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Abstract: Designs and data analysis procedures for studies· of 

resource selection in field ecology are reviewed. These studies 

compare relative use of resources (habitat or food items) with 

relative availability. It is proposed that estimation of a 

resource probability selection function is the best analytical 

procedure to meet the objectives of many field studies. Estimation 

procedures are presented for the resource selection functions and 

are illustrated with data from the literature and with hypothetical 

data. 
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Selection (or use) of a resource has been defined as the process in 

which an animal chooses a resource (Johnson 1980), or as choice 

among resources available (Peek 1986). Preference on the other 

hand is defined as the likelihood that a resource will be chosen if 

offered on an equal basis with others (Johnson 1980) and choice of 

one resource over another without regard to whether one may be 
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available or not (Peek 1986) • This paper deals · only with the 

estimation of a resource selection function defined by " ••• a 

function of variables measured on resource units, such that for 

each unit the value of the function is proportional to the 

probability of that unit being utilized (Manly et al. 1989)." An 

example of an estimated resource selection functio~ for habitat 

selection by pronghorn (Antilocapra americana) is plotted in Fig. 

1 (Ryder 1983, Manly et al. 1989). Ryder (1983) studied winter 

habitat selection by pronghorn in the Red Rim area in south-central 

Wyoming. He systematically sampled the land to obtain 256 study 

plots of 4 ha each, covering 10% of the total area. For the 

purpose of this example assume that this is equivalent to a 10% 

random sample of the 2,560 plots available in the entire region. 

On each study plot Ryder recorded the presence 

or absence of antelope in the 1980-81 and 1981-82 winters, the 

average slope, the aspect, and the distance to available water. In 

addition, he estimated the density and average height of big 

sagebrush (Artemisia tridentata), black greasewood (Sarcobatus 

vermiculatus), Nuttall's saltbush (Atriplex nuttalli) and Douglas 

rabbitbrush (Chrysothamnus viscidiflorus). 

Manly et al. (1989) reanalyze Ryder's data defining a plot to be 

used if antelope are present in both winters. There are then 38 

used and 218 unused plots. With this classification there is 

little evidence when testing hypotheses in the statistical analysis 

(to be described in more detail later) that the used and unused 

plots differ with regard to the slope or vegetation 
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Fig. 1. Estimated probability of selection of a habitat unit 
with northeast aspect by antelope (Antilocapra americana) during 
two winters in south-central Wyoming (plotted as a function of the 
distance to the nearest available water and density of saltbush) 
(Ryder 1983, Manly et al. 1989). 

parameters associated with big sagebrush, black greasewood or 

Douglas rabbitbrush. However, there are apparent differences 

related to the aspect, density of Nuttall's saltbush and the 

distance to water that are described by the estimated logistic 

regression model: 

,.. exp ( -1. 827+0. 0486X1-o. 000521X2+1. 40X3+o. 441X4+0. 555X5) 

y = ---------------------------------------------------------,(1)
1 + exp { -1. 827+0. 0486X -0. 000521X +1. 40X +0. 441X +0. 555X )1 2 3 4 5 

where y is the estimated relative probability of selection of a 
plot, X1 is the density of saltbush {plantsfha), x2 is distance from 
water (meters), X3 is 1 for a northeast-east direction (or 
otherwise is o) , X4 is 1 for a southeast-south direction (or 
otherwise is 0), and is 1 for a southwest-west direction (orx5 
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otherwise is O) (Manly et al. 1989). Probability of selection for 

the northwest-west aspect is estimated by setting X = X = = o.3 4 X5 

Areas with the highest probability of use have a northeast-east 
aspect, have high density of saltbush, and are close to water. 
Fig. 1 shows a graph of the estimated ':'probability of use for the 

northeast-east aspect (X3 = 1, = 0, = 0) plotted as a functionx4 X5 

of saltbush density and distance to water. Similar plots could be 
constructed for the other three aspects. 

study design and sampling protocols dictate the procedures by which 

the resource selection function can be estimated. Three general 

study design~ have been recognized in the wildlife ecology 

literature (Thomas and Taylor 1990): 

Design I - variables on resource units available are measured 

or sampled for the entire study area and individual animals 

(or herds) are not identified in use of resource units, 

Design II - variables on resource units available are measured 

or sampled for the entire study and use of resource units is 

identified by individual animals (or herds), and 

Design III - variables on resource units available to each 

animal (or herd) identified in the study are measured or 

sampled and use of resource units is identified by individual 

animals (or herds). 

Three sampling protocols have been identified in Table 1 (Manly et 

al. 1989). In addition to sampling available and used units, 

designs II and III implicitly assume that a simple random sample of 

animals is obtained from the population. The combination of study 

design and sampling protocol dictate the procedures by which the 

resource selection function is estimated and the degree Table 1. 
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Protocol Sample 1 sample 2 

SP1 Available Used 

SP2 Unused Used 

SP3 Available 

SP4 Available 

Available units have a probability 
of being in sample 1; used unitsp1

have a probability of being inp2
the independent sample 2. 

Unused units have a probability p1of 
being in sample 1; used units have a 
probability of being in thep2
independent sample 2. 

Case (a) A sample of available units 
is taken. Units are classified as 
unused or used. 

Case (b) Units with predetermined 
measurements for the independent 
variables are sampled and classified 
as unused or used. 

Census data. All available units 
are examined and classified as 
unused or used. 

to which statistical inferences can be made to the study area and 

the animal population under consideration. Calculations for 

estimation of the resource selection function depend primarily on 

whether a comparison is made between available and used units or 

between unused and used units. 

If individual animals are not identified (Design I, Thomas and 

Taylor 1990) each of the sampling protocols in Table 1 are possible 

and statistical inference is to the study area being sampled with 

its fixed population of animals The nni ts used to sample the 

study area may be quadrats, random points, belt transects, line 

transects, etc. and the sample sizes are the number of units chosen 

from the appropriate classifications. 
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If individual animals are identified (Designs II and III, Thomas 

and Taylor 1990) then two universes exist to be sampled. The 

philosophy of the scientific method for making statistical 

inferences does not easily handle two ''universes! We believe the 

best approach is to consider the animal as the primary unit of 

replication. First, the population of animals is sam~led. Second, 

each of the protocols in Table 1 are candidates for sampling the 

universe of resource units available to the population of animals 

(Design II) or for sampling a subset of resource units uniquely 

available to animals chosen in the first step (Design III). Third, 

the resource units used by the ith animal in the sample must be 

sampled. 

In Designs II and III, a resource selection function can be 

estimated for each animal and replications of the coefficients of 

the function are obtained. One set of coefficients is obtained for 

each animal (primary unit) in the sample. Logistic regression, a 

robust model fitting procedure, is recommended for estimating the 

selection function and to make statistical inferences toward the 

significance of the variables under study. Standard procedures are· 

then available for testing the null hypothesis that a variable (or 

set of variables) does not contribute to the ability of the model 

to predict the probability that a resource unit will be selected. 

For example, the reanalysis of Ryder's data in the above example 

was made by using the standard BMDP statistical package PR1 (BMDP 

1988) for stepwise logistic regression. Nonlinear terms and terms 

for interaction of variables can be included in the analysis. 
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DESIGN I 

Consider a study following Design I where animals are not uniquely 

identified. Each of the Sampling Protocols are appraised for their 

effect on the analysis. 

Sampling Protocol SPl 

We make the assumption that the relationship between the relative 

probability of selection, w(X) = w(x1 ,x2 ; ••• ,xP), and the 

independent variables X= {x1,x2 , ••• ,xP} is given by the log-linear 

model: 

w(X) = exp ( B0+B1x1+B2x2+•.. +BPxP) , 

i.e., 

(2) 


where B0 , B1, B2 , ••• ,BP are the unknown regression parameters. If 

the sampling fraction from the population of available units (p1) 

and the sampling fraction from the population of used units (p2) 

are known then the absolute probability of selection of a plot is 

given by the formula 

w* (X) = [p1/ {p2 ( 1-p1)}] exp (B0+B1x1+B2x2+••• +BPxP1) ( 3) 

(Manly et al. 1989). If either of the sampling fractions is very 

small then estimates of the ratio p1/p2 (1-p1 ) may be unreliable. 

Therefore it may be best not to attempt to scale the selection 

function to give absolute probabilities but instead to simply use 

the arbitrarily scaled function (arbitrary value of the term B = 0 

b0) as an indication of the relative attractiveness of different 

resource units. Usually, the constant b0 will be selected so that 

the maximum value of the function over the range of the independent 
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variable~ x1 , x2 , ••• , xP is the number 1.0. 

For simplicity, consider a hypothetical example of sampling 

protocol SP1 where the objective is _,to study the dependence of 

habitat selection by caribou on percent cover by willow and percent 

cover by tundra. Assume that Design I and Sampling Protocol SP1 
. i 

are used. A random sample of plots available to the population of 

animals in a study area is obtained and the researcher measures two 

variables on each: = percent cover by willow, and = percentx1 x2 

cover by tundra. 

Define a plot to be "used" if at least one caribou has been on the 

plot during the period of interest. Assume that the collection of 

plots in the study area which have at least one relocation of 

radio tagged caribou is an independent sample of used plots. 

Design of the study to meet the assumptions of an independent 

sample of used plots is not a trivial matter. However, discussion 

of procedures to meet this assumption is highly dependent on a 

particular application and is beyond the scope of the present 

paper. Define the dependent variable y by: 

y = o, for all plots in the sample of available plots, and 

y = 1, for all plots in the sample of used plots. 

Note that the sample of available plots may contain plots that are 

used. Table 2 contains simulated data from the selection function 

w(x1 , x2 ) = exp (-3. 8+2. 2x1+3. 8x ) (5)2 

where 3.8 is subtracted from the exponent so that the maximum value 

of the function is 1.0 over the permissible range x1+x2 < 1.0. 

The "true" probability of selection, w(x1,x2) = exp-3.8+2.2x1+3.8x2), 
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is plotted in Fig. 2. 

It has been shown (Manly et al. 1989) that for sampling protocol 


SP1, the probability of an individual with x values (x1,x2 , ••• ,XP) 


coming from the population of used resources given that the 

individual is in one of the two samples is 

prob(usedlsampled,X) 
exp (S0+S1 x1 +S2~+ ••• +SPxP) 

= ----------------------------
1+exp (S0+S1x1+S2x2+••• +SPxP) • 

(6) 

This is a logistic regression function with the desired selection 
function in the numerator. Estimates of the relative value of the 
selection function can be obtained by carrying out a logistic 
regression of y = o and y = 1 on the independent variables x1 , x2 , 

••• ,xP. Once the coefficients 60 , 61 , ••• , SP have been estimated 
by b0 , b1 , b2 , ••• , bP, the relative probability of selection of a 
plot with X1 = x1 , ••• , XP = xP is estimated by just the part in the 
numerator 

A

w(x) = exp(b0+b1x1+••• bPxP) (7) 

or any convenient multiple of it. 

1 

w 

0 

Fig. 2. Plot of the original relative probability of selection 
function.w(x1,x2 ) = exp(-3.8+2.2x1+3.Sx2). 
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Table 2. Simulated sample data for the selection function 
w(x ,x ) = exp(2.2x1+3.8x2-3.8) where = percent cover by willow1 2 x 1
and x

2 
= percent cover by tundra, y = 1 indicates a plot in the 

sample of used plots, and y = 0 indicates a plot in the sample of 
available plots. 

Xl xz y Xl xz y X] xz y· Xl xz y 
0.8 0.1 0 0 1 0 0 1 0 0 0.6 0 

0 0.9 0 0 0 0 0.2 0.6 0 0.7 0.2 0 
0.8 0. 2 . 0 0.2 0 0 0.2 0.8 0 0.6 0 0 
0.5 0.3 0 0.3 0.5 0 0.5 0.4 0 0.3 0. 4 . 0 
0.3 0 0 0.3 0.1 0 0.3 0.1 0 0.4 o. 6 \ 0 
0.3 0.4 0 0.4 0.4 0 0.2 0.3 0 0.6 0.3 0 
0.2 0.8 0 0.6 0.4 0 0.1 0.4 0 0.5 0.5 0 
0.1 0.5 0 0.5 0 0 0.1 0.9 0 0.5 0.3 0 

0 0.6 0 0.5 0.3 0 0.1 0.8 0 0.5 0.1 0 
0.1 0.4 0 0.5 0.4 0 0.1 0.1 0 0.4 0.1 0 
0.8 0.1 0 0.6 0.1 0 0.7 0.1 0 0.7 0.3 0 
0.2 0.2 0 0.7 0.2 0 0.3 0.1 0 0.7 0 0 
0.4 0.3 0 0.4 0.5 0 0.1 0.1 0 0 0.9 0 
0.1 0.8 0 0.3 0 0 0.1 0.9 0 0.3 0.4 0 
0.1 0.3 0 0.3 0.7 0 0.2 0.6 0 0 0.6 0 
0.4 0.4 0 0 0.5 0 0.5 0.4 0 0 0.4 0 

0 0.1 0 0.2 0 0 0.9 0.1 0 0.1 0.8 0 
0.4 0.5 0 0.1 0.6 0 0.1 0.5 0 0.8 0.1 0 
0.5 0 0 0.2 0.4 0 0 0.7 1 0 0.9 1 

0 0.7 1 0.2 0.8 1 0 0.9 1 0.1 0.8 1 
0 1 1 0 0.5 1 0.8 0 1 0.8 0.2 1 

0.8 0.2 1 0.4 0.3 1 0.1 0.2 1 0.5 0.5 1 
0.6 0.2 1 0.5 0.2 1 0.6 0.3 1 0.5 0.4 1 
0.2 0.7 1 0.4 0.3 1 0.4 0.2 1 0.3 0.7 1 
0.2 0.2 1 0.2 0.2 1 0.3 0.7 1 0.2 0.8 1 
0.4 0.4 1 0.2 0.7 1 0.4 0.6 1 0.1 0.9 1 
0.3 0.5 1 0.4 0.4 1 0.4 0.6 1 0.6 0.4 1 
0.3 0.6 1 0.4 0.2 1 0.4 0.3 1 0.7 0.3 1 
0.3 0.7 1 0 1 1 0.2 0.3 1 0.4 0.6 1 
0.2 0.7 1 0.5 0.2 1 0.7 0.3 1 0.2 0.7 1 
0.1 0.5 1 0.6 0.3 1 0.1 0.9 1 0.6 0.2 1 
0.1 0.6 1 1 0 1 

Returning to the hypothetical data generated in Table 2, the 

logistic regression function 

y = exp (80+81x 1+B2x2 ) 1{ 1+exp (80+81x 1+82x 2)} (8) 

was fitted to the data in Table 2 using the IBM-PC statistical 

package SOLO (BMDP 1988) to obtain b0 = -2.33, = 2.27 and =b 1 b2 

2. 79. The graph of the estimated relative probability of selection 

function, 

w(x1 , x 2 ) = exp (-2. 79+2. 27x1+2. 79x2 ) , (9) 

- 438 



is plotted in Fig. 3. The constant b0 = -2.33 is of no particular 

interest because the fraction of used units which are in the sample 
is unknown and the absolute probability of use cannot be estimated. 
The value -2. 79 has been subtracted from the exponent of the 

selection function so that the maximum value of the estimated 
relative probability of selection is 1.0. The constants b1 and b2 

are large compared to their standard errors (1. 03 and o. 94, 

respectively). In practice, this would indicate a significant 

relationship between probability of use and = percent cover byx2 

tundra and = percent cover by willows.x1 

"' (.) 

1.2 

Fig. 3. Plot of the estimated selection function;- exp(-2.33+2.27xl+2.79xz) 
obtained by logistic regression of y on x1 and x2 for the simulated sample data 
in Table 2. 
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Sampling Protocol SP2 
In this sampling protocol, a sample of used units is compared to a 

sample of unused units. In many situations the fraction of the 

available resource units actually used will be very small so that 

the difference between the population of available resource units 

and the population of unused resource units will be negligible. In 

this case the sample of unused resources can be regarded as 

effectively being a random sample of available resources, which 

means that the approaches discussed in the previous section for 

sampling protocol SPl can be used for the analysis. 

If the fraction of the resources used is not small, then assume 

that p variables x =(x1, x2, ••• , xP) are measured on each resource 

unit and conduct the logistic regression of y = 0 (for unused 

units) and 1 (for used units) on ~ =(x1, x2, ••• , xP) to obtain the 
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estimated coefficients (b0 , b1 , ••• , bP) as above. If p1 , the 

fraction of unused units in the sample of unused units, and p2 , the 

fraction of used units in the sample of used units, are known then 

the absolute probability of selection of a unit with ~ =(x1 , x2 , 

•.• , xP) is estimated by the formula 

W* (X) = (10) 
1 + (p1/p2)exp(b0+b1x1+••• bPxP). 

If the ratio, p1/p2 , is not known then estimation of the resource 

selection function is not possible! It will be difficult to 

estimate the ratio in many field studies and the sampling protocol 

SP2 is not recommended except in the special cases when the sizes 

of the universe of unused and the universe of used units are known 

and the ratio p1/p2 is accurately estimated. Only if used units 

naturally occur separately from unused units or are otherwise easy 

to sample separately using known sampling fractions p
1 

and p
2 

should 

sampling protocol SP2 be used. 

For an example of Sampling Protocol SP2, consider a group of 

animals being released into a study region in an attempt to 

reestablish a population. If every animal is radio tagged then the 

combined home ranges of the animals might be defined as the "used" 

segment of the study region. The complement of the home ranges in 

the study region could be defined as the "unused" segment. The 

areas of the used and unused segments could be accurately measured 

on a map and each sampled independently by selecting a known number 

of units. Perhaps = 15% and = 10% of the used and unusedp1 p2 

segments -are independently and randomly sampled. The key element 
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is that the ratio of the sampling fractions, p 1/p2 (e.g., 0.15/0.1 

= 1. 5) , is known or accurately estimated. The values of the 

variables x1 , x2 , ••• ,XP would be measured on all sampled units and 

equation (10) would be used to estimate the resource selection 

function. 

Sampling Protocols SP3 and SP4 

Consider SP4, where all the resource units available to an organism 

are known, a definition is given for "used" units, and a complete 

record is available of used and unused units. For example, suppose 

a study area has been divided into 500 plots. In a study of 

habitat selection in winter, the researcher might wait for a 

certain period of time after a fresh snowfall and conduct an aerial 

survey of every plot to determine if tracks are present or not. 

Define plots with tracks to be "used". Variables such as =x 1 

density of browse species and = exposure to wind are measuredx2 

for every plot. Assume that the absolute probability of a unit 

with values {x1 , x2 , ••• , xP} will be used is given by: 

W (X) (11) 
1 + exp (b0 + b1x 1 + • • • + bPxP) 

and estimate this function using regular logistic regression. Note 

that this is a special case of Sampling Protocol SP2 where p 1 = p 2 

= 100% and p 1/p2 = 1.0. 

In this case there is no variance due to sampling habitat units 

because data are available on every unit in the universe. However, 

estimates of coefficients are still subject to statistical 

variation because of the other "universe", namely the population of 

* = 
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animals in the study area and selection of units over time. At one 

point in time, standard errors from the logistic regression 

analysis provide means to test hypotheses concerning which 

variables are significantly related to the probability of use 

during that period of time. Independent replication of the 

coefficients over time would also provide a general means for 

making inferences concerning which variables are important in 

determining habitat selection. 

Consider sampling protocol SP3 (a), where a random sample of 

available units is taken, and divided into used and unused units, 

or design SPJ(b) where units with fixed values for the X variables 

are identified, stratified into subsets, and sampled. The function 

(11) can still be estimated directly by logistic regression because 

sampling protocol SPJ(a) is a special case of SP2 where p 1/p2 = 1 

in equation (6), i.e., the sampling probability is the same for 

used and unused units. After available units are sampled with 

equal probability, they are split into used and unused subsets. 

In sampling protocols SP3 and SP4, regular logistic regression can 

be conducted and the probabilities computed by the standard 

statistical packages are applicable. Care should be taken to 

observe the sign of the coefficients. In some packages it may be 

necessary to reverse the signs on all coefficients to achieve 

agreement with the notation in this paper. 

The example presented earlier concerning habitat selection by 

antelope (Ryder 1983) is an application of Sampling Protocol SPJ(a) 

where plots were randomly sampled with equal probability then 
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classified as used or unused. Equation (1) is the estimated 

logistic regression function relating probability of use to the 

independent variables and is plotted in Fig. 1 for one aspect. 

DESIGNS II AND III 

In Designs II and III, a resource selection fun.ction can be. \ 

estimated for each animal and replications of the coefficients of 

the function are obtained. One set of coefficients is obtained for 

each animal (the primary unit) in the sample. Inductive inferences 

can then be made to the mean value of the coefficients using 

standard statistical procedures where the "sample size" is the 

number of animals chosen. Statistical inferences and standard 

errors of coefficients for unique animals may not be of any 

particular interest. Sample sizes in the sampling protocols of 

Table 1 are viewed as the size of subsamples necessary to 

adequately "measure" the resource function for a unique animal. 

Inferences based on replication of the primary unit, the animal, 

are of primary concern. 

RESOURCE SELECTION BASED ON A SINGLE CATEGORICAL VARIABLE: RATIOS 
OF RANDOM VARIABLES 

Ratios of certain random variables arise in the analysis of 

resource selection based on a single categorical variable. 

Procedures for estimation of the standard error of a ratio of 

random variables are not ordinarily presented in introductory 

textbooks and are reviewed here. Let (Y,W) denote an arbitrary 

pair of random variables where interest is in estimation of the 

ratio 
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R,= (population mean of Y)/(population mean of W). 

Given a random sample of size N {(Y1 ,W1), ••• , (YN,WN)} on the pairs, 

the recommended estimator of R is the ratio of totals (or means), 

" R = (l:jYj) I (l:jWj) 

= yfw. (12) 

" . .The standard error of R 1s est1mated by 

SE(R) = [R/N112 ] [ (s2y!y2)+(s2wfW2)-(2rywsyswfyw) ]112 (13) 

where y and s 2Y are the mean and sample variance of {Y1,Y2 , ••• ,YN}, 

w and s 2w are the mean and sample variance of {W1 , w2 , ••• , WN}, and ryw 

is the sample correlation coefficient of the pairs (Yi,Wi), 

i=1 I 2 I ••• IN. 

In many applications, there is not a random sample on the pair 

(Y,W) but, rather Y and W are summary statistics computed from 

different sources of data. Given the pair (Y,W) with standard 

errors SE(Y) and SE(W), the ratio R is estimated by R = Y/W and its 

standard error is approximated by 

SE(R) = R[ (SE(Y) ) 2jY2)+(SE(W) ) 2jW2)]. (14) 

This approximation is accurate when Y and W are uncorrelated. If 

Y and W are correlated and the correlation is estimated then an 

improvement can be made in the approximation (Reed et al. 1990). 

Confidence intervals on the ratio can be approximated by use of the 
A A

standard normal distribution to obtain, R ± za12 (se(R)), where za/2 

is the upper percentile of the standard normal curve with 100(a/2)% 

of the area in the upper tail. However, when comparing two 

selection indices with data from individual animals, this procedure 

can be improved by obtaining confidence intervals on the 

transformed statistic, w " = log (R) , " with standard error approximated 
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by se(~) = se(R)/R. An approximate confidence interval on w = 

log(R) is given by; w ± zcz12 (se{w)). The ratio R will be declared 

significantly different from 1.0 (i.e., no significant selection 

for or against the corresponding category) if the confidence 
'i 

interval on w does not contain the number o.o, because log(1.0) = 

. \ 
0.0. 

ANALYSIS PROCEDURES FOR A SINGLE CATEGORICAL VARIABLE: SAMPLING 
PROTOCOL 

SP1 AND DESIGN I 

Resource selection in wildlife science has commonly been evaluated 

by the study of a single categorical variable. For example, the 

selection of habitat might be studied as a function of the habitat 

type present at points in the study area. such studies usually 

involve a single qualitative variable such as habitat type or a 

single quantitative but discrete valued variable. In other 

studies, the values of a quantitative variable may be grouped into 

intervals and analyzed as if the intervals were qualitative 

categories. Common analysis procedures recently -reviewed by 

Alldredge and Ratti (1986) include: Chi-square goodness-of-fit 

tests (Neu et al. 1974, Byers et al. 1984), univariate 

nonparametric tests (Friedman 1937, Quade 1979), and a multivariate 

test based on rank order statistics (Johnson 1980). Thomas and 

Taylor (1990) review habitat and food. selection papers published in 

the Journal of Wildlife Management during the period 1985-1988. A 

majority of the papers reviewed by Thomas and Taylor {1990) 

consider only a single categorical variable and analysis by the 

chi-square goodness-of-fit test. Thomas and Taylor comment that 
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many times the chi-square goodness-of-fit test is not an 

appropriate analysis procedure for the design used. In this 

section, we consider the analysis which arises when resource 

selection functions are applied to this most common study design. 

census of Available Resource Units 

The most common sampling plan and analysis is a special case of 

' 
Sampling Protocol SPl where we have: 

(i) a simple random sample of used units, 

(ii) a census of available units (with respect to the single 

categorical variable), 

and Design I where 

(iii) there is no unique identification of data collected from 

different animals. 

The assumption of independence of used units in the sample of used 

units is very often violated and the chi-square goodness-of-fit 

test is not valid. Also, the test requires (ii), the census of 

available units. The percentage pi of units in each category 

(availabilities) must be known constants, or be measured with very 

small errors (e.g., be measured from aerial photographs or maps), 

or be estimated from a very large sample of resource units. 

Resource selection functions specialize to forage ratios (selection 

ratios, selection indices, or preference indices) 

{15) 


where oi is percentage of occasions when the ith category is 

selected and pi is the percent of the resource units belonging to 

the i th category. Under the assumption that the animals have 

unrestricted access to all categories of habitat, the ith selection 
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ratio is interpreted as the relative probability that the next item 

selected will be from the ith category. 

Selection ratios are an old intuitive approach to analysis of a 

single categorical variable (e.g., Ivlev 1961, Manly 1972, or Hobbs 

and Bowden 1982) but generally have not been recognized as giving. \ 
rise to relative probabilities of selection. The mimes have varied 

from selectivity indices (Manly 1972) to preference indices (Hoobs 

and Bowden 1982) but, the estimation formulas are equivalent. The 

fact that the selection ratios can be interpreted as relative 

probabilities of selection is a primary advantage over the more 

common analysis methods. 

For an example, consider the selection ratios in Table 3 computed 

for a subset of data on selection of escape cover by quail 

(Stinnett and Klebenow 1986). Given unrestricted access to the 

entire distribution of habitat types, the shrubland habitat type 
. 

was estimated to be selected with about twice the probability 

compared to riparian habitat, and field border was approximately 30 

times more likely to be selected than was riparian. 

Table 3. Relative probability of selection of escape cover by 
quail (Stinnett and Klebenow 1986). Selection ratios with the same 
letter the column labeled code are not significantly different when 
testing H0 : Xi=Xj at 
Bonferroni proceaure. 

the overall a=O. 05 level when using the 

Escape 
cover Code 
Pasture 0 0.362 23.530 o. ooo' A o.o 
Disturbed 0 0.066 4.290 0.000 A o.o 
Farmstead 2 0.057 3.705 0.540 A 0.016 
Riparian 
Shrubland 

19 
36 

0.249 
0.262 

16.185 
17.030 

1.174 
2.114 1 

A 
B 

0.034 
0.061 

Field border 8 0.004 0.260 30.7691 c 0.889 
Totals 65 35.597 1.0 
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1Indicates H0 : X;=1 is rejected at the 0. 05 Level using the 
Bonferroni procedure. 
Standardized Selection Ratios 

A desirable method to present the results is to standardize the 

ratios so that the total is the number 1.0 (i.e., divide each by 

the sum of the original values) 

(16) 

The value of B; is interpretable as the probability that the next 

randomly observed selection will be from the ith category given 
il 
I' 

unrestricted access to all categories. Thus, under the assumption I~ 
il 
'Ithat all habitats were available, the estimated probability of li 
'!I 

,,i'.i~ 
selection of field borders was 89% in Stinnett and Klebenow•s study lj~ 

::i 
,I 

(Table 4). 

Large Available, But Seldom Used Categories 

Another important advantage of the selection ratios relative to the 

chi-square tests (Neu et al. 1974, Byers et al. 1984) is that the 

relative values of the ratios are not sensitive to decisions 

concerning which categories to include in the analysis. In the 

study of selection of escape cover by quail (Stinnett and Klebenow 

1986) the researchers might have decided to drop pasture and 

disturbed habitat from the study because these types were never 

selected. This is a well known problem in use of the Neu et al. 

(1974) procedure for comparison of the observed counts ni and the 

expected counts npi because the relationship of n; to npi will 

change (e.g., Johnson 1980). Table 4 contains the resulting values 

of the statistics when pasture and disturbed habitat types are 

dropped. The selection ratios (Bi 's) do not change in this example 
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when pasture and disturbed habitat types are dropped. However, 

based on the relationship of ni to npi' the riparian habitat 

switches from being "preferred" to being "avoided" if the pasture 

and disturbed habitat types are discarded from the analysis. 

Table 4. Relative probability of selection of e~cape cover by 
quail (Stinnett and Klebenow 1986) with the pasture and disturbed 
habitat types removed. 
Escape 
cover n. p. np. 

Ax. A

B. 
Farmstead 2 0.100 6.50 0.308 0.016 
Riparian 19 0.435 28.08 0.677 0.034 
Shrubland 36 0.458 29.77 1.209 0.061 
Field border 8 0.007 0.455 17.582 0. 889 ' 
Totals 65 19.766 1.0 

Pearson's Chi-square Goodness-Of-Fit Test 

The usual null hypothesis tested by the Pearson chi-square 

goodness-of-fit test is: 

H0 : oi = pi for i = 1, 2, ••• , k 

(equivalent to H0 : = ••• = Xk = 1.0). This null hypothesis isX1 

that there is no selection for or against any of the categories, 

i.e., that selection is "random" and in proportion to availability 

given unrestricted access to all categories and independent 

observations. We recommend that hypotheses concerning the ratios 

be tested by first using Pearson's chi-square test of H0 • If the 

hypothesis is rejected then it should be followed by tests of the 

components of the chi-square statistic (Rayner 1990). 

For an example, consider Table 3 which contains a subset of data on 

quail habitat at use (Stinnett and Klebenow 1986). Pearson's chi-

square statistic with k-1 = 5 degrees of freedom for this example 

is: 

x2 = I:i(oi-npi) 2/npi = 280.6. 

This value is large compared to the upper tail percentage values of 
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the chi-square distribution with 5 degrees of freedom which 

indicates that there is significant departure from the null 

hypothesis that selection is "random", i.e., the selection ratios 

are not all equal to 1.0. 

Assume that interest is in testing a single, preselected null 

hypothesis 

H01 : xi = 1. o 

(i.e., that there is no selection for or against items in the ith 

category). The chi-square test statistic with one degree of 

freedom is: 

(17) 
'•.

'.•. 1' 

where Xi = ni/npi, ni is the number of occasions a unit from the ith 
!I 

category is observed to be selected, and n is the number of 

independent occasions of selection which are observed. The null 

hypothesis would be rejected with a size a test if x2<1> ~ x2a (X2a = 

3.84 for a= 0.05 and one degree of freedom). 

Confidence Intervals On Selection Ratios 

The standard error of Xi is given by: 

se(Xi) = ( (1-pi) jnpi) 112. (18) 

The standard error can be used to obtain the end points of an 

approximate (1-a)100% confidence interval on a single, preselected 

selection ratio Xi by the formulas 

xi ± za/2se(Xi) I (19) 

where za12 is the upper standard normal table value corresponding to 

a probability tail area of aj2. The selection coefficient Xi is 

declared significantly different from 1.0 if the confidence 

interval on Xi does not contain the number 1.0. This confidence 

interval is only approximate and if the lower limit from formula 
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(19) is negative, it should be replaced by the number o.o. 

However, the researcher is usually interested in the entire set of 

k selection ratios, Xi , i = 1, 2 , ••• , k. When this is the case, 

approximate simultaneous confidence intervals or tests can be 

constructed by use of Bonferroni's inequality (e.g.,,. Byers et al. 
\ 

1984). One can be (1-a) 100% confident that the 
' 
entire set of 

intervals contain their respective true ratios if Za12 is replaced 

in equation (19) by za,2k, the upper standard normal table value 

corresponding to a probability tail area of af2k. Similarly, the 

critical value for the chi-square statistic in equation (17) is 

obtained using the upper percentage value corresponding to a 

probability tail area of afk. In Stinnett and Klebenow's study of 

escape cover selected by quail, there are k = 6 habitat types. For 

a = 0.05, we have aj6 = 0.008 and the critical value for the chi

x2square statistic is approximately o.oos = 7. For example, the 

selection ratio for shrubland as escape cover is x = 2.114. The5 

chi-square statistic for testing H0 : X = 1.0 is x2c1> = (2.1145 

1.0)217.03/(1-0.262) = 28.6 which is significant using the 

Bonferroni procedure. This indicates that shrubland habitat is 

"preferred" as escape cover relative to availability. Three of the 

habitats have selection ratios which are declared significantly 

different from 1. o using this simultaneous inference procedure with 

a = 0. 05 (Table 3). There is significant selection against pasture 

and selection for shrubland and field border as escape cover by 

quail in Stinnett and Klebenow's study. 

Comparison Of Selection Ratios 
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For testing the single, preselected null hypothesis of no 

difference in the probabilities of selection of the ith and the jth 

categories, i.e., 

( i=1, 2' k, and j=1, 2, ••• , k) the chi-square test statistic• • • I 

with one degree of freedom is: 

(20) 


A A I I

The standard error of (X 1-Xj) ~s g~ven by 

A A 1nse(X 1-Xj) = ( (p1+pj) /np1pj) (21) 

and can be used to obtain the end points of a single, preselected 

approximate (1-a)100% confidence interval on the difference (X 1-Xj) 

by the formula 

(22) 


Again using Bonferroni's inequality, a procedure very similar to 

that used to compare means in analysis of variance can be suggested 

for comparing the selection ratios. Rank the selection ratios from 

the smallest to the largest and compare them two-at-a-time by use 

of the confidence intervals in equation (22) replacing Za/2 by Za/Zk' 

where k' is the total number of comparisons being made (k' = number 

of combinations of k categories choosing two-at-a-time) • The 

selection ratios X1 and Xj are declared significantly different if 

the confidence interval on (X1-Xj) does not contain o.o. 

The results of these tests are reported in Table 3 for the Stinnett 

and Klebenow (1986) study of selection of escape cover by quail. 

The column labeled "CODE" indicates the significant differences 

between habitats. Habitats with the same letter are judged not to 

be significantly different at the overall significance level of a 
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= o.os using the Bonferroni procedure. Given that the birds had 

unrestricted access to all escape covers, we can conclude that: 

(i) the probability of selection of shrubland or field border 

is significantly larger than probability of selection for one 

of the other habitat types, 

(iil the probability of selection of fi~ld border is 

significantly larger than the probability of selection of 

shrubland, and 

(iii) there is no significant difference between probabilities 

of selection of the other habitats. 

Standardized Analyses 

An alternative analysis for the comparison of Xi and Xi would be to 
A A A A A

estimate .the ratio Rij = XJXi by Rii = Xi/Xj = BJBi. The standard 

error of the ratio Rij can be approximated by use of equation (14) 

to obtain 

(23) 
A A A 11 1 1The rat1.o Rii = XJXi g1.ves the est1.mated relat1.ve value of the 

probabilities of selection of the two habitat types. Simultaneous 

inferences toward the ratios can be obtained by construction of 

approximate confidence intervals on R1j using the standard error 

formula (23). Reject the hypothesis that Xi = xi if the confidence 

interval on Rii does not contain the value 1.0. 

Sample Of Available Units 

In the more general situation for Design I and Sampling Protocol 

SPl, the proportions pi are estimated from a sample of available 

units. For example, Marcum and Loftsgaarden (1980) consider 

estimation of the proportions p1 by placement of random points on 
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a map. In this case, the two-way chi-square test of homogeneity is 

applicable for testing hypotheses concerning equality of the 

percentages available and percentages used in the various 

categories. Marcum and Loftsgaarden {1980) assume that the 

proportion pi of habitat type i in a study area is estimated by 

locating m random points on a map of the study area and counting 

the number of points mi which "hit" habitat type i. The proportion 

pi is estimated by pi = m/m, with estimated variance pi {1-pi) jm. 

The selection ratios are estimated by 

A

where O; = ni/n is defined as in the above section. The standard 

A ' error of the estimated selection ratio Xi can be approx1mated from 

the general formula {14) to obtain 

(25) 


Approximate simultaneous confidence intervals on the selection 

ratios can be constructed following the general procedures outlined 

above. Again, the selection coefficient Xi is declared 

significantly different from 1.0 if the confidence interval on Xi 

does not contain the number 1.0. 

Sampling protocols which do not use random points as the basic 

sampling unit will require different formula for estimation of the 
A

standard errors of Xi. For example, quadrats, or line transects 

might be used for estimation of availabilities pi. Discussion of 

all possible cases is beyond the scope of the present paper. 

ANALYSIS ·PROCEDURES FOR A SINGLE CATEGORICAL VARIABLE: SAMPLING 
PROTOCOL SPl AND DESIGNS I AND II 
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In Designs II and III, data are available on selection of resource 

units by individual animals. For example, in Design II or III, the 

use of resource categories might be estimated in the home ranges of 

individual animals. In Design III, the availability of resource 

categories might also be estimated in individual home ranges. In 
. i 

both designs, selection ratios can be replicated 'over the random 


sample of animals. 


As discussed earlier in this paper, there are three sampling plans 


operating simultaneously: 


(i) it is implicitly implied that a random sample of size N is 

obtained from the population of animals, 

(ii) the universe of available units may be censused or 

sampled to estimate the proportions pi of units in each 

category, and 

(iii} the units used by the jth animal are sampled to obtain 

the proportions oij of selections of the ith resource category 

by the jth animal. 

We prefer to consider the animal as the primary sampling unit, and 

to base the statistical inferences on variation of the selection 

ratios from animal to animal. Sampling in (iii) can be viewed as 

"subsampling" or measurement on the primary sampling unit, the 

animal. Sampling in (ii) to estimate the proportions pi introduces 

sampling variance in the denominators of the selection ratios. 

Estimation of standard errors follows the general formulas (13)

( 14) • 

- 456 



Census Of Available Units 

We first consider the case when a census of available units is 

available and consequently, the proportions pi are known for the 

entire study area. For an example, Arnett et al. (1989) studied 

the selection of habitat types given a sample of N = 6 uniquely 

radio-tagged bighorn sheep (Ovis canadensis) in the Encampment 

iiRiver drainage of southeast Wyoming. The proportions pi of k = 10 
I 

I 

habitat types available in the study area were measured from maps. 

A subset of their data covering the period August through December 

1988 is reported in Table 5. Each animal was 

Table 5. Habitat type, proportion of study area in each type (pi), 
and number of occasions a given bighorn sheep (Ovis canadensis) was 
observed in each habitat type (ni) . Data are from Arnett et al. 
(1989). 

BJ.ghorn shee:g number 
Habitat type pi 1 2 3 4 5 6 Total 
Bipa:t:iao C.CfiC c c c c c c c 
Conifer 0.130 0 2 1 1 0 2 6 
Mt. shrub ! 8 0.160 0 1 2 3 2 1 9 
Aspen 0.150 2 2 1 7 2 4 18 
Rock-out-crop 0.060 0 2 0 5 5 2 14 
Sagejbitterbrushb 0.170 16 ·5 14 3 18 7 63 
Windblown ridges 0.120 5 10 9 6 10 6 46 
Mt. shrub IIc 0.040 14 10 8 9 6 15 62 
Prescribed Burns 0.090 28 35 40 31 25 19 178 
Clear cut 0.020 8 9 4 9 0 19 49 

Total 1.000 73 76 79 74 68 75 445 

8 (Cercocar:gusjAmalanchier) 

bBig sagebrush/bitterbrushfgrass 

c(CeanothusjPrunus) 


Each aoimal was "suhsampled" dnriog this time to ohtaio a sample of 

habitat points used. Let nij denote the number of independent 

observations of use of the ith habitat type by the jth animal, i = 

= 1, 2, ••• , 6. 

of the jth animal for the ith habitat type 

by x.. =·n.. f(p.n.), where n. = L-(n.. ) is the
1J 1J 1 .J .J 1 1J 
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would be estimated 



total number of observation on the jth animal. Given a random 

sample of N animals, the recommended estimator for the population 

selection ratio for the ith habitat is the "ratio of means" rather 

than the "mean of ratios", i.e., 

X. = 1 (n. IN) I (p.n IN)1. 1 •• 

= I:j (nij) l!:j (pin.j) 
= (I:jYj)I(I:jWj) 

' \ 
(26) 

where ni. = I: jni j is the total of observations of use of the i th 

habitat, n = I:i!:jnij is the total of observations in all habitats, 

Yj = nij' and Wj = pin.j. Table 6 contains these estimated relative 

probabilitie~ of selection for the 10 habitat types available to 

the population of bighorn sheep (Ovis canadensis) in the example. 

Conditional on known values for pi, the ~tandard error of Xi is 

estimated by a special case of equation (13) where Yj = nij and Wj 

= pfn.j. Alternatively, one can use the equivalent equatio~: 

se (Xi) = [ (NI (N-1)) 112 I (pin..>] [!:j (ni/> - 2Xipi!:j (n_pij) + 

x.2p.2!:. (n .2) ]112. (27)
1 1 J • J 

Table 6. Relative probability of selection for the ith habitat 
with the lower limits (LL) and upper limits (UL) of simultaneous 
90% confidence intervals on Xi computed by the Bonferroni 
inequality with Zco 1>n<10> = 2. 576. Selection ratios with the same 
letter in the colunin headed "Code" are not significantly different 
when testing H0: Xi = Xj at the a= 0.10 level using the Bonferroni 
method. 

. . 
Habitat type n. p.n xi Code se (X 1) LL

1. 1 ••
UL 

Riparian 0.000 26.700 0. 000 I 0.000 0.000* 0.000 
Conifer 6.000 57.850 0.1041 A 0.037 0.009 

0.198 
Mt. shrub I a 9.000 71.200 0.1261 A 0.036 0.033 

0.220 
Aspen 18.000 66.750 0. 2701 AB 0.081 0.061 

0.479 
Rock-out-crop 14.000 26.700 0.524 AB 0.213 o. oood 

1.074 
Sagelbitterbrushb 63.000 75.650 0.833 B 0.211 0.289 

- 458 



1.376 
Windblown ridges 46.000 53.400 0.861 B 0.105 0.590 

1.133 
Mt. shrub IIC 62.000 17.800 3.483 1 c 0.471 2.270 

4.696 
Prescribed Burns 178.000 40.050 4. 444 1 c 0.407 3.397 

5.492 
Clearcut 49.000 8.900 5. 5061 ABC 1.717 1.082 

9. 929 . 

Total 445.000 16.152 
8 (Cercocarpus/Amalanchier) 
bBig sagebrush/bitterbrush/grass 
c(CeanothusfPrunus)
1Intervals which do not contain 1.0 indicate that the corresponding 
habitat is not selected in proportion to availability. 

If the numbers of observations on the animals are equal, (i.e., n. 1 

= n.2 = ••• = n.N) then the standard error can be computed by the 

simple equation sep{i) = (N) 112si/pin.. , where si is the standard 

deviation of the set {ni,ni2 , ••• niN} of numbers of independent 

observations of use of the i th habitat by the N animals. The 

estimates of the selection ratios are computed by pooling 

observations across all animals in the sample. However, the 

procedure for estimation of the standard errors in equation (27) 

clearly takes variation in resource selection from animal to animal 

into account. 

Simultaneous inferences toward the individual selection ratios in 

the hypotheses 

H0 : xi = 1. o, i = 1, 2, ••• , k 

can be made by construction of the end points of Bonferroni 

confidence intervals, 
A A 

Xi + z<crt2k>[se(Xi)], where z<N-,,cr,2k> is the upper z-table value 

corresponding to a probability tail area of a/2k, and k is the 

number of habitat types. Confidence intervals computed by this 
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procedure for the data from Arnett et al. (1989) are presented in 

Table 6. With a = 0.10 for 90% confidence on 10 intervals the z-

value is Zco.oos> = 2.576. Applying equation (13) or (27) the 
A A''"·: 

standard error of x9 = 4.444 is se(X9) = 0.407. The end points on 

the confidence interval for the selection ratio for prescribed 

burns ~are given by 4.444 ± 2.576(0.407). The !,otver limit is LL 

= 3.397 and the upper limit is UP= 5.492 (Table 6). The number 

1.0 is not in this interval which indicates that there is 

significant selection for prescribed burn pabitat above what would 

be expected by chance. Also, mt. shrub II (CeanothusjPrunus) , and 

clearcut habitats have relative probabilities of selection which 

are above that expected under the hypotheses of "no selection". 

Similarly, there is significant selection against riparian, 

conifer, mt. shrub I (CercocarpusjAmalanchier), and aspen habitat 

relative to the amount of habitat available. There is no apparent 

selection for or against the habitat types: rock-out-crop, 

sagejbitterbrush, and windblown ridges. 

A simultaneous analysis of selection ratios can be made in much the 

same manner as means are compared in analysis of variance 

procedures. The ratios are ranked from the smallest to the largest 

in Table 6. Any two preselected categories i and j can be compared 

by computation of approximate end points of confidence intervals on 

the ratios 

(28) 


The ratio R;j is preferred as the statistic for comparison of 

selection between resource categories i and j because it is not 

sensitive to decisions concerning which categories to include in 



the universe of available units. For example, in Table 6 the 

riparian habitat type is certainly present in the study area and 

sheep do move through the riparian zones. However, none were 

observed in the riparian category during data collection. Also, 

based on knowledge of the behavior of bighorn sheep (Ovis 

canadensis) one might argue that riparian habitat is not 

"available" during the hours of the day while observations of use 

were being made. If this relatively large but seldom used category 

of habitat is dropped, estimates of the ratios Ri j do not change 

much. 

A

The standard error of the estimated ratio Rij is approximated by 

noting that it involves the ratio of means 
A A A A A 

Rij = Xi/Xj = BJBj = 

= (P/Pi) (nJfij) (29) 

where ni and nj denote the mean number of observations of use of the 

ith and jth categories respectively. 

For example, consider the comparison of the probability of 

selection of clear cuts 
A = 0. 341) and the probability of(B 10 

selection of prescribed burns (B9 = 0.275). The null hypothesis is 

that the true ratio R10, 9 = 1. o, i.e. , that there is no difference 

in the relative probabilities of selection of the two habitat 

' RA 

109types. Note that the ratio of the selection probabilities 1s 
A A A A 

= /X9 = /B 9 = 1. 239 (Table 7). Also,X10 B10 

RA 

10, 9 
- = (p9/p10 ) (n10/n9 ) = (0.09/0.02) (8.167/29.667) 

= 1.239 where n10 = 8.167 is the mean of the set {8,9,4,9,0,19} of 
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observations on the clear cut habitat (s2 = 40.567) and ft 10 9 - 29 • 667 

is the mean of the set {28,35,40,31,25,19} of observations on the 

prescribed burn habitat (s2
9 = 55.067). The correlation of the two 

sets of observations is r 9110 = -0.485• The standard error of the 

ratio R109 = 1.239 is approximated using the general equation (13) 
I 

because it is the ratio of two sample means. The standard error of 
"R1019 is estimated by (Table 7) · ; 

se(R1019) = (1.23916112 ) [(40.56718.1672).+(55.067f29.6672) 

' 2' 2-2 (-0.485) (40.56711255.0671 >1<(8.167) (29.667) > J1

= 0.469. 

In this case, it is recommended that one transform to 
" w10,9 = lc;>g (R1019) 

= 0.214 

and compute 
" " se (w10 I 9) = se (R10 9) I (R10 I 9) 

I 

= 0.46911.239 

= 0.379. 

The distribution of the ratio transformed to logarithms is more 

symmetric than the distribution of the original ratio, thus 

yielding confidence intervals which are more robust. In computer 

simulations, this transformation performs well in comparing two 

selection indices when there are data on the individual animals. 

The approximate 95% confidence interval for the comparison of 

selection for these two habitat types is given by 

0.214 ± (1.96) (0.379) 

or [-0.165, .957] 

Because o. o is in the interval, one would conclude at the 95% 

confidence level for this single comparison that there is no 

significant differe~ce in selection for burned areas vs clear cuts. 

End points of simultaneous confidence intervals on 

A 

{30) 
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are approximated by 

( 31) 


where (zcr/Zk') is defined earlier in this paper, k' = the number of 

comparisons being conducted (combinations of k categories selecting 

two-at-a-time). The 90% family of confidence 

confidence intervals for comparison of the relative probabilities 

of selection are given in Table 7. For example, the end points for 

an interval on 

wij = log(Rij) for comparing the relative probability of selection 

of clear cut versus probability of selection of prescribed burn are 

0.214 ± (3.09) (0.379) 

or [-0.957, 1.385] 

where zcr/Zk' = = 3. 09 because k' = 36 comparisons are possiblez0 •001 

between the top 9 habitat types. The number 0.0 is contained in 

this interval which indicates that there is no significant 

difference in the relative probability of selection of the 

prescribed burns compared to clear cuts using the conservative 

Bonferroni simultaneous inference procedure. Riparian habitat type 

is dropped from the family of simultaneous intervals because it was 

never selected, variances are zero and it is "significantly" below 

all of the other habitats in probability of selection. 

Table 7. Illustration of the log transformed ratios of the 
relative probabilities of selection for 8 of the 3 6 possible 
comparisons in Table 5. The results. of all 36 comparisons are 
given in the column "Code" of Table 6. 

w .. -
"Habitat type i Habitat type j Rij log(~i) se(wij) LL 

UL 

Con1.fer Mt. shrub I 1.219 0.193 0.465 
1.243 1.630 
Mt. shrub I Aspen 2.133 0.758 0.285 
0.123 1.639 
Aspen Rock out crop 1.944 0.665 0.318 
0.318 1.648 
Rock out crop Sage/bitter-brush 1.588 0.462 0.514 
1.126 2.050 
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Sage/bitter-brush Windblown ridges 1. 034 0.033 0.251 
0.744 0.810 
Windblown ridges Mt. shrub II 4.043 1.397 0.241 
0.652 2.142 
Mt. shrub II Prescribed Burns 1.276 0.244 0.208 
0.399 0.887 '"',

Prescribed Burns Clear cut 1. 239. 0.214 0.379 
0.956 1.384 

The habitat types are ranked in Table 6 from the smallest 

probability of selection to the largest probability. Comparing 

each of the habitat types with the next one below it, 8 of the 36 

possible comparisons (confidence intervals) are presented in Table 

7. One of the intervals does not contain the number 0.0, namely 

the one corresponding to the comparison of probability of selection 

for windblown ridges and probability of selection for Mt. shrub II 

(Ceanothus/Prunus). The results of all comparisons are indicated 

in Table 6 under the heading "Code". Selection ratios with the 

same letter are not significantly different using the Bonferroni 

procedure (a= 0.10). The two habitat types: mt. shrub II, and 

prescribed burns are selected with significantly higher probability 

than are lower ranking habitat types. Use of clear cuts has high 

variance and even though clear cuts have the largest estimated 

probability of selection it is not significantly larger than the 

probability of selection for the lower ranking habitat types. 

Estimated Availabilities: Design II 

If the proportion pi of the ith resource category available is 

estimated for the entire study area (Design II) or if the 

proportion Pij of the ith category available to the jth animal is 

estimated (Designs III) then an additional source (or sources) of 
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variation is introduced to the estimates. In Design II, the 

probability of selection of the ith habitat by the jth animal is 

estimated by 

xij = nij/(pin.) 

= (1/pi) (ni/n.j> (32) 

where nij is the number of independent observations of animal j in 

habitat i, n.j = I:inij is the total number of observations of animal 
A 

j and pi is the estimated proportion of resource category iI 

available in the study area. For example, in Table 4 the selection 

ratio for prescribed burns by sheep number 1 is 
A 

X~ = 28/(0.09) (73) = 4.26. 

In some studies, the proportion = o. 09 might be based on ap9 

sampling procedure, e.g., measurement of the habitat type present 

at a sample of random points in the area. All three terms in x 91 

are random variables if this is the case. 

For Design II, the recommended estimators for the selection ratios 

are: 

xi = <I:jnij/I:jn.j> !Pi 

= vi IP i, <3 3 > 

for the ith habitat type. There are two ratios of random variables 

in Xi. First, the variance of the ratio Vi = (:Ejnij/:Ejn.j) can be 

estimated by noting that V = yjw where Y. = n .. and W. = n. • and• 
1 J 1 J J 1

using equation (13). The correlation of n. • and n . is taken into 
11 .J 

account by equation (13). Given that pi is estimated from an 

thenindependent source of data with standard error 

equation (14) can be used to estimate the variance of the final 
, A A A

rat1o Xi = Vi/Pi. Simultaneous inferences toward a set of selection 
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ratios can proceed as in previous sections. 

In Design III, assume that the estimates of P; j are independent 

among animals (i.e., an independent sample is taken for the jth 
'<>,, 

animal to estimate the proportion of habitat type i available to 

that unique individual). Combining data for all N animals in the 

sample, the estimator for the selection ratio of th~ ith habitat is 

given by: 

(34) 


for i = 1,2,~••• ,k. To estimate the variance of X; for this design, 

associate Yj = n;j and Wj = (P;jn.j) then compute 
standard error by equation (13). 

Simultaneous inferences toward a set of sele

proceed as in previous sections. 

X; 

ction 

= yfw and 

ratios 

its 

can 

Comparison Of Selection Ratios: Design II 

To compare X; with Xj in Design II, one would compute the ratio 

:Rij = XJXj 

and its approximate standard error, then transform to wij = 

log(R;j), se(w;j) = se(Rij) /R;j' and proceed as before. For any two 

habitat types, say {1 and 2}, the ratio R12 can be written in the 

form 

A A 

= (V 1) (Vz) (35) 

The standard error of the first term, V1 = can be 

approximated by the general formula 

secv,> = v,[CCse(p 1>> 21P/> + ccse(p2>> 2!P/> 

(36) 
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where cov(P1,p2) denotes the covariance of the estimates p 1 and p 2. 

Probably the most common procedure for estimation of the pi's is by 

location of say M random points in the study area (or on a map of 

the study area) and recording the habitat type encountered by each 

point. The proportion of points encountering habitat type i, pi, 

is then taken as the estimate of pi. The sampling distribution of 
A

the pi's follows a multinomial distribution and the following 

formulas are applicable: 

A A A A 

COV(PpP) = -[pip/M] • 

If the availabilities, pi, are estimated by other procedures such 

as quadrat or line intercept sampling then the appropriate formulas 
A A A

for se(pi) and cov(pi,pj) should be used. 


The standard error of the second term, = (:I:pi/I:jn2j), can be
V2 

computed by equation (13) or more directly by 

se(V2) = [ (N/ (N-1)) 112/ (I:p2j)] [I:j (n1/> 
(37) 

, A A ,

Under the assumpt1on that v 1 and v2 are est1mated from independent 
A A A 

sources of data, the standard error of the product, = V 1V2, canX12 
be estimated by the formula (Reed et al. 1990) 

se(X12 ) = [V/(se(V2) ) 2 + V/(se(V 1) )2 
(se(V1) ) 2(se(V2) )2]112. (38) 

Comparison Of Selection Ratios: Design III 

To compare X with XJ. one would compute the ratio, R .. = X.fX., and•
1 1 J 1 J 

its approximate standard error, then transform to wij = log(Rij), 

se(w) = se(Rij) /Rij' and proceed as in section 6.1. For any two 

habitat types, say {1 and 2}, R12 = X1/X2 is the "ratio of ratios", 
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where 

" x, = (I:jY1j) I (I:jW1j), 

" = (I:jY2j) I (I:jW2j).X2 

Equation (13) can now be used to estimate the standard errors of 

A ' ' ' A.X ._, for 1. = 1, 2, where we 1.dent1.fy Y .. = n .. , and w.. = p .. n .• There 
1 lJ lj lJ lj .J 

are four random variables in the statistic R12 a~d
1 estimation of 

se(R12) requires the covariance term (Cochran 1963, p. 182) 

" " " x1(I:iY2jw1j) - x2(I:iY1jw2j) + x1x2 (I:jw1iw2i)] (39) 

Finally, incorporation of cov(X1 ,X2 ) from- equation (39) into the 
o A A

generic formula (13) for the standard error of the rat1.o of X1IX 2 

"yields the estimated standard error of R12 , 

(40) 


Estimation of se(R12 ) by equation (40) requires the assumption that 

the estimates p1j and p2 j are computed from independent data for the 

N animals. Violation of this assumption will. usually yield a 

biased underestimate of the standard errors. 

DISCUSSION AND ASSUMPTIONS 

1. The distributions of the measured x var.iables (proportion pi of 

category i available for a single categorical variable) do not 

change during the sampling period. For example, this assumption 

might be violated if caribou eat most of the "preferred" food 

during the first two weeks of a four week study. This requirement 

is difficult to satisfy with many studies. If it is not fully 

satisfied then inferences are made with respect to the "average" 
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available, used and unused distributions during the sampling 

period. Generally, the period of sampling should be held at the 

minimum necessary to achieve desired sample sizes. In rapidly 

changing populations, the researcher should attempt to obtain 

several snapshots of the populations and hence snapshots of the 

selection function over time. 

2. Resource units are sampled randomly and independently. This 

requirement might be violated if tagged animals are in the same 

herd or if detectability of animals varies with habitat type. 

Estimates of the coefficients of a selection function may still be 

meaningful if this assumption is not satisfied, but standard errors 

may not reflect the true variation in the populations. For the 
~ 

sake of illustration, our example analyses were made on the 

assumption of random independent samples of resource units. It 

will be difficult to insure this especially in cases when animals 

occur in herds or when resource units are collected in batches. 

For example, consider collection of stomach samples of caribou in 

a food selection study. In this case the food items are obtained 

in batches and the selections of individual food items may not have 

been independent events because of different food "preferences" for 

different animals. Another common but difficult situation is in 

analysis of relocations of radio-tagged animals. Relocations come 

in a batch recorded at a series of points in time. Care must then 

be taken to ensure that the time interval between recordings is 

sufficient to assume that observations of used habitat points are 

independent events. In the presence of these problems, one 

approach is to estimate a separate resource selection function for 

- 469 

j 

II 



----------- --------------

several independent replications of batches of dependent units. 

Thus, one might estimate the selection function for each of several 

randomly selected areas in a large calving grounds for caribou. 

Inference toward mean values of coefficients of the selection 

function over the entire study area can then proceed by standard 

statistical procedures, using the replicates to detkrmine standard 

errors. Alternatively, one might consider the selection of 

individual animals as independent events, and estimate a separate 

selection function for each animal by randomly sampling the units 

available and the units used by each animal (Designs II and III). 

This may be the only reasonable approach for study of food and 

habitat use by highly territorial animals. Discussion of all 

situations is beyond the scope of the present paper; however, the 

reader should be aware of the difficulties in making proper 

statistical inferences when individual resource units cannot be 

independently collected. 

3. In Design III experiments, estimates of pij may not be truly 

independent among animals. For example, a sample survey of habitat 

available in the overall study area may be conducted. Then the 

observations falling into an individual animal's home range might 

be used to estimate habitat available to specific animals. If 

there is considerable overlap of home ranges, then some data points 

will influence the estimate of habitat availabilities for several 

different animals. At this time, the procedures presented above 

are recommended for estimation of variances of xi, i = 1,2, ... ,k; 

but, it is noted that the true sampling variance of xi is probably 

underestimated. 
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When possible, it is recommended that estimates of Pij be estimated 

independently for each animal in Design III so that the estimates 

of sampling variance are approximately unbiased. 

4. The universe of resource units available to the animals and the 

universe of used resource units have been correctly identified and 

sampled. For example, this requirement may be violated if caribou 

are eating food items which are not detectable in fecal samples. 

This is probably the most crucial and most difficult assumption of 

the study design. Specific problems must be addressed separately 

and a general discussion does not seem to be possible at this time. 

5. The x variables which actually influence probability of 

selection have been correctly identified,· measured and modelled. 

For example, this assumption is violated if percent cover by 

willows is measured, but caribou are actually selecting plots on 

the bases of height of willows. Hopefully, variables under study 

will be highly correlated with those which actually influence 

probability of selection. Also, all of the problems associated 

with regular regression analysis are present in the process of 

selection of a best set of variables for the logistic regression 

model. It is particularly difficult to model nonlinear effects and 
r 

interactions. 11 

I 

6. Animals have free and equal access to the entire distribution of ;II· 

available resource units.. If animals are territorial then a few 

aggressive individuals may control all of the "preferred" habitat 

to violate this assumption. The assumption is most easily 

justified when the subpopulation of used units is small relative to 

the population of available units. Also, changes in the density of 

• 
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animals or in the availability of resource units may change the 

underlying selection strategies and the selection function. Thus, 

statistical inferences are made with respect to the specific 

conditions present in the study area over the time period of 

interest. 
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