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ABSTRACT 

Estimating the relative contributions of distinct populations in a mixture of organisms is a 

common task for fisheries and wildlife managers and researchers.  There is increasing interest in 

comparing these mixture contributions across time or space.  Researchers regularly compare 

mixtures by checking for overlap in the interval estimates for each population contribution from 

each mixture.  This method of comparison is subject to inflated Type I error rates; done 

carefully, the technique has limited power due to its focus on marginal comparisons.  More 

fundamentally, the method implicitly employs an inappropriate measure of mixture difference.  

A more powerful approach is to compare mixtures using a likelihood ratio test.  In applications 

where the standard asymptotic theory does not hold, the null reference distribution can be 

obtained through parametric bootstrapping.  Using the likelihood ratio to test competing mixture 

models encourages modeling the change in mixture contributions as a function of covariates in 

addition to testing simple hypotheses.  The method is demonstrated with an analysis of potential 

sampling bias in the estimation of population contributions to the commercial sockeye salmon 

(Oncorhynchus nerka) fishery in Upper Cook Inlet, Alaska. 

 

Keywords: discrete mixture analysis, genetic stock identification, mixed stock analysis, mixture 

difference, compositional data, simultaneous inference. 
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1. INTRODUCTION 

Mixed stock analysis (MSA) estimates the relative contributions of distinct populations 

in a mixture of organisms.  MSA is an important tool in fisheries management and research 

(Begg, Friedland, and Pearce 1999; Shaklee, Beacham, Seeb, and White 1999), marine mammal 

research (Pella and Masuda 2001), and wildlife management and conservation (Pearce et al. 

2000).  MSA has also been used as an introgression index to calculate the percentage of genes 

from source or parental populations (Planes and Doherty 1997).  While methods for MSA 

estimation have appeared in the fisheries literature for many years (Grant, Milner, Krasnowski, 

and Utter 1980; Fournier, Beacham, Ridell, and Busack 1984; Millar 1987; Pella and Milner 

1987), and much longer in the statistics literature (see reviews in Redner and Walker 1984; 

Titterington, Smith, and Makov 1985), new applications continually require methodological 

extensions. 

Recently fisheries researchers have begun investigating spatial or temporal homogeneity 

in mixtures by comparing mixture estimates from two or more independent samples.  Differences 

between samples are assessed by looking across the samples for overlap of the confidence 

intervals for a given population�s contribution (e.g., Wilmot, Kondzela, Guthrie, and Masuda 

1998; McParland, Ferguson, and Liskauskas 1999; Shaklee et al. 1999; Ruzzante, Taggart, Lang, 

and Cook 2000).  This approach is subject to both inflated Type I error rates due to multiple 

testing and inflated Type II error rates due to focusing on marginal, rather than joint, summary 

statistics.  More fundamentally, this approach implicitly employs an inappropriate measure of 

mixture difference that ignores the dependence among contribution estimates due to the 

constraint that they sum to one (DISCUSSION). 
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This paper extends the maximum likelihood framework commonly employed in MSA 

estimation to compare competing mixture models using the likelihood ratio.  Mixture 

homogeneity across independent samples is assessed by a likelihood ratio test of the null model, 

in which all samples come from a common mixture, versus the alternative model, in which each 

sample comes from a potentially different mixture.  Asymptotic theory, Monte Carlo simulation, 

or parametric bootstrapping can provide approximate P values for the test.  Adopting a 

likelihood ratio framework encourages researchers to begin explicitly modeling mixtures as 

functions of covariates in addition to testing simple hypotheses.  The method has been 

implemented in the latest release of the freeware SPAM: Statistical Package for Analyzing 

Mixtures (version 3.5; Reynolds 2001, available online at 

http://www.cf.adfg.state.ak.us/geninfo/research/genetics/Software/SpamPage.htm). 

We introduce the basic finite mixture model, derive the likelihood ratio test of M-sample 

mixture homogeneity, and present three approaches to approximating the null reference 

distribution (METHODS).  The method is illustrated with an example from the sockeye salmon 

(Oncorhynchus nerka) commercial fishery in Upper Cook Inlet, Alaska (APPLICATION).  

Parametric bootstrapping is used to derive the null reference distribution.  We compare the 

performance of the likelihood ratio method and the confidence interval method both in terms of 

the current application and in general (DISCUSSION).  Marginal measures of �mixture 

difference� appropriate to compositional data are briefly discussed.   The finite mixture model is 

extended to two-stage sampling (APPENDIX). 
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2. METHODS 

2.1 The Finite Mixture Model 

A friend goes into a candy store.  Two jars contain strawberry candies and licorice 

candies, but the jars differ in the proportions of each flavor.  She randomly grabs handfuls of 

candy from each well-mixed jar (the baseline populations), combines the handfuls into a single 

bag (the mixture), pays for it, walks out of the store and hands it to you.  She tells you the 

original proportions in each jar, then says you may have some candy if you can tell her what 

portion of the mixture came from each jar.  This is a mixture problem.  More precisely, it is a 

finite mixture problem as only two jars contributed to the mixture. 

Identifiability of the mixture requires that the probability density functions of the 

characteristic (e.g., flavor) differ across the contributing populations (e.g., jars) (Redner and 

Walker 1984).  Characteristics commonly used in fisheries include parasite assemblages (Moles, 

and Jensen 2000; Urawa, Nagasawa, Margolis, and Moles 1998), scale patterns (Marshall et al. 

1987), morphometrics and meristics (Fournier et al. 1984), artificial tags such as thermal marks, 

coded wire tags, or fin clips (Ihssen et al. 1981), and, increasingly, genetic markers (Seeb and 

Crane 1999; Ruzzante et al. 2000).  Although discrete characteristics are not essential (Millar 

1987), they are assumed in the following presentation.  The model holds for continuous 

characteristics as well. 

Let n items be randomly sampled from a mixture of J populations.  Let the jth population 

contribute an unknown proportion θj >= 0 to the mixture, Σθj  = 1; Θ = (θ1, ..., θJ). If the 

characteristic measured on the ith sample observation is denoted by xi, then the probability of 

observing the sample X = {x1, x2, ...,xn} is:  
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n n J

i j j
j 1i 1 i 1

Pr( | ) Pr(x  |  ) *Pr (x  |  )
== =

 
= = θ

 
∑∏ ∏X Θ, Φ Θ, Φ i jφ      (1) 

where φj  is the probability density function of the characteristic in population j, reiterated in the 

notation Prj( ), and Φ= (φ1, ..., φJ).  The model, and its extension below, assumes that all 

potentially contributing populations are included in the set {Pop. 1, Pop. 2, ..., Pop. J} (see 

Smouse, Waples, and Tworek 1990).  Multivariate characteristics are easily incorporated by 

appropriate expansion of the Prj(xi|φj) terms (Millar 1987).  

 Estimation. 

Estimating the mixture proportions, Θ, requires information regarding the (possibly 

multivariate) characteristic probability density function, φj, for each contributing population.  

This is generally available in the form of a sample from each baseline population.  The mixture 

and baseline samples can be used with the expectation-maximization algorithm (EM, Dempster, 

Laird, and Rubin 1977) to solve the unconditional maximum likelihood problem (Redner and 

Walker 1984).  In most fisheries applications, however, researchers fix the nuisance parameters, 

φj, at their estimates from only the baseline samples, φ� j (Millar 1987).  Maximum likelihood is 

then used to estimate the unknown Θ conditional on φj = φ� j.  This conditioning is justified by the 

fact that, relative to the baseline sample, there is generally little information on φj in the mixture 

sample (Milner, Teel, Utter, and Burley 1981). 

Uncertainty in the estimates of mixture proportions, Θ� , arises from sampling uncertainty 

in both the mixture and the population baseline samples.  In practice, these sampling 

uncertainties are accounted for by nonparametric bootstrap resampling from the mixture sample 

and parametric bootstrap resampling from the baseline characteristic distributions, φ� j.  The 
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bootstrap mixture estimates are then used to construct confidence intervals for each unknown 

baseline population contribution, θj (ADF&G 2000). 

The conditional maximum likelihood estimation (CMLE) method is implemented in the 

SPAM software package (see Debevec et al. 2000).  SPAM uses the EM algorithm, a conjugate 

gradient search algorithm, and/or iteratively reweighted least squares to numerically solve the 

CMLE problem (for algorithm implementation details see Pella, Masuda, and Nelson 1996). 

The CMLE method can produce biased estimates if contributing populations are missing 

from the baseline or, in the case of discrete characters, if the characteristic distribution estimate 

assigns zero probability to values that actually do occur in a baseline population but were not 

observed in the sample, that is, sampling zeros (Smouse, Waples, and Tworek 1990).  Methods 

have been developed to account for missing baseline populations by applying the EM algorithm 

to estimate the missing φj along with Θ (Pella and Milner 1987; Smouse et al. 1990).  The 

problem of sampling zeros also can be addressed by use of the EM algorithm (Smouse et al. 

1990) or via a Bayesian analysis using shrinkage estimators (Pella and Masuda 2001). 

2.2 Extension to Two Mixture Samples 

The basic mixture model is easily extended to two (or more) independent samples. Let m 

index the M independent simple random samples from possibly different mixtures of the same 

baseline populations, Θ1, Θ2, ..., Θ 
M.  E.g., m could index samples taken through time or space.  

Following the previous notation, the general mixture model for the sequence of samples,{ X1 = 

{x1
1, x1

2, ..., x1
n_1}, ..., XM = {xM

1, xM
2, ..., xM

n_M}}, allowing each sample to come from a 

different mixture, Θ1, Θ2, ..., Θ 
M, is: 
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n _mM J
m m
j j i j
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== =
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Note that the model assumes the characteristic distribution function for each population, φj, is 

constant with regard to the index m (e.g., population characteristics do not change through time).  

We revisit this point in DISCUSSION. 

 Estimation. 

The general model, in which the M independent samples potentially come from M 

different mixtures, can be fit by estimating each mixture independently of the others using the 

CMLE method described above.  The constrained null model, in which the M samples come 

from a common mixture, Θ0, can be fit by combining the mixture samples into a single sample 

and again using the CMLE approach described above.  Both cases follow from the likelihood 

under (2).  Unconditional estimation is considered in DISCUSSION. 

2.3 Testing Mixture Equality  

Suppose one has samples from M potentially different mixtures, each mixture consisting 

of contributions from a known set of baseline populations.  A likelihood ratio test of equality of 

the M mixture proportions, Ho: Θm = Θ0 for m = 1, ..., M, versus the general inequality 

alternative, follows directly from model (2).  The ratio of the likelihood under the general model 

to the likelihood under the constrained null model, conditional on φj = φ� j, reduces to: 

{ }
{ }

1 2 M

0 0 0

�L( , ,..., |{ , ,..., }, )
LR �L( , ,..., |{ , ,..., }, )

Θ Θ Θ Φ
= =

Θ Θ Θ Φ
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X X X
X X X

{ } { }n _ m n _ mM MJ Jm m 0 m
j j i j j j i j

j 1 j 1m 1 i 1 m 1 i 1

� �* Pr (x | ) * Pr (x | )
= == = = =

θ φ θ φ∑ ∑∏ ∏ ∏ ∏ .   (3) 
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 Null Reference Distribution Method 1: Asymptotic Theory. 

The null hypothesis of mixture equality can be tested by comparing �2 * ln(LR) to its 

asymptotic distribution under the null model, a χ2 with degrees of freedom d = (J-1)*(m-1) 

(Stuart, Ord, and Arnold 1999).  However, the approximations underlying this asymptotic result 

break down when any of the mixture parameters take values near the boundary of the parameter 

space (Stuart et al. 1999), that is, when one or more populations contribute little or nothing to the 

mixture.  As this is quite often the case in genetic stock identification problems (Millar 1987), 

the asymptotic results are frequently unreliable.  Although the appropriate family of asymptotic 

distributions is known for tests on the boundary of the parameter space (Self and Liang 1987), it 

is not simple to employ this theoretical result. 

 Null Reference Distribution Method 2: Monte Carlo Simulation (Θ0 Known). 

The null distribution can be approximated by Monte Carlo simulation if the specific 

value of Θ0 is known a priori (Davison and Hinkley 1997).  For r = 1, ..., R, iterations: 

1. Simulate N observations from model (1) using the known null mixture proportions Θ0 and 

the baseline population characteristic densities φ�  j.  Here N = Σn_m, where n_m is the 

number of observations in mixture sample m, m = 1, ..., M ; 

2. Fit the single mixture model (1) to the Ν simulated observations, giving an estimate Θ̂0,*r; 

3. Randomly assign the Ν simulated observations to M simulated mixture samples of size {n_1, 

n_2, �, n_M}; 

4. Fit the general M-mixture model (2) to the simulated observations by estimating the M 

different sets of mixture proportions, Θ̂m,*r, m = 1,..., M; 
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5. Using the M simulated mixture samples and the estimates Θ̂0,*r and {Θ̂m,*r}, calculate and 

record the likelihood ratio (3), LR*r. 

This process gives a sample of size R, {LR*r: r = 1, ..., R}, from the unknown null reference 

distribution.  Calculate the observed likelihood ratio, LRobs, by fitting the general and restricted 

models as described in the previous section and plugging the estimates into (3).  An approximate 

P value for the test is then given by   (Davison and Hinkley 

1997), where the indicator function I( ) has value one when the argument is true and zero 

otherwise.  Generally, R in the range 1000 � 10000 will guarantee very little loss of power due to 

finite simulation (Davison and Hinkley 1997, sec. 4.2.5). 

( ) (*r obs

r
1 I LR LR / 1 R+ ≥

 
∑ ) +

 Null Reference Distribution Method 3: Parametric Bootstrapping (Θ0 Unknown). 

The appropriate value of Θ0 will generally not be known prior to analysis of the data.  In 

this case, we first estimate Θ0 then perform parametric bootstrapping (Davison and Hinkley 

1997) to approximate the null reference distribution:  

1. Estimate Θ0 from the M observed mixture samples by combining samples and fitting model 

(1); 

2. Follow steps 1 � 5 outlined above, simulating from the estimated null mixture Θ̂0. 

Uncertainty in the conditional values of the nuisance parameters, φ� j, can be incorporated 

into either simulation approach by parametric bootstrap resampling from each φ� j before 

constructing the null mixture during each of the R simulation rounds. 

If a significant difference is detected, one could continue the model selection process by 

fitting less-constrained null models.  For example, models in which subsets of the M samples 
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come from identical mixtures or the M samples differ in the contributions from only a subset of 

the baseline populations.  The software package SPAM (Reynolds 2001) currently allows the 

former investigation, but not the latter.  

3. APPLICATION: COMPARING SALMON HARVEST MIXTURES 

The sockeye salmon fishery in Upper Cook Inlet, Alaska (Figure 1) is important to the 

local economy.  Over the last ten years, the total annual value of commercial harvests in the 

region ranged from US$8.8 to $111.1 million, with sockeye salmon comprising 80% - 97% of 

the annual value (Ruesch and Fox 1999).  The fishing fleet is very efficient; the approximately 

600 drift gillnet vessels can harvest as much as 70% of the available fish in a single 12-hr 

opening (Seeb et al. 2000).   

Most sockeye salmon home with precision, returning from the ocean to their natal 

habitats to spawn and then die (Burgner 1991).  Among the Pacific salmonids, the sockeye 

salmon life cycle generally places the greatest emphasis on early life use of a lake.  Although the 

adults may spawn in many diverse environments (i.e. rivers, sloughs, lake shores), survival of 

their offspring generally depends on the offspring finding a rearing lake shortly after emergence, 

though there are types that emigrate directly to estuaries or oceans (Burgner 1991).  

Consequently, low rates of straying (spawning in a location other than the natal habitat) and the 

demands of different spawning environments can lead, over time, to significant genetic, 

morphometric and behavioral differences within a relatively small geographic area (e.g. Woody, 

Olsen, Reynolds, and Bentzen 2000).   

To maintain genetic diversity and future productivity in the face of more immediate 

demands for economic returns by highly efficient fishers, fishery managers must accurately 
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identify the harvest contributions of the major Upper Cook Inlet sockeye salmon stocks.  

Sustainable management will be very difficult or unachievable otherwise.  Seeb et al. (2000) 

identified 44 genetically distinct populations, or stocks, within the major sockeye salmon-

producing areas in Upper Cook Inlet.  Overharvesting any of these stocks will affect the genetic 

diversity within the region; loss of a population means loss of unique combinations of genetic 

characters.  This will also affect the economic value of the fishery as lost stocks are generally not 

replaceable and will no longer produce salmon for future harvests.   

Mixed stock analysis has been conducted previously on Upper Cook Inlet sockeye using 

a number of different characteristics: scale patterns (Marshall et al. 1987), parasites 

(Waltemeyer, Tarbox, and Brannian 1993), and genetic markers (Grant et al. 1980; Seeb et al. 

2000).  Of these, genetic stock identification is best able to identify mixture proportions with the 

accuracy and precision required by managers (Seeb et al. 2000).   

In their study, Seeb et al. (2000) collected samples of spawning salmon from each of the 

44 baseline populations (Figure 1, Table 1).  A target sample size of 100 individuals was selected 

to give acceptably precise allele frequency estimates (Allendorf and Phelps 1981; Waples 1990).  

Allozyme electrophoresis provided each individual�s genotype at 27 discriminating unlinked loci 

(see Seeb et al. 2000).  For management purposes, the contributions from these baseline 

populations are aggregated into six regions determined by geography and genetic diversity (West 

Cook Inlet, Susitna/Yentna, Knik, Northeast Cook Inlet, Kenai, and Kasilof).  Most sockeye 

salmon come from four of these regions, all of which contain major river drainages (Figure 1): 

the Kenai River drainage, the Kasilof River drainage, the Susitna River drainage (Susitna/Yentna 

Region), and the Crescent River drainage (West Cook Inlet Region) (Tobias and Tarbox 1999). 
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3.1 The Problem 

The mixture of interest is the sockeye harvest in the Central District fishery during a 12-

hour opening (Figure 1).  Each boat delivers its catch to one of eleven processors.  Traditionally, 

the harvest was sampled only at the largest processor, Wards Cove (Seeb et al. 2000).  To 

ascertain whether this procedure produces biased mixture estimates, replicate samples from a 

second processor, Salamatof Seafoods, Inc., were collected on four openings during the 1997 and 

1998 seasons (Table 2).  The equality of the mixture estimates from the two processors was 

tested. 

The mixture sample at each processor was obtained by two-stage sampling: boats were 

randomly sampled from the incoming sequence of deliveries, and a random sample of sockeye 

salmon were selected from each boat�s catch.  Forty boats were sampled at Wards Cove at a rate 

of 10 fish per boat, for a target sample size of 400 fish.  Salamatof Seafoods Inc., the smaller 

processor, serves a fleet of 20 � 30 boats.  In 1997, the goal was to sample 400 fish per period, so 

between 10 and 15 fish were sampled per boat depending on the number of boats returning.  In 

1998, the goal was revised to 10 fish per boat for a total of 200 fish per period.  Model (2) is 

extended to handle the two-stage sampling design in the APPENDIX.  The resulting likelihood 

ratio is identical to (3), so the details of simulating the null reference distribution remain as given 

above. 

Parametric bootstrapping was used to test the null hypothesis that the two processor 

samples came from the same mixture (R = 5000 simulations).  All mixture simulations and 

model fitting were done in SPAM using CMLE; final analysis of the simulation results was 

conducted in S-Plus 2000 (Insightful, Inc., Seattle, WA).  Before generating each null mixture 
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simulation, the allele frequency estimates for each baseline population, φ̂j, were parametrically 

bootstrapped to incorporate uncertainty in their values into the null reference distribution. 

3.2 Results 

For three of the four openings, the likelihood ratio test revealed no evidence against the 

null hypothesis that processors sampled a common harvest mixture (Table 2).  Ninety percent 

bootstrap confidence intervals were calculated for each opening, both for comparison with other 

published mixture comparison methods (Figure 2) and for a posteriori insight when mixtures 

estimates were found to differ (see DISCUSSION).  Note that the question of mixture equality 

and the associated likelihood ratio test focus on baseline populations, not management regions.  

However, results are generally presented and published as regional estimates.  Therefore 

bootstrap confidence intervals of the total contribution from each of the six management regions 

were calculated for each processor-specific estimate.   

Intervals were calculated using Efron�s percentile method (B=1000 resamples) (Davison 

and Hinkley 1997).  Two sets of bootstrap confidence intervals were calculated. (i) For the 

processor-specific estimates of the total contribution from each region (Table 2, Figure 2); 

published assessments of mixture equality generally focus on whether the confidence intervals 

for each region overlap across mixtures (e.g., processors). (ii) For the difference in processor-

specific estimates of the total contribution from each region; that is θi
A - θi

B (Table 2); this is a 

�natural� extension of (i).  Neither confidence interval approach is fully recommended due to the 

lack of power and inappropriate handling of the dependence among region estimates (see 

DISCUSSION). 
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In the first opening the boat from which each fish was sampled was not recorded, making 

it impossible to replicate the two-stage sampling in the bootstrap confidence interval 

calculations.  All interval estimates (Table 2, Figure 2) therefore assume simple random 

sampling and hence may underestimate the true variance.  Confidence intervals incorporated 

parametric resampling of the allele frequencies from each baseline population and nonparametric 

resampling of each mixture sample, following ADF&G (2000). 

4. DISCUSSION 

4.1 Upper Cook Inlet Sockeye Salmon 

Processor-specific mixture differences may arise from a combination of spatial 

heterogeneity in the harvestable Central District sockeye salmon mixture and clustering during 

harvest among boats that deliver to a specific processor.  If such clustering regularly occurs, then 

the current harvest-sampling plan may need to be revised.  One possibility would be to sample 

every processor and develop a weighted average, across processors, of the mixture estimates, 

with weights proportional to each processor�s portion of the total harvest.  

4.2 Method Comparison 

The mixture equality problem is often assessed by checking, for each contributing region, 

the overlap among confidence intervals from the different mixture samples (Seeb et al. 1999; 

Wilmot et al. 1998, McParland et al. 1999, Shaklee et al. 1999, Ruzzante et al. 2000) (e.g., 

Figure 2).  This is a very poor approach, fraught with statistical deficiencies both obvious and 

subtle.  It suffers from both (i) inflated Type I error rates arising from the simultaneous 

inferences, and  (ii) inflated Type II error rates arising from the use of marginal (region-specific) 

measures of mixture difference.   
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One can control the Type I error rate when comparing M-independent (1-α)*100% 

confidence intervals for overlap by enlarging each interval�s level to (1-α)(1/M)*100%, producing 

a simultaneous confidence level of (1-α)*100% across the set of M intervals (Hsu 1996).  

However, the inflation arising from repeating this �overlap check� across J-1 sets of intervals 

remains.  

More importantly, these marginal comparisons are much less powerful than a single 

omnibus test of the difference between mixture compositions.  The overlap method fails to 

suggest any marginal difference between processor estimates (Figure 2, Table 2), while the 

likelihood ratio test reveals a very significant difference on the 14 July 1997 sampling event 

(Figure 3, Table 2).   

The general loss of power inherent in marginal comparisons is magnified in the context 

of mixtures because of the dependence among mixture contributions; mixtures are constrained to 

lie on the simplex, θI >= 0, Σθi = 1.  A change in one region contribution necessitates a change in 

at least one other region contribution.  The overlap method and its extension - looking at the 

marginal difference in region contributions ΘA - ΘB = (θA
1 - θB

1,�, θA
J - θB

J), ignore this 

dependence (Table 2).  For example, the mixture difference on the 14 July 1997 sampling event 

is driven by simultaneous shifts in the contributions from West Cook Inlet, Susitna / Yentna, and 

Kenai regions (Table 2, Figure 3); the unadjusted marginal confidence intervals (θWC
S/Y - θSal

S/Y, 

Table 2) only detects the shift in the Sustina / Yenta contribution. 

There is ongoing research in the development of an appropriate measure of mixture 

difference, one that captures this dependence among region contributions (e.g., Aitchison 1982, 

1986, 1992; Billheimer, Guttorp and Fagan 2001).  The (inverse) addition operator for 
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compositions (Aitchison 1986, 1992) has been used to develop a measure of distance between 

compositions (Billheimer et al. 2001).  In conjunction with the logistic normal distribution 

(Aitchison 1982, 1986), this provides an alternative means of testing mixture equality.  

Unfortunately, the operator and distance measure both assume non-zero contributions, limiting 

practical implementation.  Also, as the originators acknowledge, the operator and measure are 

difficult to interpret (Billheimer et al. 2001).  Even visual display of composition data presents 

methodological and implementation difficulties (e.g., Figure 3 and the visual compression of 

distances near the boundaries) (Billheimer et al. 2001). 

A more subtle criticism of the confidence interval overlap method is that it often is used 

to examine mixture equality not at the scale of the baseline population contributions but at the 

scale of regional aggregates of populations.  Comparison of regional aggregates may obscure 

differences at the level of the baseline populations. For example, two populations in the same 

region may tradeoff in their contributions to two mixtures, producing an apparently constant 

regional contribution to each mixture but by means of differing population contributions. 

Researchers must use caution investigating mixture differences and interpreting 

contribution confidence intervals.  The likelihood ratio approach controls both Type I and Type 

II error rates and provides a test of mixture difference that recognizes the constraints of mixture 

(that is, composition) data.  Furthermore, if one�s level of interest is the regional aggregates or 

any smooth function of the baseline population contributions, the likelihood ratio test remains 

applicable as it is invariant to transformation of the parameters (Stuart et al. 1999).  Such cases 

may require more care in fitting the null model.  Most importantly, the likelihood ratio method 

provides a paradigm for model development and selection.  This encourages researchers to begin 
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modeling mixture variation across time or space rather than simply testing hypotheses of 

equality.   

4.3 Conditioning and Model Extensions 

Small baseline population samples, relative to the mixture samples, may warrant 

unconditional maximum likelihood estimation (Smouse et al. 1990).  In this case the likelihood 

ratio test remains applicable but the details of simulating the null reference distribution change. 

Fitting the general model cannot be broken down into M separate estimation problems as each 

mixture sample potentially contains information regarding each φj.  The EM-fitting algorithm of 

Smouse et al. (1990) can be extended to handle both this general M-mixture model and the 

constrained M-mixture model.  However, with many baseline populations unconditional fitting 

can encounter numerical problems overcoming local optima in the likelihood surface (Jerry 

Pella, personal communication, 12 October 2000). 

The M-mixture model can also be extended to allow the characteristic density for each 

baseline population, φj, to potentially change with the mixture index m.  Whereas this requires 

more baseline samples and estimation of many more parameters, the likelihood ratio test of 

equality remains applicable. 

5.  CONCLUSIONS 

Mixed stock analysis, especially using genetic markers, is an increasingly important tool 

in fisheries and wildlife management.  Advances in genetics continue to simplify the collection 

and analysis of field samples, allowing managers and researchers to develop extensive baseline 

population databases as well as sample mixtures through space and time.  Unfortunately, the 

methods commonly employed to compare mixtures through space and time are fraught with 
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statistical deficiencies.  The likelihood ratio test presented here provides a statistically sound 

method for comparing these mixture samples.  Currently employed confidence interval methods 

may give some insight into the structure detected by the test, but researchers must use caution in 

interpreting the results as the implicit measures of marginal difference are inappropriate and the 

methods suffer from very low power.  More appropriate confidence interval methods await 

development of more appropriate, and readily interpretable, measures of mixture difference. 

The likelihood ratio approach can be used to develop more refined models of mixture 

variation, providing greater insight into wild populations subject to research and management.  

Such efforts can provide insight into the adequacy of mixture sampling protocols (illustrated 

here), investigation of marine migration patterns (Seeb and Crane 1999), and temporal and 

spatial stability of scientifically or economically important mixtures (Ruzzante et al. 2000). 
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APPENDIX:  TWO-STAGE SAMPLING M-MIXTURE MODEL 

In the sockeye harvest application, mixture samples were obtained by a two-stage 

sampling scheme.  Model (2) is easily extended to this situation.  Let k index the sequence of Km 

primary sampling units randomly selected from the mth of M independent mixtures.  Let i_k 

index the sequence of nm
k secondary sampling units randomly selected from the kth primary unit 

from the mth mixture.  The possibly multivariate characteristic observed on the secondary 

sampling unit i_k in the mth mixture is denoted xm
i_k.  Following the text, θm

j is the unknown 

proportion of the mth mixture contributed by population j (out of J contributing populations), 

 for each m, and φm
jθ 1

j
=∑ j is the probability density of characteristics in population j.  The 

resulting likelihood ratio for testing Ho: Θm = Θ0 for m = 1, ..., M, versus the general inequality 

alternative, is: 

m mm m
k kn nM K M KJ J

m m 0 m
j j i _ k j j j i _ k j

j 1 j 1m 1 k 1 i _ k 1 m 1 k 1 i _ k 1

* Pr (x  | ) * Pr (x  | )
= == = = = = =

      θ φ θ φ     
      

∑ ∑∏ ∏ ∏ ∏ ∏ ∏
 =


m 0
j j

n nM MJ J
*Pr (x  | ) *Pr (x  | )j j

j 1 j 11 m 1 i 1

m m
k km mj ji i

∑ ∑
φ φ∑ ∑∏ ∏

= == =

      
     

      

θ θ
m 1 i
∏ ∏
= =




.  (A.1) 

Because each mixture is assumed homogeneous across its associated primary sampling 

units, the likelihood ratio under two-stage sampling, (A.1), reduces to that for simple random 

sampling (3). 
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Table 1.  Baseline populations and associated reporting regions for the mixture analysis of 

commercially harvested sockeye salmon in Upper Cook Inlet, Alaska from Seeb et al. (2000).  

Numbers refer to labels in Figure 1.  Abbreviations: Ck. � Creek, Lk. � Lake, R. � River. 

Region Population 

West Cook Inlet 1 - Chilligan R., 2 � Crescent Lk., 3 � Wolverine Ck., 4 � McArthur R., 5 � Packers Lk., 
6 � Coal Ck. 

Susitna / Yenta 7 � Yentna R., 8 � Shell Lk., 9 � Hewitt / Whiskey Lks., 10 � Trinity / Movie Lks., 11 � 
Judd Lk., 12 � Chelatna Lk., 13 � Byers Lk., 14 � Susitna R., 15 � Mama & Papa Bear 
Lks., 16 � Larson Lk., 17 � Talkeetna R., 18 � Stephan Lk., 19 � Birch Ck., 20 � Red 
Shirt Lk. 

Knik 21 � Nancy Lk., 22 � Cottonwood Lk., 23 � Fish Ck., 24 � Jim Ck., 25 � Sixmile Ck. 

Northeast Cook Inlet 26 � Daniels Lk., 27 � Bishop Ck., 28 � Swanson R. 

Kenai 29 � Skilak Lk. Outlet, 30 � Hidden Ck., 31 � Between Kenai and Skilak Lk., 32 � 
Upper Russian R., 33 � Tern Lk., 34 � Quartz Ck., 35 � Moose Ck., 36 � Johnson Ck., 
37 � Railroad Ck., 38 � Ptarmigan Ck. 

Kasilof 39 � Nikolai Ck., 40 � Tustumena Lk., 41 � Bear Ck., 42 � Moose Ck., 43 � Glacier Ck., 
44 � Seepage Ck. 
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Table 2.  Opening dates, collection site, sample sizes (N), and conditional maximum likelihood mixture estimates for sockeye salmon 

sampled from the commercial harvest in Upper Cook Inlet, Alaska.  Contributions from each of the 44 baseline populations were 

estimated and then summed to the six management regions for display (see Figure 1 and Table 1).  Ninety percent bootstrap 

confidence intervals (1000 replicates, Efron�s percentile method, Davison and Hinkley 1997) are given for both the processor-specific 

region contribution estimates (Figure 2) and the marginal difference in processor-specific region contribution estimates.  These 

intervals are commonly used to compare mixture equality: do the processor-specific intervals overlap? Do the marginal difference 

intervals contain zero?  Both approaches suffer from poor power to detect mixture differences as they ignore the inherent dependence 

among region contributions.  Approximate P values were calculated from the parametric bootstrap likelihood ratio test of Ho: 

Identical mixtures, and Ha: Mixtures differ with processor (R = 5000 resamples).  Note that the P value is testing for equality of 

baseline population contributions, not region contributions.  Processors: WC � Wards Cove, Sal. � Salamatof Seafoods, Inc. 

Opening Processor N West Cook Inlet 
Susitna/ 
Yentna  Knik

Northeast  
Cook Inlet Kenai Kasilof 

P 
value 

WC    394 0.00
(0, 0.03) 

0.16  
(0.07, 0.22) 

0.02  
(0, 0.06) 

0.00  
(0, 0.01) 

0.79  
(0.70, 0.87) 

0.03  
(0, 0.91) 

0.001 

Sal.    

    

   

391 0.06
(0, 0.12) 

0.05  
(0, 0.12) 

0.02  
(0, 0.07) 

0.00  
(0, 0.01) 

0.84  
(0.75, 0.91) 

0.03  
(0, 0.08) 

 

14 July 
1997 

90% CI 
WC - Sal 

 (-0.12, 0.03) (0.00, 0.18) (-0.05, 0.05) (-0.01, 0.01) (-0.16, 0.07) (-0.06, 0.07)  

WC 398 0.02
(0, 0.06) 

0.07  
(0.01, 0.12) 

0  
(0, 0.03) 

0  
(0, 0.02) 

0.90  
(0.80, 0.96) 

0.02  
(0, 0.08) 

0.171 

Sal. 394 0.00
 (0, 0.04) 

0.05  
(0.01, 0.13) 

0.04  
(0.01, 0.08) 

0.01  
(0, 0.02) 

0.85  
(0.76, 0.92) 

0.05  
(0, 0.08) 

 

21 July 
1997 

90% CI 
WC - Sal 

 (-0.03, 0.05) (-0.08, 0.08) (-0.08, 0.00) (-0.02, 0.01) (-0.06, 0.15) (-0.07, 0.05)  
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WC    

    

    

    

394 0.06
(0.04, 0.15) 

0.31  
(0.21, 0.40) 

0.08  
(0.03, 0.14) 

0.01  
(0, 0.03) 

0.38  
(0.28, 0.45) 

0.16  
(0.08, 0.23) 

0.230 

Sal. 159 0.11
(0.01, 0.25) 

0.25  
(0.11, 0.38) 

0.01  
(0, 0.13) 

0.01  
(0, 0.05) 

0.51  
(0.35, 0.64) 

0.11  
(0, 0.23) 

 

10 July 
1998 

90% CI 
WC - Sal 

 (-0.18, 0.09) (-0.10, 0.24) (-0.06, 0.14) (-0.04, 0.02) (-0.30, 0.05) (-0.11, 0.17)  

WC 398 0.05
(0, 0.16) 

0.37  
(0.22, 0.43) 

0.04 
 (0.01, 0.12) 

0.00  
(0, 0.01) 

0.53 
 (0.42, 0.63) 

0.01  
(0, 0.06) 

0.689 

Sal. 197 0.01
(0, 0.11) 

0.27  
(0.16, 0.39) 

0.09  
(0.03, 0.20) 

0.00  
(0, 0.02) 

0.56  
(0.42, 0.66) 

0.05  
(0, 0.11) 

 

17 July 
1998 

90% CI 
WC - Sal 

 (-0.07, 0.15) (-0.11, 0.22) (-0.16,0.05) (-0.02, 0.01) (-0.17, 0.17) (-0.10, 0.03)  
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FIGURE LEGENDS 

Figure 1. Upper Cook Inlet, Alaska.  Numbers refer to locations of baseline populations listed in 

Table 1 (from Seeb et al. 2000).  Commercial harvests occurred in the Central District. 

Figure 2.  A common method of investigating mixture equality using ninety percent confidence 

intervals, demonstrated with sockeye salmon harvests sampled at two different processors in 

Upper Cook Inlet, Alaska.  This overlap method suggests no processor differences at any of the 

four sampling events, though there is a significant difference on 14 July 1997 (Table 2, Figure 

3).  Processor-specific intervals are labeled for the West Cook Inlet region in each panel to show 

ordering (WC � Wards Cove, top interval; Sal � Salamatof Seafoods, Inc, bottom interval). 

Figure 3.  Sub-mixture projections of the processor-specific nonparametric bootstrap mixture 

estimates for the 14 July 1997 collections.  The process-specific mixture estimates only differed 

at three of six regions (Table 2), so results are displayed for the four-component mixture (West 

Cook Inlet = WCI, Susitna / Yentna = S/Y, Kenai = K, All Others = O).  Four-component 

mixture data inhabits a triangular pyramid; we display the four three-component projections of 

this data space.  The plots were created as follows.  Consider placing a bright light at the WCI 

vertex of the data space pyramid and marking the shadows cast on the far wall by the data points 

� these shadows are the projection of the (WCI, S/Y, K, O) data points to the (S/Y, K, O) sub-

mixture; the projection is obtained by dropping the WCI contribution and renormalizing the 

remaining contributions.  Repeat at each vertex, then slice the pyramid along the sides and 

folding down the walls to give the two-dimensional display shown:  Wards Cove resamples 

(left); Salamatof Seafoods, Inc. resamples (right).  Each triangle, or ternary diagram, should be 

read as follows: the closer a point is to a vertex, the greater the contribution of that component to 
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the mixture.  That is, points on a vertex are mixtures consisting of 100% of that component; 

points along a side are mixtures consisting of two components in proportions equal to the 

relative distance from the opposing vertex (closer to S/Y, then more S/Y contribution); points in 

the interior are mixtures of all three components.  Ternary diagrams greatly compress distances 

between mixtures that fall near the boundaries (Billheimer et al. 2001) and so tend to visually 

underplay substantial mixture differences.  The Wards Cove sample mixture differs significantly 

from the Salamatof Seafoods, Inc. sample mixture (Table 2), having less Kenai and West Cook 

Inlet contributions and more Susitna / Yenta contributions (left vrs right figures). 
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Figure 2 
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Figure 3 
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