Serologic Survey of Alaska Wildlife for Microbial Pathogens

Randall L. Zarnke

Research Performance Report
Federal Aid in Wildlife Restoration
1 July 2000–30 June 2001
Grant W-27-4, Study 18.71

This is a progress report on continuing research. Information may be refined at a later date.

RESEARCH PROGRESS REPORT

STATE: Alaska

STUDY: 18.71

COORDINATOR: None

GRANT: W-27-4

STUDY TITLE: Serologic Survey of Alaska Wildlife for Microbial Pathogens

AUTHOR: Randall L Zarnke

PERIOD: 1 July 2000–30 June 2001

SUMMARY

During this grant period, I accomplished the following work:

• Processed and cataloged approximately 1500 serum samples
• Shipped approximately 1000 serum samples to various labs for testing
• Entered and analyzed test results
• Relayed test results to submitters
• Wrote hard copy and CD version of 25-year summary of serologic survey
• Wrote and submitted manuscript (Brucella serology in caribou, wolves, and bears) to Journal of Wildlife Diseases and worked on 5 other manuscripts for JWD

Under the study title "Serologic Survey for Microbial Pathogens," a formal manuscript has been submitted to the Journal of Wildlife Diseases. A copy of this manuscript (Appendix) constitutes the progress report for this reporting period.

PREPARED BY: Randall L Zarnke
Wildlife Biologist II

APPROVED BY: Wayne L Regelin, Director
Division of Wildlife Conservation

SUBMITTED BY: Patrick Valkenburg
Research Coordinator

Steven R Peterson, Senior Staff Biologist
GEOGRAPHIC PATTERN OF SERUM ANTIBODY PREVALENCE FOR BRUCELLA SPP. IN CARIBOU, GRIZZLY BEARS, AND WOLVES FROM ALASKA, 1975–1998

RANDALL L ZARNKE AND JAY M VER HOEF

1300 College Road, Fairbanks, AK 99701-1599, USA

ABSTRACT: Blood samples were collected from 2635 caribou (Rangifer tarandus groenlandicus), 1934 grizzly bears (Ursus arctos), and 930 wolves (Canis lupus) from throughout mainland Alaska during 1975–1998. Sera were tested for evidence of exposure to Brucella spp. Serum antibody prevalences were highest in the northwestern region of the state. In any specific area, prevalences for caribou and wolves were of a similar magnitude, whereas prevalence for bears in the same area was two to three times higher.

Key words: Alaska, Brucella spp., caribou, grizzly bear, wolf.

INTRODUCTION

Brucellosis is a bacterial disease with worldwide distribution (Tessaro, 1986). Several species comprise the genus Brucella. Each species has a preferred host range (Witter, 1981). Reindeer and caribou (Rangifer tarandus groenlandicus) are the preferred reservoir hosts for Brucella suis biovar IV (Forbes, 1991). Infection localizes primarily in joints and the reproductive tract (Dieterich and Morton, 1987). Other tissues can also be infected (Tessaro and Forbes, 1986). Clinical signs of disease include orchitis in males, abortion in females, and bursitis in both sexes (Forbes, 1991).

Caribou are widely distributed throughout mainland Alaska (Valkenburg, 1998). They live in herds that range in size from a few hundred animals to a few hundred thousand (Valkenburg et al., 1996). Size of individual herds can vary considerably due to the effects of predation, quantity and quality of available food, and weather (Adams et al., 1998). Infectious and parasitic diseases also play a role in population dynamics (Dieterich, 1980).
Wolves (*Canis lupus*) and grizzly bears (*Ursus arctos*) are the two primary terrestrial predator species in Alaska. Both species prey extensively on caribou where they are sympatric (Valkenburg et al., 1996). The predation process provides ample opportunity for transmission of diseases and parasites from caribou to predators (Neiland, 1970).

The objective of the current study was to determine geographic pattern of *Brucella* sp. antibody prevalence in caribou, wolves, and grizzly bears in Alaska.

METHODS

Caribou, wolves, and grizzly bears were captured by personnel of the Alaska Department of Fish and Game, U.S. Fish and Wildlife Service, and National Park Service. Several individual animals (primarily bears) were captured more than once. For the purpose of this study, each capture was considered as a separate event. Blood samples were collected and stored at either ambient or refrigerated temperatures for 12–36 hours. Sera were removed and stored temporarily at –15 C. Long-term storage was at –55 C for 1–10 years until the time of testing.

Sera were tested for evidence of exposure to *Brucella* spp. by means of the standard plate test (SPT) (U.S. Department of Agriculture, undated) and buffered *Brucella* antigen (BBA) test (Angus and Barton, 1983). Prior to 1990, tests were conducted at the U.S. Department of Agriculture’s National Veterinary Services Laboratory in Ames, Iowa. After 1990, tests were conducted at the University of Alaska’s Institute of Arctic Biology in Fairbanks, Alaska.

Sera that caused agglutination in the SPT at a dilution $\geq 1:50$ were considered indicative of previous natural exposure. The BBA test was evaluated as simply either positive or negative. Results from the two tests were jointly evaluated to arrive at a final determination for each sample.

To aid in managing wildlife, the landmass of Alaska is divided into 26 Game Management Units (GMU). These areas are based on major physiographic features such as mountain ranges and major river drainages. Several of the larger GMU’s are further divided into subunits. Obviously, wildlife species such as caribou, wolves and bears do not necessarily restrict their movements within these boundaries. However, it is convenient to report the results for the GMU where an animal is captured. In addition, this approach provides a meaningful representation for geographic patterns of antibody prevalence.

A Bayesian hierarchical model (Clayton and Kaldor 1987; Devine et al., 1994; Bernardinelli et al., 1995; Waller et al., 1997; Xia et al., 1997) was used to estimate area-specific prevalences for all three species. Let N_{ij} be the number of samples from the ith area (for all GMU's listed in Table 1); $i = 1, 2, \ldots, 26$, for the jth species; $j = 1$ (caribou), 2 (wolf), or 3 (grizzly bear). Let x_{ij} be the number of positive titers in the ith area. Assume that positive titers are binomially distributed,

$$x_{ij} \mid p_{ij}, N_{ij} \sim Bin(N_{ij}, p_{ij}),$$

where
\[\text{logit}(p_j | \alpha_j, b_j) = \mu + \alpha_j + b_j. \]

This is the usual logistic regression situation, except that \(b_j \) is a random effect that is spatially autocorrelated with its neighbors. For the fixed effects, \(\alpha_i \) was assigned a value of 0. A normal distribution \(\alpha_j \sim N(0,10000) \) was used for \(j = 2,3 \). An improper flat prior was given to \(\mu \). The autocorrelation among the \(\{b_i\} \) follows a conditional autoregressive (CAR) model (see, e.g., Cressie, 1993:p. 407). Any two GMUs that shared a border were defined as neighbors. A normally distributed CAR model is defined where \(b_i | \bar{b}_i, \phi, n_i \) is normally distributed \(N(\bar{b}_i, \phi / n_i) \), where \(\bar{b}_i \) is the mean of the neighboring values for the \(i \)th GMU and \(n_i \) is the number of neighbors. The variance parameter was given a gamma distribution, \(\phi \sim \text{Gam}(0.001, 0.001) \).

The statistical software package WinBUGS was used to obtain a sample from the posterior distribution for \(\phi, b_i, \alpha_i \) and \(\mu \), and functions of these parameters. For example, the posterior distribution of

\[100 \times \exp(\mu + \alpha_i + b_i) / [1 + \exp(\mu + \alpha_i + b_i)] \]

provides an estimate of the prevalences (in %) in the \(j \)th GMU for the \(i \)th species. These values are known as “smoothed” rates. The mean of the sample from the posterior distribution was used to estimate the smoothed rates, and the standard deviation of the sample gives the standard error of the smoothed rates (Besag et al., 1991; Besag and Kooperberg, 1995). The posterior sample was obtained using Marker Chain Monte Carlo methods, with a "burn-in" of 4,000 iterations. The sample was drawn from the next 50,000 iterations.

RESULTS

Serum antibody prevalences for caribou, wolves and bears were highest in the northern portion of the state (Table 1 and Fig. 1). Within any particular GMU, the relative magnitude of observed prevalences for caribou and wolves are similar. Prevalence for bears is substantially higher than for the other two species. A graphic representation of the “smoothed” rate for all three species is also presented in Figure 1.

DISCUSSION

The “smoothed” rate for all three species (Fig. 1) confirms that antibody prevalence is highest in the northwest portion of the state. In some cases, the raw rates for an individual species may provide a somewhat biased picture of geographic distribution. Animals captured on the boundary of GMU “A” may actually spend most of their time in adjacent GMU “B.” In addition, only a few animals of this species may have been captured in GMU “A.” Therefore, these few animals have a large influence on the overall prevalence attributed to GMU “A.” The best examples of this phenomenon in the current study are:

(a) the 100% prevalence (1/1) for caribou in GMU 20F and
(b) the 40% prevalence (2/5) for bears in GMU 25 (Table 1).
Therefore, the “smoothed” rates provide a better overall representation of the geographic distribution of \textit{Brucella} sp. exposure. Multiple samples from a few animals may have exerted a small bias on the reported prevalence.

Bears and wolves are exposed to \textit{Brucella} spp. while preying on infected caribou (Neiland, 1975; Neiland and Miller, 1981). For most GMUs, prevalences in bears are substantially higher than those for caribou and wolves (Table 1). These higher prevalences may be due to the longer average lifespan of bears compared to the other two species. During this longer life, bears have a greater potential for consuming an infected caribou.

Historically, brucellosis has been considered to be present in caribou herds throughout Alaska (Neiland et al., 1968). The observed serum antibody prevalence for caribou from the southern half of the state is essentially 0% (Table 1). One interpretation of this data is that the disease is absent from this region. Observed prevalences for bears from all regions (including the southern half of the state) are higher than prevalences for caribou. This data suggests that bears are being exposed to \textit{Brucella} sp. in the southern portion of the state. Presumably, the source of that exposure would be infected caribou. No other species serve as an effective large-scale reservoir for transmission to predators and scavengers. Thus, it appears that the disease may be present in most (if not all) caribou herds, but at very low levels in the southern portion of the state. Perhaps sampling intensity was simply incapable of detecting this very low frequency of infection in these southerly herds. An alternative explanation would be that the disease does not occur in caribou herds from the southern portion of the state and the positive serologic test results for bears and wolves from this region are incorrect.

Numerous free-ranging, semi-domestic reindeer herds live in GMU 22 on the Seward Peninsula (Fig. 1). Brucellosis is enzootic in these herds (Dieterich and Morton, 1987). The Western Arctic caribou herd has a large home range, covering portions of GMU’s 21, 22, 23 and 26A (Fig. 1). During the winter, the Western Arctic herd migrates to the southwestern portion of its range. At that time, there is often opportunity for contact between Seward Peninsula reindeer and caribou from the Western Arctic herd. Reindeer may have been the original reservoir for transmission of brucellosis to other arctic species (Davydov, 1965). Alternatively, perhaps the disease has always been enzootic in free-ranging caribou (Huntley et al., 1963). The current study provides no evidence to confirm or refute either theory.

ACKNOWLEDGMENTS

The authors thank the many agency field personnel who collected blood samples that made this study possible. This study was supported by Federal Aid in Wildlife Restoration.

LITERATURE CITED

ANGUS, R. D., AND C. E. BARTON. 1983. The production and evaluation of a buffered plate antigen for use in a presumptive test for brucellosis. Third international symposium on

Figure 1 Location-specific serum antibody prevalence for Brucella sp. in caribou (Rangifer tarandus), wolf (Canis lupus), and grizzly bear (Ursus arctos) from Alaska (darker shading indicates higher prevalence)
Table 1 Serum antibody prevalence for Brucella sp. in caribou (*Rangifer tarandus groenlandicus*), wolf (*Canis lupus*), and grizzly bear (*Ursus arctos*) from Alaska, 1975–2000

<table>
<thead>
<tr>
<th>Caribou</th>
<th>Wolf</th>
<th>Grizzly Bear</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMU</td>
<td>Sample size</td>
<td>Number positive</td>
</tr>
<tr>
<td>07</td>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>08</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>09E</td>
<td>337</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>214</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>87</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>44</td>
<td>0.0</td>
</tr>
<tr>
<td>20A</td>
<td>126</td>
<td>0.0</td>
</tr>
<tr>
<td>20B</td>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>20C</td>
<td>105</td>
<td>0.0</td>
</tr>
<tr>
<td>20D</td>
<td>97</td>
<td>0.0</td>
</tr>
<tr>
<td>20E</td>
<td>162</td>
<td>0.0</td>
</tr>
<tr>
<td>20F</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>21</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>541</td>
<td>7.0</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>103</td>
<td>5</td>
</tr>
<tr>
<td>26A</td>
<td>182</td>
<td>13</td>
</tr>
<tr>
<td>26B</td>
<td>327</td>
<td>8</td>
</tr>
<tr>
<td>26C</td>
<td>98</td>
<td>1</td>
</tr>
</tbody>
</table>

* a Game Management Unit.
* b Results of standard plate test and buffered Brucella antigen tests.
* c Estimated prevalence based on the observed prevalence, model effects, and effects from neighboring areas.
* d Standard errors of the estimated prevalence (smooth rates).