Genetic Studies of Chinook Salmon in the Kuskokwim River, Alaska

Gene Conservation Laboratory
Division of Commercial Fisheries,
Alaska Department of Fish and Game,
333 Raspberry Road, Anchorage, Alaska 99518, USA

Introduction
The subsistence fishery for Chinook salmon in the Kuskokwim River region is one of the largest and most significant in Alaska. The average annual subsistence harvest between 1981 and 2000 was approximately 85,000 Chinook salmon. Low returns in recent years have yielded shortfalls in escapements basin-wide and lead to fishing restrictions, which have directly affected local communities. Sustained productivity of salmon is only possible if genetic diversity and population structure are maintained. We investigated the genetic diversity of Chinook salmon from the Kuskokwim River using three different types of genetic markers: Allozymes, microsatellites and single nucleotide polymorphisms (SNPs). Markers were used to develop a baseline that will be useful for estimating run timing and entry patterns within the river, and examining the effectiveness of management actions for the conservation of the resource.

1) Allozyme Explanation
Examines variation in protein structure caused by differences in the genetic code.

Advantages
- Over 30 years of experience with this technique
- Extensive databases available

Disadvantages
- Requires expensive and hazardous handling in the field and laboratory
- Sampling is generally lethal
- Limited coverage of the genome

2) Microsatellites Explanation
Examines repeated segments in the noncoding regions of the genetic code.

Advantages
- Sampling does minimal damage to the salmon
- Easier to handle the samples in the field
- High variability improves sensitivity

Disadvantages
- High variability requires larger sample sizes
- Limited coverage of the genome
- Difficult to repeat analyses between laboratories

3) Single Nucleotide Polymorphisms (SNPs)
Explanation
Examines changes at a single position in the genetic code.

Advantages
- Sampling does minimal damage to the salmon
- Easier to handle the samples in the field
- Laboratory analysis is least expensive and rapid
- Can occur anywhere in the genome
- Easy to duplicate analyses between laboratories

Disadvantages
- Limited to two potential forms at each marker

Population Structure Investigation
One method used to investigate the similarity between populations was to calculate the genetic distance between populations using each of the three types of genetic marker. These distances were drawn in three dimensions to display relationships between populations. The genetic information provided by this study can potentially be used to identify populations of Chinook salmon harvested in Kuskokwim River fisheries. By initiating a harvest that only has salmon from one of the four groups defined above and applying the genetic information from each type of marker, we can test how useful the data are for this purpose. Perfection is 100% correctly assigned to the contributing group; above 90% (the dotted line) is considered “Very Accurate.” This test was repeated for each group using each of the genetic markers separately (Top Graph). The dot represents the best estimate and the line shows how confident we are; shorter lines show higher confidence. Microsatellites do the best overall, but SNPs help identify the Goodnews/Kanektok population. Combining the microsatellite and SNP data improves our accuracy and confidence in identifying these groups (Bottom Graph).

Stock Identification Results
The genetic information provided by this study can potentially be used to identify populations of Chinook salmon harvested in Kuskokwim River fisheries. By initiating a harvest that only has salmon from one of the four groups defined above and applying the genetic information from each type of marker, we can test how useful the data are for this purpose. Perfection is 100% correctly assigned to the contributing group; above 90% (the dotted line) is considered “Very Accurate.” This test was repeated for each group using each of the genetic markers separately (Top Graph). The dot represents the best estimate and the line shows how confident we are; shorter lines show higher confidence. Microsatellites do the best overall, but SNPs help identify the Goodnews/Kanektok population. Combining the microsatellite and SNP data improves our accuracy and confidence in identifying these groups (Bottom Graph).

Conclusions
- Allozyme, microsatellite and SNP markers all depict similar genetic structure of the Chinook salmon populations of the Kuskokwim Drainage.
- Four groups of populations were identified based on genetic and geographic factors.
- The microsatellite and SNP data show potential for identifying populations captured in Kuskokwim River salmon fisheries.
- Allozyme data will be used in a larger baseline for trawl bycatch studies.

Acknowledgements
Funding for this study was provided by the USFWS Office of Subsistence Management under project PIS 01-070, Genetic Diversity of Chinook Salmon from the Kuskokwim River, and from the State of Alaska. Ken Harper of the USFWS Kenai Fishery Resources Office provided some samples from federal lands. Blaine Leick, Kevin Petola and Rhiannon Wheeler are Kuskokwim Area residents who provided assistance with this project.

Kuskokwim River Chinook Sampling Sites
Baseline Collections
Crews from Alaska Department of Fish and Game, US Fish and Wildlife Service, Kuskokwim Native Association, and subsistence users collected samples from Chinook salmon at 14 locations including weir sites, subsistence fisheries near spawning grounds, and on the spawning grounds. The target sample size was 100 adults per collection.

Clipping a piece of fin
Samples stored in liquid nitrogen
Removing salmon from net
Sampling cheek muscle
Laboratory analysis

Genetic diversity and population structure are maintained. We investigated the genetic diversity of Chinook salmon from the Kuskokwim River using three different types of genetic markers: Allozymes, microsatellites and single nucleotide polymorphisms (SNPs). Markers were used to develop a baseline that will be useful for estimating run timing and entry patterns within the river, and examining the effectiveness of management actions for the conservation of the resource.

One method used to investigate the similarity between populations was to calculate the genetic distance between populations using each of the three types of genetic marker. These distances were drawn in three dimensions to display relationships between populations. The genetic information provided by this study can potentially be used to identify populations of Chinook salmon harvested in Kuskokwim River fisheries. By initiating a harvest that only has salmon from one of the four groups defined above and applying the genetic information from each type of marker, we can test how useful the data are for this purpose. Perfection is 100% correctly assigned to the contributing group; above 90% (the dotted line) is considered “Very Accurate.” This test was repeated for each group using each of the genetic markers separately (Top Graph). The dot represents the best estimate and the line shows how confident we are; shorter lines show higher confidence. Microsatellites do the best overall, but SNPs help identify the Goodnews/Kanektok population. Combining the microsatellite and SNP data improves our accuracy and confidence in identifying these groups (Bottom Graph).

The genetic information provided by this study can potentially be used to identify populations of Chinook salmon harvested in Kuskokwim River fisheries. By initiating a harvest that only has salmon from one of the four groups defined above and applying the genetic information from each type of marker, we can test how useful the data are for this purpose. Perfection is 100% correctly assigned to the contributing group; above 90% (the dotted line) is considered “Very Accurate.” This test was repeated for each group using each of the genetic markers separately (Top Graph). The dot represents the best estimate and the line shows how confident we are; shorter lines show higher confidence. Microsatellites do the best overall, but SNPs help identify the Goodnews/Kanektok population. Combining the microsatellite and SNP data improves our accuracy and confidence in identifying these groups (Bottom Graph).