Tulsequah Chief Acid Mine Drainage and Dolly Varden Char Whole Body Metals Concentrations

by Nicole M. Legere and Jackie Timothy

October 2016

Alaska Department of Fish and Game

Division of Habitat

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in reports by the Divisions of Habitat, Sport Fish and of Commercial Fisheries. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figures or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail-fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted		C	
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
		east	E	alternate hypothesis	H_A
Weights and measures (English)		north	N	base of natural logarithm	e
cubic feet per second	ft ³ /s	south	S	catch per unit effort	CPUE
foot	ft	west	W	coefficient of variation	CV
gallon	gal	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
inch	in	corporate suffixes:		confidence interval	CI
mile	mi	Company	Co.	correlation coefficient	
nautical mile	nmi	Corporation	Corp.	(multiple)	R
ounce	OZ	Incorporated	Inc.	correlation coefficient	
pound	lb	Limited	Ltd.	(simple)	r
quart	qt	District of Columbia	D.C.	covariance	cov
yard	yd	et alii (and others)	et al.	degree (angular)	0
		et cetera (and so forth)	etc.	degrees of freedom	df
Time and temperature		exempli gratia		expected value	E
day	d	(for example)	e.g.	greater than	>
degrees Celsius	°C	Federal Information		greater than or equal to	≥
degrees Fahrenheit	°F	Code	FIC	harvest per unit effort	HPUE
degrees kelvin	K	id est (that is)	i.e.	less than	<
hour	h	latitude or longitude	lat. or long.	less than or equal to	≤
minute	min	monetary symbols		logarithm (natural)	ln
second	S	(U.S.)	\$, ¢	logarithm (base 10)	log
		months (tables and		logarithm (specify base)	log _{2,} etc.
Physics and chemistry		figures): first three		minute (angular)	1
all atomic symbols		letters	Jan,,Dec	not significant	NS
alternating current	AC	registered trademark	®	null hypothesis	H_{O}
ampere	A	trademark	TM	percent	%
calorie	cal	United States		probability	P
direct current	DC	(adjective)	U.S.	probability of a type I error	
hertz	Hz	United States of		(rejection of the null	
horsepower	hp	America (noun)	USA	hypothesis when true)	α
hydrogen ion activity (negative log of)	pН	U.S.C.	United States Code	probability of a type II error (acceptance of the null	
parts per million	ppm	U.S. state	use two-letter	hypothesis when false)	β
parts per thousand	ppt,		abbreviations	second (angular)	"
-	% 0		(e.g., AK, WA)	standard deviation	SD
volts	V			standard error	SE
watts	W			variance	
				population	Var
				sample	var

TECHNICAL REPORT NO. 16-06

TULSEQUAH CHIEF ACID MINE DRAINAGE AND DOLLY VARDEN CHAR WHOLE BODY METALS CONCENTRATIONS

by

Nicole M. Legere

and

Jackie Timothy

Alaska Department of Fish and Game Division of Habitat, Southeast Region 802 W. 3rd Street, Juneau, Alaska, 99824-0024

October 2016

The Alaska State Legislature appropriated partial funding for this study in the FY2010 and FY2013 capital budgets.

Cover: Tulsequah River near the Tulsequah Chief Mine site.

Technical Reports are available through the Alaska State Library, Alaska Resources Library and Information Services (ARLIS) and on the Internet: http://www.adfg.alaska.gov/index.cfm?adfg=habitat_publications.main. This publication has undergone editorial and peer review.

Note: Product names or specific company names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game, in accordance with State of Alaska ethics laws, does not favor one group over another through endorsement or recommendation.

Alaska Department of Fish and Game, Division of Habitat, 802 W. 3rd Street, Douglas, Alaska, 99824, USA

This document should be cited as

Legere, N. M., and J. Timothy. 2016. Tulsequah Chief acid mine drainage and Dolly Varden char whole body metals concentrations. Alaska Department of Fish and Game, Technical Report No. 16-06, Douglas, AK.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G Division of Habitat, 802 W. 3rd Street, Douglas, Alaska 99824 (907) 465-4105

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES.	i
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
AKNOWLEDGEMENTS	iii
EXECUTIVE SUMMARY	1
INTRODUCTION	2
Purpose	2
Sample Sites	
Upper Tulsequah River	4
Tulsequah River Mine	
Taku River Border	
METHODS	
Data Collection	
Laboratory Analyses	
Quality Assurance / Quality Control	
Statistical Analyses and Data Presentation	
RESULTS	
Upper Tulsequah River	
Tulsequah River Mine	
Taku River Border	
Comparison Among Sites	
REFERENCES CITED	
APPENDIX	23
LIST OF TABLES	
Table	Page
1. Tests, analytes and methods.	7
2. Water quality data collected in the Tulsequah and Taku Rivers.	9
 UTR juvenile Dolly Varden char whole body metals concentrations	
5. TRB juvenile Dolly Varden char whole body metals concentrations	

LIST OF FIGURES

Figure		Page
1.	Area map with sample sites by year.	3
	UTR adjacent to the Tulsequah Chief Mine airstrip.	
3.	UTR substrate.	
4.	TRM substrate.	5
5.	TRM woody debris.	5
6.	TRB channel	5
7.	TRB woody debris.	5
8.	UTR Dolly Varden char, coho and Chinook salmon juvenile captures, 2014 through 2016	8
9.	TRM Dolly Varden char, coho and Chinook salmon juvenile captures, 2014 through 2016	8
10.	TRB Dolly Varden char, coho and Chinook salmon juvenile captures, 2014 through 2016	9
11.	UTR juvenile Dolly Varden char whole body metals concentrations.	11
12.	TRM juvenile Dolly Varden char whole body metals concentrations.	14
13.	TRB juvenile Dolly Varden char whole body metals concentrations.	16
14.	UTR, TRM, TRB, and GC48 juvenile Dolly Varden char whole body metals concentrations	18
15.	UTR, TRM, and TRB individual juvenile Dolly Varden char whole body metals concentrations across	\$
	years.	19
16.	UTR, TRM, and TRB sample size and pooled mean analyte concentration data \pm one standard	
	deviation.	20

LIST OF APPENDICES

- **Appendix**A STATEWIDE JUVENILE DOLLY VARDEN CHAR WHOLE BODY METALS CONCENTRATIONS DATA, GRAPHS AND MAPS
 - METALS CONCENTRATIONS LABORATORY REPORTS

ACKNOWLEDGEMENTS

The Alaska Department of Fish and Game Divisions of Sport Fish and Commercial Fisheries provided air and boat transportation, field equipment, food and accommodations at the Smolt and Canyon Island field camps. We sincerely appreciate Fisheries Biologists Jeff Williams and Jim Andel, and Fish and Wildlife Technicians Nathan Frost, Travis Orient, and Michael Enders for navigating the rivers and providing field support.

Division of Commercial Fisheries Biometrician Kray Van Kirk and Division of Sport Fish Regional Fisheries Research Coordinator Jeff Nichols assisted with statistical analysis and reviewed the draft report. Division of Commercial Fisheries Publication Specialist Amy Carroll prepared the report for publication.

Division of Habitat Operations Manager Dr. Al Ott and Habitat Biologists Parker Bradley and Kate Kanouse reviewed the draft report. Habitat Biologists Joe Hitselberger and Gordon Willson-Naranjo, and Fish and Wildlife Technician Richard Hoffman, assisted with fieldwork.

Chieftain Metals Inc. Chief Operating Officer Keith Boyle and Chieftain Mine Manager Terry Zanger provided field support and accommodations at the Tulsequah Chief Mine camp.

We include statewide juvenile Dolly Varden char whole body metals concentrations data and graphs in Appendix A. Teck Cominco, Ltd., Hecla Greens Creek Mining Company, Coeur Alaska, Inc., and the Pebble Limited Partnership funded the acquisition of these data.

Thank you all so very much.

EXECUTIVE SUMMARY

Acid drainage from the legacy Tulsequah Chief copper, zinc, lead, gold, and silver mine in British Columbia has been leaching into the Tulsequah River for 60 years. Palmer et al. (2013) identified cadmium, copper, lead, and zinc as elements of potential concern with Steffen et al. (1992) and Brodie and Chapman (1993) citing the release of copper to the Tulsequah River as the greatest concern confirmed by total load estimate distribution for the metal.

In 2010, at the request of commercial fishing organizations, Representative Beth Kerttula secured a \$35,000 legislative appropriation for the Alaska Department of Fish and Game (ADF&G) to study the effects of the acid drainage on fish. The legislature did not specify a study type or design, so we consulted with ADF&G and Canadian scientists, considered several aquatic studies, and concluded the best way to evaluate the effects of the drainage on fish was to test the metals concentrations in fish tissues.

The scientists agreed juvenile Dolly Varden char *Salvelinus malma* were the appropriate fish to test since they are resident and exposed to the elements year round, rather than briefly as salmon are. Additionally, Chapman (1978a, 1978b) documents Pacific salmon *Oncorhynchus* and specifically Chinook *O. tshawytscha* and sockeye *O. nerka* exhibiting more metal tolerance with equivalent exposure than *Salvelinus*, the genus to which Dolly Varden char belong.

In 2011, with British Columbia Ministry of Environment and Taku River Tlingit First Nation staffs, ADF&G sampled resident juvenile Dolly Varden char upstream, downstream, and at the acid drainage sites described in Gartner Lee (2008) and Lough and Sharpe (2003). We contracted a private laboratory to analyze the fish samples for the elements of potential concern and for additional elements of interest—arsenic, mercury, selenium and silver. The data are published in Hitselberger (2012).

In January 2010, Chieftain Metals, Inc. negotiated for area mining interests, and the purchase agreement included a partially constructed water treatment plant for treating acid drainage (SRK 2010). After property title and assets were transferred in September 2010, Chieftain Metals completed the water treatment plant and operated it between March and June 2012 (Chieftain Metals, Inc. 2012). We did not sample fish during water treatment plant operation.

In 2012, at the request of commercial fishing organizations and the Southeast Alaska Conservation Council, Senator Dennis Egan secured ADF&G another \$37,000 legislative appropriation to continue the study. We sampled 4 more times between the autumn of 2014 and spring of 2016.

The whole body metals concentrations in juvenile Dolly Varden char we captured near acid drainage in the Tulsequah River are similar to samples we took upstream and downstream of mine drainage influence.¹ Possible explanations may include uniform weathering and erosion of crustal rocks throughout the watershed, dilution at the sampling sites below the mine, or exposure levels at the discharge within a range Dolly Varden char can bioregulate. For comparison, the mean metals concentrations in this study are lower than the mean metals²

_

While similar, there are statistical differences for selenium and mercury among sites, which we discuss in the *Results*

² We do not sample for arsenic at the Greens Creek Mine.

concentrations in a 15-year study at a Greens Creek site upstream of industrial mining on Admiralty Island (Brewster 2016a).

Appendix A contains the whole body metals concentrations of 1,270 juvenile Dolly Varden char sampled between 1993 and 2015 at the Red Dog lead and zinc mine in Northwest Alaska (Ott et al. 2016), the Pebble Prospect in Southcentral Alaska (Harper et al. 2013), the Greens Creek silver, zinc, gold and lead mine in Southeast Alaska (Brewster 2016a), the Kensington gold mine in Southeast Alaska (Brewster 2016b), and the abandoned Tulsequah Chief polymetallic mine. Since the literature does not provide reference levels above which whole body metals concentrations become a liability for salmonids, we have graphed the data mean, median, maximum, and minimum to illustrate the range of values observed across the state to improve our understanding of juvenile Dolly Varden char whole body metals concentrations variability.

INTRODUCTION

PURPOSE

The purpose of this study is to compare whole body concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), selenium (Se), silver (Ag), and zinc (Zn) in juvenile Dolly Varden char captured in the receiving waters of Tulsequah Chief Mine acid drainage with juvenile Dolly Varden char collected upstream and downstream of the Tulsequah Chief Mine and at a Greens Creek Mine site upstream of mining located about 92 km to the southwest.

SAMPLE SITES

We sampled 2 locations on the Tulsequah River; 1 upstream of the mine site, Upper Tulsequah River (UTR), and the other in the receiving waters downstream of the mine site, Tulsequah River Mine (TRM). We sampled 1 location on the Taku River near the U.S./Canada border, Taku River Border (TRB). Sampling sites varied from year to year due to changing water levels and channel migration (Figure 1).

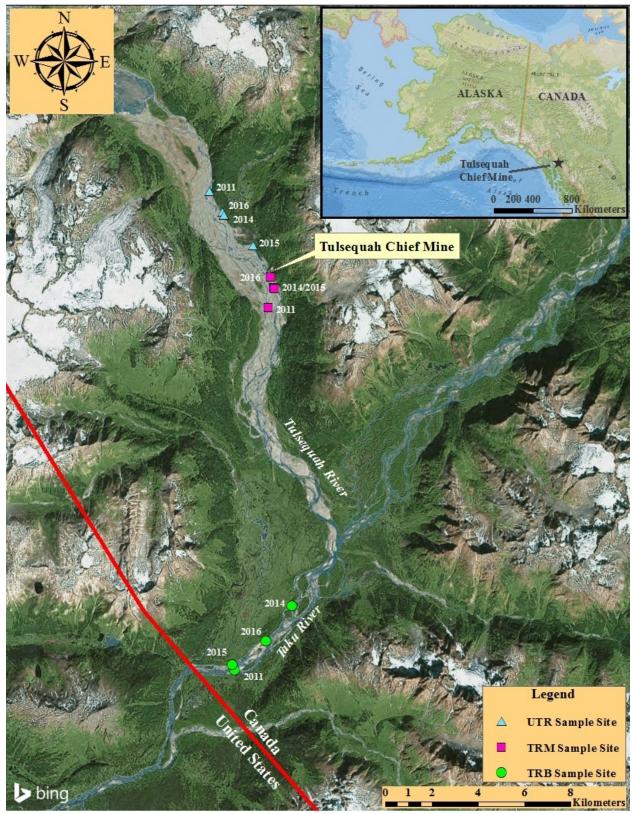


Figure 1.—Area map with sample sites by year.

Upper Tulsequah River

UTR is located upstream of the Tulsequah Chief Mine and downstream of the Tulsequah Glacier. We sampled within a 2.5 km reach. In 2011, we accessed the area by helicopter and in 2014 and 2015 we accessed the area by jet boat. In 2016, we accessed the area on foot from the road adjacent to the Tulsequah Chief Mine airstrip (Figure 2).

The upper Tulsequah River is a large braided glacial outwash channel (Paustian 2010). Gradient is less than 3% and substrate is composed mostly of round cobble, coarse gravel, and sand (Figure 3). There are a few backwatered areas and large woody debris accumulations along the channel margins. We captured Dolly Varden char and sculpin *Cottus* spp. at UTR.

Figure 2.–UTR adjacent to the Tulsequah Chief Mine airstrip.

Figure 3.–UTR substrate.

Tulsequah River Mine

TRM is downstream of the Tulsequah Chief Mine discharge site. We sampled within a 1.5 km reach. In 2011, we accessed the area by helicopter, and in 2014 and 2015 we accessed the area by jet boat. In 2016, we accessed the area on foot from the Tulsequah Chief Mine road beginning about 80 m downstream of mine discharge.

This section of the Tulsequah River is similarly characterized as a large braided glacial outwash channel (Paustian 2010). The less than 3% gradient and shallow braided channels are composed of coarse gravel and round cobble (Figure 4) and contain accumulations of large woody debris (Figure 5). There is limited overhanging riparian vegetation. We captured Dolly Varden char, coho salmon *O. kisutch*, and sculpin at TRM.

Figure 4.–TRM substrate.

Figure 5.–TRM woody debris.

Taku River Border

TRB is located on the Taku River mainstem near the U.S./Canada border, about 26 km downstream of the Tulsequah Chief Mine. We sampled within a 3.5 km reach upstream of the border and about 3.5 km downstream of the Tulsequah River confluence. In all years, we accessed the area by jet boat.

This section of the Taku River is also characterized as a large braided glacial outwash channel (Paustian 2010). This less than 3% gradient portion of the river is composed of mostly gravel and sand (Figure 6). Large woody debris has accumulated along sand bars and channel margins and overhanging riparian vegetation provides fish habitat (Figure 7). We captured Dolly Varden char, juvenile Chinook and coho salmon, and sculpin at TRB.

Figure 7.–TRB woody debris.

METHODS

DATA COLLECTION

In 2011, we used a jet boat and helicopter to access the sample sites. In 2014 and 2015, ADF&G Divisions of Commercial Fisheries and Sport Fish staff stationed at Canyon Island provided jet boat transportation to the sample sites. In 2016, Division of Sport Fish staff provided jet boat transportation to the TRB and Chieftain Metals Inc. staff provided vehicle access to UTR and TRM. We collected basic water quality data with a YSI Pro 2030 meter and colorpHast pH indicator strips.

We set 10 two-piece 0.635 cm (1/4 in) galvanized steel minnow traps overnight at each site using methods described in Magnus et al. (2006). We baited the traps with disinfected salmon eggs contained in a punctured plastic bag to prevent ingestion and reduce the possibility of sample contamination. In 2011, we used a beach seine in addition to minnow traps at the UTR and TRM sample sites.

We proposed to retain Dolly Varden char between 90 and 130 mm fork length at each sample location. A 90 mm fish provides the minimum 5 g weight requirement for lab testing (Timothy and Kanouse 2014) and a 130 mm fish is small enough to reasonably conclude it is resident and nonanadromous. We were unable to capture enough fish meeting the size criteria and therefore retained fish between 56 and 170 mm. We processed fish not meeting the 90 mm criteria as a composite sample of 2 when we did not meet the 5 g lab weight requirement. We identified, counted and released all fish that were not Dolly Varden char.

We wore latex gloves when handling fish, measured fork length (mm) of every Dolly Varden char, and placed them in individually numbered plastic bags labeled with the date, location, species, and juvenile status. Bags containing individual fish were then placed in a larger sample bag labeled with the sample location. We immediately stored the samples in an insulated cooler with ice packs and then in a -20° C freezer upon return to Juneau. We remeasured fork length of each fish and recorded fish weight (g) in the sample bag, correcting for the weight of the bag. We kept the samples in the low temperature freezer until ready for shipment. We shipped the samples to the lab in a cooler with frozen icepacks via overnight air freight.

LABORATORY ANALYSES

We solicited venders through the State of Alaska procurement process and selected ALS Environmental to process the samples based on their experience testing metals concentrations in fish tissues. The Environmental Protection Agency (EPA) has approved the methods shown in Table 1 which were adopted by ALS Environmental during testing. The laboratory received all samples in good condition, stored the samples at -20° C, then individually freeze dried, digested, and analyzed the samples for whole body metals concentrations of Ag, As, Cd, Cu, Hg, Pb, Se, and Zn, on a dry-weight basis. The laboratory reports are in Appendix B.

Table 1.–Tests, analytes and methods.

Test Description	Analyte	EPA Method
Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry	Нg	1631E, Revision E
Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma – Mass Spectrometry	Ag, As, Cd, Cu, Pb, Se, Zn	200.8, Revision 5.4
EPA method 6020A, Inductively Coupled Plasma – Mass Spectrometry	Ag, As, Cd, Cu, Pb, Se, Zn	6020A, Revision 6

Note: EPA 200.8 analysis method was used during the August 21, 2014 and September 3, 2015 sampling period.

QUALITY ASSURANCE / QUALITY CONTROL

We maintained written chain of custody forms for all samples submitted to the laboratory. The laboratory provided Tier II quality assurance/quality control information including results for matrix spikes, standard reference materials, sample blanks, and sample duplicates.

STATISTICAL ANALYSES AND DATA PRESENTATION

We present the number of Dolly Varden char and coho and Chinook salmon juveniles captured at UTR, TRM and TRB during each sampling event between 2014 and 2016 and basic water quality data at each site during each sampling event between 2011 and 2016.

We used Statistix® 10 and the Kruskal-Wallis one-way analysis of variance by ranks test, a non-parametric alternative to a one-way analysis of variance, to test for differences of mean ranks for each analyte at UTR, TRM, and TRB. We used the Dunn's multiple comparison test to identify differences between UTR, TRM, and TRB. We report significant differences when $p \le 0.05$.

We present graphs of the mean, maximum, and minimum analyte concentrations for all sampling events at UTR, TRM, and TRB.

We present graphs of the mean, maximum, and minimum pooled analyte concentrations for the UTR, TRM, and TRB with data collected between 2001 and 2015 above the Greens Creek Mine^{3,4} located on Admiralty Island, about 92 km southwest of the Tulsequah Chief Mine.

We present a scatterplot of individual analyte concentrations at UTR, TRM, and TRB for all years, reporting nondetections at the method reporting limit so the number of data points equals the number of samples.

We present UTR, TRM, and TRB sample size and pooled mean analyte concentration with uncertainty as plus or minus one standard deviation from the mean. Nondetections are included at the method reporting limit.

³ For all analytes except As.

⁴ We exclude 2012 Cu data because of a lab error.

RESULTS

We captured a total of 162 Dolly Varden char, 209 coho salmon, 70 Chinook salmon, and 8 sculpin (Figures 8–10). We returned all coho and Chinook salmon, sculpin, and Dolly Varden char not needed for analysis to the water body. We submitted 29 samples from UTR, 52 samples from TRM, and 20 samples from TRB.

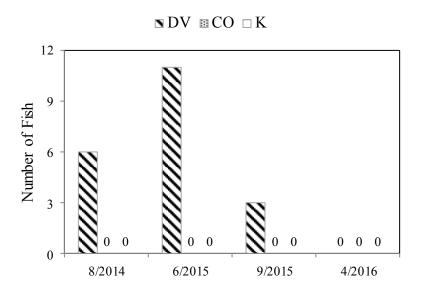


Figure 8.–UTR Dolly Varden char (DV), coho (CO) and Chinook (K) salmon juvenile captures, 2014 through 2016.

Note: We do not have the 2011 total catch data.

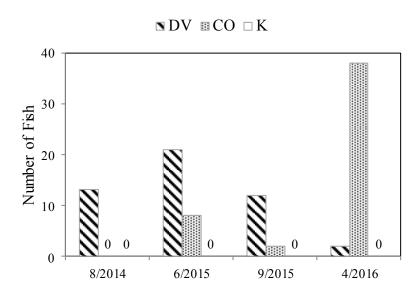


Figure 9.– TRM Dolly Varden char (DV), coho (CO) and Chinook (K) salmon juvenile captures, 2014 through 2016.

Note: We do not have the 2011 total catch data.

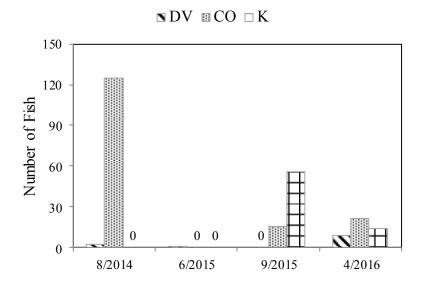


Figure 10.– TRB Dolly Varden char (DV), coho (CO) and Chinook (K) salmon juvenile captures, 2014 through 2016.

Note: We do not have the 2011 total catch data.

We collected basic water quality data at each site during each sampling event (Table 2).

Table 2.—Water quality data collected in the Tulsequah and Taku Rivers.

Date	Location	DO (mg/L)	Conductivity (µS/cm)	Temperature (°C)	Salinty (ppt)	рН
6/15/2011	UTR	_	70.5	1.4	_	5.0
8/20/2014	UTR	17.5	63.8	0.7	0.0	_
6/15/2015	UTR	13.8	76.7	3.3	0.0	_
9/2/2015	UTR	12.3	33.8	2.1	0.0	6.0
4/23/2016	UTR	13.2	42.6	1.8	0.0	6.0
6/15/2011	TRM	_	73.6	3.2	_	6.0
8/20/2014	TRM	17.9	68.7	2.5	0.0	_
6/15/2015	TRM	13.2	77.3	5.2	0.0	_
9/2/2015	TRM	11.0	44.1	3.8	0.0	5.5
4/24/2016	TRM	12.8	54.9	2.4	0.0	5.0
6/15/2011	TRB	_	126.7	9.8	_	7.0
8/20/2014	TRB	13.2	124.4	11.6	0.1	_
6/15/2015	TRB	11.4	123.3	10.8	0.1	_
9/2/2015	TRB	9.3	109.1	9.3	0.1	6.0
4/23/2016	TRB	11.7	118.9	6.2	0.1	6.0

Note: - Indicates data was not collected.

UPPER TULSEQUAH RIVER

We submitted 29 UTR fish for laboratory analyses (Table 3; Figure 11). Three of the samples were a composite of 2 fish each.

Table 3.-UTR juvenile Dolly Varden char whole body metals concentrations (mg/kg).

Date	Sample Number	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
6/15/2011	061511UTRDVJ1	0.02	1.5	0.38	4.8	0.086	0.64	3.3	115
6/16/2011	061611UTRDVJ2	< 0.02	0.8	0.13	3.4	0.041	0.16	4.4	116
6/16/2011	061611UTRDVJ3	0.02	< 0.5	0.11	3.2	0.030	0.04	3.4	161
6/16/2011	061611UTRDVJ4	< 0.02	0.5	0.09	3.4	0.021	0.19	2.3	139
6/16/2011	061611UTRDVJ5	< 0.02	0.8	0.41	4.5	0.048	0.36	3.3	158
6/16/2011	061611UTRDVJ6	< 0.02	< 0.5	0.25	4.0	0.034	0.06	3.8	167
6/16/2011	061611UTRDVJ7	< 0.02	< 0.5	0.16	2.7	0.088	0.06	2.8	154
6/16/2011	061611UTRDVJ8	< 0.02	< 0.5	0.07	2.4	0.067	0.05	2.5	111
6/16/2011	061611UTRDVJ9	< 0.04	<1.0	0.16	3.8	0.064	0.29	2.9	162
6/16/2011	061611UTRDVJ10	< 0.02	< 0.5	0.25	4.7	0.058	0.18	2.6	201
6/16/2011	061611UTRDVJ11	< 0.02	< 0.5	0.20	4.2	0.047	0.03	3.0	194
6/16/2011	061611UTRDVJ12	< 0.02	< 0.5	0.15	2.8	0.033	0.07	4.8	118
8/21/2014	082114UTRDVJ1	< 0.02	0.6	0.07	3.1	0.037	0.18	1.9	116
8/21/2014	082114UTRDVJ2	0.20	< 0.5	0.36	9.7	0.106	0.10	2.5	264
8/22/2014	082214UTRDVJ3	< 0.02	< 0.5	0.06	2.6	0.027	0.05	3.4	123
8/22/2014	082214UTRDVJ4	< 0.02	< 0.5	0.09	2.8	0.021	0.07	3.2	132
8/22/2014	082214UTRDVJ5	< 0.02	0.9	0.15	4.3	0.040	0.38	2.1	122
8/22/2014	082214UTRDVJ6	< 0.02	1.3	0.43	3.6	0.059	0.20	2.4	164
6/16/2015	061615UTRDVJ1	< 0.02	0.6	0.18	36.0	0.039	0.19	2.2	130
6/16/2015	061615UTRDVJ2	< 0.02	1.4	0.46	4.2	0.080	0.12	3.9	163
6/16/2015	061615UTRDVJ3	< 0.02	0.7	0.12	4.0	0.056	0.11	3.2	144
6/16/2015	061615UTRDVJ4	< 0.02	0.8	0.12	3.6	0.061	0.17	2.8	128
6/16/2015	061615UTRDVJ5	< 0.02	0.6	0.12	3.5	0.022	0.51	3.3	165
6/16/2015	061615UTRDVJ6 ^a	< 0.02	0.9	0.30	4.0	0.048	0.13	4.6	147
6/16/2015	061615UTRDVJ7 ^a	< 0.02	1.0	0.10	2.7	0.046	0.08	3.5	124
6/16/2015	061615UTRDVJ8 ^a	< 0.02	1.3	0.22	3.8	0.062	0.16	3.9	127
9/3/2015	090315UTRDVJ1	< 0.02	0.5	0.38	3.0	0.032	0.16	2.8	156
9/3/2015	090315UTRDVJ2	< 0.02	0.8	0.28	3.0	0.057	0.13	3.5	123
9/3/2015	090315UTRDVJ3	0.10	0.6	0.29	2.6	0.058	0.03	3.5	138

^a Composite sample of 2 fish.

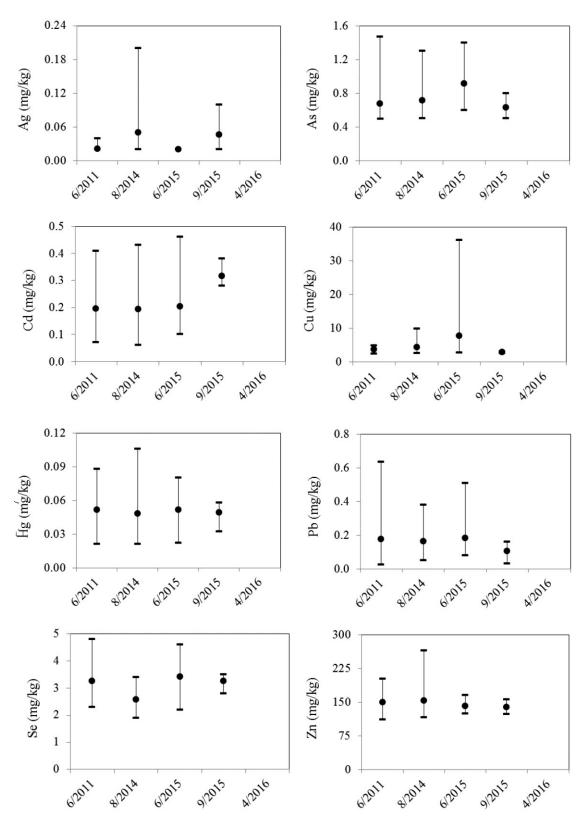


Figure 11.—UTR juvenile Dolly Varden char whole body metals concentrations. *Note:* We did not capture juvenile Dolly Varden char at UTR in 2016.

TULSEQUAH RIVER MINE

We submitted 52 TRM fish for laboratory analyses (Table 4; Figure 12). Three of the samples were a composite of 2 fish each. In April 2016, water levels were lower than any other sampling event and though we only captured 2 Dolly Varden char, we captured 38 juvenile coho salmon in our minnow traps.

Table 4.–TRM juvenile Dolly Varden char whole body metals concentrations (mg/kg).

Date	Sample Number	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
6/16/2011	061611TRMDVJ1	< 0.02	0.6	0.12	4.0	0.041	0.06	2.5	157
6/16/2011	061611TRMDVJ2	< 0.02	0.9	0.19	2.9	0.069	0.12	4.9	97
6/16/2011	061611TRMDVJ3	< 0.02	< 0.5	0.12	2.4	0.039	0.04	3.7	89
6/16/2011	061611TRMDVJ4	< 0.02	1.4	0.23	5.1	0.028	0.35	3.5	118
6/16/2011	061611TRMDVJ5	< 0.02	1.0	0.23	4.9	0.063	0.07	3.5	156
6/16/2011	061611TRMDVJ6	< 0.02	0.9	0.24	4.1	0.064	0.15	3.9	156
6/16/2011	061611TRMDVJ7	< 0.02	< 0.5	0.12	3.2	0.030	0.06	2.9	115
6/16/2011	061611TRMDVJ8	< 0.02	0.7	0.15	3.4	0.045	0.08	3.8	145
6/16/2011	061611TRMDVJ9	< 0.02	0.7	0.14	3.9	0.029	0.09	2.8	141
6/16/2011	061611TRMDVJ10	< 0.02	0.9	0.34	5.1	0.038	0.11	2.9	149
6/16/2011	061611TRMDVJ11	< 0.02	1.3	0.24	4.7	0.035	0.17	4.0	152
6/16/2011	061611TRMDVJ12	< 0.02	1.0	0.16	4.6	0.060	0.06	2.7	154
6/16/2011	061611TRMDVJ13	< 0.02	1.1	0.19	4.0	0.060	0.12	4.0	138
6/16/2011	061611TRMDVJ14	< 0.02	< 0.5	0.11	3.6	0.032	0.06	2.8	110
6/16/2011	061611TRMDVJ15	< 0.02	< 0.5	0.16	4.0	0.048	0.09	3.8	143
6/16/2011	061611TRMDVJ16	< 0.02	0.8	0.16	6.0	0.046	0.05	4.1	144
6/16/2011	061611TRMDVJ17	< 0.02	0.6	0.13	3.4	0.022	0.05	2.6	120
6/16/2011	061611TRMDVJ18	< 0.02	0.8	0.10	3.6	0.273	0.20	1.9	167
6/16/2011	061611TRMDVJ19	< 0.02	0.6	0.17	4.3	0.043	0.09	2.9	131
6/16/2011	061611TRMDVJ20	< 0.02	0.8	0.18	4.0	0.057	0.15	3.8	155
8/21/2014	082114TRMDVJ1	< 0.02	< 0.5	0.35	3.2	0.033	0.05	2.7	149
8/21/2014	082114TRMDVJ2 ^a	< 0.02	0.6	0.37	3.0	0.037	0.08	4.0	123
8/21/2014	082114TRMDVJ3	< 0.02	< 0.5	0.27	4.4	0.044	0.08	2.7	154
8/21/2014	082114TRMDVJ4	< 0.02	0.6	0.24	3.4	0.035	0.12	2.7	133
8/21/2014	082114TRMDVJ5	< 0.02	0.7	0.15	2.9	0.027	0.05	2.4	141
8/21/2014	082114TRMDVJ6	< 0.02	< 0.5	0.12	2.3	0.054	0.03	2.4	114
8/21/2014	082114TRMDVJ7	< 0.02	0.6	0.30	3.5	0.043	0.11	3.4	119
8/21/2014	082114TRMDVJ8 ^a	< 0.02	0.9	0.37	5.3	0.037	0.22	2.8	154
8/21/2014	082114TRMDVJ9 ^a	< 0.02	0.7	0.49	3.5	0.041	0.06	2.8	112
8/21/2014	082114TRMDVJ10	0.04	0.5	0.34	3.5	0.028	0.07	6.4	143
6/16/2015	061615TRMDVJ1	< 0.02	0.5	0.36	4.5	0.031	0.09	2.8	140
6/16/2015	061615TRMDVJ2	< 0.02	0.5	0.30	5.3	0.031	0.06	3.3	159
6/16/2015	061615TRMDVJ3	< 0.02	0.6	0.27	3.5	0.031	0.07	5.3	120
6/16/2015	061615TRMDVJ4	< 0.02	0.6	0.13	3.3	0.022	0.03	6.8	137
6/16/2015	061615TRMDVJ5	< 0.02	0.6	0.52	5.5	0.039	0.09	2.9	186

-continued-

Table 4.–Page 2 of 2.

Date	Sample Number	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
6/16/2015	061615TRMDVJ6	< 0.02	1.5	0.37	8.2	0.035	0.54	3.8	119
6/16/2015	061615TRMDVJ7	< 0.02	0.5	0.46	10.5	0.025	0.08	3.2	136
6/16/2015	061615TRMDVJ8	< 0.02	0.5	0.26	4.0	0.020	0.05	2.6	124
6/16/2015	061615TRMDVJ9	< 0.02	2.4	0.52	8.7	0.034	0.39	3.5	154
6/16/2015	061615TRMDVJ10	< 0.02	1.3	0.59	7.5	0.027	0.33	2.9	151
9/3/2015	090315TRMDVJ1	< 0.02	< 0.5	0.19	3.7	0.028	0.11	3.5	120
9/3/2015	090315TRMDVJ2	< 0.02	< 0.5	0.14	3.4	0.050	0.04	2.9	121
9/3/2015	090315TRMDVJ3	< 0.02	0.6	0.20	3.2	0.036	0.12	3.0	117
9/3/2015	090315TRMDVJ4	0.04	0.8	0.22	3.4	0.054	0.06	2.4	155
9/3/2015	090315TRMDVJ5	0.03	0.5	0.18	3.4	0.098	0.07	2.0	138
9/3/2015	090315TRMDVJ6	< 0.02	1.1	0.44	3.7	0.035	0.12	2.6	142
9/3/2015	090315TRMDVJ7	< 0.02	0.7	0.45	4.0	0.026	0.15	2.8	130
9/3/2015	090315TRMDVJ8	0.03	< 0.5	0.40	3.4	0.048	0.07	2.9	130
9/3/2015	090315TRMDVJ9	< 0.02	< 0.5	0.16	2.9	0.036	0.06	2.5	136
9/3/2015	090315TRMDVJ10	< 0.02	0.5	0.15	3.0	0.076	0.07	2.9	125
4/24/2016	042416TRMDVJ1	< 0.02	2.4	0.30	12.4	0.041	0.21	3.3	176
4/24/2016	042416TRMDVJ2	< 0.02	< 0.5	0.14	4.3	0.013	0.23	3.1	136

^a Composite sample of 2 fish.

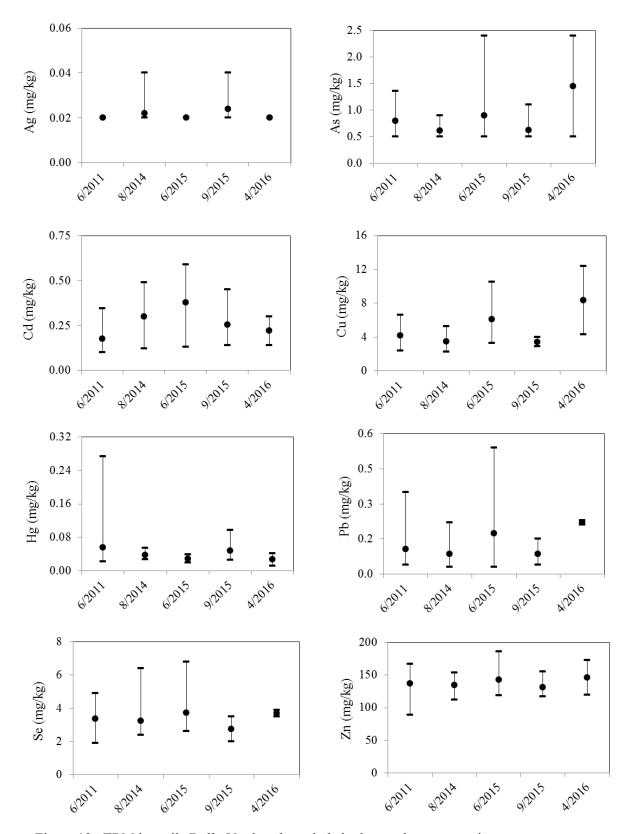


Figure 12.–TRM juvenile Dolly Varden char whole body metals concentrations.

TAKU RIVER BORDER

We submitted 20 TRB fish for laboratory analyses (Table 5; Figure 13). Dolly Varden char proved elusive at this site; we captured 1 in August 2014, 1 in June 2015, and none in September 2015. Unfortunately, in September 2015, 1 of the minnow trap lines was cut and we did not recover the trap.

Table 5.-TRB juvenile Dolly Varden char whole body metals concentrations (mg/kg).

Date	Sample Number	Ag	As	Cd	Cu	Hg	Pb	Se	Zn
6/3/2011	060311TRBDVJ7	< 0.02	0.7	0.33	3.8	0.042	0.10	2.2	155
6/3/2011	060311TRBDVJ8	< 0.02	1.1	0.35	4.0	0.036	0.41	4.7	109
6/3/2011	060311TRBDVJ9	< 0.04	1.3	0.24	5.6	0.056	0.13	2.1	115
6/13/2011	061311TRBDVJ2	< 0.02	0.8	0.13	5.8	0.065	0.09	2.6	134
6/13/2011	061311TRBDVJ3	< 0.02	0.5	0.06	2.8	0.058	0.03	1.8	113
6/13/2011	061311TRBDVJ4	< 0.02	0.6	0.39	3.3	0.027	0.12	2.4	131
6/13/2011	061311TRBDVJ5	< 0.02	0.8	0.22	3.0	0.037	0.09	2.2	134
6/13/2011	061311TRBDVJ6	< 0.02	0.7	0.14	3.1	0.048	0.11	2.5	113
6/14/2011	061411TRBDVJ1	< 0.02	0.5	0.17	4.0	0.069	0.05	2.0	123
8/21/2014	082114TRBDVJ1	< 0.02	1.3	0.36	3.1	0.060	0.10	2.9	143
6/16/2015	061615TRBDVJ1	< 0.02	1.3	0.69	3.7	0.045	0.12	3.3	159
4/24/2016	042416TRBDVJ1	< 0.02	0.6	0.28	5.2	0.037	0.27	3.5	173
4/24/2016	042416TRBDVJ2	< 0.02	< 0.5	0.06	2.3	0.098	< 0.02	3.9	120
4/24/2016	042416TRBDVJ3	< 0.02	0.5	0.10	3.1	0.053	0.02	2.3	134
4/24/2016	042416TRBDVJ4	< 0.02	1.4	0.25	5.0	0.033	0.06	2.4	174
4/24/2016	042416TRBDVJ5	< 0.02	1.3	0.33	5.4	0.133	0.22	2.1	147
4/24/2016	042416TRBDVJ6	< 0.02	0.5	0.29	3.2	0.117	0.11	3.5	119
4/24/2016	042416TRBDVJ7	< 0.02	1.1	0.31	5.0	0.057	0.12	3.0	179
4/24/2016	042416TRBDVJ8	< 0.02	< 0.5	0.17	3.7	0.033	0.02	2.5	132
4/24/2016	042416TRBDVJ9	< 0.02	< 0.5	0.17	2.4	0.015	0.10	2.1	115

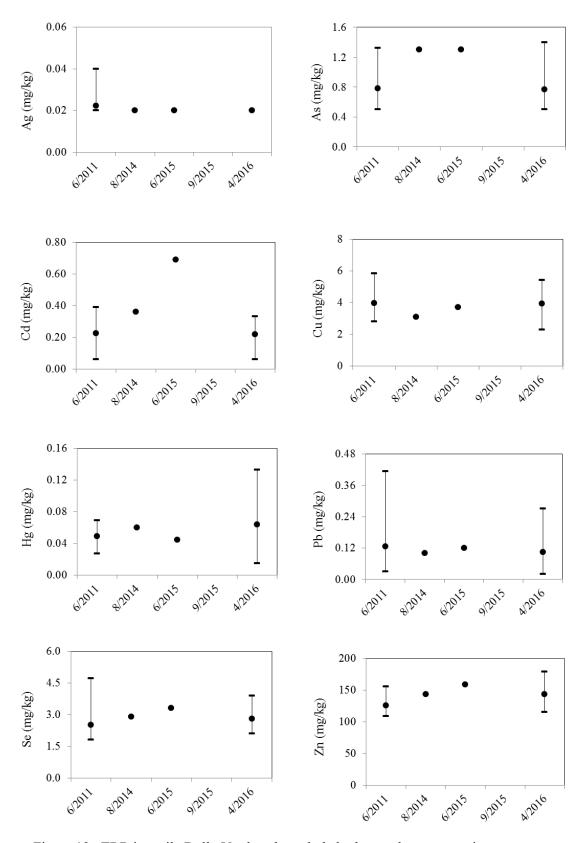


Figure 13.-TRB juvenile Dolly Varden char whole body metals concentrations.

COMPARISON AMONG SITES

Except for Se and Hg, there were no statistical differences between the UTR, TRM, and TRB pooled mean ranks of juvenile Dolly Varden char whole body metals concentrations. The mean rank of Se at TRB was lower (p = 0.0124) than at UTR and TRM, and at least one difference existed for Hg between the sites (p = 0.0348), though the Dunn's multiple comparison test did not reveal where.⁵

Since the literature does not provide reference levels above which whole body metals concentrations become a liability for salmonids, we compared the pooled mean ranks of juvenile Dolly Varden char whole body metals concentrations among UTR, TRM, and TRB with a 15-year data set (Brewster 2016a) collected upstream of the Greens Creek Mine about 92 km southwest of the Tulsequah Chief Mine (Figure 14). The Greens Creek Mine mean rank for each analyte is statistically different and higher than any from UTR, TRM, and TRB.

Division of Commercial Fisheries Biometrician Kray Van Kirk graphed UTR, TRM, and TRB individual analyte concentrations for all years in a scatterplot to show the range of values we observed. Figure 15 illustrates individual fish analyte concentrations generally clustered with outliers suggesting metal attached to gills or occurring with sediments in the gut contents. Mr. Van Kirk also graphed the UTR, TRM, and TRB pooled mean analyte concentrations, showing uncertainty as one standard deviation from the mean (Figure 16). We included nondetections at the minimum detection level and find the values reasonable when compared with the statewide dataset in Appendix A.

⁵ Curious about this phenomenon, Division of Sport Fish Regional Fisheries Research Coordinator Jeff Nichols applied Waller-Duncan K-ratio and Duncan's multiple comparison tests to the Hg concentration data. The results suggest the TRM and TRB data are statistically different from each other, but the UTR is not statistically different from the other 2 sites.

⁶ We do not sample for As at the Greens Creek Mine.

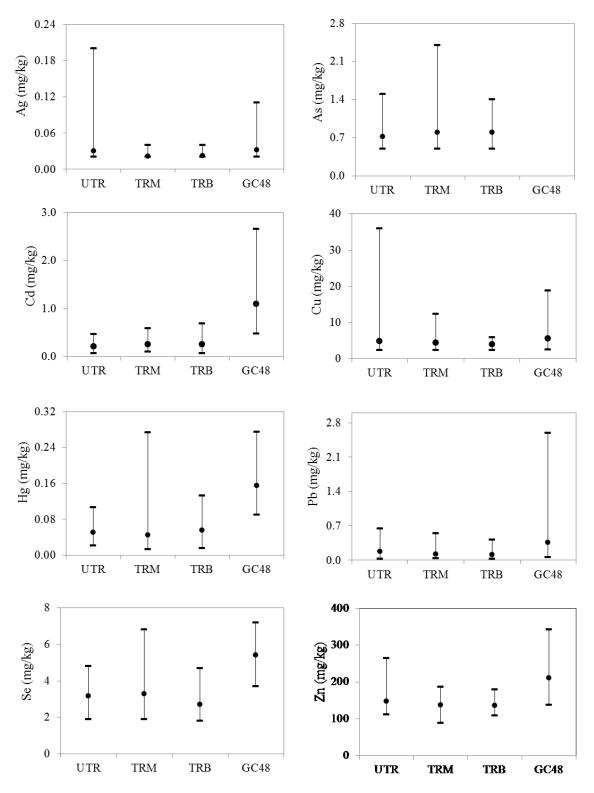


Figure 14.-UTR, TRM, TRB, and GC48 juvenile Dolly Varden char whole body metals concentrations.

Note: GC48=Greens Creek Mine above mining.

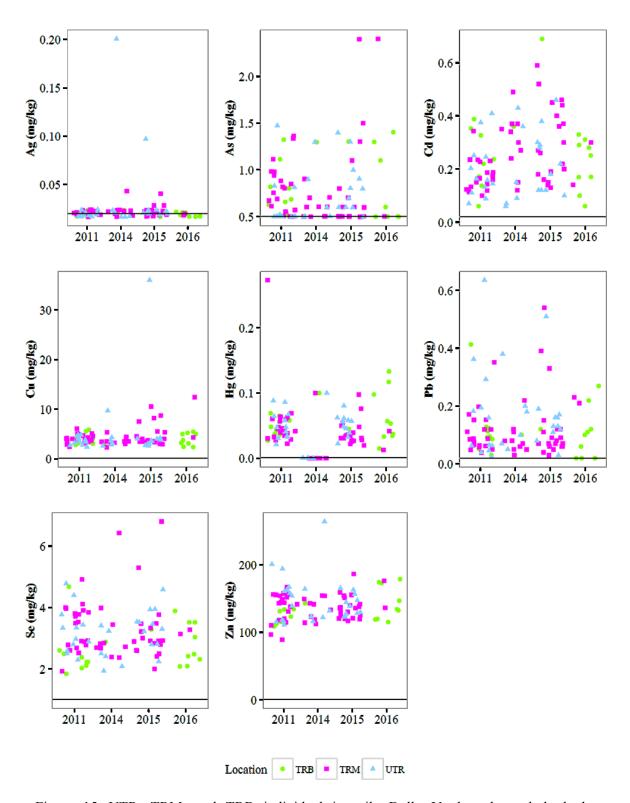


Figure 15.-UTR, TRM, and TRB individual juvenile Dolly Varden char whole body metals concentrations across years.

Note: Horizontal line in each graph defines method reporting limit.

Note: We report all nondetections at the method reporting limits.

Note: Colors match the sample sites identified in Figure 1.

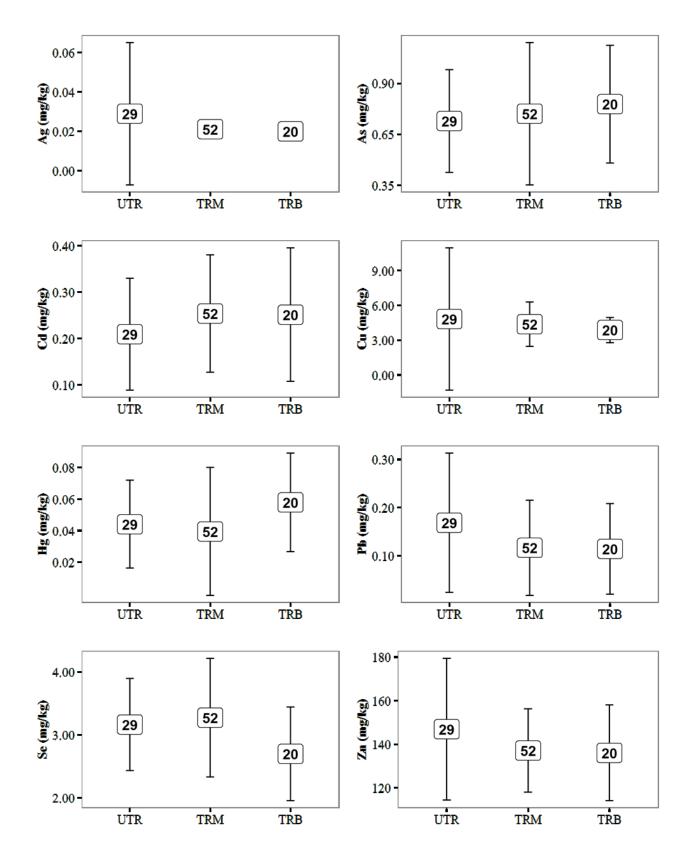


Figure 16.–UTR, TRM, and TRB sample size and pooled mean analyte concentration data \pm one standard deviation.

REFERENCES CITED

- Brodie, J. M., and J. T. Chapman. 1993. Development of rehabilitation plans for acid rock drainage control at two closed underground mines: Proceedings of the 17th annual British Columbia mine reclamation symposium, Port Hardy, BC.
- Brewster, B. P. 2016a. Aquatic biomonitoring at Greens Creek Mine, 2015. Alaska Department of Fish and Game, Technical Report 16-04, Douglas, AK.
- Brewster, B. P. 2016b. Aquatic studies at Kensington Gold Mine, 2015. Alaska Department of Fish and Game, Technical Report 16-03, Douglas, AK.
- Chapman, G. A. 1978a. Effects of continuous zinc exposure on sockeye salmon during adult-to smolt freshwater residency. Transactions of the American Fisheries Society 107:828–836.
- Chapman, G. A. 1978b. Toxicities of cadmium, copper and zinc to four juvenile stages of Chinook salmon and steelhead. Transactions of the American Fisheries Society 107(6):841–847.
- Chieftain Metals, Inc. 2012. Tulsequah Chief project interim water treatment plant mitigation and re-start report. Toronto, ON.
- Gartner Lee Ltd. 2008. Tulsequah Chief Mine environmental effects monitoring program for the Tulsequah River 2007 baseline data collection. Prepared for Redfern Resources Ltd., Vancouver, BC.
- Harper, K. J., J. M. Brekken, J. M. Alas, R. C. Benkert, and S. B. Haught. 2013. Aquatic biomonitoring at the Pebble Prospect, 2010. Alaska Department of Fish and Game, Technical Report No. 11-04 (revised), Anchorage, AK.
- Hitselberger, J. P. 2012. Tulsequah Chief Mine acid rock drainage: whole body metals concentrations in Dolly Varden char. Alaska Department of Fish and Game, Technical Report No. 11-09, Douglas, AK.
- Lough, J. and I. Sharpe. 2003. Tulsequah and Taku Rivers mass balance water quality report in support of the BC Environmental Assessment Act review of the proposed Tulsequah Chief Mine. BC Ministry of Water Land and Air Protection, Environmental Protection Division, Skeena Region Environmental Quality Section, Data Report #2003-1.
- Magnus, D. L., D. Brandenburger, K. F. Crabtree, K. A. Pahlke, and S. A. McPherson. 2006. Juvenile salmon capture and coded wire tagging manual. Alaska Department of Fish and Game, Special Publication No. 06-31, Anchorage, AK.
- Ott, A. G., P. T. Bradley, and H. L. Scannell. 2016. Aquatic biomonitoring at Red Dog Mine, 2015. Alaska Department of Fish and Game, Technical Report 16-01, Fairbanks, Alaska.
- Palmer Environmental Consulting Group, Core6 Environmental Ltd., and Triton Environmental Consultants Ltd. 2013. Aquatic ecological risk assessment Tulsequah Chief Mine. Prepared for Chieftain Metals Inc., Port Coquitlam, BC.
- Paustian, S. 2010. Channel type user guide revision 2010. USDA Forest Service, R10-TP-26.
- SRK Consulting. 2010. Big Bull Project, Tulsequah Chief property, Technical Report, Northern British Columbia. Prepared for Chieftain Metals Inc., Toronto, ON.
- Steffen Robertson and Kirsten (Canada) Inc. 1992. Tulsequah Chief Mine site assessment and options for rehabilitation for acidic mine drainage abatement. Prepared for Cominco Ltd., Vancouver, BC.
- Timothy, J., and K. M. Kanouse. 2014. Aquatic studies at Kensington Gold Mine, 2013. Alaska Department of Fish and Game, Technical Report No. 14-01, Douglas, AK.

APPENDIX

APPENDIX A

STATEWIDE DATASET

JUVENILE DOLLY VARDEN CHAR WHOLE BODY METALS CONCENTRATIONS

Legend

Appendix A1.—Tulsequah Chief Mine data.

Appendix A2.—Pebble Prospect data.

Appendix A3.–Red Dog Mine data.

Appendix A4.—Greens Creek Mine data.

Appendix A5.–Kensington Gold Mine data.

Appendix A6.—Statewide graphs.

Appendix A7.—Statewide sampling site maps.

Legend

Site	Acronym
Tulsequah Chief Mine	
Upper Tulsequah River	UTR*
Tulsequah River Mine	TRM
Taku River Border	TRB
Pebble Prospect	
North Fork Koktuli	NFK**
South Fork Koktuli	SFK**
Upper Talarik	UT**
Red Dog Mine	
Anxiety Ridge at Haul Road	ARH
Anxiety Ridge Downstream	ARD
Anxiety Ridge Upstream	ARU*
Aufeis Downstream	AD
Aufeis North Fork	ANF*
Aufeis South Fork	ASF*
Buddy Downstream of Road	BD
Competition Lower 202	COM**
Evaingiknuk	EVA
Ferric	FER*
Grayling Junior	GJR*
Ikalukrok	IKA**
Omikviorok Downstream	OD
Omikviorok North Fork	ONF*
Omikviorok South Fork	OSF*
Red Dog Mainstem	RDM
Red Dog North Fork	RDNF
Red Dog North Fork Upstream	RDNFU*

Site	Acronym
Greens Creek Mine	
Greens Creek Site 48	GC48**
Greens Creek Site 54	GC54
Tributary Creek Site 9	TC9
Greens Creek Site 6	GC6
Kensington Gold Mine	
Lower Slate Creek	LSC
East Fork Slate Creek	EFSC
West Fork Slate Creek	WFSC*
Upper Slate Creek	USC*

^{*}Reference

Metal	Symbol
Silver	Ag
Aluminum	Al
Arsenic	As
Beryllium	Be
Cadmium	Cd
Chromium	Cr
Copper	Cu
Mercury	Hg
Molybdenum	Mo
Nickel	Ni
Lead	Pb
Antimony	Sb
Selenium	Se
Thallium	T1
Zinc	Zn

^{**}Exploration

Appendix A1 Page 1 of 4.—Tulsequah Chief Mine, Upper Tulsequah River (UTR) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
6/15/2011	UTR	75	4.6	0.02		1.5		0.38		4.8	0.086			0.64		3.3		115
6/16/2011	UTR	100	9.2	< 0.02		< 0.5		0.15		2.8	0.033			0.07		4.8		118
6/16/2011	UTR	68	3.7	< 0.04		<1.0		0.16		3.8	0.064			0.29		2.9		162
6/16/2011	UTR	115	13.8	0.02		< 0.5		0.11		3.2	0.030			0.04		3.4		161
6/16/2011	UTR	111	12.6	< 0.02		< 0.5		0.25		4.0	0.034			0.06		3.8		167
6/16/2011	UTR	114	14.3	< 0.02		0.8		0.41		4.5	0.048			0.36		3.3		158
6/16/2011	UTR	79	4.0	< 0.02		< 0.5		0.16		2.7	0.088			0.06		2.8		154
6/16/2011	UTR	105	11.6	< 0.02		0.8		0.13		3.4	0.041			0.16		4.4		116
6/16/2011	UTR	124	18.1	< 0.02		0.5		0.09		3.4	0.021			0.19		2.3		139
6/16/2011	UTR	113	14.6	< 0.02		< 0.5		0.20		4.2	0.047			0.03		3.0		194
6/16/2011	UTR	124	15.4	< 0.02		< 0.5		0.25		4.7	0.058			0.18		2.6		201
6/16/2011	UTR	126	21.6	< 0.02		< 0.5		0.07		2.4	0.067			0.05		2.5		111
8/21/2014	UTR	125	19.2	< 0.02		0.6		0.07		3.1	0.037			0.18		1.9		116
8/21/2014	UTR	125	17.1	0.20		< 0.5		0.36		9.7	0.106			0.10		2.5		264
8/22/2014	UTR	115	18.2	< 0.02		< 0.5		0.06		2.6	0.027			0.05		3.4		123
8/22/2014	UTR	115	15.6	< 0.02		< 0.5		0.09		2.8	0.021			0.07		3.2		132
8/22/2014	UTR	107	12.6	< 0.02		0.9		0.15		4.3	0.040			0.38		2.1		122
8/22/2014	UTR	78	5.2	< 0.02		1.3		0.43		3.6	0.059			0.20		2.4		164
6/16/2015	UTR	110	13.3	< 0.02		0.6		0.18		36.0	0.039			0.19		2.2		130
6/16/2015	UTR	95	8.7	< 0.02		1.4		0.46		4.2	0.080			0.12		3.9		163
6/16/2015	UTR	115	17.5	< 0.02		0.7		0.12		4.0	0.056			0.11		3.2		144
6/16/2015	UTR	113	13.7	< 0.02		0.8		0.12		3.6	0.061			0.17		2.8		128
6/16/2015	UTR	85	7.1	< 0.02		0.6		0.12		3.5	0.022			0.51		3.3		165
6/16/2015	UTR	83,65	8.1	< 0.02		0.9		0.30		4.0	0.048			0.13		4.6		147
6/16/2015	UTR	80,63	7.3	< 0.02		1.0		0.10		2.7	0.046			0.08		3.5		124
6/16/2015	UTR	70,63	6.5	< 0.02		1.3		0.22		3.8	0.062			0.16		3.9		127
9/3/2015	UTR	97	8.0	< 0.02		0.5		0.38		3.0	0.032			0.16		2.8		156
9/3/2015	UTR	115	13.7	< 0.02		0.8		0.28			0.057			0.13		3.5		123
9/3/2015	UTR	110	12.3	0.10		0.6		0.29		2.6	0.058			0.03		3.5		138

-continued-

Appendix A1 Page 2 of 4.—Tulsequah Chief Mine, Tulsequah River Mine (TRM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
6/16/2011	TRM	130	19.9	< 0.02		0.6		0.12		4.0	0.041			0.06		2.5		157
6/16/2011	TRM	100	9.4	< 0.02		0.9		0.34		5.1	0.038			0.11		2.9		149
6/16/2011	TRM	95	10.4	< 0.02		1.3		0.24		4.7	0.035			0.17		4.0		152
6/16/2011	TRM	110	14.3	< 0.02		1.0		0.16		4.6	0.060			0.06		2.7		154
6/16/2011	TRM	107	13.8	< 0.02		1.1		0.19		4.0	0.060			0.12		4.0		138
6/16/2011	TRM	125	18.7	< 0.02		< 0.5		0.11		3.6	0.032			0.06		2.8		110
6/16/2011	TRM	95	8.7	< 0.02		< 0.5		0.16		4.0	0.048			0.09		3.8		143
6/16/2011	TRM	105	11.9	< 0.02		0.8		0.16		6.0	0.046			0.05		4.1		144
6/16/2011	TRM	110	12.1	< 0.02		0.6		0.13		3.4	0.022			0.05		2.6		120
6/16/2011	TRM	110.0	13.7	< 0.02		0.8		0.10		3.6	0.273			0.20		1.9		167
6/16/2011	TRM	120	15.4	< 0.02		0.6		0.17		4.3	0.043			0.09		2.9		131
6/16/2011	TRM	93	8.3	< 0.02		0.9		0.19		2.9	0.069			0.12		4.9		97
6/16/2011	TRM	122	19.3	< 0.02		0.8		0.18		4.0	0.057			0.15		3.8		155
6/16/2011	TRM	105	12.4	< 0.02		< 0.5		0.12		2.4	0.039			0.04		3.7		89
6/16/2011	TRM	110	14.1	< 0.02		1.4		0.23		5.1	0.028			0.35		3.5		118
6/16/2011	TRM	113	14.0	< 0.02		1.0		0.23		4.9	0.063			0.07		3.5		156
6/16/2011	TRM	125	19.9	< 0.02		0.9		0.24		4.1	0.064			0.15		3.9		156
6/16/2011	TRM	112	13.4	< 0.02		< 0.5		0.12		3.2	0.030			0.06		2.9		115
6/16/2011	TRM	125	20.0	< 0.02		0.7		0.15		3.4	0.045			0.08		3.8		145
6/16/2011	TRM	115	14.5	< 0.02		0.7		0.14		3.9	0.029			0.09		2.8		141
8/21/2014	TRM	93	8.5	< 0.02		< 0.5		0.35		3.2	0.033			0.05		2.7		149
8/21/2014	TRM	83/57	7.4	< 0.02		0.6		0.37		3.0	0.037			0.08		4.0		123
8/21/2014	TRM	95	8.2	< 0.02		< 0.5		0.27		4.4	0.044			0.08		2.7		154
8/21/2014	TRM	96	7.2	< 0.02		0.6		0.24		3.4	0.035			0.12		2.7		133
8/21/2014	TRM	100	9.9	< 0.02		0.7		0.15		2.9	0.027			0.05		2.4		141
8/21/2014	TRM	107	11.2	< 0.02		< 0.5		0.12		2.3	0.054			0.03		2.4		114
8/21/2014	TRM	88	6.9	< 0.02		0.6		0.30		3.5	0.043			0.11		3.4		119
8/21/2014	TRM	70/56	6.0	< 0.02		0.9		0.37		5.3	0.037			0.22		2.8		154
8/21/2014	TRM	80/64	8.1	< 0.02		0.7		0.49		3.5	0.041			0.06		2.8		112
8/21/2014	TRM	77	5.3	0.04		0.5		0.34		3.5	0.028			0.07		6.4		143

-continued-

Appendix A1 Page 3 of 4.—Tulsequah Chief Mine, Tulsequah River Mine (TRM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
6/16/2015	TRM	105	12.5	< 0.02		0.5		0.36		4.5	0.031			0.09		2.8		140
6/16/2015	TRM	120	15.1	< 0.02		0.5		0.30		5.3	0.031			0.06		3.3		159
6/16/2015	TRM	100	10.2	< 0.02		0.6		0.27		3.5	0.031			0.07		5.3		120
6/16/2015	TRM	88	6.6	< 0.02		0.6		0.13		3.3	0.022			0.03		6.8		137
6/16/2015	TRM	90	6.9	< 0.02		0.6		0.52		5.5	0.039			0.09		2.9		186
6/16/2015	TRM	115	14.9	< 0.02		1.5		0.37		8.2	0.035			0.54		3.8		119
6/16/2015	TRM	90	8.8	< 0.02		0.5		0.46		10.5	0.025			0.08		3.2		136
6/16/2015	TRM	112	11.2	< 0.02		0.5		0.26		4.0	0.020			0.05		2.6		124
6/16/2015	TRM	105	11.8	< 0.02		2.4		0.52		8.7	0.034			0.39		3.5		154
6/16/2015	TRM	115	15.1	< 0.02		1.3		0.59		7.5	0.027			0.33		2.9		151
9/3/2015	TRM	128	18.3	< 0.02		< 0.5		0.19		3.7	0.028			0.11		3.5		120
9/3/2015	TRM	110	12.7	< 0.02		< 0.5		0.14		3.4	0.050			0.04		2.9		121
9/3/2015	TRM	125	17.3	< 0.02		0.6		0.20		3.2	0.036			0.12		3.0		117
9/3/2015	TRM	105	11.1	0.04		0.8		0.22		3.4	0.054			0.06		2.4		155
9/3/2015	TRM	132	20.5	0.03		0.5		0.18		3.4	0.098			0.07		2.0		138
9/3/2015	TRM	108	12.2	< 0.02		1.1		0.44		3.7	0.035			0.12		2.6		142
9/3/2015	TRM	102	10.4	< 0.02		0.7		0.45		4.0	0.026			0.15		2.8		130
9/3/2015	TRM	105	11.1	0.03		< 0.5		0.40		3.4	0.048			0.07		2.9		130
9/3/2015	TRM	100	9.2	< 0.02		< 0.5		0.16		2.9	0.036			0.06		2.5		136
9/3/2015	TRM	90	6.6	< 0.02		0.5		0.15		3.0	0.076			0.07		2.9		125
4/24/2016	TRM	80	5.6	< 0.02		2.4		0.30		12.4	0.041			0.21		3.3		176
4/24/2016	TRM	85	6.6	< 0.02		< 0.5		0.14		4.3	0.013			0.23		3.1		136

Appendix A1 Page 4 of 4.—Tulsequah Chief Mine, Taku River Border (TRB) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
6/3/2011	TRB	100	8.1	< 0.02		0.7		0.33		3.8	0.042			0.10		2.2		155
6/13/2011	TRB	135	23.6	< 0.02		0.8		0.13		5.8	0.065			0.09		2.6		134
6/14/2011	TRB	100	10.0	< 0.02		0.5		0.17		4.0	0.069			0.05		2.0		123
6/3/2011	TRB	58	1.7	< 0.04		1.3		0.24		5.6	0.056			0.13		2.1		115
6/13/2011	TRB	145	18.6	< 0.02		0.8		0.22		3.0	0.037			0.09		2.2		134
6/13/2011	TRB	114	14.9	< 0.02		0.7		0.14		3.1	0.048			0.11		2.5		113
6/13/2011	TRB	170	40.8	< 0.02		0.5		0.06		2.8	0.058			0.03		1.8		113
6/13/2011	TRB	75	4.5	< 0.02		0.6		0.39		3.3	0.027			0.12		2.4		131
6/3/2011	TRB	80	5.1	< 0.02		1.1		0.35		4.0	0.036			0.41		4.7		109
8/21/2014	TRB	122	19.4	< 0.02		1.3		0.36		3.1	0.060			0.10		2.9		143
6/16/2015	TRB	120	17.9	< 0.02		1.3		0.69		3.7	0.045			0.12		3.3		159
4/24/2016	TRB	100	9.1	< 0.02		0.6		0.28		5.2	0.037			0.27		3.5		173
4/24/2016	TRB	155	33.1	< 0.02		< 0.5		0.06		2.3	0.098			< 0.02		3.9		120
4/24/2016	TRB	155	30.6	< 0.02		0.5		0.10		3.1	0.053			0.02		2.3		134
4/24/2016	TRB	130	21.4	< 0.02		1.4		0.25		5.0	0.033			0.06		2.4		174
4/24/2016	TRB	120	15.9	< 0.02		1.3		0.33		5.4	0.133			0.22		2.1		147
4/24/2016	TRB	110	14.1	< 0.02		0.5		0.29		3.2	0.117			0.11		3.5		119
4/24/2016	TRB	95	9.9	< 0.02		1.1		0.31		5.0	0.057			0.12		3.0		179
4/24/2016	TRB	95	9.8	< 0.02		< 0.5		0.17		3.7	0.033			0.02		2.5		132
4/24/2016	TRB	70	3.8	< 0.02		<0.5		0.17		2.4	0.015			0.10		2.1		115

Appendix A2 Page 1 of 2.—Pebble Prospect, North Fork Koktuli (NFK) and South Fork Koktuli (SFK) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/31/2010	NFK	130	21.5	< 0.02		0.29	< 0.020	0.012	0.4	3.1	0.147	0.07	0.40	0.02	< 0.050	2.3	0.011	102
8/31/2010	NFK	128	18.4	< 0.02		0.29	< 0.020	0.022	0.7	7.1	0.146	0.07	0.72	0.05	< 0.050	2.5	0.015	128
8/31/2010	NFK	105	11.1	< 0.02		0.34	0.014	0.036	0.4	3.6	0.141	0.10	0.94	0.12	0.090	3.4	0.045	135
8/31/2010	NFK	120	14.6	< 0.02		0.45	0.013	0.027	1.4	4.0	0.096	0.10	0.96	0.19	< 0.050	3.0	0.016	137
8/31/2010	NFK	105	9.5	< 0.02		1.52	0.032	0.026	3.2	6.7	0.094	0.22	1.75	0.25	< 0.050	3.0	0.019	160
8/31/2010	NFK	120	14.5	< 0.02		1.13	0.040	0.024	8.4	5.4	0.117	0.24	2.69	0.34	< 0.050	2.1	0.026	122
8/31/2010	NFK	120	16.3	0.03		1.22	0.049	0.039	13.9	6.9	0.107	0.34	5.36	1.02	0.055	2.4	0.029	85
8/31/2010	NFK	107	10.1	< 0.02		0.17	< 0.020	0.019	2.4	4.4	0.085	0.08	1.38	0.06	< 0.050	2.2	0.014	112
8/31/2010	NFK	115	14.5	< 0.02		0.96	0.037	0.020	17.5	4.2	0.121	0.39	6.77	0.52	< 0.050	2.4	0.019	97
8/31/2010	NFK	118	13.5	0.02		2.20	0.086	0.047	12.1	9.5	0.093	0.34	3.51	0.91	0.087	1.9	0.040	94
8/31/2010	NFK	125	17.4	0.02		2.25	0.071	0.031	9.4	5.2	0.104	0.37	2.71	0.70	< 0.050	1.6	0.024	87
8/31/2010	NFK	104	10.0	< 0.02		2.22	0.090	0.049	9.1	6.6	0.095	0.23	3.35	0.36	< 0.050	3.3	0.036	102
8/31/2010	NFK	105	10.5	< 0.02		0.85	0.045	0.028	3.8	4.7	0.096	0.21	2.03	0.42	< 0.050	2.9	0.031	99
8/31/2010	NFK	112	12.9	< 0.02		0.78	0.035	0.020	16.5	5.6	0.09	0.84	3.12	0.20	< 0.050	2.0	0.025	79
8/30/2010	SFK	135	22.1	< 0.02		1.06	0.027	0.115	5.4	6.7	0.055	0.45	1.41	0.68	< 0.050	3.7	0.025	97
8/30/2010	SFK	114	12.3	< 0.02		0.33	< 0.020	0.174	1.0	4.6	0.052	0.26	0.95	0.08	< 0.050	3.8	0.023	104
8/30/2010	SFK	136	22.5	< 0.02		1.79	0.035	0.177	12.6	14.2	0.038	0.61	4.48	1.95	< 0.050	2.7	0.030	108
8/30/2010	SFK	135	22.4	< 0.02		0.62	0.013	0.076	2.8	6.1	0.048	0.26	1.16	0.25	< 0.050	4.8	0.027	108
8/30/2010	SFK	144	28.1	< 0.02		1.71	0.039	0.149	16.4	9.2	0.042	0.74	4.93	1.38	< 0.050	4.1	0.039	98
8/30/2010	SFK	126	18.5	0.03		6.57	0.110	0.227	8.5	20.3	0.034	1.11	3.16	2.78	< 0.050	2.0	0.068	129
8/30/2010	SFK	138	21.1	< 0.02		1.44	0.022	0.125	1.3	9.7	0.026	0.56	1.20	0.38	0.027	3.0	0.036	121
8/30/2010	SFK	128	19.0	< 0.02		0.77	0.015	0.222	2.6	5.1	0.043	0.18	1.39	0.64	< 0.050	3.4	0.045	111
8/30/2010	SFK	138	22.1	< 0.02		0.47	0.006	0.063	3.0	5.8	0.035	0.21	0.81	0.20	0.031	2.3	0.012	73
8/30/2010	SFK	129	18.5	< 0.02		0.58	0.007	0.139	2.6	4.5	0.048	0.31	1.13	0.33	< 0.050	4.5	0.040	108
8/30/2010	SFK	132	21.2	< 0.02		3.32	0.110	0.298	18.1	15.1	0.085	1.54	3.72	2.28	0.151	5.0	0.063	131
8/30/2010	SFK	148	26.6	< 0.02		0.60	0.014	0.077	3.7	5.3	0.053	0.26	1.17	0.32	< 0.050	4.7	0.029	106
8/30/2010	SFK	135	20.9	< 0.02		1.10	0.030	0.128	6.8	7.9	0.038	0.39	2.39	0.71	0.033	4.3	0.034	101
8/30/2010	SFK	128	18.1	< 0.02		0.35	0.013	0.083	0.5	3.5	0.057	0.14	0.58	0.10	0.099	4.2	0.057	106
8/30/2010	SFK	118	13.5	< 0.02		0.29	< 0.020	0.079	0.2	3.9	0.012	0.07	0.43	0.03	< 0.050	2.5	0.011	90

Appendix A2 Page 2 of 2.—Pebble Prospect, Upper Talarik (UT) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
9/2/2010	UT	105	9.1	< 0.02		0.42	0.015	0.025	2.1	3.5	0.065	0.20	1.17	0.17	0.069	0.4	0.019	111
9/2/2010	UT	110	12.5	< 0.02		0.90	0.038	0.013	2.5	3.5	0.056	0.22	1.41	0.22	0.062	0.5	0.015	95
9/2/2010	UT	125	17.3	< 0.02		0.53	0.008	0.015	1.3	4.0	0.095	0.13	0.77	0.10	0.025	0.8	0.016	100
9/2/2010	UT	109	11.9	< 0.02		0.33	0.008	0.015	1.9	3.0	0.034	0.13	0.71	0.09	0.022	<1.0	0.016	94
9/2/2010	UT	106	10.2	< 0.02		0.47	0.011	0.020	1.4	3.5	0.063	0.09	1.11	0.10	0.022	<1.0	0.019	145
9/2/2010	UT	135	22.2	< 0.02		0.94	0.008	0.027	0.7	3.5	0.149	0.11	0.82	0.16	< 0.050	2.0	0.016	95
9/2/2010	UT	125	18.1	0.02		0.77	0.048	0.031	16.0	5.5	0.078	0.27	4.53	0.31	0.136	<1.0	0.068	91
9/2/2010	UT	123	15.6	< 0.02		0.13	< 0.020	0.009	0.3	2.7	0.068	0.04	0.53	0.09	< 0.050	1.3	0.012	86
9/2/2010	UT	135	22.6	< 0.02		0.70	0.037	0.017	4.1	3.0	0.104	0.21	1.77	0.18	< 0.050	<1.0	0.024	94
9/2/2010	UT	119	15.3	< 0.02		1.22	0.062	0.018	15.1	4.2	0.083	0.93	2.42	0.46	< 0.050	1.9	0.023	104

Appendix A3 Page 1 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/25/1993	ARH	131	20.0					0.26						1.52				
8/25/1993	ARH	136	21.0					0.24						2.12				
8/25/1993	ARH	122	17.0					0.28						2.51				
8/25/1993	ARH	124	19.0					0.24						1.52				
8/25/1993	ARH	126	18.0					0.20						0.69				
8/25/1993	ARH	122	16.0					0.24						2.60				
8/10/1998	ARH	120						0.14						1.03		2.9		
8/10/1998	ARH	120						0.10						0.72		2.5		
8/10/1998	ARH	118						0.18						1.33		5.2		
8/10/1998	ARH	133						0.21						1.45		2.8		
8/10/1998	ARH	142						0.15						1.77		3.1		
8/10/1998	ARH	126						0.16						0.62		3.0		
8/10/1998	ARH	140						0.11						0.17		5.1		
8/10/1998	ARH	128						0.11						1.07		3.5		
8/10/1998	ARH	132						0.15						0.41		3.6		
8/10/1998	ARH	111						0.13						1.15		4.3		
8/12/1999	ARH	125						0.22						0.42		5.6		
8/12/1999	ARH	134						0.39						0.51		5.9		
8/12/1999	ARH	135						0.18						0.48		4.6		
8/12/1999	ARH	131						0.37						1.20		4.2		
8/12/1999	ARH	137						0.13						0.27		4.0		
8/12/1999	ARH	130						0.26						0.36		4.3		
8/12/1999	ARH	123						0.34						1.10		5.2		
8/12/1999	ARH	127						0.14						0.43		4.9		
8/12/1999	ARH	123						0.23						0.68		4.5		
8/12/1999	ARH	126						0.27						0.56		5.5		
8/1/2000	ARH	125	16.1					0.21						1.36		3.4		
8/1/2000	ARH	117	12.4					0.31						2.86		5.4		
8/1/2000	ARH	124	14.2					0.31						2.09		3.9		
8/1/2000	ARH	133	21.9					0.11						2.30		3.9		
8/1/2000	ARH	134	18.7					0.27						1.20		4.1		

Appendix A3 Page 2 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/31/2005	ARH	118	15.1					0.45			0.040			0.42		3.8		126
7/31/2005	ARH	135	21.3					0.13			0.050			0.14		3.7		107
7/31/2005	ARH	102	9.3					0.26			0.050			0.22		7.2		135
7/31/2005	ARH	114	13.4					0.17			0.060			0.15		5.0		117
7/31/2005	ARH	121	16.7					0.11			0.060			0.17		4.1		129
7/31/2005	ARH	101	8.9					0.27			0.060			0.20		5.3		124
7/31/2005	ARH	119	14.8					0.10			0.070			0.06		4.6		106
7/31/2005	ARH	110	11.9					0.12			0.050			0.24		4.2		107
7/31/2005	ARH	109	11.6					0.14			0.060			0.10		5.2		114
7/31/2005	ARH	123	15.2					0.61			0.040			0.17		6.0		157
7/31/2005	ARH	114	13.0					1.75			< 0.020			0.23		7.6		175
7/31/2005	ARH	113	11.7					0.19			0.080			0.26		5.7		188
7/31/2005	ARH	105	11.0					0.35			0.030			0.13		4.9		137
7/31/2005	ARH	108	10.9					0.28			0.070			0.27		5.1		168
7/31/2005	ARH	102	8.5					0.13			0.050			0.13		4.2		144
8/14/2006	ARH	120	16.7					0.57			0.100			0.78		3.9		158
8/14/2006	ARH	112	13.9					0.27			0.080			0.44		3.8		120
8/14/2006	ARH	92	7.9					0.65			0.090			1.03		<1.0		164
8/14/2006	ARH	87	6.4					0.33			0.090			0.44		6.1		169
8/14/2006	ARH	109	12.4					0.54			0.090			1.25		4.1		141
8/14/2006	ARH	90	7.2					0.32			0.090			1.36		3.7		245
8/14/2006	ARH	93	8.4					0.57			0.070			0.11		4.4		157
8/14/2006	ARH	103	10.8					0.56			0.100			1.30		2.9		147
8/14/2006	ARH	116	15.9					0.49			0.150			1.04		4.7		129
8/14/2006	ARH	90	7.7					0.31			0.050			0.45		3.2		142
8/14/2006	ARH	93	8.7					0.48			0.070			3.69		5.9		171
8/14/2006	ARH	123	19.8					0.64			0.120			0.95		3.7		155
8/14/2006	ARH	84	6.3					0.62			0.080			0.92		4.0		144

Appendix A3 Page 3 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date			Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/10/2007	ARH	113	12.5					0.25			0.140			0.25		4.4		133
8/10/2007	ARH	93	7.7					0.32			0.070			0.22		3.1		94
8/10/2007	ARH	128	18.4					0.25			0.090			0.20		4.6		102
8/10/2007	ARH	132	21.0					0.29			0.100			0.27		3.6		99
8/10/2007	ARH	125	15.9					0.18			0.070			0.14		4.0		114
8/10/2007	ARH	128	18.6					0.22			0.050			0.16		3.6		141
8/10/2007	ARH	126	16.4					0.09			0.070			0.15		1.3		101
8/10/2007	ARH	128	17.6					0.21			0.050			0.38		3.5		106
8/10/2007	ARH	100	10.3					0.21			0.050			0.52		3.4		107
8/10/2007	ARH	104	10.2					0.38			0.050			1.07		3.2		114
8/10/2007	ARH	96	8.2					0.26			0.080			0.77		3.8		90
8/10/2007	ARH	103	10.2					0.19			0.080			0.32		3.4		119
8/10/2007	ARH	129	18.7					0.13			0.090			0.84		3.2		113
8/10/2007	ARH	102	9.3					0.19			0.080			0.14		3.7		79
8/10/2007	ARH	129	19.3					0.17			0.080			0.20		3.4		97
8/5/2008	ARH	94	6.6					0.18			0.070			0.43		3.8		112
8/5/2008	ARH	101	8.8					0.17			0.060			0.09		4.8		136
8/5/2008	ARH	118	14.5					0.33			0.090			0.26		5.5		121
8/5/2008	ARH	95	6.8					0.18			0.060			0.31		4.1		124
8/5/2008	ARH	122	14.0					0.12			0.120			0.07		1.9		139
8/5/2008	ARH	98	8.2					0.14			0.070			0.18		3.6		122
8/5/2008	ARH	94	7.1					0.15			0.090			0.52		3.2		150
8/5/2008	ARH	100	8.8					0.11			0.070			0.13		3.6		161
8/5/2008	ARH	103	9.4					0.19			0.100			0.21		3.8		126
8/5/2008	ARH	93	6.9					0.20			0.080			0.22		4.2		114
8/5/2008	ARH	101	8.0					0.19			0.070			0.39		5.6		120
8/5/2008	ARH	93	6.4					0.26			0.070			0.12		4.8		109
8/5/2008	ARH	90	6.2					0.21			0.060			0.21		4.0		142
8/5/2008	ARH	94	6.7					0.28			0.070			0.37		3.9		176
8/5/2008	ARH	104	7.8					0.30			0.260			0.59		5.3		199

Appendix A3 Page 4 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/31/2009	ARH	94	6.6					0.32			0.090			0.62		5.9		109
7/31/2009	ARH	101	8.8					0.16			0.100			1.02		5.3		155
7/31/2009	ARH	118	14.5					0.21			0.090			0.35		6.6		117
7/31/2009	ARH	95	6.8					0.33			0.150			0.68		5.5		139
7/31/2009	ARH	122	14.0					0.19			0.070			0.47		5.7		129
7/31/2009	ARH	98	8.2					0.15			0.140			1.42		4.5		125
7/31/2009	ARH	94	7.1					0.12			0.110			0.31		4.1		118
7/31/2009	ARH	100	8.8					0.11			0.080			0.37		5.2		98
7/31/2009	ARH	103	9.4					0.24			0.090			0.98		4.3		153
7/31/2009	ARH	93	6.9					0.10			0.110			0.55		4.6		139
7/31/2009	ARH	101	8.0					0.18			0.070			0.47		5.5		117
7/31/2009	ARH	93	6.4					0.19			0.090			0.71		7.1		126
7/31/2009	ARH	90	6.2					0.19			0.150			0.63		4.8		131
7/31/2009	ARH	94	6.7					0.13			0.110			0.36		4.0		133
7/31/2009	ARH	104	7.8					0.11			0.080			0.62		4.8		111
8/16/2010	ARH	133	22.5					0.23			0.080			0.98		4.1		127
8/16/2010	ARH	107	12.3					0.21			0.050			0.83		4.0		108
8/16/2010	ARH	116	15.5					0.12			0.080			1.64		4.6		104
8/16/2010	ARH	122	17.0					0.17			0.080			0.42		4.3		98
8/16/2010	ARH	121	18.0					0.22			0.070			0.34		3.1		90
8/16/2010	ARH	120	17.3					0.05			0.050			0.12		3.4		83
8/16/2010	ARH	123	19.0					0.10			0.060			0.18		3.4		115
8/16/2010	ARH	122	15.8					0.12			0.070			0.54		3.2		114
8/16/2010	ARH	97	8.3					0.17			0.040			0.19		3.6		97
8/16/2010	ARH	141	24.3					0.13			0.070			0.56		4.0		89

Appendix A3 Page 5 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/27/2011	ARH	138	27.5					0.19			0.070			0.16		3.5		96
8/27/2011	ARH	103	11.0					0.14			0.070			0.22		3.8		96
8/27/2011	ARH	118	15.0					0.13			0.080			0.47		3.4		99
8/27/2011	ARH	138	26.5					0.18			0.060			0.46		3.7		94
8/27/2011	ARH	127	20.0					0.22			0.060			0.18		3.1		78
8/27/2011	ARH	125	18.0					0.20			0.060			1.24		3.8		107
8/27/2011	ARH	131	23.0					0.14			0.070			0.88		3.3		83
8/27/2011	ARH	112	12.0					0.39			0.040			0.09		4.8		78
8/27/2011	ARH	110	12.5					0.10			0.070			0.27		3.7		88
8/27/2011	ARH	130	18.5					0.33			0.040			0.06		5.6		88
8/27/2011	ARH	140	24.5					0.23			0.040			2.12		4.2		105
8/27/2011	ARH	136	25.0					0.51			0.050			0.41		5.5		85
8/27/2011	ARH	130	19.5					0.17			0.070			0.30		4.2		129
8/27/2011	ARH	95	9.0					0.09			0.070			0.10		2.9		86
8/27/2011	ARH	94	8.0					0.08			0.070			0.12		3.3		95
8/2/2014	ARH	87	7.5					0.83		4.6	0.050			1.20		6.0		127
8/2/2014	ARH	110	12.5					0.18		3.1	0.090			0.91		6.0		97
8/2/2014	ARH	94	7.0					0.18		3.4	0.040			0.63		6.3		126
8/2/2014	ARH	125	18.0					0.22		3.7	0.100			1.18		5.1		125
8/2/2014	ARH	109	13.0					0.70		3.8	0.040			0.43		5.7		128
8/2/2014	ARH	93	9.0					0.32		2.9	0.080			0.25		6.3		111
8/2/2014	ARH	128	17.5					0.20		3.4	0.080			1.01		5.5		112

Appendix A3 Page 6 of 31.—Red Dog Mine, Anxiety Ridge at Haul Road (ARH) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/31/2015	ARH	101	12.0					0.18		3.4	0.070			0.62		5.3		159
7/31/2015	ARH	94	9.0					0.87		4.4	0.060			0.24		7.0		141
7/31/2015	ARH	93	8.5					0.91		4.1	0.050			0.45		8.2		130
7/31/2015	ARH	95	8.5					0.49		3.9	0.040			0.19		5.5		141
7/31/2015	ARH	123	17.5					0.20		4.1	0.080			0.31		6.8		150
7/31/2015	ARH	96	9.5					0.21		3.7	0.070			0.12		6.5		130
7/31/2015	ARH	101	10.5					0.34		3.5	0.050			0.32		5.8		123
7/31/2015	ARH	103	11.0					0.34		3.2	0.040			0.20		6.7		130
7/31/2015	ARH	102	12.0					0.21		3.1	0.050			0.24		5.7		130
7/31/2015	ARH	104	12.5					0.41		2.9	0.070			0.08		6.8		123
7/31/2015	ARH	95	9.5					0.31		3.5	0.060			0.48		5.7		133
7/31/2015	ARH	99	9.5					0.31		2.7	0.050			0.11		5.9		123
7/31/2015	ARH	97	9.5					0.13		2.4	0.040			0.09		4.6		123
7/31/2015	ARH	123	17.5					0.25		4.0	0.070			0.19		6.9		131
7/31/2015	ARH	116	13.5					0.13		4.2	0.050			0.55		5.0		145

Appendix A3 Page 7 of 31.–Red Dog Mine, Anxiety Ridge Downstream (ARD) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL V	Veight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/4/2002	ARD	139	26.4					0.36						0.21		4.3		107
8/4/2002	ARD	114	14.3					0.54						0.23		8.5		102
8/4/2002	ARD	107	12.1					0.81						0.32		5.2		120
8/4/2002	ARD	135	22.9					0.25						0.32		4.4		113
8/4/2002	ARD	95	9.9					0.37						0.24		5.0		99
8/4/2002	ARD	90	8.7					1.32						0.35		5.8		121
8/4/2002	ARD	96	9.0					0.62						0.42		5.0		134
8/4/2002	ARD	97	9.4					0.45						0.22		5.1		114
8/4/2002	ARD	114	13.3					0.42						0.17		4.7		103
8/4/2002	ARD	136	24.0					0.16						0.13		3.7		127
8/4/2002	ARD	116	15.0					0.41						0.28		5.5		107
8/4/2002	ARD	114	13.3					0.44						0.20		5.1		111
8/4/2002	ARD	105	10.5					0.82						0.61		8.1		112
8/4/2002	ARD	104	10.4					0.61						0.64		6.8		134
8/4/2002	ARD	96	8.0					1.13						0.25		4.7		108
8/25/2004	ARD	121	14.9					0.20			0.040			0.15		5.7		146
8/25/2004	ARD	116	10.1					0.20			0.040			0.13		4.8		136
8/25/2004	ARD	109	10.8					0.16			0.030			0.09		6.2		135
8/25/2004	ARD	116	13.1					0.19			0.030			0.11		5.3		134
8/25/2004	ARD	128	18.5					0.10			0.030			0.14		4.4		119
8/25/2004	ARD	108	13.1					0.52			0.020			0.36		8.2		193
8/25/2004	ARD	111	12.3					0.26			0.030			0.11		5.3		100
8/25/2004	ARD	108	10.5					0.28			0.030			0.13		7.2		144
8/25/2004	ARD	99	9.1					0.18			0.040			0.21		4.5		138
8/25/2004	ARD	132	18.1					0.25			0.020			0.09		5.2		114
8/25/2004	ARD	119	13.4					0.28			0.050			3.23		5.8		128
8/25/2004	ARD	102	9.5					0.11			0.040			0.12		3.5		124
8/25/2004	ARD	106	10.7					0.14			0.030			0.80		3.4		136
8/25/2004	ARD	121	14.0					0.20			0.040			0.37		4.5		120
8/25/2004	ARD	112	11.7					0.41			< 0.020			0.30		6.3		142

Appendix A3 Page 8 of 31.–Red Dog Mine, Anxiety Ridge Upstream (ARU) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/4/2002	ARU	142	28.0					0.07						0.07		2.9		92
8/4/2002	ARU	134	22.9					0.13						0.23		4.3		110
8/4/2002	ARU	125	18.7					0.12						0.04		3.7		116
8/4/2002	ARU	98	8.3					0.33						0.08		5.9		89
8/4/2002	ARU	110	11.6					0.87						0.12		8.5		135
8/4/2002	ARU	132	23.7					0.17						0.42		2.6		115
8/4/2002	ARU	129	18.9					0.21						0.22		3.7		139
8/4/2002	ARU	122	15.6					0.11						0.06		2.8		135
8/4/2002	ARU	98	8.3					0.32						0.10		4.6		119
8/4/2002	ARU	95	8.1					0.09						0.05		4.2		112
8/4/2002	ARU	110	11.5					0.43						0.20		6.3		102
8/4/2002	ARU	97	7.2					0.19						0.16		6.2		108
8/4/2002	ARU	93	7.1					0.27						0.08		5.0		107
8/4/2002	ARU	90	6.3					0.22						0.05		3.8		103
8/4/2002	ARU	98	8.4					0.62						0.11		7.8		140
8/25/2004	ARU	101	9.6					0.17			0.050			0.09		3.0		111
8/25/2004	ARU	128	20.3					0.18			0.070			0.85		2.6		100
8/25/2004	ARU	131	21.5					0.24			0.060			1.34		2.6		103
8/25/2004	ARU	130	20.4					0.13			0.030			0.49		4.2		115
8/25/2004	ARU	128	20.9					0.23			0.050			1.53		2.1		130
8/25/2004	ARU	138	23.7					0.13			0.080			2.29		2.2		117
8/25/2004	ARU	116	13.4					0.11			0.070			0.22		1.8		141
8/25/2004	ARU	109	11.4					0.33			0.030			0.47		4.6		155
8/25/2004	ARU	95	8.2					0.32			0.040			1.04		4.8		158
8/25/2004	ARU	104	12.3					0.26			0.050			0.20		3.0		151
8/25/2004	ARU	100	8.7					0.15			0.030			0.56		3.6		127
8/25/2004	ARU	100	9.4					0.08			0.040			0.11		2.6		119
8/25/2004	ARU	130	19.4					0.09			0.050			0.09		2.7		99

Appendix A3 Page 9 of 31.–Red Dog Mine, Aufeis Downstream (AD) and Aufeis North Fork (ANF) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Мо	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/5/2002	AD	115	15.2					0.10						0.06		7.0		75
8/5/2002	AD	122	20.0					0.11						0.07		5.9		77
8/5/2002	AD	118	17.0					0.07						0.03		6.9		90
8/5/2002	AD	113	14.7					0.11						0.03		5.4		81
8/5/2002	AD	92	7.1					0.06						0.04		6.7		89
8/5/2002	AD	111	13.6					0.10						0.04		5.6		87
8/5/2002	AD	112	14.4					0.15						0.04		2.4		88
8/5/2002	AD	104	10.6					0.10						0.06		4.7		102
8/5/2002	AD	134	23.6					0.15						0.02		5.0		72
8/5/2002	AD	130	22.1					0.11						0.03		7.7		81
8/5/2002	AD	114	16.0					0.15						0.12		5.4		93
8/5/2002	AD	100	10.4					0.10						0.06		6.6		88
8/5/2002	AD	115	15.1					0.09						0.09		7.5		75
8/5/2002	AD	106	12.1					0.21						0.06		4.4		90
8/5/2002	AD	100	9.1					0.13						0.04		5.5		85
8/7/2001	ANF	140	22.8					0.11						0.17		3.5		106
8/7/2001	ANF	99	8.1					0.16						6.00		7.0		85
8/7/2001	ANF	92	7.2					0.12						1.55		2.6		85
8/7/2001	ANF	99	8.1					0.11						0.36		3.1		85
8/7/2001	ANF	84	4.7					0.17						0.13		5.0		121
8/5/2002	ANF	121	16.9					0.11						< 0.02		1.9		75
8/5/2002	ANF	139	26.9					0.06						0.02		2.2		77
8/5/2002	ANF	103	10.8					0.11						< 0.02		3.7		90
8/5/2002	ANF	118	15.3					0.08						< 0.02		2.5		84
8/5/2002	ANF	118	16.0					0.06						0.02		4.0		104

Appendix A3 Page 10 of 31.–Red Dog Mine, Aufeis North Fork (ANF) and Aufeis South Fork (ASF) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/5/2002	ANF	122	18.6					< 0.05						< 0.02		2.1		75
8/5/2002	ANF	128	19.4					0.06						< 0.02		1.6		97
8/5/2002	ANF	128	21.3					0.06						< 0.02		2.2		87
8/5/2002	ANF	95	8.8					0.05						< 0.02		3.0		129
8/5/2002	ANF	110	12.7					0.07						< 0.02		2.2		94
8/5/2002	ANF	129	20.3					< 0.05						< 0.02		1.5		82
8/5/2002	ANF	115	14.9					0.06						0.02		3.1		100
8/5/2002	ANF	112	13.0					< 0.05						< 0.02		2.9		85
8/5/2002	ANF	115	15.5					0.07						< 0.02		3.0		97
8/5/2002	ANF	122	17.6					< 0.05						< 0.02		2.2		104
8/5/2002	ASF	116	16.2					< 0.05						0.04		6.8		79
8/5/2002	ASF	118	16.2					< 0.05						0.04		5.7		73
8/5/2002	ASF	118	18.4					0.05						0.04		4.1		86
8/5/2002	ASF	130	21.6					< 0.05						0.05		3.7		84
8/5/2002	ASF	111	12.5					< 0.05						0.04		3.6		108
8/5/2002	ASF	124	19.9					< 0.05						0.04		4.7		80
8/5/2002	ASF	124	18.8					< 0.05						0.26		6.8		78
8/5/2002	ASF	132	24.9					< 0.05						< 0.02		6.1		69
8/5/2002	ASF	125	19.7					0.05						0.03		5.9		77
8/5/2002	ASF	127	19.6					< 0.05						0.02		6.6		69
8/5/2002	ASF	119	17.9					< 0.05						< 0.02		6.0		77
8/5/2002	ASF	118	17.2					< 0.05						0.03		5.8		62
8/5/2002	ASF	120	18.3					< 0.05						0.03		7.6		81
8/5/2002	ASF	105	10.7					< 0.05						0.03		5.9		79
8/5/2002	ASF	113	15.3					0.05						0.12		4.5		88

Appendix A3 Page 11 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date	a.		Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/29/2002	BD	108	13.4					0.50						0.38		7.8		110
7/29/2002	BD	100	9.9					0.56						0.41		7.9		122
7/29/2002	BD	99	9.6					0.70						0.19		5.9		152
7/29/2002	BD	100	10.1					0.60						0.19		7.5		127
7/29/2002	BD	104	12.8					0.95						0.71		8.4		150
7/29/2002	BD	102	11.6					0.74						0.55		6.3		121
7/29/2002	BD	117	15.1					0.39						0.37		5.9		141
7/29/2002	BD	106	10.8					0.43						0.25		7.0		128
7/29/2002	BD	110	13.3					0.93						0.23		7.1		132
7/29/2002	BD	110	13.8					0.28						0.16		7.1		117
7/29/2002	BD	112	14.5					0.31						0.65		8.8		120
7/29/2002	BD	136	23.9					0.24						0.35		6.8		125
7/29/2002	BD	112	13.8					0.44						0.23		7.8		103
7/29/2002	BD	144	28.3					0.39						0.39		6.6		123
7/29/2002	BD	144	28.6					0.29						0.35		8.1		117
8/9/2003	BD	108	12.3					0.72						1.18		8.4		160
8/9/2003	BD	118	15.4					0.50						1.44		6.0		130
8/9/2003	BD	122	18.5					0.54						0.49		6.1		125
8/9/2003	BD	106	11.8					0.77						0.44		6.8		138
8/9/2003	BD	134	20.7					0.57						0.52		7.6		125
8/9/2003	BD	118	14.0					0.39						1.37		7.0		130
8/9/2003	BD	120	15.1					0.77						0.60		7.1		138
8/9/2003	BD	102	8.8					1.75						0.58		6.7		165
8/9/2003	BD	102	8.8					0.35						0.18		8.5		122
8/9/2003	BD	109	11.2					0.42						0.41		6.9		118
8/9/2003	BD	104	9.9					0.62						0.46		6.9		143
8/9/2003	BD	115	15.0					0.43						0.17		7.1		130
8/9/2003	BD	90	5.4					0.48						0.53		5.0		180
8/9/2003	BD	110	11.0					1.12						0.59		6.6		154
8/9/2003	BD	102	9.7					0.94						0.46		5.5		167

Appendix A3 Page 12 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date			Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/24/2004	BD	130	18.7					0.47			0.030			0.34		5.7		120
8/24/2004	BD	118	13.9					0.60			0.040			0.31		6.3		129
8/24/2004	BD	107	10.1					0.22			0.040			0.29		4.9		116
8/24/2004	BD	103	8.9					0.26			0.040			0.19		3.9		172
8/24/2004	BD	124	16.1					0.24			0.030			0.11		5.9		163
8/24/2004	BD	96	6.7					0.35			0.040			0.17		3.7		111
8/24/2004	BD	116	14.7					0.14			0.030			0.18		4.8		93
8/24/2004	BD	96	7.2					0.10			0.050			0.06		2.6		93
8/24/2004	BD	101	10.1					0.26			0.040			4.52		4.2		122
8/24/2004	BD	116	14.7					0.17			0.020			0.12		5.8		110
8/24/2004	BD	100	9.3					0.22			0.040			0.11		4.5		116
8/24/2004	BD	120	15.5					0.24			0.030			0.14		6.3		129
8/24/2004	BD	108	11.7					0.28			0.030			0.10		5.2		204
8/24/2004	BD	140	25.4					0.36			0.030			0.11		5.8		128
8/24/2004	BD	135	21.1					0.47			0.020			0.10		7.2		123
7/29/2005	BD	104	10.9					1.53			0.030			0.18		8.0		149
7/29/2005	BD	106	12.0					0.50			0.020			0.10		6.9		134
7/29/2005	BD	115	14.2					1.37			0.030			0.16		6.8		132
7/29/2005	BD	102	9.9					0.60			0.030			0.10		7.4		141
7/29/2005	BD	110	11.9					0.41			0.020			0.15		5.6		114
7/29/2005	BD	134	18.6					0.20			0.030			0.10		7.0		131
7/29/2005	BD	105	10.6					0.58			0.020			0.09		6.4		145
7/29/2005	BD	120	16.0					0.26			0.020			0.10		5.7		110
7/29/2005	BD	102	10.1					0.87			0.030			0.17		7.1		137
7/29/2005	BD	101	9.7					1.23			0.040			0.13		5.9		159
7/29/2005	BD	125	17.4					0.58			0.040			0.28		5.9		106
7/29/2005	BD	114	12.1					0.61			0.030			0.14		7.4		144
7/29/2005	BD	105	9.4					0.77			< 0.020			0.19		5.8		135
7/29/2005	BD	103	9.0					0.45			0.020			0.14		5.6		131
7/29/2005	BD	105	11.2					0.62			0.030			0.13		7.2		123

Appendix A3 Page 13 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL V	Veight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/15/2006	BD	93	7.3					1.69			0.080			0.38		5.2		227
8/15/2006	BD	98	9.7					1.64			0.040			0.47		6.3		215
8/15/2006	BD	82	5.8					2.18			0.050			1.36		5.2		230
8/15/2006	BD	95	8.8					0.81			0.040			0.38		5.4		236
8/15/2006	BD	92	8.5					1.07			0.030			2.27		6.2		205
8/11/2007	BD	114	12.9					0.77			0.040			0.66		4.8		142
8/11/2007	BD	118	14.0					0.27			0.040			0.11		4.8		113
8/11/2007	BD	121	15.9					0.44			0.040			0.21		4.7		129
8/11/2007	BD	104	9.9					0.69			0.050			0.14		4.1		125
8/11/2007	BD	103	10.2					0.80			0.040			0.12		4.0		154
8/11/2007	BD	131	18.9					0.74			0.020			2.19		3.6		181
8/11/2007	BD	112	13.1					0.57			0.040			0.66		4.7		137
8/11/2007	BD	115	12.7					0.80			0.040			0.11		4.9		146
8/11/2007	BD	112	12.4					0.76			0.050			0.42		5.7		130
8/11/2007	BD	135	20.4					0.43			0.060			0.19		3.7		116
8/11/2007	BD	111	11.4					0.94			0.030			0.10		4.7		132
8/11/2007	BD	131	18.8					0.28			0.060			0.23		5.6		129
8/11/2007	BD	105	10.3					0.35			0.100			1.02		4.5		133
8/11/2007	BD	109	11.2					0.47			0.030			2.23		4.0		134
8/11/2007	BD	93	7.4					0.67			0.040			0.26		3.7		126
8/5/2008	BD	103	9.7					2.15			0.040			0.21		6.2		180
8/5/2008	BD	97	7.5					1.72			0.050			1.15		5.3		219
8/5/2008	BD	97	7.2					1.68			0.050			0.51		5.4		200
8/5/2008	BD	102	9.0					0.83			0.040			0.50		4.4		165
8/5/2008	BD	98	7.3					0.59			0.040			0.35		4.8		195
8/5/2008	BD	111	11.7					0.78			0.050			0.68		4.8		144
8/5/2008	BD	93	6.1					1.25			0.050			0.27		7.7		197
8/5/2008	BD	104	9.2					0.67			0.040			0.28		5.5		208

Appendix A3 Page 14 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/5/2008	BD	94	8.0					0.59			0.050			0.27		5.4		182
8/5/2008	BD	103	9.7					0.94			0.040			1.27		5.9		169
8/5/2008	BD	114	11.6					0.68			0.040			0.31		4.9		166
8/5/2008	BD	95	7.8					0.34			0.050			0.30		5.8		220
8/5/2008	BD	103	9.6					0.41			0.040			0.15		5.7		162
8/5/2008	BD	98	7.1					1.13			0.060			0.25		4.5		251
8/5/2008	BD	96	7.9					0.49			0.050			0.09		4.4		170
7/31/2009	BD	103	9.7					0.19			0.060			0.38		8.4		132
7/31/2009	BD	97	7.5					1.21			0.040			0.52		10.7		143
7/31/2009	BD	97	7.2					0.80			0.090			0.89		11.3		134
7/31/2009	BD	102	9.0					1.77			0.040			0.34		8.4		141
7/31/2009	BD	98	7.3					0.75			0.050			0.50		9.3		113
7/31/2009	BD	111	11.7					0.97			0.040			0.35		8.7		136
7/31/2009	BD	93	6.1					0.98			0.060			0.48		8.5		155
7/31/2009	BD	104	9.2					0.85			0.050			0.34		6.2		220
7/31/2009	BD	94	8.0					0.38			0.050			0.41		6.7		129
7/31/2009	BD	103	9.7					0.38			0.040			0.51		9.1		127
7/31/2009	BD	114	11.6					0.78			0.040			0.96		10.3		163
7/31/2009	BD	95	7.8					0.66			0.060			0.20		7.2		124
7/31/2009	BD	103	9.6					0.40			0.060			0.78		7.8		141
7/31/2009	BD	98	7.1					1.26			0.040			0.48		9.0		177
7/31/2009	BD	96	7.9					0.87			0.050			0.34		9.1		143

Appendix A3 Page 15 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date			Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/16/2010	BD	105	10.3					0.83			0.020			0.56		5.3		119
8/16/2010	BD	115	14.5					0.38			< 0.020			0.13		4.5		116
8/16/2010	BD	116	14.3					0.39			0.030			0.25		5.7		130
8/16/2010	BD	128	20.3					0.54			< 0.020			0.10		3.9		97
8/16/2010	BD	125	19.8					0.48			< 0.020			0.17		5.0		108
8/16/2010	BD	128	19.0					0.35			0.020			0.41		5.2		120
8/16/2010	BD	121	16.5					0.60			< 0.020			0.60		3.7		141
8/16/2010	BD	125	18.3					0.27			< 0.020			0.44		4.3		107
8/16/2010	BD	133	21.3					1.02			0.030			0.33		6.3		131
8/16/2010	BD	127	15.3					0.49			0.040			0.20		4.1		107
8/16/2010	BD	128	19.5					0.18			< 0.020			0.09		6.6		113
8/16/2010	BD	113	13.3					0.66			< 0.020			0.13		5.2		124
8/16/2010	BD	122	17.3					0.22			0.040			0.57		5.2		113
8/16/2010	BD	130	22.0					0.95			0.020			0.21		3.7		114
8/16/2010	BD	117	15.8					1.14			0.020			0.29		4.7		133
8/27/2011	BD	128	21.0					0.37			0.020			0.25		3.8		118
8/27/2011	BD	124	18.0					0.52			0.020			0.25		4.1		126
8/27/2011	BD	137	23.0					0.30			0.020			0.30		4.6		122
8/27/2011	BD	129	21.5					0.44			0.020			0.39		3.3		113
8/27/2011	BD	122	18.5					0.24			0.020			0.14		3.5		93
8/27/2011	BD	106	15.0					0.35			0.020			0.43		3.0		113
8/27/2011	BD	140	25.5					0.30			0.020			0.22		3.9		101
8/27/2011	BD	124	19.5					0.41			0.030			0.16		3.4		94
8/27/2011	BD	127	20.0					1.27			0.030			0.94		4.6		154
8/27/2011	BD	100	10.5					0.75			< 0.030			0.23		4.4		147
8/27/2011	BD	128	19.5					0.21			0.020			0.55		3.4		103
8/27/2011	BD	128	19.5					0.48			0.020			0.21		4.2		133
8/27/2011	BD	109	12.0					0.75			0.030			0.26		3.8		143
8/27/2011	BD	126	18.5					0.27			0.030			1.06		3.2		122
8/27/2011	BD	105	11.5					0.61			0.020			0.12		3.6		130

Appendix A3 Page 16 of 31.–Red Dog Mine, Buddy Downstream of Road (BD) juvenile Dolly Varden char whole body metals concentrations data.

Date			Veight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/29/2014	BD	126	20.5					1.28		2.8	0.020			0.90		8.3		128
7/29/2014	BD	107	12.0					0.81		2.8	0.030			0.83		7.4		142
7/29/2014	BD	120	16.5					0.63		2.8	0.020			0.73		6.7		132
7/29/2014	BD	136	23.0					1.12		3.3	0.030			0.74		8.2		142
7/29/2014	BD	126	18.0					0.79		2.8	0.020			1.50		8.1		175
7/29/2014	BD	135	22.0					0.49		3.6	0.030			0.85		6.9		147
7/29/2014	BD	123	17.5					0.54		3.3	0.060			0.49		6.7		138
7/29/2014	BD	126	18.5					1.39		4.1	0.040			2.06		6.8		214
7/29/2014	BD	122	15.5					1.47		3.2	0.030			1.42		8.3		195
7/29/2014	BD	127	17.0					0.49		3.1	0.030			0.40		7.1		165
7/29/2014	BD	144	25.0					0.35		2.9	0.030			0.55		7.9		136
7/29/2014	BD	106	10.0					0.57		3.2	0.030			0.64		8.8		236
7/29/2014	BD	105	10.0					1.32		3.6	< 0.020			1.00		8.7		173
7/29/2014	BD	103	10.5					1.65		4.4	0.020			2.74		7.2		175
7/29/2014	BD	100	8.5					1.03		2.7	0.030			9.45		5.6		131
7/31/2015	BD	97	10.0					1.22		3.5	0.020			0.27		8.8		184
7/31/2015	BD	110	13.5					0.83		3.7	0.030			0.16		9.4		174
7/31/2015	BD	106	12.5					2.96		4.0	0.030			0.34		9.7		233
7/31/2015	BD	102	10.5					1.34		4.8	0.030			0.44		10.2		187
7/31/2015	BD	104	10.5					0.86		3.3	< 0.020			0.16		9.5		196
7/31/2015	BD	95	8.5					1.23		4.0	0.030			0.32		8.8		217
7/31/2015	BD	99	10.0					0.94		4.1	< 0.020			0.21		9.1		197
7/31/2015	BD	126	18.5					0.85		4.2	0.040			0.23		9.0		203
7/31/2015	BD	121	18.0					0.61		4.1	0.030			0.30		11.4		194
7/31/2015	BD	115	14.0					0.79		4.2	0.020			0.18		10.0		185
7/31/2015	BD	115	15.0					0.56		3.6	0.020			0.18		8.3		198
7/31/2015	BD	103	10.5					0.25		3.8	0.020			0.23		7.1		131
7/31/2015	BD	104	11.5					0.83		3.4	< 0.020			0.18		8.4		171
7/31/2015	BD	100	10.5					1.16		3.9	0.020			0.27		8.2		201
7/31/2015	BD	103	11.0					0.87		3.8	0.020			0.22		11.1		201

Appendix A3 Page 17 of 31.–Red Dog Mine, Competition Lower 202 (COM) and Evaingiknuk (EVA) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/31/2014	COM	134	19.0					0.61			0.030			0.49		6.1		135
7/31/2014	COM	140	23.5					0.19			0.020			0.08		4.3		132
7/31/2014	COM	138	23.0					0.38			< 0.020			0.25		4.0		139
7/31/2014	COM	148	25.5					0.36			< 0.020			0.55		4.9		111
7/31/2014	COM	122	16.0					0.45			< 0.020			0.67		4.6		170
7/31/2014	COM	100	9.0					0.86			0.030			1.04		4.6		175
7/31/2014	COM	94	7.0					0.62			0.030			0.23		6.5		126
7/30/2001	EVA	89	5.1					0.29						0.82		2.1		160
7/30/2001	EVA	78	3.1					0.17						0.36		3.4		137
7/30/2001	EVA	130	17.2					0.16						0.23		2.0		124
7/30/2001	EVA	81	4.1					0.19						0.31		2.8		111
7/30/2001	EVA	90	5.1					0.16						0.31		4.4		138
7/30/2001	EVA	100	7.7					0.22						0.55		2.7		129
7/30/2001	EVA	126	17.6					0.14						0.17		5.7		119
7/30/2001	EVA	117	14.4					0.30						0.13		2.2		130
7/30/2001	EVA	87	4.3					0.13						0.15		2.6		120
8/8/2003	EVA	99	11.4					0.35						0.31		1.3		170
8/8/2003	EVA	104	10.0					0.27						0.08		1.2		125
8/8/2003	EVA	100	10.8					0.31						0.15		1.3		156
8/8/2003	EVA	96	8.1					0.37						0.08		1.9		164
8/8/2003	EVA	106	10.8					0.31						0.09		1.7		151
8/8/2003	EVA	94	9.2					0.34						0.10		1.3		161
8/8/2003	EVA	109	12.2					0.30						0.12		<1		139
8/8/2003	EVA	117	11.9					0.66						0.07		1.8		139
8/8/2003	EVA	100	10.1					0.64						0.12		1.4		153
8/8/2003	EVA	99	10.0					0.36						0.18		1.3		154
8/8/2003	EVA	95	7.8					0.34						0.16		1.4		139
8/8/2003	EVA	100	9.1					0.28						0.06		1.6		151
8/8/2003	EVA	100	8.7					0.33						0.11		2.6		141
8/8/2003	EVA	103	9.2					0.33						0.09		1.6		167
8/8/2003	EVA	96	8.3					0.20						0.09		4.1		150

Appendix A3 Page 18 of 31.–Red Dog Mine, Evaingiknuk (EVA) and Ferric (FER) juvenile Dolly Varden char whole body metals concentrations data.

Date Collected	Site	FL (mm)	Weight (g)	Ag (mg/kg)	Al (mg/kg)	As (mg/kg)	Be (mg/kg)	Cd (mg/kg)	Cr (mg/kg)	Cu (mg/kg)	Hg (mg/kg)	Mo (mg/kg)	Ni (mg/kg)	Pb (mg/kg)	Sb (mg/kg)	Se (mg/kg)	Tl (mg/kg)	Zn (mg/kg)
8/19/2004	EVA	140	24.6					0.30			0.100			0.12		1.7		173
8/19/2004	EVA	128	17.9					0.10			0.120			0.11		1.3		113
8/19/2004	EVA	135	21.5					0.35			0.150			0.36		1.9		203
8/19/2004	EVA	139	22.1					0.34			0.140			0.12		1.8		178
8/19/2004	EVA	94	6.5					0.24			0.120			0.23		2.5		179
8/19/2004	EVA	100	8.8					0.27			0.120			0.24		1.6		169
8/19/2004	EVA	127	18.3					0.42			0.130			0.13		1.8		186
8/19/2004	EVA	109	10.1					0.11			0.150			0.19		1.3		141
8/19/2004	EVA	140	24.0					0.21			0.150			0.06		1.4		114
8/19/2004	EVA	121	14.7					0.23			1.160			0.23		1.4		180
8/19/2004	EVA	138	23.7					0.19			0.110			0.12		1.4		143
8/19/2004	EVA	138	22.5					0.11			0.090			0.04		1.2		111
8/19/2004	EVA	97	7.2					0.23			0.130			0.08		1.4		165
8/19/2004	EVA	92	6.1					0.08			0.060			0.12		2.2		160
8/19/2004	EVA	102	8.4					0.06			0.040			0.13		2.3		122
8/12/1999	FER	123						0.09						0.36		5.3		
8/12/1999	FER	125						0.21						0.37		5.2		
8/12/1999	FER	149						0.06						0.22		6.3		
8/12/1999	FER	141						0.06						0.33		5.6		
8/12/1999	FER	123						0.26						0.42		6.2		
8/12/1999	FER	141						0.11						0.18		6.5		
8/12/1999	FER	115						0.27						0.30		6.6		
8/12/1999	FER	116						0.16						0.22		5.7		
8/12/1999	FER	107						0.07						0.21		4.7		

Appendix A3 Page 19 of 31.-Red Dog Mine, Grayling Junior (GJR) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/1/2001	GJR	137	21.0					0.69						0.16		7.4		171
8/1/2001	GJR	109	11.3					3.78						1.44		7.2		573
8/1/2001	GJR	85	5.2					1.64						0.48		6.4		235
8/1/2001	GJR	108	9.9					2.30						0.89		6.6		344
8/1/2001	GJR	90	6.1					0.71						0.28		5.9		202
8/1/2001	GJR	90	5.8					1.27						0.55		7.5		250
8/1/2001	GJR	87	5.1					1.66						0.45		7.4		273
8/1/2001	GJR	87	4.6					1.48						0.59		6.0		299
8/1/2001	GJR	94	6.1					1.60						0.57		7.2		328
8/1/2001	GJR	81	3.9					1.96						0.93		7.5		499
8/27/2004	GJR	131	20.4					0.30			0.030			0.09		6.0		95
8/27/2004	GJR	91	6.1					0.73			0.020			0.22		6.7		173
8/27/2004	GJR	84	4.7					0.46			< 0.020			0.10		6.0		133
8/27/2004	GJR	129	20.0					0.66			0.020			0.14		5.8		176
8/27/2004	GJR	91	7.7					0.21			< 0.020			0.15		4.4		109
8/27/2004	GJR	117	15.4					0.37			< 0.020			0.14		2.0		153
8/27/2004	GJR	80	4.2					0.54			< 0.020			0.38		2.9		189
8/27/2004	GJR	84	5.6					0.28			0.020			0.19		2.6		101
8/27/2004	GJR	83	4.9					0.29			< 0.020			0.27		3.4		114
8/27/2004	GJR	84	5.1					0.62			< 0.020			0.29		2.8		156
8/27/2004	GJR	81	5.0					0.24			< 0.020			0.17		2.7		120
8/27/2004	GJR	82	4.9					0.21			0.020			0.32		2.6		116
8/27/2004	GJR	87	6.0					0.17			< 0.020			0.15		2.5		153
8/27/2004	GJR	84	5.1					0.20			< 0.020			0.19		3.7		119
8/27/2004	GJR	83	4.9					0.61			< 0.020			0.12		2.3		163

Appendix A3 Page 20 of 31.–Red Dog Mine, Ikalukrok (IKA) and Omikviorok Downstream (OD) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Мо	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/5/2001	IKA	122	15.6					1.81						1.75		5.1		333
8/5/2001	IKA	77	3.5					1.47						1.83		4.2		242
8/5/2001	IKA	99	7.4					0.48						0.80		4.6		146
8/5/2001	IKA	93	4.8					0.77						1.82		5.0		170
8/5/2001	IKA	96	6.5					1.03						0.35		4.8		159
8/5/2001	IKA	91	5.5					1.06						0.67		5.2		217
8/6/2001	OD	138	21.0					0.10						0.21		3.1		118
8/6/2001	OD	139	20.4					0.08						0.09		2.6		111
8/6/2001	OD	104	8.4					0.05						0.13		3.4		99
8/6/2001	OD	87	4.6					0.09						0.41		2.7		131
8/6/2001	OD	87	5.2					0.07						0.08		2.6		98
8/6/2001	OD	91	5.2					0.07						0.51		2.9		121
8/6/2001	OD	133	22.8					0.10						1.05		2.8		100
8/6/2001	OD	134	20.3					0.06						0.22		3.3		116
8/6/2001	OD	100	8.0					0.06						0.27		3.4		106
8/6/2001	OD	98	7.2					0.05						0.21		2.1		107
8/4/2002	OD	128	19.7					0.06						0.17		3.0		114
8/4/2002	OD	124	18.8					< 0.05						< 0.02		4.7		105
8/4/2002	OD	103	10.1					0.09						0.02		4.0		113
8/4/2002	OD	119	17.2					< 0.05						0.02		2.3		134
8/4/2002	OD	99	8.9					< 0.05						< 0.02		2.9		109
8/4/2002	OD	110	11.7					< 0.05						0.04		3.3		114
8/4/2002	OD	98	9.2					0.20						< 0.02		4.1		120
8/4/2002	OD	114	16.2					0.14						0.14		3.1		91
8/4/2002	OD	93	8.3					0.14						0.03		4.8		128

Appendix A3 Page 21 of 31.–Red Dog Mine, Omikviorok Downstream (OD) and Omikviorok North Fork (ONF) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/4/2002	OD	142	24.7					< 0.05						0.03		2.3		112
8/4/2002	OD	107	12.1					0.07						0.02		1.8		106
8/4/2002	OD	105	11.7					0.09						0.04		4.3		133
8/4/2002	OD	102	10.4					0.07						0.05		2.8		108
8/4/2002	OD	112	13.8					0.09						< 0.02		3.3		83
8/4/2002	OD	135	20.6					0.08						0.03		3.2		147
8/6/2001	ONF	123	13.5					0.09						3.03		3.1		107
8/6/2001	ONF	83	4.2					0.11						0.34		3.1		120
8/6/2001	ONF	131	18.7					0.12						0.17		3.2		94
8/6/2001	ONF	132	18.2					0.08						0.19		2.6		106
8/6/2001	ONF	134	19.7					0.08						0.06		2.5		105
8/6/2001	ONF	133	18.7					0.14						0.07		2.7		85
8/6/2001	ONF	95	6.8					0.04						0.04		2.1		92
8/6/2001	ONF	87	4.7					0.09						0.06		2.6		72
8/6/2001	ONF	111	10.7					0.08						0.11		2.1		155
8/6/2001	ONF	105	9.1					0.10						0.08		2.8		144
8/4/2002	ONF	122	15.8					0.08						0.21		5.4		110
8/4/2002	ONF	130	17.8					0.09						0.06		4.5		102
8/4/2002	ONF	138	21.5					0.10						0.07		6.9		98
8/4/2002	ONF	119	11.8					0.09						0.26		4.4		159
8/4/2002	ONF	105	9.3					0.09						0.06		4.0		92
8/4/2002	ONF	124	15.2					0.11						0.05		3.1		127
8/4/2002	ONF	120	13.6					0.15						0.10		3.5		128

Appendix A3 Page 22 of 31.—Red Dog Mine, Omikviorok North Fork (ONF) and Omikviorok South Fork (OSF) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/4/2002	ONF	95	6.4					0.09						0.06		3.8		142
8/5/2002	ONF	124	15.7					0.08						0.07		0.3		107
8/5/2002	ONF	112	10.8					0.06						0.17		3.1		111
8/5/2002	ONF	119	14.0					< 0.05						0.03		4.7		129
8/5/2002	ONF	123	16.1					0.08						0.13		3.4		95
8/5/2002	ONF	116	12.2					0.09						0.07		3.8		125
8/5/2002	ONF	121	13.8					0.06						< 0.02		3.6		117
8/5/2002	ONF	102	9.8					0.14						0.12		3.8		107
8/4/2002	OSF	95	6.8					0.05						0.06		5.1		112
8/4/2002	OSF	129	18.0					< 0.05						0.04		3.2		84
8/4/2002	OSF	135	20.8					< 0.05						0.13		3.0		94
8/4/2002	OSF	142	23.7					0.06						0.06		2.8		131
8/4/2002	OSF	106	12.1					0.06						0.05		2.8		105
8/4/2002	OSF	129	17.9					< 0.05						0.05		2.9		143
8/4/2002	OSF	114	14.1					0.06						0.13		2.7		116
8/4/2002	OSF	97	8.2					0.06						0.03		5.2		122
8/4/2002	OSF	110	12.0					0.06						0.05		3.4		120
8/4/2002	OSF	128	17.6					< 0.05						0.05		3.3		104
8/4/2002	OSF	110	11.0					< 0.05						0.07		2.3		115
8/4/2002	OSF	110	10.7					< 0.05						0.08		3.6		100
8/4/2002	OSF	101	8.4					< 0.05						< 0.02		3.5		113
8/4/2002	OSF	92	6.8					0.07						0.06		5.3		137
8/4/2002	OSF	105	9.9					0.06						0.14		4.0		107

Appendix A3 Page 23 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/7/1998	RDM	132						1.97						5.04		6.5		
8/7/1998	RDM	145						3.62						15.00		7.3		
8/7/1998	RDM	124						3.62						16.20		6.4		
8/7/1998	RDM	124						3.04						10.60		5.2		
8/7/1998	RDM	110						3.07						6.97		5.7		
8/7/1998	RDM	130						1.89						4.17		7.3		
8/7/1998	RDM	143						0.42						3.95		6.9		
8/7/1998	RDM	130						2.54						21.20		8.7		
8/7/1998	RDM	132						3.08						6.48		7.3		
8/7/1998	RDM	132						1.04						7.97		7.6		
8/10/1999	RDM	140						4.62						8.91		6.9		
8/10/1999	RDM	121						3.90						8.78		7.1		
8/10/1999	RDM	125						3.75						8.68		8.9		
8/10/1999	RDM	127						4.14						3.11		7.3		
8/10/1999	RDM	130						3.19						4.97		6.9		
8/10/1999	RDM	134						1.28						3.18		7.3		
8/10/1999	RDM	139						3.84						6.52		8.9		
8/10/1999	RDM	145						3.17						10.40		6.3		
8/10/1999	RDM	143						0.54						1.09		5.7		
8/10/1999	RDM	120						2.47						9.94		4.2		
7/28/2000	RDM	131	17.9					2.69						6.80		6.8		
7/28/2000	RDM	117	12.3					3.45						13.00		10.8		
7/28/2000	RDM	140	21.8					4.75						9.75		9.1		
7/28/2000	RDM	110	11.2					2.91						13.40		12.5		
7/28/2000	RDM	125	16.0					6.40						15.80		8.9		

Appendix A3 Page 24 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/31/2001	RDM	92	6.9					5.92						46.60		12.3		333
7/31/2001	RDM	133	16.1					3.88						16.80		7.6		244
7/31/2001	RDM	94	6.2					3.42						25.00		15.2		327
7/31/2001	RDM	132	16.0					1.15						1.95		6.7		117
7/31/2001	RDM	134	21.7					3.83						9.79		14.4		210
7/31/2001	RDM	117	12.7					2.78						4.43		10.5		226
7/31/2001	RDM	106	9.7					2.80						5.62		11.1		210
7/31/2001	RDM	106	9.3					3.52						11.40		13.1		188
7/28/2002	RDM	112	14.0					6.63						20.70		9.4		271
7/28/2002	RDM	100	11.8					5.62						8.89		13.0		276
7/28/2002	RDM	127	20.3					6.16						14.60		16.1		404
7/28/2002	RDM	128	20.5					6.17						29.20		12.7		402
7/28/2002	RDM	90	6.2					1.83						6.77		6.6		195
7/28/2002	RDM	106	10.9					3.39						9.33		13.0		230
7/28/2002	RDM	104	10.9					4.82						8.39		17.2		314
7/28/2002	RDM	98	8.7					3.13						6.42		17.0		210
7/28/2002	RDM	119	16.7					2.82						5.00		14.2		205
7/28/2002	RDM	95	9.0					3.65						16.90		9.2		218
7/29/2002	RDM	134	23.2					3.05						8.40		9.8		219
7/29/2002	RDM	116	13.2					2.31						5.26		8.7		180
7/29/2002	RDM	99	9.7					2.64						3.02		11.2		218
7/29/2002	RDM	100	10.6					3.11						8.12		13.3		221
7/29/2002	RDM	96	8.4					2.04						10.10		8.2		177
8/8/2003	RDM	150	30.0					4.98						10.70		11.8		233
8/8/2003	RDM	128	16.7					5.48						8.40		11.5		208
8/10/2003	RDM	112	13.5					6.56						15.20		10.1		271
8/10/2003	RDM	111	13.6					3.86						2.42		10.0		220
8/10/2003	RDM	119	15.5					3.41						1.72		10.1		166
8/10/2003	RDM	108	12.0					2.82						3.41		10.0		197

Appendix A3 Page 25 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Мо	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/10/2003	RDM	106	11.3					5.92						9.26		10.4		331
8/10/2003	RDM	108	11.2					4.65						4.51		11.0		212
8/10/2003	RDM	112	12.3					2.96						4.66		8.5		185
8/10/2003	RDM	118	16.3					5.15						16.30		12.7		258
8/10/2003	RDM	111	11.9					4.37						12.70		9.6		234
8/10/2003	RDM	109	11.6					1.29						1.87		10.1		153
8/10/2003	RDM	106	15.5					1.86						0.97		8.2		140
8/10/2003	RDM	110	12.8					3.53						4.42		13.7		249
8/20/2004	RDM	91	6.5					4.72			0.060			24.70		5.7		265
8/20/2004	RDM	110	10.7					1.23			0.030			2.40		3.9		208
8/27/2004	RDM	128	18.1					0.76			< 0.020			1.63		3.2		120
8/27/2004	RDM	116	11.8					3.74			0.040			147.00		6.8		282
7/28/2005	RDM	109	11.5					3.48			0.030			3.05		10.8		167
7/28/2005	RDM	111	11.8					2.50			0.020			2.06		9.7		173
7/28/2005	RDM	123	16.4					1.48			0.030			2.72		8.5		176
7/28/2005	RDM	131	19.0					1.40			0.040			2.13		9.8		159
7/28/2005	RDM	116	15.8					1.66			0.030			1.63		7.8		190
7/28/2005	RDM	103	11.0					2.87			0.040			7.03		7.7		214
7/29/2005	RDM	122	15.9					1.67			0.030			1.91		10.2		147
7/29/2005	RDM	107	12.5					2.11			0.030			0.95		9.2		166
7/29/2005	RDM	119	15.9					3.27			0.030			1.93		9.6		171
7/29/2005	RDM	109	13.2					1.71			0.040			1.62		8.7		199
7/29/2005	RDM	136	22.9					2.09			0.020			1.73		9.5		163
7/29/2005	RDM	107	11.3					1.60			0.030			2.19		4.6		202
7/29/2005	RDM	114	13.0					2.74			0.020			0.78		8.8		145
7/29/2005	RDM	106	10.9					1.96			0.040			1.72		7.6		181
7/29/2005	RDM	113	14.7					1.87			0.030			1.05		8.7		164

Appendix A3 Page 26 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/11/2006	RDM	109	11.9					3.15			0.040			1.84		5.7		288
8/11/2006	RDM	110	14.5					3.00			0.040			5.49		6.9		349
8/11/2006	RDM	108	11.8					2.80			0.040			1.15		6.2		284
8/12/2006	RDM	94	8.3					4.52			0.060			12.00		6.3		569
8/12/2006	RDM	112	13.2					3.35			0.040			3.99		8.0		305
8/12/2006	RDM	110	13.3					3.68			0.030			4.81		6.6		229
8/12/2006	RDM	112	13.1					2.18			0.040			1.28		7.4		260
8/12/2006	RDM	108	11.0					2.28			0.030			1.31		6.7		317
8/12/2006	RDM	127	18.6					1.77			0.050			1.53		7.4		294
8/12/2006	RDM	95	8.7					3.76			0.030			1.24		7.4		513
8/12/2006	RDM	102	9.8					3.17			0.020			16.00		6.4		529
8/10/2007	RDM	124	15.7					5.88			0.030			13.30		7.4		540
8/10/2007	RDM	110	11.8					5.58			0.030			2.89		6.2		463
8/10/2007	RDM	123	15.9					4.89			0.040			0.93		4.4		192
8/10/2007	RDM	78	4.4					1.06			0.040			0.87		2.6		239
8/10/2007	RDM	120	14.3					2.71			0.040			3.00		5.5		220
8/11/2007	RDM	78	4.3					6.35			0.030			3.26		6.8		359
8/12/2007	RDM	119	15.3					5.43			0.060			20.90		4.9		497
8/12/2007	RDM	107	11.8					1.88			< 0.020			6.32		3.3		351
8/12/2007	RDM	63	2.0					1.19			< 0.180			2.75		3.5		250
8/12/2007	RDM	65	2.3					0.72			< 0.020			1.24		2.9		176
8/12/2007	RDM	65	2.4					1.83			< 0.020			1.70		4.5		366
8/4/2008	RDM	95	5.7					2.01			0.030			1.43		5.6		233
8/4/2008	RDM	118	12.2					0.89			0.040			0.46		4.1		247
8/4/2008	RDM	108	9.2					3.21			0.050			2.37		4.9		220
8/4/2008	RDM	108	10.5					2.05			0.060			0.67		4.8		166
8/4/2008	RDM	115	13.4					1.76			0.040			2.96		5.3		291
8/4/2008	RDM	108	17.6					1.63			0.060			6.41		4.4		218
8/4/2008	RDM	118	21.6					2.99			0.060			2.77		7.4		300

Appendix A3 Page 27 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/4/2008	RDM	102	16.2					1.47			0.040			1.63		7.1		229
8/4/2008	RDM	100	15.9					1.27			0.030			1.40		5.7		223
8/4/2008	RDM	113	20.2					2.30			0.040			2.58		7.1		236
8/4/2008	RDM	96	14.4					1.67			0.030			1.53		6.3		215
8/4/2008	RDM	104	15.5					1.55			0.050			1.82		4.9		259
8/4/2008	RDM	93	13.6					2.32			0.030			2.32		5.6		290
8/4/2008	RDM	118	22.2					1.94			0.030			3.77		6.3		263
8/4/2008	RDM	97	14.9					2.56			0.030			9.92		5.5		274
7/30/2009	RDM	67	2.0					1.16			< 0.100			0.99		4.4		199
7/30/2009	RDM	93	6.5					1.45			0.030			1.33		10.9		172
7/30/2009	RDM	84	5.0					0.79			0.030			1.10		5.6		140
7/30/2009	RDM	57	1.5					0.51			< 0.110			0.33		3.9		180
7/30/2009	RDM	83	5.0					1.46			0.030			1.57		3.9		160
7/30/2009	RDM	98	6.5					0.60			0.040			0.40		4.1		166
7/30/2009	RDM	80	7.0					0.31			0.030			0.57		3.4		121
7/30/2009	RDM	113	12.5					3.15			0.030			2.35		9.5		139
7/30/2009	RDM	112	12.0					1.54			0.030			1.40		11.8		136
7/30/2009	RDM	99	9.5					0.51			0.020			0.23		4.0		167
7/30/2009	RDM	105	10.0					1.35			0.040			0.78		11.2		162
7/30/2009	RDM	57	1.5					0.85			< 0.100			0.83		3.4		156
7/30/2009	RDM	58	1.8					0.70			< 0.110			1.14		3.6		156
7/30/2009	RDM	64	2.0					0.66			< 0.100			0.81		3.5		154
7/30/2009	RDM	57	1.5					0.57			< 0.100			5.04		3.2		164

Appendix A3 Page 28 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/16/2010	RDM	119	10.3					7.14			0.030			21.70		6.2		330
8/16/2010	RDM	128	14.5					2.85			0.030			7.61		5.9		175
8/16/2010	RDM	110	14.3					2.40			0.030			6.34		5.0		176
8/16/2010	RDM	127	20.3					2.50			0.040			2.72		6.8		225
8/16/2010	RDM	106	19.8					1.88			0.030			0.89		4.6		121
8/16/2010	RDM	122	19.0					2.42			0.030			3.55		5.7		186
8/16/2010	RDM	105	16.5					1.76			< 0.020			1.25		5.1		141
8/16/2010	RDM	124	18.3					1.63			0.020			4.26		5.0		197
8/16/2010	RDM	112	21.3					3.91			0.060			12.50		6.1		218
8/16/2010	RDM	101	15.3					2.08			0.020			4.85		4.8		155
8/16/2010	RDM	141	19.5					2.54			0.030			1.26		5.0		163
8/16/2010	RDM	114	13.3					3.57			0.030			5.37		5.6		196
8/16/2010	RDM	125	17.3					3.65			0.040			12.60		3.9		173
8/16/2010	RDM	121	22.0					2.81			0.030			0.90		4.0		144
8/16/2010	RDM	119	15.8					3.66			0.030			5.40		4.5		201
8/27/2011	RDM	134	23.0					1.93			0.020			5.74		10.1		159
8/29/2011	RDM	132	22.5					1.92			< 0.020			2.72		7.4		189
8/29/2011	RDM	93	9.0					3.39			< 0.030			12.90		7.3		258
8/29/2011	RDM	122	16.5					1.59			0.020			6.82		5.8		182
8/29/2011	RDM	110	14.5					1.41			0.020			6.07		6.5		176
8/27/2011	RDM	102	10.5					1.00			< 0.020			1.22		3.2		171
8/27/2011	RDM	103	12.0					1.83			0.020			0.85		3.8		173
8/27/2011	RDM	127	18.5					1.46			0.030			4.63		3.1		170
8/27/2011	RDM	109	11.5					2.16			0.040			1.54		5.2		149
8/27/2011	RDM	124	14.0					2.89			0.030			1.19		5.3		253
8/29/2011	RDM	134	24.5					2.76			0.020			7.69		10.3		175
8/29/2011	RDM	136	25.5					1.94			0.020			5.66		10.8		211

Appendix A3 Page 29 of 31.–Red Dog Mine, Red Dog Mainstem (RDM) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/29/2014	RDM	130	19.0					1.10		7.2	0.030			7.09		6.3		182
7/28/2014	RDM	140	24.0					2.31		6.1	0.040			6.01		9.2		159
7/29/2014	RDM	130	18.5					1.47		5.1	0.030			3.33		7.9		182
7/29/2014	RDM	134	20.0					1.26		5.7	0.040			3.21		7.9		209
7/29/2014	RDM	127	19.0					1.07		6.1	0.030			15.30		9.7		160
7/29/2014	RDM	119	16.0					0.83		4.0	0.020			2.12		7.6		139
7/29/2014	RDM	125	18.5					0.88		5.6	0.030			5.96		7.3		152
7/29/2014	RDM	113	12.5					0.98		6.8	0.030			4.81		8.4		194
7/29/2014	RDM	89	6.0					1.04		5.7	0.030			1.10		7.3		220
7/29/2014	RDM	120	17.0					2.17		9.2	0.030			4.43		8.8		211
7/29/2014	RDM	94	8.0					1.36		6.6	0.030			8.80		8.9		166
7/29/2014	RDM	125	18.0					0.99		6.0	0.030			1.63		9.1		183
7/29/2014	RDM	117	14.0					1.59		7.2	0.070			3.13		7.7		183
7/30/2014	RDM	128	20.5					1.01		6.3	0.040			3.59		10.1		175
7/30/2014	RDM	117	15.0					2.58		8.9	0.070			6.13		9.4		232
8/1/2015	RDM	93	9.0					1.73		6.2	< 0.020			5.50		9.1		186
8/1/2015	RDM	106	12.5					2.18		5.7	0.020			6.71		12.8		200
8/1/2015	RDM	98	12.5					1.73		5.3	< 0.020			12.60		11.8		296
8/1/2015	RDM	120	15.0					2.37		5.9	< 0.020			2.05		15.9		204
8/1/2015	RDM	122	18.5					1.96		4.8	0.020			6.56		12.3		205
8/1/2015	RDM	110	13.0					2.21		5.8	0.030			1.59		13.4		187
8/1/2015	RDM	99	10.0					0.96		4.8	< 0.020			0.92		7.7		157
8/1/2015	RDM	105	11.5					1.50		5.5	< 0.020			0.83		13.7		193
8/1/2015	RDM	114	15.5					1.04		4.8	0.020			0.95		14.5		163
8/1/2015	RDM	105	10.5					0.69		5.5	0.030			0.54		7.3		216
8/1/2015	RDM	98	9.5					1.50		5.2	0.030			0.99		12.9		225
8/1/2015	RDM	96	8.5					0.74		4.0	0.020			1.90		8.5		217
8/1/2015	RDM	114	16.0					1.67		6.3	0.030			1.28		10.4		180
8/1/2015	RDM	111	12.5					1.45		5.5	0.020			1.09		10.6		156
8/1/2015	RDM	105	12.5					1.28		5.6	0.030			2.24		11.2		235

Appendix A3 Page 30 of 31.–Red Dog Mine, Red Dog North Fork (RDNF) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/25/1993	RDNF	136	24.0					0.80						0.26				
8/25/1993	RDNF	133	24.0					0.79						0.18				
8/25/1993	RDNF	117	15.0					0.35						0.25				
8/25/1993	RDNF	119	15.0					2.37						0.32				
8/25/1993	RDNF	130	21.0					0.67						0.34				
8/25/1993	RDNF	131	19.0					0.75						0.58				
8/12/1999	RDNF	140						0.42						0.52		4.7		
8/12/1999	RDNF	123						0.88						0.86		5.2		
8/12/1999	RDNF	128						0.56						0.22		4.4		
8/12/1999	RDNF	128						0.58						0.57		4.2		
8/12/1999	RDNF	125						0.43						0.31		5.5		
8/12/1999	RDNF	134						0.42						0.28		5.8		
8/12/1999	RDNF	146						0.52						0.57		4.3		
8/12/1999	RDNF	119						0.50						0.30		4.6		
8/12/1999	RDNF	126						1.15						0.29		5.7		
8/12/1999	RDNF	126						0.38						0.32		5.1		
7/28/2000	RDNF	136	21.2					0.78						1.38		6.4		
7/28/2000	RDNF	142	24.1					0.37						0.36		5.2		
7/28/2000	RDNF	132	17.4					0.73						0.99		6.2		
7/28/2000	RDNF	132	17.6					0.54						0.90		5.7		
7/28/2000	RDNF	137	22.1					0.43						0.89		6.1		

Appendix A3 Page 31 of 31.—Red Dog Mine, Red Dog North Fork Upstream (RDNFU) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Нд	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
8/1/2001	RDNFU	113	11.4					1.21						1.27		7.7		183
8/1/2001	RDNFU	130	15.9					1.45						2.37		8.0		154
8/1/2001	RDNFU	138	25.4					2.28						4.41		11.4		236
8/2/2002	RDNFU	139	27.1					0.24						0.66		6.6		113
8/2/2002	RDNFU	133	22.4					0.29						0.55		6.4		114
8/2/2002	RDNFU	128	20.4					0.59						0.98		6.5		131
8/2/2002	RDNFU	95	8.1					0.47						0.21		6.3		146
8/2/2002	RDNFU	129	18.6					0.60						0.25		5.5		127
8/2/2002	RDNFU	133	21.0					0.23						0.17		5.2		124
8/2/2002	RDNFU	116	19.2					0.69						0.36		6.0		118
8/2/2002	RDNFU	136	22.9					0.24						0.18		6.0		116
8/3/2002	RDNFU	141	30.3					0.71						0.79		7.2		156
8/3/2002	RDNFU	120	18.5					0.86						0.12		6.9		96
8/3/2002	RDNFU	115	14.1					0.42						0.30		7.0		115
8/3/2002	RDNFU	130	21.3					0.88						1.42		7.2		176
8/3/2002	RDNFU	130	19.3					0.32						0.28		6.0		168
8/3/2002	RDNFU	98	11.4					0.65						0.38		6.5		168
8/3/2002	RDNFU	113	15.9					0.27						0.16		6.3		99
8/27/2004	RDNFU	117	15.9					0.27			0.060			0.11		6.5		116
8/27/2004	RDNFU	136	22.4					0.16			0.030			0.09		6.2		90

Appendix A4 Page 1 of 10.—Greens Creek Mine, Greens Creek site 48 (GC48) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/23/2001	GC48	131	26.0	0.02				1.76		8.3				0.20		6.1		180
7/23/2001	GC48	137	28.8	0.03				0.89		7.2				0.17		4.6		146
7/23/2001	GC48	119	18.8	0.02				2.27		5.7				0.20		6.2		189
7/23/2001	GC48	121	21.1	0.02				1.56		6.9				0.17		5.2		182
7/23/2001	GC48	111	13.7	0.03				0.89		4.7				0.23		5.4		138
7/23/2001	GC48	121	21.1	< 0.02				1.26		7.4				0.10		5.6		157
7/24/2002	GC48	133	23.2	0.03				1.64		6.8				0.72		4.8		239
7/24/2002	GC48	120	15.0	0.07				0.85		7.0				0.28		4.1		210
7/24/2002	GC48	122	17.5	0.03				0.74		4.3				0.17		4.9		162
7/24/2002	GC48	127	20.8	0.04				1.40		6.1				0.16		4.7		185
7/24/2002	GC48	134	24.8	0.05				1.30		7.9				0.46		4.3		208
7/24/2002	GC48	128	21.7	0.04				1.56		6.8				0.22		5.7		343
7/22/2003	GC48	90	8.9	< 0.02				0.65		4.2				0.14		5.6		191
7/22/2003	GC48	98	9.9	< 0.02				0.90		5.1				0.22		5.5		180
7/22/2003	GC48	103	12.1	< 0.02				0.82		5.6				0.16		5.4		241
7/22/2003	GC48	112	12.5	< 0.02				0.78		6.1				0.11		6.1		192
7/22/2003	GC48	108	11.9	< 0.02				0.63		3.9				0.14		5.2		174
7/22/2003	GC48	100	10.5	< 0.02				0.58		3.7				0.08		5.5		218
7/22/2004	GC48	96	8.6	< 0.02				0.63		4.7				0.15		4.3		206
7/22/2004	GC48	88	6.8	< 0.02				0.83		5.6				0.26		4.0		175
7/22/2004	GC48	101	11.5	< 0.02				1.54		4.6				0.21		4.1		183
7/22/2004	GC48	98	9.3	< 0.02				0.80		5.2				0.28		3.7		168
7/22/2004	GC48	93	7.6	< 0.02				1.25		4.4				0.14		6.4		220
7/22/2004	GC48	91	7.5	0.03				1.01		4.5				0.29		5.6		323
7/22/2005	GC48	103	19.7	0.02				0.66		4.4				0.44		4.2		183
7/22/2005	GC48	96	13.1	< 0.02				0.84		14.5				0.98		4.8		220
7/22/2005	GC48	119	15.6	0.02				0.89		4.4				0.66		4.8		226
7/22/2005	GC48	114	17.1	0.02				0.59		6.0				0.32		4.8		178
7/22/2005	GC48	111	15.3	0.03				1.10		18.8				0.79		4.6		217
7/22/2005	GC48	125	16.9	0.03				0.47		3.6				0.36		3.8		161

Appendix A4 Page 2 of 10.—Greens Creek Mine, Greens Creek site 48 (GC48) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	C	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected		(mm)	(g)	(mg/kg)														
7/20/2006	GC48	110	15.8	0.04				0.56		8.5				0.37		5.4		244
7/20/2006	GC48	110	15.4	0.05				1.20		8.3				0.31		6.0		217
7/20/2006	GC48	113	16.1	0.04				0.65		6.3				0.24		5.4		264
7/20/2006	GC48	132	25.0	0.06				0.63		8.1				0.66		5.2		232
7/20/2006	GC48	104	12.8	0.08				0.96		8.5				0.37		5.1		283
7/20/2006	GC48	114	16.7	0.03				0.63		5.3				0.20		5.1		270
7/21/2007	GC48	122	17.9	0.03				1.16		5.5				0.17		5.5		221
7/21/2007	GC48	95	10.4	0.02				1.42		3.9				0.29		5.8		165
7/21/2007	GC48	135	22.8	0.09				1.35		14.1				1.37		5.3		166
7/21/2007	GC48	98	9.9	0.03				0.96		5.7				0.27		5.2		269
7/21/2007	GC48	105	13.2	0.11				1.79		11.4				1.62		5.4		323
7/21/2007	GC48	99	10.0	0.04				1.43		5.2				0.31		5.7		208
7/22/2008	GC48	112	16.4	0.07				1.23		5.2				0.95		5.72		289
7/22/2008	GC48	123	21.3	0.04				0.79		3.9				0.57		4.56		194
7/22/2008	GC48	105	14.0	0.08				0.82		4.6				0.52		5.88		200
7/22/2008	GC48	124	20.6	0.04				0.87		4.9				0.42		6.31		244
7/22/2008	GC48	115	16.9	0.03				1.36		5.3				0.51		5.36		254
7/22/2008	GC48	122	19.8	0.04				1.07		5.6				0.38		6.11		260
7/21/2009	GC48	120	20.1	< 0.02				1.05		5.2				0.22		5.9		186
7/21/2009	GC48	121	20.7	< 0.02				1.40		5.3				0.44		5.7		173
7/21/2009	GC48	119	17.9	0.02				1.10		4.5				0.13		5.9		182
7/21/2009	GC48	108	13.6	< 0.02				1.20		4.1				0.15		5.7		162
7/21/2009	GC48	109	14.6	< 0.02				1.50		4.9				0.17		5.9		186
7/21/2009	GC48	110	15.2	< 0.02				0.84		3.8				0.18		6.1		202
7/21/2010	GC48	103	11.9	0.02				1.56		4.8	0.09			0.16		5.0		226
7/21/2010	GC48	109	16.1	< 0.02				0.50		3.0	0.15			0.20		5.4		170
7/21/2010	GC48	108	13.9	0.04				0.91		4.2	0.17			0.30		5.0		180
7/21/2010	GC48	105	13.8	< 0.02				0.98		3.4	0.13			0.09		4.6		163
7/21/2010	GC48	98	10.8	0.06				0.90		4.8	0.14			0.46		4.8		213
7/21/2010	GC48	93	9.1	< 0.02				0.96		3.6	0.10			0.09		4.0		156

Appendix A4 Page 3 of 10.—Greens Creek Mine, Greens Creek site 48 (GC48) juvenile Dolly Varden char whole body metals concentrations data.

Date	a.,		Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected		(mm) 88-112	(g)	(mg/kg)														
7/22/2011				0.03				1.12		5.7				0.28		6.2		221
7/24/2012		109	11.3	0.03				2.26		27.0	0.134			0.16		5.5		186
7/24/2012		123	18.3	0.03				1.37		4.9	0.122			0.10		5.7		184
7/24/2012		110	9.8	0.03				1.83		25.6	0.159			2.59		5.6		275
7/24/2012	GC48	103	10.6	0.03				0.99		76.8	0.175			0.30		5.1		189
7/24/2012	GC48	104	10.7	0.03				2.66		84.8	0.122			1.05		6.3		242
7/24/2012		116	15.8	0.04				0.73		35.1	0.148			1.03		4.7		190
7/25/2013	GC48	145	20.6	< 0.02				0.68		3.7	0.214			0.17		5.3		237
7/25/2013	GC48	115	17.9	0.07				0.97		6.1	0.238			0.24		5.8		239
7/25/2013	GC48	115	14.3	< 0.02				0.81		4.0	0.180			0.08		6.7		258
7/25/2013	GC48	105	11.4	< 0.02				0.68		3.2	0.213			0.14		6.4		213
7/25/2013	GC48	109	13.0	0.04				2.01		6.6	0.113			0.36		6.2		271
7/25/2013	GC48	105	12.4	0.04				1.75		5.7	0.274			0.22		6.2		287
7/25/2014	GC48	110	13.0	0.04				0.55		4.5	0.146			0.11		5.3		234
7/25/2014	GC48	100	10.5	< 0.02				0.93		4.2	0.148			0.19		6.9		213
7/25/2014	GC48	106	10.7	< 0.02				1.22		4.8	0.199			0.38		5.7		232
7/25/2014	GC48	105	11.3	< 0.02				1.45		4.2	0.122			0.44		6.1		193
7/25/2014	GC48	100	10.4	< 0.02				0.92		4.5	0.134			0.06		4.9		237
7/25/2014	GC48	120	14.8	0.04				0.75		5.5	0.260			0.18		5.9		305
7/16/2015	GC48	105	12.4	< 0.02				0.60		2.5	0.114			0.13		6.2		159
7/16/2015	GC48	104	11.7	0.04				1.11		10.7	0.100			1.30		5.8		205
7/16/2015	GC48	100	11.7	0.03				1.05		3.8	0.152			0.14		6.1		187
7/16/2015	GC48	105	11.3	0.03				1.39		4.2	0.154			0.36		6.1		198
7/16/2015	GC48	105	12.7	< 0.02				1.06		4.0	0.128			0.12		5.7		169
7/16/2015	GC48	100	10.4	0.02				1.49		3.9	0.165			0.37		5.4		191
7/16/2015	GC48	104	9.6	< 0.02				0.85		3.1	0.091			0.09		5.2		175
7/16/2015	GC48	85	8.6	0.03				0.90		3.6	0.139			0.27		5.9		172
7/16/2015	GC48	102	10.3	< 0.02				1.51		3.7	0.180			0.15		7.2		192
7/16/2015	GC48	120	16.3	< 0.02				0.86		4.0	0.150			0.14		6.4		223

Appendix A4 Page 4 of 10.—Greens Creek Mine, Greens Creek site 54 (GC54) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/23/2001	GC54	121	21.5	0.03				0.46		4.3				0.33		5.7		126
7/23/2001	GC54	119	19.3	0.02				0.21		3.2				0.22		3.6		82
7/23/2001	GC54	107	15.7	0.03				0.73		6.3				0.59		4.7		144
7/23/2001	GC54	109	13.6	0.02				0.82		5.4				0.86		4.9		172
7/23/2001	GC54	105	13.5	< 0.02				0.79		6.5				0.45		5.8		203
7/23/2001	GC54	138	27.5	< 0.02				0.74		5.8				0.40		5.4		171
7/24/2002	GC54	118	18.0	0.03				0.50		4.4				0.94		3.4		363
7/24/2002	GC54	128	22.3	0.03				0.52		4.5				0.35		4.7		150
7/24/2002	GC54	115	17.7	0.05				0.95		6.0				0.66		4.4		161
7/24/2002	GC54	115	18.9	0.03				1.03		5.2				0.66		4.2		216
7/24/2002	GC54	124	21.1	0.05				1.32		5.2				0.74		3.9		194
7/24/2002	GC54	123	20.9	0.02				0.70		3.9				0.78		4.4		195
7/22/2003	GC54	123	21.1	0.03				0.85		6.4				1.40		6.1		188
7/22/2003	GC54	101	10.6	< 0.02				0.67		4.2				0.32		6.4		174
7/22/2003	GC54	88	9.2	< 0.02				0.75		4.3				0.35		6.5		186
7/22/2003	GC54	109	14.8	< 0.02				1.11		5.8				0.38		5.7		188
7/22/2003	GC54	95	10.6	< 0.02				0.59		3.5				0.29		5.7		174
7/22/2003	GC54	92	9.7	< 0.02				0.91		4.1				0.43		6.5		263
7/21/2004	GC54	103	9.9	0.02				0.79		11.0				0.57		4.6		232
7/21/2004	GC54	104	10.0	< 0.02				0.88		5.5				0.54		5.0		206
7/21/2004	GC54	86	6.6	< 0.02				1.26		5.1				0.36		5.3		164
7/21/2004	GC54	96	9.3	0.03				0.79		5.9				0.28		5.4		191
7/21/2004	GC54	93	9.9	< 0.02				0.83		5.0				0.48		3.9		202
7/21/2004	GC54	104	12.9	0.08				1.12		7.0				0.93		4.9		217
7/22/2005	GC54	120	12.3	0.03				0.72		5.0				0.27		4.0		160
7/22/2005	GC54	106	12.1	0.02				0.63		4.5				0.13		3.9		200
7/22/2005	GC54	113	20.8	< 0.02				0.73		8.8				0.17		4.7		223
7/22/2005	GC54	114	17.9	< 0.02				0.82		9.7				0.17		3.9		222
7/22/2005	GC54	112	16.1	0.03				1.06		8.8				0.22		4.4		209
7/22/2005	GC54	118	22.3	0.02				0.55		5.5				0.39		3.9		185

Appendix A4 Page 5 of 10.—Greens Creek Mine, Greens Creek site 54 (GC54) juvenile Dolly Varden char whole body metals concentrations data.

Date			Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected		(mm)	(g)	(mg/kg)														
7/20/2006	GC54	137	27.3	0.06				0.42		4.8				0.51		5.7		208
7/20/2006	GC54	112	14.9	0.04				0.75		16.0				0.95		7.2		223
7/20/2006	GC54	102	12.0	0.02				0.93		22.2				0.52		6.3		239
7/20/2006	GC54	114	19.6	0.04				1.03		7.6				0.85		5.3		252
7/20/2006	GC54	98	12.3	0.08				0.54		10.9				0.48		5.4		223
7/20/2006	GC54	115	16.9	0.04				0.78		8.6				0.68		5.6		257
7/20/2007	GC54	102	11.8	0.04				0.88		5.3				0.54		5.6		157
7/20/2007	GC54	125	21.1	0.03				0.97		5.2				0.83		7.5		234
7/20/2007	GC54	97	10.7	0.06				0.81		5.7				0.89		8.6		185
7/20/2007	GC54	123	19.7	0.02				0.75		4.4				0.50		7.1		175
7/20/2007	GC54	104	12.5	0.03				0.92		5.6				0.57		7.8		174
7/20/2007	GC54	110	15.1	0.04				1.38		6.2				0.82		5.4		191
7/22/2008	GC54	123	21.9	0.04				0.66		5.3				0.26		5.53		185.0
7/22/2008	GC54	94	10.8	0.04				1.04		5.1				0.28		6.07		203.0
7/22/2008	GC54	123	21.5	0.03				1.53		4.9				3.46		6.29		261.0
7/22/2008	GC54	97	11.2	0.03				1.34		5.0				0.17		5.90		198.5
7/22/2008	GC54	108	16.0	0.05				1.98		6.3				0.23		5.97		220.0
7/22/2008	GC54	108	14.2	0.06				1.07		8.4				1.31		5.03		195.0
7/21/2009	GC54	132	26.9	0.04				1.10		4.8				0.33		5.4		213
7/21/2009	GC54	141	32.3	0.02				0.71		4.5				0.45		7.9		143
7/21/2009	GC54	116	17.9	< 0.02				0.99		4.2				0.40		6.3		153
7/21/2009	GC54	117	17.7	0.03				1.00		5.9				0.39		6.8		200
7/21/2009	GC54	119	22.1	< 0.02				1.20		4.0				0.28		6.5		176
7/21/2009	GC54	103	13.0	0.02				2.20		5.3				0.35		5.9		226
7/20/2010	GC54	115	16.0	< 0.02				0.80		3.4	0.08			0.37		4.6		159
7/20/2010	GC54	112	12.8	0.02				0.67		3.1	0.09			0.34		3.7		154
7/20/2010	GC54	118	12.6	< 0.02				0.98		3.6	0.12			0.25		5.2		190
7/20/2010	GC54	108	10.6	< 0.02				1.31		3.8	0.10			0.16		4.1		212
7/20/2010	GC54	115	12.3	< 0.02				1.73		5.0	0.12			0.36		4.4		222
7/20/2010		94	9.0	0.03				0.77		4.0	0.14			0.31		4.8		199

Appendix A4 Page 6 of 10.—Greens Creek Mine, Greens Creek site 54 (GC54) juvenile Dolly Varden char whole body metals concentrations data.

Date	C:4-		Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
<u>Collected</u> 7/21/2011		(mm) 95-117	(g)	(mg/kg) <0.02	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) 0.95	(mg/kg)	(mg/kg) 4.5	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) 0.32	(mg/kg)	(mg/kg) 5.6	(mg/kg)	(mg/kg) 191
7/23/2012		132	24.2	0.02				0.85		7.7	0.077			0.32		9.2		144
7/23/2012		118	17.3	0.02				1.03		7.7	0.109			0.57		6.3		199
7/23/2012		109	13.1	0.06				2.04		19.2	0.109			1.32		7.4		215
7/23/2012	GC54	97	9.1	0.03				2.04		65.6	0.126			0.50		6.2		227
7/23/2012	GC54	115	15.4	0.04				1.22		12.6	0.123			1.10		6.9		202
7/23/2012		119	18.3	0.03				1.81		5.3	0.080			0.27		5.1		191
7/24/2013	GC54	117	16.9	< 0.02				1.39		4.2	0.131			0.30		5.6		247
7/24/2013	GC54	117	17.6	0.02				0.74		3.9	0.183			0.39		7.0		297
7/24/2013	GC54	94	11.3	< 0.02				1.27		4.3	0.172			0.28		6.6		262
7/24/2013	GC54	118	18.9	< 0.02				0.89		3.9	0.145			0.33		6.0		211
7/24/2013	GC54	105	10.3	0.02				1.18		5.3	0.108			0.27		6.4		245
7/24/2013	GC54	116	15.3	0.02				1.07		4.5	0.126			0.18		6.4		225
7/24/2014	GC54	125	21.2	0.08				0.93		12.7	0.121			1.55		5.7		212
7/25/2014	GC54	104	10.8	0.04				1.15		4.5	0.111			0.37		4.8		247
7/25/2014	GC54	110	11.5	0.21				0.85		4.3	0.119			0.30		6.2		291
7/25/2014	GC54	110	14.9	< 0.02				0.69		4.8	0.113			0.25		5.9		248.
7/25/2014	GC54	104	10.5	< 0.02				1.03		5.0	0.106			0.28		5.7		250
7/25/2014	GC54	135	24.1	0.02				0.86		4.4	0.160			0.49		6.6		243
7/15/2015	GC54	110	11.3	0.02				0.92		4.7	0.121			0.59		6.3		236
7/15/2015	GC54	105	11.5	< 0.02				0.52		2.5	0.116			0.36		7.0		117
7/15/2015	GC54	110	11.7	< 0.02				0.67		3.0	0.106			0.36		6.4		171
7/15/2015	GC54	105	12.0	0.03				1.16		3.8	0.109			1.62		7.3		221
7/15/2015	GC54	100	10.7	< 0.02				2.06		4.9	0.106			0.37		6.6		198
7/15/2015	GC54	95	8.4	< 0.02				0.91		3.4	0.096			0.38		5.5		176
7/15/2015	GC54	100	8.2	< 0.02				0.60		3.6	0.119			0.49		5.8		219
7/15/2015	GC54	92	9.9	0.02				0.84		4.7	0.072			0.47		6.5		153
7/15/2015	GC54	90	7.1	0.03				1.32		3.9	0.159			1.08		7.2		204
7/15/2015	GC54	88	6.2	0.02				1.13		4.0	0.119			0.39		6.4		179

Appendix A4 Page 7 of 10.—Greens Creek Mine, Tributary Creek site 9 (TC9) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/21/2001	TC9	97	9.1	0.09				0.35		4.3				0.56		6.8		127
7/21/2001	TC9	97	9.7	0.10				0.77		5.2				0.67		8.0		118
7/21/2001	TC9	97	9.5	0.15				0.92		5.4				4.88		5.3		144
7/21/2001	TC9	98	10.4	0.15				0.86		6.7				2.19				99
7/21/2001	TC9	86	6.4	0.08				0.76		4.9				0.33		6.2		106
7/21/2001	TC9	93	7.8	0.06				0.37		12.0				0.38		6.8		122
7/24/2002	TC9	103	10.8	0.02				0.22		3.7				0.12		1.4		144
7/24/2002	TC9	97	10.4	0.07				1.20		5.5				1.66		3.3		172
7/24/2002	TC9	100	11.2	0.13				1.06		6.1				3.40		5.0		138
7/24/2002	TC9	90	7.9	0.23				1.29		7.1				4.08		5.2		168
7/24/2002	TC9	90	9.2	0.08				1.15		5.2				1.39		6.2		150
7/24/2002	TC9	100	9.3	0.04				0.84		3.2				0.33		5.4		152
7/23/2003	TC9	106	10.7	0.06				0.46		2.8				0.34		6.3		134
7/23/2003	TC9	89	6.8	0.10				1.01		4.0				0.82		6.0		131
7/23/2003	TC9	112	17.4	0.16				1.35		4.4				1.85		5.7		108
7/23/2003	TC9	95	11.6	0.19				0.69		5.6				1.30		3.6		136
7/23/2003	TC9	91	9.5	0.05				0.72		4.4				0.56		4.9		131
7/23/2003	TC9	84	8.4	0.12				0.76		3.9				0.78		4.7		125
7/21/2004	TC9	84	5.5	0.10				0.96		3.2				1.19		5.4		169
7/21/2004	TC9	96	8.5	0.10				1.24		3.8				0.67		5.9		138
7/21/2004	TC9	105	14.1	0.10				2.02		4.0				1.76		5.8		125
7/21/2004	TC9	85	5.8	0.04				0.47		3.7				0.93		4.8		175
7/21/2004	TC9	81	6.4	0.09				2.34		4.3				1.44		8.2		140
7/21/2004	TC9	86	10.4	0.11				0.83		5.5				0.97		5.8		161
7/23/2005	TC9	97	11.1	0.06				0.70		10.4				0.29		6.4		104
7/23/2005	TC9	113	16.8	0.10				0.63		4.7				0.97		6.1		122
7/23/2005	TC9	115	18.8	0.07				0.52		6.3				0.53		5.8		109
7/23/2005	TC9	117	20.5	0.19				0.79		9.9				1.07		6.7		117
7/23/2005	TC9	101	11.7	0.07				1.44		5.2				1.00		8.1		130
7/23/2005	TC9	107	13.7	0.10				1.29		4.6				0.46		8.0		134

Appendix A4 Page 8 of 10.—Greens Creek Mine, Tributary Creek site 9 (TC9) juvenile Dolly Varden char whole body metals concentrations data.

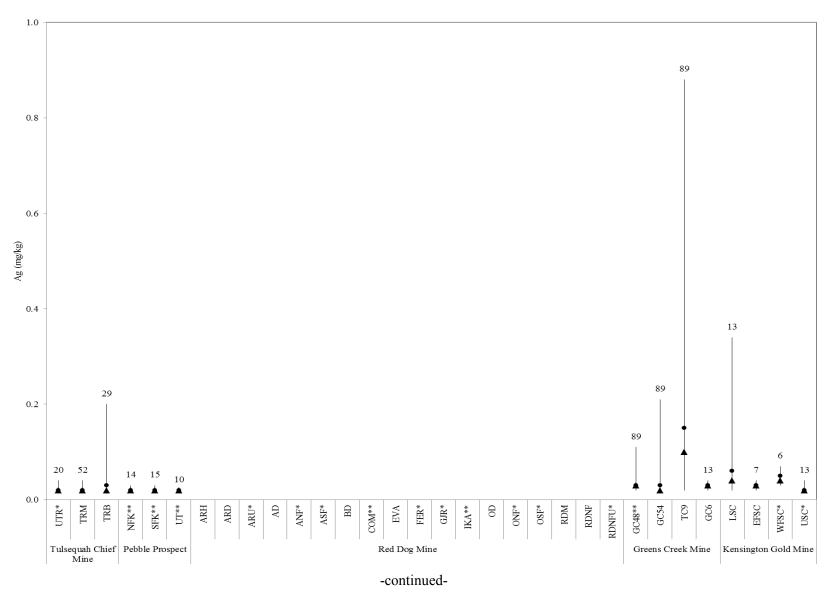
Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/21/2006	TC9	99	12.9	0.12				0.74		4.0				0.32		6.3		120
7/21/2006	TC9	96	11.6	0.12				0.76		7.7				1.32		6.8		157
7/21/2006	TC9	94	10.9	0.18				1.59		10.3				2.48		4.9		160
7/21/2006	TC9	100	10.9	0.11				1.34		8.5				1.46		5.2		142
7/21/2006	TC9	97	11.7	0.14				0.88		4.6				0.96		5.2		107
7/21/2006	TC9	117	20.8	0.24				1.29		4.3				2.92		5.9		130
7/20/2007	TC9	98	12.4	0.11				0.91		2.7				1.10		7.8		106
7/20/2007	TC9	89	8.9	0.12				1.72		3.3				1.80		5.6		136
7/20/2007	TC9	114	14.1	0.15				2.76		3.4				1.28		8.7		122
7/20/2007	TC9	81	7.1	0.14				1.90		4.2				2.03		7.0		114
7/20/2007	TC9	114	14.6	0.88				3.63		3.9				1.56		10.9		131
7/20/2007	TC9	93	10.6	0.14				1.50		20.3				3.80		9.4		107
7/23/2008	TC9	103	12.9	0.22				1.99		4.2				3.47		7.66		169
7/23/2008	TC9	108	14.8	0.10				0.96		3.2				0.86		5.82		143
7/23/2008	TC9	88	8.9	0.08				0.93		3.3				0.75		4.41		186
7/23/2008	TC9	86	9.3	0.22				1.91		5.7				4.06		5.71		119
7/23/2008	TC9	92	9.6	0.07				1.01		2.7				0.61		5.20		125
7/23/2008	TC9	90	8.7	0.03				0.54		2.2				0.43		4.80		108
7/22/2009	TC9	83	6.9	0.04				0.29		1.7				0.24		5.4		127
7/22/2009	TC9	91	8.6	0.06				0.55		2.1				0.16		5.1		137
7/22/2009	TC9	91	8.5	0.11				0.36		2.0				0.23		7.5		138
7/22/2009	TC9	98	10.3	0.09				0.81		3.4				0.38		5.8		147
7/22/2009	TC9	91	8.6	0.03				0.47		2.2				0.40		4.5		125
7/22/2009	TC9	90	7.8	0.06				0.60		2.2				0.38		5.6		129
7/20/2010	TC9	87	7.4	0.29				1.61		5.4	0.43			3.92		6.4		151
7/20/2010	TC9	94	10.9	0.12				0.82		2.5	0.58			0.24		5.7		174
7/20/2010	TC9	90	8.5	0.08				0.73		2.9	0.35			0.29		5.3		125
7/20/2010	TC9	90	8.2	0.06				0.60		2.3	0.27			0.33		4.7		151
7/20/2010	TC9	108	13.5	0.08				0.66		2.6	0.54			0.25		3.2		118
7/20/2010	TC9	105	11.6	0.08				0.75		3.1	0.27			0.23		3.9		150

Appendix A4 Page 9 of 10.—Greens Creek Mine, Tributary Creek site 9 (TC9) juvenile Dolly Varden char whole body metals concentrations data.

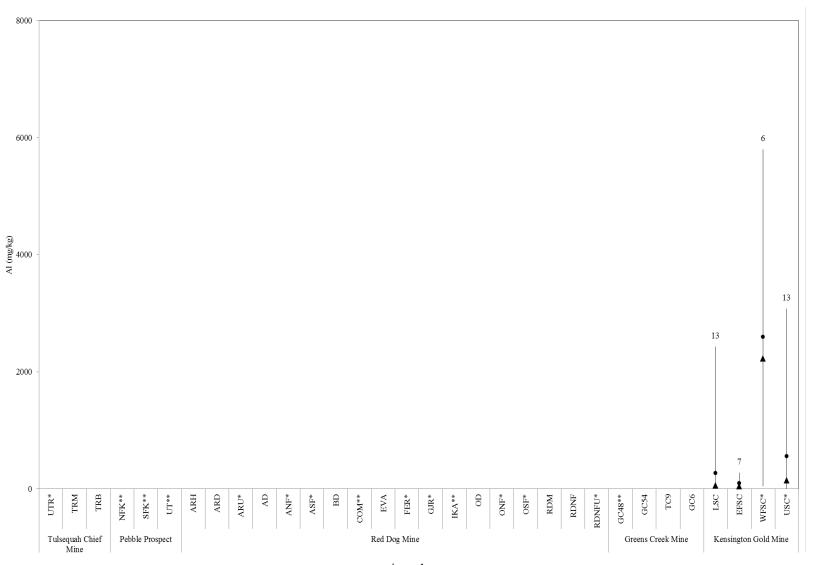
Date	Q:		Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected		(mm)	(g)	(mg/kg) 0.09	(mg/kg)													
7/21/2011		85-115						0.80		3.4				0.32		6.7		146
7/26/2012		89	7.3	<0.02				0.33		18.4	0.429			0.18		4.3		123
7/26/2012		122	16.5	0.03				0.60		8.4	0.257			0.54		4.8		126
7/26/2012		74,75	8.1	0.05				0.76		42.4	0.217			1.65		4.9		140
7/26/2012	TC9	105	11.7	0.13				0.57		22.6	0.241			0.74		7.5		128
7/26/2012	TC9	98	9.9	0.07				0.95		203.0	0.235			1.90		5.5		115
7/26/2012		86,112	20.2	0.06				0.53		8.5	0.278			0.67		5.3		116
7/23/2013		90	10.1	0.72				6.36		7.5	0.418			5.93		9.7		179
	TC9	92	10.4	0.27				1.57		3.8	0.329			1.60		6.9		122
7/23/2013	TC9	85	7.8	0.19				2.41		5.8	0.297			3.90		8.6		153
7/23/2013	TC9	82,52	8.0	0.05				0.59		3.3	0.439			0.35		5.0		152
7/23/2013	TC9	82	6.6	0.48				4.67		8.9	0.332			4.87		9.6		181
7/23/2013	TC9	81	5.5	0.13				2.14		4.6	0.289			1.64		5.6		166
7/23/2014	TC9	105	13.1	0.16				0.82		2.7	0.186			0.16		7.1		145
7/23/2014	TC9	105	11.5	0.02				0.69		2.3	0.188			0.18		5.1		140
7/23/2014	TC9	104	9.1	0.09				0.69		2.6	0.247			0.22		7.2		116
7/23/2014	TC9	94	8.4	0.06				1.16		2.4	0.264			0.33		6.7		156
7/23/2014	TC9	95	8.3	0.12				0.54		2.8	0.215			0.55		6.2		135
7/23/2014	TC9	105	11.4	0.04				0.30		2.6	0.228			0.19		5.3		117
7/14/2015	TC9	77,60	12.4	0.22				3.92		3.8	0.285			3.30		7.1		188
7/14/2015	TC9	77	5.7	0.33				4.40		5.2	0.321			4.93		9.1		157
7/14/2015	TC9	84	7.2	0.22				2.54		5.3	0.338			2.84		7.9		134
7/14/2015	TC9	63,69	81.0	0.48				4.73		6.7	0.338			6.20		10.6		173
7/14/2015	TC9	82	6.9	0.36				3.76		4.6	0.342			4.80		8.5		153
7/14/2015	TC9	55,75	7.7	0.25				4.03		5.3	0.280			3.42		7.8		165
7/14/2015	TC9	90	9.3	0.28				1.81		3.4	0.304			1.69		9.2		124
7/14/2015	TC9	80	6.8	0.30				3.92		5.1	0.312			4.87		9.7		159
7/14/2015	TC9	75,75	8.9	0.13				1.69		4.2	0.322			1.86		7.2		142
7/14/2015	TC9	75,75	12.8	0.51				5.86		5.1	0.293			4.54		10.7		175

Appendix A4 Page 10 of 10.—Greens Creek Mine, Greens Creek site 6 (GC6) juvenile Dolly Varden char whole body metals concentrations data.

Date		FL	Weight	Ag	Al	As	Ве	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
7/23/2001	GC6	139	28.4	0.04				1.94		16.7				1.24		5.0		173
7/23/2001	GC6	140	30.5	0.03				0.84		4.6				1.00		4.5		167
7/23/2001	GC6	167	43.9	0.03				0.82		5.3				1.94		4.3		171
7/23/2001	GC6	155	34.8	0.03				1.52		5.4				1.78		4.5		215
7/23/2001	GC6	109	15.7	0.02				0.89		11.1				0.33		5.3		126
7/23/2001	GC6	168	49.1	0.04				0.73		8.0				1.96		4.6		169
7/21/2006	GC6	103	12.6	0.03				0.71		8.0				0.70		5.2		183
7/21/2006	GC6	106	13.5	0.04				0.81		12.0				0.62		5.6		271
7/21/2006	GC6	96	11.8	0.03				0.56		12.7				0.97		4.5		215
7/21/2006	GC6	110	12.0	0.03				0.56		7.7				0.92		5.9		223
7/21/2006	GC6	128	23.2	0.03				0.95		5.4				1.31		4.4		221
7/21/2006	GC6	102	11.5	0.02				0.63		6.5				0.86		4.5		302
7/21/2011	GC6	85-120		0.03				0.92		6.6				0.82		5.7		209

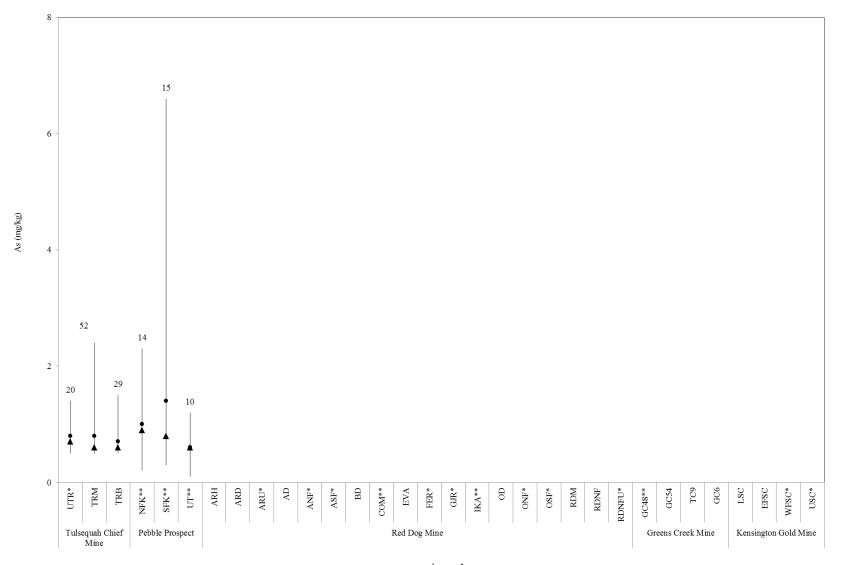

Appendix A5 Page 1 of 2.—Kensington Gold Mine, Lower Slate Creek (LSC) and East Fork Slate Creek (EFSC) juvenile Dolly Varden char whole body metals concentrations.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
10/11/2011	LSC	110-130	14.9-23.2	0.05	2430			0.72	17.3	15.5	0.067		6.2	0.50		3.8		195
8/20/2012	LSC	95	7.7	< 0.02	51			0.45	0.5	3.5	0.167		0.3	0.05		5.6		128
8/20/2012	LSC	115	15.5	0.06	78			0.64	0.8	9.0	0.107		0.3	0.03		4.8		130
8/20/2012	LSC	110	14.2	0.05	21			0.54	0.4	6.0	0.162		< 0.2	0.03		4.5		171
8/20/2012	LSC	115	17.6	0.05	69			0.78	0.4	8.9	0.113		0.4	0.03		5.1		170
8/20/2012	LSC	90	9.6	< 0.02	18			0.44	0.3	3.6	0.098		< 0.2	0.04		4.5		131
8/20/2012	LSC	105	12.7	0.03	189			0.92	0.8	5.8	0.127		0.4	0.05		5.2		151
9/9/2013	LSC	125	17.9	0.07	367			0.47	4.3	5.6	0.234		2.2	0.07		3.8		235
9/9/2013	LSC	110	8.5	0.03	212			0.39	1.0	3.6	0.263		0.6	0.08		4.0		216
9/9/2013	LSC	120	19.0	0.02	34			0.36	1.5	3.2	0.169		0.7	< 0.02		3.4		215
9/9/2013	LSC	110	15.8	0.34	305			0.74	2.2	16.7	0.265		1.3	0.15		3.9		262
9/9/2013	LSC	105	11.8	0.03	25			0.28	1.1	3.4	0.361		0.6	0.11		4.3		221
9/9/2013	LSC	105	9.9	0.05	24			0.44	0.7	4.3	0.255		0.4	0.04		3.9		215
9/13/2011	EFSC	115-125	13.4-19.5	0.02	46			1.99	1.3	14.6	0.107		1.1	0.04		4.6		133
8/1/2012	EFSC	166	58.2	0.04	54			0.57	1.5	75.8	0.130		1.0	0.03		5.1		96
8/1/2012	EFSC	165	44.5	0.04	204			1.08	2.3	16.9	0.234		1.1	0.50		5.6		123
8/1/2012	EFSC	165	46.4	0.02	20			0.52	0.7	10.8	0.116		0.4	0.12		4.9		96
8/1/2012	EFSC	175	55.6	0.04	25			0.67	1.3	31.7	0.215		0.8	0.19		4.9		110
8/1/2012	EFSC	163	56.4	0.02	275			0.52	3.4	9.7	0.146		2.9	0.25		4.7		122
8/1/2012	EFSC	165	62.7	0.03	42			0.36	2.2	38.7	0.139		1.3	0.34		3.8		110

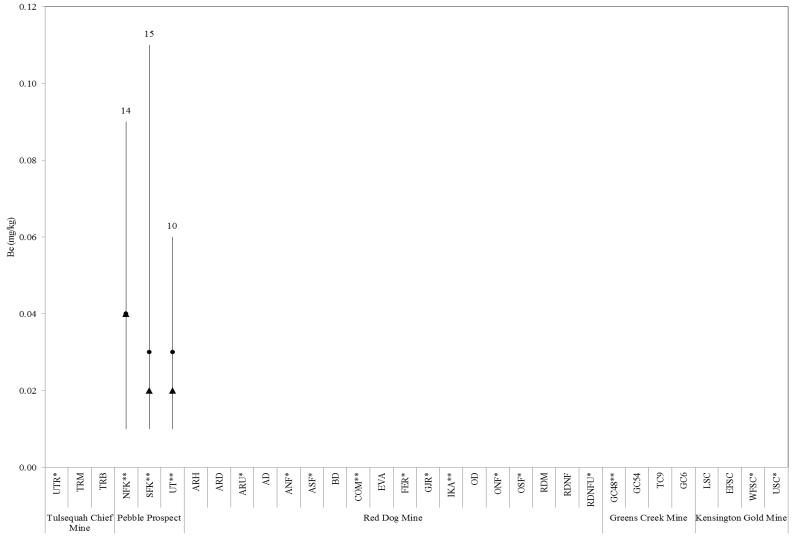

Appendix A5 Page 2 of 2.–Kensington Gold Mine, West Fork Slate Creek (WFSC) and Upper Slate Creek (USC) juvenile Dolly Varden char whole body metals concentrations.

Date		FL	Weight	Ag	Al	As	Be	Cd	Cr	Cu	Hg	Mo	Ni	Pb	Sb	Se	Tl	Zn
Collected	Site	(mm)	(g)	(mg/kg)														
9/10/2013	WFSC	125	24.7	0.05	5200			0.29	45.9	13.2	0.177		24.4	1.55		2.5		175
9/10/2013	WFSC	120	18.1	0.07	87			0.17	2.4	5.0	0.158		1.1	0.06		3.1		196
9/10/2013	WFSC	120	19.5	0.04	190			0.18	2.3	4.1	0.245		1.3	0.06		3.7		182
9/10/2013	WFSC	105	12.4	0.04	5800			0.20	37.9	11.9	0.137		20.7	0.92		2.3		173
9/10/2013	WFSC	110	11.9	0.04	4270			0.27	18.5	8.7	0.276		11.4	0.65		3.2		200
9/16/2013	WFSC	90	4.6	0.03	45			0.16	< 0.2	3.1	0.129		< 0.2	0.03		3.3		138
8/10/2011	USC	55-125	5.1-21.6	< 0.02	1630			0.14	13.5	11.3	0.112		5.5	0.20		4.4		115
8/2/2012	USC	94	9.1	< 0.02	1380			0.11	4.7	5.2	0.092		2.5	0.16		4.8		103
8/2/2012	USC	96	9.7	0.04	3080			0.23	9.6	6.7	0.103		6.1	0.24		3.9		113
8/2/2012	USC	105	15.6	< 0.02	421			0.06	2.7	3.1	0.094		0.9	0.05		4.6		106
8/2/2012	USC	97	13.9	< 0.02	5			0.05	0.6	2.1	0.102		< 0.2	0.02		4.9		97
8/2/2012	USC	100	10.2	< 0.02	11			0.04	0.3	2.2	0.097		0.5	0.03		4.1		113
8/2/2012	USC	86	6.5	< 0.02	9			0.06	3.2	2.6	0.084		1.3	0.05		4.9		136
8/27/2013	USC	125	18.8	< 0.02	178			0.09	2.6	2.6	0.178		1.2	0.03		4.1		143
8/27/2013	USC	110	14.0	0.03	71			0.08	1.7	4.3	0.143		0.8	< 0.02		4.6		148
8/27/2013	USC	115	14.2	< 0.02	212			0.05	2.6	3.3	0.123		1.2	0.03		3.8		164
8/27/2013	USC	105	13.3	0.02	35			0.05	2.5	4.5	0.180		1.2	< 0.02		4.3		159
8/27/2013	USC	100	8.9	< 0.02	151			0.11	1.5	4.0	0.134		0.7	0.02		4.9		142
8/27/2013	USC	100	8.7	< 0.02	76			0.11	1.3	3.3	0.115		0.5	0.02		4.2		130

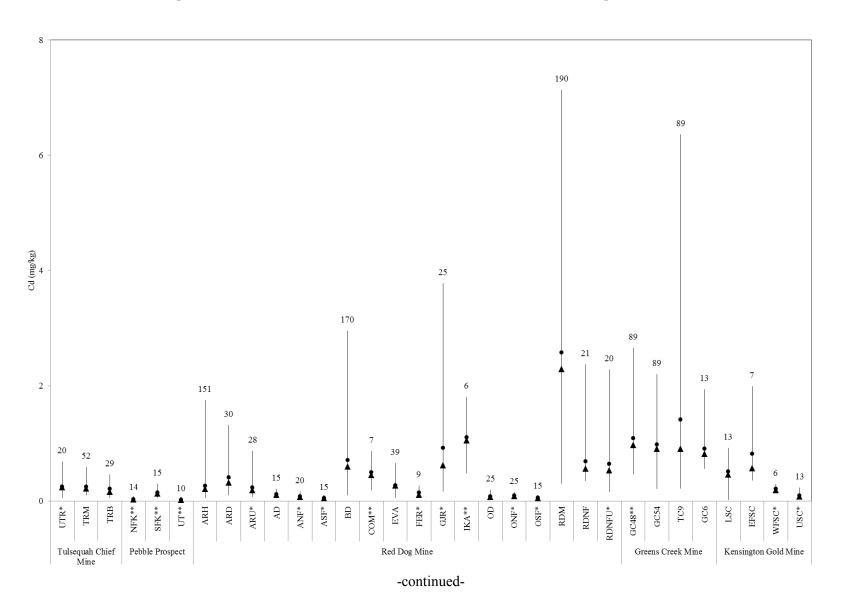
Appendix A6 Page 1 of 15.—Statewide juvenile Dolly Varden char whole body Silver (Ag) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.



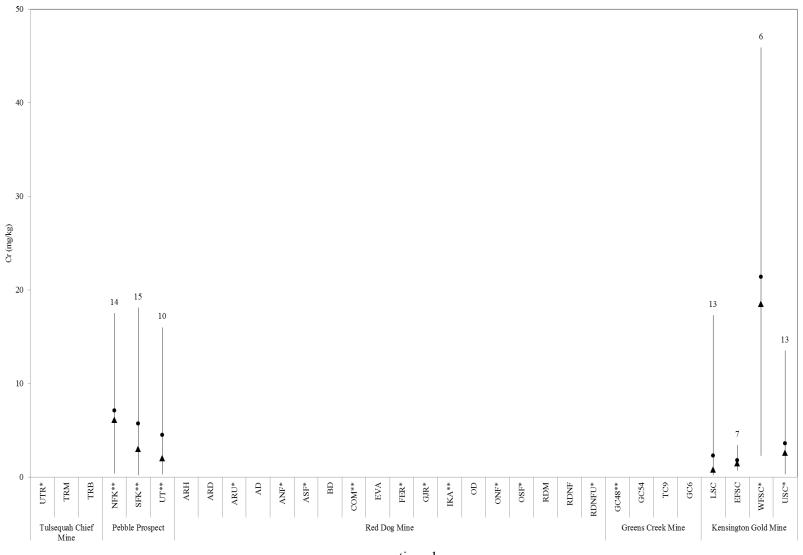
Appendix A6 Page 2 of 15.—Statewide juvenile Dolly Varden char whole body Aluminum (Al) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.


-continued-

Appendix A6 Page 3 of 15.—Statewide juvenile Dolly Varden char whole body Arsenic (As) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

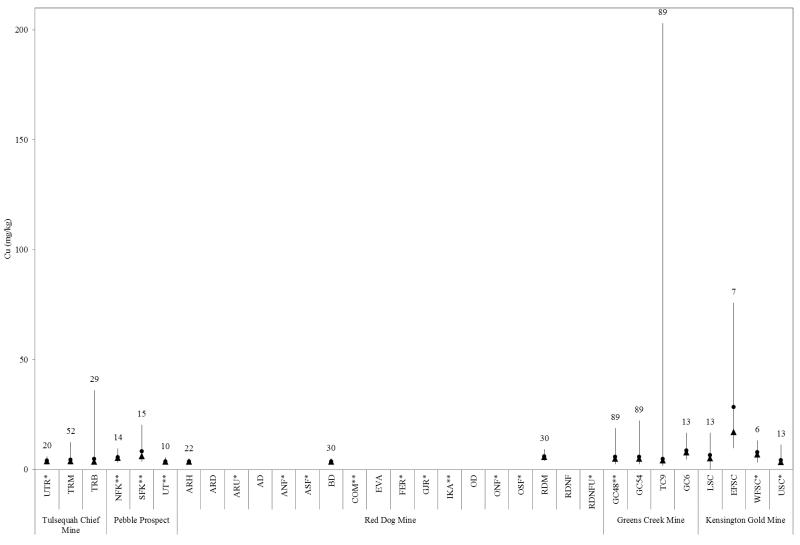

-continued-

Appendix A6 Page 4 of 15.—Statewide juvenile Dolly Varden char whole body Beryllium (Be) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

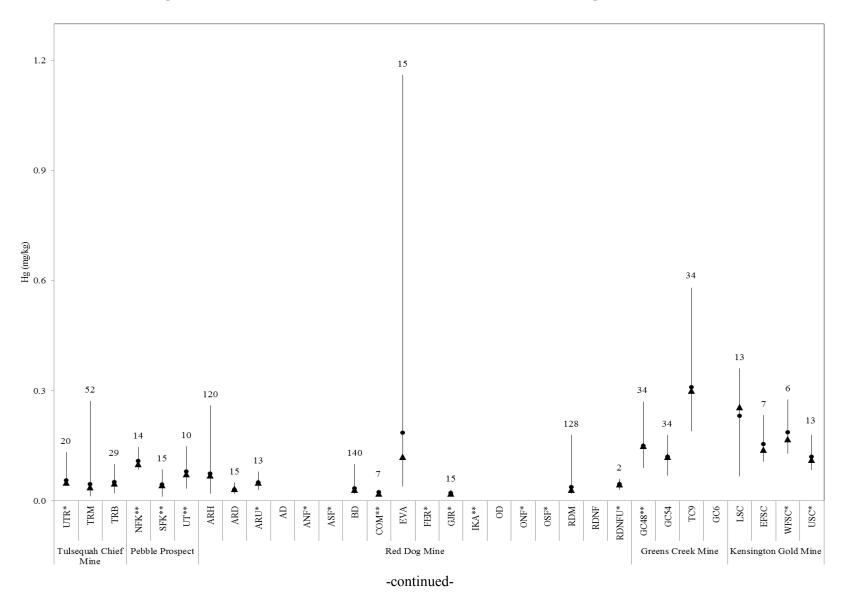


-continued-

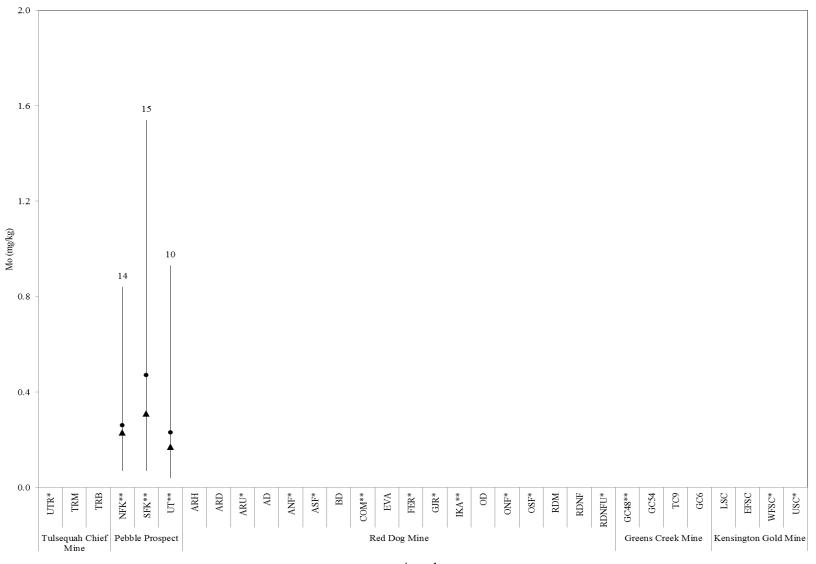
Appendix A6 Page 5 of 15.—Statewide juvenile Dolly Varden char whole body Cadmium (Cd) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.



Appendix A6 Page 6 of 15.—Statewide juvenile Dolly Varden char whole body Chromium (Cr) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

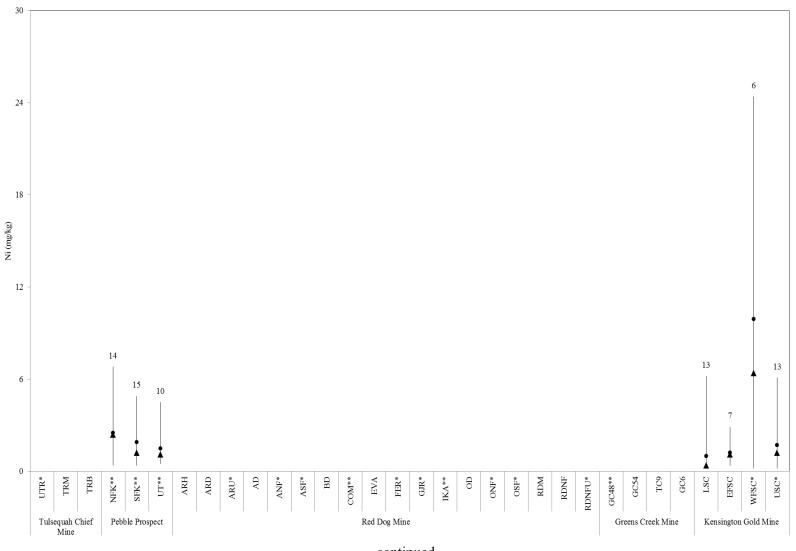

-continued-

Appendix A6 Page 7 of 15.—Statewide juvenile Dolly Varden char whole body Copper (Cu) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note*: *reference; **exploration.

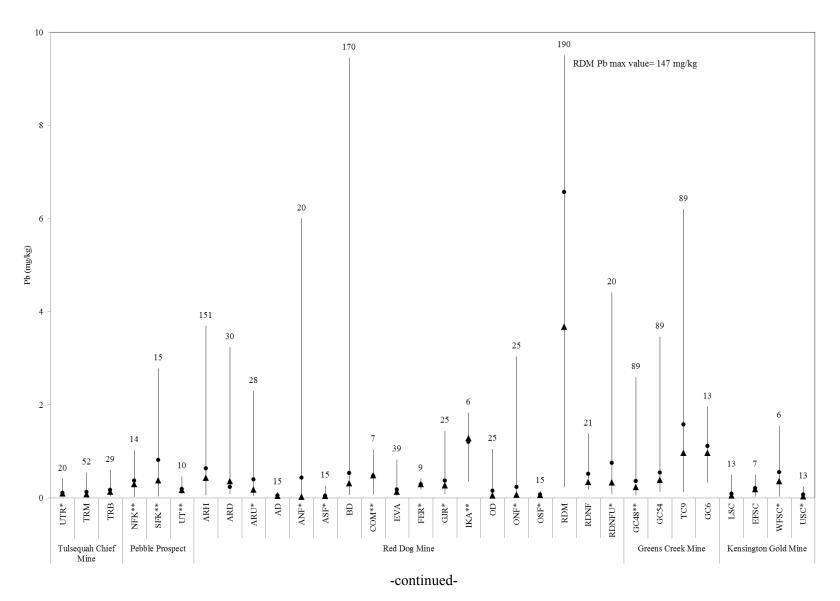


-continued-

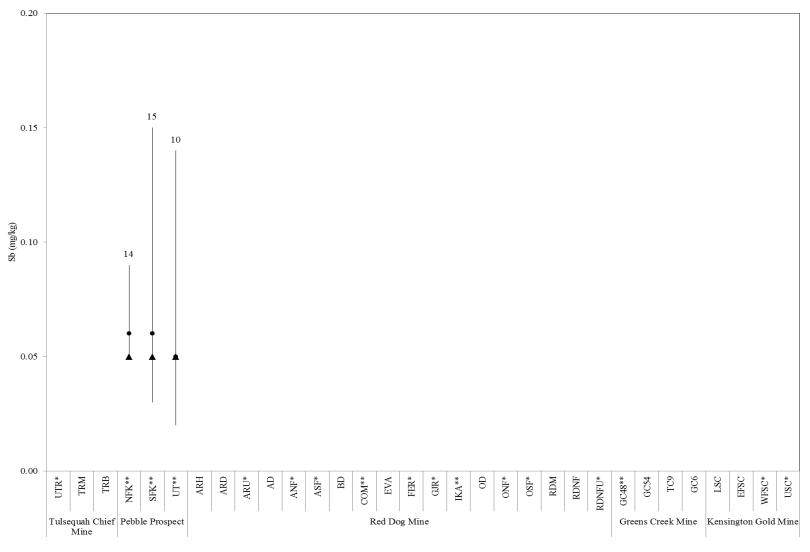
Appendix A6 Page 8 of 15.—Statewide juvenile Dolly Varden char whole body Mercury (Hg) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.



Appendix A6 Page 9 of 15.—Statewide juvenile Dolly Varden char whole body Molybednum (Mo) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

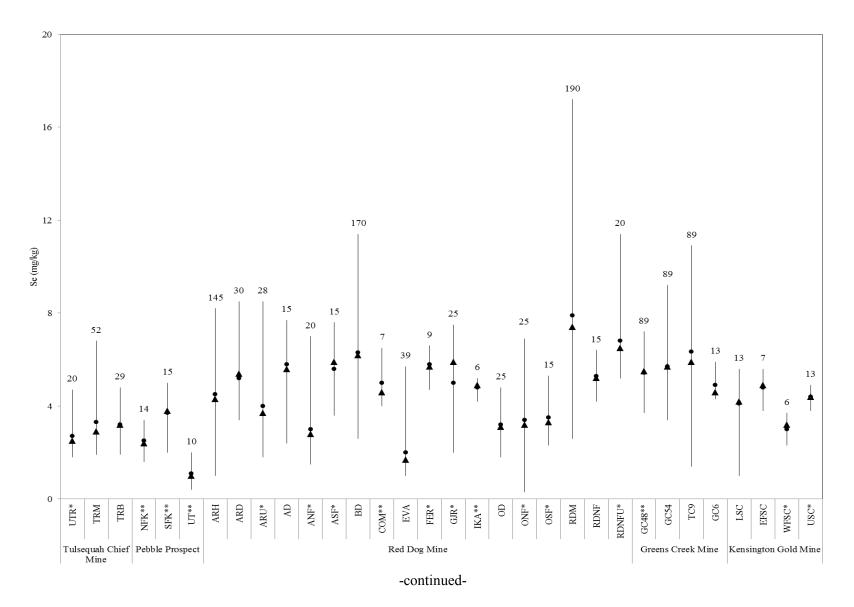

-continued-

Appendix A6 Page 10 of 15.—Statewide juvenile Dolly Varden char whole body Nickel (Ni) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

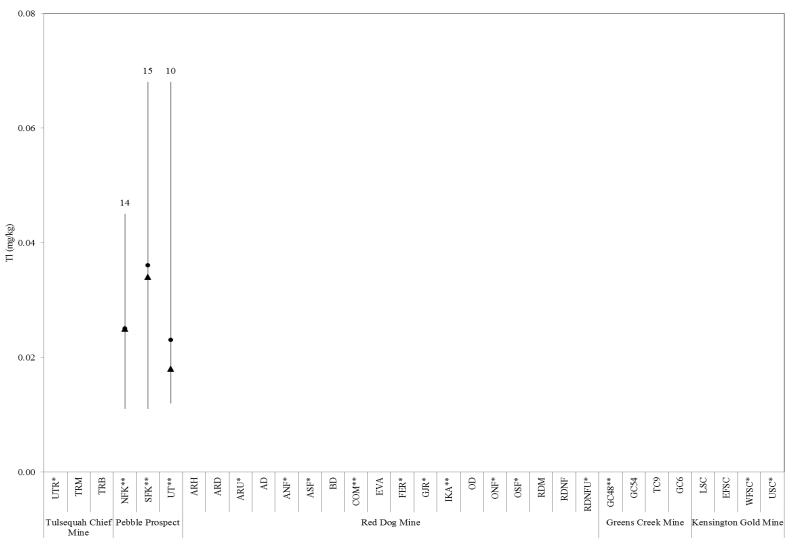


-continued-

Appendix A6 Page 11 of 15.—Statewide juvenile Dolly Varden char whole body Lead (Pb) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

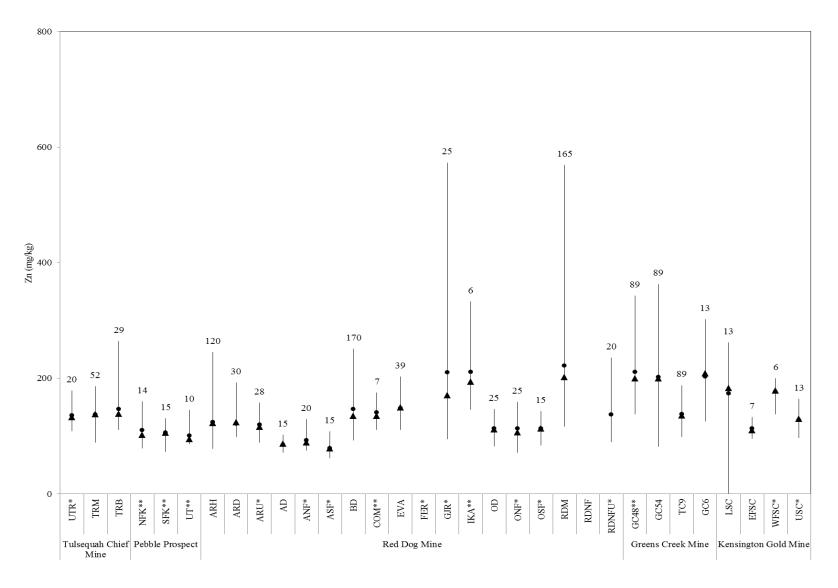


Appendix A6 Page 12 of 15.—Statewide juvenile Dolly Varden char whole body Antimony (Sb) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

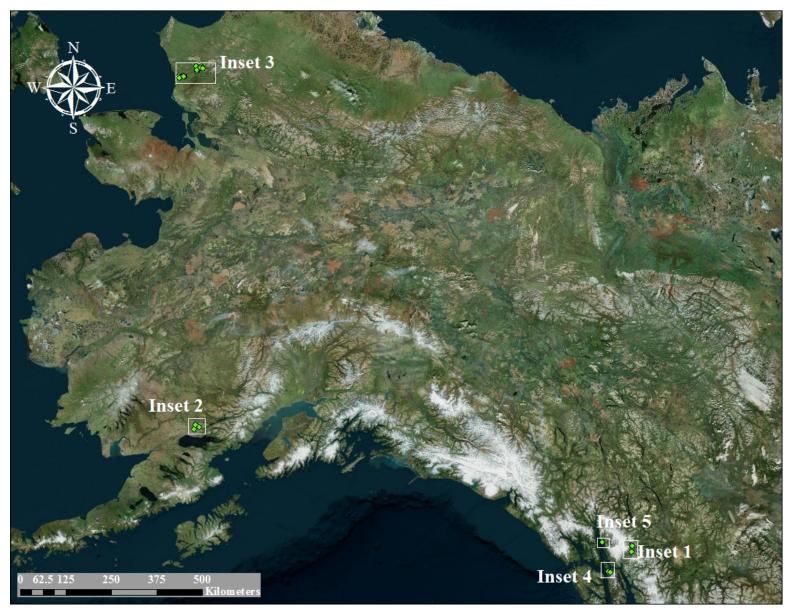


-continued-

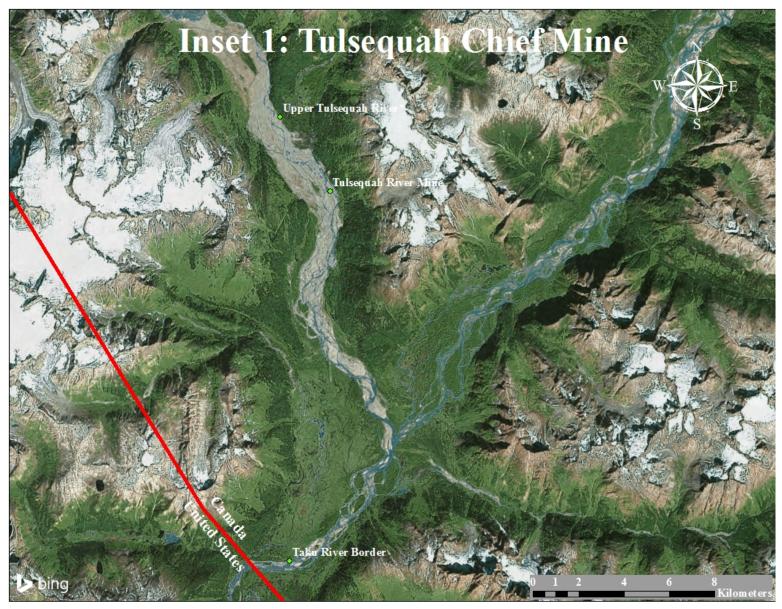
Appendix A6 Page 13 of 15.—Statewide juvenile Dolly Varden char whole body Selenium (Se) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

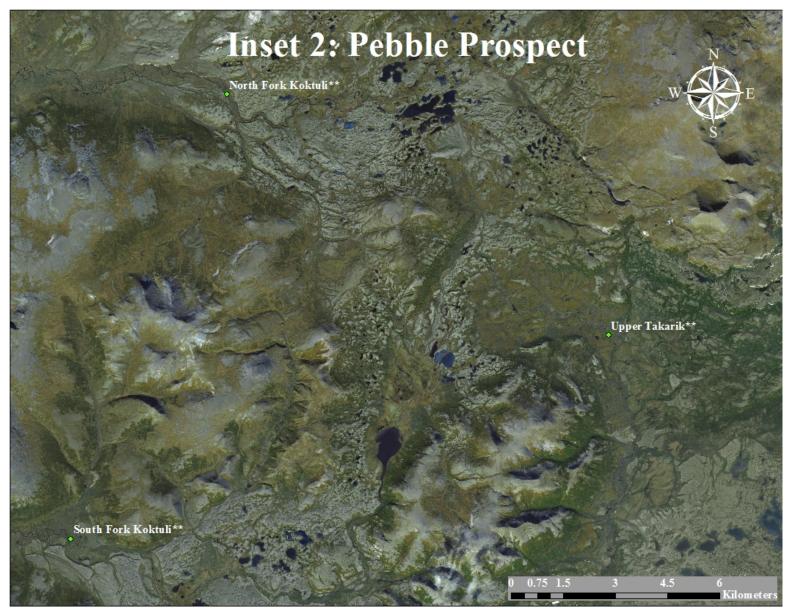


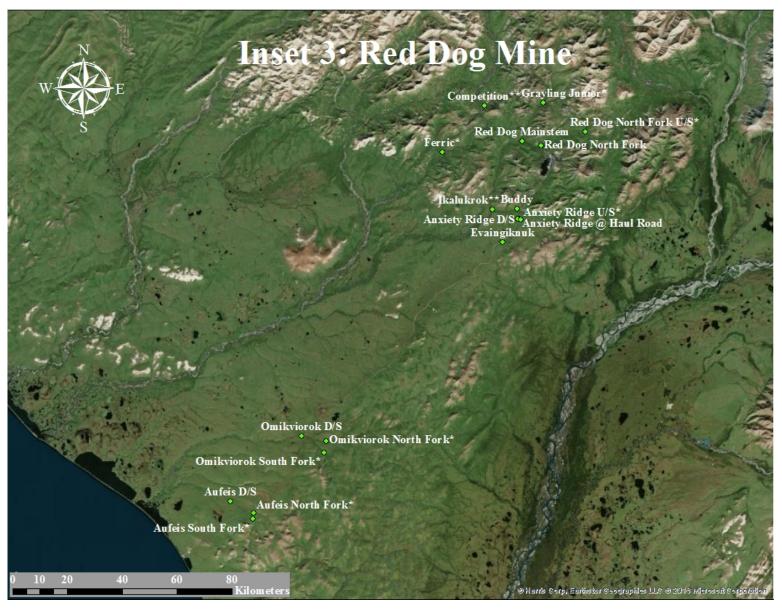
Appendix A6 Page 14 of 15.—Statewide juvenile Dolly Varden char whole body Thallium (Tl) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.

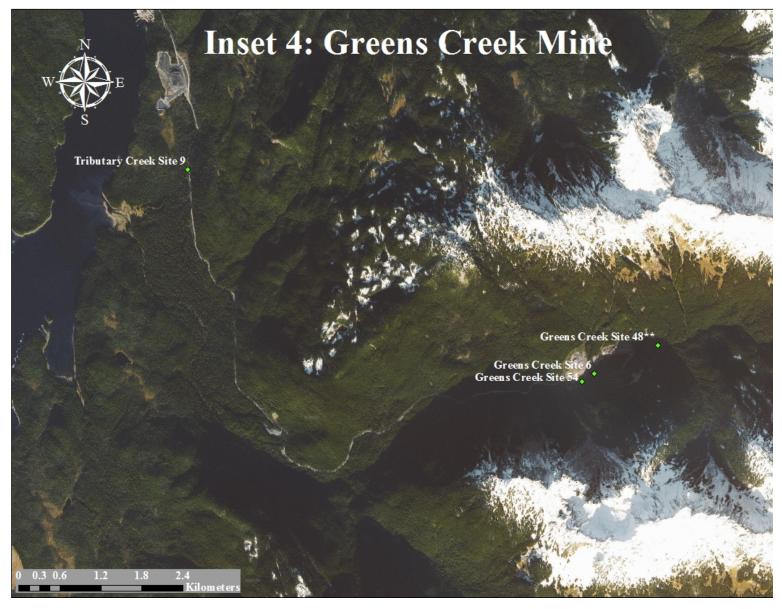


-continued-


Appendix A6 Page 15 of 15.—Statewide juvenile Dolly Varden char whole body Zinc (Zn) concentrations with mean ●, median ▲, maximum and minimum. Sample size is shown above concentration maximum. *Note:* *reference; **exploration.


Appendix A7 Page 1 of 6.—Statewide sampling sites.


Appendix A7 Page 2 of 6.—Tulsequah Chief Mine sampling sites.


Appendix A7 Page 3 of 6.—Pebble Prospect sampling sites.

Appendix A7 Page 4 of 6.–Red Dog Mine sampling sites.

Appendix A7 Page 5 of 6.—Greens Creek Mine sampling sites.

Appendix A7 Page 6 of 6.–Kensington Gold Mine sampling sites.

APPENDIX B METALS CONCENTRATIONS LABORATORY REPORTS

July 15, 2011

Analytical Report for Service Request No: K1105585

Joe Hitselberger Alaska Department of Fish and Game Division of Habitat P.O. Box 110024 Juneau, AK 99811

RE: Fish Tissue Metals Analysis

Dear Joe:

Enclosed are the results of the samples submitted to our laboratory on June 21, 2011. For your reference, these analyses have been assigned our service request number K1105585.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3281. You may also contact me via Email at MShelton@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Mike Shelfon.

Mike Shelton

Project Chemist

MS/lg

Page 1 of 93

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the POL but greater

than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- I The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- O See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.1 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Agency	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DEQ	WA100010
South Carolina DHEC	61002
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Client:

Alaska Department of Fish and Game

Service Request No.:

K1105585

Project:

Fish Tissue Metals Analysis

Date Received:

6/21/11

Sample Matrix:

Tissue

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Forty one tissue samples were received for analysis at Columbia Analytical Services on 6/21/11. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20° C upon receipt at the laboratory.

Total Metals

Matrix Spike Recovery Exceptions:

The matrix spike recovery of Zinc for sample 061311TRBDVJ5 was outside control criteria. However, the analyte concentration in this sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery. Recovery in the Laboratory Control Sample (LCS) was acceptable, which indicates the analytical batch was in control. No further corrective action was appropriate.

Relative Percent Difference Exceptions:

The Relative Percent Difference (RPD) for the replicate analysis of Cadmium in sample 061611TRMDVJ6 was outside the project specified control limits. The samples were homogenized, freeze dried, then ground prior to digestion, however this was not sufficient to achieve a completely uniform distribution of Cadmium in the tissue.

No other anomalies associated with the analysis of these samples were observed.

Approved by Mike Sula Date 7/18/11

	Client:	Ala	ska [Dept	. of I	ish	and (Game				С	ΗA	IN	o f	С	U S	T	O D	Υ			Page <u>L</u> of <u>3</u>
										Proje	ect:	F:-L T:									***************************************		Method of Shipment
Columbia Analytical Services	Project Manager	Joe	Hits	elbe	raer					Tele	phone	Fish Tis No. (541) 27			naiysis		ax No.	7) 465	-4759				FedEx
800.695.7222 www.caslab.com	<u>Manager</u>							-	· · · · · · · · · · · · · · · · · · ·	<u> </u>		(= : : / :::::				I	(00.	7 .00	1100				Special Detection Limit/Reporting
				Ma	trix		Prsv.															/s)	See Attached Quote
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Otner	S ON	Sampling Date	Sampling Time													l urn Around I ime (working days)	The second of th
061511UTRDVJ1	1							6/15/11	1000														
061611UTRDVJ12	2							6/16/11	1000				<u> </u>										
061611UTRDVJ9	3							6/16/11	1000														
061611UTRDVJ3	4					\perp		6/16/11	1000														
061611UTRDVJ6	5					\perp		6/16/11	1000														
061611UTRDVJ5	4							6/16/11	1000														
061611UTRDVJ7	7							6/16/11	1000														6
061611UTRDVJ2	8							6/16/11	1000										ŀ				σ
061611UTRDVJ4	9					T		6/16/11	1000														ス
061611UTRDVJ11	10							6/16/11	1000	Γ											TT		œ
061611UTRDVJ10	T it							6/16/11	1000														∢
061611UTRDVJ8	12							6/16/11	1000		1												≥
060311TRBDVJ7	13							6/3/11	1000								T					***************************************	
061311TRBDVJ2	14							6/13/11	1000														
Sample Received Intact: Yes No	0							Temperatur			/		Ice				o ice					,	
Reling. by sampler (Sign & Print Name) Joe Hitselbegger					170	111		5800	Received b	571	n & P	rint Name	e) ON	K/N	IS		6/2	1/1	i	084	6		Lab Work No.
Relinquished by				Date			me		Received b														
Relinquished by		_		Date		Т	me		Received b	у							-						
Relinquished by		······································		Date		Т	me		Received b	y labo	oratory	/				D	ate		Т	ime			

	Client: Alaska Dept. of Fish and Game					CHAIN of CUSTODY							,		Page 2 of 3									
		<u> </u>									Proje	ect:	E: 1 T:				_						*****	Method of Shipment
Columbia Analytical Services	Project Manager	Joe	Hit	selb	era	er		-	·	engarite en	Tele	phone			letals Ar	iaiysis		ax No.	7) 465	5-4759)			FedEx
800.695.7222 www.caslab.com					<u>y</u> .					· · · · · · · · · · · · · · · · · · ·														Special Detection Limit/Reporting
				М	atrix		Pr	sv.																
Sample I.D.	ab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time													Turn Around Time (working days)	See Attached Quote
061611TRMDVJ7	19		1						6/16/11	1130								\top	†	H	\neg			
061611TRMDVJ8	16								6/16/11	1130								1	1					
061611TRMDVJ9	1.7-		1						6/16/11	1130					THE									
061611TRMDVJ10	18			Г					6/16/11	1130														
061611TRMDVJ11	19								6/16/11	1130														
061611TRMDVJ12	20				<u></u>				6/16/11	1130														
061611TRMDVJ13	21								6/16/11	1130														
061611TRMDVJ14	22								6/16/11	1130														ν
061611TRMDVJ15	23								6/16/11	1130									T					¥
061611TRMDVJ16	2H								6/16/11	1130														α
061611TRMDVJ17	25								6/16/11	1130														∢
061611TRMDVJ18	34		<u> </u>						6/16/11	1130														≥
061611TRMDVJ19									6/16/11	1130														
061611TRMDVJ20	28								6/16/11	1130														
	lo								Temperatur			1		Ice			١	lo ice		***************************************				
Relinq. by sampler (Sign & Print Name)	2/1/1			Date				0	800	Received b					.edfb.	,	1				_			l ale Marale Ma
Soe Hitselberger /4	1/1/21					11						15	HOS	161	NS_	W,	/21	111	0	184	9			Lab Work No.
Relinquished by				Date	е		Time	Э		Received b	у					,				. 100				
Relinquished by				Date	е		Time	9	******	Received b	у		***************************************											
Relinquished by		•••		Date	е		Time	е		Received b	y labo	oratory	/				C	ate			Time	,		

	Client:	Alas	ska	Dep	t. of	Fis	h a	nd C	Same				С	H/	AIN	0	f	CU	ST	0	DΥ			Page 3 of 3
CC Columbia		<u> </u>									Proj	ect:	Fish Ti	ssue N	/letals /	Analys	is							Method of Shipment
Columbia Analytical Services	Project	Joe	Hite	h	erac	or					Tele	phone	e No. (541) 27	72-306/	1			Fax N	o. 907) 46	E 475	:0			FedEx
800.695.7222	Manager	306	1116		erge	<u> </u>					_L		(341) 2.	2-300-	<u>+</u>			L\	907) 40	3-470	9			Special Detection
www.caslab.com		1		M	atrix	_	Pr	sv.			т	r	T	1		-	1	1 T		 	Т			Limit/Reporting
					4017		H												ŀ					See Attached Quote
																			İ				ays)	
																							ng d	
																							Turn Around Time (working days)	
		l s	Soil	Water	Air	Other	Yes	9 2															ne (v	More Sep
	Š	of Containers	(y)	3		Ö	>		ţe	e e													ļĖ,	M
ά	<u> </u>	onta							Da	T.T.						l		\				-	l no	1/0'
— — —	ab Sample No	ŭ							pling	Pling													E A	
Sample I.D.	ab (a	ġ.							Sampling Date	Sampling Time													ļ²	
061411TRBDVJ1	29								6/15/11	1000	1					1			-	1				
060311TRBDVJ9	30								6/3/11	1000														1
061311TRBDVJ5	31								6/13/11	1000														
061311TRBDVJ6	32								6/13/11	1000														
061311TRBDVJ3	33		۰						6/13/11	1000														
061311TRBDVJ4	34 35 34								6/13/11	1000														
060311TRBDVJ8	39	<u> </u>							6/3/11	1000		<u> </u>	ļ				<u> </u>							1 6
061611TRMDVJ1	34								6/16/11	1130														S
061611TRMDVJ2	34		<u> </u>				ļ		6/16/11	1130		<u> </u>		<u> </u>	ļ		_							⊻
061611TRMDVJ3	38					ļ	ļ		6/16/11	1130		<u> </u>	ļ		<u> </u>	- -					\perp		_	α .
061611TRMDVJ4		ļ	<u> </u>				ļ	<u> </u>	6/16/11	1130	-	ļ	<u> </u>		ļ		-			┷	\bot			
061611TRMDVJ5	40				_	-	 	<u> </u>	6/16/11	1130	 	ļ	<u> </u>				4	\sqcup		-	1-1			Σ
061611TRMDVJ6	1 41		<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	6/16/11	1130	-		ļ	-	<u> </u>		┼	11						
									r															1
Sample Received Intact: Yes N	lo								Temperatur		1			Ice				No io	е					
Relinq. by sampler (Sign & Print Name)	20,			Date			Tim	e ()	800	Received I	y (Sig	gn & F	rint Nam	ie)			/	1		. ~	, ,,,,,,,			
Soe Hotselberger //		5		6	29	11				557	1	~ 5	HO	YK!	NS	•	Wels	71/I		184	19			Lab Work No.
Relinquished by				Date			Tim	е		Received I	ру		1 1 20	<u>, , </u>										1
Relinquished by				Date	3		Tim	е		Received I	ру			-					-		·····		·	-
Relinquished by				Date			Tim	<u>е</u>		Received I	oy lab	orator	у		***************************************			Date			Time	·		

Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form Client / Project: Service Request K11 Received: 1 Opened: Unloaded: 10 PDXFed Ex **UPS** DHLHand Delivered Samples were received via? Mail Courier Envelope Samples were received in: (circle) Cooler Box Other NA Were custody seals on coolers? NA N If yes, how many and where? If present, were they signed and dated? Y Ν If present, were custody seals intact? Y Cooler/COC Cooler Temp Thermometer NA Tracking Number NA ID Filed Temp °C Blank °C Baggies Bubble Wrap Gel Packs Wet Ice Sleeves Other Inserts 7. Packing material used. NA N Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? *Indicate in the table below*. NA N NA N 10. Were all sample labels complete (i.e analysis, preservation, etc.)? 11. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA N NA Were appropriate bottles/containers and volumes received for the tests indicated? N 13. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA` N NA Were VOA vials received without headspace? Indicate in the table below. Ν 15. Was C12/Res negative? N Sample ID on Bottle Sample ID on COC Identified by: **Bottle Count** Out of Head-Volume Reagent Lot Initials Sample ID **Bottle Type** Temp space Broke pН Reagent added Number Time Notes, Discrepancies, & Resolutions:

Analytical Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585 **Date Collected:** 06/15/11

Date Received: 06/21/11

Units: PERCENT

Basis: Wet

Solids, Total

Prep Method:

NONE

Analysis Method: Freeze Dry

		Date	~	Result
Sample Name	Lab Code	Analyzed	Result	Notes
061511UTRDVJ1	K1105585-001	06/24/11	20.9	
061611UTRDVJ12	K1105585-002	06/24/11	20.8	
061611UTRDVJ9	K1105585-003	06/24/11	19.2	
061611UTRDVJ3	K1105585-004	06/24/11	20.2	
061611UTRDVJ6	K1105585-005	06/24/11	20.9	
061611UTRDVJ5	K1105585-006	06/24/11	21.5	
061611UTRDVJ7	K1105585-007	06/24/11	20.5	
061611UTRDVJ2	K1105585-008	06/24/11	22.5	
061611UTRDVJ4	K1105585-009	06/24/11	22.2	
061611UTRDVJ11	K1105585-010	06/24/11	20.0	
061611UTRDVJ10	K1105585-011	06/24/11	20.1	
061611UTRDVJ8	K1105585-012	06/24/11	22.1	
060311TRBDVJ7	K1105585-013	06/24/11	23.7	
061311TRBDVJ2	K1105585-014	06/24/11	23.0	
061611TRMDVJ7	K1105585-015	06/24/11	22.9	
061611TRMDVJ8	K1105585-016	06/24/11	21.6	
061611TRMDVJ9	K1105585-017	06/24/11	21.7	
061611TRMDVJ10	K1105585-018	07/13/11	23.3	
061611TRMDVJ11	K1105585-019	06/24/11	22.4	
061611TRMDVJ12	K1105585-020	06/24/11	20.2	

Analytical Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix: Tissue Service Request: K1105585 **Date Collected:** 06/16/11

Date Received: 06/21/11

Solids, Total

Prep Method:

NONE

Analysis Method: Freeze Dry

Units: PERCENT Basis: Wet

		Date		Result
Sample Name	Lab Code	Analyzed	Result	Notes
061611TRMDVJ13	K1105585-021	06/24/11	22.4	
061611TRMDVJ14	K1105585-022	06/24/11	22.3	
061611TRMDVJ15	K1105585-023	06/24/11	19.9	
061611TRMDVJ16	K1105585-024	06/24/11	21.9	
061611TRMDVJ17	K1105585-025	06/24/11	23.1	
061611TRMDVJ18	K1105585-026	06/24/11	19.0	
061611TRMDVJ19	K1105585-027	06/24/11	23.9	
061611TRMDVJ20	K1105585-028	06/24/11	21.4	
061411TRBDVJ1	K1105585-029	06/24/11	21.4	
060311TRBDVJ9	K1105585-030	06/24/11	24.1	
061311TRBDVJ5	K1105585-031	06/24/11	23.4	
061311TRBDVJ6	K1105585-032	06/24/11	25.3	
061311TRBDVJ3	K1105585-033	06/24/11	25.5	
061311TRBDVJ4	K1105585-034	06/24/11	23.5	
060311TRBDVJ8	K1105585-035	06/24/11	25.2	
061611TRMDVJ1	K1105585-036	06/24/11	24.3	
061611TRMDVJ2	K1105585-037	06/24/11	25.1	
061611TRMDVJ3	K1105585-038	06/24/11	23.3	
061611TRMDVJ4	K1105585-039	06/24/11	23.9	
061611TRMDVJ5	K1105585-040	06/24/11	22.6	

Analytical Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11

Date Received: 06/21/11

Solids, Total

Prep Method:

NONE

Analysis Method: Freeze Dry

Test Notes:

Date

Units: PERCENT

Basis: Wet

Result Sample Name Lab Code Analyzed Result **Notes**

061611TRMDVJ6

K1105585-041

06/24/11

22.1

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix: Tissue

Service Request: K1105585

Date Collected: 06/16/11

Date Received: 06/21/11 Date Extracted: NA

Date Analyzed: 06/24/11

Duplicate Summary

Sample Name:

061611UTRDVJ8

Lab Code:

K1105585-012D

Test Notes:

Units: PERCENT

Basis: Wet

Analyte	Prep Method	Analysis Method	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Solids, Total	NA	Freeze Dry	22.1	22.2	22.2	<1	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix: Tissue

Service Request: K1105585

Date Collected: 06/13/11

Date Received: 06/21/11

Date Extracted: NA

Date Analyzed: 06/24/11

Duplicate Summary

Sample Name:

061311TRBDVJ5

Lab Code:

K1105585-031D

Test Notes:

Units: PERCENT

Basis: Wet

Analyte	Prep Method	Analysis Method	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Solids, Total	NA	Freeze Dry	23.4	24.0	23.7	3	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix: Tissue

Service Request: K1105585

Date Collected: 06/16/11

Date Received: 06/21/11 Date Extracted: NA

Date Analyzed: 06/24/11

Duplicate Summary

Sample Name:

061611TRMDVJ6

Lab Code:

K1105585-041D

Test Notes:

Units: PERCENT

Basis: Wet

Analyte	Prep Method	Analysis Method	Sample Result	Duplicate Sample Result	Äverage	Relative Percent Difference	Result Notes
Solids, Total	NA	Freeze Dry	22.1	22.2	22.2	<1	

Analytical Report

Client:

Alaska Department of Fish and Game

Project:

Sample Matrix: Tissue

Fish Tissue Metals Analysis

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Service Request: K1105585 **Date Collected:** 06/03-16/11

Date Received: 06/21/11

Units: ng/g

Basis: Dry

			Dilution	Date	Date		Result
Sample Name	Lab Code	MRL	Factor	Extracted	Analyzed	Result	Notes
061511UTRDVJ1	K1105585-001	1.0	20	06/29/11	06/30/11	85.8	
061611UTRDVJ12	K1105585-002	1.0	20	06/29/11	06/30/11	32.5	
061611UTRDVJ9	K1105585-003	1.0	20	06/29/11	06/30/11	64.1	
061611UTRDVJ3	K1105585-004	1.0	20	06/29/11	06/30/11	30.4	
061611UTRDVJ6	K1105585-005	1.0	20	06/29/11	06/30/11	33.8	
061611UTRDVJ5	K1105585-006	1.0	20	06/29/11	06/30/11	47.8	
061611UTRDVJ7	K1105585-007	1.0	20	06/29/11	06/30/11	88.0	
061611UTRDVJ2	K1105585-008	1.0	20	06/29/11	06/30/11	40.7	
061611UTRDVJ4	K1105585-009	1.0	20	06/29/11	06/30/11	21.1	
061611UTRDVJ11	K1105585-010	1.0	20	06/29/11	06/30/11	47.2	
061611UTRDVJ10	K1105585-011	1.0	20	06/29/11	06/30/11	57.6	
061611UTRDVJ8	K1105585-012	2.0	40	06/29/11	06/30/11	67.2	
060311TRBDVJ7	K1105585-013	1.0	20	06/29/11	06/30/11	42.3	
061311TRBDVJ2	K1105585-014	1.0	20	06/29/11	06/30/11	65.0	
061611TRMDVJ7	K1105585-015	1.0	20	06/29/11	06/30/11	30.2	
061611TRMDVJ8	K1105585-016	1.0	20	06/29/11	06/30/11	44.8	
061611TRMDVJ9	K1105585-017	1.0	20	06/29/11	06/30/11	28.7	
061611TRMDVJ10	K1105585-018	1.0	20	06/29/11	06/30/11	38.2	
061611TRMDVJ11	K1105585-019	1.0	20	06/29/11	06/30/11	34.7	
061611TRMDVJ12	K1105585-020	1.0	20	06/29/11	06/30/11	60.3	
Method Blank1	K1105585-MB1	1.0	20	06/29/11	06/30/11	ND	
Method Blank2	K1105585-MB2	1.0	20	06/29/11	06/30/11	ND	
Method Blank3	K1105585-MB3	1.0	20	06/29/11	06/30/11	ND	

Analytical Report

Client:

Alaska Department of Fish and Game

K1105585-MB3

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585 Date Collected: 06/03-16/2011

Date Received: 06/21/11

Units: ng/g

Basis: Dry

Mercury, Total

Prep Method:

Method Blank3

Test Notes:

METHOD

Analysis Method:

1631E

Dilution Result Date Date Notes Sample Name Lab Code **MRL Factor** Extracted Analyzed Result 40 06/30/11 59.8 061611TRMDVJ13 K1105585-021 2.0 06/29/11 20 06/30/11 32.4 061611TRMDVJ14 K1105585-022 1.0 06/29/11 1.0 20 06/29/11 06/30/11 47.6 061611TRMDVJ15 K1105585-023 45.5 1.0 20 06/29/11 06/30/11 061611TRMDVJ16 K1105585-024 061611TRMDVJ17 K1105585-025 1.0 20 06/29/11 06/30/11 22.0 06/29/11 06/30/11 273 061611TRMDVJ18 K1105585-026 1.0 20 061611TRMDVJ19 K1105585-027 1.0 20 06/29/11 06/30/11 43.2 56.5 1.0 20 06/29/11 06/30/11 061611TRMDVJ20 K1105585-028 06/30/11 69.0 061411TRBDVJ1 K1105585-029 1.0 20 06/29/11 55.7 06/29/11 06/30/11 060311TRBDVJ9 K1105585-030 1.0 20 06/29/11 06/30/11 36.5 1.0 20 061311TRBDVJ5 K1105585-031 06/29/11 06/30/11 47.9 1.0 20 061311TRBDVJ6 K1105585-032 06/29/11 06/30/11 58.1 061311TRBDVJ3 1.0 20 K1105585-033 1.0 20 06/29/11 06/30/11 27.1 061311TRBDVJ4 K1105585-034 06/30/11 35.8 1.0 20 06/29/11 K1105585-035 060311TRBDVJ8 061611TRMDVJ1 K1105585-036 1.0 20 06/29/11 06/30/11 41.4 06/29/11 06/30/11 69.0 061611TRMDVJ2 K1105585-037 1.0 20 061611TRMDVJ3 K1105585-038 1.0 20 06/29/11 06/30/11 39.3 1.0 20 06/29/11 06/30/11 27.6 061611TRMDVJ4 K1105585-039 06/29/11 06/30/11 62.8 061611TRMDVJ5 K1105585-040 2.0 40 06/29/11 06/30/11 ND Method Blank1 K1105585-MB1 1.0 20 ND 20 06/29/11 06/30/11 Method Blank2 K1105585-MB2 1.0

1.0

20

06/29/11

06/30/11

ND

Analytical Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11 Date Received: 06/21/11

Mercury, Total

Prep Method:

METHOD

Analysis Method: 1631E

Units: ng/g Basis: Dry

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
061611TRMDVJ6	K1105585-041	2.0	40	06/27/11	06/28/11	63.6	
Method Blank1	K1105585-MB1	1.0	20	06/27/11	06/28/11	ND	
Method Blank2	K1105585-MB2	1.0	20	06/27/11	06/28/11	ND	
Method Blank3	K1105585-MB3	1.0	20	06/27/11	06/28/11	ND	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11 **Date Received:** 06/21/11

Date Extracted: 06/29/11

Date Analyzed: 06/30/11

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

061611UTRDVJ4

Lab Code:

K1105585-009MS,

K1105585-009MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Mercury	METHOD	1631E	1.0	265	267	21.1	296	276	104	95	70-130	7	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11

Date Received: 06/21/11 Date Extracted: 06/29/11

Date Analyzed: 06/30/11

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

061611UTRDVJ8

Lab Code:

K1105585-012MS

K1105585-012MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS		Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	2.0	252	253	67.2	296	280	91	84	70-130	6	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Water

Date Received: NA **Date Extracted:** NA

Date Analyzed: 06/30/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Acalada	Prep	Analysis	True	Daggeld	Percent	CAS Percent Recovery Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Mercury	METHOD	1631E	5.00	4.83	97	70-130	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Water

Date Received: NA **Date Extracted:** NA

Date Analyzed: 06/30/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.28	106	70-130	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Tissue

Date Received: NA **Date Extracted:** 06/29/11

Date Analyzed: 06/30/11

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/g

Basis: Dry

Test Notes:

Source:

NRCC Tort-2

CAS

Percent

				Recovery							
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes				
Mercury	METHOD	16 3 1E	270	218	81	70-130					

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11 **Date Received:** 06/21/11

Date Extracted: 06/29/11

Date Analyzed: 06/30/11

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

061611TRMDVJ13

Lab Code:

K1105585-021MS,

K1105585-021MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL		Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	2.0	251	251	59.8	316	265	102	82	70-130	18	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: 06/16/11

Date Received: 06/21/11

Date Extracted: 06/29/11

Date Analyzed: 06/30/11

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

061611TRMDVJ5

Lab Code: Test Notes:

K1105585-040MS

K1105585-040MSD

Units: ng/g

Basis: Dry

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	2.0	249	253	62.8	295	312	93	98	70-130	6	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585 Date Collected: NA

Project:

Fish Tissue Metals Analysis

Date Received: NA

LCS Matrix:

Water

Date Extracted: NA

Date Analyzed: 06/30/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.25	105	70-130	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

Date Received: NA

LCS Matrix:

Water

Date Extracted: NA

Date Analyzed: 06/30/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

Test Notes:

CAS

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Percent Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.91	118	70-130	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Tissue

Date Received: NA

Date Extracted: 06/29/11

Date Analyzed: 06/30/11 Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/g

Basis: Dry

Test Notes:

Source:

NRCC Tort-2

CAS

Percent

Recovery Percent Acceptance Result Prep **Analysis** True Limits Analyte Method Method Value Result Recovery **Notes** 95 70-130 270 256 Mercury **METHOD** 1631E

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

Sample Matrix:

Tissue

Service Request: K1105585

Date Collected: NA
Date Received: NA

Date Extracted: NA

Date Extracted: 06/27/11

Date Analyzed: 06/28/11

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name:

Batch QC

Lab Code:

K1105631-030MS,

K1105631-030MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS	Level DMS	Sample Result	Spike MS	Result DMS	MS	DMS	CAS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	2.0	26	26	6.2	30.1	31.5	92	97	70-130	5	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Water

Date Received: NA

Date Extracted: NA

Date Analyzed: 06/28/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Initial)

Units: ng/L

Basis: NA

						CAS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.09	102	70-130	

QA/QC Report

Client: Project: Alaska Department of Fish and Game

Fish Tissue Metals Analysis

LCS Matrix:

Water

Service Request: K1105585

Date Collected: NA

Date Received: NA Date Extracted: NA

Date Analyzed: 06/28/11

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name:

Ongoing Precision and Recovery (Final)

Units: ng/L

Basis: NA

					CAS Percent					
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes			
Mercury	METHOD	1631E	5.00	5.79	116	70-130				

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Collected: NA

LCS Matrix:

Tissue

Date Received: NA Date Extracted: 06/27/11

Date Analyzed: 06/28/11

Quality Control Sample (QCS) Summary

Total Metals

Sample Name:

Quality Control Sample

Units: ng/g

Basis: Dry

Test Notes:

Source:

NRCC Tort-2

CAS

Percent

Recovery

Percent Acceptance Result Prep **Analysis** True Method Method Value Result Recovery -Limits Analyte

285

Notes

Mercury

METHOD

1631E

270

106

70-130

Columbia Analytical Services

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Service Request: K1105585

Client:

Alaska Department of Fish and Game Fish Tissue Metals Analysis

Project Name:

Project No.:

Sample Name:	Lab Code:
061511UTRDVJ1	K1105585-001
061611UTRDVJ12	K1105585-002
061611UTRDVJ9	K1105585-003
061611UTRDVJ3	K1105585-004
061611UTRDVJ6	K1105585-005
061611UTRDVJ5	K1105585-006
061611UTRDVJ7	K1105585-007
061611UTRDVJ2	K1105585-008
061611UTRDVJ4	K1105585-009
061611UTRDVJ11	K1105585-010
061611UTRDVJ10	K1105585-011
061611UTRDVJ8	K1105585-012
061611UTRDVJ8D	K1105585-012D
061611UTRDVJ8S	K1105585-012S
060311TRBDVJ7	K1105585-013
061311TRBDVJ2	K1105585-014
061611TRMDVJ7	K1105585-015
061611TRMDVJ8	K1105585-016
061611TRMDVJ9	K1105585-017
061611TRMDVJ10	K1105585-018
061611TRMDVJ11	K1105585-019
061611TRMDVJ12	K1105585-020
061611TRMDVJ13	<u>K1105585-021</u>
061611TRMDVJ14	<u>K1105585-022</u>
061611TRMDVJ15	K1105585-023
061611TRMDVJ16	K1105585-024
061611TRMDVJ17	K1105585-025
061611TRMDVJ18	K1105585-026
061611TRMDVJ19	K1105585-027
061611TRMDVJ20	K1105585-028
061411TRBDVJ1	<u>K1105585-029</u>
060311TRBDVJ9	<u>K1105585-030</u>
061311TRBDVJ5	<u>K1105585-031</u>
061311TRBDVJ5D	K1105585-031D
061311TRBDVJ5S	K1105585-031S
061311TRBDVJ6	K1105585-032
061311TRBDVJ3	K1105585-033
061311TRBDVJ4	K1105585-034

Approved By:

34CC	Date:	744	

Columbia Analytical Services

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Service Request: K1105585

Client:

Alaska Department of Fish and Game

Project Name:

Fish Tissue Metals Analysis

Project No.:

Sample Name: Lab Code: 060311TRBDVJ8 K1105585-035 061611TRMDVJ1 K1105585-036 061611TRMDVJ2 K1105585-037 **061611TRMDVJ3** K1105585-038 061611TRMDVJ4 K1105585-039 061611TRMDVJ5 K1105585-040 061611TRMDVJ6 K1105585-041 061611TRMDVJ6D K1105585-041D **061611TRMDVJ6S** K1105585-041S **Method Blank** K1105585-MB1 **Method Blank** K1105585-MB2 K1105585-MB3 **Method Blank**

Co	m	m	en	ıts	:

Approved By:

Date:

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/15/11

Project Name: Fish Tissue Metals Analysis

Date Received:

Matrix:

TISSUE

06/21/11

mg/Kg

Units:

DRY Basis:

Sample Name:

061511UTRDVJ1

Lab Code:

K1105585-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	1.47		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.375		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.81		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.635		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.3		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02		
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	115		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

mg/Kg

Matrix:

TISSUE

Units:

Basis: DRY

Sample Name:

061611UTRDVJ12

Lab Code:

K1105585-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.145		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.76		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.065		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	118		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

K1105585 Service Request:

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units:

DRY Basis:

Sample Name:

061611UTRDVJ9

Lab Code:

K1105585-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	1.00	5.0	06/27/11	07/11/11	1.00	ט	
Cadmium	6020A	0.040	5.0	06/27/11	07/11/11	0.158		
Copper	6020A	0.20	5.0	06/27/11	07/11/11	3.78		
Lead	6020A	0.040	5.0	06/27/11	07/11/11	0.293		
Selenium	7010	2.0	10.0	06/27/11	07/13/11	2.9		
Silver	6020A	0.04	5.0	06/27/11	07/11/11	0.04	ับ	
Zinc	6020A	1.00	5.0	06/27/11	07/11/11	162		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

DRY Basis:

Sample Name:

061611UTRDVJ3

Lab Code:

K1105585-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.111		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.17		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.039		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.4		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02		
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	161		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Al

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

: mg/Kg

.

110000

Basis: DRY

Sample Name:

061611UTRDVJ6

Lab Code:

K1105585-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.245		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.97		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.063		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	บ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	167		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units: Basis:

DRY

Sample Name:

061611UTRDVJ5

Lab Code:

K1105585-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.81		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.409		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.54		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.362		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.3		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	158		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA Date Collected:

06/16/11

Date Received:

06/21/11

Matrix:

Project Name: Fish Tissue Metals Analysis

Units:

mg/Kg

DRY Basis:

Sample Name:

061611UTRDVJ7

TISSUE

Lab Code:

K1105585-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	U	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.164		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.68		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.063		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	154		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

K1105585 Service Request:

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061611UTRDVJ2

Lab Code:

K1105585-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.83		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.132		-
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.40		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.160		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.4		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	116		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units: DRY

Basis:

Sample Name:

061611UTRDVJ4

Lab Code:

K1105585-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.52		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.088		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.37		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.194		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.3		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	139		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

mg/Kg

Matrix:

TISSUE

Units:

Basis: DRY

Sample Name:

061611UTRDVJ11

Lab Code:

K1105585-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.203		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.19		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.025		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.0		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	194		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

Basis: DRY

Sample Name:

061611UTRDVJ10

Lab Code:

K1105585-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.251		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.74		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.182		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.6		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	201		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

DRY

Basis:

Sample Name:

061611UTRDVJ8

Lab Code:

K1105585-012

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	ប	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.070		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.35		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.046		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.5		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	111		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/03/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

DRY

Units: Basis:

Sample Name:

060311TRBDVJ7

Lab Code:

K1105585-013

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.68		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.327		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.81		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.095		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.2		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	155		

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Date Collected: 06/13/11

Date Received:

06/21/11

Matrix:

Project Name: Fish Tissue Metals Analysis

Units:

00/21/11

mg/Kg

TISSUE

Basis: DRY

Sample Name:

061311TRBDVJ2

Lab Code:

K1105585-014

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	υ	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.80		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.133		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	5.84		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.086		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.6		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	บ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	134		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

Basis:

mg/Kg

DRY

Sample Name:

061611TRMDVJ7

Lab Code:

K1105585-015

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	บ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.119		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.15		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.062		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	115		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

Basis: DRY

Sample Name:

061611TRMDVJ8

Lab Code:

K1105585-016

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.69		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.150		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.39		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.076		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	145		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

DRY

Basis:

Sample Name:

061611TRMDVJ9

Lab Code:

K1105585-017

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.67		-
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.143		-
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.90		i i
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.087	-	
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	141		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Basis:

Sample Name:

061611TRMDVJ10

Lab Code:

K1105585-018

DRY

Units: mg/Kg

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.85		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.343		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	5.09		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.111		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	149		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

06/21/11

Matrix:

TISSUE

Date Received:

mg/Kg DRY

Units: Basis:

Sample Name:

061611TRMDVJ11

Lab Code:

K1105585-019

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	1.34		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.235		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.66		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.171		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.0		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	152		

-11-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Collected: Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

DRY

Basis:

Sample Name:

061611TRMDVJ12

Lab Code:

K1105585-020

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.98		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.164		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.57		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.064		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.7		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	154		

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

K1105585 Service Request:

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis:

DRY

Sample Name:

061611TRMDVJ13

Lab Code:

K1105585-021

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	1.11		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.187		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.00		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.119		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.0		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	บ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	138		N

-1-INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis:

DRY

Sample Name:

061611TRMDVJ14

Lab Code:

K1105585-022

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	U	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.112		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.64		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.064		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	110		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061611TRMDVJ15

Lab Code:

K1105585-023

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	บ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.160		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.02		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.087		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	143		N

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

DRY

Basis:

Sample Name:

061611TRMDVJ16

Lab Code:

K1105585-024

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.75		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.163		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	6.04		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.048		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.1		1
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	144		N

- 1 - INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Servi

Service Request: K1105585

Project No.: NA

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received: 06

06/21/11

Matrix:

TISSUE

Units:

Date Collected:

mg/Kg

DRY

Basis:

Sample Name:

061611TRMDVJ17

Lab Code:

K1105585-025

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.57		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.133		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.40		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.050		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.6		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	120		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061611TRMDVJ18

Lab Code:

K1105585-026

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.80		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.100		-
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.64		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.197		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	1.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	167		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Basis:

Units:

DRY

Sample Name:

061611TRMDVJ19

Lab Code:

K1105585-027

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.55		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.165		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.30		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.085		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	131		N

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

DRY

Basis:

Units:

Sample Name:

061611TRMDVJ20

Lab Code:

K1105585-028

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.82		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.175		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.03		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.152		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	3.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	155		N

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/15/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061411TRBDVJ1

Lab Code:

K1105585-029

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.53		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.171		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.03		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.052		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.0		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	123		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/03/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

060311TRBDVJ9

Lab Code:

K1105585-030

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	1.00	5.0	06/27/11	07/11/11	1.32		
Cadmium	6020A	0.040	5.0	06/27/11	07/11/11	0.236		
Copper	6020A	0.20	5.0	06/27/11	07/11/11	5.55		
Lead	6020A	0.040	5.0	06/27/11	07/11/11	0.128		
Selenium	7010	2.0	10.0	06/27/11	07/13/11	2.1		
Silver	6020A	0.04	5.0	06/27/11	07/11/11	0.04	U	
Zinc	6020A	1.00	5.0	06/27/11	07/11/11	115		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

Project No.:

NA

Date Collected:

K1105585 06/13/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg DRY

Units: Basis:

Sample Name:

061311TRBDVJ5

Lab Code:

K1105585-031

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.82		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.220		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.03		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.091		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.2		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ם	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	134		N

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/13/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061311TRBDVJ6

Lab Code:

K1105585-032

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.66		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.137		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.13		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.113		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.5		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	113		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/13/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units: Basis:

DRY

Sample Name:

061311TRBDVJ3

Lab Code:

K1105585-033

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	บ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.060		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.81		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.031		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	1.8		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	113		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Date Collected:

06/13/11

Project Name: Fish Tissue Metals Analysis

Matrix:

TISSUE

Date Received:

06/21/11

mg/Kg

Units:

Basis: DRY

Sample Name:

061311TRBDVJ4

Lab Code:

K1105585-034

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	U	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.63		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.388		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.30		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.124		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.4		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	131		N

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/03/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units: Basis:

DRY

Sample Name:

060311TRBDVJ8

Lab Code:

K1105585-035

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	1.11		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.352		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.01		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.413		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	4.7		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	109	ŀ	N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units: mg/Kg

Basis: DRY

Sample Name:

061611TRMDVJ1

Lab Code:

K1105585-036

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.61		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.118		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	3.95		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.058		
Selenium	7010	1.0	10.0	06/27/11	07/13/11	2.5		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	U	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	157		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

DRY

Units: Basis:

Sample Name:

061611TRMDVJ2

Lab Code:

K1105585-037

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.94		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.187		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.88		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.119		
Selenium	7010	1.0	10.0	06/27/11	07/14/11	4.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	96.8		. N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

Units:

mg/Kg

Basis: DRY

Sample Name:

061611TRMDVJ3

Lab Code:

K1105585-038

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.123		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	2.40		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.039		
Selenium	7010	1.0	10.0	06/27/11	07/14/11	3.7		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	88.9		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

06/21/11

Matrix:

TISSUE

Date Received:

mg/Kg

Units:

Basis: DRY

Sample Name:

061611TRMDVJ4

Lab Code:

K1105585-039

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	1.36		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.230		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	5.08		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.351		
Selenium	7010	1.0	10.0	06/27/11	07/14/11	3.5		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	118		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

mg/Kg

Units: Basis:

Matrix:

TISSUE

DRY

Sample Name:

061611TRMDVJ5

Lab Code:

K1105585-040

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.98		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.227		
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.93		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.067		
Selenium	7010	1.0	10.0	06/27/11	07/14/11	3.5		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	156		N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

06/16/11

Project Name: Fish Tissue Metals Analysis

Date Received:

06/21/11

Matrix:

TISSUE

mg/Kg

Units: Basis:

DRY

Sample Name:

061611TRMDVJ6

Lab Code:

K1105585-041

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.88		
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.235		*
Copper	6020A	0.10	5.0	06/27/11	07/11/11	4.14		
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.152		
Selenium	7010	1.0	10.0	06/27/11	07/14/11	3.9		
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	บ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	156		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Date Collected:

Project Name: Fish Tissue Metals Analysis

Date Received:

Matrix:

TISSUE

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank 1

Lab Code:

K1105585-MB1

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.020	U	
Copper	6020A	0.10	5.0	06/27/11	07/11/11	0.10	บ	
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.020	מ	
Selenium	7010	1.0	10.0	06/27/11	07/13/11	1.0	Ū	
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	Ū	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Matrix:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Date Collected:

Project Name: Fish Tissue Metals Analysis

TISSUE

Date Received:

Units: mg/Kg

Basis: DRY

Sample Name:

Method Blank 2

Lab Code:

K1105585-MB2

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.020	υ	
Copper	6020A	0.10	5.0	06/27/11	07/11/11	0.10	υ	
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.020	υ	
Selenium	7010	1.0	10.0	06/27/11	07/13/11	1.0	υ	
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	υ	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	N

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

mg/Kg

Project No.:

NA

Date Collected:

Project Name: Fish Tissue Metals Analysis

Date Received:

Matrix:

TISSUE

Units:

DRY Basis:

Sample Name:

Method Blank 3

Lab Code:

K1105585-MB3

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	U	Q
Arsenic	6020A	0.50	5.0	06/27/11	07/11/11	0.50	υ	
Cadmium	6020A	0.020	5.0	06/27/11	07/11/11	0.020	υ	*
Copper	6020A	0.10	5.0	06/27/11	07/11/11	0.10	บ	
Lead	6020A	0.020	5.0	06/27/11	07/11/11	0.020	U	
Selenium	7010	1.0	10.0	06/27/11	07/14/11	1.0	บ	
Silver	6020A	0.02	5.0	06/27/11	07/11/11	0.02	ט	
Zinc	6020A	0.50	5.0	06/27/11	07/11/11	0.50	U	

- 5A -

SPIKE SAMPLE RECOVERY

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Units: MG/KG

Project Name: Fish Tissue Metals Analysis

Basis: DRY

Matrix:

TISSUE

Sample Name:

061611UTRDVJ8S

Lab Code: K1105585-012S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	75 - 125	17.0	0.50 U	16.53	102.8		6020A
Cadmium	75 - 125	4.870	0.070	4.95	97.0		6020A
Copper	75 - 125	24.5	2.35	24.75	89.5		6020A
Lead	75 - 125	44.3	0.046	49.50	89.4		6020A
Selenium	70 - 130	19.6	2.5	16.53	103.4		7010
Silver	75 - 125	4.44	0.02 U	4.95	89.7		6020A
Zinc	75 - 125	156	111	49.50	90.9		6020A

- 5A -

SPIKE SAMPLE RECOVERY

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.: NA

Units:

MG/KG

Project Name: Fish Tissue Metals Analysis

Basis: DRY

Matrix:

TISSUE

Sample Name:

061311TRBDVJ5S

Lab Code: K1105585-031S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Arsenic	75 - 125	16.4	0.82	16.53	94.3		6020A
Cadmium	75 - 125	4.530	0.220	4.95	87.1		6020A
Copper	75 - 125	22.6	3.03	24.75	79.1		6020A
Lead	75 - 125	40.1	0.091	49.50	80.8		6020A
Selenium	70 - 130	16.0	2.2	16.53	83.5		7010
Silver	75 - 125	3.93	0.02 ช	4.95	79.4		6020A
Zinc	75 - 125	163	134	49.50	58.6	N	6020A

- 5A -

SPIKE SAMPLE RECOVERY

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: NA

Units:

MG/KG

Project Name: Fish Tissue Metals Analysis

Basis:

DRY

Matrix:

TISSUE

Sample Name:

061611TRMDVJ6S

Lab Code: K1105585-041S

Analyte	Control Limit %R	Spike Result C	Sample Result	Spike Added	%R	Q	Method
Arsenic	75 - 125	18.9	0.88	16.59	108.6		6020A
Cadmium	75 - 125	5.370	0.235	4.97	103.3		6020A
Copper	75 - 125	27.8	4.14	24.83	95.3		6020A
Lead	75 - 125	47.9	0.152	49.67	96.1		6020A
Selenium	70 - 130	19.8	3.9	16.59	95.8		7010
Silver	75 - 125	4.75	0.02	U 4.97	95.2		6020A
Zinc	75 - 125	208	156	49.67	104.7		6020A

-6-

DUPLICATES

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

Units:

MG/KG

Project Name: Fish Tissue Metals Analysis

Basis:

DRY

Matrix:

TISSUE

Sample Name:

061611UTRDVJ8D

Lab Code:

K1105585-012D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.50	U	0.50	ט			6020A
Cadmium		0.070		0.062		12.1		6020A
Copper	20	2.35		2.40		2.1		6020A
Lead		0.046		0.032		35.9		6020A
Selenium		2.5		2.3		8.3		7010
Silver		0.02	U	0.02	Ū			6020A
Zinc	20	111		115		3.5		6020A

- 6 -

DUPLICATES

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

NA

Units:

MG/KG

Project Name: Fish Tissue Metals Analysis

Basis:

DRY

Matrix:

TISSUE

Sample Name:

061311TRBDVJ5D

Lab Code:

K1105585-031D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.82		0.91		10.4		6020A
Cadmium	20	0.220		0.207		6.1		6020A
Copper	20	3.03		3.06		1.0		6020A
Lead		0.091		0.071		24.7		6020A
Selenium		2.2		2.1		4.7		7010
Silver		0.02	บ	0.02	ט			6020A
Zinc	20	134		128		4.6		6020A

- 6 -

DUPLICATES

Client:

Alaska Department of Fish and Ga

Service Request:

K1105585

Project No.:

NA

Units:

MG/KG

Project Name: Fish Tissue Metals Analysis

Basis:

DRY

Matrix:

TISSUE

Sample Name:

061611TRMDVJ6D

Lab Code:

K1105585-041D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.88		0.94		6.6		6020A
Cadmium	20	0.235		0.363		42.8	*	6020A
Copper	20	4.14		4.25		2.6		6020A
Lead	20	0.152		0.141		7.5		6020A
Selenium		3.9		4.3		9.8		7010
Silver		0.02	υ	0.02	ט			6020A
Zinc	20	156		160		2.5		6020A

- 7 -

LABORATORY CONTROL SAMPLE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

Project Name: Fish Tissue Metals Analysis

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueous	Aqueous: ug/L			Solid: mg/kg					
Analyte	True	Found	%R	True	Found	С	Limits	%R		
Arsenic	167	159	95.2							
Cadmium	50	48.0	96.0					1		
Copper	250	235	94.0			1				
Lead	500	472	94.4							
Selenium	167	180	107.8							
Silver	50	46.4	92.8					İ		
Zinc	500	473	94.6							

- 7 -

LABORATORY CONTROL SAMPLE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.:

Project Name: Fish Tissue Metals Analysis

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueous	: ug/L		Solid: mg/kg					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Arsenic	167	168	100.6						
Cadmium	50	47.9	95.8					1	
Copper	250	237	94.8						
Lead	500	476	95.2		1				
Selenium	167	168	100.6						
Silver	50	46.4	92.8						
Zinc	500	488	97.6		1			1	

-7-

LABORATORY CONTROL SAMPLE

Client:

Alaska Department of Fish and Ga

Service Request: K1105585

Project No.: N

...J.

Project Name: Fish Tissue Metals Analysis

Aqueous LCS Source:

CAS MIXED

Solid LCS Source:

	Aqueous	s: ug/L		Solid: mg/kg					
Analyte	True	Found	%R	True	Found	С	Limits	%R	
Arsenic	167	165	98.8					l	
Cadmium	l 50	48.5	97.0						
Copper	250	236	94.4						
Lead	500	480	96.0						
Selenium	167	170	101.8						
Silver	1 50	46.1	92.2			Ιİ		İ	
Zinc	500	489	97.8						

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585

Project:

Fish Tissue Metals Analysis

Date Received: NA

Date Collected: NA

LCS Matrix:

Tissue

Date Extracted: 06/27/11

Date Analyzed: 07/11/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Units: mg/Kg (ppm)

Lab Code:

K1105585-SRM1

Basis: Dry

Test Notes:

Source:

N.R.C.C. Dorm-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.88	7.05	102	5.26 - 8.62	
Cadmium	PSEP Tissue	60 2 0A	0.29	0.32	110	0.216 - 0.372	
Copper	PSEP Tissue	6020A	15.5	14.5	94	11.9 - 19.4	
Lead	PSEP Tissue	6020A	0.395	0.318	81	0.276 - 0.534	
Zinc	PSEP Tissue	6020A	51.3	48.3	94	38.6 - 65.3	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

LCS Matrix: Tissue Service Request: K1105585

Date Collected: NA

Date Received: NA

Date Extracted: 06/27/11 **Date Analyzed:** 07/11-14/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Lab Code:

K1105585-SRM2

Units: mg/Kg (ppm) Basis: Dry

Test Notes:

Source:

N.R.C.C. Tort-2

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	21.6	22.0	102	15.8-28.1	
Cadmium	PSEP Tissue	6020A	26.7	27.6	103	20.9-32.8	
Copper	PSEP Tissue	6020A	106	99.1	93	77-139	
Lead	PSEP Tissue	6020A	0.35	0.44	126	0.18-0.58	
Selenium	PSEP Tissue	7010	5.63	7.07	126	3.97-7.56	
Zinc	PSEP Tissue	6020A	180	185	103	139-223	

QA/QC Report

Client:

Alaska Department of Fish and Game

Service Request: K1105585 Date Collected: NA

Project:

Fish Tissue Metals Analysis

Date Received: NA

LCS Matrix: Tissue

Date Extracted: 06/27/11 Date Analyzed: 07/11/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Units: mg/Kg (ppm)

Lab Code:

K1105585-SRM3

Basis: Dry

Test Notes:

Source:

N.R.C.C. Dorm-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.88	6.78	99	5.26 - 8.62	
Cadmium	PSEP Tissue	6020A	0.29	0.31	107	0.216 - 0.372	
Copper	PSEP Tissue	6020A	15.5	14.6	94	11.9 - 19.4	
Lead	PSEP Tissue	6020A	0.395	0.378	96	0.276 - 0.534	
Zinc	PSEP Tissue	6020A	51.3	51.1	100	38.6 - 65.3	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

LCS Matrix: Tissue

Service Request: K1105585

Date Collected: NA

Date Received: NA

Date Extracted: 06/27/11

Date Analyzed: 07/11-14/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Lab Code:

K1105585-SRM4

Units: mg/Kg (ppm) Basis: Dry

Test Notes:

Source:

N.R.C.C. Tort-2

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	21.6	21.5	100	15.8-28.1	
Cadmium	PSEP Tissue	6020A	26.7	27.7	104	20.9-32.8	
Copper	PSEP Tissue	60 2 0A	106	97.2	92	77-139	
Lead	PSEP Tissue	6020A	0.35	0.29	83	0.18-0.58	
Selenium	PSEP Tissue	7010	5.63	5.41	96	3.97-7.56	
Zinc	PSEP Tissue	6020A	180	195	108	139-223	

QA/QC Report

Client:

LCS Matrix:

Alaska Department of Fish and Game

Project: Fish Tissue Metals Analysis

Tissue

Service Request: K1105585

Date Collected: NA

Date Received: NA

Date Extracted: 06/27/11 Date Analyzed: 07/11/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

K1105585-SRM5

Units: mg/Kg (ppm) Basis: Dry

Lab Code: Test Notes:

Source:

N.R.C.C. Dorm-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.88	6.93	101	5.26 - 8.62	
Cadmium	PSEP Tissue	6020A	0.29	0.30	103	0.216 - 0.372	
Соррег	PSEP Tissue	6020A	15.5	14.5	94	11.9 - 19.4	
Lead	PSEP Tissue	6020A	0.395	0.375	95	0.276 - 0.534	
Zinc	PSEP Tissue	6020A	51.3	51.3	100	38.6 - 65.3	

QA/QC Report

Client:

Alaska Department of Fish and Game

Project:

Fish Tissue Metals Analysis

LCS Matrix: Tissue Service Request: K1105585

Date Collected: NA Date Received: NA

Date Extracted: 06/27/11

Date Analyzed: 07/11-14/11

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Lab Code:

K1105585-SRM6

Units: mg/Kg (ppm)

Basis: Dry

Test Notes:

Source:

N.R.C.C. Tort-2

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	60 2 0A	21.6	22.1	102	15.8-28.1	
Cadmium	PSEP Tissue	6020A	26.7	27.9	104	20.9-32.8	
Copper	PSEP Tissue	6020A	106	98.1	93	77-139	
Lead	PSEP Tissue	6020A	0.35	0.33	94	0.18-0.58	
Selenium	PSEP Tissue	7010	5.63	5.81	103	3.97-7.56	
Zinc	PSEP Tissue	6020A	180	195	108	139-223	

September 25, 2014

ALS Environmental ALS Group USA, Corp. 1317 South 13th Avenue Kelso, WA 98626 T: +1 360 577 7222

F: +1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1409191

Nicole Legere Alaska Department of Fish and Game Division of Habitat/ Billy Ray Center 1008 F Street P.O. Box 110024 Juneau, AK 99801

RE: Tulsequah Chief Mine Water Quality and Aquatic Stuf Igu

Dear Nicole:

Enclosed are the results qhthe sao r les submitted to our laboratoty on August 28, 2234. F or your reference, these analyses have been assigned our service request number K1409191.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please ecll if"{ou have"cny questions. M{"extepsion is 3363. You mcy also contcet me via Email"ct Lisa.Domenighini@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Engironmental

Lisa Domenighini

Project Manager

LD/kd Page 1 of 44

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	_
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1409191

Project: Tulsequah Chief Mine/ Date Received: 8/28/14

Water Quality and Aquatic Studies

Sample Matrix: Animal Tissue

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Seventeen animal tissue samples were received for analysis at ALS Environmental on 8/28/14. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory.

Total Metals

Standard Reference Material Exceptions:

The recovery of Lead in the Standard Reference Material (SRM) N.R.C.C. Dorm-4 was below the normal ALS/Kelso control limit (i.e. 0.271 mg/kg versus a control limit of 0.290 mg/kg). However, the concentration of Lead in the SRM is relatively low compared to the sensitivity of the analytical procedure. The associated QA/QC results (e.g. SRM N.R.C.C. Tort-3, LCS, matrix spike, method blank, calibration standards, etc.) indicate the analysis was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by_ Jua & Jamenighin

	#		
/ es. i	e «c)	Covicopmental	

ALSEnvironmental			Gr	IAF	N () r	C	Jo	IU	U)	Y								SR#	ŧ		*************		
	uth 13th Ave.,	Kelso, WA 9	98626 36	0.577.7	7222	800.	695.72	222	360.6	636.10	068 (fa	ax)		P	AGE	Age Co.		OF.	j		CO	C#	***************************************	
HOLEGAN Chief Mine i	Nation Quali	ryand4	guric S	rulis	Semivolatile C	1	JAH []	BTEXCO		$I_{\alpha}I$	7 /	1 =/	1	7	(circle) NH3-N 705, 704, F NS	ş ^ŷ /	/	100		7	Ethene	7	1	
PROJECT WAYNAGER TWOOTHY			·	$\int _{\alpha }$, /	18	ONING /	BTE	7 SG7	5/	Ohorophens: 2	8757	_/	I_{I}	2 00 A. F.	100	40x 16507	Z / 500			TI CIO			
and the second s	b Game	Hebita	<u> </u>	$-\int_{\tilde{A}_{F,p}}^{\tilde{A}_{F,p}}$	/	13/	7/ 5		1664	/ ,	2/ (1/3/	0 0	18	4.5	 } }	% 3557	5 / i	= /	100			/	
	<u>m 153</u>	**************************************		CONTAINERS	/ /	270/s	/ &	ee F	/_ ,	/ 90	9 des	875	1/08	/\$	15.50 12.50	12 g	12		/	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	i/	/ /	/ /	/
STANSTATE PAR ALL 99801				8	- 1,	[] [] []	3/7/	Se/ Se/	# []	ે /	jog /	30		£	0 20	S@/	, δ/	8]	00/	Ses	' /	' /		,
nvolv-Lace a most			11-150	8 /	tile /	0/2/2	2007		剩		921	et to		7/3		[\$/ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9/	Dioxins/Fura CO3	Dissolved C	Me			/	l
107-465-6979 EAMPLER'S SIGNATURE	407	-465-1	4759/ MATRIX	GEY	18/2				\$ 100	1000	2007 1007	188	13/ 6	y /E	8/\$.	9/3		18/18/		72/				
Tienle sofre	This			1	Sen. (88)	Volat 24	J. Sas	190 / 190 /	10 20	est 0	18/2	Seta	Zan Zan	Vo.		/ ž	4/ka/	Dox 673			/		/ RE	MARKS
SAMPLE I.D. DATE	TIME L	LAB I.D. M.	MATRIX / >	1	1	9		-		- 6			-	/ = <	/ 9		<u> </u>				-			
- 4th attached	#125-14	21	-44									\triangle						************	····					
- VV 6/41/4-24S	1 July 1	701A																			 			
<u>U</u>	<u> </u>																		·····			ļ		-
body Sample	K_L																							
National Control of Co							l																	

																								effective commence and the same consideration for
	†											***************************************												
				1								***************************************		·				***************************************						
					\longrightarrow	******************				//X											 			······································
	INVOIC	CE INFORM	ATION	599									<u> </u>			1				<u></u>		L	<u> </u>	Proposition of the second of t
REPORT REQUIREMENTS	P.O. #	-1-02	7-15	1	which r								ندر.	Man	1									10 m
	Bill To: ₹0	800 11C	3024	1			"MS-rcl"												Objection .					Źn (Ag)
Blank, Surrogate, as required	JONAR	20, KK 9	<u> </u>											***************************************								Sr TI		Zn Hg
II. Report Dup., MS, MSD as	TURNARO	UND REQU	HREMENTS	*INC	CIAL IN	STA	TE HY	YDRO	CAR	BON FNTS	PROC	EDU	RE:	AK (CA V	<u>/I N</u>	IORT	HWE:	ST O	HER	in. NA		_(CIR	CLE ONE)
required				agents on	a 01 1	An	ela S	ama		lan 1	21	y v	MAG)		W212	۶۱۲. سار	YU!		Car Lar	1003 120/2	b	U . MG (
III. CLP Like Summary	5 day			KAO	005		carlar Larta	~12)/	10	L.)) (C	NI	Man	' I CALL			r.	J(2.11 .03	7	302 #30··			
,	(no raw data) Standard (15 working days)					rui El		d a	W	P.	7/	UX HDP	35 जन	<u> </u>	$A \sim 2$	1) 12 1 J	$\frac{\gamma \varphi}{7}$	31T	٤,					***************************************
IV. Data Validation Report	Its		J.C. 1.			Mospy		. 6	5 m. F.		/ '	The state of	(O)	SX	110	541		yels N. m						
V. EDD		Sample	Ship	oment	cont	ains (JSDA	A regu	lated	soils	sampl	ఎం∧ es (ch	(A.V eck b	oox if	port of moisture. St. Sample bags posite Leggre 10034 KK 99811-0024 ox if applicable) Micole legge @alaska.									
RELINQUISHED BY	RELINQUISHED BY: RE				BY:	i	109	OC)		REL	INQU	ISHE	HED BY:			R	RECEIVED BY:						
					BY:		14	.										,		***************************************				
Signature Date/Ti	ime 5 G	Signatu	Ta Sovice		ate/Ttr	Pt (5		Sign			*********		ite/Tirr	1e			Signature Date/Ti						
Printed Name Firm		Printed		F	irm				Print	ed Na	ame		Fir	m				Printed Name			Firn	1		

Tulsequah Chief Mine Water Quality and Aquatic Studies Juvenile Fish for Whole Body Metals

Basis, all samples: Dry Weight, Report % Moisture Requested Analysis: Ag,As,Cd,Cu,Hg,Pb,Se,Zn

		Date				FK Length	Weight	Note
Matrix	Collector	Collected	Sample Number	Sample Location	Requested Analysis	(mm)	(g)	
Whole Body	ADF&G	8/21/2014	082114UTRDVJ1	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	125	19.16	
Whole Body	ADF&G	8/21/2014	082114UTRDVJ2	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	125	17.11	
Whole Body	ADF&G	8/22/2014	082214UTRDVJ3	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	18.24	
Whole Body	ADF&G	8/22/2014	082214UTRDVJ4.	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	15.61	
Whole Body	ADF&G	8/22/2014	082214UTRDVJ5	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	107	12.59	
Whole Body	ADF&G	8/22/2014	082214UTRDVJ6	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	78	5.2	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ1	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	93	8.51	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ2	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	83/57	7.36	Two fish (composite)
Whole Body	ADF&G	8/21/2014	082114TRMDVJ3	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	95	8.18	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ4	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	96	7.2	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ5	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	100	9.92	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ6	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	107	11.21	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ7	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	88	6.86	
Whole Body	ADF&G	8/21/2014	082114TRMDVJ8	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	70/56	6.04	Two fish (composite)
Whole Body	ADF&G	8/21/2014	082114TRMDVJ9	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	80/64	8.1	Two fish (composite)
Whole Body	ADF&G	8/21/2014	082114TRMDVJ10	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	77	5.27	
Whole Body	ADF&G	8/21/2014	082114TRBDVJ1	Taku River Boundary	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	122	19.37	

Cooler Receipt and Preservation Form

Cli	ent / Pro	oject: 4	laska	De	ptat	4ish 8	Garrie	Serv	rice Request	t <i>K14</i>	<u> 4191 </u>		
Red	eived:	3/28/1	4 (Dpened:_	8/28/	14	_ By:	40	Unlo	aded:€	3/28/14 B	y:	$\sum_{i=1}^{n}$
1. 2. 3.	Samples		eived in: (cir	-	Fed Ex Cooler	UPS Box	Env	elope	Other	-	nd Delivered	_ NA	
٥.		-	s on coolers' stody seals i	1	NA D	N			ow many and sent, were the		d dated?	(v	N
Sister.	Objektivatile	ian isanota (Asia)	istody scars		Corr.		nometer		er/COC ID	cy signed an	Tracking Nun	Manager	Assola receiver
Co	Raw oler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Factor + 2	- 3	ID 22		(NA) 801e1	<i>7952 7</i>	436	NA Filed
4.	Packing	g material:	Inserts (1	aggies	Bubble Wi	rap (G	el Packs	Wet I	ce Dry Ice	Sleeves			
5.			ers properly	Management of the second		1000	Million Carlos Carrol (equal prints of the carrol of the				1	IA (Ý) N
6.	Did all	bottles arri	ve in good c	ondition ((unbroken)?	Indice	ate in the	table be	low.		1	VA (Y) N
7.	Were all	l sample la	bels complet	e (i.e ana	lysis, preser	vation,	etc.)?				1	NA (Ý	N
8.	Did all s	sample labe	els and tags a	gree with	custody pa	pers? I	ndicate m	ajor dis	crepancies ir	ı the table o	n page 2.	NA CY	N
9.	Were ap	ppropriate	bottles/conta	iners and	volumes re	ceived t	for the tes	ts indica	ited?		1	NA (Ý	И
10.	Were the	he pH-pres	served bottle	s (see SMC	O GEN SOP)	receive	d at the ap	propria	te pH? <i>Indic</i>	cate in the to	ible below 🕦	NA) Y	N
11.	Were V	VOA vials	received wit	hout head	space? Ind	icate in	the table	below.			E	VA) Y	N
12.	Was C	12/Res neg	gative?								<u>(</u>	VA) Y	N
										4 44 6 2 5		115 F. (2157 - 11 1157 E. (31	
3,997,7		Sample ID o	in Boπle			Sample	ID on COC				Identified by:		
	······································											······	
								*					
	a de la companya de l	02- Grago - 4-1.9			Count O	ut of He	-465	1 20222 000			The second secon	A 4 (40) 100 (30)	
2515		Sample ID) (200 See 200				ace Broke	pH	Reagent	Volume added	Reagent Lot Number	Initials	Time
-												-	
								<u> </u>					
-			-										
-													
-	······							+					
74.7	, T.		0 70 *	1	L								
<i>I</i> ∀ <i>O</i>	ies, Dis	сгерапсіе	s, & Resoli	unons:						MIGLEANISCHELLE CO			
	~						•						<u></u>
	~												
						····		-	,				****

Analytical Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality and Aquatic Stu **Date Collected:** 08/21/14 - 08/22/14

Sample Matrix: Animal Tissue Date Received: 08/28/14

Analysis Method:CalculationUnits: PercentPrep Method:NoneBasis: Wet

Moisture

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
082114UTRDVJ1	K1409191-001	78.6	-	1	NA	
082114UTRDVJ2	K1409191-002	82.1	-	1	NA	
082214UTRDVJ3	K1409191-003	76.7	-	1	NA	
082214UTRDVJ4	K1409191-004	76.8	-	1	NA	
082214UTRDVJ5	K1409191-005	77.6	-	1	NA	
082214UTRDVJ6	K1409191-006	80.3	-	1	NA	
082114TRMDVJ1	K1409191-007	78.2	-	1	NA	
082114TRMDVJ2	K1409191-008	78.6	-	1	NA	
082114TRMDVJ3	K1409191-009	78.2	-	1	NA	
082114TRMDVJ4	K1409191-010	78.7	-	1	NA	
082114TRMDVJ5	K1409191-011	76.2	-	1	NA	
082114TRMDVJ6	K1409191-012	76.2	-	1	NA	
082114TRMDVJ7	K1409191-013	77.5	-	1	NA	
082114TRMDVJ8	K1409191-014	79.6	-	1	NA	
082114TRMDVJ9	K1409191-015	78.1	-	1	NA	
082114TRMDVJ10	K1409191-016	76.9	-	1	NA	
082114TRBDVJ1	K1409191-017	77.1	-	1	NA	

Service Request: K1409191

Analytical Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality and Aquatic Stu

Date Collected: 08/21/14 - 08/22/14

Sample Matrix: Animal Tissue Date Received: 08/28/14

Analysis Method:Freeze DryUnits: PercentPrep Method:NoneBasis: Wet

Total Solids

Lab Code	Result	MRL	Dil.	Date Analyzed	Q
K1409191-001	21.4		1	08/29/14 16:38	
K1409191-002	17.9	_	1	08/29/14 16:38	
K1409191-003	23.3	_	1	08/29/14 16:38	
K1409191-004	23.2	-	1	08/29/14 16:38	
K1409191-005	22.4	-	1	08/29/14 16:38	
K1409191-006	19.7	-	1	08/29/14 16:38	
K1409191-007	21.8	-	1	08/29/14 16:38	
K1409191-008	21.4	-	1	08/29/14 16:38	
K1409191-009	21.8	-	1	08/29/14 16:38	
K1409191-010	21.3	-	1	08/29/14 16:38	
K1409191-011	23.8	-	1	08/29/14 16:38	
K1409191-012	23.8	-	1	08/29/14 16:38	
K1409191-013	22.5	-	1	08/29/14 16:38	
K1409191-014	20.4	-	1	08/29/14 16:38	
K1409191-015	21.9	-	1	08/29/14 16:38	
K1409191-016	23.1	-	1	08/29/14 16:38	
K1409191-017	22.9	-	1	08/29/14 16:38	
	K1409191-001 K1409191-002 K1409191-003 K1409191-004 K1409191-005 K1409191-006 K1409191-007 K1409191-009 K1409191-010 K1409191-011 K1409191-012 K1409191-013 K1409191-014 K1409191-015 K1409191-015	K1409191-001 21.4 K1409191-002 17.9 K1409191-003 23.3 K1409191-004 23.2 K1409191-005 22.4 K1409191-006 19.7 K1409191-007 21.8 K1409191-008 21.4 K1409191-009 21.8 K1409191-010 21.3 K1409191-011 23.8 K1409191-012 23.8 K1409191-013 22.5 K1409191-014 20.4 K1409191-015 21.9 K1409191-016 23.1	K1409191-001 21.4 - K1409191-002 17.9 - K1409191-003 23.3 - K1409191-004 23.2 - K1409191-005 22.4 - K1409191-006 19.7 - K1409191-007 21.8 - K1409191-008 21.4 - K1409191-009 21.8 - K1409191-010 21.3 - K1409191-011 23.8 - K1409191-012 23.8 - K1409191-013 22.5 - K1409191-014 20.4 - K1409191-015 21.9 - K1409191-016 23.1 -	K1409191-001 21.4 - 1 K1409191-002 17.9 - 1 K1409191-003 23.3 - 1 K1409191-004 23.2 - 1 K1409191-005 22.4 - 1 K1409191-006 19.7 - 1 K1409191-007 21.8 - 1 K1409191-008 21.4 - 1 K1409191-009 21.8 - 1 K1409191-010 21.3 - 1 K1409191-011 23.8 - 1 K1409191-012 23.8 - 1 K1409191-013 22.5 - 1 K1409191-014 20.4 - 1 K1409191-015 21.9 - 1 K1409191-016 23.1 - 1	Lab Code Result MRL Dil. Analyzed K1409191-001 21.4 - 1 08/29/14 16:38 K1409191-002 17.9 - 1 08/29/14 16:38 K1409191-003 23.3 - 1 08/29/14 16:38 K1409191-004 23.2 - 1 08/29/14 16:38 K1409191-005 22.4 - 1 08/29/14 16:38 K1409191-006 19.7 - 1 08/29/14 16:38 K1409191-007 21.8 - 1 08/29/14 16:38 K1409191-008 21.4 - 1 08/29/14 16:38 K1409191-009 21.8 - 1 08/29/14 16:38 K1409191-010 21.3 - 1 08/29/14 16:38 K1409191-011 23.8 - 1 08/29/14 16:38 K1409191-013 22.5 - 1 08/29/14 16:38 K1409191-014 20.4 - 1 08/29/14 16:38 K1409191-015 21.9

Service Request: K1409191

QA/QC Report

Client: Alaska Department of Fish and Game

Tulsequah Chief Mine Water Quality and Aquatic Stu

Sample Matrix: Animal Tissue

Project

Analysis Method:

Prep Method:

Service Request:K1409191 **Date Collected:**08/21/14 **Date Received:**08/28/14

Freeze Dry
None

Units:Percent
Basis:Wet

Replicate Sample Summary Inorganic Parameters

			Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	Result	Result	Average	RPD	Limit	Analyzed
082114UTRDVJ1	K1409191-001DUP	-	21.4	22.0	21.7	3	20	08/29/14
082114UTRDVJ2	K1409191-002DUP	-	17.9	18.5	18.2	3	20	08/29/14

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 09/17/14 10:53:53 AM Superset Reference:14-0000302289 rev 00

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1409191 **Project: Date Collected:** 08/21/14 Tulsequah Chief Mine Water Quality and Aquatic Stu **Sample Matrix: Date Received:** 08/28/14 Animal tissue

Mercury, Total

Units: ng/g

Basis: Dry

Prep Method: METHOD Analysis Method: 1631E

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
082114UTRDVJ1	K1409191-001	2.4	2.5	09/09/14	09/10/14	36.7	
082114UTRDVJ2	K1409191-002	9.5	10	09/09/14	09/10/14	106	
082214UTRDVJ3	K1409191-003	2.4	2.5	09/09/14	09/10/14	26.9	
082214UTRDVJ4	K1409191-004	2.4	2.5	09/09/14	09/10/14	21.0	
082214UTRDVJ5	K1409191-005	2.4	2.5	09/09/14	09/10/14	39.6	
082214UTRDVJ6	K1409191-006	3.6	2.5	09/09/14	09/10/14	58.5	
082114TRMDVJ1	K1409191-007	2.4	2.5	09/09/14	09/10/14	33.0	
082114TRMDVJ2	K1409191-008	2.5	2.5	09/09/14	09/10/14	36.5	
082114TRMDVJ3	K1409191-009	2.4	2.5	09/09/14	09/10/14	44.2	
082114TRMDVJ4	K1409191-010	2.4	2.5	09/09/14	09/10/14	35.3	
082114TRMDVJ5	K1409191-011	2.4	2.5	09/09/14	09/10/14	26.8	
082114TRMDVJ6	K1409191-012	9.7	10	09/09/14	09/10/14	54.1	
082114TRMDVJ7	K1409191-013	2.5	2.5	09/09/14	09/10/14	43.2	
082114TRMDVJ8	K1409191-014	2.4	2.5	09/09/14	09/10/14	36.9	
082114TRMDVJ9	K1409191-015	2.5	2.5	09/09/14	09/10/14	41.0	
082114TRMDVJ10	K1409191-016	2.4	2.5	09/09/14	09/10/14	27.7	
082114TRBDVJ1	K1409191-017	9.7	10	09/09/14	09/10/14	60.1	
Method Blank 1	K1409191-MB1	1.0	1	09/09/14	09/10/14	ND	
Method Blank 2	K1409191-MB2	1.0	1	09/09/14	09/10/14	ND	
Method Blank 3	K1409191-MB3	1.0	1	09/09/14	09/10/14	ND	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Tulsequah Chief Mine Water Quality and Aquatic Stu

Sample Matrix: Animal tissue

Date Collected: 08/21/14 **Date Received:** 08/28/14 **Date Extracted:** 09/09/14 **Date Analyzed:** 09/10/14

Service Request: K1409191

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

082114UTRDVJ1

K1409191-001MS,

K1409191-001MSD

Units: ng/g Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL			Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	9.8	241	244	36.7	289	292	105	105	70-130	<1	

K1409191icp - DMS 09/11/14 Page No.:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Tulsequah Chief Mine Water Quality and Aquatic Stu

Sample Matrix: Animal tissue

Date Collected: 08/21/14 **Date Received:** 08/28/14 **Date Extracted:** 09/09/14 **Date Analyzed:** 09/10/14

Service Request: K1409191

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

082114TRBDVJ1

K1409191-017MS,

K1409191-017MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL			Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	9.8	244	245	60.1	303	300	100	98	70-130	2	

K1409191icp - DMS (2) 09/11/14 Page No.:

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1409191

Project:Tulsequah Chief Mine Water Quality and Aquatic StuDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/10/14

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.64	93	70-130	

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1409191

Project:Tulsequah Chief Mine Water Quality and Aquatic StuDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 09/10/14

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	4.87	97	70-130	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1409191

Project:Tulsequah Chief Mine Water Quality and Aquatic StuDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 09/09/14 **Date Analyzed:** 09/10/14

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes** 292 263 90 **METHOD** 1631E 70-130 Mercury

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114UTRDVJ1 Lab Code: K1409191-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.6		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.07		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.1		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.18		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	1.9		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	116		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114UTRDVJ2 Lab Code: K1409191-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.36		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	9.7		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.10		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.5		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.20		·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	264		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/22/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082214UTRDVJ3 Lab Code: K1409191-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.06		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	2.6		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.05		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	3.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	123		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/22/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082214UTRDVJ4 Lab Code: K1409191-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.09		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	2.8		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.07		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	3.2		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	132		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/22/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082214UTRDVJ5 Lab Code: K1409191-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.9		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.15		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	4.3		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.38		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.1		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	122		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/22/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082214UTRDVJ6 Lab Code: K1409191-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	1.3		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.43		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.6		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.20		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	164		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ1 Lab Code: K1409191-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.35		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.2		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.05		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.7		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	149		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ2 Lab Code: K1409191-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.6		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.37		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.0		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.08		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	4.0		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	123		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali
Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ3 Lab Code: K1409191-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.27		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	4.4		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.08		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.7		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	154		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ4 Lab Code: K1409191-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.6		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.24		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.4		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.12		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.7		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	133		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ5 Lab Code: K1409191-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.7		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.15		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	2.9		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.05		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	141		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ6 Lab Code: K1409191-012

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.12		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	2.3		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.03		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	114		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ7 Lab Code: K1409191-013

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.6		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.30		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.5		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.11		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	3.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	119		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ8 Lab Code: K1409191-014

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.9		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.37		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	5.3		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.22		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.8		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	·
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	154		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ9 Lab Code: K1409191-015

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.7		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.49		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.5		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.06		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.8		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	112		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRMDVJ10 Lab Code: K1409191-016

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.34		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.5		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.07		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	6.4		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.04		
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	143		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected: 08/21/14

Project Name: Tulsequah Chief Mine Water Quali Date Received: 08/28/14

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 082114TRBDVJ1 Lab Code: K1409191-017

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	1.3		
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.36		
Copper	200.8	0.1	5.0	09/02/14	09/13/14	3.1		
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.10		
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	2.9		
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	143		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Date Collected:

Project Name: Tulsequah Chief Mine Water Quali Date Received:

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: K1409191-MB

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	U	Q
Arsenic	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	
Cadmium	200.8	0.02	5.0	09/02/14	09/13/14	0.02	U	
Copper	200.8	0.1	5.0	09/02/14	09/13/14	0.1	Ū	
Lead	200.8	0.02	5.0	09/02/14	09/13/14	0.02	U	
Selenium	200.8	1.0	5.0	09/02/14	09/13/14	1.0	Ū	
Silver	200.8	0.02	5.0	09/18/14	09/23/14	0.02	ŭ	
Zinc	200.8	0.5	5.0	09/02/14	09/13/14	0.5	U	

Metals - 5A -

SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082114UTRDVJ1S Lab Code: K1409191-001S

Analyte	Control Limit %R	Spike Result C	Sample Result	Spike Added	%R	Q	Method
Silver	70 - 130	4.91	0.02 0	4.97	98.8		200.8

Metals - 5A -

SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082214UTRDVJ3S Lab Code: K1409191-003S

Analyte	Control Limit %R	Spike Result	С	Sample Result	C	Spike Added	%R	Q	Method
Arsenic	70 - 130	19.4		0.5	U	16.7	116.2		200.8
Cadmium	70 - 130	5.13	ĺ	0.06		5.00	101.4		200.8
Copper	70 - 130	25.8	ĺ	2.6		25.0	92.8		200.8
Lead	70 - 130	46.26	ĺ	0.05		50.00	92.4		200.8
Selenium	70 - 130	22.1	j	3.4		16.7	112.0		200.8
Zinc	70 - 130	179.0	ĺ	123.3		50.0	111.4		200.8

Metals - 5A -

SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082114TRBDVJ1S Lab Code: K1409191-017S

Analyte	Control Limit %R	Spike Result	C	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	70 - 130	20.8		1.3		16.6	117.5		200.8
Cadmium	70 - 130	5.48		0.36		4.97	103.0		200.8
Copper	70 - 130	27.1		3.1		24.8	96.8		200.8
Lead	70 - 130	46.36		0.10		49.67	93.1		200.8
Selenium	70 - 130	21.2		2.9		16.6	110.2		200.8
Silver	70 - 130	5.16		0.02	υ	5.00	103.2		200.8
Zinc	70 - 130	199.5		143.1		49.7	113.5		200.8

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082114UTRDVJ1D Lab Code: K1409191-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Silver		0.02	Ū	0.02	Ū			200.8

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082214UTRDVJ3D Lab Code: K1409191-003D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.5	Ū	0.5	Ū			200.8
Cadmium		0.06		0.07		15.4		200.8
Copper	30	2.6		3.0		14.3		200.8
Lead		0.05		0.07		33.3		200.8
Selenium		3.4		3.4		0.0		200.8
Zinc	30	123.3		127.6		3.4		200.8

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 082114TRBDVJ1D Lab Code: K1409191-017D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		1.3		1.0		26.1		200.8
Cadmium	30	0.36		0.36		0.0		200.8
Copper	30	3.1		3.6		14.9		200.8
Lead		0.10		0.12		18.2		200.8
Selenium		2.9		2.8		3.5		200.8
Silver		0.02	U	0.02	Ū			200.8
Zinc	30	143.1		137.4		4.1		200.8

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1409191

Project No.: NA

Project Name: Tulsequah Chief Mine Water Quali

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	Aqueous (ug/L)			Solid (mg/kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R		
Arsenic	167.0	189.5	113.5							
Cadmium	50.0	48.5	97.0							
Copper	250.0	237.1	94.8							
Lead	500.0	481.0	96.2							
Selenium	167.0	178.0	106.6							
Silver	50.0	51.6	103.2							
Zinc	500.0	501.4	100.3							

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish And Game Service Request: K1409191

Project: Tulsequah Chief Mine Water Quality and Aquatic Date Collected: LCS Matrix: Tissue Date Received:

Date Extracted: 09/02/14 **Date Analyzed:** 09/13/14

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1409191-SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	6.80	7.46	110	4.93 - 8.93	
Cadmium	PSEP Tissue	200.8	0.306	0.330	108	0.233 - 0.385	
Copper	PSEP Tissue	200.8	15.9	15.7	99	12.0 - 20.2	
Lead	PSEP Tissue	200.8	0.416	0.271	65	0.290 - 0.563	X
Selenium	PSEP Tissue	200.8	3.56	4.48	126	2.58 - 4.68	
Zinc	PSEP Tissue	200.8	52.20	56.8	109	39.2 - 66.5	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish And Game Service Request: K1409191

Project: Tulsequah Chief Mine Water Quality and Aquatic Date Collected: LCS Matrix: Tissue Date Received:

Date Extracted: 09/02/14 **Date Analyzed:** 09/13/14

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1409191-SRM2 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	59.5	66.1	111	44.6 - 76.0	
Cadmium	PSEP Tissue	200.8	42.3	39.8	94	32.4 - 52.9	
Copper	PSEP Tissue	200.8	497	415	84	380 - 623	
Lead	PSEP Tissue	200.8	0.225	0.175	78	0.166 - 0.292	
Selenium	PSEP Tissue	200.8	10.90	11.5	106	7.9 - 14.3	
Zinc	PSEP Tissue	200.8	136	131	96	104 - 170	

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222 **F**:+1 360 636 1068

www.alsglobal.com

July 20, 2015

Analytical Report for Service Request No: K1506755

Nicole Legere
Alaska Department of Fish and Game
Division of Habitat/ Billy Ray Center
1008 F Street
P.O. Box 110024
Juneau, AK 99801

RE: Tulsequah Chief Mine H20 Quality & Aquatic Studies

Dear Nicole.

Enclosed are the results of the sample(s) submitted to our laboratory June 23, 2015 For your reference, these analyses have been assigned our service request number **K1506755**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Case Narrative
Chain of Custody

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	_
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1506755

Project: Tulsequah Chief Mine H20 Quality & Aquatic Study Date Received: 06/23/15

Sample Matrix: Animal Tissue

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Twenty animal tissue samples were received for analysis at ALS Environmental on 06/23/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory. One sample was canceled prior to analysis at the laboratory per client instruction.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

Λ			
(ALS)	Enulco	in mer	tal

CHAIN OF CUSTODY

SR# K1506755

	1317 Sout	h 13th Ave	., Kelso, W	A 98626	36	0.577.	7222	800.	.695.7	222	360.	636.1	068 (fa	ax)		Р	AGE		<u> </u>	-OF			CO	C#	
PROJECT NAME TULK 2121/2 Chirf Mix PROJECT MANAGER PROJECT MANAGER TUMOT		c Ordity	is Aquat	ic St		_/	Semivolatilo		E PHO	Oil & Green Com Brex District			7/	B151D	Γ/	7/	(circle) NH-785, 705, 704, F. M.	\ 2\cdot \ 2\cdot \	, /	CO3 11 11 100	200	7	Celliane Cl Ethene C	7/	
COMPANY NAME AIRSTA Dept. of	FISH A	nd Can	m.J. H	alat	<u>,, †</u>	CONTAINERS	? /		7			' /	Choronesis Braziles] \S	1/2		g/ <u>s</u>		10) Se		/ /
ADDITION F. St. 1	200M. 1	53		(LLE)	~!	7 <i>₹</i>	/	1			<u></u>	/ 8	2 S 4] []			8 3			i/n			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	/	/ /
JUNYAW AK.	99201					18/	/ /	ganic B2;	المراجع المراجع	(8 D	1 E _	/ နို	10 g	80		/ ﴿	28	0, W	Į į	\z\con_{\cong}'	/ _	8 g	/	/ /	' /
E-MAILADDRESS MCOT-LYAY 14 PHONE:	c @al	iska.	gov		—/	<i>☆ /</i>		50				الم			ठेड्ड इंट्री	<u> </u>	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	:≱/	Γ	ו מ	88	Veth Veth			/
PHONE 907-465-	6979	907-	465 -	<u>4759</u>	NUMBER	ž /	olati.	Volatile Original			POB TENTER SEA			10/0	3/ 5		§\≨}	¿ / کِچْ	Alkalinit.		7	775 Chases		/	/
SAWIFEEN S SIGNATIONS] 🕺	′/										200	3/3/8	?/å]/ ja kaji		2/8/9	;} {	/	/	/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX		/_	/ " -	/ 2 %		/ <u>~</u>	4	/4 8	10,5	\	/ 0	/હ≥	<u> </u>	<u> </u>	<u>_</u>	7 2 2	O &	Ί_	_	 	REMARKS
See list of juv				<u> </u>	19		ļ							X					_			<u> </u>	<u> </u>		
fish whole bo	4			ļ	<u> </u>																		_	ļ	
Samples	!			<u> </u>																					
1.																									
																									· ·
		-				:																			· · · · · · · · · · · · · · · · · · ·
						7																	 		
				 																	_	-	_		
				 	-	 															<u> </u>	_	-		
				 	-	ļ	_																_		
	l				<u> </u>				!															<u> </u>	
REPORT REQUIREM	ENTS		ICE INFOF				which		_		-		∞		γ.	٦	\sim				~	`	\sim		•
X I. Routine Report:		Bill To:	PO 30	C 1100	24	Tot	al Meta	ls: Al	(As)	Sb B	а Ве	В Са	(ca)	Co	Cr (C	/ Fe	рь) м	g M	n Mo	Ni Ni	K (Ag) Na	(Se) s	Sr TI	Sn V (Zn) (Hg)
Blank, Surrogate required	, as	TIMAG	2, 1×- 99	<u>1511-0</u>	<u>034</u>	Dissol	ved Met	als: Al	As	Sb B	a Be	ВС	a Cd	Со	Cr Cı	ı Fe	Pb M	lg M	n Mo	o Ni	K Ag	Na	Se :	Sr TI	Sn V Zn Hg
II. Report Dup., MS	MSD as	TUDNAS	OUND DE	NUDEA		*INC	CIAL	STA	TE H	YDRO	CAR	BON	PROC	EDŲ	RE:	AK (A W	/I N	ORT	HWE	ST O	THER			(CIRCLE ONE)
required	, 14100 43		OUND REG		EN12	as a	CIAL I	41/1	dval	125	омм Г. У	ienis VMD	E H	wei iG (nya Con	stain Stain	ive -	tuxo	10 MG 45	L P	محر	rioce SS a	55 U S A	ach i	jample bag uposite.
III. CLP Like Summa	ary	5 da	av			Ser	da	haro	Loi	P4 0	nd	مار	WY	40	Alke	علا	HOOZ AK Lege	17		,	_	-/-		.	Ψ ().
(no raw data)		X Star	ndard (15 wo	orking day	/s)					1			, 1		Po i	BOX	1100	μ,	11-0	024	1				
IV. Data Validation F	Report	Pro	vide FAX Res	sults											Jun	وورس صلح	tike : Iune,	(5 (g	ab	Slea	.40L				
V. EDD				C		Пе	ampla	Shir	men	t cont	aine I	ISDA	rogui	lated	tiro.	ort-	es (ch	مديد ب	ov is	annii	J iooble	٠,			
A DELINOUS	SHED BY:		quested Rep	-	H-L		/	, OHIL	A DECI II	I COITE	CII 12 (JUDP					co (CN	CONI	JUX II	appli	Cable	·	-0	/FB ==	
Tirn Man	1221+		/		// C	EWED		/15 .	192				MELI	NQU	ISME	D BY:						Ri	ECEI\	/ED B	r:
signature 1000	Date/Tim		6ion	ture)	<i>[[]</i>		ate/Tir	ne	. 12		Signa	ature			Da	te/Tim	е			Signa	ature			Date	e/Time
Printed Name Firm Printed Name			<u>-</u> −		2		-	Printe	ed Na	me		Fire	m				Print	ed Na	me		Firm	·····			

Tulsequah Chief Mine Water Quality and Aquatic Studies Juvenile Fish for Whole Body Metals Basis, all samples: Dry Weight, Report % Moisture Requested Analysis: Ag,As,Cd,Cu,Hg,Pb,Se,Zn

K1506755

		Date		_		FK Length	Weight	
Matrix	Collector	Collected	Sample Number	Sample Location	Requested Analysis	(mm)	(g)	Note
Whole Body	ADF&G	6/16/2015	061615UTRDVJ1	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	110	13.31	
Whole Body	ADF&G	6/16/2015	061615UTRDVJ2	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	95	8.7	
Whole Body	ADF&G	6/16/2015	061615UTRDVJ3	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	17.47	
Whole Body	ADF&G	6/16/2015	061615UTRDVJ4	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	113	13.73	
Whole Body	ADF&G	6/16/2015	061615UTRDVJ5	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	85	7.08	
Whole Body	ADF&G	6/16/2015	061615UTRDVJ6	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	83, 65	8.12	composite -
Whole Body	ADF&G	6/16/2015	061615UTRDVJ7	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	80, 63	7.31	composite -
Whole Body	ADF&G	6/16/2015	061615UTR DVJ8	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	70, 63	6.47	composite ·
Whole Body	ADF&G	6/16/2015	061615TRMDVJI	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	105	12.48	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ2	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	120	15.09	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ3	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	100	10.17	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ4	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	88	6.64	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ5	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	90	6.93	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ6	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	14.88	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ7	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	90	8.77	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ8	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	112	11.18	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ9	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	105	11.78	
Whole Body	ADF&G	6/16/2015	061615TRMDVJ10	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	15.05	
Whole Body	ADF&G	6/16/2015	061615TRBDVJ1	Taku River Boundary	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	120	17.92	

PC Shar

Page____of____

Cooler Receipt and Preservation Form

Client / Pr	roject:	ADF	76					Serv	vice R	equest 1	K15	067	155		
Received:	0/23/	115	Opened:_	6/23	1/15	<u> </u>	Ву: <u>_</u> _	1		Unload	ded: <i>6_/</i>	123/15	By:		
 Sample Were 	custody seal	eived in: (ci ls on cooler	s?	(Ved F) Coolgr NA		UPS ox N	DH Enve	<i>lope</i> yes, h	ow mar	•	vhere?		N.		
If pres	ent, were cu	ustody seals	intact?			N	·	<u> </u>			signed and			N	
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Facto	<u>r </u>	nermon ID		Cool	er/COC	NA NA		Tracking Nu		NA Fi	led
0.8	0.5	FROZEN		<u>-0.</u>	3 .	34E	3				8079	57054	114		_
·								•			· •				
	-										,				
4. Packin	g material:	Inserts	Baggies	Bubble	Wrap	Get P	acks	Wet I	ce Di	y Ice	Sleeves			l	
		ers properly		_									NA 9	В и	
		ive in good	•		•			able be	rlow.				NA O	N S	
	-	bels comple els and tags	-					ion dia	auan au	alaa in t	ha tabla or	. n.a.a. ?	NA T	D N	
	-	bottles/cont	_						-	cies in i	ne table on	puge 2.	NA C	_	
		served bottle								Indica	te in the tal	ble below	STA Y	_	
		received wi	•		·				no pri	11141010		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MA) Y		
12. Was C				•								/	NA/ 1		
		**													
	Sample ID o	n Bottle			Samp	ole ID o	n COC					Identified by:			
	·														
	Sample ID)	Bottle Bottle			Head- space	Broke	рН	Rea	igent	Volume added	Reagent Lot Number	Initials	Time	
<u> </u>				_											
													<u> </u>	<u> </u>	
Mad D'	·	s, & Resol	<u> </u>	Person	<u> </u>	n.10	ر مهر ا	D # . ~	اسيدارا	11. 31) 1 - 1	COC	_1	1	
notes, Dis	стерапсіе.	s, & Kesoi	utions: <u>/</u>	ett [V	<i>D</i> _	00/6	<u>,/ </u>	<u>K</u> ML) <i>V</i>	1 10	<u>0) 6N</u>	τος,	-		_
											 				_
	 .														-
															_

Page 11 of 46

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1506755 **Date Collected:** 06/16/15 **Project:** Tulsequah Chief Mine H20 Quality & Aquatic Studies

Sample Matrix: Animal Tissue **Date Received:** 06/23/15

Analysis Method: Calculation Units: Percent **Prep Method:** None Basis: Wet

Moisture

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
061615UTRDVJ1	K1506755-001	80.7	-	1	07/02/15 16:00	
061615UTRDVJ2	K1506755-002	80.7	-	1	07/02/15 16:00	
061615UTRDVJ3	K1506755-003	80.8	-	1	07/02/15 16:00	
061615UTRDVJ4	K1506755-004	78.5	-	1	07/02/15 16:00	
061615UTRDVJ5	K1506755-005	79.3	-	1	07/02/15 16:00	
061615UTRDVJ6	K1506755-006	78.3	-	1	07/02/15 16:00	
061615UTRDVJ7	K1506755-007	79.7	-	1	07/02/15 16:00	
061615UTRDVJ8	K1506755-008	79.1	-	1	07/02/15 16:00	
061615TRMDVJ1	K1506755-009	77.8	-	1	07/02/15 16:00	
061615TRMDVJ2	K1506755-010	77.1	-	1	07/02/15 16:00	
061615TRMDVJ3	K1506755-011	76.0	-	1	07/02/15 16:00	
061615TRMDVJ4	K1506755-012	80.5	-	1	07/02/15 16:00	
061615TRMDVJ5	K1506755-013	83.9	-	1	07/02/15 16:00	
061615TRMDVJ6	K1506755-014	75.8	-	1	07/02/15 16:00	
061615TRMDVJ7	K1506755-015	76.0	-	1	07/02/15 16:00	
061615TRMDVJ8	K1506755-016	76.4	-	1	07/02/15 16:00	
061615TRMDVJ9	K1506755-017	77.7	-	1	07/02/15 16:00	
061615TRMDVJ10	K1506755-018	77.9	-	1	07/02/15 16:00	
061615TRBDVJ1	K1506755-019	79.0	-	1	07/02/15 16:00	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1506755 **Date Collected:** 06/16/15 **Project:** Tulsequah Chief Mine H20 Quality & Aquatic Studies

Date Received: 06/23/15 **Sample Matrix:** Animal Tissue

Freeze Dry **Analysis Method:** Units: Percent **Prep Method:** Basis: Wet None

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
061615UTRDVJ1	K1506755-001	19.3	-	1	07/02/15 16:00	
061615UTRDVJ2	K1506755-002	19.3	-	1	07/02/15 16:00	
061615UTRDVJ3	K1506755-003	19.2	-	1	07/02/15 16:00	
061615UTRDVJ4	K1506755-004	21.5	-	1	07/02/15 16:00	
061615UTRDVJ5	K1506755-005	20.7	-	1	07/02/15 16:00	
061615UTRDVJ6	K1506755-006	21.7	-	1	07/02/15 16:00	
061615UTRDVJ7	K1506755-007	20.3	-	1	07/02/15 16:00	
061615UTRDVJ8	K1506755-008	20.9	-	1	07/02/15 16:00	
061615TRMDVJ1	K1506755-009	22.2	-	1	07/02/15 16:00	
061615TRMDVJ2	K1506755-010	22.9	-	1	07/02/15 16:00	
061615TRMDVJ3	K1506755-011	24.0	-	1	07/02/15 16:00	
061615TRMDVJ4	K1506755-012	19.5	-	1	07/02/15 16:00	
061615TRMDVJ5	K1506755-013	16.1	-	1	07/02/15 16:00	
061615TRMDVJ6	K1506755-014	24.2	-	1	07/02/15 16:00	
061615TRMDVJ7	K1506755-015	24.0	-	1	07/02/15 16:00	
061615TRMDVJ8	K1506755-016	23.6	-	1	07/02/15 16:00	
061615TRMDVJ9	K1506755-017	22.3	-	1	07/02/15 16:00	
061615TRMDVJ10	K1506755-018	22.1	-	1	07/02/15 16:00	
061615TRBDVJ1	K1506755-019	21.0	-	1	07/02/15 16:00	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1506755

Project Tulsequah Chief Mine H20 Quality & Aquatic Studies **Date Collected:** 06/16/15 **Date Received:** 06/23/15

Sample Matrix: Animal Tissue

Date Analyzed: 07/02/15

Replicate Sample Summary Inorganic Parameters

Sample Name:

061615TRBDVJ1

Units: Percent

Lab Code:

K1506755-019

Basis: Wet

Duplicate Sample

K1506755-

Sample

019DUP

Analyte Name **Analysis Method** Result **MRL** Total Solids

Result

RPD Limit Average

Freeze Dry

21.0

21.4

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 07/16/15 8:34:43 AM

Superset Reference:15-0000338237 rev 00

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1506755 **Date Collected:** 06/16/15 **Project:** Tulsequah Chief Mine H20 Quality & Aquatic Studies **Date Received:** 06/23/15

Sample Matrix: Animal tissue

Mercury, Total

Units: ng/g

Basis: Dry

Prep Method: **METHOD** Analysis Method: 1631E

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
061615UTRDVJ1	K1506755-001	5.0	5	07/11/15	07/13/15	39.0	
061615UTRDVJ2	K1506755-002	5.0	5	07/11/15	07/13/15	80.4	
061615UTRDVJ3	K1506755-003	5.0	5	07/11/15	07/13/15	55.8	
061615UTRDVJ4	K1506755-004	5.0	5	07/11/15	07/13/15	61.4	
061615UTRDVJ5	K1506755-005	5.0	5	07/11/15	07/13/15	22.2	
061615UTRDVJ6	K1506755-006	5.0	5	07/11/15	07/13/15	48.1	
061615UTRDVJ7	K1506755-007	5.0	5	07/11/15	07/13/15	45.6	
061615UTRDVJ8	K1506755-008	5.0	5	07/11/15	07/13/15	61.9	
061615TRMDVJ1	K1506755-009	5.0	5	07/11/15	07/13/15	30.7	
061615TRMDVJ2	K1506755-010	5.0	5	07/11/15	07/13/15	30.7	
061615TRMDVJ3	K1506755-011	5.0	5	07/11/15	07/13/15	30.7	
061615TRMDVJ4	K1506755-012	5.0	5	07/11/15	07/13/15	21.6	
061615TRMDVJ5	K1506755-013	5.0	5	07/11/15	07/13/15	39.0	
061615TRMDVJ6	K1506755-014	5.0	5	07/11/15	07/13/15	34.6	
061615TRMDVJ7	K1506755-015	5.0	5	07/11/15	07/13/15	25.2	
061615TRMDVJ8	K1506755-016	5.0	5	07/11/15	07/13/15	19.5	
061615TRMDVJ9	K1506755-017	5.0	5	07/11/15	07/13/15	33.6	
061615TRMDVJ10	K1506755-018	5.0	5	07/11/15	07/13/15	27.4	
061615TRBDVJ1	K1506755-019	5.0	5	07/11/15	07/13/15	44.7	
Method Blank 1	K1506755-MB1	1.0	1	07/11/15	07/13/15	ND	
Method Blank 2	K1506755-MB2	1.0	1	07/11/15	07/13/15	ND	
Method Blank 3	K1506755-MB3	1.0	1	07/11/15	07/13/15	ND	

ALS Group USA, Corp.

dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game

Tulsequah Chief Mine H20 Quality & Aquatic Studies

Sample Matrix: Animal tissue

 Date Collected:
 06/16/15

 Date Received:
 06/23/15

 Date Extracted:
 07/11/15

 Date Analyzed:
 07/13/15

Units: ng/g

Basis: Dry

Service Request: K1506755

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 061615UTRDVJ3

Lab Code: K1506755-003MS, K1506755-003MSD

Test Notes:

Project:

Percent Recovery ALS Relative Prep **Analysis** Spike Level Sample Spike Result Acceptance Percent Result Analyte Method Method MRL MS **DMS** Result MS **DMS** MS DMS Limits Difference Notes **METHOD** Mercury 1631E 5.0 247 247 55.8 281 282 91 92 70-130 <1

K1506755ICP.JB2 - DMS 07/17/15

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine H20 Quality & Aquatic Studies

Sample Matrix: Animal tissue

Date Collected: 06/16/15
Date Received: 06/23/15
Date Extracted: 07/11/15
Date Analyzed: 07/13/15

Units: ng/g

Basis: Dry

Service Request: K1506755

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 061615TRBDVJ1

Lab Code: K1506755-019MS, K1506755-019MSD

Test Notes:

Dorgant Dagayary

									Per	cent	Recovery	•		
											ALS	Relative		
	Prep	Analysis		Spike	e Level	Sample	Spike	Result			Acceptance	Percent	Result	
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes	
Mercury	METHOD	1631E	5.0	249	249	44.7	282	270	95	90	70-130	4		

K1506755ICP.JB2 - DMS (2) 07/17/15

Client: Alaska Department of Fish and Game Service Request: K1506755

Project:Tulsequah Chief Mine H20 Quality & Aquatic StudiesDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/13/15

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	3.88	78	70-130	

K1506755ICP.JB2 - OPR (lcsw) 07/17/15

Client: Alaska Department of Fish and Game Service Request: K1506755

Project:Tulsequah Chief Mine H20 Quality & Aquatic StudiesDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 07/13/15

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	3.89	78	70-130	

Client: Alaska Department of Fish and Game Service Request: K1506755

Project:Tulsequah Chief Mine H20 Quality & Aquatic StudiesDate Collected:NALCS Matrix:Animal tissueDate Received:NA

Date Extracted: 07/11/15
Date Analyzed: 07/13/15

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes** 79 **METHOD** 1631E 292 231 70-130 Mercury

K1506755ICP.JB2 - QCS (icv) 07/17/15

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ1 Lab Code: K1506755-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.6		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.18		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	36.0		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.19		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	2.2		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	130		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ2 Lab Code: K1506755-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.4		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.46		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	4.2		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.12		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.9		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ט	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	163		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ3 Lab Code: K1506755-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.7		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.12		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	4.0		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.11		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.2		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ט	·
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	144		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ4 Lab Code: K1506755-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.8		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.12		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.6		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.17		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	2.8		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	128		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ5 Lab Code: K1506755-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.6		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.12		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.51		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.3		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02		
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	165		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit
Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ6 Lab Code: K1506755-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.9		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.30		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	4.0		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.13		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	4.6		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	147		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ7 Lab Code: K1506755-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.0		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.10		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	2.7		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.08		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.5		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ט	·
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	124		·

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615UTRDVJ8 Lab Code: K1506755-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.3		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.22		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.8		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.16		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.9		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	127		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ1 Lab Code: K1506755-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.5	U	
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.36		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	4.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.09		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	2.8		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	·
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	140		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ2 Lab Code: K1506755-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.5		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.30		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	5.3		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.06		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.3		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	159		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ3 Lab Code: K1506755-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.6		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.27		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.07		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	5.3		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	120		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ4 Lab Code: K1506755-012

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.6		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.13		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.3		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.03		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	6.8		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	137		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ5 Lab Code: K1506755-013

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.6		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.52		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	5.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.09		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	2.9		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	186		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ6 Lab Code: K1506755-014

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.5		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.37		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	8.2		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.54		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.8		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ט	·
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	119		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ7 Lab Code: K1506755-015

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.5		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.46		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	10.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.08		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.2		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	136		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ8 Lab Code: K1506755-016

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.5		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.26		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	4.0		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.05		
Selenium	6020A	0.9	5.0	07/09/15	07/13/15	2.6		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	124		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ9 Lab Code: K1506755-017

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	2.4		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.52		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	8.7		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.39		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	3.5		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02		
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	154		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRMDVJ10 Lab Code: K1506755-018

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.3		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.59		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	7.5		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.33		
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	2.9		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	151		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected: 6/16/2015

Project Name: Tulsequah Chief Mine H20 Qualit Date Received: 6/23/2015

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 061615TRBDVJ1 Lab Code: K1506755-019

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	1.3		
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.69		
Copper	6020A	0.1	5.0	07/09/15	07/13/15	3.7		
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.12		
Selenium	6020A	0.9	5.0	07/09/15	07/13/15	3.3		
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	ŭ	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	159		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Date Collected:

Project Name: Tulsequah Chief Mine H20 Qualit Date Received:

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1507437-02

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	6020A	0.5	5.0	07/09/15	07/13/15	0.5	U	
Cadmium	6020A	0.02	5.0	07/09/15	07/13/15	0.02	U	
Copper	6020A	0.1	5.0	07/09/15	07/13/15	0.1	Ū	
Lead	6020A	0.02	5.0	07/09/15	07/13/15	0.02	Ū	
Selenium	6020A	1.0	5.0	07/09/15	07/13/15	1.0	U	
Silver	6020A	0.02	5.0	07/09/15	07/13/15	0.02	U	
Zinc	6020A	0.5	5.0	07/09/15	07/13/15	0.5	U	

Metals - 5A -SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine H20 Qualit Basis: DRY

Matrix: TISSUE

Sample Name: 061615UTRDVJ1S Lab Code: K1506755-001S

Analyte	Control Limit %R	Spike Result	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	75 - 125	20.0	0.6		16.5	117.6		6020A
Cadmium	75 - 125	5.16	0.17		4.95	100.8		6020A
Copper	75 - 125	60.0	36.0		24.8	96.8		6020A
Lead	75 - 125	46.07	0.19		49.50	92.7		6020A
Selenium	75 - 125	22.6	2.2		16.5	123.6		6020A
Silver	75 - 125	4.80	0.02	U	4.95	96.6		6020A
Zinc	75 - 125	187.2	129.8		49.5	116.0		6020A

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine H20 Qualit Basis: DRY

Matrix: TISSUE

Sample Name: 061615UTRDVJ1D Lab Code: K1506755-001D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.6		0.8		28.6		6020A
Cadmium	20	0.17		0.14		19.4		6020A
Copper	20	36.0		38.3		6.2		6020A
Lead	20	0.19		0.22		14.6		6020A
Selenium		2.2		2.0		9.5		6020A
Silver		0.02	U	0.02	U			6020A
Zinc	20	129.8		132.8		2.3		6020A

- 7 -

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1506755

Project No.: NA

Project Name: Tulsequah Chief Mine H20 Qualit

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(ug/L)	Solid (mg/kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	167.0	176.3	105.6					
Cadmium	50.0	50.0	100.0					
Copper	250.0	250.5	100.2					
Lead	500.0	496.8	99.4					
Selenium	167.0	188.6	112.9					
Silver	50.0	49.3	98.6					
Zinc	500.0	498.8	99.8			Πİ		Ī

Client: Alaska Department of Fish and Game Service Request: K1506755

Project: Tulsequah Chief Mine H2O Quality & Aquatic Studies Date Collected: NA

LCS Matrix: Tissue Date Conected: NA

Date Received: NA

Date Extracted: 07/09/15

Date Extracted: 07/09/15 **Date Analyzed:** 07/13/15

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1506755-SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.8	7.4	109	4.93-8.93	
Cadmium	PSEP Tissue	6020A	0.306	0.315	103	0.233 - 0.385	
Copper	PSEP Tissue	6020A	15.9	18.7	118	12.0 - 20.2	
Lead	PSEP Tissue	6020A	0.416	0.410	99	0.290 - 0.563	
Selenium	PSEP Tissue	6020A	3.56	4.29	121	2.58 - 4.68	
Zinc	PSEP Tissue	6020A	52.20	55.18	106	39.2 - 66.5	

Client:Alaska Department of Fish and GameService Request:K1506755Project:Tulsequah Chief Mine H2O Quality & Aquatic StudiesDate Collected:NA

LCS Matrix: Tissue Date Received: NA
Date Extracted: 07/09/15

Date Analyzed: 07/13/15

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

K1506755-SRM2 Basis: Dry

Lab Code: K1506755-SRM2 Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	59.5	71.6	120	44.6-76.0	
Cadmium	PSEP Tissue	6020A	42.3	41.7	99	32.4-52.9	
Copper	PSEP Tissue	6020A	497	464	93	380-623	
Lead	PSEP Tissue	6020A	0.225	0.197	88	0.166-0.292	
Selenium	PSEP Tissue	6020A	10.9	13.2	121	7.9-14.3	
Zinc	PSEP Tissue	6020A	136	137	101	104-170	

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

November 06, 2015

Analytical Report for Service Request No: K1510681

Nicole Legere
Alaska Department of Fish and Game
Division of Habitat/ Billy Ray Center
1008 F Street
P.O. Box 110024
Juneau. AK 99801

RE: Tulsequah Chief Mine Water Quality & Aquatic Study

Dear Nicole,

Enclosed are the results of the sample(s) submitted to our laboratory September 25, 2015 For your reference, these analyses have been assigned our service request number **K1510681**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

Total Solids

Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Web Site	Number
http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
http://www.azdhs.gov/lab/license/env.htm	AZ0339
http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Not available	_
http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
http://www.pjlabs.com/	L14-50
http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Not available	WA01276
http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
http://www.health.state.mn.us/accreditation	053-999-457
http://www.dphhs.mt.gov/publichealth/	CERT0047
http://ndep.nv.gov/bsdw/labservice.htm	WA01276
http://www.nj.gov/dep/oqa/	WA005
http://www.dwqlab.org/	605
http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
http://www.scdhec.gov/environment/envserv/	61002
http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
http://dnr.wi.gov/	998386840
http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
www.alsglobal.com	NA
	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx http://www.azdhs.gov/lab/license/env.htm http://www.adeq.state.ar.us/techsvs/labcert.htm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx http://www.pjlabs.com/ http://www.pjlabs.com/ http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx Not available http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html http://www.health.state.mn.us/accreditation http://www.deplhs.mt.gov/publichealth/ http://www.dphhs.mt.gov/publichealth/ http://www.nj.gov/bsdw/labservice.htm http://www.nj.gov/bsdw/labservice.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.deq.state.ok.us/CSDnew/labcert.htm http://www.scdhec.gov/environment/envserv/ http://www.scdhec.gov/environment/envserv/ http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html http://dnr.wi.gov/ http://www.epa.gov/region8/water/dwhome/wyomingdi.html

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS ENVIRONMENTAL

Client: Alaska Department of Fish and Game Service Request No.: K1510681

Project: Tulsequah Chief Mine Water Quality & Aquatic Studies Date Received: 09/25/15

Sample Matrix: Animal Tissue

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Matrix/Duplicate Matrix Spike (MS/DMS).

Sample Receipt

Thirteen animal tissue samples were received for analysis at ALS Environmental on 09/25/15. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored frozen at -20°C upon receipt at the laboratory.

Total Metals

Standard Reference Material Exceptions:

The recovery of Lead in the Standard Reference Material (SRM) N.R.C.C. Dorm-4 was below the normal ALS/Kelso control limit (i.e. 0.258 mg/kg versus a control limit of 0.290 mg/kg). The associated QA/QC results (e.g. SRM N.R.C.C. Tort-3, LCS, matrix spike, method blank, calibration standards, etc.) indicate the analysis was in control. No further corrective action was appropriate.

No other anomalies associated with the analysis of these samples were observed.

Approved by

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

•		
	•	
ALS	Environmental	

CHAIN OF CUSTODY

SR#_	KI	51	0681

		h 13th Ave			-						360.	636.1	068 (fa	ìx)			AGE		<u></u>	OF	_}		CO	C#	
PROJECT NAME TUSCALA CHIEF PROJECT NAMAGER TOMOH PROJECT NAMAGER TOMOH ROMANY NAME ADDRESS 3 TO ST. COTYSTATE ZIP	ry. Fish Room	+ Game				CONTAINERS	,/	Pros by GCAL	BOS. T. SIM PAH	Oil & Green See Selow BTEX			8147C	8151M 8151	Denies.	Chrom C	(circle) NH3-10, SQL PQL F	D, TKN, TOC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1995 Dec. 1500			Lethano Cethera		
CONSTATEZZPO SAY 90 E-MAIL ADDRESS INCOME: BHONE: BHONE: SAMPLETS SIGNATURE SAMPLE I.D.	MILADOPESS LIGHTP Q WAKERS OV ONE - 445-1979 FAXE 907-465-475 MILADU LOVIN					0/0/	Semivolatile C		Tydrocatt	Oil & Greek Tiles	POBS TEMPS	Pesticides []	Chooping 8817 81417	Metals, Total	Cyanida ((circle) PH, Co.	Circle) NH 2-13 10 10 10 10 10 10 10 10 10 10 10 10 10	20,40	A Lauron A	Dioxins Film Co3	Dissolved States	O Cases Control of Con	$^{\prime}//$		REMARKS
					13									Χ											
FISH Whole	Dodi													<u> </u>											
Samples		1																							
y			•																						
			:			i Kar																			
		_							-																
						*															 				
																						-	-		
						e naski enakar																			
						5 A																			
																					L				
REPORT REQUIREM	ENTS		ICE INFOR				which r				-		~			۸.	\sim				_		<u></u>		
X I. Routine Report:		Bill To: 7	OBOX	110024	L l	Tota	al Metal	s: Al	(As)	Sb Ba	a Be	B Ca	(Ca)	Co (or (O) Fe (РЬ М	g M	n Mo) Ni	K (Ag) Na (S# 8	Sr Ti	sn v 🐼 🔞
Blank, Surrogate required	, as	Juneo	U, AK 9	9811-1	2027	Dissol	ved Meta	als: Al	As	Sb B	a Be	B C	a Cd	Co	Cr Ci	ı Fe	Pb M	lg M	In M	o Ni	K Ag) Na	Se :	Sr Tl	Sn V Zn Hg
<u> </u>	MSD as	TUDNAD	OUND REC	NIIO EAR		*IND	CIAL	STA	TE H	YDRO	CARI	BON	PROC	EDUI	RE:	AK C	A V	/	IORT	HWE	ST O	THER	- 0		(CIRCLE ONE)
required	,		ır		EIKIO	4av	<i>\</i> ^6/√) b	29 a	is a	LY I	ndi	1	1 W	119/11 2000	10/15	۱ رکار سست	epo	۲۲۰ مسل	<i>IO</i> p	NO158	JY Y_	11 T	oces:	seach
III. CLP Like Summa	ary	5 da		40111.		40	nd i	aho	WA	COP	V) a	und	2-0	1000	へとう	(l - "7 ")	rocins		agen Loca	ا ما	بمعا	ex P			S each
i i	(no raw data) Standard (15 working days)				s)	•				•	L			~{	/ '`	<i>.</i>		P	08	OX	HOU	124			
IV. Data Validation Report Provide FAX Results				1													j	บทั้ง	(all)	XK	_99	811-	002	24	
V. EDD	V. EDD Requested Report Date					_s	ample	Shir	ment	cont	ains l	JSDA	regul	lated	soil s	ampl	es (ch	γ eck b	NCO ii xoc	appl	Lege icable	25€ €)	ey a	laske	r.gov
RELINQU	ISHED BY:		Juested Hep		RECE	XVED	BY:		-				RELI	NOU	ISHEI) BY:	•		Т	-4-1-		B	ECEIV	/ED B\	<u>. </u>
Aural Loverl		3,2015		(V)	1//	9	1/25	/15	093	20												••		 .	•
Signature Theology	Date/Tin	ié	Signa	112	1-7	— i d -	ate/Tir	ne			Signa	ature			Da	te/Tim	е			Sign	ature	·		Date	e/Time
Printed Name	#DF +> (Printe	d Name		F	irm	<u>د</u>			Printed Name Firm			n				Print	ed Na	me		Firm			

×1510681

Tulsequah Chief Mine Water Quality and Aquatic Studies Juvenile Fish for Whole Body Metals Basis, all samples: Dry Weight, Report % Moisture

Basis, all samples: Dry Weight, Report % Moistur Requested Analysis: Ag,As,Cd,Cu,Hg,Pb,Se,Zn

		Date				FK Length	Weight	
Matrix	Collector	Collected	Sample Number	Sample Location	Requested Analysis	(mm)	(g)	Note
Whole Body	ADF&G	9/3/2015	090315UTRDVJ1	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	97	7.95	
Whole Body	ADF&G	9/3/2015	090315UTRDVJ2	Upper Tulsequah River -	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	115	13.66	
Whole Body	ADF&G	9/3/2015	090315UTRDVJ3	Upper Tulsequah River	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	110	12.32	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ1	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	128	18.25	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ2	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	110	12.66	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ3	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	125	17.25	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ4	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	105	11.12	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ5	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	132	20.53	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ6	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	108	12.21	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ7	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	102	10.44	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ8	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	105	11.14	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ9	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	100	9.16	
Whole Body	ADF&G	9/3/2015	090315TRMDVJ10	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	90	6.64	

PC Sker

Cooler Receipt and Preservation Form

Client / Pro	oject:	/	ALMS K	4DF	-6			Ser	vice R	equest 1	Κ15 <u></u>	0681			
Received:_	9/25	15	Opened:	9/25	/15		Ву:	1	_	Unload	led: <i>9</i>	1/25/15	By:	Au	
2. Samples		eived via? eived in: (ci s on coolers		Fed Exe Cooler NA		UPS Fox N	DH Enve	elope		Couri		and Delivered		NA	
		stody seals			$\hat{\mathbf{v}}$	N				-		nd dated?		Y	N
Raw Cooler Temp	Corrected, Cooler Temp	Raw	Corrected Temp Blank	Corr. Factor		nermon ID 3 52	1.128/4		er/COC	ID NA		Tracking N			NA Filed
-		Inserts			-		Packs	>Wet 1	ce Di	ry Ice	Sleeves	<i>אמ</i> קח <i>א</i>			
		ers properly ve in good (-	in tha t	abla b	Jose				NA NA		N N
 Did an i Were all 		•	·	` .	•			avie ve	now.			-	NA	9	11
8. Did all s	-	-	,	• • •		•	•	ijor di:	screpan	icies in ti	he table o	on page 2.	NA	Ø	N
9. Were ap	opropriate l	bottles/cont	ainers and	volumes	receiv	ed for 1	the test	s indic	ated?				NA	(Y)	у и
10. Were th	he pH-pres	erved bottle	s (see SMC	O GEN SOI	P) rece	ived at	the ap	propria	ate pH?	Indicat	e in the to	able below	NA	γ Ý	N
11. Were V	OA vials i	received wit	thout head	space? In	idicate	in the	table b	elow.					MA	> Y	N
12. Was C1	12/Res neg	ative?											(A)	Y	N
S	ample ID o	n Bottle			Sam	ple (D o	n GOC					identified by:			
	Sample ID					Head- space	Broke	pН	Rea	agent	Volume added	Reagent Lo Number		nitials	Time
<u></u>															
										·					
			-									ļ			
Notes, Disc	repancies	s, & Resoli	utions:												
														,	

Page 11 of 43

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1510681 **Date Collected:** 09/3/15 **Project:** Tulsequah Chief Mine Water Quality & Aquatic Study

Sample Matrix: Animal Tissue **Date Received:** 09/25/15

Analysis Method: Calculation Units: Percent **Prep Method:** None Basis: Wet

Moisture

C I N		D 1/	MDI	ъ.,	Date	0
Sample Name	Lab Code	Result	MRL	Dil.	Analyzed	Q
090315UTRDVJ1	K1510681-001	77.9	-	1	10/16/15 17:10	
090315UTRDVJ2	K1510681-002	78.5	-	1	10/16/15 17:10	
090315UTRDVJ3	K1510681-003	78.1	-	1	10/16/15 17:10	
090315TRMDVJ1	K1510681-004	76.0	-	1	10/16/15 17:10	
090315TRMDVJ2	K1510681-005	78.6	-	1	10/16/15 17:10	
090315TRMDVJ3	K1510681-006	77.4	-	1	10/16/15 17:10	
090315TRMDVJ4	K1510681-007	78.8	-	1	10/16/15 17:10	
090315TRMDVJ5	K1510681-008	79.0	-	1	10/16/15 17:10	
090315TRMDVJ6	K1510681-009	77.1	-	1	10/16/15 17:10	
090315TRMDVJ7	K1510681-010	78.4	-	1	10/16/15 17:10	
090315TRMDVJ8	K1510681-011	77.5	-	1	10/16/15 17:10	
090315TRMDVJ9	K1510681-012	77.7	-	1	10/16/15 17:10	
090315TRMDVJ10	K1510681-013	79.5	-	1	10/16/15 17:10	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1510681 **Date Collected:** 09/3/15 **Project:** Tulsequah Chief Mine Water Quality & Aquatic Study

Sample Matrix: Animal Tissue **Date Received:** 09/25/15

Freeze Dry **Analysis Method:** Units: Percent **Prep Method:** Basis: Wet None

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
090315UTRDVJ1	K1510681-001	22.1	_	1	10/16/15 17:10	
090315UTRDVJ2	K1510681-002	21.5	-	1	10/16/15 17:10	
090315UTRDVJ3	K1510681-003	21.9	-	1	10/16/15 17:10	
090315TRMDVJ1	K1510681-004	24.0	-	1	10/16/15 17:10	
090315TRMDVJ2	K1510681-005	21.4	-	1	10/16/15 17:10	
090315TRMDVJ3	K1510681-006	22.6	-	1	10/16/15 17:10	
090315TRMDVJ4	K1510681-007	21.2	-	1	10/16/15 17:10	
090315TRMDVJ5	K1510681-008	21.0	-	1	10/16/15 17:10	
090315TRMDVJ6	K1510681-009	22.9	-	1	10/16/15 17:10	
090315TRMDVJ7	K1510681-010	21.6	-	1	10/16/15 17:10	
090315TRMDVJ8	K1510681-011	22.5	-	1	10/16/15 17:10	
090315TRMDVJ9	K1510681-012	22.3	-	1	10/16/15 17:10	
090315TRMDVJ10	K1510681-013	20.5	-	1	10/16/15 17:10	

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Service Request: K1510681

Project Tulsequah Chief Mine Water Quality & Aquatic Study

Date Collected: 09/03/15 **Date Received:** 09/25/15

Sample Matrix:

Lab Code:

Animal Tissue

Date Analyzed: 10/16/15

Replicate Sample Summary

Inorganic Parameters

Sample Name: 090315TRMDVJ5

Units: Percent

K1510681-008

Basis: Wet

Duplicate Sample

K1510681-

K12

Sample

008DUP

Analyte NameAnalysis MethodMRLResultResultAverageRPDRPD LimitTotal SolidsFreeze Dry-21.020.820.9<1</td>20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 10/21/15 1:45:53 PM Superset Reference:15-0000350657 rev 00

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1510681 **Project: Date Collected:** 09/03/15 Tulsequah Chief Mine Water Quality & Aquatic Study **Sample Matrix: Date Received:** 09/25/15 Animal tissue

Mercury, Total

Prep Method: **METHOD** Units: ng/g Analysis Method: 1631E Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
090315UTRDVJ1	K1510681-001	4.8	5	10/27/15	10/29/15	32.3	
090315UTRDVJ2	K1510681-002	5.0	5	10/27/15	10/29/15	56.7	
090315UTRDVJ3	K1510681-003	4.8	5	10/27/15	10/29/15	58.0	
090315TRMDVJ1	K1510681-004	4.9	5	10/27/15	10/29/15	27.9	
090315TRMDVJ2	K1510681-005	4.7	5	10/27/15	10/29/15	49.8	
090315TRMDVJ3	K1510681-006	4.7	5	10/27/15	10/29/15	35.8	
090315TRMDVJ4	K1510681-007	4.9	5	10/27/15	10/29/15	54.0	
090315TRMDVJ5	K1510681-008	4.8	5	10/27/15	10/29/15	97.5	
090315TRMDVJ6	K1510681-009	4.8	5	10/27/15	10/29/15	35.3	
090315TRMDVJ7	K1510681-010	4.7	5	10/27/15	10/29/15	26.4	
090315TRMDVJ8	K1510681-011	4.8	5	10/27/15	10/29/15	48.1	
090315TRMDVJ9	K1510681-012	4.9	5	10/27/15	10/29/15	36.0	
090315TRMDVJ10	K1510681-013	4.7	5	10/27/15	10/29/15	75.8	
Method Blank 1	K1510681-MB1	1.0	1	10/27/15	10/29/15	ND	
Method Blank 2	K1510681-MB2	1.0	1	10/27/15	10/29/15	ND	
Method Blank 3	K1510681-MB3	1.0	1	10/27/15	10/29/15	ND	

K1510681ICP.JB1 - Sample 11/6/2015 Page No.:

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Tulsequah Chief Mine Water Quality & Aquatic Study

Sample Matrix: Animal tissue

Date Collected: 09/03/15 **Date Received:** 09/25/15 **Date Extracted:** 10/27/15 **Date Analyzed:** 10/29/15

Service Request: K1510681

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: 090315TRMDVJ5

Units: ng/g Lab Code: K1510681-008MSD Basis: Dry K1510681-008MS,

Test Notes:

Percent Recovery ALS Relative Prep Analysis Spike Level Sample Spike Result Acceptance Percent Result Analyte Method Method MRL MS **DMS** Result MS **DMS** MS DMS Limits Difference Notes **METHOD** 7 Mercury 1631E 236 235 97.5 308 99 70-130 4.7 330 89

K1510681ICP.JB1 - DMS 11/6/2015 Page No.:

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality & Aquatic Study

Sample Matrix: Animal tissue

Date Collected: NA
Date Received: NA
Date Extracted: 10/27/15
Date Analyzed: 10/29/15

Units: ng/g

Service Request: K1510681

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Batch QC

Lab Code: K1511011-004MS, K1511011-004MSD Basis: Dry

Test Notes:

Percent Recovery ALS Relative Prep Analysis Spike Level Sample Spike Result Acceptance Percent Result Analyte Method Method MRL MS **DMS** Result MS **DMS** MS DMS Limits Difference Notes **METHOD** 13 Mercury 1631E 247 235 32.5 287 251 103 93 70-130 4.6

K1510681ICP.JB1 - DMS (2) 11/6/2015 Page No.:

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1510681

Project:Tulsequah Chief Mine Water Quality & Aquatic StudyDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 10/29/15

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.38	108	70-130	

K1510681ICP.JB1 - OPR (lcsw) 11/6/2015 Page No.:

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1510681

Project:Tulsequah Chief Mine Water Quality & Aquatic StudyDate Collected:NALCS Matrix:WaterDate Received:NA

Date Extracted: NA **Date Analyzed:** 10/29/15

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.53	111	70-130	

ALS Group USA, Corp. dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game Service Request: K1510681

Project: Tulsequah Chief Mine Water Quality & Aquatic Study

LCS Matrix: Animal tissue

Date Collected: NA

Date Received: NA

Date Extracted: 10/27/15
Date Analyzed: 10/29/15

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery Analysis True Percent Acceptance Result Prep Analyte Method Limits Method Value Result Recovery **Notes METHOD** 1631E 292 261 89 70-130 Mercury

K1510681ICP.JB1 - QCS (icv) 11/6/2015 Page No.:

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315UTRDVJ1 Lab Code: K1510681-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.38		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.0		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.16		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.8		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	·
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	156		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315UTRDVJ2 Lab Code: K1510681-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.8		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.28		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.0		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.13		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	3.5		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	123		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315UTRDVJ3 Lab Code: K1510681-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.6		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.29		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	2.6		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.03		
Selenium	200.8	0.9	5.0	10/26/15	10/29/15	3.5		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.10		
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	138		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ1 Lab Code: K1510681-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5	U	
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.19		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.7		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.11		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	3.5		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	120		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ2 Lab Code: K1510681-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5	U	
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.14		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.4		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.04		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.9		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	U	·
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	121		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ3 Lab Code: K1510681-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.6		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.20		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.2		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.12		
Selenium	200.8	0.9	5.0	10/26/15	10/29/15	3.0		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	·
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	117		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ4 Lab Code: K1510681-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.8		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.22		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.4		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.06		
Selenium	200.8	0.9	5.0	10/26/15	10/29/15	2.4		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.04		
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	155		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ5 Lab Code: K1510681-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.18		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.4		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.07		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.0		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.03		
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	138		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ6 Lab Code: K1510681-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.4	5.0	10/26/15	10/29/15	1.1		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.44		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.7		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.12		
Selenium	200.8	0.9	5.0	10/26/15	10/29/15	2.6		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	
Zinc	200.8	0.4	5.0	10/26/15	10/29/15	142		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ7 Lab Code: K1510681-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	C	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.7		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.45		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	4.0		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.15		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.8		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ט	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	130		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ8 Lab Code: K1510681-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5	U	
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.40		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.4		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.07		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.9		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.03		
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	130		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ9 Lab Code: K1510681-012

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5	U	
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.16		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	2.9		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.06		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.5		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	U	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	136		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected: 09/03/15

Project Name: Tulsequah Chief Mine Water Quali Date Received: 09/25/15

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 090315TRMDVJ10 Lab Code: K1510681-013

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5		
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.15		
Copper	200.8	0.1	5.0	10/26/15	10/29/15	3.0		
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.07		
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	2.9		
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	125		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Date Collected:

Project Name: Tulsequah Chief Mine Water Quali Date Received:

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1512390-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	200.8	0.5	5.0	10/26/15	10/29/15	0.5	U	
Cadmium	200.8	0.02	5.0	10/26/15	10/29/15	0.02	U	
Copper	200.8	0.1	5.0	10/26/15	10/29/15	0.1	ŭ	
Lead	200.8	0.02	5.0	10/26/15	10/30/15	0.02	Ū	
Selenium	200.8	1.0	5.0	10/26/15	10/29/15	1.0	Ū	
Silver	200.8	0.02	5.0	10/26/15	10/29/15	0.02	ŭ	
Zinc	200.8	0.5	5.0	10/26/15	10/29/15	0.5	Ŭ	

Metals - 5A -SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 090315UTRDVJ2S Lab Code: K1510681-002S

Analyte	Control Limit %R	Spike Result	C	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	70 - 130	18.5		0.8		16.5	107.3		200.8
Cadmium	70 - 130	5.28		0.28		4.95	101.0		200.8
Copper	70 - 130	25.7		3.0		24.8	91.5		200.8
Lead	70 - 130	46.60		0.13		49.50	93.9		200.8
Selenium	70 - 130	21.9		3.5		16.5	111.5		200.8
Silver	70 - 130	4.50		0.02	U	4.95	90.9		200.8
Zinc	70 - 130	165.9		122.5		49.5	87.7		200.8

Metals - 5A -SPIKE SAMPLE RECOVERY

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 090315TRMDVJ5S Lab Code: K1510681-008S

Analyte	Control Limit %R	Spike Result	Sample Result C	Spike Added	%R	Q	Method
Arsenic	70 - 130	17.0	0.5	15.9	103.8		200.8
Cadmium	70 - 130	4.99	0.18	4.75	101.3		200.8
Copper	70 - 130	24.6	3.4	23.7	89.5		200.8
Lead	70 - 130	43.70	0.07	47.47	91.9		200.8
Selenium	70 - 130	19.6	2.0	15.9	110.7		200.8
Silver	70 - 130	4.26	0.03	4.75	89.1		200.8
Zinc	70 - 130	184.9	138.0	47.5	98.7		200.8

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 090315UTRDVJ2D Lab Code: K1510681-002D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.8		0.7		13.3		200.8
Cadmium	30	0.28		0.25		11.3		200.8
Copper	30	3.0		2.8		6.9		200.8
Lead	30	0.13		0.11		16.7		200.8
Selenium		3.5		3.2		9.0		200.8
Silver		0.02	U	0.02	U			200.8
Zinc	30	122.5		117.1		4.5		200.8

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 090315TRMDVJ5D Lab Code: K1510681-008D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.5		0.5		0.0		200.8
Cadmium	30	0.18		0.18		0.0		200.8
Copper	30	3.4		3.5		2.9		200.8
Lead		0.07		0.06		15.4		200.8
Selenium		2.0		2.1		4.9		200.8
Silver		0.03		0.03		0.0		200.8
Zinc	30	138.0		144.7		4.7		200.8

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1510681

Project No.: NA

Project Name: Tulsequah Chief Mine Water Quali

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)							
Analyte	True	Found	%R	True	Found	С	Limits	%R			
Arsenic	167.0	160.5	96.1								
Cadmium	50.0	49.5	99.0								
Copper	250.0	233.3	93.3								
Lead	500.0	483.0	96.6								
Selenium	167.0	171.1	102.5								
Silver	50.0	47.1	94.2								
Zinc	500.0	473.2	94.6								

Client:Alaska Department of Fish and GameService Request:K1510681Project:Tulsequah Chief Mine Water Quality & Aquatic StudyDate Collected:NA

LCS Matrix: Tissue Date Received: NA
Date Extracted: 10/26/15

Date Extracted: 10/26/15 **Date Analyzed:** 10/29,30/15

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1510681-SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	6.8	6.86	101	4.93-8.93	
Cadmium	PSEP Tissue	200.8	0.306	0.300	98	0.233 - 0.385	
Copper	PSEP Tissue	200.8	15.9	14.6	92	12.0 - 20.2	
Lead	PSEP Tissue	200.8	0.416	0.258	62	0.290 - 0.563	X
Selenium	PSEP Tissue	200.8	3.56	3.84	108	2.58 - 4.68	
Zinc	PSEP Tissue	200.8	52.20	50.6	97	39.2 - 66.5	

K1510681ICP - DORM4 11/05/15 Page No.:

Client: Alaska Department of Fish and Game Service Request: K1510681

Project: Tulsequah Chief Mine Water Quality & Aquatic Study

Date Collected: NA

LCS Matrix: Tissue Date Received: NA
Date Extracted: 10/26/15

Date Extracted: 10/26/15 **Date Analyzed:** 10/29,30/15

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material Units: mg/Kg (ppm)

Lab Code: K1510681-SRM1 Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	200.8	59.5	63.7	107	44.6-76.0	
Cadmium	PSEP Tissue	200.8	42.3	40.0	95	32.4-52.9	
Copper	PSEP Tissue	200.8	497	412	83	380-623	
Lead	PSEP Tissue	200.8	0.225	0.178	79	0.166-0.292	
Selenium	PSEP Tissue	200.8	10.9	11.7	107	7.9-14.3	
Zinc	PSEP Tissue	200.8	136	127	93	104-170	

K1510681ICP - TORT3 11/05/15 Page No.:

June 13, 2016

Nicole Legere

802 3rd St., P.O. Box 110024

Alaska Department of Fish and Game

ALS Environmental
ALS Group USA, Corp
1317 South 13th Avenue
Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1604486

Revised Service Request No: K1604486.01

Juneau, AK 99811-0024

RE: Tulsequah Chief Mine Water Quality & Aquatic Studies / 160004158

Dear Nicole,

Enclosed is the revised report for the sample(s) submitted to our laboratory April 28, 2016 For your reference, these analyses have been assigned our service request number **K1604486**.

The client sample IDs for K1604486-001 and K1604486-002 have been revised.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3293. You may also contact me via email at Shar.Samy@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Shar Samy, Ph.D. Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Chain of Custody
Total Solids
Metals

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	_
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com_	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

(ALS) Environment	al .				Cł	łΑΙ	N (OF	CI	US	TC	D	Υ								SR	#	K	160	4486
(ACS) Ellos onnesse		th 13th Ave	., Kelso, W	'A 98626	3 36	0,577.	7222	800	.695.7	222	360	.636.1	068 (1	fax)		F	PAGE	[_OF	\bot		CO	C#	
PROJECT NAME TUSS QUAL (hyf PROJECT NUMBER	Mine W	ater Gual	tty + tgi	atic	Stud	ולג /		1	nics CT SIM PAHO		Τ,		Τ,	91510	Τ,	/ /	/ /	/ 	7	1995 Dac 12500		7	Cthane TEhene		777
PROJECT MANAGER TIMOTH	Ч					\Box ,	, /	18	MIS	8/3		8 /		875			(circle) NH2, N 1804, F. 1804,	22+NO3, TKN, TOS	5 /	25/	1003 []				
COMPANY NAME DIPT AT	Pish a	rd Gar	re Habí	1a-1_		OF CONTAINERS			9/ !	୍ର ବ୍ଲି			Herbicides		ow Dissolved		4 4	:/≷ ` `	g/ ¿	$\frac{1}{2}$	Ĭ/	250			/ /
CHY/STATE/ZIP	00001	,						8/2		90		/ &	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	875	1088 1088	/Ş̄	200	0 4	/×	70	/	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		/ /	/ /
E-MAIL ADDRESS	99824	. Ans /		<u></u>	$-\!\!\!\!/$	8/	1			Sel Sel		/ હૈ			Q (2)	/ £ /	50	ပ် ဇွာ	/ ₹/	181		1 8 8 8	' /	/	
PHONE * 107 465	1679	FAX # O/A	7-41.5-	4750	7/6	Ö/	/## ###		100 A								25	š/	[]/						/
SAMPLER'S SIGNATURE	0		/- IO 3			1/	John W.				88	Pesticidas Pesticidas		als,	Cyanicle 7			۶/ § د راز		Dioxins/Fund Co3		\$] -			/
SAMPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	1 \$	/	[\$ is	\ <u>\$</u>		/ð	$\int_{\Omega} rac{4}{6}$		3/5	18	\$\\ 3		182	/ 8	/ *				/	/	REMARKS
See list of					11									X											
Winesciii																									
Ash whole										***************************************															
body Samples																									
TAMP SOMPLES																									
														<u> </u>											
		INVO	ICE INFOR	MATION	,									<u> </u>											
REPORT REQUIREM	ENTS	P.O. # ∐	-5-027	1-15			which r		\sim				0		. 1	2	<i>e</i> n				. 0-	١	<u> </u>		6 0
I. Routine Report: I		Bill To: ₹	OBX 1	1002	4,												\sim				-				sn v Ø Ø
Blank, Surrogate required	, as	JOHLAN	J, XK96	1811-6	<u>04</u> 4																			ir TI	Sn V Zn Hg
X II. Report Dup., MS	, MSD as	TURNAR	DUND REQ	UIREM	ENTS	SPEC	ICATE	ISTR	JCTIO	NS/C	OMM	ENTS	PROC	LUU	ne:	AK L	CIC	<u>√</u> √ √	00()	- OT	si Oi	MEK:		12/7	(CIRCLE ONE) パスくく ノッパト
required		24 h	r	_ 48 hr.		4am	Anle.	120	, as	a	n ir	div	vi Ua	il t	251	. 91	บไ	α	10.1 10.10	ία	יולא אלא	and	an	4-00	DV 10.
III. CLP Like Summa (no raw data)	iry	5 da	-			7001	Y.C	(0 -		, ,	Mi	cole	برا"ر	eart	C'				•	()	<i>(</i> ()	, ,	000	1 4
IV. Data Validation R	lenort		SPECIAL INSTRUCTIONS/COMMENTS: Dry weight basis, repoled in the second of the second o							4															
V. EDD		Prov	ide FAX Hesi	uits							1	oc Mita	かく	Lea Lea	17 (L.) 12 (J.)	798 100	11/00	100	k6V	/					
		Req	uested Repo	ort Date		∏ Sa	ample	Ship	ment	conta	ains l	JSDA	regu	lated	soil s	ampli	es (ch	eck b	ox if	appli	cable)			
				RECE	CEIVED BY: RELINQUISHED BY:						RECEIVED BY:														
Signature 2				_ / <i>[</i> _ D	ate/tim	<i>(</i> 4	(14	ry	Signa	ature			Dat	e/Tim	e			Signa	ture			Date	/Time		
Printed Name	ADF → C	· · · · · · · · · · · · · · · · · · ·		d Name	224	· constant	m t	<u></u>				ed Na	me		Firm						ed Nar	ne		Firm	
- 1111000 11001110 3						- 11													L						

Tulsequah Chief Mine Water Quality and Aquatic Studies

Juvenile Fish for Whole Body Metals

Basis, all samples: Dry Weight, Report % Moisture Requested Analysis: Ag,As,Cd,Cu,Hg,Pb,Se,Zn

		Date				FK Length	Weight
Matrix	Collector	Collected	Sample Number	Sample Location	Requested Analysis	(mm)	(g)
Whole Body	ADF&G	4/24/2016	042416TRMDVJ1	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	80	5.59
Whole Body	ADF&G	4/24/2016	042416TRMDVJ2	Tulsequah River Mine Site	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	85	6.62
Whole Body	ADF&G	4/24/2016	042416TRBDVJ1	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	100	9.13
Whole Body	ADF&G	4/24/2016	042416TRBDVJ2	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	155	33.1
Whole Body	ADF&G	4/24/2016	042416TRBDVJ3	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	155	30.55
Whole Body	ADF&G	4/24/2016	042416TRBDVJ4	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	130	21.39
Whole Body	ADF&G	4/24/2016	042416TRBDVJ5	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	120	15.9
Whole Body	ADF&G	4/24/2016	042416TRBDVJ6	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	110	14.13
Whole Body	ADF&G	4/24/2016	042416TRBDVJ7	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	95	9.88
Whole Body	ADF&G	4/24/2016	042416TRBDVJ8	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	95	9.79
Whole Body	ADF&G	4/24/2016	042416TRBDVJ9	Taku River Border	Ag,As,Cd,Cu,Hg,Pb,Se,Zn	70	3.83

ALS) PC Mar	_
Client AR Dept of Figure WL Service Request K16 Received: 4/18/10 Opened: 4/71/10 By: Unloaded: 4/28/19 By:	
1. Samples were received via? Mail Fed Ex UPS DHL PDX Courier Hand Delivered . 2. Samples were received in: (circle) Cooler Box Envelope Other NA/ 3. Were custody seals on coolers? NA N If yes, how many and where? NA/ If present, were custody seals intact? Y N If present, were they signed and dated? Y N	ı
Raw Confected Raw Temp Blank Temp	ad
4. Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves 5. Were custody papers properly filled out (ink, signed, etc.)? 6. Did all bottles arrive in good condition (unbroken)? Indicate in the table below. 7. Were all sample labels complete (i.e analysis, preservation, etc.)? 8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y N 9. Were appropriate bottles/containers and volumes received for the tests indicated? 10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA Y N 11. Were VOA vials received without headspace? Indicate in the table below. NA Y N NA Y N NA Y N NA Y N	
Sample ID on Bottle Sample ID on COC 1dentified by: 042416 TRM DV 11 11 2 11 2 11	
Sample ID Bottle Count Out of Head- Bottle Type Temp space Broke pH Reagent Number Initials Time	
Notes, Discrepancies, & Resolutions:	

Page____of_

Total Solids

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

REVISED 2:24 pm, Jun 10, 2016

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 Date Collected: 04/24/16

Sample Matrix: Animal Tissue Date Received: 04/28/16

Analysis Method:CalculationUnits: PercentPrep Method:NoneBasis: Wet

Moisture

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
042416TRMDVJ1	K1604486-001	78.1	-	1	05/06/16 14:45	
042416TRMDVJ2	K1604486-002	77.1	-	1	05/06/16 14:45	
042416TRBDVJ1	K1604486-003	80.3	_	1	05/06/16 14:45	
042416TRBDVJ2	K1604486-004	75.6	-	1	05/06/16 14:45	
042416TRBDVJ3	K1604486-005	78.4	-	1	05/06/16 14:45	
042416TRBDVJ4	K1604486-006	78.8	-	1	05/06/16 14:45	
042416TRBDVJ5	K1604486-007	78.6	-	1	05/06/16 14:45	
042416TRBDVJ6	K1604486-008	77.4	_	1	05/06/16 14:45	
042416TRBDVJ7	K1604486-009	77.3	_	1	05/06/16 14:45	
042416TRBDVJ8	K1604486-010	79.6	-	1	05/06/16 14:45	
042416TRBDVJ9	K1604486-011	73.3	-	1	05/06/16 14:45	

Service Request: K1604486

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 Date Collected: 04/24/16

Sample Matrix: Animal Tissue Date Received: 04/28/16

Analysis Method:Freeze DryUnits: PercentPrep Method:NoneBasis: Wet

Total Solids

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
042416TRMDVJ1	K1604486-001	21.9		1	05/06/16 14:45	
042416TRMDVJ2	K1604486-002	22.9	-	1	05/06/16 14:45	
042416TRBDVJ1	K1604486-003	19.7	-	1	05/06/16 14:45	
042416TRBDVJ2	K1604486-004	24.4	-	1	05/06/16 14:45	
042416TRBDVJ3	K1604486-005	21.6	-	1	05/06/16 14:45	
042416TRBDVJ4	K1604486-006	21.2	-	1	05/06/16 14:45	
042416TRBDVJ5	K1604486-007	21.4	-	1	05/06/16 14:45	
042416TRBDVJ6	K1604486-008	22.6	-	1	05/06/16 14:45	
042416TRBDVJ7	K1604486-009	22.7	-	1	05/06/16 14:45	
042416TRBDVJ8	K1604486-010	20.4	-	1	05/06/16 14:45	
042416TRBDVJ9	K1604486-011	26.7	-	1	05/06/16 14:45	

Service Request: K1604486

ALS Group USA, Corp.

dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Animal Tissue

Service Request: K1604486

Project Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158

Date Collected: 04/24/16

Sample Matrix:

Date Received: 04/28/16

Date Analyzed: 05/06/16

Replicate Sample Summary

Inorganic Parameters

Sample Name:

042416TRBDVJ2

Units: Percent

Lab Code:

K1604486-004

Basis: Wet

Duplicate

Sample K1604486-

Sample

004DUP

Analyte Name **Analysis Method** Result **MRL** Result **RPD RPD** Limit Average Total Solids Freeze Dry 24.4 23.2

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 06/02/16 5:49:44 PM

Superset Reference:16-0000374723 rev 00

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

REVISED2:24 pm, Jun 10, 2016

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Alaska Department of Fish and Game

Service Request: K1604486 **Date Collected:** 04/24/16 **Project:** Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 **Date Received:** 04/28/16

Sample Matrix: Animal tissue

Mercury, Total

Prep Method: **METHOD** Analysis Method: 1631E

Units: ng/g Basis: Dry

Test Notes:

Sample Name	Lab Code	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
042416TRMDVJ1	K1604486-001	5.0	5	05/18/16	05/19/16	41.3	
042416TRMDVJ2	K1604486-002	1.0	1	05/18/16	05/19/16	12.5	
042416TRBDVJ1	K1604486-003	4.9	5	05/18/16	05/19/16	37.2	
042416TRBDVJ2	K1604486-004	4.9	5	05/18/16	05/19/16	97.5	
042416TRBDVJ3	K1604486-005	4.8	5	05/18/16	05/19/16	53.0	
042416TRBDVJ4	K1604486-006	4.8	5	05/18/16	05/19/16	33.2	
042416TRBDVJ5	K1604486-007	4.9	5	05/18/16	05/19/16	133	
042416TRBDVJ6	K1604486-008	4.8	5	05/18/16	05/19/16	117	
042416TRBDVJ7	K1604486-009	4.7	5	05/18/16	05/19/16	56.6	
042416TRBDVJ8	K1604486-010	4.9	5	05/18/16	05/19/16	34.4	
042416TRBDVJ9	K1604486-011	1.0	1	05/18/16	05/19/16	14.6	
Method Blank 1	K1604486-MB1	1.0	1	05/18/16	05/19/16	ND	
Method Blank 2	K1604486-MB2	1.0	1	05/18/16	05/19/16	ND	
Method Blank 3	K1604486-MB3	1.0	1	05/18/16	05/19/16	ND	

ALS Group USA, Corp.

dba ALS Environmental QA/QC Report

Client: Alaska Department of Fish and Game **Project:**

Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158

Sample Matrix: Animal tissue

Date Collected: 04/24/16 **Date Received:** 04/28/16 **Date Extracted:** 05/18/16 **Date Analyzed:** 05/19/16

Service Request: K1604486

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code:

042416TRBDVJ2

K1604486-004MS,

K1604486-004MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	Spike MS		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	4.9	240	244	97.5	325	326	95	94	70-130	<1	

Page No.: K1604486rev1ICP.JB1 - DMS 06/02/16

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Alaska Department of Fish and Game

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158

Sample Matrix: Animal tissue

Date Collected: 04/24/16 **Date Received:** 04/28/16 **Date Extracted:** 05/18/16 **Date Analyzed:** 05/19/16

Service Request: K1604486

Matrix Spike/Duplicate Matrix Spike Summary

Total Metals

Sample Name: Lab Code: 042416TRBDVJ4

K1604486-006MS,

K1604486-006MSD

Units: ng/g

Basis: Dry

Test Notes:

Percent Recovery

Analyte	Prep Method	Analysis Method	MRL	•		Sample Result	Spike MS	Result DMS	MS	DMS	ALS Acceptance Limits	Relative Percent Difference	Result Notes
Mercury	METHOD	1631E	5.0	241	248	33.2	270	274	98	97	70-130	1	

K1604486rev1ICP.JB1 - DMS (2) 06/02/16 Page No.:

Client: Alaska Department of Fish and Game Service Request: K1604486

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 Date Collected: NA LCS Matrix: Water Date Received: NA

Date Extracted: NA **Date Analyzed:** 05/19/16

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Initial)

Units: ng/g

Basis: NA

Test Notes:

						ALS Percent	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Recovery Acceptance Limits	Result Notes
Mercury	METHOD	1631E	5.00	5.28	106	70-130	

Client: Alaska Department of Fish and Game Service Request: K1604486

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 Date Collected: NA LCS Matrix: Water Date Received: NA

Date Extracted: NA **Date Analyzed:** 05/19/16

Ongoing Precision and Recovery (OPR) Sample Summary

Total Metals

Sample Name: Ongoing Precision and Recovery (Final)

Units: ng/g

Basis: NA

Test Notes:

						ALS	
						Percent	
						Recovery	
	Prep	Analysis	True		Percent	Acceptance	Result
Analyte	Method	Method	Value	Result	Recovery	Limits	Notes
Mercury	METHOD	1631E	5.00	4.83	97	70-130	

Client: Alaska Department of Fish and Game Service Request: K1604486

Project: Tulsequah Chief Mine Water Quality & Aquatic Studi/160004158 Date Collected: NA LCS Matrix: Animal tissue Date Received: NA

Date Extracted: 05/18/16
Date Analyzed: 05/19/16

Quality Control Sample (QCS) Summary

Total Metals

Sample Name: Quality Control Sample Units: ng/g

Lab Code: Basis: Dry

Test Notes:

Source: TORT-3 ALS

Percent Recovery True Percent Acceptance Result Prep **Analysis** Analyte Method Limits Method Value Result Recovery **Notes METHOD** 1631E 292 268 92 70-130 Mercury

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRMDVJ1 Lab Code: K1604486-001

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	2.4		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.30		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	12.4		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.21		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	3.3		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	176		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRMDVJ2 Lab Code: K1604486-002

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5	U	
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.14		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	4.3		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.23		
Selenium	6020A	0.9	5.0	05/10/16	05/25/16	3.1		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	136		

- 1 -

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ1 Lab Code: K1604486-003

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.6		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.28		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	5.2		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.27		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	3.5		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	173		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali
Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ2 Lab Code: K1604486-004

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5	U	
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.06		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	2.3		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.02	Ū	
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	3.9		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	120		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ3 Lab Code: K1604486-005

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.10		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	3.1		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.02		
Selenium	6020A	0.9	5.0	05/10/16	05/25/16	2.3		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	134		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ4 Lab Code: K1604486-006

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	1.4		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.25		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	5.0		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.06		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	2.4		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	174		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ5 Lab Code: K1604486-007

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	1.3		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.33		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	5.4		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.22		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	2.1		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	·
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	147		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ6 Lab Code: K1604486-008

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.29		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	3.2		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.11		
Selenium	6020A	0.9	5.0	05/10/16	05/25/16	3.5		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	119		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ7 Lab Code: K1604486-009

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	1.1		
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.31		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	5.0		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.12		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	3.0		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ט	·
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	179		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ8 Lab Code: K1604486-010

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5	U	
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.17		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	3.7		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.02		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	2.5		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	132		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected: 4/24/2016

Project Name: Tulsequah Chief Mine Water Quali Date Received: 4/28/2016

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: 042416TRBDVJ9 Lab Code: K1604486-011

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5	U	
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.17		
Copper	6020A	0.1	5.0	05/10/16	05/25/16	2.4		
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.10		
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	2.1		
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ט	·
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	115		

-1-

INORGANIC ANALYSIS DATA PACKAGE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Date Collected:

Project Name: Tulsequah Chief Mine Water Quali Date Received:

Matrix: TISSUE Units: mg/Kg

Basis: DRY

Sample Name: Method Blank Lab Code: KQ1604632-01

Analyte	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Arsenic	6020A	0.5	5.0	05/10/16	05/25/16	0.5	U	
Cadmium	6020A	0.02	5.0	05/10/16	05/25/16	0.02	U	
Copper	6020A	0.1	5.0	05/10/16	05/25/16	0.1	Ū	
Lead	6020A	0.02	5.0	05/10/16	05/25/16	0.02	Ŭ	
Selenium	6020A	1.0	5.0	05/10/16	05/25/16	1.0	Ū	
Silver	6020A	0.02	5.0	05/10/16	05/25/16	0.02	ŭ	
Zinc	6020A	0.5	5.0	05/10/16	05/25/16	0.5	Ŭ	

Metals - 5A -SPIKE SAMPLE RECOVERY

Units:

MG/KG

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

160004158

Project No.:

Sample Name: 042416TRBDVJ2S Lab Code: K1604486-004S

Analyte	Control Limit %R	Spike Result	С	Sample Result	С	Spike Added	%R	Q	Method
Arsenic	75 - 125	25.3		0.5	U	24.0	105		6020A
Cadmium	75 - 125	4.79		0.06		4.81	98		6020A
Copper	75 - 125	24.7		2.3		24.0	93		6020A
Lead	75 - 125	44.60		0.02	υ	48.08	93		6020A
Selenium	75 - 125	29.7		3.9		24.0	108		6020A
Silver	75 - 125	4.45		0.02	U	4.81	93		6020A
Zinc	75 - 125	167		120		48.1	98		6020A

- 6 -DUPLICATES

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158 Units: MG/KG

Project Name: Tulsequah Chief Mine Water Quali Basis: DRY

Matrix: TISSUE

Sample Name: 042416TRBDVJ2D Lab Code: K1604486-004D

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Arsenic		0.5	U	0.5	U			6020A
Cadmium		0.06		0.06		0.0		6020A
Copper	20	2.3		2.3		0.0		6020A
Lead		0.02	U	0.02		200.0		6020A
Selenium		3.9		4.1		5.0		6020A
Silver		0.02	U	0.02	υ			6020A
Zinc	20	120		118		1.7		6020A

- 7 -

LABORATORY CONTROL SAMPLE

Client: Alaska Department of Fish and Ga Service Request: K1604486

Project No.: 160004158

Project Name: Tulsequah Chief Mine Water Quali

Aqueous LCS Source: ALS MIXED Solid LCS Source:

	Aqueous	(ug/L)	Solid (mg/kg)					
Analyte	True	Found	%R	True	Found	С	Limits	%R
Arsenic	250.0	238.0	95					
Cadmium	50.0	47.3	95					
Copper	250.0	238.8	96					
Lead	500.0	459.5	92					
Selenium	250.0	242.2	97					
Silver	50.0	47.6	95					Ī
Zinc	500.0	484.8	97					

Client: Alaska Department of Fish and Game **Service Request:** K1604486

Project: Tulsequah Chief Mine Water Qaulity & Aquatic Studies/160004158 **Date Collected:** NA **Date Received:** NA

LCS Matrix: Tissue

Date Extracted: 05/10/16 **Date Analyzed:** 05/25/16

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Units: mg/Kg (ppm)

Lab Code: K1604486-SRM1 Basis: Dry

Test Notes: Dorm-4 Solids = 94.5%

Source: N.R.C.C. Dorm-4

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	6.8	7.0	103	4.93-8.93	
Cadmium	PSEP Tissue	6020A	0.306	0.311	102	0.233 - 0.385	
Copper	PSEP Tissue	6020A	15.9	15.6	98	12.0 - 20.2	
Lead	PSEP Tissue	6020A	0.416	0.328	79	0.290 - 0.563	
Selenium	PSEP Tissue	6020A	3.56	4.08	115	2.58 - 4.68	
Zinc	PSEP Tissue	6020A	52.20	54.8	105	39.2 - 66.5	

K1604486ICP.sp1 - DORM4 05/27/16 Page No.:

Client: Alaska Department of Fish and Game

Service Request: K1604486

Project: Tulsequah Chief Mine Water Qaulity & Aquatic Studies/160004158

Date Collected: NA **Date Received:** NA

LCS Matrix: Tissue

Date Extracted: 05/10/16 **Date Analyzed:** 05/25/16

Standard Reference Material Summary

Total Metals

Sample Name: Standard Reference Material

Units: mg/Kg (ppm)

Lab Code: K1604486-SRM2

Basis: Dry

Test Notes: Tort-3 Solids = 99.1%

Source: N.R.C.C. Tort-3

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Control Limits	Result Notes
Arsenic	PSEP Tissue	6020A	59.5	67.9	114	44.6-76.0	
Cadmium	PSEP Tissue	6020A	42.3	41.0	97	32.4-52.9	
Copper	PSEP Tissue	6020A	497	450	91	380-623	
Lead	PSEP Tissue	6020A	0.225	0.190	84	0.166-0.292	
Selenium	PSEP Tissue	7742	10.9	11.8	108	7.9-14.3	
Zinc	PSEP Tissue	6020A	136	137	101	104-170	

K1604486ICP.sp1 - TORT3 05/27/16 Page No.: