

## Department of Fish and Game

DIVISION OF SPORT FISH Soldotna

> 43961 K-Beach Rd, Ste B Soldotna, AK 99669 Main: 907-262-9368 Fax: 907-262-4709

## **MEMORANDUM**

TO: Distribution DATE: March 2, 2023

SUBJECT: Kenai River late run

Chinook salmon 2023 outlook

FROM: Robert Begich, Tony Eskelin

Division of Sport Fish, Region II

The 2023 forecast for the stock of large (≥75 cm mideye-to-tail-fork-length [METF] or approximately ≥34 inches in total length) late-run Chinook salmon in the Kenai River is 13,630 fish. This total run forecast is less than the optimum escapement goal range of 15,000 to 30,000 fish. Based upon the difference between the forecasts and actual total runs from 2018–2022 there is an 80% chance the total run will be 4,700 to 22,500 fish. This prediction interval is wide and indicates a 20% chance the total run could be outside the prediction interval. The forecast is well below the 1986–2022 average run of approximately 40,900 fish and slightly below the recent 5-year 2018–2022 average total run of approximately 14,200 large fish (Table 1). If realized, this forecast would be the 2<sup>nd</sup> largest run in the past five years but rank as the 7<sup>th</sup> lowest in the past 38 years and near the 2022 preliminary estimated total run of 14,113 large fish (Table 1).

This forecast is the sum of individual age-specific (total age 5, 6, and 7) forecasts of abundance calculated from models based on historical adult returns by age class (mean, median, geometric mean), recent age-specific run size (5-year mean, 5-year geometric mean), or sibling ratios from previous years (mean sibling, 5-year mean sibling, median sibling, most recent sibling; Table 2). The difference between forecasted and estimated total returns for each model was assessed by using the mean absolute deviation (MAD), mean absolute percent error (MAPE) and mean deviation (MD) (Tables 3 and 4). The choice of model used for each age class had minimum values of the 5-year MAPE (Table 4). In recent years, we have selected models based on the minimum MAPE because this criterion has provided the best accuracy between observed and forecasted runs by age.

The age-5 large fish forecast of 4,750 is based on the recent 5-year (2013–2017) geometric mean model (Table 4). This forecast is approximately 2,400 fish lower than the 2022 run of this age class (7,100) and is less than the recent 5-year average of 5,025 age-5 fish (Table 1).

The selected age-6 large fish forecast of 8,674 fish from the 2017 brood year was generated using the 5-year geometric mean model from returns for the 2012–2016 brood years (Table 4). The 2022 age-6 large fish run forecast is larger than the 2022 estimated run of 6,966 age-6 fish (Table 4). The 5-year mean model was the second-best model and estimated a similar sized run of 8,818 age-6 fish. (Table 4).

The age-7 large fish forecast of 206 fish from the 2016 brood year was generated using the 5-year mean sibling model (Table 4). There were no age-7 fish sampled in 2022. (Table 1).

The 2022 forecast was for a total run of 16,004 fish, while the preliminary estimated observed total run was 14,113 large fish, which is 1,891 fish (13%) less than forecasted (Table 5). It's worth noting that in each of the last 6 years the run has been less than forecast (Table 5). The error in the 2022 forecast was primarily due to under-forecasting production of age-6 fish from the 2016 brood year and over-forecasting age-7 fish from the 2015 brood year.

The 2023 forecast gives the expectation of a total run that is below the historical average and near the recent 5-year average of approximately 14,200 large fish (Table 1).

Table 1.–Estimated number of large (≥75 cm MEFT) late-run Kenai River Chinook salmon by age class and year, 1986–2022.

|               |     | Total Age in Years |        |       |           |            |
|---------------|-----|--------------------|--------|-------|-----------|------------|
| Year          | 4   | 5                  | 6      | 7     | Total Run | Escapement |
| 1986          |     | 28,843             | 28,643 | 2,881 | 60,367    | 42,101     |
| 1987          |     | 20,049             | 53,373 | 1,315 | 74,737    | 48,393     |
| 1988          |     | 5,929              | 55,173 | 9,289 | 70,391    | 42,815     |
| 1989          |     | 6,559              | 29,895 | 5,161 | 41,615    | 26,253     |
| 1990          |     | 4,818              | 26,277 | 1,884 | 32,979    | 25,139     |
| 1991          |     | 8,331              | 26,933 | 2,381 | 37,645    | 27,133     |
| 1992          |     | 9,550              | 39,956 | 1,610 | 51,116    | 37,469     |
| 1993          |     | 9,510              | 46,669 | 3,341 | 59,520    | 33,432     |
| 1994          |     | 7,332              | 42,680 | 3,149 | 53,161    | 26,145     |
| 1995          |     | 10,074             | 30,070 | 3,353 | 43,497    | 24,874     |
| 1996          |     | 14,613             | 28,372 | 968   | 43,953    | 29,056     |
| 1997          |     | 9,872              | 34,222 | 1,251 | 45,345    | 25,221     |
| 1998          |     | 8,100              | 33,132 | 1,898 | 43,130    | 33,385     |
| 1999          |     | 10,198             | 33,151 | 2,308 | 45,657    | 29,100     |
| 2000          |     | 12,019             | 28,189 | 1,511 | 41,719    | 25,502     |
| 2001          |     | 9,976              | 34,200 | 1,578 | 45,754    | 29,531     |
| 2002          |     | 13,123             | 40,530 | 2,257 | 55,910    | 40,514     |
| 2003          |     | 17,229             | 49,350 | 1,405 | 67,984    | 48,461     |
| 2004          |     | 24,465             | 64,462 | 2,385 | 91,312    | 65,112     |
| 2005          |     | 15,010             | 65,599 | 3,580 | 84,189    | 55,688     |
| 2006          |     | 10,299             | 40,112 | 6,711 | 57,122    | 39,305     |
| 2007          |     | 12,498             | 27,552 | 4,371 | 44,421    | 29,664     |
| 2008          |     | 8,869              | 30,653 | 3,158 | 42,680    | 28,094     |
| 2009          |     | 4,703              | 21,594 | 1,747 | 28,044    | 18,251     |
| 2010          |     | 8,760              | 11,719 | 1,701 | 22,180    | 13,037     |
| 2011          |     | 6,843              | 18,636 | 902   | 26,381    | 15,731     |
| 2012          |     | 8,470              | 13,681 | 1,055 | 23,206    | 22,453     |
| 2013          |     | 3,622              | 9,994  | 766   | 14,382    | 12,305     |
| 2014          |     | 4,684              | 8,225  | 494   | 13,403    | 11,980     |
| 2015          |     | 6,302              | 15,302 | 1,192 | 22,796    | 16,825     |
| 2016          |     | 10,149             | 14,430 | 550   | 25,129    | 14,676     |
| 2017          | 108 | 15,698             | 14,336 | 1,119 | 31,262    | 20,615     |
| 2018          |     | 6,312              | 11,825 | 374   | 18,511    | 17,289     |
| 2019          | 6   | 4,829              | 8,153  | 283   | 13,271    | 11,638     |
| 2020          | 7   | 2,644              | 9,184  | 353   | 12,219    | 11,909     |
| 2021          | 11  | 4,206              | 7,962  | 486   | 12,665    | 12,147     |
| 2022          |     | 7,132              | 6,966  | 0     | 14,113    | 13,974     |
| Average       | 33  | 10,044             | 28,681 | 2,129 | 40,859    | 27,709     |
| Recent 5-Year |     |                    |        |       |           |            |
| Average       | 8   | 5,025              | 8,818  | 302   | 14,156    | 13,391     |

Table 2.–Description of models used in forecasting the 2023 large (≥75 cm METF) Kenai River Chinook salmon late run.

| Model                                                                         | Description                                                                                                                        |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mean                                                                          | Mean return for the specified age class using all available return years. <sup>a</sup>                                             |  |  |
| 5-year mean                                                                   | Mean of the 2018–2022 return for the specified age class.                                                                          |  |  |
| Median                                                                        | Median return for the specified age class using all available return years.                                                        |  |  |
| Mean sibling                                                                  | Mean of sibling ratios (returns of age x/returns of age x-1) for all returns multiplied by the return of age x-1 siblings.         |  |  |
| 5-year mean sibling                                                           | Mean of sibling ratios (returns of age x /returns of age x-1) for previous 5 returns multiplied by the return of age x-1 siblings. |  |  |
| Median sibling                                                                | Median of sibling ratios (returns of age x/returns of age x-1) for all returns multiplied by return of age x-1 siblings.           |  |  |
| Most recent sibling                                                           | Most recent sibling ratio (return age $x$ /return age $x$ -1), multiplied by the return of age $x$ -1 siblings.                    |  |  |
| Geometric mean                                                                | Geometric mean of the return for the specified age class using all available return years.                                         |  |  |
| -year geometric mean Geometric mean of the 2018–2022 return for the specified |                                                                                                                                    |  |  |

<sup>&</sup>lt;sup>a</sup> 1981–2017 for age-5 fish, 1980–2016 for age-6 fish, 1979–2015 for age-7 fish.

Table 3.—Description of statistics used to assess model fit for the 2023 Kenai River late-run Chinook salmon forecasts for large (>75 cm METF) fish.

| Statistic                          | Description                                                                                                                                                                                                    |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Mean Absolute Deviation (MAD)      | Sum of the absolute values of the deviations in the estimated total return from the sum of actual total returns for each model divided by the sample size (5 years).                                           |  |  |  |
| Mean Deviation (MD)                | Sum of the deviations in the estimated total return from the sum of actual total returns for each model divided by the sample size (5 years).                                                                  |  |  |  |
| Mean Absolute Percent Error (MAPE) | Sum of the absolute values of the deviations of the estimated total return from the sum of actual returns for each model divided by the sample size (5 years) expressed as a percentage of the actual returns. |  |  |  |

Table 4.–2023 Kenai River late run Chinook salmon forecasts for large (≥75 cm METF) fish using several models, and the relative fit of hindcasts-of-forecasts of each model to the previous 5 years of actual runs. Transparent boxes indicate the lowest MAPE for each age class forecast. Shaded boxes indicate forecasts that were selected to be part of the total run forecast for each age class. See Table 2 for a description of each model.

|                       | Forecast | 5-year |                   |        |  |
|-----------------------|----------|--------|-------------------|--------|--|
| Model                 | 2023     | MADa   | MAPE <sup>b</sup> | MD     |  |
| Age-5                 |          |        |                   |        |  |
| Mean                  | 9,522    | 5,467  | 135%              | 5,467  |  |
| 5-year mean           | 5,025    | 3,141  | 86%               | 2,984  |  |
| Median                | 8,815    | 4,474  | 113%              | 4,474  |  |
| Geometric mean        | 8,778    | 4,255  | 108%              | 4,255  |  |
| 5-year geometric mean | 4,750    | 2,593  | 70%               | 1,965  |  |
| Forecast estimate     | 4,750    |        |                   |        |  |
| Age-6                 |          |        |                   |        |  |
| Mean                  | 28,681   | 21,739 | 257%              | 21,739 |  |
| 5-year mean           | 8,818    | 3,204  | 40%               | 3,204  |  |
| Median                | 28,372   | 20,469 | 243%              | 20,469 |  |
| Mean sibling          | 20,973   | 11,910 | 118%              | 11,910 |  |
| 5-year mean sibling   | 12,288   | 5,934  | 57%               | 4,234  |  |
| Median sibling        | 19,375   | 10,027 | 100%              | 9,779  |  |
| Most recent sibling   | 11,812   | 5,038  | 56%               | 1,382  |  |
| Geometric mean        | 23,923   | 17,615 | 208%              | 17,615 |  |
| 5-year geometric mean | 8,674    | 2,898  | 36%               | 2,898  |  |
| Forecast estimate     | 8,674    |        |                   |        |  |
| Age-7                 |          |        |                   |        |  |
| Mean                  | 2,129    | 1,995  | 3,335%            | 1,995  |  |
| 5-year mean           | 302      | 364    | 756%              | 259    |  |
| Median                | 1,610    | 1,426  | 2,496%            | 1,426  |  |
| Mean sibling          | 459      | 415    | 790%              | 415    |  |
| 5-year mean sibling   | 206      | 355    | 540%              | 312    |  |
| Median sibling        | 396      | 319    | 654%              | 319    |  |
| Most recent sibling   | 13       | 283    | 596%              | 185    |  |
| Geometric mean        | 1,408    | 1,443  | 2,427%            | 1,443  |  |
| 5-year geometric mean | 194      | 299    | 655%              | 292    |  |
| Forecast estimate     | 206      |        |                   |        |  |
| TOTAL RUN FORECAST    | 13,630   |        |                   |        |  |

<sup>&</sup>lt;sup>a</sup>mean absolute deviation, <sup>b</sup>mean absolute percent error, <sup>c</sup>mean deviation

Table 5.—Accuracy of Kenai River late-run Chinook salmon forecasts for large ( $\geq$ 75 cm METF) fish, 2017–2022.

| Year    | Forecasted total run | Estimated total run | Difference | Relative<br>difference | Overall effect |
|---------|----------------------|---------------------|------------|------------------------|----------------|
| 2017    | 33,613               | 31,262              | 2,351      | -8%                    | overforecasted |
| 2018    | 21,508               | 18,511              | 2,997      | -16%                   | overforecasted |
| 2019    | 21,746               | 13,271              | 8,475      | -64%                   | overforecasted |
| 2020    | 22,707               | 12,219              | 10,488     | -86%                   | overforecasted |
| 2021    | 18,406               | 12,665              | 5,741      | -45%                   | overforecasted |
| 2022    | 16,004               | 14,113              | 1,891      | -13%                   | overforecasted |
| Average | 22,331               | 17,007              | 5,324      | 39%ª                   |                |

<sup>&</sup>lt;sup>a</sup> Average absolute difference and relative difference.

## Distribution:

Headquarters: Rabung, Bowers, Taube.

Anchorage: Dye, McKinley, M. Miller, Erickson, Lewis, Poetter, J. Miller, Blaine, Baumer, Reimer,

Webster, Templin, Munro.

Soldotna: Gates, Wood, Key, Massengill, Lipka, Stumpf.

Homer: Booz, Dickson.

Palmer: Decovich, Ivey, Oslund.