Population structure of chum salmon in Prince William Sound and Southeast Alaska

Sara Gilk-Baumer and William D. Templin
Alaska Department of Fish and Game Gene Conservation Lab
Alaska Hatchery Research Program Informational Meeting
March 7, 2019
Alaska Hatchery Research Program

1) What is the genetic structure of pink and chum in PWS and SEAK?

2) What is the extent and annual variability of straying?

3) What is the impact on fitness (productivity) of natural pink and chum stocks due to straying hatchery pink and chum salmon?
Life History of Chum Salmon

• Migrate as juveniles to ocean
• Typically 2-4 years spent at sea
• Two run timings: summer & fall
Distribution of Chum Salmon

http://www.salmonnation.org/fish/meet_species.html
Quick break to understand concepts
Understanding Genetic Structure

• Differences between populations:
 • Influenced by: selection, mutation, genetic drift, migration
Understanding Genetic Structure

- Differences between populations:
 - Influenced by: selection, mutation, genetic drift, migration

 genetic drift ~ homing
 migration ~ straying

 - Measuring the balance between these within a species across an area
 - Measured by quantifying pairwise genetic differences
 - Visualize using genetic trees
Population Structure: An example
Population Structure: An example

Fancy Genetics
Population Structure: An example

Difference between 1 and 4: + + =
Population Structure: An example

Difference between 1 and 4:

Difference between 2 and 7:
Population Structure: An example

Difference between 1 and 4:
Difference between 2 and 7:
Population Structure: An example
Now back to chum salmon...
Previous work (a sampling)

Determining Continent of Origin of Chum Salmon (Oncorhynchus keta) Using Genetic Stock Identification Techniques: Status of Allozyme Baseline in Asia
Gary A. Winans and Paul B. Aehersold
Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA 98112-2087, USA
Shigehiko Urawa,
Hokkaido Salmon Hatchery, Fisheries Agency of Japan, Sapporo 062, Japan
and Nataly V. Varnavskaya
Kamchatka-DFO, Petropavlovsk, Russia

Genetic Relationships Among Chum Salmon Populations in Southeast Alaska and Northern British Columbia
C.M. Kondzea, C.M. Guthrie, S.L. Hawkins, C.D. Russell, and J.H. Helle
Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, 11305 Glacier Highway, Juneau, AK 99801-8626, U.S.A.
and A.J. Charette
School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 11120 Glacier Highway, Juneau, AK 99801, U.S.A.

Chum Salmon Genetic Diversity in the Northeastern Pacific Ocean Assessed with Single Nucleotide Polymorphisms (SNPs): Applications to Fishery Management
Maureen P. Small
Washington Department of Fish and Wildlife, Molecular Genetics Lab, 1111 Washington Street Southeast, Olympia, Washington 98501, USA
Serena D. Rogers Olive
Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation Laboratory, 333 Raspberry Road, Anchorage, Alaska 99515, USA
Lisa W. Seeb, James E. Seeb, and Carita E. Pascal
School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Box 353620, Seattle, Washington 98105, USA
Kenneth L. Warheit
Washington Department of Fish and Wildlife, Molecular Genetics Lab, 1111 Washington Street Southeast, Olympia, Washington 98501, USA; and School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Box 353620, Seattle, Washington 98105, USA
William Templin
Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation Laboratory, 333 Raspberry Road, Anchorage, Alaska 99515, USA

Population structure and stock identification of chum salmon (Oncorhynchus keta) from British Columbia determined with microsatellite DNA variation
Terry D. Beacham, Brian Spilloto, Khai D. Le, and Michael Wettko

Microsatellite Stock Identification of Chum Salmon on a Pacific Rim Basis
TERRY D. BEACHAM, JOHN R. CANDY, AND C. WALLACE
Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada
SHIGEHIKO URAWA* AND SHINPEI SATO
National Salmon Resources Center, Fisheries Research Agency, Toyohira-ku, Sapporo 060-0822, Japan
NATALIA V. VARNAVSKAYA
Kamchatka Fishery and Oceanography Research Institute, 18 Naberezhnaya Street, Petropavlovsk Kamchatskii 683900, Russia
KHAI D. LE AND MICHAEL WETKIO
Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada

Genetic population structure of chum salmon in the Pacific Rim inferred from mitochondrial DNA sequence variation
*Division of Biological Science, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
†Graduate School of Science and Engineering, Hokkaido Tokai University, Sapporo 005-8601, Japan
‡Auke Bay Laboratory, Alaska Fisheries Science Center, NOAA, Juneau, U.S.A.
§Alaska Department of Fish and Game, Anchorage, U.S.A.
**Russian Academy of Science, Vladivostok, Russia
††Washington Department of Fish and Wildlife, Olympia, Washington, U.S.A.
‡‡U.S. Fish and Wildlife Service, Anchorage, AK, U.S.A.
‡§Kangnam National University, Kangnam, Korea
‡¶Salmon Resources Center, Sapporo 060-0922, Japan
§§Field Science Center, Hokkaido University, Sapporo 060-0811, Japan
¶¶Laboratory of Animal Breeding, Center for Advanced Science and Technology, Hokkaido University, Sapporo 060-0810, Japan (e-mail: sabe@esr.hokudai.ac.jp)
⁎⁎Laboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan

Received 17 April 2003 Accepted 27 April 2003
Chum salmon in the Gulf of Alaska

198 populations
93 markers
Chum salmon in the Gulf of Alaska

198 populations
93 markers
Chum salmon in PWS and SEAK

52 populations
93 markers
Chum salmon in PWS and SEAK

52 populations
93 markers

Chilkat

Yakutat

PWS

S SEAK
Chum salmon in PWS and SEAK

52 populations
93 markers

Late run timing
Conclusions: Chum salmon structure in AHRP study area

• Generally correlated with geography
• Some differentiation by run timing
• Similar to other studies