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A Review of the Net Selectivity Problem and a Model for Apportioning
Species Based on Size-Selective Sampling

Pham X. Quang and Harold J. Geiger

ABSTRACT: The theory of inference of a size distribution for fish captured with size-biased fishing gears is called
the "net selectivity problem." This family of problems arises because of questions about the underlying
distribution of the sampled fish, questions about the nature of the size bias, or perhaps questions about the
mixtures of species of different sizes. We discuss these problems in the context of size-biased gillnets, although
generalization to other kinds of fishing gear is straightforward. We estimate the length distribution of the
captured fish, the size distribution of the fish population, and the parameters of the selectivity curves para-
metrically, using maximum likelihood. To avoid overparametrization we make strong assumptions about the
relationship among the selectivity curves, so that fishing power cannot be estimated in this setup. This
assumption is called "geometric similarity." The normal-normal and gamma-gamma combination models are
considered, so called because of the shape of the fish-length distribution and the shape of the selectivity
curves. The method is demonstrated with a worked simulation example and the American plaice Hippoglossoides
platessoides data of Holst and Moth-Poulsen.

INTRODUCTION

The net-selectivity problem is a family of problems re-
quiring inference from the number of fish captured in
each of a series of selective or size-biased fishing gears.
The probability of capture, modeled as a function of
the attributes of the gear and the fish encountering the
gear, is called the selectivity function. The framework
of the problem always involves one or more popula-
tions of fish or other animals together with a family of
selectivity functions; the nature of the inference
changes depending on whether the question is about
the gear or about the sampled fish populations. Usually
the problem is discussed in terms of gillnet size-selec-
tivity curves and body-size distribution of the fish popu-
lation; Millar (1992, 1995) describes the similarities of
the problems between gillnets, hooks, trawls, and other
gear. Millar and Fryer (1999) distinguish among the
population-selection functions, the available-selection
functions, and the contact-selection functions. Our goal
is to introduce a model that can be used to infer the
proportional mix of different species, of differing sizes,
captured in a series of gillnets. This member of the
net-selectivity family of problems is called the species
apportionment problem.
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The normal, gamma, and skewed normal distribu-
tions have been used for a number of years as models
for selectivity curves (Regier and Robson 1966).
Henderson and Wong (1991) developed an encounter
model and modeled walleye Stizostedion vitreum se-
lectivity in gillnets with a gamma distribution. Millar
and Holst (1997) used normal selectivity curves inside
a larger log-linear modeling context. Catch numbers
were assumed to follow Poisson distributions, with the
Poisson mean modeled as a function of fishing power,
size, abundance, and selectivity. Helser et al. (1997)
provided a nonlinear response surface regression.

Regier and Robson (1966) define 2 types of size-
selectivity curves. Type-A curves give the probability
of capture in a given gear as a function of fish size;
type-B curves give the probability of capturing a fish
of a given size as a function of the gear size or type.
Regier and Robson also divide the problem into 2 classes
of methods. Direct methods are used when the size-
frequency of the study population is known or can be
measured directly. For example, fisheries managers
often use catch-per-unit of effort measures to keep
fishing mortality in line with fish abundance (Quinn and
Deriso 1999). A direct study might involve measuring
the difference in size distribution from a catch in a se-
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lective gear compared with a control gear or a non-
selective fishing gear. A new gear's relative fishing
power, or catch-per-unit-of-effort might be compared
with a conventional gear. A direct study might also
measure the effects of size selection on a population
of fish. Indirect methods are used when the size fre-
quency distribution of the study population must be in-
ferred from the size-biased data collected with selective
gear. In indirect studies, the object of interest is the size
distribution of the target population of fish, which might
vary from year to year due to the environment. If mean
length and variance are to be estimated from a fish
population migrating through a small area in a particu-
lar year, a series of nets may be used, each net with a
different selection bias for a particular girth of fish. Be-
cause fish length is easy to measure, length measure-
ments are usually available to the analyst. And because
length and girth are strongly correlated, the nets can be
thought of as length selective even though girth is more
strongly related to the mechanical cause of capture.

A related problem is the species-apportionment
problem. Here the analyst tries to determine the pro-
portion of different species of fish that swim up a stretch
of river. For example, 3 species of fish swim up a river
in proportions p1, p2, and p3. The problem is to esti-
mate pi using length measurements of fish caught in
gillnets of varying mesh sizes. Because the different
species of fish have different size distributions, the spe-
cies apportionment problem is solved by estimating the
number of fish of each species that "would have been
caught" if the fishing gear were equally effective at
catching each species, and then using these numbers
to estimate the apportionment proportions.

Selectivity models often require too many param-
eters because each gear variant has its own set of
parameters. In these models, maximization of the like-
lihood function becomes difficult owing to numerical
instability and overparametrization (Millar 1995; Millar
and Fryer 1999). Several selectivity models can ap-
pear to provide similar fits to the data. Commonly,
Baranov's assumption of geometric similarity (Baranov
1948) is introduced to reduce the number of param-
eters: the mode and the spread of a gillnet size-selec-
tion curve are assumed to increase proportionately to
the size of the mesh.

Many authors have offered methods to estimate
parameters of the selection. Only Hovgård (1996a)
provides a method to also estimate the fishing power
of the nets. To our knowledge, this methodology has
not been applied to estimating the proportions of dif-
ferent species of fish in the population.

We solve the indirect problem by deriving the dis-
tribution of the lengths of fish captured by a given net

as the distribution of the population weighted by the
selectivity of the net. We have not found such a distri-
bution in the fisheries literature, although a similar dis-
tribution is well-known in sampling theory. Our approach
is parametric, using the maximum likelihood method to
estimate population and selectivity parameters. How-
ever, our formulation does not allow estimation of fish-
ing power. We will show how to estimate the number
of fish encountering all of the nets, and propose a
method to estimate the relative abundance of different
species of fish. Programs written in S-Plus 2000 (S-
Plus 2000) in support of this paper are available by e-
mail from either author.

Investigating gillnet selectivity

An experimental study consists of the researcher fish-
ing with several gillnets of various mesh sizes, and re-
cording the lengths of the captured fish. The data is
reduced to the frequencies of catches in each length
class. More precisely, assume J nets of respective mesh
sizes m1 ..., mJ are fished. The fish-length range is par-
titioned into I intervals of equal width ∆; li is the mid-
point of the ith interval, and the number of catches
from the jth net in the ith interval is nij. The data are
the matrix of frequencies nij.

The (length-based) selectivity of the jth net is the
function rj(x), defined as the probability that a fish is
captured by the jth net, given that it is of length x and
that it contacted the net. Our definition corresponds to
the contact-selection curve or retention curve of Millar
and Fryer (1999). Millar and Fryer also introduce the
population-selection curve (the probability any fish in
the population of length x is captured) and the avail-
able-selection curve (the probability that any fish of
length x that is available to the gear is captured). We
do not consider these curves in our formulation. Thus,
the population under consideration for our purposes con-
sists of all of the fish of a given species that encounter
the nets.

METHODS

Consider the distribution of the lengths of captured fish.
Catch frequencies depend on both the selectivity of
the nets and the length distribution of the fish popula-
tion (e.g., Hovgård 1996a; Hovgård et al. 1999; Hamley
1975, Figure 1, that Hamley attributes to Baranov).
The classical estimation method of McCombie and Fry
(1960) and Kitahara (1970), with selectivity estimated
by graphically adjusting catches from individual length
groups to fit a common master curve, is an implicit



18 Articles

acknowledgement that size distribution of the captured
fish depends on the selectivity of the net (Hovgård
1996a; Hovgård et al. 1999).

The probability density function (PDF) fj(x) of
lengths of fish captured by the jth net depends on the
selectivity rj(x) and the PDF ϕ (x) of population lengths
as (proof in Appendix A)
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The quantity pj can be interpreted as the average
selectivity of the jth net for the given fish population.
An equivalent form of Eq. (1) has been used in line
transect sampling (e.g., Quang 1991). Because catch
lengths are observed, the expression of fj(x) allows us
to simultaneously estimate population and selectivity
parameters by the maximum likelihood method. All
notations are listed and redefined in Appendix B.

We assume parameterized functional forms
ϕ (x | θ0) and rj (x | θj ) for fish length and net selectiv-
ity, respectively. Here θ0 and θj denote vectors of pa-
rameters. Then fj (x) has the functional form fj (x | θ ),
where θ denotes the vector of all parameters involved
in the problem. Let
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then (n1j, ... , nIj ) are multinomially distributed with total
count nj=Σnij, cell probabilities are q1j(θ ), ..., qIj(θ ),
and the log-likelihood is
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If ∆ is small, then qi j(θ ) ≈ ∆fj (li  | θ ), and the log-
likelihood is approximately
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maximizing the log-likelihood yields estimates of all pa-
rameters.

The species apportionment problem

Knowing the relative abundance of different species
of migrating fish is important for fisheries management.
For example, sonar is used to estimate the total num-
ber of migrating salmon moving up a river over a unit
of time. Because the fishery managers are trying to
manage each individual breeding stock separately, they
must have estimates of the species proportions to ap-
ply to the total passage estimate for the sonar to be
useful. These relative abundances can be estimated as
ratios of the number of individuals belonging to the dif-
ferent species and contacting the nets. The number of
individuals of a given species contacting the nets is

1

J

j
N

=
= ∑ Nj and Nj, the number of individuals contact-

ing the jth net, can be estimated as follows.
Let Yjk be the length of the kth individual contacting

the jth net, and let δjk be its catch indicator:

δjk={ 1   if the kth fish is caught by the jth net
0   if not

Then δjk has the Bernoulli distribution with mean
pj(θ ). Indeed, letting E( ) denote mathematical expec-
tation,
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This result suggests estimating Nj by
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once an estimated θ becomes available.

Parametric models of net selectivity and fish
length distribution

The length distribution of the fish population is some-
times ignored in the literature on net selectivity, possi-
bly because it is not the focus in net selectivity studies.
However, a variety of parametric models of net selec-
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tivity have been considered: the normal model (Baranov
1948; Holt 1957), the skewed normal model (McCombie
and Fry 1960; Regier and Robson 1966), the binormal
(Sechin 1969; Kawamura 1972; Hovgård 1996a), the
Pearson Type I curve (Hamley and Regier 1973), and
the lognormal, gamma, and inverse gaussian models
(Millar and Fryer 1999).

We now analyze the combination normal popula-
tion length model and normal selectivity model (the nor-
mal-normal model), and also the combination
gamma-gamma model. The advantage of the normal-
normal model is that most calculations are explicit, but
the gamma-gamma model seems to be more realistic.
Other model combinations can be worked out simi-
larly. Of course, all combination models risk
overparametrization, bad fit, or nonconvergence of the
optimizer.

Normal-normal model

The normal model of length distribution is
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and the normal model of net selectivity is
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The parameter hj in the selectivity model equals the
maximum height of the curve rj (x). Hovgård (1996b)
calls hj the fishing power of the jth net and points out
that failure to incorporate fishing power in selectivity
models may lead to various misinterpretations of fish-
ing results.

Unless a non-selective net is also fished, hj is con-
founded with fishing effort and fish abundance (Millar
and Fryer 1999). In this application we assume hj=1.
Manipulating Eq. (1), (6), and (7) gives (see proof in
Appendix A)
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with ( ) ( )2 2 2 22 2j j jc µ σ µ σ= + . Note that hj can-
celed out of Eq. (8), hence that is why hj cannot be
estimated by maximum likelihood. The remaining 2 J
+2 parameters in Eq. (8) are µ, σ, µ1, ..., µJ , σ1, ..., σJ.
In Eq. (8) the lengths Xj1, ..., Xjnj

 of fish caught by the
jth net are normally distributed with mean ξj = bj /aj and
variance 2

jτ =1/(2aj). Maximum likelihood estimates of
ξj and 2
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Next, we would solve for the 2 J quantities ˆ
ja and

ˆ
jb from Eq. (11), and then solve for µ̂ , σ̂ , µ̂ 1, σ̂ 1, ...,

µ̂ J , σ̂ J from Eq. (9). Because there are 2 J+2 param-
eters but only 2 J equations, we cannot obtain unique
estimates of the parameters. Also, ˆ

jN  in Eq. (5) cannot
be unequivocally determined because of the presence of
hj in Eq. (10). We deal with overparameterization by
assuming geometric similarity (Baranov 1948). That
is, h1= ... = hJ = h, µj = k1mj, and σj = k2mj , and the
number of parameters is reduced to 5: µ, σ, h, k1, and
k2. Discussions regarding the impact of that assump-
tion can be found in Hamley (1975), and more recently,
in Millar and Fryer (1999). The log-likelihood becomes
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Maximizing Eq. (12) with a numerical optimizer
gives estimates of µ, σ, k1, and k2. Again, h cannot be
determined as it is confounded with fishing effort and
fish abundance. We have simulated data that provide a
good fit to the normal-normal model, although we have
not found real-world data that this model fits.
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Gamma-gamma model

The gamma probability density function is not as well
known or as straightforward to work with as the nor-
mal distribution. For fish length, X, this distribution
takes the form
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where α is the shape parameter and β is the scale
parameter. The mean of this distribution is given by
E(X)=αβ, and the variance is V(X)=αβ 2.

Note that unlike the normal distribution, the mean
and variance of the gamma distribution are function-
ally related. Because the gamma distribution is non-
negative and is right-skewed, it may represent fish
length distribution better than the normal distribution.
Because large fish may be caught in a narrow-mesh
net by tangling of their maxillaries and opercula, rather
than being wedged by their gills, the thick right tail of
the gamma selectivity curve may reflect this phenom-
enon better than the normal selectivity curve. Even
though the gamma distribution is not as well known as
the normal distribution, it has been used in fisheries
and wildlife applications. For example, it is used to model
detection probability in line-transect sampling (Quang and

Becker 1997). In Figure 1 we show 3 gamma densities
with the same mean of 4, and variances of 1, 4 and 8.

The gamma model of net selectivity is
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Again hj is the maximum height of the curve rj(x).
As in the normal-normal, the gamma-gamma model is
overparameterized and hj cannot be determined by
maximum likelihood. The number of parameters is re-
duced by assigning the same shape parameter α to
length distribution and selectivity, and by assuming geo-
metric similarity.

This leaves h1= ... = hJ = h, and βj = kmj, so that
the parameters are h, α, and k. The length distribution
of fish caught by the jth net is now
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with λj =1/β + 1/βj. The log-likelihood is

Figure 1. Three gamma distributions with the same mean and differing variables.
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Again we need a numerical optimizer to maximize
Eq. (15).

Test of goodness of fit

With net selectivity models, simple tests for goodness
of fit may be misleading because of low power and
poor approximation of test statistics to large-sample
distributions. The usual test of goodness of fit, which is
based on Pearson's X 2 statistic, provides a poor ap-
proximation for sparse tables. All numerical examples
presented in the next section are in this category be-
cause too many of the nijs are less than 5. But the X 2

statistic itself is also approximately normally distrib-
uted, and this approximation may be used instead of
the usual chi-square test, even when individual counts
drop below 5.

Let the X 2 statistic be calculated as
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Following Koehler and Larntz (1980) and Agresti
and Yang (1987), let
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then the statistic Z = (X 2– I J ) /τ (θ̂ ) is approximately
standard normal, and large values of Z (e.g., Z >1.96),
are taken as evidence of bad fit. Such an approxima-
tion is valid when n, IJ, and n2/(IJ) are all large. Be-
cause power may be low in these goodness-of-fit tests,
direct examination of Pearson's residuals
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may be a more useful guide to judge goodness of fit
than a simple hypothesis test.

Examples

Simulated data for the gamma-gamma model

We simulated the catch frequencies, nij (Table 1), from
the gamma-gamma model as follows. We generated
N=10,000 independent "fish" lengths from a gamma
distribution (Eq. (13) with α = 3, and β = 4.5 cm). We
chose 5 nets (mesh sizes mj=10, 12, 14, 16, and 18 cm)
with gamma-shaped selectivity rj ( y) under the geo-
metric selectivity hypothesis and full fishing power
(Eq. (14) with h = 1, α  = 3, and k = 0.6). N j = 2,000 fish
encountered each net. We assumed no fish encoun-
tered a net more than once.

We simulated numbers Yk representing the lengths
of the 2,000 fish encountering the jth net, generated by

Table 1. Simulated catch frequencies based on the gamma-gamma model. Recall y denotes an index of the midpoint of length
classes. Numbers within the table denote the numbers of fish caught by the mesh size.

Mesh Size (cm) Mesh Size (cm) Mesh Size (cm)

y 10 12 14 16 18 y 10 12 14 16 18 y 10 12 14 16 18

1 4 5 2 0 0 11 122 106 94 97 80 21 17 18 24 34 24
2 26 14 16 10 9 12 92 84 106 82 60 22 11 18 24 18 16
3 42 54 25 15 18 13 73 77 91 75 88 23 8 12 14 14 17
4 72 58 60 47 35 14 71 71 56 67 66 24 13 9 9 10 16
5 91 92 82 59 45 15 68 67 64 66 58 25 6 5 9 16 10
6 117 88 93 69 60 16 45 51 59 64 47 26 2 5 6 7 10
7 126 108 108 96 70 17 37 43 37 44 48 27 2 8 5 5 8
8 104 117 116 79 77 18 27 34 33 44 52 28 6 6 5 2 5
9 120 133 94 95 84 19 31 24 39 41 20 29 3 4 3 4 3
10 113 136 111 84 88 20 28 24 30 27 23 30 1 3 3 4 4
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the gamma distribution (Eq. (13)), with probability of
capture rj (Y). To simulate random captures, we gener-
ated 2,000 independent uniform-(0,1) random numbers
Uk, and we declared the kth fish captured if Uk< rj (Yk)
and we tallied it in the appropriate length class (I = 30
classes, width: ∆ = 1 cm, class midpoints: li = 1, 2, ..., 30
cm).

Calculations were done in S-Plus (S-Plus 2000),
using the function nlminb to maximize the log-likeli-
hood (Eq. (4)) under the constraint that all parameters
must be positive. Large-sample estimates of standard
errors (SE) of the parameters α and k were obtained
as square roots of the hessian matrix (Ripley and
Venable 1994). Large-sample estimates of functions
of parameters, such as Nj and N, were obtained by the
delta method (Agresti 1990).

Table 2. Estimated net encounters from data displayed in
Table 1, together with estimated SE. The column labeled
nj provides total catches by mesh size.

Mesh Size (cm)  Nj SE n j

 10 1932.50 35.18 1478
 12 2019.34 84.44 1474
 14 2051.74 24.35 1418
 16 1956.39 148.55 1275
 18 1858.15 164.75 1141

In this simulation, n = 6,787 fish were caught. The
estimated total encounters was N̂ = 9,818 fish (SE =
557). This estimate is systematically low because the
estimation process assumes h = 1. The estimated pa-
rameters are α̂ =2.58 (SE = 0.03), β̂ = 3.83 (SE = 0.17),
and k̂ = 0.71 (SE = 0.07). Table 2 gives the estimates of
per-net encounters. Pearson's chi-square value is  X 2

=153.1 at 146 degrees of freedom, corresponding to a
P-value of 0.33. The Z-approximation for  X 2 equals
0.175, corresponding to a P-value of 0.569. Pearson's
residuals are shown in Figure 2. The largest residual
was 3.05. The fit is acceptable by the usual criteria.

American Plaice data
The data are catches of American plaice
Hippoglossoides platessoides using multimono tram-
mel nets with inner mesh sizes mj= 9.83, 10.84, 11.94,
12.87, 13.97, and 15.07 cm. These data were published
by Holst and Moth-Poulsen (1995) and have been re-
worked by Millar and Fryer (1999). Length classes are
1-cm with midpoints at 20, 21, ..., 55 cm. The catch
frequency matrix {nij} has 216 entries, of which 68 are
zeros and 136 are ≤ 5. A total of 4,306 fish were cap-
tured. We again consider the gamma-gamma model and

Figure 2. Pearson’s residuals of simulated data.

assume geometric similarity. The estimated number of
total encounters was N̂ =10,811 (SE = 2,557). The es-
timated parameters were α̂ = 49.48 (SE = 0.41), β̂ =
0.64 (SE = 0.02), and k̂ = 0.05 (SE<0.01).

Table 3. Results from the American Plaice  Hippoglossoides
platessoides data of Holst and Moth-Poulsen. N̂ is the
estimated number contacting the net. The number caught
in the net is nj.

Mesh Size (cm)  Nj SE n j

9.83 3791.29 1479.41 759
 10.84 3011.62 814.59 1194
 11.94 1871.87 282.78 1029
 12.87 1086.30 62.98 675
 13.97 661.60 29.05 424
15.07 388.35 53.55 225

Table 3 gives estimates of the number of fish encoun-
tering each of the 6 nets. Pearson's goodness-of-fit
statistic is X 2 = 155,312.6 at 206 degrees of freedom.
The Z-value for X 2 is 0.222, which does not indicate a
poor fit. Fourteen Pearson residuals were larger than
10 in absolute value. In Figure 3, all Pearson's residuals
are truncated to the range -10 to 10. The largest re-
sidual (305.3) is also indicated. It corresponds to the catch
of two 44-cm plaice by a net with 9.83-cm meshes.

Figure 3. Pearson’s residuals of American Plaice data.
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DISCUSSION

As other authors have noted–and we wish to stress
this–selectivity models are generally overpara-
meterized. This has led to assumptions that prevent
the estimation of hi, and to models that often produce
unstable parameter estimates in the maximum likeli-
hood setting. The usual prescription for this problem
would be to simplify the model and reduce the number
of parameters. However, with our selectivity model it
may be possible to partially fix the problem of
overparameterization by incorporating additional infor-
mation through Bayesian methods.

Our model provides an obvious starting point for a
Bayesian approach in either the direct or indirect situ-
ation. For example, suppose fishing studies are repeated
over several years to estimate the size distribution of a
population of fish, or maybe to apportion species that
differ in size to a distribution of sonar targets. Then
selectivity parameter estimates from previous years
might form the basis for informative prior distributions
for parameters of the selectivity curves. Because the
normal-normal model is simpler to consider, suppose µjs
and σjs were estimated in several previous years, then
an average and standard error of the previous year's
estimates will help form choices for the parameters of
a prior distribution for the selectivity distributions. How-
ever, because the length distribution of the population
of fish changes from year to year, the prior param-
eters should be chosen to provide a relatively
noninformative prior for that distribution. Similarly, in
the direct case, if the fish length from the population
was sampled with nonselective gear, the mean and
standard deviation from the sample could provide a
basis for a prior for µ and σ. In this direct case, the prior
for the µjs and σjs should be relatively noninformative.
The Bayesian machinery is straightforward and well
described in the statistical literature for the normal-
normal model (e.g., Box and Tiao 1973), although this
normal-normal model may not be very useful for real-
world data. The Bayesian machinery is not quite as
straightforward for the gamma-gamma model. The in-
verse gamma distribution is sometimes used as a prior
distribution for a rate parameter, but analysts would

probably want to consider a computer-intensive analy-
sis that would not require the traditional conjugate prior-
posterior distribution relationship.

Our formulation may be helpful for riverine sonar
operators. Although net selectivity models have been
used in connection with riverine sonar for years, we
know of no instance where specific methods for river-
ine sonar have been published. When a portion of the
river is hard to ensonify, the sonar operators may won-
der if the sonar is detecting fish in that hard-to-reach
area. Sonar operators often fish in those areas, and
consider a "large" catch to be an indication that the
sonar may be underestimating salmon passage. Usu-
ally when nets are used this way, operators only report
whether they caught a large number or a small number
of fish, without doing any kind of statistical expansion.
For the gamma-gamma model, once good estimates of
the parameters have been generated, the number of
fish encountering nets can be quantified, as we have
shown. Quantifying the number of fish encountering
the nets would be an improvement over simply report-
ing the number of fish caught.

Finally, we note a lack of published gillnet selectiv-
ity studies given the possible importance of the long-
term influence of net selectivity on fish populations.
For example, the largest gillnet fishery for sockeye
salmon is in Bristol Bay, Alaska. The gillnet catch ex-
ceeded 44 million fish in 1995, and catches have ex-
ceeded 10 million fish every year since 1978. Mathisen
(1971) measured the effects of mesh size on the biol-
ogy of Bristol Bay sockeye from 1908 to 1966. With
the exception of Mathisen's study, Bue (1986) did not
find any other studies of this issue in Bristol Bay at the
time of his work. As far as we can tell, no studies of
this issue have been conducted in Bristol Bay since
Bue (1986). Ricker (1981) proposed that gillnet-size
selectivity might have altered size and age distributions
nearly 20 years ago. Large changes in Pacific salmon
body sizes and age distributions are increasingly gen-
erating scientific interest (e.g., Ishida et al. 1993;  Bigler
et al. 1996; Helle and Hoffman 1998). Recent efforts
have been aimed at hypothesized mechanisms based
on density dependence and ocean-climate change. The
role of net selectivity in controlling the body size of
spawning salmon needs additional study.
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Appendix A. Proofs.

1. Proof of Eq. (1).

Let Yjk be the lengths of fish contacting the jth net, let Xjk be the lengths of fish caught by the jth net, and let Fj(x)
be the common CDF of the Xjks, then
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2. Proof of relations among Equations 8, 9, and 10.
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Appendix B. List of Notations.

aj, bj, cj functions of the parameters

eij Pearson's residual

fj(x) PDF of lengths of fish caught by the jth net

I number of length classes

J number of gillnets

k, k1, k2 parameters used for geometric similarity

li midpoint of length class i

mj mesh size of jth net

nij catch frequency, i.e., number of class-i fish caught by jth net

n j number of fish caught by jth net

n number of fish caught by all nets

Nj number of fish encountering the jth net

N number of fish encountering all nets

p j average selectivity of the jth net for a given fish population

qij probability that a fish captured by the jth net falls in the ith size class

rj(x) selectivity curve of the jth net

X 2 Pearson's chi-square statistic

Xj random variable representing the length of a fish captured by the jth net

Yj random variable representing the length of a fish encountering the jth net

θ, θ0, θj, α, ß, µ, σ parameters

τ (θ ) asymptotic standard deviation of X 2

L1(θ ), L2(θ ) log-likelihood functions

δjk catch indicator of the kth fish for the jth net

∆ width of a length class

ϕ(x) PDF of population lengths
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