Alaska Hatchery Research Program: Findings

Sara Gilk-Baumer (presenter), Kyle Shedd, and Kristen Gruenthal

Gene Conservation Laboratory

Alaska Department of Fish and Game

BOF Hatchery Committee Meeting

October 14, 2023

Alaska Hatchery Research Program: Previous Presentations

- 2019
 - Genetic structure: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2018-2019/hc/or4.pdf</u>
- 2020
 - Genetic structure: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2019-2020/hc/tab4.pdf</u>
 - Straying: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2019-2020/hc/tab5.pdf</u>
 - Fitness: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2019-2020/hc/tab6.pdf</u>
- 2022
 - Genetic structure: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2021-2022/hc/6_GilkBaumer%20AHRP%20Study%20Question%201%20Population%20Structure.pdf</u>
 - Straying: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2021-2022/hc/7_Templin%20AHRP%20Study%20Question%202%20Straying%20and%20Run%20Reconstruction.pdf</u>
 - Fitness: <u>https://www.adfg.alaska.gov/static/regulations/regprocess/fisheriesboard/pdfs/2021-2022/hc/8_Shedd%20AHRP%20Study%20Question%203%20Relative%20Reproductive%20Success%20Update.pdf</u>
- General Information
 - AHRP Website: <u>https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.current_research</u>
 - Informational Meetings: <u>https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.meetings#infomeetings</u>

Alaska Hatchery Research Program

- 1) What is the genetic structure of pink and chum in PWS and SEAK?
- 2) What is the extent and annual variability of straying?
- 3) What is the impact on <u>fitness</u> (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?

More detailed information available at:

https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.meetings#infomeetings

Population Structure: An example

Difference between 1 and 4:

Difference between 2 and 7:

Chum Salmon: Genetic Structure

Chum Salmon: Genetic Structure

Pink Salmon: Genetic Structure

Pink Salmon: PWS Population Structure Analyses

- 1. Among contemporary collections of natural fish
 - Population structure exists for both lineages, though variation is small

Pink Salmon: PWS Population Structure Analyses

- 1. Among contemporary collections of natural fish
 - Population structure exists for both lineages, though variation is small
 - Some within-lineage patterns (early/late, east/west)

Pink Salmon: PWS Population Structure Analyses

- 1. Among contemporary collections of natural fish
 - Population structure exists for both lineages, though variation is small
 - Some within-lineage patterns (early/late, east/west)
- 2. Between contemporary & historical, hatchery only
 - Hatchery stocks show temporal stability

Pink Salmon: PWS Population Structure Analyses

- 1. Among contemporary collections of natural fish
 - Population structure exists for both lineages, though variation is small
 - Some within-lineage patterns (early/late, east/west)
- 2. Between contemporary & historical, hatchery only
 - Hatchery stocks show temporal stability
- 3. Between contemporary & historical, hatchery and natural
 - Limited evidence for homogenization over time

Take-Home: 1. Genetic Structure

Chum salmon

Structure driven by run timing and geography

Pink salmon

Even and odd lineages genetically distinct

Genetic variation among populations

- Odd year: small
- Even year: even smaller
- Genetic differentiation among populations
 - Odd year: east/west
 - Even year: early/late
- Hatchery fish have not changed over time but may have affected natural populations

Alaska Hatchery Research Program

1) What is the genetic structure of pink and chum in PWS and SEAK?

- 2) What is the extent and annual variability of straying?
- 3) What is the impact on <u>fitness</u> (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?

More detailed information available at:

https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.meetings#infomeetings

PWS Hatchery Proportions in Escapement By District, 2013-2015

Knudsen et al. 2021. Hatchery fish straying, run sizes, escapement, and harvest rates of adult Pink Salmon and Chum Salmon returning to Prince William Sound, Alaska in 2013-2015. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:58–85 <u>https://doi.org/10.1002/mcf2.10134</u>

PWS Hatchery Proportions in Escapement

Soundwide, 2013-2015

Species	2013	2014	2015
Pink	4.5%	14.7%	10.5%
Chum	2.8%	3.3%	9.2%

Knudsen et al. 2021. Hatchery fish straying, run sizes, escapement, and harvest rates of adult Pink Salmon and Chum Salmon returning to Prince William Sound, Alaska in 2013-2015. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:58–85 https://doi.org/10.1002/mcf2.10134

SEAK Hatchery Proportions in Escapement

Josephson, R., et al. Proportions of Hatchery Fish in Escapements of Summer-Run Chum Salmon in Southeast Alaska, 2013–2015. North American Journal of Fisheries Management 41.3 (2021): 724-738. <u>https://doi.org/10.1002/nafm.10580</u>

SEAK Hatchery Proportions in Escapement

Regionwide, 2013-2015

Species	2013	2014	2015
Chum	3.2%	3.1%	6.0%

Hatchery fish are found in streams in PWS and SEAK; Proportions higher near hatcheries, release sites, or along migratory pathways

Josephson, R., et al. Proportions of Hatchery Fish in Escapements of Summer-Run Chum Salmon in Southeast Alaska, 2013–2015. North American Journal of Fisheries Management 41.3 (2021): 724-738. <u>https://doi.org/10.1002/nafm.10580</u>

PWS Run Reconstructions

Sources of information

- 1. Test fishery at entrances to PWS
 - Proportions of hatchery in run
 - Relative abundance of run
- 2. Commercial and cost recovery harvests
 - Proportion hatchery in harvest
 - Number of fish in harvest
- 3. Hatchery broodstock
- 4. Stream carcass surveys
 - Proportion hatchery in escapement
- 5. Stream escapement surveys
 - Index of escapement

Test Fishery Locations

PWS Run Reconstructions

Ocean sampling

Proportions of hatchery fish in **run**

- Pink salmon: 55 86%
- Chum salmon: 51 73%

		Hatchery	
Species Common Name	Year	Proportion	SE
Pink Salmon	2013	0.679	.016
	2014	0.864	.03
	2015	0.549	.004
Chum Salmon	2013	0.725	.019
	2014	0.511	.029
	2015	0.688	.015

Knudsen et al. 2021. Hatchery fish straying, run sizes, escapement, and harvest rates of adult Pink Salmon and Chum Salmon returning to Prince William Sound, Alaska in 2013-2015. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:58–85 https://doi.org/10.1002/mcf2.10134

PWS Run Reconstructions

hatcherv fish	0.99	0.17	0.99
nacenci y jish	0.97	0.20	0.98
	0.96	0.19	0.94

Knudsen et al. 2021. Hatchery fish straying, run sizes, escapement, and harvest rates of adult Pink Salmon and Chum Salmon returning to Prince William Sound, Alaska in 2013-2015. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:58–85 https://doi.org/10.1002/mcf2.10134

2014

2015

0.27

0.40

PWS Run Reconstructions

Hatchery and Stream Stray Rates, Pink Salmon

	2013	2014	2015
Straying out of Hatcheries	1.0%	1.6%	5.2%

Straying into Streams	4.5%	14.7%	10.5%

Proportion of hatchery runs that end up in escapements are small. The proportion of the escapement they comprise can be relatively large

Knudsen et al. 2021. Hatchery fish straying, run sizes, escapement, and harvest rates of adult Pink Salmon and Chum Salmon returning to Prince William Sound, Alaska in 2013-2015. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 13:58–85 https://doi.org/10.1002/mcf2.10134

Take-Home: 2. Straying

Hatchery fish found in streams

- Pink: 5 15% in PWS
- Chum: 3 9% in PWS, 3 6% in SEAK
- Highest proportions near hatcheries or release sites, or along migratory pathways
- Higher harvest rates on hatchery-origin
- Proportion of hatchery run in escapement are low, and that can be a large number of fish

Alaska Hatchery Research Program

1) What is the genetic structure of pink and chum in PWS and SEAK?

2) What is the extent and annual variability of straying?

3) What is the impact on <u>fitness</u> (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?

More detailed information available at:

https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.meetings#infomeetings

Pink Fitness Study

Pink Fitness Study: PWS Streams

Pink Fitness Study: Field Sampling

- Intensive carcass sampling
 - Body length
 - Date
 - Location
 - Intertidal
 - Upstream
 - Otolith
 - •Tissue

Photo credit: Brad von Wichman (PWSSC)

8 Ring Thermal Mark

Pink Fitness Study: Otoliths -> Origin

Photo credit: David Janka, PWSSC

3. Impact on Fitness **Pink Fitness Study: Measuring Reproductive Success**

Reproductive Success (RS) = # of Offspring

Relative Reproductive Success (RRS)

Pink Fitness Study: Average Reproductive Success

Stockdale 2014/2016

Remember: RRS < 1 means hatchery strays had fewer offspring on average

Pink Fitness Study: Study Design

Stream	2013	2014	2015	2016	2017	2018	2019
Stockdale	Ρ	Ρ	P,O	P,O	P,O,G	0,G	0,G

- P parents
- O offspring
- G grand-offspring

Odd-lineage Even-lineage

3. Impact on Fitness Pink Fitness Study: Study Design Results on slide 28 2013 2014 2015 2016 2017 2018 2019 Stream **Stockdale** P,O,G Ρ P.O 0,G Ρ P,O O,G

- P parents
- O offspring
- G grand-offspring

Odd-lineage Even-lineage

Pink Fitness Study: Study Design

Stream	2013	2014	2015	2016	2017	2018	2019
Stockdale	Ρ	Ρ	P,O	P,O	P,O,G	0,G	0,G

- P parents
- O offspring
- G grand-offspring

Odd-lineage Even-lineage

Pink Fitness Study: Study Design

Stream	2013	2014	2015	2016	2017	2018	2019	2020
Hogan	Р	Р	P,O	P,O	P,O,G	0,G	0,G	
Stockdale	Ρ	Ρ	P,O	P,O	P,O,G	O,G	O,G	
Gilmour		Р	Р	P,O	P,O	O,G	0,G	
Paddy	Р	Р	P,O	P,O	O,G	P,O,G		0,G
Erb	Р	Р	P,O	P,O	O,G	P,O,G		O,G

- P parents
- O offspring
- G grand-offspring

Odd-lineage Even-lineage

>235K samples!

Presented 2020

Stream	2013	2014	2015	2016	2017	2018	2019	2020
Hogan	Ρ	Ρ	P,O	P,O	P,O,G	0,G	0,G	
Stockdale	Р	Р	P,O	P,O	P,O,G	O,G	O,G	

Shedd, K.R., Lescak, E.A., Habicht, C., Knudsen, E.E., Dann, T.H., Hoyt, H.A., Prince, D.J. and Templin, W.D. 2022. Reduced relative fitness in hatchery-origin Pink Salmon in two streams in Prince William Sound, Alaska. Evolutionary Applications. <u>https://doi.org/10.1111/eva.13356</u>

raday	l		1,0	· , •	0,0	',0,0	0,0
Erb	Ρ	Р	P,O	P,O	O,G	P,O,G	O,G

Odd-lineage

Even-lineage

- P parents
- O offspring
- G grand-offspring

Pink Fitness Study: Study Design Presented 2022

Stream	2013	2014	2015	2016	2017	2018	2019	2020
Hogan	Р	Р	P,O	P,O	P,O,G	O,G	0,G	
Stockdale	Р	Ρ	P,O	P,O	P,O,G	0,G	O,G	
Gilmour		Р	Р	P,O	P,O	0,G	0,G	
Paddy	Ρ	Р	P,O	P,O	O,G	P,O,G		O,G
Erb	Р	Р	P,O	P,O	0,G	P,O,G		O,G

Odd-lineage

Even-lineage

- P parents
- O offspring
- G grand-offspring

Pink Fitness Study: Summary of RRS to Date

128K samples analyzed

Hatchery-origin strays have lower reproductive success

Pink Fitness Study: What about covariates?

- Try to explain variation in reproductive success based on:
 - Stream
 - Sample date
 - Body size
 - Sample location
 - Origin
- Model using 2014/2016 st data from all 5 streams

After accounting for variation, hatchery-origin strays have lower reproductive success

Chum Fitness Study

38

Chum Fitness Study: In Progress

- 4 streams, northern SE Alaska
- Multiple age classes
 - Need consistent sampling for primary age classes (age-4 & -5)
- To date, ~17.7K samples
 - Poor sampling conditions
 - Poor chum returns
 - Few strays in some streams
- Revised study design

Chum Fitness Study: Remaining Work

- •Winter 2023: Finalize genetic markers
- •Spring 2024: Genotype
- •Summer/Fall 2024: Parentage Analysis
- •Fall 2024: Calculate RRS
- •Winter 2024: Model RRS

Take-home: 3. Impact on Fitness

Pink Salmon

- •Hatchery-origin strays spawn in streams
- Hatchery-origin strays have lower reproductive success
- Variability in RRS (streams, years, sexes)
- Body size, sample date, sample location also matter
- Stray hatchery-origin RRS still < 1

Remaining Questions

- Are observed reductions in hatchery-origin RRS an artifact of the study design?
 - Returning adults that are harvested?
 - Returning adults that stray to other streams?
 - Sampling proportion through time?
 - Both possible, but unlikely to fully explain our results
- Are results consistent in other streams and years?
 - <u>Yes, RRS consistently < 1, but lots of variation</u>
- Do hatchery/natural hybrids consistently produce fewer offspring than two natural-origin pink salmon?
 - Yes, on average
- Are reductions in fitness <u>persistent across generations</u> (grandoffspring and beyond)?
 - We do not know yet

Acknowledgements

- Alaska Hatchery Research Program
 - State of Alaska
 - Seafood industry
 - Private non-profit hatcheries
- North Pacific Research Board (Project #1619)
 - Funding for Hogan Bay analyses (2013-2016)
- Saltonstall-Kennedy (NA16NMF4270251)
 - Funding for Stockdale analyses (2014/2016)
- Pacific Salmon Commission
 - Northern Endowment Fund
- Prince William Sound Science Center
 - Field collection
- Sitka Sound Science Center
 - Field collection
- ADF&G Mark, Tag, and Age Lab
- ADF&G Cordova Otolith Lab
- University of Washington Seeb Lab
- University of Alaska Fairbanks
- ADF&G Gene Conservation Laboratory

Questions?

More detailed information available at:

https://www.adfg.alaska.gov/index.cfm?adfg=fishingHatcheriesResearch.findings_updates