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ABSTRACT
 

The coastal temperate rainforest is one of the rarest ecosystems in the world, and a major portion 

of the global total is found in Southeast Alaska. In this ecosystem, Sitka black-tailed deer are the 

dominant large herbivore, influencing large carnivores that prey on deer such as wolves and 

bears, as well as plant species and communities through browsing. In addition, deer play an 

important economic and cultural role for humans in Southeast Alaska, making up the large 

majority of terrestrial subsistence protein harvested each year as well as providing the backbone 

of a thriving tourism industry built around sport hunting. Given the importance of deer in this 

system, there remain a surprisingly large number of key gaps in our knowledge of deer ecology 

in Southeast Alaska. 

These knowledge gaps are potentially troubling in light of ongoing industrial timber-

harvest across the region, which greatly alters habitat characteristics and value to wildlife. This 

dissertation research project was undertaken with the aim of filling several connected needs for 

further understanding deer ecology, specifically 1) patterns of reproduction and fawn survival, 2) 

population dynamics in response to environmental variability, and the underlying drivers of 

spatial selection during 3) reproduction and 4) winter. To fill these knowledge gaps, I developed 

robust statistical tools for estimating rates of fawn survival, and found that fawns must be 

captured at birth, rather than within several days of birth, in order to produce unbiased estimates 

because highly vulnerable individuals died quickly and were thus absent from the latter sample. I 

then use this robust approach to estimate vital rates, including fawn survival in winter and 

summer, and developed a model of population dynamics for deer. I found that winter weather 

had the strongest influence on population dynamics, via reduced over-winter fawn survival, with 

mass at birth and gender ratio of fawns important secondary drivers. 

To better understand deer-habitat relationships, I examined both summer and winter 

habitat selection patterns by female deer. Using summer-only data, I asked how reproductive 

female deer balance wolf and bear predation risk against access to forage over time. Predation 

risks and forage were strong drivers of deer spatial selection during summer, but reproductive 

period and time within reproductive period determined deer reaction to these drivers. To ensure 
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adequate reproductive habitat for deer, areas with low predation risk and high forage should be 

conserved. Focusing on winter, I evaluated deer spatial selection during winter as a response to 

snow depth, vegetation classes, forage, and landscape features. I allowed daily snow depth 

measures to interact with selection of other covariates, and found strong support for deer 

avoidance of deep snow, as well as changes in deer selection of old-growth and second-growth 

habitats and landscape features with increasing snow depth. Collectively, this dissertation greatly 

improves our understanding of deer ecology in Alaska, and suggests habitat management actions 

that will help ensure resilient deer populations in the future. 

vi
 



vii 

 

 

 

 

 

 

TABLE OF CONTENTS 

Page 


Signature page .................................................................................................................................. i!
 

Title page ....................................................................................................................................... iii!
 

Abstract ............................................................................................................................................v!
 

Table of Contents .......................................................................................................................... vii!
 

List of Figures ............................................................................................................................... xi!
 

List of Tables ............................................................................................................................... xiii!
 

Preface. ...........................................................................................................................................xv!
 

Chapter 1. Introduction ....................................................................................................................1!
 

1.1.! General Introduction ..............................................................................................................1!
 

1.2.! Chapter 2 Background: Challenges in Survival Estimation ..................................................2!
 

1.3.! Chapter 2 Research Questions ...............................................................................................3!
 

1.4.! Chapter 3 Background: Environmental Variability and Population Dynamics.....................4!
 

1.5.! Chapter 3 Research Questions ...............................................................................................4!
 

1.6.! Chapter 4 Background: Spatial Selection During Reproduction ...........................................5!
 

1.7.! Chapter 4 Research Questions ...............................................................................................5!
 

1.8.! Chapter 5 Background: Effects of Snow on Spatial Selection ..............................................6!
 

1.9.! Chapter 5 Research Questions ...............................................................................................6!
 

1.10.! References ............................................................................................................................7!
 

Chapter 2. Dead Before Detection: Addressing The Effects of Left Truncation on Survival 


Estimation and Ecological Inference for Neonates......................................................13!
 

2.1.! Abstract ................................................................................................................................13!
 

2.2.! Introduction ..........................................................................................................................14!
 

2.3.! Materials and Methods .........................................................................................................16!
 

2.3.1.! Study Area ....................................................................................................16!
 

2.3.2.! Deer Capture and Handling ..........................................................................17!
 

2.3.3.! Survival Analysis ..........................................................................................18!
 

2.4.! Results ..................................................................................................................................21!
 

vii
 



viii 

 

 

 

 

 

2.4.1.! VIT Success Rates ........................................................................................21!
 

2.4.2.! Survival Analysis ..........................................................................................21!
 

2.5.! Discussion ............................................................................................................................25!
 

2.6.! Acknowledgements ..............................................................................................................28!
 

2.7.! Figures..................................................................................................................................29!
 

2.8.! Tables ...................................................................................................................................33!
 

2.9.! References ............................................................................................................................37!
 

Chapter 3. Effects of Environmental and Individual Variables on Sitka Black-Tailed Deer 


Population Dynamics ...................................................................................................43!
 

3.1.! Abstract ................................................................................................................................43!
 

3.2.! Introduction ..........................................................................................................................44!
 

3.3.! Methods................................................................................................................................46!
 

3.3.1.! Study Area ....................................................................................................46!
 

3.3.2.! Deer Capture and Monitoring .......................................................................47!
 

3.3.3.! Effects of Predictive Variables on Vital Rates .............................................48!
 

3.3.4.! Estimation of Process Variance in Vital Rates and Predictive Variables ....51!
 

3.3.5.! Effects of Vital Rates and Predictive Variables on Population Dynamics...51!
 

3.4.! Results ..................................................................................................................................53!
 

3.4.1.! Effects of Predictive Variables on Vital Rates .............................................55!
 

3.4.2.! Effects of Vital Rates and Predictive Variables on Population Dynamics...56!
 

3.5.! Discussion ............................................................................................................................57!
 

3.6.! Acknowledgements ..............................................................................................................61!
 

3.7.! Figures..................................................................................................................................62!
 

3.8.! Tables ...................................................................................................................................67!
 

3.10.! References ..........................................................................................................................71!
 

Chapter 4. Fear, Forage, and Fawns: Nutrition and Predation Risk Drive Behavior For Female 


Deer..............................................................................................................................79!
 

4.1.! Abstract ................................................................................................................................79!
 

4.2.! Introduction ..........................................................................................................................80!
 

4.3.! Materials and Methods .........................................................................................................83!
 

viii
 



 

 

 

 

4.3.1.! Study Area ....................................................................................................83!
 

4.3.2.! Animal Capture and Handling ......................................................................83!
 

4.3.3.! Spatial Predictive Variables: Forage Availability ........................................84!
 

4.3.4.! Spatial Predictive Variables: Bear Predation Risk .......................................84!
 

4.3.5.! Spatial Predictive Variables: Wolf Predation Risk ......................................85!
 

4.3.6.! Deer Resource Selection ...............................................................................85!
 

4.3.7.! Time Dependency of Selection ....................................................................86!
 

4.3.8.! Selection Within Home Ranges....................................................................86!
 

4.3.9.! Analysis of Individual Variation in Selection ..............................................87!
 

4.4.! Results ..................................................................................................................................88!
 

4.4.1.! Deer Resource Selection Within the Home Range .......................................88!
 

4.4.2.! Variation in Selection Among Individuals ...................................................89!
 

4.5.! Discussion ............................................................................................................................90!
 

4.6.! Acknowledgements ..............................................................................................................94!
 

4.7.! Figures..................................................................................................................................95!
 

4.8.! Tables .................................................................................................................................102!
 

4.9.! Appendix ............................................................................................................................105!
 

Figures, Appendix ...................................................................................................109!
 

Tables, Appendix .....................................................................................................112!
 

4.10.! References ........................................................................................................................114!
 

Chapter 5. Season of Scarcity: Dynamic Effects of Snow Depth on Winter Habitat Selection of 


Deer in a Timber-Harvested Landscape ....................................................................121!
 

5.1.! Abstract ..............................................................................................................................121!
 

5.2.! Introduction ........................................................................................................................122!
 

5.3.! Methods..............................................................................................................................125!
 

5.3.1.! Study Area ..................................................................................................125!
 

5.3.2.! Deer Capture and GPS Monitoring ............................................................126!
 

5.3.3.! Spatial Covariates .......................................................................................126!
 

5.3.4.! Snow Record ..............................................................................................127!
 

5.3.5.! Deer Habitat Selection ................................................................................128!
 

ix
 



x 

 

 

 

5.4.! Results ................................................................................................................................131!
 

5.4.1.! Patterns in Snow Depth and Temperature ..................................................131!
 

5.4.2.! Deer Habitat Selection ................................................................................131!
 

5.5.! Discussion ..........................................................................................................................134!
 

5.6.! Acknowledgements ............................................................................................................139!
 

5.7.! Figures................................................................................................................................140!
 

5.8.! Tables .................................................................................................................................146!
 

5.9.! References ..........................................................................................................................149!
 

Chapter 6. Conclusions ................................................................................................................155!
 

6.1.! Robust Survival Models for Fawns ...................................................................................155!
 

6.2.! Effects of Environmental Variability on Population Dynamics of Deer ...........................156!
 

6.3.! Spatial Selection by Reproductive Deer Relative to Forage and Predation Risks.............157!
 

6.4.! The Importance of Snow: Plastic Spatial Selection by Deer in Winter Landscapes .........158!
 

6.5.! Future Directions and Needs ..............................................................................................159!
 

6.6.! References ..........................................................................................................................160!
 

x
 



xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

Page 

Figure 1.1. Photo of the Author Opportunistically Capturing a Sitka Black-Tailed Deer 


Fawn ...........................................................................................................................11!
 

Figure 2.1. Study Area Map ...........................................................................................................29!
 

Figure 2.2. Daily Survival Rates (DSRs) for Neonatal Fawns ......................................................30!
 

Figure 2.3. Cumulative Survival Probabilities for Neonatal Fawns ..............................................31!
 

Figure 2.4. The Effect of Left Truncation on Coefficient Magnitude and Direction ....................32!
 

Figure 3.1. Study Area Map ...........................................................................................................62!
 

Figure 3.2. Twenty-Year Record of Total Annual Snowfall .........................................................63!
 

Figure 3.3. Life Cycle and Variability of Vital Rates for Deer .....................................................64!
 

Figure 3.4. Prospective and Retrospective Effects of Vital Rates on Growth Rate. ......................65!


 Figure 3.5. Effects of Predictive Variables on Vital Rates, and on Growth Rate, for Deer .........66!
 

Figure 4.1. Deer reproductive seasons and selection hypotheses. .................................................95!
 

Figure 4.2. Study Area Map. ..........................................................................................................96!
 

Figure 4.3. Population-Level Selection by Deer for Forage, Bear Predation Risk, and Wolf 


Predation Risk Through Time. ...................................................................................97!
 

Figure 4.4. Functional Responses in Selection of Individual Deer. ...............................................98!
 

Figure 4.5. Effects of Body Condition on Individual Selection of Deer. ......................................99!
 

Figure 4.6. Potential Trade-Offs Between Forage and Predation Risk for Deer. ........................100!
 

Figure 4.7. Differences in Home Range Quality for Deer and Effects on Selection. ..................101!
 

Figure 4.8. Bear Relocations on Central Prince of Wales Island by Season. ..............................109!
 

Figure 4.9. Schematic Diagram of Bear Resource Selection by Seasons. ...................................110!
 

Figure 4.10. Maps of Bear Relative Probability of Selection. .....................................................111!
 

Figure 5.1. Forage and Canopy Differences Among Vegetation Classes....................................140!
 

Figure 5.2. Study Area Map .........................................................................................................141!
 

Figure 5.3. Variability in Snow Depth Within and Across the Years of the Study .....................142!
 

Figure 5.4. Deer Functional Responses to Old-Growth Forest Types and Forage Biomass .......143!
 

Figure 5.5. Interaction of Snow Depth and Deer Selection Responses to Forest Types .............144!
 

xi
 



xiii 

Figure 5.6. Deer Selection Responses to Second-Growth Forest Types .....................................145!
 

xii
 



xv 

  
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

LIST OF TABLES
 

Page 

Table 2.1. Effects of Age Estimation Technique on Covariate Calculations ................................33! 

Table 2.2. Effects of Age Estimation Technique on Covariate Calculations ................................34! 

Table 2.3. Effects of Varying Levels of Left Truncation on Covariate Coefficients in 

Survival Models..........................................................................................................35! 

Table 2.4. Comparison of AICc-Based Model Selection for Varying Levels of Left 

Truncation in Survival Data........................................................................................36!
 

Table 3.1. Hypothesized Effects of Predictive Variables on Vital Rates of Deer .........................67!
 

Table 3.2. Estimates of Vital Rates for Sitka Black-Tailed Deer ..................................................68!
 

Table 3.3. Top-Ranked Vital Rates Models...................................................................................69!
 

Table 3.4. Effects of Predictive Variables and Vital Rates on Population Dynamics ...................70!
 

Table 4.1. Coefficients of Wolf Resource Selection....................................................................102!
 

Table 4.2. Coefficients of Deer Resource Selection at the Population Level..............................103!
 

Table 4.3. Competing Resource Selection Models with Different Measures of Forage. ............104!
 

Table 4.4. Spatial Variables Used in Bear Resource Selection Models ......................................112!
 

Table 4.5. Coefficients of Top-Ranked Bear Selection Model for Each Season.........................113!
 

Table 5.1. Variable Types and Descriptions Used in Spatial Analysis .......................................146!
 

Table 5.2. Coefficients for Top-Ranked Models of Deer Selection ............................................147!
 

Table 5.3. Relative Effect Size of Covariates ..............................................................................148!
 

xiii
 



xvi 



 

 

  

 

 

PREFACE 

I am deeply grateful to my major advisor Kris Hundertmark for his guidance, thoughtful 

discussions, support during challenges of all kinds, and consistent encouragement. I also owe a 

great deal of thanks to David Person, committee member and extraordinary mentor and in and 

out of the field, without whom this project, and dissertation, would never have gotten off the 

ground or through the finish line. In addition, the members of my committee could not have been 

more helpful- I sincerely thank Mark Lindberg and Mark Boyce for their continuing efforts and 

insights. Many thanks to all the helping hands in the field, without whom this project would have 

been impossible. Field assistants Casey Pozzanghera, Kathleen Miles, Tessa Ruswick, and Moira 

Houghes performed excellent work. Ray Slayton and Jim Baichtal made year-round monitoring 

of study animals possible, but seemed to enjoy themselves a little too much. In addition, valuable 

field assistance and logistical support was given by Karen Petersen, Doug Larsen, Rodney Flynn, 

Boyd Porter, Stephen Bethune, Tim Bartholomaus, and Kris Hundertmark. This research would 

never have been possible without the love and support of my friends, and of my wonderful 

husband, Tim Bartholomaus. Cannon the scat detection dog also performed invaluable services, 

as field assistant and companion, during this work, and is deeply missed. Funding for this work 

was provided by the Alaska Department of Fish and Game, the U.S. Forest Service, a National 

Science Foundation GK-12 Graduate Fellowship, an Alaska Trapper Association’s Dean Wilson 

Scholarship, and a Jim Stelmock Memorial Scholarship. 

Finally, and importantly, I am deeply grateful for the opportunity to work in the 

remarkable coastal temperate rainforest ecosystem of Southeast Alaska, and with Sitka black-

tailed deer, the consummate forest herbivore. It was a transformative experience, professionally 

and personally. Perhaps its meaning for me can be best expressed the words of the poet Mary 

Oliver: 

xv 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Once, in summer,
 

in the blueberries,
 

I fell asleep, and woke
 

when a deer stumbled against me.
 

I guess
 

she was so busy with her own 


happiness
 

she had grown careless
 

and was just wandering along
 

listening
 

to the wind as she leaned down
 

to lip up the sweetness
 

So, there we were
 

with nothing between us
 

but a few leaves, and the wind’s
 

glossy voice
 

shouting instructions
 

The deer
 

backed away finally
 

and flung up her white tail
 

and went floating off toward the trees-


But the moment before she did that
 

was so wide and so deep
 

it has lasted to this day;
 

I have only to think of her-


The flower of her amazement
 

and the stalled breath of her curiosity,
 

and even the damp touch of her 


solicitude
 

before she took flight-


To be absent again from this world
 

and alive, again, in another,
 

for thirty years
 

sleepy and amazed,
 

rising out of the rough weeds,
 

listening and looking.
 

beautiful girl, 


where are you?
 

~ Mary Oliver
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CHAPTER 1. INTRODUCTION
 

1.1. GENERAL INTRODUCTION
 

The coastal temperate rainforest is a rare biome globally (Mackinnon 2003), and a 

substantial portion of it is found in Southeast Alaska (Albert & Schoen 2013). However, highly 

productive old-growth forests have been selectively targeted by widespread commercial timber 

harvest, resulting in disproportionate decreases in high-quality old growth across the region 

(Albert & Schoen 2007; Albert & Schoen 2013). In this ecosystem, deer (Sitka black-tailed deer, 

Odocoileus hemionus sitkensis) are by far the most abundant large herbivore, and on many 

islands in the Alexander Archipelago are the only ungulate in the ecological community. Deer 

depend on high-quality old growth as winter habitat (Schoen & Kirchhoff 1985; Kirchhoff 1994; 

Parker et al. 1999; Person et al. 2009), due to the high levels of snow interception combined with 

relatively abundant forage produced by the complex canopy structure (Alaback 1982; Alaback & 

Saunders 2013; Kirchhoff & Schoen 1987). The widespread changes wrought by timber harvest 

can strongly affect deer (Hanley 1993; Hanley 2005), although considerable uncertainty remains 

as to the relationships between deer and habitat types, weather, and predation. 

As the dominant large herbivore in the ecosystem, deer are a key member of food webs, 

feeding bears, wolves and eagles, and consuming a diverse array of plant species. At high 

densities, Sitka black-tailed deer can substantially alter floral communities by preferentially 

consuming palatable species (Klein 1965; Le Saout et al. 2014; Stockton et al. 2010; Stockton et 

al. 2005). Alternatively, when deer are at low densities, predators that rely on them such as the 

Alexander Archipelago wolf (Canis lupus ligoni) may decline or be locally extirpated (Lewis & 

Klein 1992). Deer also play a key cultural and economic role in Southeast Alaska. In the state, 

subsistence harvest of wild foods makes up over 30% of calories for rural residents, equating to 

the harvest of 375 pounds of food per person annually. So important is subsistence harvest to the 

economy and culture of rural Alaska that it is a legally protected under federal law by the Alaska 

National Interest Lands Conservation Act (ANILCA). In Southeast Alaska, deer are the major 

terrestrial source of protein for subsistence users, making up 18% of the total subsistence harvest 

in Southeast Alaska by weight. Much of this harvest occurs within a mile of the high-density 
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network of roads across the region (Brinkman et al. 2009), which is the product of industrial 

timber harvest. 

Yet despite the pivotal ecological and cultural role of deer in Southeast Alaska, there 

remain critical gaps in knowledge for the species, from life history and population dynamics to 

spatial ecology during key life-history phases. In part, this is because data are profoundly 

difficult to collect in the temperate rainforest environment. From capture to detecting birth and 

mortality events, studies of deer are only infrequently facilitated by aids such as helicopters and 

airplanes due to the thick forest canopy. Despite these challenges, many dedicated researchers 

have studied deer in Southeast Alaska across recent decades, and have produced high-quality 

studies of adult female survival and spatial selection. But these studies have limitations, 

particularly in collection of spatial data. Recent technological advances, specifically the advent 

of GPS-based wildlife tracking technology, have increased the data that can be collected on deer 

by orders of magnitude. As new research techniques have emerged during recent years, interest 

has grown among managers and researchers in filling in key gaps in knowledge regarding deer 

ecology in Southeast Alaska. My study attempts to use some of those new technologies to fill in 

gaps concerning the ecology of deer in coastal temperate rainforest. 

The goals of my study were to investigate the environmental drivers of adult female and 

fawn survival, how those factors affected relations between deer and their predators, and patterns 

of spatial selection by adult females during reproduction and winter. As part of that work, I also 

tested the utility of a new technology that has the potential to enhance the study of deer 

reproduction in dense forest environments. In the following sections I describe the background 

and questions addressed for each chapter of the dissertation. 

1.2. CHAPTER 2 BACKGROUND: CHALLENGES IN SURVIVAL ESTIMATION 

Despite sustained interest from researchers and managers in Sitka black-tailed deer 

ecology, our understanding of their population dynamics is quite limited. Although estimates of 

adult and yearling female survival have been obtained (Farmer et al. 2006; Person et al. 2009), 

deer reproduction in this ecosystem remains almost entirely unstudied (but see Johnson 1987 for 

estimates of fetal rates from deer reproductive tracts). Knowledge of timing of reproduction, 

rates and sex ratios of fawn production, selection of birth sites, survival rates of fawns, and 
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ecological factors affecting that survival are lacking. For populations of long-lived mammals 

such as deer, variability in population growth rate between years is typically caused by changes 

in survival of juveniles, rather than survival of adult females (Gaillard et al. 1998; Gaillard et al. 

2000). Without an understanding of processes affecting fawn survival, inference about the 

ecological drivers of population dynamics of Sitka black-tailed deer is difficult and probably not 

very reliable. 

One obstacle to studying population dynamics is accurate measurement of fawn survival 

rates. Female deer, like other forest ungulates, are highly secretive as parturition approaches. As 

a result, many studies of fawn survival rely on opportunistic captures of young fawns that are 

detected based on female behavior, through direct observation, or by systematic ground searches 

(White et al. 1972; Whittaker & Lindzey 1999). However, the emergence of a new technology, 

vaginal implant transmitters (VITs), has allowed researchers to detect fawns at birth. The VIT is 

expelled from the vaginal canal during labor and then emits a distinctive radio signal, allowing 

researchers to locate the birth site. By capturing fawns at birth rather than several days after, 

researchers detect early mortality events that would otherwise have been missed (i.e., left 

truncation of data; Shen & Cook 2013). In chapter 2, I compare survival of opportunistically and 

VIT-captured fawns to quantify the importance of this missed mortality to accuracy of survival 

estimates. This was an important step toward developing accurate models of fawn survival for 

ecological inference in later chapters. 

1.3. CHAPTER 2 RESEARCH QUESTIONS 

In this chapter, I address four main research questions: 

1.	 Does the methodology for capture of neonatal fawns introduce bias into the data (i.e., left 

truncation)? 

2.	 Does left truncation bias survival estimates for fawns and by how much? 

3.	 Does left truncation affect ecological inference? 

4.	 What are potential solutions to left truncation in data? 
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1.4. CHAPTER 3 BACKGROUND: ENVIRONMENTAL VARIABILITY AND 

POPULATION DYNAMICS 

Building on the robust tools for modeling fawn survival in the presence of biased data 

developed in Chapter 2, the next chapter focuses on deer population dynamics in a variable 

environment. Population dynamics of ungulates in temperate environments are affected by 

multiple environmental factors that vary across seasons and in impacts to vital rates (Gaillard et 

al. 2000; Monteith et al. 2013). Fecundity is often a function of maternal age and size, as well as 

the environment (Delgiudice et al. 2007; Weladji et al. 2002). In addition, survival patterns and 

predictive environmental variables differ by life history phase, with juveniles typically much 

more vulnerable to predation, malnutrition, and other causes of mortality than adult females 

(Gaillard et al. 1998). While such general patterns are likely true for Sitka black-tailed deer, the 

environmental drivers of survival and fecundity are poorly understood. Climate variability, 

particularly in winter snow depth and temperature, is thought to be important for over-winter 

survival of adult females and fawns (Baccante & Woods 2010; Kirchhoff 1994; Person et al. 

2009, Person & Brinkman 2013). Likewise, timber harvest may have an affect on nutrition or 

predation risk (McNay & Voller 1995, Fisher & Wilkinson 2005; Van Horne et al. 1988; Farmer 

et al. 2006, Wittmer et al. 2007, Person & Brinkman 2013). In addition, individual factors, such 

as mass at birth or gender for fawns or body mass and age of adults, can also influence vital rates 

(Loison et al. 2004; Delgiudice et al. 2006). To evaluate population growth sensitivity to vital 

rates and underlying environmental and individual predictive variables, I developed an integrated 

modeling approach, which combines models of vital rates with matrix-based population models. 

1.5. CHAPTER 3 RESEARCH QUESTIONS
 

In this chapter I use the aforementioned methods to address four main research questions:
 

1.	 What are the effects of environmental and individual predictor variables on deer
 

reproduction and survival (i.e., vital rates)?
 

2.	 How much of observed inter-annual variance in vital rates can be attributed to process 

versus sampling variance? 

3.	 What are the potential effects of observed process variance in vital rates on population 

growth rate? 
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1) What are the potential effects of observed process variance in predictor variables on 

population growth rate? 

1.6. CHAPTER 4 BACKGROUND: SPATIAL SELECTION DURING REPRODUCTION 

Adult female deer have been the focus of research across ecosystems (Delgiudice et al. 

2002; Long et al. 2009; Mcloughlin et al. 2006) because they are the segment of the population 

that produces offspring, and thus in large part drive population growth or decline. Hence, 

understanding how the reproductive status of female deer drives habitat selection during spring 

and summer is a central question for effective conservation and management of deer. Whereas 

past studies have described summer habitat selection by female deer (Kirchhoff & Schoen 1985; 

Yeo & Peek 1992; Person et al. 2009), reproductive status was not known for individuals. 

Reproduction involves extreme energy expenditures for adult female deer during gestation and 

lactation (Barboza & Bowyer 2000; Barboza et al. 2009; Tollefson 2010), as well as changes in 

predation risk for both females and fawns (Therrien et al. 2008). Distinct changes to habitat 

selection by reproductive phase has been documented for other female ungulates (Berger 2007; 

Long et al. 2009; Rearden et al. 2011), but has not been studied in Sitka black-tailed deer. If 

habitat selection by deer differs by reproductive stage, land management strategies may need to 

consider habitat quality for deer throughout the year rather than just focusing on winter range. 

Consequently, I investigated patterns of habitat selection by adult female deer during different 

reproductive stages. Furthermore, I examined whether those patterns can be explained by risks 

of bear and wolf predation and forage availability across the landscape. 

1.7. CHAPTER 4 RESEARCH QUESTIONS 

In this chapter, I examine 3 main research questions: 

1.	 Do adult female deer trade-off bear and wolf predation risk with access to forage during 

reproduction? 

2.	 Does duration of a reproductive phase affect deer choices relative to risk and forage? 

3.	 Do deer exhibit a functional response in strength of selection dictated by the levels of risk 

and forage available to them within their home ranges? 

5
 



 

  

   

 

 

 

  

 

 

 

   

  

  

    

 

  

1.8. CHAPTER 5 BACKGROUND: EFFECTS OF SNOW ON SPATIAL SELECTION
 

There is ongoing debate as to the habitat needs of Sitka black-tailed deer in winter. The 

importance of winter to deer survival in Alaska has long been recognized, and several previous 

studies have sought to identify key habitats for deer in winter (Doerr et al. 2005; Farmer et al. 

2006; Klein 1965; Person et al. 2009; Schoen & Kirchhoff 1985; Yeo & Peek 1992). A unifying 

question across these studies has been the importance of productive old-growth forest to deer in 

winter, an issue with great importance as old-growth timber continues to be harvested across the 

region. While old growth harvest has slowed in recent years (U.S. Forest Service 2008), the 

remaining stands of high-quality old growth could arguably have greater importance for deer due 

to the relative scarcity of these habitat types (Albert & Schoen 2007). 

Yet past studies fail to agree on the importance of old growth. One explanation is that the 

value of old growth to deer depends on snow depth, with productive old growth most valuable 

when snow is deep and other habitats with adequate forage are snow covered. However, the 

highly variable winter climate in Southeast Alaska means that snow depth changes throughout 

the winter, and across latitudinal and elevational gradients (Shanley et al. 2015), confounding 

efforts to distinguish effects of snow depth on deer selection. It is urgent that the discrepancies in 

results of past studies be reconciled in order to ensure the preservation of high-quality deer 

habitat for both deep and shallow snow conditions. To disentangle snow and habitat effects on 

deer selection, I used GPS-obtained locations for deer with high temporal and spatial resolution 

and data from weather stations deployed throughout the study area to measure snow depth daily, 

and closely monitored deer movements and habitat selection during winter. 

1.9. CHAPTER 5 RESEARCH QUESTIONS 

In this final research-based chapter, I answer the following three research questions: 

1. What landscape, vegetation, and forage covariates do deer select for or against in winter? 

2. How does variability of snow depth affect these selection patterns? 

1) Do deer adjust selection for vegetation classes and biomass based on what is locally 
available to them? 
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Figure 1.1. Photo of the Author Opportunistically Capturing a Sitka Black-Tailed Deer Fawn 

Capture took place in the project study area on Prince of Wales Island, Southeast Alaska during 

the 2010 summer field season. 
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CHAPTER 2. DEAD BEFORE DETECTION: ADDRESSING THE EFFECTS OF 


LEFT TRUNCATION ON SURVIVAL ESTIMATION AND ECOLOGICAL 


INFERENCE FOR NEONATES1
 

2.1. ABSTRACT 

Neonate survival is a key life-history trait, yet remains challenging to measure in 

wild populations because neonates can be difficult to capture at birth. Estimates of 

survival from neonates that are opportunistically captured might be inaccurate because 

some individuals die before sampling, resulting in data that are left truncated. The 

resulting overestimation of survival rates can further affect ecological inference through 

biased estimates of covariate effects in survival models, yet is not addressed in most 

studies of animal survival. Here, I quantify the effects of left truncation on survival 

estimates and subsequent ecological inference. Vaginal implant transmitters (VITs) 

enable capture of ungulates at birth, yielding data without left truncation. The effects of 

left truncation on survival estimation were quantified using age-dependent survival 

models for VIT and opportunistically captured neonatal deer. Differences in daily 

survival rates (DSRs) and cumulative survival probability were calculated for the first 70 

days of life. In addition, left truncation was simulated by removing fawns that died during 

the first 1 or 2 days of life from the VIT-caught sample, isolating the effect of left 

truncation. Cumulative probability of survival during the first 70 days of life was 

overestimated by 7- 23% for fawns caught opportunistically compared to those caught by 

VIT, depending on model design. Differences in DSRs were large at age 1 day, but had 

converged by age 30 days. Simulated left truncation resulted in overestimates of survival 

of up to 31%. Model selection and covariate coefficients were strongly affected by left 

truncation, producing spurious ecological inference, including changes to sign and/or 

magnitude of inferred effects of all covariates. I recommend 1) every effort be made to 

1 Gilbert SL, Lindberg MS, Hundertmark KJ, Person DK (2014). Dead before detection: addressing the 

effects of left truncation on survival estimation and ecological inference for neonates. Methods in 

Ecology and Evolution, 5(10), 992-1001. DOI: 10.5061/dryad.p1r40. The text has been modified 

to conform with thesis formatting requirements. 
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capture neonates; 2) consistent capture methods, using at least in part non-truncating 

techniques, be implemented across years and study areas; and 3) exclusion of left-

truncated data from survival estimates until DSRs converge with those calculated from 

non-truncated data. This work emphasizes the importance of accounting for left 

truncation in survival estimation for any species with strong age-dependent survival in 

order to prevent biased conclusions produced by sampling method rather than true 

ecological effects. 

2.2. INTRODUCTION 

Neonatal survival is a key ecological metric, driving the reproductive success of 

individuals and subsequent population change. For most vertebrates, the neonatal period 

immediately following birth of offspring or laying of eggs is the highest risk life history 

stage (Gaillard et al. 1998; MacNulty et al. 2009) Yet quantifying neonatal survival 

remains elusive for many species, largely due to challenges in early detection and capture 

of neonates (Pike et al. 2008; Shemnitz et al. 2012) which is my focus, or the laying of 

eggs. This failure to detect truly neonatal individuals results in longitudinal survival data 

that are left truncated, and inference is therefore based on the sample of individuals that 

have survived to be detected and captured (Tsai et al. 1987; Heisey & Patterson 2006). 

Neonatal survival is typically estimated by closely monitoring marked adults 

during the reproductive period, using behavioral cues to detect reproduction, and then 

searching for offspring, nests or dens (White et al. 1972; Laurenson 1994; Safine & 

Lindberg 2008; Shemnitz et al. 2012). Age of detected offspring or nests is then 

determined so that age-specific survival rates can be calculated, and survival outcomes 

monitored (Dinsmore et al. 2002). This approach introduces error into survival estimates 

both when offspring age is estimated using imperfect proxy measurements (Haskell et al. 

2007) and when some neonates or nests die or fail before detection (i.e. left truncation, 

Fieberg & DelGiudice 2009). Although researchers can estimate the error in age 

determination of offspring or nests (Carstensen et al. 2009), estimation of or correction 

for the effects of left truncation are rarely attempted. 

Increasingly, survival estimation is not the sole goal of research, but rather is a 

necessary component of subsequent analysis, such as modeling of ecological, genetic or 
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behavioral drivers of survival. Left truncation can inflate estimates of neonatal survival 

and bias estimated effects of covariates (Fieberg & DelGiudice 2009; van den Berg & 

Drepper 2011; Yang & Aldrich 2012). When using left-truncated data for survival 

estimation, environmental or individual covariate values associated with these data are 

incomplete because they only come from individuals that have survived to be sampled, 

resulting in biased estimation of covariate effects (Bergeron et al. 2008; Shen & Cook 

2013). Accurate data on timing of mortality and effects of covariates are essential, and 

left truncation should therefore be a serious consideration in study design. 

Progress has been made in incorporating individual heterogeneity into survival 

models in recent years and analytically accounting for many sources of variation in 

neonatal survival. From the Mayfield nest survival estimator (Mayfield 1961), which 

assumes a constant daily survival rate (DSR) throughout the nesting cycle in order to 

account for differing times of exposure to mortality risk, researchers have progressed to 

explicitly modeling the effects of nest age (Rotella et al. 2004) and variation in individual 

quality (Lindberg et al. 2013). Such sophisticated survival models have also been applied 

to other vertebrate taxa in recent years (Keech et al. 2011; Halstead et al. 2012). Yet if 

low-quality individuals are removed disproportionately at very young ages, as is often the 

case in vertebrate populations, the data driving these models are left truncated and biased 

towards high-quality individuals. Therefore, none of these modeling solutions account for 

the sampling problems associated with left truncation. 

Left truncation bias for neonates is primarily a sampling rather than a modeling 

problem. However, recent technological innovations present an opportunity to quantify 

the effect of left-truncated data on survival estimation and to develop approaches to 

successfully integrate truncated and non-truncated data into survival models. For 

instance, vaginal implant transmitters (VITs; Advanced Telemetry Systems, Isanti, MN, 

USA) have proven highly useful in the study of ungulate reproduction. VITs use a 

temperature-based switch linked to a VHF radiotransmitter to signal researchers when the 

transmitter is expelled during birth from the relatively warm body of a female ungulate 

into cooler air temperatures. In this way, VITs have allowed for the location of birth sites 

and neonates even for highly cryptic species such as white-tailed deer ( Odocoileus 

virginiaunus; Carstensen et al. 2003; Swanson et al. 2008), mule deer (Odocoileus 
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hemionus; Johnstone-Yellin et al. 2006; Haskell et al. 2007; Bishop et al. 2011) and elk 

(Cervus elaphus ; Seward et al. 2005; Barbknecht et al. 2009). 

Currently, VITs are seen by most researchers as a method to improve capture 

efficiency, rather than to increase accuracy of survival estimates by reducing left 

truncation (Carstensen et al. 2003; Haskell et al. 2007). Indeed, most studies of neonate 

survival either do not use VITs or use a mixture of VITs and opportunistic captures 

across years and study areas without accounting for the effects of these two detection 

methods on survival estimation. Differences in estimates of offspring survival between 

VITs and opportunistic capture methods are likely, because newborn ungulates are highly 

cryptic in many species, becoming more active and detectable and less vulnerable to 

predation as they age (Gaillard et al. 1998; Forrester & Wittmer 2013; Van Moorter et al. 

2009). To quantify the effect of left truncation on neonatal survival estimation and 

modeling of ecological covariates, I compared neonatal survival in a population of Sitka 

black-tailed deer (Odocoileus hemionus sitkensis) sampled concurrently using both VIT 

and opportunistic capture methods. 

2.3. MATERIALS AND METHODS 

2.3.1. Study Area 

Our study area was located on central Prince of Wales Island, the largest island in 

the Alexander Archipelago of Southeast Alaska (Figure 2.1). The regional ecosystem is a 

coastal temperate rain forest, and the watersheds within the study area, along with the 

majority of land in Southeast Alaska, are part of the Tongass National Forest. 

Precipitation, falling mostly as rain, averages 300 cm per year. Temperatures vary 

moderately annually, although deep snow (>50 cm) can accumulate during winter months 

(Shanley et al. 2015). Habitat composition is naturally quite variable, including several 

types of old-growth forest, abundant riparian, estuarine and lacustrian environments, and 

muskeg heaths. 

In addition, widespread clear-cut logging has produced single cohort, even-aged 

forest stands of differing successional stages throughout much of central Prince of Wales 

Island, resulting in a patchwork distribution of altered and unaltered habitat in many 

watersheds (Alaback 1982; Alaback & Saunders 2013). I selected six watersheds in the 
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central portion of Prince of Wales Island to examine survival of Sitka black- tailed deer, 

three of which were heavily harvested for timber and three that had no timber harvest 

within them. 

2.3.2. Deer Capture and Handling 

A total of 54 adult female deer were captured in April and May during 2010 – 

2012. Each deer was fitted with a GPS collar with mortality sensor, measured to 

determine body size and condition and fitted with a VIT if pregnant. Pregnancy was 

assessed using a portable ultrasound machine (Sonosite Titan, Sonosite, Bothel, WA, 

USA). VITs had temperature switches triggered by expulsion at birth, producing a birth 

signal at temperatures below 35 °C. VITs were monitored twice daily, and ground 

searches for birth sites were initiated immediately upon detection of a VIT birth signal. If 

a VIT signal could not be detected (i.e. a female was outside of the VIT transmission 

range of c. 1 km), vehicle and aerial searches were conducted until the female was 

relocated. Birth sites found using VITs were confirmed based on presence of birth fluids, 

proximity of female and presence of fawns. If fawns were not found immediately at the 

birth site, a fawn search was initiated in the vicinity for at least 2 h, or until two fawns 

were detected. 

In addition to fawn captures using VITs, I opportunistically captured neonatal 

fawns encountered along roads or otherwise encountered in the environment. Fawns were 

approached on foot and gently restrained in a mesh sack with eyes covered. Gloves were 

worn while handling fawns, and handling times were <10 min per fawn. Each fawn was 

fitted with an expandable radiocollar (VHF, or GPS with VHF; Advanced Telemetry 

Systems, Isanti, MN, USA) and measured to determine mass, chest girth, body length, 

hind foot length and new hoof growth. Radiocollar marking of fawns does not cause 

abandonment by mothers (Powell et al. 2005). VHF signals from fawn collars were 

monitored 1–2 times per day from birth until August 1st and approximately twice per 

month through the first year of life. New hoof growth was not measured during 2010, and 

as a result, fawn survival analysis presented here includes only fawns captured during 

2011–2012. Seventy-six fawns were captured opportunistically (n = 40 in 2011, n = 36 
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in 2012) and 31 from collared females fitted with VITs (n = 15 in 2011, n = 16 in 2012), 

for a total of 107 fawns during this 2-year period. 

2.3.3. Survival Analysis 

Fawn Ages and Individual Covariates 

I estimated the age of opportunistically captured fawns using two different 

approaches that have been employed in previous studies. First, I used a published hoof 

growth equation for mule deer that uses new hoof growth (i.e. length of hoof above the 

cuticle line, which indicates growth of hoof since birth) as a proxy for age, based on a 

linear relationship between age and hoof growth from sequential re-measurement of 

captive-raised (Robinette et al. 1973) or VIT-caught wild fawns (Haskell et al. 2007). 

New hoof growth is the most commonly used method for estimating age of 

opportunistically captured fawns (Lomas & Bender 2007; Grovenburg et al. 2011). 

However, the accuracy of estimates produced for very young fawns can be <50% (Sams 

et al. 1996; Carstensen et al. 2009), indicating that this metric may be too variable for use 

in neonatal-focused survival studies. In addition, choice of hoof growth equation can 

affect model selection among fawn survival models (Grovenburg et al. 2014). I use this 

technique because it is ubiquitous in the literature and serves as a comparison with other 

age determination techniques. I used the hoof growth regression equation developed by 

Haskell et al. (2007) for determining age of mule deer fawns, as this is the only published 

equation based on wild, VIT-caught individuals of the study species. 

Due to the fact that no hoof growth equation exists for the Sitka black-tailed deer 

subspecies, and because fawns caught opportunistically were thought to be quite young 

based on behavioral and morphological characteristics (Haugen & Speake 1958), I 

suspected that the accuracy of hoof growth equation might be too low given the study 

questions. Subsequently, I used an additional technique for age determination for 

comparison. I empirically developed a capture age window based on recaptures of VIT-

caught fawns (i.e. fawns of known ages) and assigned the midpoint of this empirical 

capture window as the age of opportunistically captured fawns (Johnson et al. 2004; 

Whiting et al. 2008). The oldest age at which recapture was successful was 10 days, 

18
 



 

 

  

 

 

 

 

 

which I used as a maximum age for fawns caught opportunistically. I then assigned the 

midpoint age of 5 days to all opportunistically captured fawns. I therefore had two 

different estimates of age at capture for fawns caught opportunistically, which in turn 

yielded two versions of the age-dependent individual covariates for survival analysis (i.e. 

birth date and birth mass). I calculated birth date by subtracting age at capture from 

capture date. Mass at birth was calculated based on an assumption of a linear relationship 

between mass and age, with age predicting mass through a daily mass gain (i.e. slope) of 

0.195 kg/day (Anderson 1981). 

Survival Models 

I examined the effect of left truncation (i.e. capture method) on fawn survival 

estimates using a set of nest-survival models with a logit link function in program MARK 

(White & Burnham 1999), which allowed us to consider effects of covariates that varied 

on a daily basis (e.g. fawn age) that might have a large effect on fawn survival. Analysis 

was carried out using the program Rmark (Laake 2013), implemented in the R statistical 

framework (R Development Core Team 2014). To account for potentially confounding 

individual covariates and explore effects of truncation on ecological inference, I included 

fawn sex, birth date, timber harvest regime of watershed, mass at capture and year into 

the full survival model. I also examined a set of survival models composed of 

combinations of the age-dependent covariates (fawn age, date of birth and mass at 

capture) because I specifically wanted to quantify the effects of ageing techniques and 

left truncation on survival estimation. 

The goal of model development was to quantify the effect of left truncation on 

survival estimation and ecological inference and to isolate the effect of left truncation 

from that of age estimation technique. To do this, I ran a set of survival models across a 

range of left-truncation levels created using VIT and opportunistically caught fawn data, 

with model structures that used VIT-only data (least truncation), separated these data, 

combined data with-group effect, and combined data without-group effect. I then 

simulated left truncation using VIT-only data to isolate the effect of left truncation from 

that of age estimation technique. 
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First, to create baseline survival models that contained no left truncation, I 

developed a set of nine models using data solely from VIT-caught fawns. Because all 

fawns within this data set were caught at birth, these models also were free from the 

effects of age determination techniques. I then quantified the effect of left truncation 

alone using simulations of left truncation. In the simulations, the VIT-only data were 

reduced systematically by first removing all fawns that died within the first day of life (n 

= 7), then those that died at 2 or fewer days old (an additional three fawns). I did not 

continue this simulation beyond 2 days, as the sample size would be too greatly 

diminished to support the full covariate model. To explore left truncation with empirical 

rather than simulated data, I compared the baseline VIT-only models to models using (a) 

fawns caught opportunistically (hereafter, opportunistic only), quantifying the specific 

effects of left-truncated data; (b) combined opportunistic and VIT-caught fawns without-

group model structure (hereafter, combined without group), quantifying the effects of 

combining left truncated and untruncated data; and (c) combined VIT and opportunistic 

fawns with group structure (hereafter, combined with group), quantifying the effects of 

combining left truncated and untruncated data, but with appropriate model structure. For 

comparisons (b) and (c), which used fawns caught opportunistically, I developed two 

versions of each model based on the two age estimation techniques. Finally, I examined 

model rankings based on AICc scores (Burnham & Anderson 2002), as well as changes 

in beta coefficients of covariates in the full covariate model, for comparisons (a), (b) and 

(c). 

The full covariate models were used to produce daily survival rates (DSRs) and 

cumulative survival probabilities for the neonatal period, across the comparisons and 

simulations. From each version of the full covariate model, I derived DSRs and 

cumulative survival probabilities for 1–69 days of age. DSRs were produced by varying 

the value of the age covariate from 1 to 69 days while holding other covariates at mean 

values, allowing us to project the effect of age from day 1 onwards even for 

opportunistically captured fawns (i.e. extrapolation of survival intercept from beta 

coefficient slope). Then, I calculated cumulative survival probabilities for each full model 

by multiplying DSR estimates for ages 1–69 days. Mean, standard errors and 95% 

confidence intervals for cumulative survival probabilities were estimated using 1000 non-

20
 



 

 

 

 

  

 

  

 

 

  

  

   

 

 

 

  

  

 

  

 

 

 

    

 

 

  

  

  

 

parametric bootstrapped replicates of each model (Buckland & Garthwaite 1991), 

implemented in the R package Boot (Cantey & Ripley 2013). For the combined with-

group models, bootstrap resampling was implemented within VIT/opportunistic strata 

(Cantey & Ripley 2013). 

2.4. RESULTS 

2.4.1. VIT Success Rates 

Of the adult female deer captured, 51 were determined to be pregnant at the time 

of capture and 49 were successfully fitted with VITs. Two other deer were pregnant but 

vaginal diameter was too small to accommodate the vaginoscope used in implanting the 

VITs. Of the 49 deployed VITs, 81% resulted in confirmed birth sites and 62% in 

captured fawns at the birth site, representing very high retention and fawn detection rates 

in comparison with other VIT-based studies (Bishop et al. 2011). In addition, 8% of 

females fitted with VITs expelled the devices before parturition, identified by VITs found 

at sites lacking the characteristics of birth sites. 

2.4.2. Survival Analysis 

Fawn Age and Age-dependent Covariate Estimation 

The mean value of measured new hoof growth for opportunistically captured 

fawns was 2.64 mm (SD = 1.51) and included 16 fawns for which no new hoof growth 

was observed (i.e. <24 h old), confirming that many fawns were quite young at capture. 

However, many of the age estimates produced by the hoof growth equation were higher 

than the 1–10 day-old plausible capture window from the field study (Mean = 10.4, SD = 

3.77), with a minimum age estimate of 5.29 days. To generate more realistic age 

estimates, I subtracted 5.29 days of age from the distribution produced by the hoof 

growth equation, so that the youngest age estimates were 0 days, and all other ages were 

5.29 days younger (Table 2.1). This adjustment produced a new mean age of 5.12 days 

(SD = 3.77). In contrast, the empirical capture window approach resulted in uniform, 5-

day-old fawn ages at birth, masking true variation in fawn age at capture but producing 

plausible fawn ages relative to the empirical capture window without the need for 

adjustment. 
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These differences in estimated age-at-capture between age determination techniques 

resulted in variation in derived, age-specific covariate values (i.e. mass at birth and birth 

date) for opportunistically captured fawns (Table 2.1). The fawn ages generated by the 

hoof growth equation and empirical capture window techniques both resulted in 

underestimates of mean mass at birth relative to VIT-caught fawns, but generated a mean 

birth date equal to that of the VIT-caught fawns. This might indicate that the 0.195 

kg/day rate of mass gain that I used to estimate mass at birth was too high for this very 

small subspecies of mule deer, but that fawn ages are likely fairly accurate. 

Survival Estimates 

The varying levels of left truncation within the VIT-only data, opportunistic-only 

data, combined data without groups, combined data with groups and simulated-truncation 

data resulted in different DSRs and cumulative survival rates (Figs 2.2 and 2.3). The 

separated models based on opportunistic-only data produced estimates of DSRs and 

cumulative survival probability that were higher than those based on VIT-only data; 

Cumulative survival probabilities from opportunistic-only data were 0.40 (SE = 0.13) 

when the hoof growth regression equation was used and 0.44 (SE = 0.08) when the 

empirical capture window approach was used. In contrast, estimates of cumulative 

survival probability from VIT-only, untruncated data were 0.33 (SE = 0.13). 

Combining opportunistic and VIT-caught fawn data without-group structure 

resulted in DSRs and cumulative survival probabilities that were slightly higher than 

those of the VIT- only model, resulting in cumulative survival estimates of 0.35 (SE = 

0.19) using hoof growth regression-based age estimates and 0.36 (SE = 0.20) using the 

empirical capture window approach to age estimation. 

As expected, when groups were used to control for VIT and opportunistic 

differences, opportunistically caught groups had higher cumulative survival probabilities 

than VIT-caught groups (Table 2.2), produced by large differences in DSR at 1 day of 

age that converged to no difference in DSR after approximately 30 days of age (Figure 

2.2). For the model that used age estimates from the hoof growth equation, across-group 

cumulative survival probability was 0.33 (SE = 0.06); DSRs for opportunistic groups 

relative to VIT groups were higher until approximately 24 days of age, producing 
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cumulative survival probabilities of 0.40 (SE = 0.08) and 0.25 (SE = 0.11), respectively. 

When the empirical capture window was used to generate age estimates, across-group 

cumulative survival probability was 0.35 (SE = 0.07). DSRs converged at approximately 

35 days of age (Figure 2.2), with cumulative survival probabilities of 0.46 (SE = 0.09) 

and 0.23 (SE = 0.11) for the opportunistic and VIT groups, respectively. 

Models that used simulated left-truncation data, through removal of VIT-only 

fawns that died in the 1st and 2nd days of life, resulted in cumulative survival 

probabilities that were progressively higher depending on level of truncation, and higher 

than for any other models. Removal of fawns that died during the first day of life resulted 

in an increase in cumulative survival probability to 0.55 (SE = 0.21), and removal of 

fawns that died during both the first and second days of life increased cumulative survival 

probability to 0.64 (SE = 0.28). These increases in cumulative survival were the result of 

increased DSRs at young ages (Figure 2.2), resulting from an underestimation of the 

effect of age on survival (Table 2.3, Figure 2.4). 

Effects of Truncation on Model Selection 

Model selection based on AICc scores differed depending on the level of left 

truncation in the data. The opportunistic-only and VIT-only models selected quite 

different top models (Table 2.4); the top-ranked model based on the VIT-only model 

structure was the full covariate model, including effects of age, birth mass, birth date, 

sex, timber harvest and year, and no other models were within 2 AICc units when using 

VIT-only data. This model was not within 2 AICc units of the top-ranked model when 

using opportunistic-only data, based on either age estimation approach. 

The combined VIT and opportunistic model structures, with or without groups, 

also disagreed with model rankings of the VIT-only model, instead selecting simpler 

models with fewer covariates than the full covariate model. The two versions of this 

model structure, based on age estimates from hoof growth regression and the empirical 

capture window, both yielded a top-ranked model that included age, birth mass and birth 

date as covariates (Table 2.4) and agreed on a joint model set within 2 AICc units of this 

best model. The combined, group-controlled model structure resulted in model rankings 

identical to that of the without-group structure. The simulations of left truncation resulted 
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in a top-ranked model that included all covariates (i.e. the full model) for both levels of 

the simulated truncation (i.e. –1 and –2 days of mortality), although the simulation 

missing only 1 day of mortality selected two other models within 2 AICc units, whereas 

the simulation missing 2 days of mortality included only the full covariate model. 

Effects of Truncation on Ecological Inference 

Model structure also strongly influenced the estimated effects of individual and 

environmental covariates (i.e. beta coefficients) in survival models. These alterations to 

coefficients included changes to both magnitude of coefficients, in which a small effect 

became a large effect or vice versa, and sign of coefficients, in which a positive effect on 

survival became a negative effect or vice versa. 

Model structure therefore resulted in quite different ecological inference even 

when considering the full model, which included age, birth mass, birth date, sex, timber 

harvest regime and year covariates. In general, the more left truncation present in a given 

model structure, the greater the differences in coefficients between that model structure 

and the non-truncated, VIT-only model structure (Figure 2.4). Left truncation in the data 

progresses from no truncation in the VIT- only data, through the combined data with 

groups, combined data without groups, opportunistic-only data and finally simulated-

truncation data. 

Across this gradient of left truncation, the effect of age on survival consistently 

declined from a strongly positive effect in the VIT-only model, through diminishing 

positive effects in the with-group effect, combined and opportunistic-only models, to a 

marginally positive effect in the simulated-truncation models. The effect of birth date (i.e. 

being born at a later julian date) consistently increased from a slightly negative effect to a 

positive effect on survival through this same gradient of models. The effect of birth mass 

changed in a nonlinear fashion, declining from a strongly positive effect on survival in 

the VIT-only model to a weakly positive effect in the with-group effect and combined 

models and a neutral effect in the opportunistic-only model, then increasing to a strongly 

positive effect in the simulated model structures. The effect of year declined steadily 

along the left-truncation gradient, from a strongly positive effect of the year 2012 over 

year 2011, to a neutral effect. The effect of sex changed in a nonlinear fashion, with a 
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strong negative effect of male gender on survival for the VIT-only model changing to a 

neutral effect of male gender for grouped- controlled, combined and opportunistic-only 

structures, with a negative effect re-emerging for both simulated-truncation models. 

Timber harvest within a watershed had a marginally negative effect on survival in the 

VIT-only model, yet this effect steadily reversed through the truncation gradient, ending 

with a strongly positive effect on survival in the simulated-truncation models (Figure 

2.4). 

2.5. DISCUSSION 

I found substantial differences in daily and cumulative survival estimates between 

fawns caught opportunistically and VIT-caught fawns. Simulated left truncation of 

individuals that died at ages 1 and 2 days resulted in dramatic increases in DSRs and 

subsequently in cumulative survival compared with untruncated data, greater than 

differences found in the empirical data. This indicates that left truncation in data can bias 

survival estimates, even at low levels, if age has a large effect on survival. When I used 

only empirically left-truncated data, stemming from opportunistic capture of neonatal 

fawns, DSRS were overestimated up until approximately 30 days of age, and there was a 

positive bias in cumulative survival probabilities of 0.07–0.23 (SE = 0.15, 0.14) 

depending on which model design and age estimate was used. 

Perhaps even more significantly, ecological inference was heavily biased by left 

truncation, both during model selection based on AICc ranking, and through large 

differences in beta coefficients of covariates. Using the untruncated VIT-only data, the 

full covariate model was the only model selected based on AICc score; In this model, 

there are strong positive effects on fawn survival of increasing age and birth mass, and 

increased survival in the year 2012. In contrast, male gender, increasing julian birth date 

and presence of timber harvest in a watershed had negative effects on fawn survival. Yet 

had I used a combination of truncated and untruncated data, a simpler top-ranked model 

would have been selected based on AICc, with age remaining as a covariate but with a 

diminished positive effect size, birth mass retaining only a marginally positive effect, 

increasing julian birth date reversing coefficient sign with a positive effect on survival, 
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and all other covariates excluded. The errors in ecological inference would be further 

magnified had I used only left-truncated data. 

From the level of left truncation in the opportunistic-only data and simulations, 

which is by no means extreme or unrealistic in terms of real-world sampling age for 

neonatal animals, the erroneous conclusion would be that age had only a mild positive 

effect on survival, that increasing julian birth date positively rather than negatively 

effected survival, that year had no effect at all and that timber harvest within a watershed 

produced a strongly positive rather than a negative effect on fawn survival. Conclusions 

reached from any of these levels of left truncation would not only be incorrect 

ecologically, but would likely negatively impact management of the species, for instance 

through the falsely positive effect of timber harvest on fawn survival in all models 

including left-truncated data. 

The origins of these biases in coefficients and model selection could be the result 

of interactive effects with age. For example, timber harvest and birth date might strongly 

negatively influence survival of fawns during the first few days after birth but positively 

affect survival as they become older. Ultimately, left truncation is the product of 

individual survival outcomes early in life and is thus likely dependent on individual 

quality. Low-quality offspring are likely more susceptible to predation (Lindberg et al. 

2013; Reid et al. 2010), and a portion of them die before opportunistic sampling can 

occur. Low-quality offspring are likely the result of low-quality or inexperienced 

reproductive adults, which occupy poor birth site, nest, den or home-range habitat, or are 

unable to provide sufficient nourishment or protection to offspring (Mcloughlin et al. 

2006; Hamel et al. 2009). Here, I estimated that the effect of VIT-based captures (i.e. 

group effect) on survival was on average –0.55 (SE = 0.39) across the age determination 

techniques, which could be seen as a measure of the difference in frailty between the VIT 

and opportunistically caught groups. Several mechanisms could be responsible for this 

difference in frailty and bear further investigation. During this study, numerous females 

lost fawns at or shortly after birth, indicating that birth site and subsequent habitat 

selection by females may play a large role in determining fawn predation risk. Future 

work focusing on the underlying mechanisms through which individual heterogeneity 

produces differences in fitness could elucidate such processes. The effects of left 
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truncation I document here have important implications for ecological studies of 

recruitment, survivorship and population dynamics, particularly those that employ 

capture-mark-recapture or known-fates estimation of survival that rely on opportunistic, 

uneven-aged sampling of organisms. Because I captured fawns using left-truncating and 

non-truncating methods concurrently and in the same geographic area, I were able to 

estimate the magnitude and persistence of survival differences resulting from left 

truncation of data; many studies do not have this luxury, yet assume survival is 

equivalent for animals caught with varying capture methods or that ecological 

conclusions are sound despite being based on truncated data. I emphasize the need to 

examine these assumptions empirically. 

Survival rates are often the basis for demographic analysis and for making 

decisions about managing populations (Eberhardt et al. 1994; Beissinger et al. 1998; 

Servanty et al. 2011). If left truncation is present but not accounted for, results could be 

spurious and highly misleading for ecologists and managers. However, I suggest that 

truncated and non-truncated data can be successfully combined within survival models 

with minimal impact to survival estimation and inference, provided certain guidelines are 

followed. Left truncation is fundamentally a sampling problem, and the level of left 

truncation before capture can occur will likely vary by study, by year and by species. 

Thus, it is key to acquire a subsample of study data from minimally truncated individuals, 

despite the higher costs of these data, for comparison with more truncated data. This 

allows for empirically based adjustments of the risk set at a given time, based on the 

convergence of age-dependent survival rates, with more truncated data only included 

once age-dependent survival rates have converged. Specifically, I recommend that (i) 

every effort is made to capture truly neonatal individuals for at least a portion of the 

sample; (ii) consistent capture methodology, consisting of either non-truncating or a 

balanced mixture of non-truncating and truncating techniques, is used across years and 

study areas; and (iii) left-truncated data should be excluded from age-dependent survival 

estimates until DSRs converge with those calculated from non-truncated data. 
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2.7. FIGURES
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Prince of Wales Island 

Alaska 

Figure 2.1. Study Area Map 

The study area, located on central Prince of Wales Island in Southeast Alaska. Study area 

consisted of three watersheds where substantial timber harvest has occurred and three 

watersheds where no significant timber harvest has occurred. Fawns were captured in 

2011– 2012, with and without VITs in approximately even numbers across these six 

study areas. 
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Figure 2.2. Daily Survival Rates (DSRs) for Neonatal Fawns 

Estimates are shown from 1 to 70 days old, with means and 95% confidence intervals. (a) 

Effects of simulated left censoring using VIT-caught fawns, excluding no fawns, fawns 

that died at <1 day old and fawns that died at <2 days old; (b) effects of maximum left 

censoring in the data set (only opportunistic individuals), compared with VIT-caught 

fawns; and (c) differences between estimates from VIT groups and VIT-only model. The 

full covariate model (S ~ Age + Mass + Birthdate + Sex + Timber + Year) was used to 

generate all estimates. 
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Figure 2.3. Cumulative Survival Probabilities for Neonatal Fawns
 

Estimates are shown from 1 to 70 days old with means and 95% confidence intervals. 


The gradient of left censoring effects is explored using both empirical and simulated data, 


from VIT with 0 days censored, to means of grouped VIT/opportunistic model, pooled 


model, opportunistic only model, VIT with 1 day censored and VIT with 2 days
 

censored. Opportunistic fawn ages were generated from the Hoof growth equation (2007) 


age estimation equation. The full covariate model (S ~ Age + Mass + Birthdate + Sex + 


Timber + Year) was used to generate all estimates. 


31
 



                                    

                                    

 

 

 

 

 
 

  

 

 

  

 

 

  

 

     

Data structure: 

VIT only Group Control Ungrouped Opportunistic only VIT, 1 day truncated VIT, 2 days truncated 
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Figure 2.4. The Effect of Left Truncation on Coefficient Magnitude and Direction 

Coefficients are shown for the full covariate model (S ~ Age + Mass + Birthdate + Sex + 

Timber + Year) across a gradient of left censoring in each panel, from no censoring using 

only VIT- caught fawns [V(−0)], through grouped (G), pooled (P) and opportunistic (O) 

models based on empirical VIT and opportunistic data, to simulations based on VIT-only 

fawns with left censoring [fawns that died at <1 day removed, V(−1), and <2 days 

removed, V (−2)]. 
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2.8. TABLES 

Table 2.1. Effects of Age Estimation Technique on Covariate Calculations 

Differences in estimates of age-dependent covariates resulting from choice of age 

estimation technique, and p-values of comparison of distributions from fawns caught at 

birth (i.e., VIT caught fawns) using Welch two sample t-test. Techniques used were 1) 

hoof growth equation, from Haskell (2007), and 2) an empirically-generated capture 

window, from this study. 

Variables Age estimation technique Mean SE P value 

Age at capture (days) Hoof growth equation 5.12 3.77 --

Capture window 5.00 0.00 --

Mass at birth (kg) Hoof growth equation 2.18 0.66 0.001 

Capture window 2.17 0.78 0.003 

VIT (caught at birth) 2.57 0.47 --

Birth date (Julian date) Hoof growth equation 160.33 10.21 0.799 

Capture window 160.44 9.80 0.835 

VIT (caught at birth) 160.90 10.31 --
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Table 2.2. Effects of Age Estimation Technique on Covariate Calculations 

Left truncation in survival data produces differences in cumulative survival probability 

from 1 to 70 days of age, based on the model S ~ Age + Mass + Birthdate + Sex + 

Timber + Year with mean values of covariates. A-E indicate level of truncation, from 

lowest to greatest. S(Both) indicates estimates from combined opportunistic and VIT 

data, and S(VIT) and S(VIT) and S(Opp) indicate estimates based on VIT- or 

Opportunistic-only data. 

Model structure Age estimation S(Both) SE S(VIT) SE S(Opp) SE 

A. VIT only -- -- -- 0.33 0.13 -- --

B. Combined, with group Hoof growth eq. 0.33 0.06 0.25 0.11 0.40 0.08 

Capture window 0.35 0.07 0.23 0.11 0.46 0.09 

C. Combined, without group Hoof growth eq. 0.35 0.07 -- -- -- --

Capture window 0.36 0.08 -- -- -- --

D. Opportunistic only Hoof growth eq. -- -- -- -- 0.40 0.09 

Capture window -- -- -- -- 0.44 0.08 

E. Sim, -1 day -- -- -- 0.55 0.21 -- --

Sim, -2 day -- -- -- 0.64 0.28 -- --
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Table 2.3. Effects of Varying Levels of Left Truncation on Covariate Coefficients in 

Survival Models 

Comparison of beta coefficients from the survival model, S ~ Age + Mass + Birthdate + 

Sex + Timber + Year, for truncation. A–E indicate level of truncation, from least to 

greatest. 

Variable (SE) 

Model structure Age Mass Birthdate Sex Timber Year 

A. VIT only 0.14 (0.05) 2.88 (0.95) -0.02 (0.04) -1.66 (0.83) -0.16 (0.67) 1.73 (0.69) 

B. Combined, with group 

Hoof growth eq. 0.12 (0.02) 0.49 (0.31) 0.02 (0.02) -0.06 (0.32) 0.42 (0.34) 0.50 (0.34) 

Capture window 0.11 (0.02) 0.31 (0.69) 0.02 (0.02) -0.09 (0.32) 0.44 (0.34) 0.44 (0.36) 

C. Combined, w/out group 

Hoof growth eq. 0.13 (0.02) 0.37 (0.26) 0.03 (0.02) -0.05 (0.32) 0.43 (0.34) 0.41 (0.33) 

Capture window 0.12 (0.02) 0.52 (0.23) 0.03 (0.02) -0.04 (0.31) 0.44 (0.34) 0.39 (0.35) 

D. Opportunistic only 

Hoof growth eq. 0.10 (0.02) 0.34 (0.21) 0.04 (0.03) 0.17 (0.40) 0.30 (0.44) 0.19 (0.42) 

Capture window 0.10 (0.02) 0.47 (0.29) 0.04 (0.03) 0.19 (0.40) 0.30 (0.43) 0.07 (0.45) 

E. Simulated truncation 

Sim, -1 day 0.05 (0.04) 3.49 (1.39) 0.7 (0.07) -1.58 (1.08) 1.05 (0.88) 0.33 (0.77) 

Sim, -2 day 0.02 (0.04) 1.69 (1.43) 0.13 (0.09) 0.75 (1.58) 3.56 (1.72) -0.05 (0.89) 

35
 



 

  

  

 

 

 
     

     

      

      

     

      

      

     

     

      

     

     

     

         

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4. Comparison of AICc-Based Model Selection for Varying Levels of Left 

Truncation in Survival Data. 

A–E indicate level of truncation, from least to greatest. Only models ranked within 2 

AICc units of the best model within a set are shown 

Model structure Age Mass 

A. VIT only 0.14 (0.05) 2.88 (0.95) 

B. Combined, with group 

Hoof growth eq. 0.12 (0.02) 0.49 (0.31) 

Capture window 0.11 (0.02) 0.31 (0.69) 

C. Combined, without group 

Hoof growth eq. 0.13 (0.02) 0.37 (0.26) 

Capture window 0.12 (0.02) 0.52 (0.23) 

D. Opportunistic only 

Hoof growth eq. 0.10 (0.02) 0.34 (0.21) 

Capture window 0.10 (0.02) 0.47 (0.29) 

E. Simulated truncation 

Sim, -1 day 0.05 (0.04) 3.49 (1.39) 

Sim, -2 day 0.02 (0.04) 1.69 (1.43) 
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CHAPTER 3.  EFFECTS OF ENVIRONMENTAL AND INDIVIDUAL 

VARIABLES ON SITKA BLACK-TAILED DEER POPULATION DYNAMICS2 

3.1. ABSTRACT 

The pathways through which environmental variability affects population 

dynamics remain poorly understood, limiting both ecological inference and management 

actions. Here, I use matrix-based population models to examine the population response 

to environmental variability and individual traits. Using Sitka black-tailed deer 

(Odocoileus hemionus sitkensis) in Southeast Alaska as a study system, I modeled effects 

of inter-annual process variance of covariates on female survival, pregnancy rate, and 

fetal rate, as well as summer and winter fawn survival. To examine the influence of 

process variance on population dynamics, I a) perturbed vital rates and b) perturbed the 

covariates supported in top vital-rate models by observed process variances (i.e., 

retrospective analysis), then used the vital rates predicted from these models to perturb 

the matrix model. By comparing the baseline (mean) population growth rate (λ = 1.08) to 

the perturbed growth rates, I estimated the effect of vital rates and underlying predictive 

variables on population growth rate. Because deer population density and age 

distributions were not available during this study, these results apply only to population 

dynamics during the study, and should not be used quantitatively to predict future 

response of the population to environmental change. I found adult female survival was 

the most influential vital rate based on classic elasticity analysis (i.e., prospective 

analysis), however, elasticity analysis based on process variation (i.e., retrospective 

analysis) indicated that winter and summer fawn survival were most variable and thus 

most influential to variability in population growth. Summer fawn mortality was 

primarily determined by black bear predation, and was positively influenced by mass at 

birth and female gender. Winter fawn survival was determined by malnutrition in deep-

snow winters, and was influenced by date of birth and snow depth, with late-born fawns 

2 Gilbert SL, Hundertmark KJ, Lindberg MS, Person DK, Boyce MS (In prep). Elasticity of environmental 

and individual variables in Sitka black-tailed deer. Prepared for submission to the Journal of 

Animal Ecology. 
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at greater risk in deep-snow winters. Covariate elasticities indicated that total snowfall 

was the most important covariate, with an increase to 2 m of total snowfall (i.e., 2 SDs 

based on process variability) reducing fawn survival to zero, and population growth by 

19% in the current year. Further, modeled declines in pregnancy rate in the following 

year reduced population growth by 11% in the following year. Integrating the effects of 

covariates on vital rates and population growth based on observed variability, as I do 

here, provides new insight into the environmental drivers of population processes. 

3.2. INTRODUCTION 

Drivers of animal population dynamics have long intrigued ecologists, yet linking 

changes in environmental conditions to population-level responses remains a central 

challenge (Forrester & Wittmer 2013; Jenouvrier et al. 2012; Ozgul et al. 2010). 

Environments are complex and many features vary within years and seasons, and 

spatially across landscapes.  Thus, the effects of environmental variables on dynamics of 

populations can differ annually, seasonally, and spatially both in magnitude and direction.  

Moreover, those effects may manifest differently across life history stages within the 

population (Gaillard et al. 1998, Gaillard et al. 2013), and across population densities 

(Bowyer et al. 2014).  Unfortunately, population responses to environmental drivers are 

rarely investigated across life history stages. Rather, inference regarding population 

responses to environmental change is frequently drawn from studies of a single important 

life history phase, typically the adult female. Important drivers of fitness for this life 

history phase are then assumed to also be the primary drivers of population dynamics.  

Yet even strong effects of predictive variables on life history phase may not matter in the 

context of population dynamics, if those vital rates are relatively unimportant in 

determining population growth (i.e., low elasticity) or the predictive variables do not vary 

through time or space (i.e., low contribution to variation in growth rate) or cannot be 

manipulated through management actions. 

Advances in modeling have led to substantial progress in understanding the 

effects of environmental and individual variables on vital rates, such as survival (Blums 

et al. 2005; Monteith et al. 2013; Pollock et al. 1989; Tsai et al. 1999) and reproductive 

success (Delgiudice et al. 2007; Therrien et al. 2008; Tollefson et al. 2010). In parallel, 
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our understanding of how vital rates affect population dynamics in variable environments 

has also improved dramatically with the advent of stochastic and density-dependent 

population models (Grant & Benton 2000; Hunter et al. 2010), life table response 

experiments (LTREs; Caswell 2001; Caswell 2010) and life stage simulation analyses 

(LSAs; Mills & Lindberg 2002; Wisdom et al. 2000). Yet studies of variables affecting 

vital rates, and those focused on the effects of vital rates on population dynamics are 

rarely united (but see Aldridge & Boyce 2007 and Mason et al. 2014). Combining these 

approaches would be particularly useful in the study of large, long-lived animals such as 

ungulates, because environmental drivers primarily affect population growth through 

highly variable vital rates (e.g., juvenile survival), yet studies typically focus on low-

variability, high elasticity rates such as adult survival (Gaillard et al. 1998; Gaillard et al. 

2000). 

In this study, I examine the response of Sitka black-tailed deer (Odocoileus 

hemionus sitkensis) vital rates and population dynamics to variables acting at scales of 

the environment and individual deer.  Further, I scale up effects on individual fitness to 

examine their influence on population dynamics.  Sitka black-tailed deer provide an 

excellent system for development of such a combined modeling approach.  They are the 

primary herbivore in the coastal temperate rainforest of Southeast Alaska, and an 

important source of protein for subsistence hunters, wolves, and black bears. While 

winter is thought to limit deer populations in this system (Doerr et al. 2005; Farmer et al. 

2006; Klein & Olson 1960; Person et al. 2009), predation can affect how quickly deer 

populations rebound from severe winters (Alaska Department of Fish and Game 2013; 

Lewis & Klein 1992). In addition, industrial-scale timber harvest creates even-aged seral 

stands with poor winter forage (Alaback 1982; Farmer & Kirchhoff 2007), reducing the 

resilience of deer populations to both severe winters and predation (Farmer et al. 2006; 

Person et al. 2009). Previous studies have focused almost exclusively on adult female 

survival (Farmer et al. 2006; Person et al. 2009), without studying reproduction and 

subsequent fawn survival. This is a troubling gap in knowledge, as juvenile survival 

drives most observed variation in population growth rates for ungulates (Gaillard et al. 

1998; Gaillard et al. 2000). 
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I developed hypotheses regarding the environmental and individual-level drivers 

of fitness (Table 3.1) for each adult vital rate (pregnancy, fetal rate, and annual survival), 

and fawn vital rate (summer and winter survival). I expected that adult female survival 

would have the largest relative influence on population dynamics based on classic 

(prospective) elasticity analysis, but that process variation in juvenile survival should be 

the highest of all the vital rates, and have the greatest influence on population dynamics 

when perturbations are based on process variance. As a result, predictive variables 

associated with fawn survival should also be most influential when changed based on 

process variation. 

3.3. METHODS 

3.3.1. Study Area 

Our study was conducted on central Prince of Wales Island, the largest among the 

many islands of the Alexander Archipelago of Southeast Alaska (Figure 3.1). The study 

area is typical of the coastal temperate rainforest of the region, although with gentler 

topography, milder winter conditions, and more productive forest than many other islands 

in Southeast Alaska. Nevertheless, topography can be quite rugged due to the limestone 

and granite bedrock underlying much of the landscape, ranging from 0 to 1200 meters 

above sea level. Due to moderate annual temperature variation, plentiful precipitation (> 

300 cm per year) falls as rain in summer, and as both rain and snow in winter, although 

snowpack sometimes persisting at depths >1m for weeks at a time even at relatively low 

elevations. Natural habitat types are widely varied, including old-growth forest, 

numerous lakes, rivers and estuaries, alpine and subalpine vegetation above ~400 m, and 

muskeg heaths (Alaback & Saunders 2013). 

The favorable environmental conditions relative to the region as a whole have 

long supported abundant populations of key species such as Sitka black-tailed deer, black 

bears, wolves, eagles, and salmon that comprise a predator-prey system that also includes 

human hunters. In addition, central Prince of Wales continues to be the focus of industrial 

timber harvest in the Tongass National Forest, including in the study area (U.S. Forest 

Service 2008), resulting in disproportionate harvest of productive old-growth forests 

(Albert & Schoen 2013). Timber harvest produces even-aged stands that gradually gain 
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canopy cover and correspondingly lose forage biomass through successional stages, 

regaining old-growth properties after more than 200 years (Alaback 1982; Alaback & 

Saunders 2013). 

3.3.2. Deer Capture and Monitoring 

All animal capture and handling was carried out in accordance with the University 

of Alaska Fairbanks Institutional Animal Care and Use Committee (IACUC #136040-14) 

regulations. A total of 63 adult female deer (age 2 years and older) were captured from 

mid April through mid May of each year, from 2010-2012, as well as from July 5-25th 

during 2010 (n = 20 in 2010, n = 21 in 2011, and n = 22 in 2012). I did not capture 

yearling (age 1 year) animals during this study, but Farmer et al. (2006) and Person 

(2009) studied deer in adjacent and overlapping study areas, and found no difference in 

survival or causes of mortality between adult and yearling females. At capture, 

morphological measurements (i.e., heart girth, body length, hind foot length) were 

measured, blood collected, and body condition and pregnancy assessed using a portable 

ultrasound machine (Sonosite Titan, Sonosite, Bothel, WA). I estimated female body 

mass based on measured hearth girth (Parker 1987), and ingesta-free body fat based on 

body mass and MAX rumpfat measurements from ultrasonography (Cook et al. 2010). 

Adult females were classified as 2, 3, and 4 + years old based on tooth wear (Hamlin et 

al. 2000), but I combined 3 and 4+ year olds into a single, adult age class. Each deer was 

fitted with a GPS radiocollar, and monitored weekly in summer (April-August 1) and 

every 2 weeks during the remainder of the year. 

If pregnant (n = 53), adult females were fitted with vaginal implant transmitters 

(VITs; Advanced Telemetry Systems, Isanti, MN), allowing us to monitor females daily 

prior to parturition, locate the birth site, and capture neonates (Carstensen et al. 2003; 

Gilbert et al. 2014). Two adult females had vaginal canals too narrow to accommodate 

the vaginoscope used in VIT implantation; of the adult females fitted with VITs (n = 49), 

I successfully captured neonates from 65% (n = 32). Neonates were gently restrained 

with eyes covered to reduce agitation. I determined weight, gender, and morphological 

measurements, and fitted fawns with VHF (all years) and GPS (n = 30, 2012) collars. 

Fawns were subsequently monitored 1-2 times per day from birth until August 1, then 
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every 2 weeks until 1 year of age. Mortality was signaled after 5 hours of collar 

inactivity, and mortality events were investigated promptly upon discovery to determine 

cause of death. 

In total, 45 neonatal deer fawns were captured at birth, whereas an additional 109 

neonates were captured opportunistically along roads and trails and when spotted in 

meadows and clearcuts. However, because mortality is highly age-dependent for neonatal 

deer, resulting in more vulnerable animals dying at birth or shortly thereafter, I excluded 

opportunistically captured neonates from analysis of summer survival to avoid left 

truncation of data (Gilbert et al. 2014). In addition, I lacked information on maternal 

predictive variables such as maternal age, body mass, and body fat for opportunistically 

captured fawns. However, because daily survival rates and thus left-truncation bias 

converge in the system at approximately 30 days of age, I included opportunistically 

captured fawns in winter fawn survival estimates, increasing the winter sample size to 81 

individuals. 

3.3.3. Effects of Predictive Variables on Vital Rates 

I estimated vital rates, including mean rates across the 3 years of the study and for 

each year. Vital rates estimated were pregnancy and fetal rates, summer and winter 

survival rates for fawns, and annual survival rates for adults. Pregnancy and fetal rate 

were modeled using generalized linear models in program R (R Core Development Team 

2014) and were treated as binomial and Poisson responses, respectively (Caswell 2001; 

Morris & Doak 2002). 

For adults, I expected all vital rates to respond positively to age, body mass, and 

body fat (Delgiudice et al. 2006; Delgiudice et al. 2007; Mueller & Sadleier 1979; 

Johnstone-Yellin et al. 2009), and negatively to timber harvest and winter severity, with 

potential lagged negative effects of winter in following years (Fryxell et al. 1991; 

Robinette et al. 1957; Verme 1977). Although I hypothesized that female body fat should 

affect pregnancy and fetal rates, I did not consider adult female body fat as a covariate for 

pregnancy or fetal rate because body condition was measured in early spring, after 

pregnancy and fetal rate had already been determined, rather than in autumn. Only 6 adult 

female deer died among the 63 monitored over 3 years. This low number of events 
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limited the number of parameters that could be examined simultaneously. Models with 

fewer than 10 events per variable can produce biased model estimates and Type I 

predictor selection error, although recently there has been argument that this rule can be 

relaxed (Vittinghoff & McCulloch 2006). As a result, I only examined the univariate 

effects of age, mass, body fat, and timber harvest regime on survival. 

Responses of fawn and adult female survival to environmental and individual 

predictive variables were modeled using known-fates survival models, implemented in 

the RMark package in program R (Laake 2013). In Southeast Alaska, most fawn 

mortality during summer is caused by black bear predation (Gilbert et al. 2014), whereas 

most winter mortality is caused by wolf predation and malnutrition (Person et al. 2009). 

Because the level of compensation between predation and other causes of mortality 

(Monteith et al. 2013) is not known for this system, I considered predictive variables of 

survival that were linked to nutrition as well as those that were linked to behavior and 

habitat (Table 3.1). 

I considered fawn survival in separate summer and winter periods, because 

vulnerability to predation, sources of mortality, and therefore effects of predictive 

variables change from birth through the first year of life. The neonatal period, when 

fawns are typically most vulnerable to predation (Whittaker & Lindzey 1999; Pojar & 

Bowden 2004), began at birth and continued to 90 days of age, by which age most 

summer fawn mortality had occurred (Figure 3.3). During this period, survival was 

modeled in weekly intervals, with a linear effect of time as survival increases markedly 

with fawn age (Gilbert et al. 2014). The fall and winter period, henceforth referred to as 

the over-winter period, extended from 91 to 365 days of age, and survival was considered 

in 2-week intervals, without an effect of time. 

I hypothesized that fawn survival should be influenced by maternal quality, and 

thus maternal age, mass, and body fat should increase fawn survival in both summer and 

winter. Likewise, mass at birth should increases summer survival by reducing predation 

risk (Lomas & Bender 2007; Johnstone-Yellin et al. 2009; Hurley et al. 2011), and 

increase winter survival if early mass deficits persist (Loison et al. 1999; Whiting et al. 

2010). Similarly, litter size should reduce summer survival through decreased maternal 

investment and/or increased vulnerability to predation (Johnstone-Yellin et al. 2009; Van 
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Vuren et al. 2013). In addition, birth synchrony should increase summer survival through 

reduced predation risk (but could have a negative effect instead; Sinclair et al. 2000) and 

enhanced overlap with peak plant nutrition (Langvatn et al. 2004; Parker et al. 2009). 

Females may survive at higher rates than males due to less conspicuous behavior and 

slower growth rates (Jackson et al. 1972; Loison et al. 1999). In contrast, late-born fawns 

should be less vulnerable to bear predation as bears focus on salmon in late summer 

(Hilderbrand et al. 2004), but more vulnerable to winter starvation due to small body size 

(Loison et al. 1999; Whiting et al. 2010). Finally, timber harvest could reduce summer 

fawn survival by concentrating both deer and bears in young productive clearcuts; and 

winter severity and timber harvest could interactively reduce winter fawn survival, as 

young clearcuts with deep snow provide poor forage, whereas older clearcuts support 

little plant biomass (Alaback 1982; Farmer & Kirchhoff 2007; Hanley 2005). 

Nutritional condition of fawns prior to winter was not measured because fawns 

were not re-captured. Therefore, with respect to winter survival of fawns, I included an 

effect of mass at birth, and back-calculated mass at birth for opportunistically captured 

fawns by assuming a universal age of 5 days at capture. Many studies determine age of 

opportunistically captured fawns based on new hoof growth (Haskell et al. 2007; Sams et 

al. 1996), however existing hoof growth equations were recently demonstrated to be 

inaccurate for mule deer (Grovenburg et al. 2014). Instead, I empirically generated a 

potential capture-age window by re-capturing fawns caught at birth up until the age at 

which they could no longer be recaptured (11 days), and assigned the median of this 

period (5 days) as the age at capture (Johnson et al. 2004; Gilbert et al. 2014). 

To identify top and competing models for inference, I began with a global 

covariate model for each vital rate, based on hypothesized ecological relationships 

described previously. I reduced the global model for each vital rate into subset models 

with a maximum of 3 predictive variables per model due to the limited sample sizes and 

numbers of mortality events. Variables that were highly correlated with each other (|r| > 

0.6) were not included in the same sub-models to prevent coefficient bias. For each vital 

rate, a competitive model set was formed of models with AICc scores that differed ≤ 2 

from the model with the lowest AICc score. I then discarded models with uninformative 

variables from the competing model set, defined as models where the model was simply a 
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hierarchical expansion of the top-ranked model with no reduction in log likelihood 

(Arnold 2010; Burnham & Anderson 2002). 

3.3.4. Estimation of Process Variance in Vital Rates and Predictive Variables 

Temporal process variation in the vital rates was estimated by fitting a model 

without covariates for each vital rate, but with a group (strata) effect of year, which I then 

used to estimate the mean and standard error for each vital rate in each year (i.e., raw 

variation in vital rates across years; Morris & Doak 2002; White 2000). Then, I used the 

approach proposed by White (2000) to partition process from sampling variance, 

implemented in program R.  The resulting mean vital rates, with variance partitioned into 

sampling and process components, were used in subsequent matrices. Temporal process 

variance in predictive variables of vital rates was estimated using different approaches for 

environmental and individual variables. Variation in individual variables between years 

was assumed to contain both process and sampling variance, as estimates depended on 

the animals sampled. However, some environmental variables, i.e., snow depth recorded 

at Annette Island weather station, were presumed to be purely the result of process 

variance, whereas others, i.e., timber-harvest regime of the watershed, were presumed to 

be purely the result of sampling variance. For individual variables, I estimated the inter-

annual process variance by constructing generalized linear models of each covariate with 

an effect of year in the model, then used the maximization approach of White (2000) to 

partition process from sampling variance, as before. For timber-harvest regime of 

watershed, which I recorded as a binary factor, I assumed that there was no process 

variance between years in the study, as little new timber harvest occurred during this 

short period of time at the scale of watersheds. To quantify winter severity, I examined 

variation in total annual snowfall at Annette Island from 1995-2014 (Figure 3.2) as a 

measure of inter-annual variability, and assumed that all observed variance was process 

variance.  

3.3.5. Effects of Vital Rates and Predictive Variables on Population Dynamics 

To determine the effects of each covariate on population dynamics, I used the 

fitted relationships from the top model for each vital rate identified based on AICc score 
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(Table 3.2) to generate predicted vital rates while perturbing predictive variables by two 

times the standard deviation of that covariate (calculated as the square root of process 

variance). If a variable occurred in more than one vital rate model, I perturbed all vital 

rates affected by that variable simultaneously so that the combined effects of each 

variable were incorporated into covariate elasticity calculations. For each variable 

perturbation, I then used the predicted vital rate responses as inputs into a matrix-based 

population model. The post-birthpulse model structure included 3 age classes (Figure 3.3, 

fawns, yearlings, and adults, although the transition probability for the first age class was 

subdivided into summer and winter survival, as discussed previously. The matrix 

structure was specified as follows: 

0 !! ∗ !! !! ∗ !! !!(!)!! !!! 

!!(!) ∗ !!(!) 0 0!! !!! = !!(!)! !!!!!!!!!!!!!!!(1)
0 !! !!!! !!! !!(!) 

Where !! is the number of individuals in age class j at time t, N! is the !!! 

number of individuals in age class j at time t +1, S! is the survival probability of age class 

j, and !! and !! are the pregnancy rate and fecundity (as females per female) respectively, 

of an individual of age class j. Because I did not capture any yearling individuals, I 

assumed that survival of yearlings was equal to that of adult females, as found in a 

previous study adjacent to the study area (Farmer et al. 2006). Pregnancy and fecundity 

of yearlings was measured during the course of this study, despite the fact that no 

yearlings were captured, because animals that were captured in the spring and aged as 2 

years old were in fact primiparous yearlings (Figure 3.3). 

For comparison with the perturbed matrix for each variable, I 

constructed a baseline matrix, with mean vital rates calculated from the top-ranked 

models and predictive variables held at mean values. I then calculated the covariate 

elasticity of each vital rate as the percent difference in the dominant eigenvalues (i.e., 

growth rates, !) of the two matrices: 

!!"#$ − !!!"#$ !" = !!!!!!!!!!!!!!!(2)!!"#$ 
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Where Ec is the covariate elasticity,!!!"#$is the dominant eigenvalue of the 

baseline matrix, and !!"#$ is the dominant eigenvalue of the perturbed matrix. I examine 

the effects of a positive versus negative perturbation to each covariate, resulting in 

positive and negative changes to !!"#$ depending on the sign of the covariate coefficient. 

To determine the potential effects of vital rates on population dynamics (i.e., prospective 

analysis) I calculated elasticities of the vital rates. To determine retrospectively which 

vital rates contributed to observed inter-annual variability in growth rate, I conducted life 

table response experiments (LTRE; Caswell 2001; Morris & Doak 2002), using the 

“popbio” package (Stubben et al. 2012) in program R.  Elasticities of vital rates were 

calculated from the baseline matrix, !!"#$ and are interpreted as the prospective potential 

of a vital rate to affect future growth rate. Contributions of vital rates to variation in 

growth rate (i.e, LTRE; Caswell 2001) were based on sensitivity analysis of vital rates 

within the mean matrix between a treatment matrix and the baseline matrix. In this case, 

the vital rates for the “treatment” matrix were simply baseline vital rates reduced by 2 

standard deviations, with standard deviations calculated from estimated process variance 

for each vital rate (Table 3.2). If a vital rate had zero estimated process variance, it was 

not perturbed. Because all vital rates with observed process variance were reduced 

simultaneously to produce the treatment matrix, covariance between these vital rates was 

assumed. In this case, vital rates perturbed included only pregnancy rate and summer and 

winter fawn survival, not fetal rate or adult survival. 

It is worth noting that gender was a covariate of fawn survival, yet I used a single-

gender, all-females model for prediction of the effects of predictive variables, including 

gender. Perturbing the frequency of gender affects fawn survival, but is equivalent to 

changing the gender ratio (i.e., number of female fawns per female at birth). However, as 

I found no process variance (<0.001) in gender ratio between the years of the study, I did 

not perturb gender. 

3.4. RESULTS 

I captured 63 adult female deer from 2010-2012, 53 in spring prior to parturition, 

and 10 in mid to late June. Among spring-caught females, 47 were pregnant, yielding an 
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average pregnancy rate of 0.91 (total var = 0.03, process var = 0.009).  Across years, 

females had pregnancy rates of 1.0 (SE=0) in 2010, 0.95 (SE=0.05) in 2011, and 0.77 

(SE=0.09) in 2012 (Figure 3.3. Of the 44 adults fitted with VITs, I was able to 

successfully capture 45 fawns from 32 (73% of) individual females.  The average fertility 

rate for pregnant females was 1.45 fawns per female (total var = 0.07, process var 

<0.001), implying a rate of 0.72 female fawns per female if a 1:1 gender ratio is assumed. 

The rate of female fawns per female measured from the captured fawns was 0.625 female 

fawns per female (SE = 0.10), with an upper 95% confidence interval of 0.82; as a result I 

accepted the 1:1 gender ratio assumption. Among years, the fertility rate was 1.67 fawns 

per female (SE = 0.43) in 2010, 1.36 (SE = 0.35) in 2011, and 1.33 (SE = 0.33) in 2012. 

As previously discussed, annual adult survival was high and showed little process 

variance, averaging 0.90 (total var = 0.005, process var < 0.001) for the study period, and 

varying little between years (M = 0.89, SE = 0.07 in 2010; M = 0.85, SE = 0.08 in 2011; 

and M = 0.95, SE = 0.04 in 2012; Figure 3.3. The largest source of mortality (n = 3, M = 

0.05, SE = 0.03) was from hunting, followed by malnutrition (n = 2, M = 0.03, SE = 0.02) 

and black bear predation (n = 1, M = 0.02, SE = 0.02). Wolf mortality was not recorded 

for adult deer monitored during this study, despite wolf predation acting as a major 

source of mortality for deer monitored in the same study area 10 years previously (Person 

et al. 2009). Wolves are currently at low numbers and restricted distributions due to high 

trapping pressure (Alaska Department of Fish and Game 2014). 

Fawn survival was lowest during the summer, due primarily to predation by black 

bears, and highly variable between years, in part due to process variance. Mean survival 

in summer was 0.41 (total var = 0.06, process var = 0.01), and annual summer survival 

rates were 0.47 in 2010 (SE = 0.13), 0.23 in 2011 (SE = 0.11) and 0.54 in 2012 (SE = 

0.13; Figure 3.3. Across all years, mortality rates were 0.46 (n = 21, SE= 0.08) due to 

black bear predation, and 0.11 (n = 6, SE = 0.05) due to other causes. Other causes of 

mortality included unknown predation (n = 1), eagle predation (n = 1), drowning (n = 1), 

and premature birth (n = 3). As before, maternal mass and age were correlated (r = 0.56), 

and were not included in the same models. In addition, synchrony of births was lower in 

timber harvested watersheds (p = 0.015), although the two variables were only 

moderately correlated (r = 0.36). 
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During the winter months, fawn survival was determined primarily by 

malnutrition-caused mortality, which occurred only during the winter of 2011 (Figure 

3.3. Across the three years of the study, the average winter survival rate was 0.73 (total 

var = 0.17, process var = 0.08), due to a mortality rate of 0.21 (n = 16, SE = 0.05) from 

malnutrition, 0.03 (n = 2, SE = 0.02) from wolf predation, 0.02 (n = 1, SE = 0.02) from 

bear predation (in late September), and 0.03 (n = 2, SE = 0.02) due to other causes (n = 1 

car collision, n = 1 illegal hunting). Between years, winter survival rates were high in 

2010 (M = 0.84, SE = 0.07) and 2012 (M = 0.96, SE = 0.04), and quite low in 2011 

(M=0.40, SE=0.09). 

3.4.1. Effects of Predictive Variables on Vital Rates 

Variables that affected probability of pregnancy were the severity of the 

preceding winter as measured by total snowfall (winter(t-1)), adult female age, and 

timber harvest of watershed, with the best-supported model including winter(t-1) and 

timber harvest (Table 3.3). Adult female age had a positive effect on probability of 

pregnancy, as did occupancy of a timber-harvested watershed, whereas a winter with 

greater total snowfall reduced the probability of pregnancy in the following spring.  Fetal 

rate was not strongly affected by any predictive variables; the null model was top-ranked 

although a positive effect of female age (∆!"#$!= 1.24; Table 3.2) and female mass 

(∆!"#$!= 1.83) also received support. Female age and female mass were positively 

correlated for pregnant females (r = 0.60, p < 0.01) and for females where fawns were 

captured (r = 0.57, p < 0.01), and as a result female age and female mass were not 

simultaneously included as variables in any vital rate models. Based on the univariate 

analysis of predictive variables of female survival, there was support for negative effects 

of female mass and age on survival (i.e., younger, lighter-weight females survived with 

higher probability; Table 3.3). 

Summer fawn survival, from birth through 90 days of age, was affected by both 

gender and birth mass. In the top-ranked survival model, female fawns had a higher 

survival probability than male fawns, as did fawns that weighed more at birth (Table 3.3). 

Other competitive models included a negative effect of birth synchrony on survival, 

indicating that fawns born more synchronously survived at lower rates, and a positive 
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effect of winter severity in the previous year. Although there were no strongly correlated 

predictive variables, there was a statistical relationship between timber harvest of 

watershed and birth synchrony, with more asynchronous births in timber harvested 

watersheds (r = 0.34, p = 0.015). 

Winter fawn survival, from 91 through 365 days of age, was strongly affected by 

winter severity and birthdate. The top-ranked model supported negative effects of winter 

severity and birthdate, indicating that late-born fawns are at greater risk of mortality, as 

are fawns during high-snowfall winters. In addition, a competing model supported an 

interactive, negative effect of winter severity and birthdate, indicating lower survival 

during severe winters and for late-born fawns (Table 3.3). 

3.4.2. Effects of Vital Rates and Predictive Variables on Population Dynamics 

Analysis of the baseline population model indicated that the average population 

growth rate for the study period was distinctly positive, with ! = 1.08, despite the harsh 

winter of 2011, with a predicted stable stage distribution of 38% fawns, 11% yearlings, 

and 51% adult females in the population at equilibrium. Annual estimates of 

deterministic population growth rates were 1.17 in 2010, 0.92 in 2011, and 1.18 in 2012. 

Prospectively, the most influential vital rate based on elasticity values (Table 3.4; Figure 

3.3) was adult female survival, followed by summer and winter fawn survival, survival of 

yearlings, fertility of adults and yearling, and pregnancy of adults and yearlings. 

However, retrospective analysis revealed that when vital rates were perturbed based on 

process variation, relatively high levels of process variation resulted in winter fawn 

survival contributing most to variation in growth rate, followed closely by summer fawn 

survival, then by adult and yearling pregnancy rate, with other vital rates contributing 

much less due to almost no process variation (Table 3.4; Figure 3.3). 

Retrospectively, covariate elasticity (Ec) analysis revealed that winter severity, as 

measured by total snowfall, had the largest effect on population growth rates (Table 3.4; 

Figures 3.4, 3.5) with an increase in winter snowfall from the mean observed during the 

study (0.71 m) by 2 SD of the process variance observed over 20 years (1.29 m) resulting 

in a 19% decrease in growth rate due to reduced survival of fawns in winter, and an 11% 

decrease in year t + 1 due to reduced pregnancy rates. However, because survival and 
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pregnancy rates could not go above 1, an equal decrease in winter snowfall resulted in 

much less of an increase in growth rate during the current year (2.9%) and following year 

(0.7%; Table 3.4; Figure 3.4). Fawn mass was another influential covariate (Figure 3.5), 

with a reduction in fawn mass from the mean (2.63 kg) by 2 SD (0.23 kg) resulted in a 

6.7% decrease in growth rate, and an equal increase in mass resulting in a 6.2% increase 

in growth rate. Timber harvest was assumed to have no process variance within the study, 

and so was not perturbed. Gender had very low process variance, and as a result, had 

almost no influence on growth rate. Birthdate also had low process variance, and was 

perturbed from a mean value of 17.60 days (after May 24th, first recorded birth), by 2 SD 

(1 day), resulting in a 0.2% increase or decrease to growth rate. 

3.5. DISCUSSION 

Although many of the hypotheses regarding the drivers of deer vital rates and 

population dynamics were supported, there were also some intriguing and unexpected 

outcomes from the analyses. For adult females, probability of pregnancy and fetal rate 

were higher for older females, as predicted, and adult female mass positively affected 

fetal rate. These results agree with life-history theory, in which older and larger females 

typically produce more offspring at more frequent intervals (Hamel et al. 2009; Lindberg 

et al. 2013). Although reproductive senescence is thought to occur in Sitka black-tailed 

deer (Johnson 1987), the proportion of senescent individuals in the adult population is 

likely low, as evidenced by the positive effect of age on reproduction. Interestingly, there 

was a mild positive effect of timber harvest on probability of pregnancy; in addition, 

synchrony of births was negatively affected by timber harvest, indicating that some 

feature of these altered watersheds is affecting deer conception probability and timing 

and suggesting the need for further inquiry. Based on the univariate analysis of predictive 

variables of adult survival, female mass negatively affected survival of adult females, 

likely because hunters selected for larger individuals. Hunting was the primary cause of 

death for adult females, and larger animals are typically preferred by hunters (Brinkman 

et al. 2009; Milner et al. 2007). Thus, large body mass could decrease adult female risk 

from natural causes, as has been documented in other systems, but increase risk from 

human hunting. 
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Summer fawn survival was the lowest survival rate, with more than half of all 

fawns dying before three months of age on average (Table 3.1), primarily from bear 

predation. Summer fawn mortality risk and bear mortality risk were negatively affected 

by birth mass and fawn gender, with larger fawns and female fawns surviving with higher 

probability. Behavioral differences between male and female fawns have been observed, 

with male fawns engaging in more conspicuous behaviors (i.e., active more of the time; 

Jackson et al. 1972), likely increasing detection probability by bears. In addition, 

synchrony of birth decreased summer survival, possibly because bears actively search for 

fawns only during the peak of births. Surprisingly, the severity of the previous winter 

positively affected summer fawn survival, possibly because low-quality adult females 

were selectively removed from the population, along with their unborn offspring, or lost 

fetuses prematurely and did not give birth. Bear predation risk appears to be linked to 

nutrition of fawns, given the strong effect of fawn mass at birth on summer survival, and 

thus is likely partially compensatory. However, maternal body fat did not predict fawn 

survival, suggesting that perhaps females conserve body fat at the expense of fawn mass 

at birth (i.e., the “selfish” female hypothesis, Festa-Bianchet & Jorgenson 1998, Parker et 

al. 2009, Therrien et al. 2008). 

Overwinter fawn mortality was almost entirely driven by malnutrition in the 

single harsh winter, with very high fawn survival during the other years. Negative effects 

of later birthdate, winter severity, and the interaction between these two terms were 

supported, indicating that late-born fawns, which enter winter at smaller mass and with 

fewer body reserves, are at correspondingly greater risk of malnutrition. Intriguingly, I 

recorded no effect of birth mass, demonstrating that fawns were able to recover from 

early deficits in body mass. Although there was no support for an effect of timber harvest 

on winter survival, the connection between timber harvest and birth asynchrony indicates 

that timber harvest can affect birth timing, and merits further investigation given the 

importance of birthdate for winter survival. 

Although timber harvest did have a negative effect on fawn and adult female 

survival based on coefficient values in models in which it occurred, the standard errors of 

the term were high, leading to the exclusion of the term from final models. Timber 

harvest regime of watershed is a very coarse variable, homogenizing variation in seral 

58
 



 

  

 

 

 

 

 

    

  

 

 

  

   

 

 

  

  

 

   

 

   

 

 

 

stage and corresponding nutrition within deer home ranges. In addition, deer select 

habitat from within the home range (Johnson 1980), and may be able to increase access to 

nutrition through selection (Parker 2003). Age and configuration of harvested stands, as 

well as quality and size of remaining old-growth forest patches, is likely important in 

determining winter survival. A detailed analysis of seasonal habitat selection and survival 

consequences that includes stand-level variation in seral stage, biomass, and snow depth 

is an important next step. 

The effects of predictive variables on population growth indicated that winter 

severity, as measured by total snowfall, had the greatest negative impact on growth rate 

given current population conditions. Reductions to winter fawn survival were dramatic as 

total snowfall increased, and a winter with a total snowfall of 2m (i.e., 2 SD increase), 

resulted in fawn survival probability of <0.001, and a corresponding growth rate of 0.91. 

Population growth transitioned from positive to negative (i.e., growth rate =1.00) when 

total snowfall was 1.27 m and fawn winter survival was 0.35 (SE = 0.09). In addition, the 

modeled decrease in pregnancy rate in the following spring to a probability of pregnancy 

of 0.36 (SE = 0.34) caused a decrease to the following year’s growth rate of 11%. Total 

annual snowfall greater than 2 m (at Annette Island, station of record for this study) 

occurred twice in the last 20 years (1998 and 2008), whereas total annual snowfall greater 

than 1.27 m occurred 6 times (Figure 3.2). However, the negative effects of winter 

documented here are the result of only 3 years of study, which were by no means as 

extreme as previously documented severe winters (Brinkman et al. 2011). In extremely 

severe winters, adult female survival can be greatly reduced (Alaska Department of Fish 

and Game 2013), whereas I documented only 2 deaths of adult females from malnutrition 

during the severe winter in the study, with no statistical effect on adult female survival. In 

addition, winter severity could interact with deer density relative to carrying capacity to 

influence survival and growth rate response (Bowyer et al. 2014), which I was not able to 

measure during the course of this study. Therefore it is likely that the effects of severe 

winters on population growth can be much greater than documented here, due to reduced 

adult female survival, or due to increased mortality of multiple age classes at high 

population density. In general, deer populations are density-dependent, although we do 

not include density in our population models. Therefore, we stress that our results should 
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be interpreted qualitatively, but not quantitatively, to better understand deer in other areas 

in Southeast Alaska or during other time periods in the study area. 

In addition, it is important to note that although wolves killed 7% of adult and 

yearling females and 10% of fawns annually in the study area during the late 1990’s 

(Alaska Department of Fish and Game unpublished data, Person et al. 2009), I observed 

no predation by wolves on adults.  Moreover, few fawns were killed by wolves and only 

during the first year and in one of six watersheds. The wolf population on Prince of 

Wales Island has historically been among the densest in the state of Alaska (Person et al. 

1996), but was greatly reduced due to human trapping and hunting (Alaska Department 

of Fish and Game 2014; Person & Russell 2008). Thus, an important regime shift has 

likely occurred in the study area, although a more detailed analysis is necessary to clarify 

the extent and impact of this shift. 

Simply documenting that a covariate affects survival or reproduction is not 

enough to infer that it is important to population dynamics. This approach, in which 

multivariate models of vital rates are fitted and used to produce elasticities of predictive 

variables in a population matrix, provides one potential solution to bridging this inference 

gap. Here, I find that although adult female survival is highly influential in determining 

population growth in theory, it was neither highly variable nor highly responsive to 

environmental drivers during our study, nor does it contribute substantially to variability 

in population growth rate. This result conforms to other studies of ungulate population 

dynamics (Gaillard et al. 1998; Gaillard et al. 2000). In contrast, juvenile survival is 

strongly influenced by environmental and individual predictive variables, primarily by 

mass at birth and thus presumably nutrition during summer, and winter severity during 

the winter. Thus, variation in environmental predictive variables can influence population 

growth rate (given current population density and age distribution) most strongly through 

changes in fawn survival rather than adult survival. However, when an extreme event 

(i.e., very deep, persistent snow in winter) does reduce adult survival, the same event is 

likely to reduce juvenile survival and pregnancy rates much more, resulting in a 

compounded negative impact to population growth rate. 

I found population dynamics in this system to be strongly driven by winter 

severity. Although I were unable to estimate the full demographic impact of extreme 
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winter weather events in this study, because such an extreme event did not occur during 

the three years of this work, I conclude through modeling efforts that such events would 

likely have large negative effects on deer populations in Southeast Alaska. Given 

projections for increased stochasticity and severity of weather under future climate 

change scenarios, such compounding, multi-vital-rate effects of environmental drivers 

may become increasingly influential for ungulate populations in many high-latitude 

systems. In this ecosystem, average winter snowfall is projected to decrease, whereas 

severity of stochastically occurring major storms may increase (Shanley et al. 2015), 

potentially leading to greater swings in deer population size as series of mild winters lead 

to high population densities, which then experience density-dependent negative impacts 

of occasional severe winters.  Although survival of adult female ungulates is canalized 

against environmental variation (Gaillard & Yoccoz 2003), extreme events can 

overwhelm the resilience of this key vital rate (Brinkman et al. 2011), causing large 

demographic impacts through joint reductions of adult and juvenile survival. 

Understanding and predicting the effects of increased frequency of extreme events, and 

the interactive role that other environmental drivers such an anthropogenic habitat change 

could play in determining population response, is therefore an emerging challenge for 

population ecology and management. 
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3.7. FIGURES
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Figure 3.1. Study Area Map 

The study area, located in the central portion of Prince of Wales Island in Southeast 

Alaska within the Tongass National Forest. 
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Figure 3.2. Twenty-Year Record of Total Annual Snowfall 

Total annual snowfall recorded at Annette Island, adjacent to Prince of Wales Island and 

the closest long-term weather station to the study area in Southeast Alaska. 
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Figure 3.3. Life Cycle and Variability of Vital Rates for Deer
 

Inter-annual variability in vital rates, with standard error bars, is shown for 2010-2012, 


comprised of a) summer survival rate of fawns, b) winter survival rate of fawns, c) annual
 

survival rate of adult females, d) pregnancy rate of adult and yearling females, and e) 


fetal rate of adult and yearling females. 
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Figure 3.4. Prospective and Retrospective Effects of Vital Rates on Growth Rate. 

Prospective (elasticity) and retrospective (contribution) effects of vital rates, and 

elasticity of predictive variables for Sitka black-tailed deer. a) elasticity and contribution 

to inter-annual variability of growth rate for vital rates, where P denotes pregnancy, Fy 

and Fa denoted fertility (females per fawn) of yearling and adult females, and Sf(s), 

Sf(w), Sy, and Sa denote survival of age classes fawn (days 1-90), fawn (days 91-365), 

yearling, and adult females; and b) elasticity of predictive variables (Ec) from top-ranked 

models of vital rates, based on perturbation of covariate values by 2 times the process SD 

in a direction that positively (light grey bars, Ecp) or negatively (dark grey bars, Ecn) 

affected growth rates. 
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Figure 3.5. Effects of Predictive Variables on Vital Rates, and on Growth Rate, for Deer 

The effects of predictive variables on survival probability and growth rates, with 

corresponding covariate elasticities, shown with 95% CIs. Range of perturbation was by 

2 standard deviations from the study mean, calculated from process variation of the 

predictive variables. The effect of a) fawn birth mass on summer survival on b) 

population growth rate, resulting in c) covariate elasticity for mass. The effect of d) total 

snowfall in witner, on d) population growth rate, resulting in e) covariate elasticity for 

total winter snowfall in year t, shown with mean and perturbed values of sever winter 

frequency. 

66
 



 

  

  

    

 

 

 

3.8. TABLES 

Table 3.1. Hypothesized Effects of Predictive Variables on Vital Rates of Deer 

Plus (+) signs indicate a hypothesized positive effect on each vital rate, while negative 

signs (–) indicate a hypothesized negative effect on that vital rate. 

! Vital&Rate&Response& 

Variable& Pregnancy& Fetal& 
rate& 

Fawn&S(t),& 
summer& 

Fawn&S(t),& 
winter& 

Adult& 
S(t)& 

Female!age! +! +! +! +! +! 
Female!mass!(spring)! +! +! +! +! +! 
Female!fat!(spring)! ! +! +! ! +! 
Fawn!birth!mass! ! ! +! +! ! 
Fawn!birth!date! ! ! +! –! ! 
Fawn!birth!synchrony! ! ! +! ! ! 
Litter!size! ! ! –! ! ! 
Sex!(female)! ! ! +! +! ! 
Winter!severity!(t)! ! ! ! –! –! 
Winter!severity!(t@1)! –! –! –! –! –! 
Winter(t)*Birthdate! ! ! ! –! ! 
Timber!harvest! –! –! –! –! –! 
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Table 3.2. Estimates of Vital Rates for Sitka Black-Tailed Deer 

Mean estimates for 2010-2012 are shown as means with total variance (total σ2 ), process 

variance (process σ2), and sample size (N) . 

Vital Rate! Estimate! Total σ2! Process σ2 N! 
Pregnancy Rate! 
Fetal rate (fawns per female)! 
Fawn survival, 1-90 days! 
Fawn survival, 91-365 days! 
Adult survival, 1-365 days! 

0.91! 
1.45! 
0.41! 
0.73! 
0.90! 

0.03! 
0.07! 
0.06! 
0.17! 

0.005! 

0.004 
<0.001 

0.01 
0.08 

<0.001 

53! 
32! 
45! 
82! 
63! 
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Table 3.3. Top-Ranked Vital Rates Models 

Models within 2 AIC units of the top model are shown with parameter estimates and 

(standard errors), and difference in AICc score from top-ranked model. Models with 

uninformative predictive variables were eliminated from consideration, and are not 

shown. 

Model Equation! !!!! !!!! !!!! △ !"#$! 
Probability of pregnancy!
 

-3.07 
!~!!(!"##$%) + !!!!(!"#$%&(!!!))! 2.49 (1.19)! --! 0!(1.55)! 
-2.99 !~!!(!"##$%) + !!!!(!"#$%&(!!!)) + !!!!(!"#)! 2.27 (1.22)! 1.24 (0.90)! 0.12!(1.57)! 

Number of fetuses per female! 
!~!1! --! --! --! 0! 
!!~!!!(!"#)! 0.20 (0.19)! --! --! 1.24! 
!!~!!!(!"##)! 0.01 (0.02)! --! --! 1.83! 
Fawn survival summer, 1-90 days !
 
!(!)!!~!!!(!"##) + !!!(!"#)!! 2.48 (0.97)! 0.90 (0.56)! --! 0!
 
!(!)!!~!!!(!"##)! 2.12 (0.92)! --! --! 0.51!
 
!(!)!!~!!!(!"##) + !!!(!"#$%&(!!!))! 2.34 (0.95)! 0.74 (0.62)! --! 1.18!
 
! ! !!~!!!(!"##) + !!!(!.!"#$)! 2.08 (0.92) 0.03 (0.03) 1.65
 

!(!)!!~!!!(!!"") + !!!(!"#$)! 2.12 (0.91)! 0.33 (0.40)! --! 1.91!
 
Fawn survival winter, 91-365 days !
 

-0.06 !(!)!!~!!!(!"#$%&!) + !!!(!.!"#$)! -3.27 (0.69)! --! 0!(0.02)! 
! ! !!~!!! !"#$%&! + ! !! !. !"#$ !! -1.60 (1.34)! 0.02 (0.06)! -0.08 (0.06)! 0.14!+!!!(!. !"#$ ∗ !"#$%&!)! 
Adult survival 1-365 days !
 
!(!)!~!!!(!"##)! -0.19 (0.07)! --! --! 0!
 
!(!)!~!!!(!"#)! -1.67 (0.74)! --! --! 1.77!
 

69
 



 

  

    

   

  

  

    

 

   
 

  

   
  
  

 
 

   
 

  

Table 3.4. Effects of Predictive Variables and Vital Rates on Population Dynamics 

Vital rates are pregnancy, fetal rate, and survival for yearlings (Py, Fy, and Sy) and adults 

(Pa, Fa, and Sa), along with fawn survival in summer (SfS) and winter (SfW). Elasticities 

of vital rates, contributions of vital rates to variation in growth rate given a decrease of 2 

times the process SD in vital rates (Cont.), and covariate elasticities given an increase Ecp 
or decrease Ecn of 2 times the process SD in predictive variables are shown. 

Vital 
Rate! Covariate! Cov. Mean 

(Process σ2)! 
Vital 

Elasticity! Vital Cont.! Ecp! Ecn! 
Pa! Logged! 0.60 (0.00)! 0.121! 0.016! 0! 0! 
Pa! Winter(t-1)! 0. 71 (0.42)! 0.121! 0.016! 0.007! – 0.110! 
Py! Winter(t-1)! 0. 71 (0.42)! 0.025! 0.001! 0.007! – 0.110! 
Fy! --! --! 0.025! <0.001! --! --! 
Fa! --! --! 0.121! <0.001! --! --! 
SfS! Gender (F)! 0.44 (<0.001)! 0.150! 0.061! 0! 0! 
SfS! Mass! 2.63 (0.01)! 0.150! 0.061! 0.062! – 0.067! 
SfW! Winter ! 0. 71 (0.42)! 0.150! 0.093! 0.029! – 0.190! 
SfW! Birthdate! 17.60 (0.25)! 0.150! 0.093! 0.002! – 0.002! 
Sy! 
Sa! 

--! 
--! 

@@! 
@@! 

0.121! 
0.587! 

<0.001! 
<0.001! 

--! 
--! 

--! 
--! 
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CHAPTER 4.  FEAR, FORAGE, AND FAWNS: NUTRITION AND PREDATION RISK
 

DRIVE BEHAVIOR FOR FEMALE DEER3 

4.1. ABSTRACT 

Reproduction is a critical life-history period during which nutritional demands and risk of 

predation for parents and offspring are high. For ungulates, nutritional demands peak during late 

gestation and early lactation, declining as offspring age or die. Concurrently, predation risk to 

adult females increases in late gestation, then declines following birth of offspring. Additionally, 

female ungulates face risk to offspring, which represent a significant reproductive investment. In 

response, resource selection by adult female ungulates should vary through time within 

reproductive periods. Here, I test multiple hypotheses regarding female selection within the 

summer home range during three reproductive phases, 1) gestation, 2) lactation, and 3) recovery 

(after all offspring have died). Using mixed-effects logistic regression, I included interactive 

effects of time with bear risk, wolf risk, and forage in models for each reproductive phase. At the 

population level, adult females did not trade-off selection of forage with avoidance of risk, and 

predation risk and forage were negatively correlated among home ranges, indicating variation in 

home-range quality. Females increasingly avoided bear risk, relaxed avoidance of wolf risk, and 

increased selection for forage as parturition neared. After parturition, deer continued to avoid 

bear risk, increasingly avoided wolf risk, and increasingly selected for forage through time. If 

fawns died, females relaxed avoidance of bears, increased avoidance of wolves, and intensified 

selection for forage. Among individuals, females with more forage availability relaxed selection 

towards forage, whereas females with more predation risk intensified avoidance of predation 

risk. However, quality of home range did not predict spring body condition, which was instead 

correlated with selection of forage. A likely explanation is that deer density increases with 

habitat quality, leading to more generalized selection by deer in better home ranges, but that 

some deer make better choices than others regardless of home-range quality (i.e., individual 

heterogeneity). 

3 Gilbert SL, Hundertmark KH, Person DK, Lindberg MS, Boyce MS (In Review) Fear, forage, and fawns: nutrition 

and predation risk drive behavior for female deer. Ecology. 
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4.2. INTRODUCTION 

Behavior of animals can be strongly influenced by both fear and hunger as animals seek 

to optimize fitness (Creel & Christianson 2008; Ben-David et al. 2004). Animals can neither 

completely avoid predation risk nor use only the best-quality food, both because they lack 

perfect information about the landscape, and because forage and predation risk can be positively 

correlated due to predators seeking out prey species (Fortin et al. 2005, Hebblewhite & Merrill 

2009). Instead, animals often must trade off predation risk and access to nutrition (Zera & 

Harshman 2001). Such trade offs are intensified during key life history phases such as 

reproduction, when predation risks, nutritional demands, and potential fitness rewards are high 

(Harshman & Zera 2007; Hebblewhite & Merrill 2009). In addition, current access to nutrition 

and exposure to predation risk can affect fitness in the future, through reduced likelihood of 

survival and future reproduction. As a result, trade-offs between parental predation risk, 

offspring predation risk, and access to nutrition vary by life-history strategy. 

Trade-offs between current and future reproduction are most pronounced in long-lived, 

iteroparous species, where there are multiple future opportunities to breed and survival rates of 

reproductive adults are high (Gaillard & Yoccoz 2003). Current reproductive success depends on 

parental nutrition during gestation and provisioning of offspring (i.e., lactation) to ensure 

offspring are large, vigorous, and therefore likely to survive and avoid predators of offspring 

(Candolin 1998; Parker et al. 2009). However, future reproductive success depends on parental 

ability to replenish body reserves to levels that ensure survival and successful breeding at the 

next opportunity, and thus requires extra nutrition, as well as avoidance of predators of adults 

(Parker et al. 2009; Candolin 1998). 

For most animals, predation risk and nutritional demands vary between and within 

reproductive phases. Nutritional demands increase through gestation or nest brooding (Tollefson 

et al. 2010; Oftedal 1985), peak during late gestation/brooding or while offspring are young and 

require parental provisioning (Oftedal 1985; Robbins & Robbins 1979), and diminish as 

offspring age. (Sadleir 1980). Likewise, females may become less able to elude predators or 

become more conspicuous during late gestation/brooding or offspring provisioning periods 

(Veasey et al. 2001), and offspring are often most vulnerable to predation just after birth (Carl & 
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Robbins 1988; Kaplan et al. 2008; Flint et al. 1995).  Thus, trade-offs between predation risk and 

nutrition are likely to be time-dependent within each reproductive phase, as risks and demands 

fluctuate. 

Predation risk and nutrition also vary spatially and temporally, independent of animals’ 

life history phase (Creel & Christianson 2008; Godvik et al. 2009). Seasonal phenology of 

plants, competitors, alternative prey, and predators, along with habitat and topography, interact 

to create a fluctuating landscape of food and fear (Frair et al. 2005; Ben-David et al. 2004; Pierce 

et al. 2004). Reproductive animals must navigate this complex landscape, while responding to 

changing reproductive demands and risks. As a result, selection patterns of animals during 

reproduction should change through time within each reproductive phase, reflecting shifting 

trade-offs between current and future reproduction. 

Adult female ungulates provide an excellent system for inquiry into time-dependent 

trade-offs during reproduction. Ungulates are long-lived, and females of most species raise and 

provision offspring without assistance from males. In addition, there is strong evidence for 

spatial trade-offs between risk and access to plant forage for numerous ungulate species, 

including during reproduction (Duquette et al. 2014; Hebblewhite & Merrill 2009; Long et al. 

2009; Panzacchi et al. 2010).  However, to my knowledge no studies have examined time 

dependence of spatial selection patterns within reproductive phase. 

Here I focus on Sitka black-tailed deer (Odocoileus hemionus sitkensis) in Southeast 

Alaska, where adult female deer face predation by both wolves (Canis lupus) and black bears 

(Ursus americanus), whereas fawns face predation primarily by black bears. Wolves are 

relatively rare and highly cursorial, whereas black bears are more common and are mostly 

ambush predators. Prey animals can be more sensitive to predation risk from ambush rather than 

cursorial predators (Preisser et al. 2007; Schmitz 2008); Nevertheless, the abundance (Alaska 

Department of Fish and Game 2011) and omnivorous diet of bears likely make them difficult to 

avoid, particularly before the arrival of salmon in late summer (Campbell et al. 2012). In this 

complex system, pregnant females must balance risk to themselves with access to forage, 

whereas females with fawns must incorporate risk to self, risk to offspring, and access to 

nutrition into selection decisions. In contrast, if females lose offspring to predation, they face 

only risk to self and the need to recover nutritional condition to ensure future survival and 
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reproduction. These nutritional demands and predation risks change dynamically through each 

reproductive phase, and consequently, patterns of selection should vary across time. 

Female deer are long-lived and typically reproduce annually. As a result, they should 

prioritize their own survival and nutritional condition over that of their offspring. Risk of wolf 

and bear predation is minimal for adult females during summer (Gilbert et al. 2014), although 

this could be in part a product of female trade-offs rather than of intrinsically low risk. In 

contrast, offspring predation risk is high at birth and sharply declines with age (Gilbert et al. 

2014). As a result, a short period of bear avoidance while offspring are young coupled with peak 

energetic demands may temporarily compromise female foraging, but be worthwhile in terms of 

fitness due to the short duration of the effort and increase in fawn survival probability. 

Correspondingly, I hypothesize that pregnant deer should select for areas with abundant forage, 

should increasingly select for forage as parturition approaches and nutritional demands increase 

dramatically, and should reduce overlap with bears as parturition nears. Following parturition, I 

predict that deer with fawns prioritize survival and provisioning of fawns, selecting areas with 

minimal bear risk and abundant forage, and showing higher tolerance of wolf risk while fawns 

are young. As fawns age and risk of bear predation sharply declines (Gilbert et al. 2014), females 

should relax negative selection towards bear risk, instead selecting for higher forage values. If 

deer lose all offspring, they should first select strongly for high forage values in order to recover 

body reserves lost during pregnancy and lactation, but slowly relax this selection, potentially 

selecting against wolf risk more strongly instead as wolf packs become increasingly mobile 

during late summer (Person 2001). 

In addition to these population-level hypotheses (Figure 4.1), I also predict that individual 

deer should exhibit a functional response to predation risk and forage availability. As the 

availability of a habitat and landscape attribute changes, animals may shift selection, resulting in 

a functional response (Knopff et al. 2014; Moreau et al. 2012; Godvik et al. 2009). For deer 

facing a trade-off between risks of predation and access to forage, once predation risk is 

sufficiently low or forage availability sufficiently high across the landscape, deer may focus on 

the competing component of the trade-off instead. Specifically, I predict that deer with low levels 

of predation risk available to them will reduce their avoidance of predation risk. Conversely, deer 

with high levels of forage availability should reduce their positive selection for forage because 
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nutritional demands can be satisfied in many locations. Finally, I predict that deer with better 

body condition should select less strongly for forage, allowing for increased avoidance of 

predators. 

4.3. MATERIALS AND METHODS 

4.3.1. Study Area 

This study was carried out on the central portion of Prince of Wales Island, the largest 

island in the Alexander Archipelago of Southeast Alaska (Figure 4.2). The ecosystem is a coastal 

temperate rainforest, receiving >300 cm of precipitation a year (Gilbert et al. 2014). 

4.3.2. Animal Capture and Handling 

I captured adult female deer during spring (April- mid May) of 2010-2012. All captures 

were carried out in accordance with University of Alaska Fairbanks Institutional Animal Care 

and Use Committee (IACUC #136040-14) regulations. Deer were captured on foot with the 

assistance of radio-telemetered darts (Pneu-Dart Inc., Williamsburg, PA), and fitted with GPS 

collars that recorded location every two hours for one year. In addition, body condition and 

pregnancy were assessed using a portable ultrasound machine (Sonosite Titan, Sonosite, Bothell, 

WA), and pregnant females were fitted with vaginal implant transmitters (VITs; Advanced 

Telemetry Systems, Isanti, MN). Signals from VITs within pregnant females were monitored 1-2 

times per day to detect parturition, allowing for capture of neonatal fawns at birth sites. 

Subsequently, adult females were monitored 2-3 times per week for the remainder of the summer 

to detect mortality events. Across the three years of the study, I confirmed the birth of 45 fawns 

from GPS-collared females. Neonatal deer were fitted with break-away VHF or GPS collars, and 

gently restrained with eyes covered to reduce alarm during capture and subsequent handling. 

Handling time was <10 minutes per fawn, during which I measured mass and body morphology. 

Following capture, fawns were monitored 1-2 times per day for the remainder of the summer to 

detect mortality. 
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4.3.3. Spatial Predictive Variables: Forage Availability 

I considered several measures of forage availability within landscapes that might 

influence patterns of selection by deer, including total forage biomass, forb biomass, digestible 

dry matter, and digestible protein. Type and quality of forage varied considerably between 

vegetation classes (Alaback 1982; Alaback & Saunders 2013) and several region-wide studies 

have focused on quantifying these differences, including abundance of species in each class 

(Hanley & Rogers 1989; Hanley et al. 2013). In addition, detailed studies of deer foraging 

ecology have resulted in a good understanding of seasonal energy balances and feeding 

preferences by species (Parker et al. 1993; Parker et al. 1996; Parker et al. 1999). Building on 

these studies, I generated spatially-explicit maps of forage abundance and quality across the 

landscape, using a GIS layer provided by the U.S. Forest Service and based on publically 

available US Forest Service “cover type” (i.e., vegetation class) and “size density” (i.e., timber 

volume) GIS layers (University of Alaska 2014). All measures of forage availability were based 

on databases from the Forage Resource Evaluation System for Habitat (FRESH) developed by 

the U.S. Forest Service (Hanley & Rogers 1989) and available online (Hanley et al. 2014). 

FRESH integrates available forage nutrition and deer physiological demands to produce derived 

measures of carrying capacity (i.e., “deer days”; Hanley & Rogers 1989), whereas I chose to 

simply use the original measures of available forage nutrition as predictive variables of deer 

selection. Measures of forage availability considered in competing models of deer selection 

included total biomass of all forage types, biomass of shrubs, biomass of forbs, total digestible 

dry matter, and total digestible protein. In addition, I standardized all forage availability rasters 

so that values ranged between 0 and 1, allowing comparison of coefficients with those of 

predation risk (relative probability of selection by predators), which also varied between 0 and 1. 

All spatial analysis was conducted in program R (R Core Development Team 2014). R packages 

used for spatial processing and analysis included rgdal (Keitt et al. 2010), sp (Pebesma & Bivand 

2005; Bivand & Pebesma 2013), and raster (Hijmans et al. 2014). 

4.3.4. Spatial Predictive Variables: Bear Predation Risk 

Population-scale bear resource selection functions (RSF) were derived using generalized 

linear mixed models (GLMMs).  They were based on GPS telemetry relocations of bears 
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monitored within the study area (Appendix). As with deer, bear resource selection was estimated 

during three seasons, based on phenology of food items thought to be important to bears 

(Appendix, Figures 4.8 and 4.9). Seasons for spatial analyses of bears were: 1) April 15 to the 

first recorded birthdate for sampled deer (i.e., 24 May), 2) after the first recorded birthdate but 

before salmon arrival in streams (i.e., 24 May – 31 July); and 3) after salmon arrival until end of 

summer (i.e., 1 August- 1 October).  Spatial predictive variables included landscape, 

topographic, and vegetation classes (Appendix, Table 4.4). Resource selection functions that fit 

the location data best (Appendix, Table 4.5) were used to produce relative probability maps of 

seasonal resource selection by bears within the study area (Appendix, Figure 4.10). 

4.3.5. Spatial Predictive Variables: Wolf Predation Risk 

Habitat selection by wolves was characterized during a previous telemetry study of the 

wolf population on Prince of Wales Island from 1990-2004, in which 55 wolves were fitted with 

VHF collars to collect location data (Alaska Department of Fish & Game, unpublished data; 

Person & Russell 2008).  The RSF that fit the location data best, based on AIC criteria, was 

applied to current GIS data layers to generate a map showing the relative probabilities of use by 

wolves.  The best model for wolf habitat use in summer integrated vegetation class and 

landscape predictive variables at the scale of 1,000-m buffers around radio relocations (ADFG 

unpublished data). Predictive variables included diversity of vegetation classes (i.e., Shannon 

diversity index, Turner 1989), elevation, percentage of alpine vegetation type, percentage road, 

percentage stem exclusion clearcut (i.e., > 30 years in age), and an interaction between diversity 

and percent stem exclusion (Table 4.1). To create a GIS surface showing relative probability of 

selection for wolves, I updated the GIS layers used in the original wolf study so that habitat and 

landscape variables were the same. 

4.3.6. Deer Resource Selection 

I considered resource selection by deer relative to forage availability and risk of predation 

from bears and wolves within deer summer home ranges (i.e., 3rd order selection; Johnson 1980). 

I did not examine deer selection at the patch level (i.e., 4th order selection), typically 

implemented using step-selection functions and a 2-step modeling approach (Thurfjell et al. 
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2014), because sample sizes were quite uneven between individuals within seasons (e.g., some 

females lost fawns within a day of birth, whereas some retained fawns throughout the summer). I 

examined deer resource selection within three reproductive periods, defined by the reproductive 

history of each deer as 1) capture to parturition, 2) parturition to death of all fawns, and 3) death 

of all fawns until end of summer (1 October; Figure 4.1), and hereafter referred to as gestation, 

lactation, and recovery. If all fawns died at the birth site, the lactation period was absent for those 

females, which instead immediately transitioned to the recovery period. If a female retained live 

fawns until the end of summer, she did not transition to recovery. 

4.3.7. Time Dependency of Selection 

Within each reproductive period for each deer, I included time as a continuous covariate 

in models. Time was defined based on two key life history events, parturition and death of 

offspring (Figure 4.1). During gestation, time was defined as negative weeks until parturition 

(i.e., counting up to zero), whereas during lactation, time was defined as weeks since parturition 

(i.e., counting up from zero). If all fawns died, time was defined during the recovery phase as 

weeks since death of offspring.  Time variables, representing time to or from a life-history event, 

were then included in selection functions as interactive terms with forage availability and 

predation risk, effectively allowing the strength and direction of selection to vary with time. 

4.3.8. Selection Within Home Ranges 

For analysis of selection at the home-range scale, habitat availability was defined for each 

deer individually, and was generated from the 98% MCP home range for each deer during the 

entire study period (Johnson 1980). For each used point, 5 available points were generated from 

within each deer’s home range. I checked for collinearity between fixed effects in the model, and 

did not include terms that were highly correlated (|r| > 0.6). I fit GLMMs for each season, and 

considered random effects of individuals with structures that included an intercept term only, as 

well as random intercepts for bear and wolf predation risk and forage availability (Godvik et al. 

2009; Moreau et al. 2012). In general, model structure took the following form: 

= !exp!(!! + !!!! + !! ∗ !! + ! !! + !!!! !! +⋯+ !! ∗ !! + (!! + !!!")!! (eq.1) !!" !!"# 
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Where wj(x) is the relative probability of selection as a function of the predictive 

variables xn and βn are the coefficients associated with xn, t*βn is the interactive effect of time on 

βn , and γnj, is the random coefficient for individual j that adjusts βn. I first chose a structure for 

random effects based on information theoretic criteria (i.e., AIC score; Burnham & Anderson 

2002), then determined which fixed effect terms for forage should be included (Bolker et al. 

2008). I chose a random effect structure for the model by comparing models with the same fixed 

effects, in this case the full set of wolf risk, bear risk, and forage availability variables, while 

varying the random effects structure (i.e., a random intercept, plus all combinations of random 

coefficients for predictive variables). Once a best-fit random effect structure was selected, I 

included a suitable measure of forage availability from among the five measures considered 

based on AIC criteria among competing models that differed only by the forage variable chosen. 

4.3.9. Analysis of Individual Variation in Selection 

To determine if deer exhibited a functional response to either forage availability or 

predation risk, I tested for correlations between random coefficients of selection for each 

individual during gestation, lactation, and recovery against the averaged quantity of forage and 

predation risk across available points for each animal (Moreau et al. 2012). The random 

coefficient for each animal represents the difference between selection for that animal and the 

mean (fixed effect) coefficient for that covariate, so individual-level random coefficients can be 

used to examine the functional response of individuals (Moreau et al. 2012). 

In addition, to explore if body condition affected strength of trade-offs between selection 

for forage and predation risk, I also tested for correlations between ingesta-free body fat (Cook et 

al. 2010) of adult female deer measured at capture and individual-level random coefficients of 

selection. In addition, I explored potential trade-offs between selection relative to forage and 

predation risk by correlating random coefficients of selection for bear and wolf risk with those 

for forage. Finally, I examined variation in home-range quality among individuals by correlating 

average quantity of forage against average quantity of bear and wolf predation risks for the 

available points of each individual. To see if overall quality of home ranges varied among 

individuals, and if strength of predator avoidance or forage selection increased with decreasing 
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home range quality (i.e., compensation in selection), I also developed metrics of home range 

quality and summed selection. I calculated home range quality as the averaged availability of 

forage across the home range, minus the summed average predation risk of bears and wolves 

across the home range. I calculated summed strength of selection for forage and against 

predation risk as the sum of the selection coefficient for forage and the absolute value of the sum 

of selection against predation, producing a metric for total strength of selection for forage and 

against predation. I tested for correlations using Kendall’s tau, as availability within home ranges 

as well as individual coefficients of selection were often not normally distributed and sample 

sizes (i.e., numbers of individuals) were low. The low sample sizes raise the possibility of a type 

II error, in which real relationships are not identified. As a result, I report p values for all tests, 

but consider only correlations with p < 0.05 as demonstrating an association. 

4.4. RESULTS 

4.4.1. Deer Resource Selection Within the Home Range 

For adult female deer in this study, GPS relocations were recorded once every 2 hours, 

resulting in an average of 372 relocations per deer during the gestation period (SD = 242), 685 

relocations per deer during the lactation period (SD = 581), and 1,244 relocations per deer during 

the recovery period (SD = 110). 

At the population level, deer during gestation selected locations with high forage 

availability, and did not respond consistently to wolf and bear predation risk, as indicated by 

large standard errors (Table 4.2). However, as time of parturition approached, deer selected more 

strongly for forage, avoided wolf risk less strongly, and avoided bear risk more strongly, as 

indicated by interaction terms with time (Figure 4.3). The best-supported measure of forage 

during gestation was total forage biomass (Table 4.3). 

Following parturition, lactating deer changed patterns of selection relative to predation 

risk and forage availability. The best-supported measure of forage was forb biomass rather than 

total forage biomass (Table 4.3). Deer selected more strongly for forage than during gestation, 

with a small decrease in selection for forage through time. Deer selection toward habitats 

occupied by wolves remained variable, although deer slightly increased avoidance of wolf risk as 
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time progressed. In contrast, deer strongly avoided habitats selected by bears during lactation, 

but relaxed avoidance slightly as time progressed (Table 4.2; Figure 4.3). 

If all fawns died, female selection patterns shifted yet again. During recovery, female 

deer increased selection for resource units high in forage compared with selection during 

gestation and lactation, and continued a general avoidance of wolves and bears.  However, there 

was considerable variation among individual deer in selecting locations that avoided wolf 

activity.  Through time following loss of fawns, deer selected less strongly for forage, and 

relaxed avoidance of predators, increasingly overlapping with bears and wolf RSFs. (Table 4.2; 

Figure 4.3). 

4.4.2. Variation in Selection Among Individuals 

There was substantial variation in selection patterns among individuals, as indicated by 

AIC-based support of random coefficients by individual for forage, relative risk of encountering 

bears, and risk of encountering wolves in addition to large standard errors for the fixed effects 

for these terms, and for a random intercept term. There was evidence of functional responses to 

availability of forage and predation risk, although effect direction and strength varied by 

reproductive stage (Figure 4.4). Furthermore, females with better body condition did not have 

higher levels of forage available to them within their home ranges (r = -0.16, p = 0.22 during 

gestation, r = -0.18, p = 0.20 during lactation, and r = -0.23, p = 0.24 during recovery). Rather, 

during lactation, females in better body condition selected more strongly for forage (r = 0.29, p = 

0.04; Figure 4.5), indicating that components of fitness may be correlated for deer as in many 

other species (Blums et al. 2005; McLoughlin et al. 2006). 

During gestation, deer appeared to select less strongly for forage when widely available 

within home ranges, as well as avoid predation risk more strongly (r = -0.31, p = 0.03 for bear 

risk; r = -0.34, p = 0.01 for wolf risk) when risk was high within home ranges (Figure 4.4, Figure 

4.6a). Correspondingly, there was variation in home range quality, as within home ranges, 

average availability of forage was negatively correlated (r = -0.32, p =0.01) with average bear 

risk, although uncorrelated with wolf risk (r = -0.15, p = 0.27; Figure 4.7). Body condition was 

correlated with selection of forage (r = 0.24, p = 0.07) and wolf risk (r = -0.24, p = 0.06) but not 

bear risk (r = 0.13, p = 0.32; Figure 4.5). Evidence for trade-offs between forage and risk was 
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lacking (Figure 4.6a), as there were not positive correlations between selection for forage and 

bear risk (r = - 0.08, p = 0.55) or wolf risk (r = -0.30, p = 0.02). 

As deer transitioned to lactation following the birth of fawns, there continued to be a 

functional response to forage availability (r = -0.26, p = 0.06), as well as to bear and wolf risk (r 

= -0.31, p = 0.03 for bear risk; r = -0.34, p = 0.01 for wolf risk; Figure 4.4). There continued to 

be no selection trade-offs evident, with selection for forage and predation risk not positively 

correlated (r = 0.16, p = 0.26 for bear risk, and r = -0.16, p = 0.26 for wolf risk; Figure 4.6). Deer 

in better body condition selected more strongly for forage (r = 0.29 , p = 0.04). Functional 

responses became more pronounced during recovery, with deer selecting more strongly for 

forage (r = -0.54, p < 0.01), and against bear risk (r = -0.77, p < 0.01) and wolf risk (r = -0.67, p 

< 0.01) when average availability was high within home ranges. However, no trade-offs were 

evident based on a lack of positive correlation between individual selection for forage and 

predation risk (r = -0.12, p = 0.56 for bear risk, and r = -0.22, p = 0.28 for wolf risk). Females in 

better body condition selected more strongly against wolf risk (r = -0.37, p = 0.06). 

4.5. DISCUSSION 

I found evidence that deer optimize selection within home ranges to minimize risk to 

themselves and to offspring, and maximize access to forage. However, because wolf and bear 

probability of use was not strongly linked to forage measures, deer did not face stark trade-offs 

(Figure 4.6; rather, deer shifted selection priorities through reproductive phases in order to 

maximize current fitness (i.e., fawn survival) when fawns were alive, then switched to 

maximizing future fitness (i.e., adult survival and recovery of body condition) once fawns were 

dead. Moreover, deer modified the strength of selection for forage and against predation risk 

based on the composition of the home range, partitioning from predation risk more strongly 

when predation risk was high within the home range, and relaxing selection for forage when 

forage was abundant across the home range (Figure 4.7). In landscapes with widely distributed 

and highly abundant forage such as the study area, large trade-offs between risk and forage may 

be minimal for reproductive animals, instead leading to plastic behavioral solutions, in which 

animals vary strength of selection and avoidance through time and based on the composition of 

the local landscape. 
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Deer adjusted selection relative to forage and predation risk differently during each 

reproductive phase, and varied selection patterns across time within each phase. As I had 

hypothesized (Figure 4.1, Figure 4.3), deer selected strongly for forage, particularly during times 

of increased nutritional demand during late gestation and early lactation (Barboza et al. 2009; 

Parker et al. 2009; Oftedal 1985). Deer decreased selection for forage while increasing avoidance 

of predators when nutritional demands eased during late lactation and late recovery. Avoidance 

of predation was most striking during early lactation, when deer strongly avoided areas preferred 

by black bears, likely to reduce risk of predation on fawns. Overlap with bears was even lower 

during recovery; this was presumably due to the dramatic shift in bear distribution, because bears 

strongly selected streams where salmon spawned (Appendix, Figure 4.10), rather than active 

avoidance by deer. However, given the high predation rate of bears on fawns (Gilbert et al., in 

review), deer are clearly unable to fully partition themselves from bear risk, possibly due to 

active selection of deer habitat by bears either seeking fawns or specific plant forage species 

(Bastille-Rousseau et al. 2011). In addition, the wolf RSF, based on limited telemetry data, did 

not take into account shifts in wolf behavior from spring denning season through late summer, 

during which wolves would likely begin to track the distribution of deer as pups become 

increasingly independent. 

Patterns of selection among individuals varied by availability of forage and risk, as well 

as by spring body condition. Deer selected less strongly for forage when forage availability was 

high, indicating that patterns of deer selection may vary across productivity gradients. 

Alternatively, this functional response could be an artifact of the models, in which selection for 

important rare commodities may be more easily detected and inflated compared to selection of 

readily available but still important commodities. Likewise, deer that occupied high-risk home 

ranges partitioned themselves from predation risk by selecting more strongly against predation 

risk. The exception to this pattern of anti-predator behavior was during lactation, when deer 

displayed a functional response to average level (i.e., availability) of wolf risk but not to bear 

risk within the home-range, with increased wolf risk in home-ranges resulting in greater aversion 

to habitat preferred by wolves. Although the population-level coefficient of selection for bear 

risk was highly negative during lactation, there was a high degree of variability among individual 

deer, potentially reflecting differences in level of maternal experience (i.e., individual 
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heterogeneity), in local bear density and therefore true risk, or in quality of home ranges and thus 

need for bear avoidance (Figure 4.7). Because I did not have spatially explicit measures of bear 

density, and only a small fraction of the bear population was radio-collared, I could not estimate 

true predation risk from bears. A comparison of sites where bears preyed on fawns with 

matching randomly located sites could prove illuminating in this regard. 

Selection relative to wolf risk was highly variable (i.e., large standard errors of 

coefficients) throughout the seasons, and was slightly positive during gestation and lactation, and 

slightly negative during the recovery period. Although deer did not avoid wolves during 

gestation as I had hypothesized, the relative response of deer to wolf risk through time followed 

the trends I predicted, with deer reducing overlap with wolves as parturition neared and 

continued to reduce overlap as fawns aged. Failure of deer to avoid wolves during gestation and 

lactation could be because wolves are not as active across the landscape during this time period. 

Wolves constrict their movements during pup-rearing season; on Prince of Wales island, average 

size of pack home range declined from 259 km2 in winter to 104 km2 during pup-rearing (15 

April-15 August; Person 2001), with the likely result that for many deer, probability of 

encountering a wolf during early summer may be low. In addition, behavioral responses of 

cervids to cursorial predators such as wolves appears to be prompted by current predator activity 

levels at a particular location, rather than habitat cues alone (Creel et al. 2005; Kuijper et al. 

2014; Middleton et al. 2013; Chamaillé-Jammes et al. 2014). Wolf numbers in the study area 

have been reduced due to human harvest (Alaska Department of Fish and Game 2014), and 

annual predation rates of adult deer in the study area have declined from 7% of adult female deer 

during 2000-2004 (Person et al. 2009) to 0% during this study. As a result, deer may not respond 

as strongly to landscape cues associated with wolf risk unless accompanied by wolf activity 

(Chamaillé-Jammes et al. 2014), or may respond only if in good body condition or if exposed to 

high levels of wolf risk in the greater home range (i.e., functional responses, Figs. 4.4).  I found 

some evidence for females in better body condition increasingly avoiding wolves (Figure 4.5), 

although this explanation is confounded with the alternative explanation that high-quality 

females occupy low-risk, high-forage home ranges, and thus have higher body condition (Figure 

4.7). 
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Female preference for forb, shrub, or total biomass varied by reproductive phase, with 

selection best predicted by total biomass during gestation, and by forb biomass during lactation 

and recovery. Gestation spans the period of spring forage emergence, and deer use both winter 

forages ( i.e., woody browse, evergreen forbs, and fern rhizomes; Parker et al. 1999) and 

emergent, preferred spring and summer forages (i.e., deciduous forbs; Parker et al. 1999). Total 

biomass combines both winter and summer forage classes, explaining the preference of deer 

during gestation. In contrast, nutritional demands peak during lactation, while adult deer are 

limited by foraging time and rumen turnover rate (Barboza & Bowyer 2000; Barboza & Bowyer 

2001). As a result, high-quality, easily digested forages are selected, predominantly forbs (Parker 

et al. 1999; Parker et al. 1996; Parker et al. 2009), as confirmed by the results. 

There are a number of fruitful lines of inquiry that could productively build on these 

results. An improved understanding of predator resource selection, which is also likely time-

dependent, would improve future predator-prey modeling efforts, as would better metrics of 

predation risk that incorporate wolf pack home ranges, and bear and wolf densities. In addition, 

temporal partitioning within the dial cycle is possible, and is a clear avenue for future research. 

Moreover, female deer and fawns may use a range of scale-dependent anti-predator behaviors 

(Panzacchi et al. 2010; Van Moorter et al. 2009), while I consider selection only at the home-

range scale. Finally, I found support for functional responses, but a framework for robust 

statistical analysis of derived estimates such as RSF coefficients is currently lacking; an 

improved spatial modeling framework that can explicitly include functional responses would 

greatly improve our understanding of the spatial components of evolutionary and ecological 

decision-making by animals. 

Here, I demonstrate the dynamic, time-dependent, and availability-dependent ways in 

which deer chose habitats during a critical life-history period. Deer do not trade off predation 

risk against forage in this system, but rather prioritize selection in a time-dependent way through 

the reproductive cycle as nutritional needs peak and decline, and predation risk to self and 

offspring fluctuate. Beyond these population-level patterns, individual differences in behavior 

and home-range quality explain much of the variance in selection. Quality of female home 

ranges varied, with high average levels of available forage correlated with lower average levels 

of predation risk (Figure 4.7). In high quality home-ranges, females relaxed selection for forage 
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and avoidance of predation. Sitka black-tailed deer are highly philopatric, typically establishing 

relatively small, stable home ranges close to that of their mother (Colson et al. 2013). As a result, 

the quality of individual females is likely in part the result of both high-quality home ranges of 

individuals (McLoughlin et al. 2007) and high-quality grandmaternal home ranges (McLoughlin 

et al. 2008). However, quality of home range does not necessarily equate to quality of females. I 

found that higher spring body fat was linked to stronger selection for forage within the home 

range (Figure 4.5), but not to availability of forage within the home range. A likely explanation 

of the results is that there is a gradient of deer density, with lower density in low-quality habitat 

types. I were not able to measure deer density within female home ranges during this study, 

however decreased deer density in lower-quality habitats has been documented within the study 

area (Brinkman et al. 2011). High density leads to increased competition for resources, removing 

fitness benefits of selection for high-quality habitats (Mcloughlin et al. 2006; McLoughlin et al. 

2007) and leading to selection for lower-quality habitats (Mcloughlin et al. 2006; van Beest et al. 

2014). Hence, increased density in high-quality areas could explain the relaxed selection for 

forage and against predation observed in females occupying high-quality home ranges, as well as 

the lack of correlation between forage levels within the home range and female body condition. 

Across the gradient of habitat quality and presumably deer density, some deer appear to make 

better choices than others, resulting in differences in body condition and likely in fitness 

correlates. 
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Figure 4.1. Deer reproductive seasons and selection hypotheses. 

Deer reproductive seasons for this study, defined by parturition and offspring death and 

bracketed by spring capture and the onset of fall (October 1). Hypothesized patterns of adult 

female deer selection (solid black line) relative to forage availability (green line), predation risk 

from bears (orange lines) and wolves (red lines), are shown, with predation risk to adults and 

fawns shown as solid and dashed lines, respectively. 
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Figure 4.2. Study Area Map.
 

The study area (red box), located on the central portion of Prince of Wales Island in Southeast
 

Alaska.
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Figure 4.3. Population-Level Selection by Deer for Forage, Bear Predation Risk, and Wolf 

Predation Risk Through Time. 

Effects of time are shown by reproductive seasons a) gestation, b) lactation, and c) recovery. To 

predict the effects of time, levels of the covariate were set at the seasonal maximum value, while 

other covariates were held at seasonal mean values and time was varied. 
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Figure 4.4. Functional Responses in Selection of Individual Deer.
 

Functional responses of adult female deer selection to availability of forage, bear predation risk, 


and wolf predation risk within individual home ranges, for the reproductive seasons a) gestation, 


b) lactation, and c) recovery. The functional response is illustrated by random coefficients for 


individuals, indicating the difference from fixed effect coefficients (i.e., population mean). 


Smoothed lines fit with Lowess models are shown in red. Kendall’s rank tests for correlation r-


scores and p-values are shown above, with * indicating p < 0.05.
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Figure 4.5. Effects of Body Condition on Individual Selection of Deer.
 

Effect of body condition (ingesta-free body fat %) of adult female deer in spring on subsequent
 

selection for forage, bear predation risk, and wolf predation risk, for the reproductive seasons a)
 

gestation, b) lactation, and c) recovery. Differences in selection are shown as random
 

coefficients for individuals, indicating the difference from fixed effect coefficients (i.e., 


population mean). Smoothed lines fit with Lowess models are shown in red. Kendall’s rank tests
 

for correlation r-scores and p-values are shown above, with * indicating p < 0.05.
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Figure 4.6. Potential Trade-Offs Between Forage and Predation Risk for Deer.
 

Potential trade-offs for adult female deer between forage, bear predation risk and wolf predation 


risk, illustrated by correlations between individual selection for forage and predation risk. Shown 


are individual differences in selection coefficients during a) gestation, b) lactation, and c) 


recovery. Smoothed lines fit with Lowess models are shown in red. Kendall’s rank tests for 


correlation r-scores and p-values are shown above, with * indicating p < 0.10.
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Figure 4.7. Differences in Home Range Quality for Deer and Effects on Selection. 

Differences in average forage and predation risk among deer home ranges, show for a) total 

forage biomass versus wolf risk, bear risk, and summed wolf and bear risk; and b) effect of home 

range quality (i.e., availability of forage + availability of bear risk + availability of wolf risk) on 

strength of deer avoidance of predators and selection of forage, as depicted by summed selection 

coefficients (i.e., |selection of predation risk | + selection of forage). Smoothed lines fit with 

Lowess models are shown in red. Kendall’s rank tests for correlation r-scores and p-values are 

shown above, with * indicating p < 0.10. 

101
 



 

 

 

  

  

 

 

 

     

     

     

    

    

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.8. TABLES 

Table 4.1. Coefficients of Wolf Resource Selection 

Coefficients for resource selection by wolves in summer at the 1000-m scale, with standard 

errors and p-values. 

Variable β!Coefficient S.E. p value 

Percent alpine -0.111 0.061 0.072 

Percent road -0.180 0.032 0.001 

Diversity 1.984 0.565 0.001 

Elevation -0.002 <0.001 0.001 

Diversity x Percent Stem Exclusion 0.029 0.008 0.001 
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Table 4.2. Coefficients of Deer Resource Selection at the Population Level 

Coefficients for forage, wolf risk, and bear risk are shown with standard errors in parentheses, 

and interactive effects with time are denoted as *time. During gestation, time denotes negative 

weeks until parturition (counting upwards to zero), while during lactation and recovery, time 

denotes days since fawn birth or fawn death. 

Gestation Lactation Recovery 

Model Terms β (SE) β (SE) β (SE) 

Forage 2.03 (1.79) 3.87 (1.55) 6.72 (2.17) 

Forage*time 0.20 (0.02) -0.08 (0.01) -0.11 (0.01) 

Wolf risk 0.87 (1.11) 0.64 (1.37) -1.23 (1.44) 

Wolf*time 0.40 (0.06) -0.19 (0.02) 0.13 (0.02) 

Bear risk -3.20 (3.36) -7.27 (2.11) -12.01 (2.98) 

Bear*time -1.86 (0.09) 0.38 (0.04) 1.51 (0.05) 

Time 0.19 (0.05) 0.12 (0.02) -0.26 (0.02) 
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Table 4.3. Competing Resource Selection Models with Different Measures of Forage.
 

Models are shown with AIC scores. Model structure was held constant, with random coefficients
 

and fixed effects for bear predation risk, wolf predation risk, and forage availability, as well as
 

fixed effects for time interactions for all 3 covariates.
 

Forage measure Gestation Lactation Recovery 

AIC AIC AIC 

Total forage biomass 40,428 72,777 62,599 

Biomass of forbs 40,799 71,085 61,284 

Biomass of shrubs 41,587 73,574 67,778 

Digestible dry matter 40,761 73,080 62,999 

Digestible protein 40,905 72,168 62,440 
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4.9. APPENDIX 

Appendix. Methods and results from analysis of habitat selection of black bears, used to generate 

bear predation risk maps for deer selection models 

Study Area 

Similar to the study area for deer, the study area was located on the central portion of 

Prince of Wales Island, which is the largest island in the Alexander Archipelago of Southeast 

Alaska (Figure 4.2). However, the study area was somewhat larger than for deer, as black bears 

have larger home ranges than deer and were originally captured across a larger geographical area 

(Appendix, Figure 4.8). 

Animal Capture and Handling 

I captured 31 adult black bears during late spring and early summer (May-July) from 

2009-2012, and re-captured 19 individuals in subsequent years in order to re-collar them, 

resulting in 53 bear-years of data. All bear captures were carried out by Alaska Department of 

Fish and Game personnel. Bears were captured in modified Aldrich foot snares in elevated 

bucket sets, or free-range darted with the assistance of trained hounds. While chemically 

immobilized, bears were fitted with GPS collars, a tooth was extracted for age determination, 

and morphological measurements and blood and hair samples were collected.  

GPS Data 

GPS relocations of black bears were recorded every 30 minutes, and bears with fewer 

than 2 weeks worth of relocations within a given season (Appendix, Figure 4.8) were excluded. 

This resulted in an average of 1380 relocations per bear during the pre-fawn period (SD = 386), 

2104 relocations per bear during the pre-salmon period (SD = 642), and 2121 relocations per 

bear during the post-salmon period (SD = 481). 

Landscape Covariates 

Landscape, habitat, and forage variables used in spatial analyses (Appendix, Table 4.4) 

were derived from GIS layers provided by the U.S. Forest Service (e.g., “covertype” and “size 
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density” layers describing forest type and management,). Because these spatial variables 

occurred on different scales (e.g., binary habitat values versus measures of forage biomass per 

area), covariates of selection could not be directly compared as an indicator of relative strength 

of selection. To make variable coefficients comparable, I standardized raster layers so that values 

varied between zero and one. In addition, the USFS original layers were derived from aerial 

photographs, from which polygons and subsequently rasters were produced. Due to the inherent 

error associated with this classification process, I converted binary variables to average values 

within 100-m circular moving windows, resulting in smoothed rasters composed of percentage 

values that varied between 0 and 1. All spatial analysis was conducted in program R (R Core 

Development Team 2014). R packages used for spatial processing and analysis included rgdal 

(Keitt et al. 2010), sp (Pebesma & Bivand 2005; Bivand & Pebesma 2013), and raster 

(Greenberg et al. 2014). 

Bear Resource Selection Model Development 

I developed population-level models of bear resource selection using generalized linear 

mixed models (GLMMs), with individual bear as a random effect and a logistic link function 

(Gillies et al. 2006; Fieberg et al. 2010). Models were developed in the lme4 package for 

program R. I used a GLMM framework because sample sizes differed between bears within 

seasons, and because the intention was to generate a population-level equation in order to create 

a relative probability of selection per GIS layer for use as a covariate in deer selection models 

rather than to analyze variability of selection among bears. 

Bear resource selection was analyzed in three periods (Appendix, Figure 4.9), although as 

bear capture dates were highly variable, period 1 was defined as beginning on 15 April of each 

year, a time definitively after bear emergence from winter dens (Alaska Department of Fish and 

Game, unpublished data). In addition, black bears on Prince of Wales Island use salmon 

extensively, so period 2 was defined relative to salmon arrival. Salmon runs on Prince of Wales 

Island are dominated by pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, which 

arrive in freshwater streams beginning in early August, peaking in August and September 

(Campbell et al. 2012). Therefore, bear seasons for RSFs were: 1) from April 15 to the first 

recorded birthdate for sampled deer (i.e., 24 May), 2) after the first recorded birthdate but before 
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salmon arrival in streams (i.e., 24 May – 31 July); and 3) after salmon arrival until end of 

summer (1 August- 1 October).  Available points used in bear seasonal RSFs were generated 

within a 98% minimum convex polygon (MCP) summer home range for each bear (Johnson 

1980), as the intention was inference regarding seasonal relative probability of use by bears. For 

each used point, 5 available points were randomly generated from within the study area. 

I selected landscape and habitat covariates based on published studies of bear habitat 

selection in similar ecosystems (Davis et al. 2006; Nielsen et al. 2004), as black bears are not 

well studied in Southeast Alaska.  Habitat covariates considered for bears included the measures 

of forage availability discussed above, and landcover described by nine types, including young 

clearcuts (<30 years since cut), old clearcuts (>30 years), low-, medium-, and high-volume old-

growth forest, alpine, open habitats (i.e., meadows, grassland estuaries, and muskeg heaths), and 

other non-forested landcover (i.e., remaining, low-abundance habitats; Appendix, Table 4.4).  

Landscape covariates considered road density, edge density, and density of streams and rivers 

with anadramous fish runs. Topographic variables considered were elevation and slope, as well 

as squared versions of these terms in order to evaluate potential selection for intermediate values 

via quadratic terms. 

I evaluated models of bear resource selection in a hierarchical fashion. For each season, I 

first developed separate groups of models for topographical, landscape (at both the 100-m and 

1000-m scales), and land cover variables that included all subsets of variables within each group, 

and selected top models from each group comprised of models within 2 AIC units of the top 

model within the group. I then developed a final model set comprised of all combinations of top 

models from each group. 

Bear Resource Selection Results 

Bear resource selection patterns differed between the pre-fawn, pre-salmon, and post-

salmon summer seasons (Appendix, Table 4.5, Figure 4.10). During the pre-fawn season, bear 

selection was best explained by a global model, containing all landscape variables (i.e., road, 

edge, and stream density, with densities calculated at 1000-m scale), all topographic variables 

(i.e., elevation and slope), and a slightly reduced set of land cover (habitat) variables (Appendix, 

Table 4.5).  Bears selected positively for road and edge density, slope, all ages of clearcut forest 
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including thinned stands, and low- and high-volume old-growth forest, with largest magnitude of 

coefficients for slope (β = 4.31, SE = 0.10), edge density (β = 2.86, SE = 0.10), and road density 

(β = 1.81, SE = 0.08). In contrast, bears selected against stream density, elevation, and alpine and 

open vegetated habitats, with largest magnitude of coefficients for alpine habitat (β = -2.56, SE = 

0.26), and open vegetated habitat (β = -1.84, SE = 0.24). 

Patterns of spatial selection shifted during the pre-salmon season (Appendix, Figure 4.8 

b). The best-fit model was complex, lacking only low volume and thinned-cut forest habitats. As 

during the pre-fawn season, bears selected positively for densities of roads and edges, as well as 

for steeper slopes. In addition, bears positively selected for elevation and stream density. 

However, bears selected against all habitat types except for young-cut forest, which they 

positively selected for. The largest magnitude coefficients were for edge density (β = 1.60, SE = 

0.05), road density (β = 1.13, SE = 0.04), and slope (β = 1.07, SE = 0.06), indicating landscape 

variables strongly influence bear selection. 

In contrast to the pre-fawn and pre-salmon seasons, bear selection during the post-salmon 

season was largely driven by a single variable, stream density (β = 1.07, SE = 0.06; Appendix, 

Figure 4.8 c). In addition, bears selected steeper slopes, and open vegetated habitats. Bears 

avoided thinned-cut forest, alpine, and low- and medium-volume forest, and selected for lower 

elevations and lower road densities. 
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Figures, Appendix 

Figure 4.8. Bear Relocations on Central Prince of Wales Island by Season.
 

Relocations in the a) pre-fawn season (April 15- May24), b) pre-salmon season (May 25- July 


31), and c) post-salmon season (August 1- October 1).
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Figure 4.9. Schematic Diagram of Bear Resource Selection by Seasons. 

Seasons for bear resource selection analysis, defined based on key forage items of plants, deer 

fawns, and salmon, divide bear analyses into three periods, I) pre-fawn season (April 15- 

May24), II) pre-salmon season (May 25- July 31), and III) post-salmon season (August 1- 

October 1). 
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a) b) c) 

Figure 4.10. Maps of Bear Relative Probability of Selection.
 

Relative probability of selection translated to RSF surfaces, for bears in the study area during a)
 

pre-fawn season, b) pre-salmon season, and c) post-salmon season. White to red color gradation 


indicates low (zero) to high (1) relative probabilities of selection.
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Tables, Appendix 

Table 4.4. Spatial Variables Used in Bear Resource Selection Models 

Spatial variables, including topographic variables, landscape characteristics, and Land cover 

(habitat) types, included in bear resource selection analysis. 

Variable Description 

Topography 

Elevation Elevation above sea level, in meters 

Slope Slope, in degrees 

Landscape 

Stream density Steam reaches that contain spawning habitat for salmon 

Road density Density of all road types, computed using a kernel density estimate at 100-m at 

1000-m scales 

Edge density Density of edges between habitat polygons, computed using a kernel density 

estimate at 100-m at 1000-m scales 

Land cover 

Young cut forest Young clearcut forest, 0-30 years after harvest 

Old cut forest Old clearcut forest, > 30 years after harvest 

Thinned forest Logged habitat stands that have undergone pre-commercial thinning, in which 

at least 50% of the stand area was thinned 

Low volume forest Forest classified as unproductive 

Medium volume forest Forest classified as size density class 4 or 5 

High volume forest Forest classified as size density class 6 or 7 

Alpine Alpine habitat, including high elevation sparse forest 

Open vegetated Open vegetated habitats comprised of muskeg heaths, and wetland, estuary, and 

beach grasslands 

Other non-forest Habitats including freshwater lakes, non-salmon stream reaches, alder brush, 

rock, ice, urban areas, and privately owned lands 
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Table 4.5. Coefficients of Top-Ranked Bear Selection Model for Each Season 

Fixed effects of best-supported models of bear resource selection for each season, shown with β 

coefficients and standard errors. 

β  (SE) 

Variable Season 1 Season 2 Season 3 

Intercept -3.92 (0.08) -2.78 (0.03) -1.41 (0.06) 

Slope 4.32 (0.09) 1.07 (0.06) 0.38 (0.07) 

Elevation -1.25 (0.16) 1.00 (0.08) -1.57 (0.10) 

Stream density (1000m) -1.25 (0.09) 0.43 (0.04) 3.16 (0.05) 

Road density (1000m) 1.81 (0.08) 1.13 (0.04) -0.70 (0.05) 

Edge density (1000m) 2.86 (0.10) 1.60 (0.05) --

Young cut forest 0.35 (0.04) 0.34 (0.02) --

Old cut forest 0.73 (0.06) -0.15 (0.03) --

Thinned forest 0.82 (0.05) -- -0.31 (0.03) 

Low volume forest 0.13 (0.05) -- -1.22 (0.03) 

Med. volume forest -- -0.39 (0.02) -1.02 (0.02) 

High volume forest 0.42 (0.05) -0.17 (0.02) --

Alpine -2.56 (0.27) -0.55 (0.05) -0.58 (0.07) 

Open vegetated -1.84 (0.24) -0.11 (0.06) 0.80 (0.04) 
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CHAPTER 5.  SEASON OF SCARCITY: DYNAMIC EFFECTS OF SNOW
 

DEPTH ON WINTER HABITAT SELECTION OF DEER IN A TIMBER-

HARVESTED LANDSCAPE4
 

5.1. ABSTRACT 

Winter is a limiting season for many ungulates in northern, temperate ecosystems, 

and quality of habitat is an important determinant of winter survival. In Southeast Alaska, 

Sitka black-tailed deer (Odocoileus hemionus sitkensis) are the dominant large herbivore 

in the coastal temperate rainforest ecosystem, and are strongly influenced by snow depth, 

which is highly variable within and among years. Widespread timber harvest creates 

complex landscapes, and the value of forests types likely varies as a function of snow 

depth. To determine the effect of snow depth on deer selection for vegetation classes, 

landscape features, and forage biomass, I monitored 56 GPS-radiocollared adult female 

deer from 1 January to 1 April between 2011-2013. I fit step selection functions using a 

2-step approach, with available points defined for each used point based on movement 

patterns of deer. I found that snow depth had the strongest effect on selection, based on 

relative effect size. At low snow depths, young second growth was positively selected for 

and old second growth was avoided, while high-volume old growth was avoided. As 

snow depths increased, young second growth was avoided and old second growth and 

high-volume old growth selected. Deer selected strongly for south-facing slopes and 

increased selection with snow depth, and selected for forb biomass but variably towards 

other measures of biomass, decreasing selection with snow depth. Deer selection was 

influenced by availability of vegetation classes and biomass, with positive functional 

responses for old second growth, productive old growth, and biomass. Deer selection of 

old second growth decreased with increased availability of productive old growth. 

Whereas deer displayed plastic patterns of selection with snow depth and availability, 

behavioral plasticity alone does not ensure animals fulfill energetic requirements if 

4 Gilbert SL, Hundertmark KH, Person DK, Boyce MS (In preparation) Season of scarcity: dynamic effects 
of snow depth on winter habitat selection of deer in a timber-harvested landscape. Prepared for 
submission to the Journal of Mammalogy. 
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adequate forage and snow interception are not available during deep snow events. 

Therefore, conservation of habitats preferred during deep snow may be critical to 

ensuring resilient deer populations across variable winters. 

5.2. INTRODUCTION 

Animals living in seasonal environments must contend with fluctuating resource 

availability, with survival and population growth often limited by a season in which a 

limiting resource is scarce (Both et al. 2010; Fretwell 1972; Wolff 1997). For ungulates 

in ecosystems in temperate zones and higher latitudes winter is often the limiting season 

for survival, as cold temperatures and snowfall restrict the availability of forage as well 

as increase the costs of movement (Parker et al. 2009; Messier 1991). In addition, 

vulnerability of ungulates to predators can be higher in snow-covered landscapes, due to 

reduced nutritional condition and increased cost of movements for prey relative to 

predators (Huggard 1993; Nelson & Mech 1986; Sand et al. 2006). Subsequently, spatial 

selection of ungulates in winter is strongly shaped by the landscapes of energetic cost and 

risk of death (Gustine et al. 2006). 

Ungulates in temperate ecosystems respond to the fluctuating energetic landscape 

in winter by selecting among habitats that satisfy nutritional needs, reduce cost of 

locomotion, and potentially to avoid predators. Snowfall interacts with vegetation and 

landscape structure to determine available forage, cost of movement, and risk of 

predation. As snow depth increases, values of habitat to wildlife may be completely 

reversed from low-snow conditions, e.g. as habitat types with abundant forage but little 

canopy cover to intercept snow become unusable, while habitats with adequate forage 

and good canopy cover become preferred (Hundertmark et al. 1990). Despite the 

dynamic, snow-dependent values of habitat to wildlife in winter, most habitat selection 

studies do not incorporate time-varying snow depth in analyses and model frameworks, 

instead relying on averaged, winter-long data, or downscaled climate models with large 

temporal and spatial grain size (but see Fortin et al. 2005; Parker et al. 1996). As a result, 

winters with consistently deep snow will result in detectable patterns of selection for 

habitats that reduce snow depth, enhancing forage availability; however, during winters 

with little snow, selection may be detected for other habitats within the same population 
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of ungulates (Schoen & Kirchhoff 1985).  Moreover, during winters with variable snow 

depths no strong patterns of selection may be detected at all (Doerr et al. 2005; Yeo and 

Peek 1992; Person et al. 2009). In areas where snow depth is important for ungulates but 

expected to be variable within and among years, incorporating frequent measures of snow 

depth and duration throughout winter likely is key to obtaining accurate measures of 

habitat preference. Failure to incorporate those data could result in undervaluing 

important habitats used while snow is deep, and could have negative consequences for 

management if those habitats are not conserved adequately. 

In Southeast Alaska and northern coastal British Columbia, Sitka black-tailed 

deer (Odocoileus hemionus sitkensis) contend with a highly variable winter snowpack, as 

well as large areas of second-growth forest produced by industrial timber harvest. The 

value of these forest landscapes to deer depends on the composition of forest patches 

within various stages of forest succession, climate, and predation regime. Clearcut 

logging is the dominant method of harvesting timber and young second-growth forests 

(<30 years post logging) produce abundant forage, whereas older clearcut stands with 

high levels of light interception by the canopy are typically forage depauperate (Figure 

5.1; Alaback 1982). Conversely, the thick canopy of old second growth (>30 years post 

logging) intercepts most snowfall, whereas there is almost no canopy interception of 

snow in young second growth (Alaback & Saunders 2013; Kirchhoff & Schoen 1987). 

Subsequently, forage availability and cost of movement in second-growth stands depends 

strongly on snowfall, and the value of timber-harvested landscapes to ungulates and other 

wildlife will vary across regions, climate cycles, and within and across years as dictated 

by snowfall. 

Deer in the coastal temperate rainforest of Southeast Alaska and British Columbia 

present an excellent study system to examine the interactive, time-dependent effects of 

industrial timber harvest and snow on temperate ungulates. In Southeast Alaska, 

commercial clearcutting of timber is widespread and focused on old-growth forest, 

creating major shifts in habitat (Alaback 1982; Alaback & Saunders 2013; Hanley & 

Brady 1997). In winter, deer rely on evergreen forb species and twigs of woody shrubs 

for food (Parker et al. 1999), which are typically available in old-growth forest types but 

not in old second growth (Hanley et al. 2012). Energy intake is lower than energy 
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expenditure and variability of expenditures generally determines energy balance more 

than variability of intake (Parker et al. 1996). Some previous studies showed that in 

winters with significant snow persisting throughout the winter, deer strongly selected for 

habitats in which snow was minimal yet some understory forage was available, 

particularly old-growth forest on south-facing slopes (Schoen & Kirchhoff 1985, 

Kirchhoff & Schoen 1987).  Several other studies indicated that selection for those 

habitats was weaker during winters with more intermittent snowfall and duration (Person 

et al. 2009; Doerr et al. 2005; Yeo & Peek 1992). However, all of these studies 

considered snow depth based on annual averaged values, whereas deer undoubtedly 

respond to changing snow depth at much finer temporal and spatial scales (Parker et al. 

1999). 

Here, I examine the effects of snow depth on selection of movements relative to 

vegetation classes, forage biomass, and landscape features by Sitka black-tailed deer. I 

hypothesized that as snow depth increased, deer would increasingly select locations with 

more canopy interception, but that locations that provided both canopy interception and 

forage would be preferred. I test predictions at the scale of deer movements, as snow 

depth strongly affects cost of movement and deer home ranges are greatly restricted in 

winter compared to summer (Schoen & Kirchhoff 1985; Yeo & Peek 1992). Deer may 

also respond behaviorally to the availability of habitats, particularly if some habitats are 

of higher value than others but availability of high-quality habitats is limited (Knopff et 

al. 2014; Moreau et al. 2012), or potentially if animals prefer abundant habitats compared 

to rarer habitats of the same quality. In the context of timber management, when animals 

do not have sufficient old-growth habitat available to fulfill biological requirements, 

second-growth habitats likely will be used. As a result, I expect a functional response in 

selection of second growth, with a positive relationship between selection of second-

growth forests and availability of second growth to the animal, and a negative 

relationship between selection of second-growth forests and the availability of high-

quality old-growth forest types. Conversely, if there is little of a particular old-growth 

forest type available (i.e., rare or patchily distributed within the home range), deer may 

not use that habitat type when there is significant snowfall because cost of movement to 
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reach a patch of that type would be high (i.e., snow reduces connectivity). Instead, deer 

may select more common forest types with greater continuity. 

5.3. METHODS 

5.3.1. Study Area 

This study was carried out on the central portion of Prince of Wales Island, the 

largest island in the Alexander Archipelago of Southeast Alaska and the third largest in 

the United States (Figure 2). The ecosystem is coastal temperate rainforest, with natural 

habitats spanning a variety of old-growth forest types, as well as muskeg heaths, wet 

meadows, estuaries, beaches and shorelines, and numerous lakes and rivers. In addition, 

since 1954, Prince of Wales has been the focus of much of the commercial timber harvest 

in the region (Albert & Schoen 2013), which created extensive even-aged stands that are 

of varying successional stages and value to wildlife (Alaback 1982; Hanley et al. 2005). 

Much of the land area in Southeast Alaska, including the entirety of the study area, was 

part of the Tongass National Forest, the largest National Forest in the United States. 

Annual precipitation is in excess of 300 cm per year in many areas, with average winter 

snowfall varying across the region (Shanley et al. 2015). In the study area on Prince of 

Wales, snow levels are relatively low in comparison with areas of the archipelago that are 

farther north. However, heavy snowfall can occur and persist, and deer populations 

decline sharply in response (Brinkman et al. 2011). 

There are multiple sources of mortality for deer in the study area, primarily 

human hunters, malnutrition, and predation by wolves (Canis lupus) and black bears 

(Ursus americanus) (Person et al. 2009). Wolf densities are currently quite low on Prince 

of Wales Island (Alaska Department of Fish and Game 2014), and I observed no 

predation of adult female deer marked during the study. However, Sitka black-tailed deer 

exhibit anti-predator behavior in response to wolf sign even after 100 years of absence, 

indicating that avoidance of wolf predation risk is likely to continue to drive deer 

behavior (Chamaillé-Jammes et al. 2014). Bear predation is absent during winter months 

while bears hibernate, and hunting season close in December. Malnutrition was the major 

cause of death for adult female deer during winter over the course of this study. 
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5.3.2. Deer Capture and GPS Monitoring 

I captured 63 adult female deer between 2010 and 2012, following procedures 

described in Gilbert et al. 2014. All captures were carried out in accordance with 

approval of the University of Alaska Fairbanks Institutional Animal Care and Use 

Committee (IACUC #136040-14). Each deer was fitted with a GPS tracking radio collar 

(Telonics, Isanti, MN) that recorded locations every 2 hours for one year. For this winter-

focused analysis, I considered relocations only between January 1 and April 1 of each 

year.  Consequently, 6 deer that died before winter were not included in this analysis. 

5.3.3. Spatial Covariates 

I considered vegetation classes, topography, landscape variables, and forage 

variables in spatial analyses (Table 5.1). In addition, I considered possible interactions 

between those covariates and daily snow depth across the landscape. Vegetation classes 

were derived from the community types developed by the Forage Resource Evaluation 

System for Habitat (FRESH; Hanley et al. 2014) model for deer in Southeast Alaska, 

created by the U.S. Forest Service and described in detail by Hanley et al. (2012). 

However, I combined a number of community types to reduce the numbers of classes for 

spatial analyses, and considered a reduced set of vegetation classes (Table 1) thought to 

be important in winter. Resulting vegetation classes included old-growth and second -

growth forest types, as well as a number of other naturally occurring vegetation classes. 

Available forage depends on the height of plants, the snow depth at plant 

locations, and the resistance of plants to burial (i.e., plants bending under the weight of 

snow).  Although there are several equations available relating snow depth to forage 

burial (Hanley et al. 2012; White et al. 2009), I did not explicitly examine forage burial 

by snow, rather I inferred levels of snow interception, snow accumulation, and duration 

of burial for vegetation classes by 1) using canopy interception of vegetation classes to 

modify daily snow depth maps used in deer models, and 2) allowing snow depth to 

modify deer selection for forage variables by fitting snow by forage interactions within 

deer selection models. I used the FRESH model values for forage biomass in each 

community type to create spatial maps of total biomass, shrub biomass, and forb biomass, 

as well as to produce a spatial map of canopy interception across the landscape. 
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5.3.4. Snow Record 

Snow levels are highly variable across the Southeast Alaska landscape, with 

effects of elevation, aspect, slope, and canopy cover. In addition, weather stations are 

sparsely distributed across the landscape (Simpson et al. 2005), making projections of 

snow depth to specific locations such as deer GPS relocations difficult. Subsequently, I 

deployed snow stations across the study area to more accurately characterize variability 

experienced by deer. I deployed 23 stations, each consisting of a vertical stake with an 

array of 3 pendant-style temperature loggers (Hobo tidbit loggers, Onset Computer 

Corporation, Bourne, MA) attached at 10 cm, 25 cm, and 50 cm above ground level, 

along with another pendant logger encased in a solar radiation shield (Ambient Weather, 

Chandler, AZ) to measure air temperature (Lewkowicz 2008). I chose Hobo loggers 

because of the high precision of temperature data collected (± 1 C°), given that winter air 

temperatures in the study region often hover near freezing in winter (Simpson et al. 

2005). Stations were placed in open, flat muskegs or meadows, and at least 25m from 

forest edges in order to avoid potential edge effects on snow depth. Temperatures were 

recorded every 3 hours throughout the year, and data were downloaded once per year. 

To detect snow from recorded temperatures at snow stations, I used several 

filtering criteria to translate patterns in temperature across the array of temperature 

loggers into snow coverage for each logger in the arrays. For each station, I constructed 

24-hour moving window values for mean and standard deviation of temperature of the air 

logger, and mean and standard deviation of the temperature of the temperature loggers. 

The filtering criteria applied to these data included: a) the temperature differential 

between means of air and temperature loggers (i.e., differences > 1 C°); and b) the mean 

and standard deviation of the temperature logger (i.e., mean ≤ 1.4 C° and SD ≤ 0.55 C°). 

I validated these thresholds using the period of 6-24 January 2012, when snow depth was 

recorded manually once per day during field visits to 10 stations. I used a range of 

filtering values, and chose final filtering values based on classification success (i.e., 

snow-covered or non-covered in the validation data set). The resulting data, reflecting 

whether the 10-cm, 25-cm, and 50-cm temperature loggers at each station were covered 
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with snow or not, were then translated into minimum snow depths of 0.10, 0.25, or 0.50 

m at each station every 3 hours. 

Daily median snow coverage was then calculated at each station. These daily 

snow level data were corrected for elevation to produce sea level snow equivalents (cm), 

using an equation relating elevation to snow depth developed in Juneau, AK (Hanley et 

al. 2012). These corrected daily snow levels for each station were interpolated across the 

extent of the study area using inverse distance weighting among stations using gstat 

package (Pebesma 2004) in program R (R Development Core Team 2014). Subsequently, 

the raster layer of daily snow depth at sea level was modified by elevation (m), slope 

(degrees), aspect (degrees), and canopy cover (%), using linear relationships developed in 

Southeast Alaska and described in detail in FRESH (Hanley et al. 2012). 

5.3.5. Deer Habitat Selection 

I considered deer habitat selection at the scale of deer movements, as deer in 

winter in the study area are presumably strongly affected by the cost of movement 

through deep snow, which constrains both use and availability of locations. I used step 

selection functions (SSF, Fortin et al. 2005), which compare covariates of used and 

potentially used (i.e., available) locations or step segments between locations. SSFs share 

much in common with the more familiar resource selection functions (RSFs; Johnson et 

al. 2006), but use movement patterns to generate random available steps for each used 

step. SSFs can compare either line segments between locations (i.e., steps), or the 

endpoints of segments (i.e., locations) to steps or locations that could have been chosen at 

that time-step. By using movement patterns to define the set of available steps or 

locations, the definition of availability is refined and may result in better models of actual 

selection by animals (Thurfjell et al. 2014). Once matched sets (i.e., strata) of used and 

available steps are generated for each individual (i.e., cluster), use and availability are 

compared using conditional logistic regression, taking the same generalized linear form 

as an RSF with a log link function: 

! ! = !exp!(!!!! + !!!!! +⋯+ !!!!!)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! (1) 
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Where !!! are coefficients estimated by conditional logistic regression, and associated 

with covariates !!, and ! ! represents the relative probability of a step or location 

being selected by an individual deer (Fortin et al. 2005). I chose to analyze used and 

available locations rather than steps between locations, as deer likely make circuitous 

movements between the 2-hour fixes, particularly with increasing snow depth. I 

generated 5 available points per used point using matched, randomly chosen turning 

angles and step lengths, drawn from distributions based on the combined movements of 

all deer in the study. Because relocations of individual deer are serially correlated, I 

analyzed selection with a 2-step approach, estimating parameters at the individual, then 

the population level using the TwoStepCLogit package in program R. This allowed us to 

examine potential functional responses in selection of individuals relative to timber-

harvested vegetation classes as a function of the availability of timber-harvested and old-

growth classes, and to selection of biomass relative to availability of biomass. 

Candidate models were developed within 3 covariate groups: vegetation classes, 

landscape covariates, and forage biomass covariates. Within the vegetation class 

variables, I divided covariates into old-growth and second-growth forest models, and 

subdivided female data so that each female included had all old-growth or second-growth 

classes available to them. As a result, forage model sets included 56 female deer, 

landscape model sets included 54 deer, old-growth model sets included 32 deer and 

second-growth models sets included 14 deer. I considered all subsets of covariates within 

covariate groups, as well as versions of each model that included interactive effects of 

snow with each covariate; for the forage group, this resulted in 6 forage models, 14 old-

growth models, 6 second-growth models, and 14 landscape models. In addition, I did not 

include highly correlated covariates (|r| > 0.6) in the same models. 

I used a two-step modeling approach, as described by Fieberg et al. (2010). While 

mixed-effects models with random effects of individuals are commonly used to control 

for autocorrelation within individuals’ data, such models become complex and difficult to 

fit when random effects for each spatial covariate are included, and conditional logistic 

regression with conditioning on each relocation cluster is used (i.e., available point 

clusters conditional on each used point; Fieburg at al. 2010). I fit all models within each 

covariate group to each individual deer. Within each group of models, I calculated AIC 
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values and weights (Burnham & Anderson 2002) for each individual model, and an 

average AIC weight for each model structure across individuals. I report top-ranked sets 

of models within each covariate group with an average AIC weight of at least 0.1. To 

estimate coefficients and standard errors at the population level, I averaged coefficient 

values from each top-ranked model within each group, using the TwoStepCLogit package 

(Craiu et al. 2011) in program R. In addition, I calculated the relative effect (RE) size 

(Riggs and Pollock 1992) for each covariate in the top-ranked model by changing each 

covariate by 10% (e.g., an RE of 1.5 indicates a 50% increase in the probability of 

selection for a 10% increase in a covariate). I calculate 85% confidence intervals around 

estimates of RE, as this has been suggested as a more appropriate value for use in 

conjunction with AIC-based model selection (Arnold 2010). 

I evaluated patterns in variation of selection patterns among individual deer, 

testing for functional responses in selection of second-growth classes dependent on 

availability of second growth, selection of old growth in response to availability of old 

growth, and selection of forage biomass in response to availability of biomass. In 

addition, I examined whether deer selection of second growth was influenced by 

availability of old-growth alternatives. I compared individual coefficients of selection to 

mean values of available points for each individual (Knopff et al. 2014; Moreau et al. 

2012). For these analyses, I used the individual deer coefficients for variables from the 

best-ranked model in which that coefficient appeared. 

I expected positive relationships between availability of all second-growth classes 

and selection for each second-growth class, and negative relationships between 

availability of alternative old growth and selection of second growth (i.e., if low- and 

medium-volume old growth was more available, selection of young second growth 

should decline, and if medium- and high-volume old growth was more available, 

selection of old second growth should decline). Additionally, I expected increased 

selection of old-growth classes when they were more available, and decreased selection 

for forage covariates when more forage was available. I tested for associations between 

coefficients and availability using rank-based correlation tests (i.e., Kendall’s tau), as 

some distributions of availability of covariates across individuals were not normally 

distributed and sample sizes (i.e., numbers of individuals) were low. Only correlations 
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with p < 0.05 are reported as demonstrating an association, although given the low 

sample size, this may exclude some real associations. 

5.4. RESULTS 

5.4.1. Patterns in Snow Depth and Temperature 

Snow stations with temperature loggers proved to be effective tools for measuring 

snow depth, although a number of stations were damaged by bears during summer 

months and loggers subsequently had to be replaced. There was considerable variation in 

snowfall within and across the 3 winters included in the study, and among deer home 

ranges (Figure 5.3 a). Median snow depth across winter home ranges of deer in the study 

for the 90 days of the study was 0.25 m (Median absolute deviation (MAD) = 0.10 m) in 

2011, 0.33 m (MAD = 0.08 m) in 2012, and 0.23 m (MAD = 0.01 m) in 2013. Correcting 

daily snow maps to a universal 100 m elevation, median snow depth across the study area 

(i.e., central Prince of Wales Island) was 0.13 m (MAD = 0.13) in 2011, 0.17 m (MAD = 

0.10) in 2012, and 0.13 m (MAD = 0) in 2013. Snow depths were far more variable in 

2011 and 2012 than in 2013. Based on the 100-m elevation corrected maps, median snow 

depths at 100 m elevation in the study area exceeded 0.25 m for a cumulative total of 21 

days in 2011, 25 days in 2012, and 12 days in 2013 (Figure 5.3 b). 

5.4.2. Deer Habitat Selection 

Deer selection varied across old-growth and second-growth forest types, as well 

as by landscape and forage variables. Interactive effects with snow depth were supported 

for many of these covariates (Table 5.2). In addition, the top-ranked model within each 

covariate group of models based on AIC weights included interactive effects of snow for 

all covariate in the models (Table 5.2). Across all models, deer selected against snow 

depth, which was the most influential variable based on relative effect size (Table 5.3). 

Indeed, a 10% increase in snow depth equated to a decrease in probability of selection of 

20-40%, depending on which estimate of the snow coefficient was used (Table 5.3). 

Because sample sizes differed across model groups due to some individual deer 

not having all covariates available to them, AIC scores could be compared within but not 

among groups. However, relative effect (RE) size does provide a way to compare relative 
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importance of covariates across groups. Across top-ranked models in the forage group 

(Table 5.2), deer selection was highly variable and negative for total biomass (β = -0.12 , 

SE = 0.32) and shrub biomass (β = -0.07, SE = 0.54), and decreased as snow depths 

increased in a resource unit (β = -0.94, SE = 0.65 for total biomass, β = -0.67, SE = 0.43 

for shrub biomass). Selection was positive and variable for forb biomass (β = 0.20, SE = 

0.48), but also decreased with increasing snow depth in a resource unit (β = -0.64, SE = 

0.90). Model AICc weights were almost equal for the top three models in the forage 

group, indicating that there was support for the effects of all three measures of forage 

biomass (Table 5.2). Total forage biomass, the measure of forage in the top-ranked model 

in the forage group, had a small relative effect size of 0.99 (85% CI = 0.94, 1.04; Table 

5.3), indicating that a 10% increase in total biomass produced a 1% decline in probability 

of selection by deer. However, an 18-cm (10%) increase in snow depth within a resource 

unit equated to a 3% decrease in selection for total biomass (RE = 0.93, 85% CI = 0.87, 

0.99). Much of the variability among individual deer in selection for measures of forage 

appeared to be explained by a positive functional response by deer to availability of 

forage, indicating that when forage was abundant among available resource units, deer 

were more likely to select for it, but when it was rare, deer did not select for high-forage 

resource units (Figure 5.4b). Strength of these associations, based on Kendall's rank 

correlation tests between availability and selection, yielded values of r = 0.37 (p < 0.001) 

for total forage biomass, r = 0.40 (p < 0.001) for shrub biomass, and r = 0.39 (p < 0.001) 

for forb biomass. 

Among the landscape group of models, the top-ranked model set comprised four 

models, and the best-supported model (AIC weight = 0.21) included effects of edge 

density, road density, southing, and interactive effects of snow with these variables. 

Landscape covariates had contrasting effects on deer probability of selection. In general, 

deer selected resource units with lower road (β = -0.02, SE = 0.01), and edge density (β = 

-0.01, SE = 0.01), but probability of selection of roads and edges for movement increased 

as snow depth increased (β = 0.02, SE = 0.02, and β = 0.03, SE =0.02, respectively; Table 

5.2). In contrast, selection of south-facing slopes was positive (β = 0.002, SE = 0.002), 

and deer increased selection for south-facing slopes as snow depths within a resource unit 

increased (β = 0.007, SE = 0.003). Landscape covariates had relatively large relative 
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effect sizes, which we report here with 85% confidence intervals (CI); notably a 10% 

increase in southing (18 degrees) at a location was 6% more likely to be selected (85% CI 

= 0%, 8%), and a location with mean southing and 10% more snow (18 cm) was 14% 

(85% CI = 6%, 22%) more likely to be selected (Table 5.3). 

Deer selection relative to old-growth forest types was influenced by snow depth 

(Figure 5.5), and the best-supported model (AIC weight = 0.28) included all three old-

growth forest types and interactive effects with snow (Table 5.2). Deer avoided high-

volume old-growth forest (β = -0.45, SE = 0.34), and had highly variable responses to 

medium-volume forest (β = 0.09, SE = 0.36) and low-volume forest (β = 0.09, SE = 0.30) 

at low snow depth. As snow depth at a resource unit increased, deer increasingly selected 

for high- and medium-volume forests (β = 0.91, SE = 0.34 and β = 0.21, SE = 0.73, 

respectively; Figure 5.5), while deer selection for low-volume forest varied widely (β = 

0.004, SE = 0.58).  This considerable variation among individuals was in part explained 

by functional responses to availability of old-growth forest types; when old-growth forest 

types were common among available resource units, deer were more likely to select those 

old-growth types (i.e., a positive functional response; Figure 5.4). Kendall's rank 

correlation tests indicated that two of these positive relationships were significant, with r 

= 0.28 (p = 0.007) for low-volume old growth, and r = 0.31 (p = 0.003) for medium-

volume old growth. As a result of the high levels of variability in selection among 

individuals, mean relative effect sizes were low for old-growth types (Table 5.3), but 

85% CIs reflect the larger range of effect sizes for individual deer. 

Deer selection towards second-growth vegetation classes was highly variable, and 

the best-supported model (AIC weight = 0.48) included effects of young and old second-

growth forest and interactive effects with snow (Table 5.2). On average, deer selected 

positively for young second growth (β = 0.62, SE = 0.41), and negatively for old second 

growth (β = -0.25, SE = 0.41), although there was large variation among individuals with 

respect to selection against old second growth (Figure 5.6).  The relative effect size for 

young second growth was large: a location with 10% more young second growth within a 

100-m buffer was 6% (85% CI = 0%, 13%) more likely to be selected. In contrast, a 

location with 10% more old second growth was 2% (85% CI = -4%, 8%) less likely to be 

selected. As snow depth increased, deer increasingly avoided young second growth (β = -
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0.25, SE = 0.91) but increasingly selected for old second growth (β = 0.66, SE = 1.20; 

Figure 5.4). A 10% increase in snow depth for a resource unit with average values of 

young second growth equated to a 1% decrease in probability of selection, whereas for a 

resource unit with average values of old second growth, the same increase in snow 

resulted in a 2% increase in probability of selection (Table 5.3). There was a positive 

relation between strength of selection of second-growth classes and the proportion of 

matching available points that were located in that class (Figure 5.5).  For example, as 

availability of old second growth increased, deer selected more strongly for old second 

growth (Kendall's rank correlation test, r = 0.40, p = 0.03). In addition, there was some 

evidence that deer were less likely to select for second-growth forest when productive 

old-growth forest types were more available (Figure 5.5), however only the correlation 

between selection of old second growth and availability of medium-volume old growth 

was significant with p < 0.05 (Kendall's rank correlation test, r = -0.43, p = 0.02). 

5.5. DISCUSSION 

Deer movements in winter were strongly affected by snow depth, and snow depth 

determined the direction and magnitude of selection for vegetation, forage, and landscape 

covariates. Selection was highly variable among individuals, and deer increasingly used 

second-growth forests as availability of second growth increased, and availability of old 

growth decreased. Selection of each old-growth forest type also increased with the 

availability of that old-growth type. Surprisingly, shrub and total forage biomass were not 

good predictors of deer selection of movements in winter, although forb biomass was; 

rather, deer simply select resource units that were locally abundant and had sufficient 

forage and snow interception, rather than seeking out the locations with greatest 

availability of forage. Deer had short average step lengths between relocations (median = 

48.21 m, median absolute deviation = 51 m), and as a result, availability for selection of 

consecutive movements was defined quite locally. This could explain the positive 

relationship I observed between availability of old-growth habitat types and selection of 

those types, with deer selecting locally abundant old growth and avoiding isolated 

patches of old growth far from other patches. In the winter landscape, with cost of 

movement potentially high, selection of distant, isolated patches carries risks, as deer can 
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become stranded by further snowfall in an old-growth “island” with dwindling forage 

(Kirchhoff 1994). As snow depth increased, deer moved out of young second growth and 

into productive old-growth forests (i.e., medium- and high-volume strata), and appeared 

to choose old-growth forest types that were widely available, and presumably less 

isolated. 

Interpreting snow interactions is complex. Forest canopy, elevation, slope, and 

aspect of a location were part of the snow depth calculations I used, so that snow depth in 

the models is a measure of snow depth in that habitat, rather than snow depth in an 

adjacent open habitat. For instance, deer increasingly selected medium- and high-volume 

old-growth forest types as realized snow depth at that location increased, yet nearby 

available patches likely had even higher levels of snow, as reflected by negative selection 

relative to snow depth itself. Likewise, deer selection of south-facing slopes increased 

dramatically with increased snow depth, as south-facing slopes generally have lower 

snow than other aspects (Hanley et al. 2012). The increased levels of selection for edge 

and road density as snow depth increased likely reflect higher forage and lower snow in 

these areas, but there were not sufficient data to include these effects in modeling efforts. 

Our results indicate that the timing and distribution of timber harvest matters to 

deer movement and thus to winter connectivity. If large proportions of habitat relative to 

deer home range size are clearcut, or if remaining old growth is primarily low-volume, 

unproductive forest, deer will not be able to move into productive old-growth types as 

snow depth increases. Additionally, if high-quality, high-volume old growth is preserved 

but is patchily distributed, deer appear to be less likely to select it. Although deer 

increased selection for old second growth as snow depth increased, and were more likely 

to use old second growth as it was increasingly available, old second-growth stands have 

very low forage available to deer. Deer may use old second growth as a matrix through 

which to move at high snow depths, and if productive old growth is not available, but 

energy budgets of these individuals will likely be negatively affected if productive old 

growth is not available. 

Young second-growth cuts are considered to be returned to productivity for deer 

after 15 years, and neighboring stands of old-growth forest can then be cut under current 

Tongass Forest Service regulations (U.S. Forest Service 2008). Negative consequences of 
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this strategy may not manifest in low-snow winters, when deer can successfully subsist in 

young second-growth landscapes, but will likely appear in deep-snow winters, when deer 

are forced into isolated remaining old growth or into the increasingly abundant old 

second growth. Restoration of deer forage within old second growth using small 

selectively cut patches has been proposed, wherein forage regenerates within and along 

the edges of clearings and is partially available during winter due to edge effects 

(Alaback 2010). However, there are no data for deer use of such treatments and their 

value is purely speculative. Further research into the design of such treatments and the 

preferences of deer across designs is crucial for maintaining deer populations through 

harsh winters in landscapes dominated by even-aged timber harvest. 

Although these results improve our understanding of deer habitat requirements in 

winter, an important next step will be to link habitat use to fitness outcomes. Farmer et al. 

(2006) documented that while yearling and adult female deer selected young second 

growth, their risk of death from hunting and wolf predation is increased with increased 

use of this habitat. Snow depth could interact with habitat use to alter risk of predation, 

for example if deer are more vulnerable to wolf predation when concentrated in certain 

habitats during deep snow. In addition, I did not include predation risk as a predictor in 

deer selection models, although wolves are present on the island and prey on adult female 

deer in winter. Exploration of the role of predation risk in driving deer selection in winter 

is important, as predation risk can render otherwise high-quality winter habitat effectively 

inaccessible to deer (Kauffman et al. 2014). Another promising direction for future 

investigation is the fitness consequences of winter habitat use by fawns, which likely 

select habitat similarly to adult females but are under greater nutritional strain due to 

lower body reserves (Parker et al. 1999), shorter leg length (Parker et al. 1984), and a 

higher critical thermal temperature (Parker 1988). 

A shortfall of this analysis is that I analyze habitat selection at a single spatial 

scale. Deer likely select at multiple scales (Kie et al. 2002), and selection of seasonal 

(winter) home ranges at the landscape is likely to be important in determining deer 

survival as well (Decesare et al. 2013). For example, Farmer et al. (2006) found that 

landscape variables within 500-m buffers best explained survival patterns in yearling and 

adult females. Analysis of winter selection within the annual home range is an important 
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next step, and could be integrated with the results of this work to produce multi-scale 

predictions of deer selection at differing snow depths. Such an approach could be an 

important tool for modeling deer habitat suitability under future climate change scenarios, 

which predict much reduced average snow depth for Southeast Alaska but increased 

storm frequency (Cherry et al. 2010; Shanley et al. 2015). 

Our findings expand on several previous studies, explaining several contradictory 

findings among studies and contradicting some past findings. The importance of 

productive old growth to deer in Southeast Alaska is generally accepted, however, 

various studies reached different conclusions as to its relative importance compared to 

other factors. On Admiralty Island, where deep snow is common, Schoen and Kirchhoff 

(1985) documented strong selection by radio-collared deer for productive old-growth 

forest during winter. In contrast, studies on Prince of Wales (Yeo & Peek 1992) and 

Mitkoff Islands (Doerr et al. 2005), where average snow levels are lower and intensive 

logging is widespread, found that south-facing slopes were more important than 

productive old-growth for winter habitat, which deer were neutral to or avoided. Finally, 

a recent meta-analysis of VHF-based deer selection (Person et al. 2009) detected weak 

selection for productive old growth in deep snow winters, and an increased selection for 

productive old growth on south-facing slopes. My results clarify these apparently 

conflicting lines of evidence, as I found that deer avoided productive old growth at low 

snow depths, but increased selection for productive old growth as snow depth increased. 

As documented by these prior studies, I also detected strong selection by deer for south-

facing slopes, which I found to be greatly amplified by snow depth. 

The potential for second-growth forests to provide habitat for deer in winter is not 

well understood, although snow depth is thought to play an important role in determining 

the value of young second growth to deer. Yeo and Peek (1992) and Doerr et al. (2005) 

documented selection by deer for young second growth during snow-free months, and 

general avoidance of old second growth. The results of this study shed further light on the 

use of second-growth forests by deer in winter, confirming that deer select for young 

second growth at low snow levels but increasingly avoid it as snow accumulates. In 

addition, old second growth was avoided at low snow depths, but increasingly selected as 

snow accumulated, indicating that this habitat, which intercepts snow well, could play an 
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important role in providing connectivity between old-growth forest patches during deep-

snow conditions. 

Snow depth had by far the largest effect of any variable in the models. As Parker 

et al. (1999) found, deer appeared to select habitat to optimize the trade-off between 

energy gains of forage with energy expenditures of movements. Forb biomass was 

selected, while selection towards shrub biomass was mixed, and selection for all 

measures of biomass decreased with increasing snow depth at a location. Person et al. 

(2009) found that elevation, slope, and aspect were the most influential determinants of 

selection by deer during winters with snow. Although Person et al. (2009) did not 

measure variability of snow through time and space, these covariates are the primary 

determinants of snow accumulation across the landscape (Hanley et al. 2012; Shanley et 

al. 2015), and I used these covariates to create daily snow maps used in deer models. 

The frequent, high-resolution measurement of snow depth in this study, combined 

with GPS radiotelemetry, allowed us to improve on and reconcile the results of past 

studies, which were based on VHF radio-collared animals, pellet surveys, or direct 

observations of individuals (with correspondingly low sample sizes). As a result, it is not 

surprising that the high-intensity sampling of individuals via GPS relocation, combined 

with frequent automated measurements of snow depth, produced a more nuanced picture 

of deer selection in winter that is dynamic, flexible, and highly dependent on snow depth. 

The strong influence of snow on selection by deer, including the reversal of 

selection direction towards young second growth and high-volume old growth, indicate 

that the winter landscape is highly variable in its value for deer dependent on snow depth. 

Deer respond flexibly to increasing snow depth, avoiding deeper snow, choosing 

locations with higher levels of forb biomass, adapting to exploiting young second growth 

at low snow levels when it is increasingly available, and using old second growth when 

productive old growth is less available. This plasticity of selection is important for deer in 

Southeast Alaska, where timber harvest creates a diverse matrix of altered and unaltered 

landscapes. However, behavioral plasticity is unlikely to fully compensate for inadequate 

forage or snow interception, making careful consideration of timber harvest configuration 

and rotation important considerations for managers. 
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5.7. FIGURES 
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Figure 5.1. Forage and Canopy Differences Among Vegetation Classes 

Differences in winter forage biomass (total, shrubs, and forbs, in kg/Ha) among a) old-

growth forest types, from low-volume to high-volume types, and b) second-growth forest 

types, from 0-65 years after original timber harvest, and when pre-commercial thinning 

has taken place. Red dots indicate percent of canopy cover. Values are derived from the 

FRESH forage model community types. 
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Figure 5.2. Study Area Map 

The study area was located on the central portion of Prince of Wales Island, in the 

Alexander Archipelago of Southeast Alaska. 
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Figure 5.3. Variability in Snow Depth Within and Across the Years of the Study 

Shown are a) daily mean and 95% CIs for snow depths (m) across winter home ranges 

for female deer monitored from January 1 – April 1 during 2011, 2012, and 2013, and b) 

cumulative number of days at 100-m elevation with greater than 0.25m snow depth for 

the same period each year. 
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Figure 5.4. Deer Functional Responses to Old-Growth Forest Types and Forage Biomass 

Shown is variation among individuals in selection of old-growth forest types and biomass 

measures as functions of availability. 
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Figure 5.5. Interaction of Snow Depth and Deer Selection Responses to Forest Types 

Probability of selection depends on snow depth and forest type, with probability of 

selection for a) high-volume (HV) old-growth forest increasing, b) medium-volume old-

growth forest (MV) increasing, c) young second-growth forest (YSG) decreasing, and d) 

old second-growth forest (OSG) increasing with increasing snow depth. 
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Figure 5.6. Deer Selection Responses to Second-Growth Forest Types 

Shown is variation among individuals in selection of second-growth forest types as 

functions of availability of second-growth (i.e., functional response), and as functions of 

availability of alternative, productive old-growth forest types. 
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5.8. TABLES 

Table 5.1. Variable Types and Descriptions Used in Spatial Analysis 

List of spatial covariates by group used in models of adult female deer spatial selection in 

winter. 

Variable group Description 

Variable 

Vegetation class Proportion of vegetation classesa within moving 

windowsb 

Low-volume old growth Intact forest classified by USFS as unproductive 

Medium-volume old growth Intact forest classified by USFS as size density 4 or 5 

High-volume old growth Intact forest classified by USFS as size density 6 or 7 

Young second growth Clearcut forests, 0-30 years after harvest 

Old second growth Clearcut forests, >31 years after harvest 

Landscape Characteristics 

Southing Average degrees that face south (0=100% north facing, 

180=100% south facing) within moving windows. 

Edge density Density of edges within moving windows 

Road density Density of roads within moving windows 

Forage Characteristics 

Total biomass Total biomass of forage plants in winter (kg/km2) within 

moving windows 

Forb biomass Biomass of forbs in winter (kg/km2) within moving windows 

Shrub biomass Biomass of shrubs in winter (kg/km2) within moving windows 
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Table 5.2. Coefficients for Top-Ranked Models of Deer Selection 

Interactive effects with snow depth are indicated with the * symbol.  Only models with a 

mean AIC weight (wAIC) > 0.10 are reported for each covariate group of models. 
Variable Rank 1 model Rank 2 model Rank 3 model Rank 4 model 

β (SE) β (SE) β (SE) β (SE) 

Forage models 

Total biomass -0.02 (0.05) -- -- --

Total bio*snow -0.16 (0.10) -- -- --

Shrub biomass -- -- -0.03 (0.20) -0.12 (0.15) 

Shrub bio*snow -- -- -0.67 (0.43) --

Forb biomass -- 0.14 (0.37) -- --

Forb biomass*snow -- -0.64 (0.90) -- --

Snow depth -1.27 (0.91) -1.91 (1.07) -1.10 (0.99) --

wAIC 0.26 0.23 0.22 0.12 

Landscape models 

Edge density -0.01 (0.01) -0.01 (0.01) -0.01 (0.01) --

Edge density*snow 0.03 (0.02) -- 0.03 (0.02) --

Road density -0.02 (0.01) -0.02 (0.01) -- -0.03 (0.01) 

Road density*snow 0.02 (0.02) -- -- 0.01 (0.02) 

Southing 0.002 (0.002) 0.004 (0.001) 0.002 (0.002) 0.003 (0.002) 

Southing*snow 0.007 (0.003) -- 0.008 (0.003) 0.005 (0.003) 

Snow depth -2.38   (0.70) -- -2.18 (0.68) -2.09 (0.68) 

wAIC 0.21 0.16 0.12 0.11 

Old-growth vegetation models 

Low volume OG 0.09 (0.30) -0.04 (0.31) -0.22 (0.18) --

Low vol. OG*snow 0.004 (0.58) -- 0.12 (0.35) --

Med. volume OG 0.09 (0.36) 0.14 (0.36) -- --

Med. vol. OG*snow 0.21 (0.73) -- -- --

High volume OG -0.45 (0.34) -0.79 (0.41) -0.49 (0.25) --

High vol. OG*snow 0.91 (0.34) -- 0.35 (0.70) --

Snow depth -2.90 (0.90) -- -2.65 (0.82) --

wAIC 0.28 0.16 0.11 --

Second-growth vegetation models 

Young SG 0.62 (0.41) -0.25 (0.47) 0.67 (0.38) --

Young SG*snow -0.25 (0.91) -- -1.14 (0.73) --

Old SG -0.25 (0.41) -0.66 (0.44) -- --

Old SG*snow 0.66 (1.20) -- -- --

Snow depth -2.00 (1.11) -- -1.60 (1.07) --

wAIC 0.48 0.22 0.11 --
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Table 5.3. Relative Effect Size of Covariates
 

Relative effect sizes (RE) of covariates in the top-ranked model for each covariate group.
 

Variable β (85% CI) 10% of rangea RE (85% CI) 

Forage covariates 

Total biomass -0.02 (-0.08, 0.05) 0.68 0.99 (0.94, 1.04) 

Total bio*snow -0.16 (-0.30, -0.01) 0.18 0.96 (0.91, 1.02) 

Snow depth -1.27 (-2.58, 0.03) 0.18 0.80 (0.63, 1.01) 

Landscape covariates 

Edge density -0.01 (-0.02, -0.006) 2.54 0.96 (0.94, 0.98) 

Edge*snow 0.03 ( 0.003, 0.051) 0.18 1.02 (1.00, 1.03) 

Road density -0.02 (-0.04, -0.01) 2.54 0.94 (0.91, 0.97) 

Road*snow 0.02 (-0.01, 0.05) 0.18 1.01 (0.99, 1.02) 

Southing 0.002 (0.000, 0.004) 17.00 1.04 (1.00, 1.08) 

Southing*snow 0.007 (0.003, 0.011) 0.18 1.14 (1.06, 1.22) 

Snow depth -2.34 (-2.58, 0.03) 0.18 0.66 (0.55, 0.78) 

Old-growth covariates 

Low volume OG 0.09 (-0.34, 0.52) 0.10 1.01 (0.97, 1.05) 

Low volume*snow 0.004 (-0.84, 0.84) 0.18 1.001 (0.96, 1.05) 

Med. volume OG 0.09 (-0.42, 0.61) 0.10 1.01 (0.96, 1.01) 

Med. volume*snow 0.21 (-0.84, 1.26) 0.11 1.01 (0.97, 1.06) 

High volume OG -0.45 (-0.94, 0.05) 0.10 0.96 (0.91, 1.00) 

High volume*snow 0.91 (-0.48, 2.29) 0.18 1.01 (0.99, 1.04) 

Snow depth -2.90 (-4.19, -1.60) 0.18 0.60 (0.48, 0.93) 

Second-growth covariates 

Young SG 0.62 ( 0.04, 1.21) 0.10 1.06 (1.00, 1.13) 

Young SG*snow -0.25 (-1.56, 1.06) 0.18 0.99 (0.97, 1.01) 

Old SG -0.25 (-0.84, 0.35) 0.10 0.98 (0.92, 1.04) 

Old SG*snow 0.66 (-1.07, 2.40) 0.18 1.02 (0.97, 1.06) 

Snow depth -2.00 (-3.60, -0.41) 0.18 0.70 (0.53, 0.93) 
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CHAPTER 6.  CONCLUSIONS
 

The research presented here contributes substantially to our understanding of ungulate 

ecology, and to the body of knowledge required to manage and conserve populations of Sitka 

black-tailed deer, their habitat, and their dependent predators in Alaska and northern coastal 

British Columbia. Using emerging technology and careful study design, I describe survival 

patterns and other vital rates, and use these results to identify key environmental drivers of deer 

population dynamics. I then develop models of spatial selection during reproduction and winter, 

two key periods in the annual life cycle of deer, and identify underlying forces shaping patterns 

of selection in deer in both summer and winter.  Comparing these results with previous studies of 

deer habitat selection, I resolve long-standing conflicts expressed by those studies about habitat 

selection by deer during winter.  The resulting insights into deer ecology can be used to inform 

land and wildlife management and conservation actions in the coastal temperate rainforest 

ecosystem of North America. 

6.1. ROBUST SURVIVAL MODELS FOR FAWNS 

Estimating survival rates during life history phases with strong effects of age on survival, 

such as for many neonatal animals, remains challenging.  With respect to estimating survival of 

neonates, I employed a new technology, vaginal implant transmitters, that enabled me to locate 

birth sites and capture fawns within hours and sometimes minutes of birth.  However, I needed to 

test the utility of that technology for Sitka black-tailed deer within northern temperate rainforest.  

I also captured neonates opportunistically without the assistance of VITs, a method used 

frequently during other studies of neonate deer in North America.  That allowed me to compare 

survival data derived from both capture methods.  When some neonatal animals die before being 

detected by researchers, left truncation is introduced into the data. This is problematic if the left-

truncated animals missing from the sample had different values of covariates than those sampled, 

or different odds of daily survival (e.g., newborn animals are much more vulnerable than 2-day 

old animals, or if animals with low birth-weights die disproportionately). I demonstrate the 

potential biases that can be introduced into survival models by left truncation of data using 
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neonatal deer fawns, some captured at birth (i.e., untruncated data) and some captured within 10 

days of birth (i.e., left-truncated data). 

I found systematic negative biases of up to 31% in survival estimates from the left-

truncated data, resulting from over-estimates of daily survival rates during the first 30 days of 

life. In addition, I found that left truncation of the data resulted in incorrect selection of top-

ranked covariates in survival models, and incorrect estimates of covariate parameters including 

beta coefficient magnitude and direction. As a result, I conclude that ecological inference and 

estimates of survival rates from left-truncated data are likely to be biased. However, I suggest a 

practical solution, namely: 1) every effort be made to capture true neonates; 2) consistent capture 

methods, using at least in part non-truncating techniques, be implemented across years and study 

areas; and 3) exclusion of left-truncated data from survival estimates until age-dependent 

survival rates survival rates converge with those calculated from non- truncated data. 

Our results are important for researchers modeling survival in organisms with strongly 

age-dependent survival patterns. This work was also critical for completion of subsequent 

analysis in this dissertation, I used only fawns captured at birth (i.e., untruncated data) for 

summer survival analysis in subsequent chapters, as daily survival rates between left-truncated 

and untruncated samples did not converge until 30 days of age. However, I did include left-

truncated data in winter survival analysis, after this 30-day period was well past, thus increasing 

sample size and ability to make ecological inference regarding drivers of winter survival. 

6.2. EFFECTS OF ENVIRONMENTAL VARIABILITY ON POPULATION DYNAMICS 

OF DEER 

Previous studies of deer in Southeast Alaska and coastal British Columbia indicated 

winter weather and snow depth as the primary environmental drivers of deer population 

dynamics.  Nonetheless, environmental drivers likely act differently on each segment of the 

population. I examined those effects on adult female deer and their neonate fawns by developing 

a matrix-based population model incorporating empirically derived models of age-specific rates 

of survival, and rates of pregnancy and fecundity. The underlying vital-rates models included 

both environmental covariates such as winter severity and timber harvest regime of resident 

watershed, as well as individual covariates such as mass, sex, and age. Best-fit models (based on 
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AIC ranking; Burnham & Anderson 2002) for each vital rate were then used to estimate mean 

vital rates, inter-annual variability, and process vs. sampling variance. I also estimated inter-

annual process variance of the covariates themselves. The process variance of each vital rate and 

covariate was then used to perturb the population model, resulting in elasticities for vital rates 

and covariates based on their effect on perturbed population growth rate (λ) compared to the 

mean λ. I found that whereas prospective elasticity analysis of vital rates predicted that changes 

to adult survival would have the greatest influence on population dynamic, retrospective analysis 

revealed that fawn survival rates had the greatest influence on population growth rates based on 

observed levels of process variance. In addition, winter severity had the greatest effect of all 

covariates based on levels of process variance, followed by gender ratios of fawns. I conclude 

that inter-annual variability in Sitka black-tailed deer populations is likely most strongly affected 

by severity of winter weather, although factors that affect fawn sex ratios, such as buck to doe 

ratios (Mysterud et al. 2002), could also play an important role. 

6.3. SPATIAL SELECTION BY REPRODUCTIVE DEER RELATIVE TO FORAGE AND 

PREDATION RISKS 

Adult female deer varied patterns of selection by reproductive phase, as well as within 

reproductive phase. Deer responded strongly to predation risk from bears and wolves, as well as 

to forage biomass. During gestation, deer increasingly selected for forage, avoided bear 

predation risk, and tolerated wolf predation risk as parturition neared. After parturition, deer 

continued to strongly avoid bears, gradually increased avoidance of wolves, and gradually 

decreased selection of forage as fawns aged. If fawns died, deer greatly increased selection for 

forage then gradually relaxed forage selection, increased avoidance of wolves, and increasingly 

tolerated bears through time. 

Among individuals, deer with more forage available to them also had less predation risk 

on average within their home ranges, indicating that home-range quality varied. Deer in high-

quality home ranges relaxed selection for forage, and avoidance of predation risk, relative to 

those in poor-quality home ranges. Yet body condition was not correlated with home-range 

quality, and instead was correlated with positive selection for forage. A previous study 

(Brinkman et al. 2011) documented lower deer density in poor-quality habitats in the study area, 
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and differences in deer density by habitat quality is a likely explanation of my results. If deer 

density is higher in high-quality habitats, fitness benefits of those habitats decrease through 

resource competition (McLoughlin et al. 2006), and some deer may select instead for other, 

lower-quality habitats (McLoughlin et al. 2006; van Beest et al. 2014). However, some deer 

appear to do better than others regardless of home-range quality, indicating that individual 

heterogeneity may play an important role in determining fitness outcomes (Bock & Jones 2004; 

McLoughlin et al. 2007; Weladji et al. 2008), and ultimately population dynamics, for this 

species. 

6.4. THE IMPORTANCE OF SNOW: PLASTIC SPATIAL SELECTION BY DEER IN 

WINTER LANDSCAPES 

I sought to unify conflicting results from past studies of deer winter selection in Southeast 

Alaska by including daily snow depth maps as covariates of deer spatial selection. I found snow 

depth to be by far the most important covariate of deer spatial selection in winter. Snow depth 

also influenced direction and magnitude of selection towards vegetation classes and landscape 

covariates. Importantly, deer selection towards productive old-growth forest types increased 

substantially with increasing snow depth, whereas selection towards young second-growth forest 

types declined and selection for old second growth increased. At low snow depths, deer selected 

slightly for medium-volume old growth and strongly for young second growth, likely because of 

abundant forage within these forest types, and avoided high-volume old growth and old second 

growth. In addition, deer selected strongly for south facing slopes and avoided habitat edges and 

roads at low snow depths, and increased the strength of selection for these features as snow depth 

increased. These results resolve much of the dissonance between past studies, in which studies 

on northern, deep-snow islands found strong selection for productive old-growth forests (Schoen 

& Kirchhoff 1985), whereas other studies on southerly islands found weakly positive or even 

negative selection for old growth, and positive selection for young second growth (Doerr et al. 

2005; Yeo and Peek 1992). These results were also in agreement with Person et al. (2009), who 

found strong effects of elevation, canopy cover, slope, and aspect on deer selection. These 

landscape covariates are the linear components that best predict snow depth in Southeast Alaska 
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(Hanley et al. 2012), indicating that snow depth, while not systematically measured through time 

and space, was likely the primary driver of deer selection. 

There was considerable variability in selection among individuals, some of which was 

explained by functional responses to availability of vegetation classes. Availability of young 

second growth to deer did not influence strength of selection, but deer were significantly more 

likely to select for old second growth when it was more available to them. Selection for old 

second growth declined significantly when alternatives, namely productive old-growth forest 

types, were available to them. This indicated that deer selection is plastic, with deer using old 

second growth for movement when it is widely available and old growth with adequate canopy 

to intercept snow is not available. However, old second growth does not have adequate forage to 

support deer through the winter, and young second growth is avoided during deep snow, making 

preservation of productive old growth as insurance during deep-snow winters a critical 

component for deer management. 

6.5. FUTURE DIRECTIONS AND NEEDS 

This dissertation addresses a number of important, unresolved questions regarding the 

population ecology of Sitka black-tailed deer, and of ungulates in temperate ecosystems more 

broadly. However, there are many outstanding questions that remain for deer in Alaska, some of 

which can be answered with data I obtained but have not yet analyzed, and some of which will 

require further field work to collect the relevant data.  Important questions that can be addressed 

using my existing data include: a) do deer select habitat during winter at different scales (i.e., 

annual home ranges within watersheds, core winter areas within home ranges, and 

patches/movements within core winter areas), and how forage depletion through time during 

winter may affect selection patterns (van Beest et al. 2010); b) do deer develop patterns of 

resource selection from birth independently or are their movements and selection strongly 

correlated with their mothers; c) what are the fitness consequences for adult females and their 

offspring of the patterns of resource selection I document here; and d) do deer select patches of 

second growth that are pre-commercially thinned, a widespread forestry practice purported to 

benefit deer through increased forage production in old second-growth habitats but the realized 

value of which to deer is unknown. 
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Questions of primary importance, but which require further data collection to answer 

include: e) empirical testing of wildlife use (including deer) of various designs of restoration 

clearings in old second-growth, which are currently being implemented but not monitored for 

efficacy to wildlife; and f) real-time effects of timber harvest on deer, in which a before-after 

control-impact design is implemented before a timber sale and effects on radio-collared deer, 

forage, and potentially predators are monitored. 

6.6. REFERENCES 

Bock, C.E. & Jones, Z.F., 2004. Avian habitat evaluation: should counting birds count? Frontiers 

in Ecology and the Environment, 2, pp.401–410. 

Brinkman, T.J. et al., 2011. Estimating abundance of Sitka black-tailed deer using DNA from 

fecal pellets. The Journal of Wildlife Management, 75(1), pp.232–242. 

Burnham, K.P. & Anderson, D.R., 2002. Model selection and multimodel inference: a practical 

information-theoretic approach 2nd ed. Springer, New York, New York, USA. 

Doerr, J.G., Degayer, E.J. & Ith, G., 2005. Winter habitat selection by Sitka black-tailed deer. 

The Journal of Wildlife Management, 69(1), pp.322–331. 

Hanley, T. A. et al., 2012. Forage resource evaluation system for habitat-deer: an interactive deer 

habitat model. General Technical Report PNW-GTR-858. USDA Forest Service, Juneau, 

Alaska, USA, pp. 1-70. 

McLoughlin, P. et al., 2007. Lifetime reproductive susuccess and composition of the home range 

in a lage herbivore. Ecology, 88(12), pp.3192–3201. 

Mcloughlin, P.D. et al., 2006. Lifetime reproductive success and density-dependent, multi-

variable resource selection. Proceedings of the Royal Society B, 273, pp.1449–1454. 

Mysterud, A., Coulson, T. & Stenseth, N.C., 2002. The role of males in the dynamics of ungulate 

populations. Journal of Animal Ecology, 71(6), pp.907–915. 

Person, D.K. et al., 2009. Habitat use and and survivorship of Sitka black-tailed deer in 

Southeast Alaska: a regional meta-analysis and synthesis. Alaska Department of Fish and 

Game, Division of Wildlife Conservation, Juneau, Alaska, USA, pp. 1-13. 

160
 



 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

Schoen, J.W. & Kirchhoff, M.D., 1985. Seasonal distribution and home-range patterns of Sitka 

black-tailed deer on Admiralty Island, Southeast Alaska. The Journal of Wildlife 

Management, 49(1), pp.96–103. 

van Beest, F.M. et al., 2010. Forage quantity, quality and depletion as scaledependent 

mechanisms driving habitat selection of a large browsing herbivore. Journal of Animal 

Ecology, 79(4), pp.910–922. 

van Beest, F.M. et al., 2014. Increasing density leads to generalization in both coarse-grained 

habitat selection and fine-grained resource selection in a large mammal. Journal of Animal 

Ecology, 83(1), pp.147–156. 

Weladji, R.B. et al., 2008. Heterogeneity in individual quality overrides costs of reproduction in 

female reindeer. Oecologia, 156, pp.237–247. 

Yeo, J.J. et al., 1992. Habitat selection by female Sitka black-tailed deer in logged forests of 

southeastern Alaska. The Journal of Wildlife Management, 56(2), pp.253–261. 

161
 


	Signature Page
	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1. Introduction
	1.1 General Introduction
	1.2. Chapter 2 Background: Challenges in Survival Estimation
	1.3. Chapter 2 Research Questions
	1.4. Chapter 3 Background: Environmental Variability and Population Dynamics
	1.5. Chapter 3 Research Questions
	1.6. Chapter 4 Background: Spatial Selection During Reproduction
	1.7. Chapter 4 Research Questions
	1.8. Chapter 5 Background: Effects of Snow on Spatial Selection
	1.9. Chapter 5 Research Questions
	1.10. References
	Figure 1.1. Photo of the Author Opportunistically Capturing a Sitka Black-Tailed Deer Fawn Capture took place in the project study area on Prince of Wales Island, Southeast Alaska during the 2010 summer field season.

	Chapter 2. Dead Before Detection: Addressing The Effects of Left Truncation on Survival Estimation and Ecological Inference for Neonates
	2.1. Abstract
	2.2. Introduction
	2.3. Materials and Methods
	2.3.1. Study Area
	2.3.2. Deer Capture and Handling
	2.3.3. Survival Analysis

	2.4. Results
	2.4.1. VIT Success Rates
	2.4.2. Survival Analysis

	2.5. Discussion
	2.6. Acknowledgements
	2.7. Figures
	Figure 2.1. Study Area Map
	Figure 2.2. Daily Survival Rates (DSRs) for Neonatal Fawns
	Figure 2.3. Cumulative Survival Probabilities for Neonatal Fawns
	Figure 2.4. The Effect of Left Truncation on Coefficient Magnitude and Direction Coefficients are shown for the full covariate model (S ~ Age + Mass + Birthdate + Sex + Timber + Year) across a gradient of left censoring in each panel, from no censoring using only VIT-caught fawns [V(−0)], through grouped (G), pooled (P) and opportunistic (O) models based on empirical VIT and opportunistic data, to simulations based on VIT-only fawns with left censoring [fawns that died at <1 day removed, V(−1), and <2 days removed, V (−2)].

	2.8. Tables
	Table 2.1. Effects of Age Estimation Technique on Covariate Calculations
	Table 2.2. Effects of Age Estimation Technique on Covariate Calculations
	Table 2.3. Effects of Varying Levels of Left Truncation on Covariate Coefficients in Survival Models
	Table 2.4. Comparison of AICc-Based Model Selection for Varying Levels of Left Truncation in Survival Data.

	2.9. References

	Chapter 3. Effects of Environmental and Individual Variables on Sitka Black-Tailed Deer Population Dynamics
	3.1. Abstract
	3.2. Introduction
	3.3. Methods
	3.3.1. Study Area
	3.3.2. Deer Capture and Monitoring
	3.3.3. Effects of Predictive Variables on Vital Rates
	3.3.4. Estimation of Process Variance in Vital Rates and Predictive Variables
	3.3.5. Effects of Vital Rates and Predictive Variables on Population Dynamics...

	3.4. Results
	3.4.1. Effects of Predictive Variables on Vital Rates
	3.4.2. Effects of Vital Rates and Predictive Variables on Population Dynamics

	3.5. Discussion
	3.6. Acknowledgements
	3.7. Figures
	Figure 3.1. Study Area Map
	Figure 3.2. Twenty-Year Record of Total Annual Snowfall
	Figure 3.3. Life Cycle and Variability of Vital Rates for Deer
	Figure 3.4. Prospective and Retrospective Effects of Vital Rates on Growth Rate.
	Figure 3.5. Effects of Predictive Variables on Vital Rates, and on Growth Rate, for Deer

	3.8. Tables
	Table 3.1. Hypothesized Effects of Predictive Variables on Vital Rates of Deer
	Table 3.2. Estimates of Vital Rates for Sitka Black-Tailed Deer
	Table 3.3. Top-Ranked Vital Rates Models
	Table 3.4. Effects of Predictive Variables and Vital Rates on Population Dynamics

	3.10. References

	Chapter 4. Fear, Forage, and Fawns: Nutrition and Predation Risk Drive Behavior For Female Deer
	4.1. Abstract
	4.2. Introduction
	4.3. Materials and Methods
	4.3.1. Study Area
	4.3.2. Animal Capture and Handling
	4.3.3. Spatial Predictive Variables: Forage Availability
	4.3.4. Spatial Predictive Variables: Bear Predation Risk
	4.3.5. Spatial Predictive Variables: Wolf Predation Risk
	4.3.6. Deer Resource Selection
	4.3.7. Time Dependency of Selection
	4.3.8. Selection Within Home Ranges
	4.3.9. Analysis of Individual Variation in Selection

	4.4. Results
	4.4.1. Deer Resource Selection Within the Home Range
	4.4.2. Variation in Selection Among Individuals

	4.5. Discussion
	4.6. Acknowledgements
	4.7. Figures
	Figure 4.1. Deer reproductive seasons and selection hypotheses.
	Figure 4.2. Study Area Map.
	Figure 4.3. Population-Level Selection by Deer for Forage, Bear Predation Risk, and Wolf Predation Risk Through Time.
	Figure 4.4. Functional Responses in Selection of Individual Deer.
	Figure 4.5. Effects of Body Condition on Individual Selection of Deer.
	Figure 4.6. Potential Trade-Offs Between Forage and Predation Risk for Deer.
	Figure 4.7. Differences in Home Range Quality for Deer and Effects on Selection.

	4.8. Tables
	Table 4.1. Coefficients of Wolf Resource Selection
	Table 4.2. Coefficients of Deer Resource Selection at the Population Level
	Table 4.3. Competing Resource Selection Models with Different Measures of Forage.

	4.9. Appendix
	Figures, Appendix
	Figure 4.8. Bear Relocations on Central Prince of Wales Island by Season.
	Figure 4.9. Schematic Diagram of Bear Resource Selection by Seasons.
	Figure 4.10. Maps of Bear Relative Probability of Selection.

	Tables, Appendix
	Table 4.4. Spatial Variables Used in Bear Resource Selection Models
	Table 4.5. Coefficients of Top-Ranked Bear Selection Model for Each Season


	4.10. References

	Chapter 5. Season of Scarcity: Dynamic Effects of Snow Depth on Winter Habitat Selection of Deer in a Timber-Harvested Landscape
	5.1. Abstract
	5.2. Introduction
	5.3. Methods
	5.3.1. Study Area
	5.3.2. Deer Capture and GPS Monitoring
	5.3.3. Spatial Covariates
	5.3.4. Snow Record
	5.3.5. Deer Habitat Selection

	5.4. Results
	5.4.1. Patterns in Snow Depth and Temperature
	5.4.2. Deer Habitat Selection

	5.5. Discussion
	5.6. Acknowledgements
	5.7. Figures
	Figure 5.1. Forage and Canopy Differences Among Vegetation Classes
	Figure 5.2. Study Area Map
	Figure 5.3. Variability in Snow Depth Within and Across the Years of the Study
	Figure 5.4. Deer Functional Responses to Old-Growth Forest Types and Forage Biomass
	Figure 5.5. Interaction of Snow Depth and Deer Selection Responses to Forest Types
	Figure 5.6. Deer Selection Responses to Second-Growth Forest Types

	5.8. Tables
	Table 5.1. Variable Types and Descriptions Used in Spatial Analysis
	Table 5.2. Coefficients for Top-Ranked Models of Deer Selection
	Table 5.3. Relative Effect Size of Covariates

	5.9. References

	Chapter 6. Conclusions
	6.1. Robust Survival Models for Fawns
	6.2. Effects of Environmental Variability on Population Dynamics of Deer
	6.3. Spatial Selection by Reproductive Deer Relative to Forage and Predation Risks
	6.4. The Importance of Snow: Plastic Spatial Selection by Deer in Winter Landscapes
	6.5. Future Directions and Needs
	6.6. References




