Waldes Wonders

 population) so they can wisely manage them. That way not too many or too few animals are hunted. Sometimes biologists count every animal, and other times they use special techniques to estimate the population. This issue of Wild Wonders explores some of the ways biologists count animals.
In This Issue

Just -keep counting, caribou 2
Eagle, are you home? 3
Solitary moose 4
Beluga backs 5
Oh deer, is that poop? 6
Bear, where are you? 7
Use your other sense! 8

Biologists follow population sizes from year to year (the trend) to see if there are more, less or the same number of animals.

$\stackrel{N}{r} z$ That's the sounds of millions of mosquitoes buzzing. If you've ever experienced a dense swarm of mosquitoes during an Alaskan summer you know they can drive you crazy! These tiny biting insects search for any exposed flesh, and in the process, fly into your eyes, ears, nose, and mouth. Humans swat them with their hands or use insect repellent. What about caribou? How do they avoid these relentless pests?

To escape the maddening swarms of insects, caribou flock to windswept ridges and snow fields. Often, entire herds bunch together in large groups called aggregates. Biologists take advantage of this grouping behavior to count each caribou in the herd. Since every animal is counted it is called a census.

So many caribou! Counting caribou aggregates should be easy, right? It's actually very difficult. Some herds have 100,000 caribou crammed together in one place. It is not possible to count them all at once. Instead biologists take photos to count the herd later.

Photocensus Since there are too many caribou to count at once, biologists use a

 photocensus. This means that they fly photocensus. over the caribou in an airplane and take photos of each aggregate. Startial this year, biologists will use a specia computer program to line up all the photos. Then they will place a doter to each caribou and use a compure month count all the dots. It may take to place all the dots and get a

Knowing animal behavior helps with counting

Bajle @re \%ow home?

When counting animals it is useful to take advantage of behavior. Just like biologists count caribou in the summer when the herds bunch together to avoid insects, biologists often count birds during the breeding season when they are near their nests. Eagles are often counted this way because they have huge nests (an eagle nest can be 8 feet across) that are easy to find.
This is my territory! Despite migrating up to 8,000 miles each year, golden eagles usually return to the same nesting area. This area is called a territory, and male and female pairs defend it fiercely. To keep the peace, other eagles don't build nests closer than a mile away. Eagles can live up to 32 years, and pairs usually build many nests within their territory. Each nest provides a specific advantage under different conditions.

Occupancy Surveys Since eagles usually nest on small, rocky outcroppings in the Seward Peninsula, biologists look for nests by fluing ina, helicoopter to all the rosts by flying in a track of which outcropny areas. They keep them. When they roppings have nests on they check to see if old nests wing year, (that means the female is are occupied eggs or has chicks) is incubating been built. These chicks, or if new nests have surveys. By comparing the occupancy occupied teritionaring the number of can tell how the popach year biologists can tell how the population is doing.

Counting a few and estimating the rest

Solitary moose

Imagine this: every tree frosty and leafless, every pond, river and lake frozen; this is Interior Alaska in the winter. From the air, it looks like a blanket of white. Animals with dark coats, like moose, are easy to spot against this background. So why can't biologists just fly around in an airplane and count all the moose?
So what's the problem? Moose are solitary animals and spread out across the landscape (there are usually only a few moose every square mile). As a result, it would take months and lots of money to count all the moose in Alaska. Instead, biologists count all the moose in small areas (called sampling units) and use the number of moose counted in these areas to estimate the population across a larger area. Think of it this way: if you break an area into 10 equal size squares, and count three moose in just one of the squares, you could get a rough estimate of the total number of moose by multiplying $3 \times 10=30$ moose.

\square Good habitat,
more moose.
Bad habitat,
less moose.

Stratified Sampling To get a more accurate population estimate or iologists they know that moose are more he habitat. They know that moung willows. abundant in areas with lots of young int habitat To account for this difference in habia units, one quality, biologists pick two sampling units, quality, bood habitat and one with bad habitat. with good habitat and units to come up with a They use these two units lo come up wad habitat population estimate for good and Sampl areas. This is called Stratified Sampling

Belwse beck

Belugas are toothed whales with a robust body, packed with extra blubber (fat) to survive life in cold Alaska waters. At birth, belugas are dark blue/ gray but as they age they get lighter, often turning white. These chunky whales are an important traditional food for Alaska Natives living along the northwestern coast of Alaska.

Chasing salmon tails! Every summer the group, or stock, of beluga whales that live in Bristol Bay, Alaska intercept red salmon (aka sockeye) on their way to rivers for spawning. Biologists take advantage of this behavior and count the white belugas by flying zigzag patterns across and along the shoreline of the bay.
accurate population estimate.

Correction Factor

Athough the white belugas stand out against the muddy waters of Bristol Bay, like marshmallows in hot chocolate, biologists can't see the belugas swimming below the surface. How many beluga do biologists miss? During several years they compared the survey counts to a second more expensive technique called MarkRecapture (see page 7). This told them that for every beluga they see, there are about two more under

Factor
gas stand
waters of
mallows in hot chocolate,
belugas swimming below the
ga do biologists miss? During
pared the survey counts to
7ive technique called Mark-
are about two more under
water. Now each year they
multiply their aerial survey
counts by 3 the correction
Factor
gas stand
waters of
mallows in hot chocolate,
belugas swimming below the
ga do biologists miss? During
pared the survey counts to
7ive technique called Mark-
are about two more under
water. Now each year they
multiply their aerial survey
counts by 3 the correction
Factor
gas stand
waters of
mallows in hot chocolate,
belugas swimming below the
pared the ogists miss? Durvey counts to
par technique called Mark-
7. This told them that for every
are about two more under
water. Now each year they
multiply their aerial survey
counts by 3 the correction factor) to get a more nes

8
 Oh decto is that poop?
 Sometimes biologists can't see the animals they need to count, so they use clever ways to survey them. The deer of southeast Alaska are one of these species. They live in the rainforest along the coast or on islands. The vegetation is so thick that

 it is impossible to see more than a few feet into the forest. Biologists also cannot see the deer from above because of the thick forest canopy.Rather than counting
deer, biologists count deer pellets. That's right, POOP! Deer poop about 12 times per day, and their poop (pellet) piles stick around for a long time, even in wet environments.

The number of pellet piles doesn't tell biologists the exact number of deer in the area. But, by comparing the number of piles to the number counted the past year, biologists can tell
if the deer population has grown, is the same, or has declined. This is known as the relative abundance of deer compared to past years.

Pellet Transect Starting at the coastline, a biologist walks into the forest with one end 65 foot cable attached to one end of a 65 foot cable attached to his or her belt. A second biologist watches the cable and when the end appears, yells "stop. He or she then follows the cable (called a transect line) and counts every pile of deer poop that is within about 3 feet of the line. The pair repeats this until they have traveled about one and a hal miles. The biologists conduct severalf these transects in each area

Bear, where are you?

Like deer, bears are very tricky to count because they are experts at disappearing into the forest. Fortunately for biologists, they often leave behind clues. Bears tend to walk the same trails day after day, year after year. They develop a habit of rubbing against certain objects (such as a tree) along their path. Over time these objects collect the hair off of all the bears that travel that path.

To a biologist, the

hair of these bears is like gold. It contains DNA. This is the bear's genetic material and each bear has a unique DNA code (just like our finger prints). Biologists use a special laboratory process to unlock the DNA code from each bear's hair. Once they've done this for all the hair samples, they know how many and which bears passed through the area.

Mark-Recapture

"beary"pails place hair snares along collect all the rew days later the round in inat of the sares they go back (round a fore days second batch of hair and collect a In a lab the biologist the snares the DNA as the mark) identify (using hairs were captured in which bear's The round 2 hair (th each round include some bears the recapture), marked in round 1 that were also were never marked and some that between marked before. The ratio is the key to estimating unked bears population siztimating the bear called Mark-Recaptur technique is

(Number of bears "marked" in round 1) X (Number of bears "marked" in round 2 estimated

