between all groups except yearlings and subadults (1997: p=0.114, 1998: p=0.060). Yearlings began the molting process first, followed by subadults, adult females, and adult males. The dates of the active molt were similar between years for subadults (p=0.649) and adult females (p=0.173), differed slightly for yearlings (p=0.032), and substantially for adult males (p=0.0001). The number of seals hauled out during the molt could be predicted by the proportion of seals in different molt stages. This relationship was most precise for yearlings, intermediate for subadults and adult males, and least precise for adult females. Generally, the number of seals hauled out was positively related to the proportion of seals in the active molt and negatively related to the proportion of seals in the pre-molt and post-molt stages. In Alaska, harbor seal population trends and abundance are estimated through aerial surveys flown during mid to late August when the largest numbers of seals are assumed to be ashore during the molting period. However, the precise timing of molting is not known for most areas. Knowledge of the timing and magnitude of differences in the molting period among sex/age classes should be considered in determining optimal population survey periods.
ABSTRACTS

Wailea, Maui, Hawaii