 1.3% (Murphy et al. 2017). Ongoing regulatory and management measures implemented by the North Pacific Fisheries Management Council (NPFMC) are a key factor limiting bycatch impact rates on Canadian-origin salmon in BSAI groundfish fisheries.

Current BSAI bycatch information

- Total bycatch of Chinook salmon in BSAI groundfish fisheries (pelagic trawl, bottom trawl, and hook-and-line fisheries) during 2020 was 35,096, which was approximately 19% above the recent 5-year average (2015-2019; Table 1). Chinook salmon bycatch in the BSAI pollock fishery was estimated to be 32,423 fish which represented 92% of the total bycatch during 2020.
- Total bycatch of non-Chinook salmon (primarily chum salmon) in BSAI groundfish fisheries (pelagic trawl, bottom trawl, and hook-and-line fisheries) during 2020 was 332,701, which was approximately 7% below the recent 5-year average (2015-2019; Table 1). Bycatch of non-Chinook salmon in the BSAI pollock fishery was estimated to be 329,134 fish which represented 97% of the total bycatch during 2020.
- Bycatch impacts to Canadian-origin Chinook salmon by BSAI Pollock fishery is estimated by run year. The 2017 run is the most recent year for which bycatch impact estimates are available for Canadian-origin Chinook salmon.

o The total Canadian-origin Chinook salmon run in 2017 was 93,188. An additional 772 Canadian-origin Chinook salmon would have contributed to the 2017 run if they had not been captured as bycatch in the BSAI pollock fishery (Table 2). This represents an impact rate < 1% on Canadian-origin Chinook salmon run in 2017.

Background Information

Bycatch management

- U.S. groundfish trawl fisheries in the BSAI management area are managed to limit the bycatch of salmon under the Magnuson-Stevens Fisheries Conservation and Management Act by the NPFMC and are regulated by National Marine Fisheries Service (NMFS).
- The BSAI pollock fisheries are the primary focus of bycatch management as they account for an average of 86% of the total Chinook salmon bycatch and 99% of the non-Chinook salmon bycatch in the BSAI management area (Table 1; 1991-2020).
- The pollock fisheries are managed according to the Fishery Management Plan (FMP) for Groundfish of the BSAI Management Area.

 https://www.npfmc.org/wp-content/PDFdocuments/fmp/BSAI/BSAIfmp.pdf

Bycatch regulations

- The BSAI groundfish FMP contains regulatory measures to reduce salmon bycatch.
- The BSAI pollock fishery is one of the most heavily regulated and monitored fisheries in the world and includes 100% observer coverage.
- Notable bycatch reduction measures include amendment 91 and amendment 110.
- Amendment 91 (https://alaskafisheries.noaa.gov/rules-notices/search) was implemented in 2011 and, among other things, established bycatch caps.
- Amendment 110 (https://alaskafisheries.noaa.gov/rules-notices/search) was implemented in 2016 and, among other things, established abundance-based bycatch caps to further protect western Alaska and Canadian-origin Chinook salmon stocks harvested for subsistence purposes. Bycatch caps are set relative to the in-river run size of combined Unalakleet, Upper Yukon (Canadian-origin), and Kuskokwim River Chinook salmon stock groups (termed the three-system index).

Bycatch impact methods

- The number of salmon captured as bycatch in a given year is not equivalent to the number of adult salmon that would have returned to the Canadian portion of the Yukon River drainage in that year for two reasons.
 - Salmon stocks throughout the North Pacific are captured as bycatch in the BSAI groundfish fisheries. Information on stock origin is required to evaluate the impact of bycatch to a given stock or stock group.
 - Salmon are predominately captured as bycatch during their immature life-history stage and will spend one or more years in the ocean before returning to freshwater. Additionally, bycatch numbers of immature salmon require an adjustment for natural mortality before they can be compared to the number of mature adults returning to freshwater. Bycatch estimates that are adjusted for natural mortality are referred to as AEQ bycatch.

• Bycatch impacts on Yukon River Canadian-origin salmon require stock-specific AEQ estimates of bycatch. These estimates rely on the following data inputs: total salmon bycatch, bycatch stock mixtures, bycatch age composition, salmon maturity schedules, and assumptions on the natural mortality of salmon in marine habitats (Ianelli and Stram 2014).

Additional resources

- Bycatch numbers are reported by the National Marine Fisheries Service, available at: https://alaskafisheries.noaa.gov/fisheries-catch-landings?tid=286
- Bycatch updates are reported by the North Pacific Fisheries Management Council, available at: https://www.npfmc.org/bsai-salmon-bycatch/

References

- Ianelli, J. N. and D. L. Stram. 2014. Estimating impacts of the pollock fishery bycatch on western Alaska Chinook salmon. <u>ICES J. Mar. Sci.</u> **72**: 1159-1172. doi:10.1093/icesjms/fsu173
- Ianelli, J. N., and D. L. Stram. 2020. Chinook Bycatch Mortality Update. Discussion paper presented to the North Pacific Fishery Management Council, April 2018. Available online at: http://npfmc.legistar.com/gateway.aspx?M=F&ID=e172520e-fc22-46e8-b5aa-72ba233f129e.pdf
- Murphy, J.M. E.V. Farley, J.N. Ianelli, and D.L. Stram. 2017. Distribution, diet, and bycatch of chum salmon in the Eastern Bering Sea. N. Pac. Anadr. Fish. Comm. Bull. 6:219-234. doi: 10.23849/npafcb6/219.234

Table 1.—Numbers of Chinook and non-Chinook (chum) salmon captured as bycatch in the Bering Sea-Aleutian Islands (BSAI) groundfish fisheries by season (A-season: winter, B-season: summer/fall), 1991–2020.

		В	SAI Chinook S	Salmon Byca	tch		BSAI Non-Chinook Salmon Bycatch						
	A-se	eason	B-se	ason	Anı	nual	A-se	eason	B-se	eason		nnual	
	Pollock	All	Pollock	All	Pollock	All	Pollock	All	Pollock	All	Pollock	All	
Year	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	
1991 a	38,791	46,392	2,114	2,488	40,905	48,880	2,850	3,015	26,101	27,245	28,951	30,260	
1992a	25,691	31,418	10,259	10,536	35,950	41,954	1,951	2,120	38,324	39,329	40,275	41,449	
1993ª	17,264	24,688	21,252	21,325	38,516	46,013	1,593	1,848	240,597	241,422	242,191	243,270	
1994	28,451	38,921	4,686	4,899	33,137	43,820	3,990	5,599	88,681	88,949	92,672	94,548	
1995	10,579	18,939	4,405	4,497	14,984	23,436	1,707	3,033	17,556	18,842	19,264	21,875	
1996	36,068	43,316	19,554	19,888	55,622	63,204	221	665	77,014	77,395	77,236	78,060	
1997	10,935	16,401	33,973	34,128	44,908	50,529	2,083	2,710	63,904	64,285	65,987	66,995	
1998	16,132	19,869	40,308	40,679	56,440	60,548	4,090	4,520	60,866	61,177	64,956	65,697	
1999	6,352	8,793	5,627	5,805	11,979	14,598	362	393	44,909	46,739	45,271	47,132	
2000	3,422	6,567	1,539	1,655	4,961	8,222	212	350	58,358	58,976	58,571	59,326	
2001	18,484	24,871	14,961	15,676	33,445	40,547	2,386	2,903	54,621	57,827	57,007	60,730	
2002	21,794	26,276	12,701	13,407	34,495	39,683	1,377	1,697	79,274	80,784	80,651	82,481	
2003	33,478	40,058	12,183	13,603	45,661	53,661	3,831	3,831	184,513	184,559	188,344	188,390	
2004	24,925	30,766	26,837	29,272	51,762	60,038	426	426	451,907	452,131	452,333	452,560	
2005	27,960	33,622	40,224	41,462	68,184	75,084	594	594	710,196	710,926	710,790	711,520	
2006	58,547	62,547	24,205	24,568	82,752	87,115	1,323	1,323	305,674	305,852	306,997	307,175	
2007	72,943	78,156	51,780	51,844	124,723	130,000	8,481	8,489	84,387	85,152	92,868	93,641	
2008	16,495	18,828	4,811	5,009	21,306	23,837	247	247	14,732	14,732	14,980	14,980	
2009	9,882	11,289	2,697	2,825	12,579	14,114	48	48	45,397	45,397	45,445	45,445	
2010	7,649	9,480	2,071	2,921	9,720	12,401	40	40	13,238	13,237	13,278	13,278	
2011	7,137	7,602	18,362	19,007	25,499	26,609	297	414	191,138	194,405	191,435	194,819	
2012	7,765	8,981	3,579	3,949	11,344	12,930	11	307	22,172	23,766	22,183	24,073	
2013	8,237	9,186	4,797	6,821	13,034	16,007	215	447	125,101	126,554	125,316	127,001	
2014	11,539	13,837	3,492	4,261	15,031	18,098	577	1,629	218,865	222,634	219,442	224,263	
2015	12,304	17,502	6,025	7,752	18,329	25,254	4,756	6,158	232,996	237,196	237,752	243,354	
2016	16,828	25,721	5,098	6,840	21,926	32,561	3,903	4,838	339,098	342,503	343,001	347,341	
2017	21,828	27,008	8,248	9,272	30,076	36,280	1,906	2,313	465,772	469,134	467,678	471,447	
2018	8,631	11,251	5,095	6,130	13,724	17,379	1,201	2,120	293,863	306,926	295,064	309,045	
2019	15,781	20,088	9,203	11,323	24,948	31,411	2,239	4,509	345,643	354,294	347,882	358,804	
2020	18,369	20,436	14,054	14,660	32,423	35,096	807	1,161	319,338	321,540	329,134	322,701	

Table 1.–Page 2 of 2.

•		E	SAI Chinook S	Salmon Byca	tch	BSAI Non-Chinook Salmon Bycatch						
	A-season B-season Annual		nual	A-season		B-season		Anı	Annual			
	Pollock	All	Pollock	All	Pollock	All	Pollock	All	Pollock	All	Pollock	All
Summaries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries	Fisheries
Minimum	3,422	6,567	1,539	1,655	4,961	8,222	11	40	13,238	13,237	13,278	13,278
Maximum	72,943	78,156	51,780	51,844	124,723	130,000	8,481	8,489	710,196	710,926	710,790	711,520
Average	20,475	25,094	13,805	14,550	34,279	39,644	1,791	2,258	173,808	175,797	175,898	178,055
2015-2019	15,074	20,314	6,734	8,263	21,801	28,577	2,801	3,988	335,474	342,011	338,275	345,998

Note: https://www.fisheries.noaa.gov/sites/default/files/akro/chinook_salmon_mortality2020.html; https://www.fisheries.noaa.gov/sites/default/files/akro/chum_salmon_mortality2020.html

^a Community Development Quota (CDQ) bycatch not included.

Table 2.—Estimated adult equivalent (AEQ) bycatch of Canadian-origin Chinook salmon from the Yukon River in the Bering Sea-Aleutian Islands (BSAI) pollock fisheries by run year, run size of the Canadian-origin Chinook salmon, and bycatch exploitation rates, 1994—2017 (Ianelli and Stram, 2018).

Run	Canadian-Origin	Canadian-Origin	Canadian-Origin
Year	AEQ Bycatch	Run	Impact Rate
1994	1,035	172,885	0.60%
1995	817	169,789	0.48%
1996	998	182,504	0.55%
1997	995	161,700	0.62%
1998	760	88,282	0.86%
1999	588	110,446	0.53%
2000	347	52,842	0.66%
2001	508	85,663	0.59%
2002	835	81,487	1.02%
2003	1,044	149,979	0.70%
2004	1,214	117,247	1.04%
2005	1,267	123,612	1.02%
2006	1,843	119,485	1.54%
2007	2,361	87,899	2.69%
2008	1,918	62,610	3.06%
2009	1,127	87,899	1.28%
2010	518	59,741	0.87%
2011	359	71,726	0.50%
2012	351	48,494	0.72%
2013	364	37,177	0.98%
2014	401	64,886	0.62%
2015	455	87,323	0.52%
2016	532	82,765	0.64%
2017	772	93,188	0.83%
Min	347	37,177	0.48%
Max	2,361	182,504	3.06%
Average	892	99,985	0.96%
2013-2017	505	73,068	0.72%

APPENDIX D: DEVELOPMENT OF CHINOOK SALMON YUKON RIVER SALMON AGREEMENT REPORT CARD

The Yukon River Salmon Agreement (YRSA) identifies that the Yukon River Panel (YRP) Joint Technical Committee (JTC) is responsible for submitting an annual report to the YRP. The JTC has met this obligation annually; however, the complexity of the report has grown over time. In December 2012, the YRP requested the JTC include in its annual report a summary of historical performance towards achievement of YRSA objectives and management actions. The JTC understood the intent of the summary was to create a historical "report card" of the exact numbers reported in each year and used by the YRP to evaluate YRSA performance. The JTC addressed this request for Canadian-origin Chinook salmon by drafting a written summary and three tables, which together presented run size, escapement, total allowable catch (TAC), harvest share, and management actions. This summary was first reported in Appendix D of the 2013 JTC report. Since that time, the JTC has included a similar summary in each annual report. The structure of the summary has been modified over time, and the location of the summary within the report has changed. In its current form, the text has been moved into an executive summary section within main body of the JTC report, and the layout of tables has been modified to improve transparency and utility. The intent of the Chinook salmon YRSA "report card" (currently Appendix B18), however, has remained consistent.

At the fall 2019 and spring 2020 JTC meetings, concerns were expressed that the numbers reported in Appendix B18 were not the original data reported in each project year and available by the YRP to evaluate YRSA performance. Specifically, border passage estimates reported for years 2001– 2007 were based on different methods than those used to establish the escapement goals at that time. As such, a direct comparison of the escapement information and the goals presented in the table was inappropriate. The JTC discussed this issue during the fall 2020 meeting. A subset of Canadian and U.S. JTC members reviewed all versions of the Chinook salmon YRSA "report card" and determined the data used to populate the original table in 2013 was not the actual data available in each year. Instead, revised estimates of border passage were used for years prior to 2008^{30,31}. The recollection of the JTC membership was that use of the revised data was an oversight and not a deliberate JTC decision. The revised data were unintentionally propagated through all subsequent versions of the table. The JTC agreed that an accurate historical record is needed and should be based on values used to evaluate YRSA performance in each year. The JTC also agreed that historical values should not be replaced with revised estimates resulting from future updates to historical datasets. Given that discussion, the JTC approved its report subcommittee (subcommittee) to undertake a comprehensive revision of the Chinook salmon YRSA report table for inclusion in the 2020 JTC report.

The revision of the Chinook salmon YRSA Appendix B18 was a bilateral effort that required extensive literature review, deliberation, and decisions by the subcommittee. Further revisions may be warranted if new historical information is identified, interpretations change, or the YRP provides additional guidance on the intent of this summary. The subcommittee attempted to source all information from JTC annual reports. However, not all information was available in each year's report and/or many estimates were presented as preliminary. The subcommittee determined that the table could not be fully populated using only information reported in the annual JTC report for each year and doing so would result in inconsistencies in some years (e.g., total run not equal to the sum of harvest and escapement). The subcommittee identified that appropriate estimates of

_

³⁰ Based on 3-area index, radiotelemetry mark-recapture, and Eagle sonar information.

³¹ There was related discussion about the history of the 3-area index. It was clarified that decisions to adopt the revised estimates of border passage was made by the YRP following a presentation by Gene Sandone (ADF&G-retired). The JTC did not review or approve the revised dataset before it was adopted.

border passage and harvest were available for all years from annual JTC reports or other published sources. The following summarizes the major steps and decisions involved in revising Appendix B18.

YRSA performance metrics:

- Escapement goals were sourced from annual JTC reports. In some cases, alternative
 conditional goals were recommended by the YRP, and it was unclear which goal was used for
 management. In those instances, the JTC made its best judgement and included footnote
 information as context.
- Harvest share agreements are described in the YRSA, and annual harvest shares are determined postseason by applying agreement prescriptions to the estimate of TAC. Prior to about 2013, TAC calculations had not been reported annually by the JTC. The subcommittee decided to retroactively calculate TAC for each year as the difference between the total annual run size estimate and the escapement goal. Since the signing of the YRSA, calculations of TAC and harvest shares have become more complicated with the introduction of escapement goal ranges instead of a threshold. For years when escapement goal ranges were used, the subcommittee calculated TAC as a range equal to the total run size estimate minus the upper and lower bound of the escapement goal. Harvest shares were calculated using YRSA prescriptions, where the lower percentage of each country's share was applied to the lower end of the TAC range and the upper percentage was applied to the upper end of the TAC. This process was consistent with the JTC current method of calculating harvest shares.
- The subcommittee decided to include the border passage objective which is identified in the YRSA as "the United States shall manage its fishery with a view to delivering to the Alaska-Yukon border the agreed spawning objective plus the midpoint of the Canadian guideline harvest range." The subcommittee represented the minimum border passage objective as the sum of the lower bound of the escapement goal plus the average of the lower and upper bound of the Canadian harvest share. The subcommittee agreed that the border passage objective is a range in years when the escapement goal is also a range but decided the minimum objective was the most relevant for the purpose of evaluating performance.

Estimates of total run, harvest, border passage, and escapement:

- The subcommittee decided to use year-specific final estimates of border passage, U.S. harvest, and Canadian harvest to retroactively calculate total run and escapement. This was necessary because estimates of total run were not published in all years, and the subcommittee wanted to ensure that the numbers presented in the table made sense when logical arithmetic was applied³².
- Border passage estimates were reported each year using a range of methods. From 2001–2007 estimates were based on fishwheel mark-recapture methods. Since 2008, estimates have been based on passage at the Eagle sonar minus U.S. harvest taken between the sonar location and U.S. Canada border. In most years, fishwheel-based estimates were reported as preliminary, and the subcommittee sourced values from the following year JTC report and considered those to be final values.

_

³² Most values in the table, except the escapement goal, can be easily derived from other values when basic logic is applied. For example, total run is the sum of all harvest and escapement.

- U.S. harvest of Canadian-origin Chinook salmon was often reported as preliminary, or not available in in JTC reports. The subcommittee sourced final estimates from year-specific ADF&G reports.
- Canadian harvest was sourced from annual JTC reports.
- Escapement was calculated as the border passage minus the harvest that occurred in Canada.

Evaluation of management performance of YRSA objectives

- Grey shading was applied to indicate years when specific YRSA objectives were not met.
- Harvest share objectives were evaluated separately for each country and determined to be met if the domestic harvest was less than or equal to the upper bound of that countries share.
- The escapement goal was determined to be met if the escapement was equal to or greater than the lower bound of the goal range.
- The border passage was determined to be met if the border passage estimate was equal to or greater than the minimum objective.