
Creating a Windows Service in C#
By John Andre (john@montgomerysoftware.com)
17 September 2004

As written earlier, you could write a Windows (NT) service in Visual Basic 6 but it is
prone to problems. Now, with C# and VB.Net it is simple to create a Windows service
without those in-built limitations. That's right. No more need for a form (to host the
required OCX). No more threading problems. The only surprise is that when you
create a Windows service in .Net, the project is missing something very crucial - the
InstallerClass.

The InstallerClass is a short, simple class that will prevent your service from working
if it is missing. This article will show you what you need to do to make sure
everything works properly.

First, let's get the basics of the service setup. When you create a new Windows
service project, that project will include a class called Service1.cs. That class will
have routines to handle when the Service Control Manager (SCM) starts the service
and when the SCM stops the service (OnStart and OnStop, respectively).

Fill in the startup logic (open database connections, etc.) in the OnStart routine. Put
your shutdown logic (close database connections, etc.) in the OnStop routine. If your
service should do something at a regular interval (for example, check to see if there
are any new records in a certain table), then you might want to add a timer to the
service class (just drag and drop it from the toolbox in design view). Then, in the
timer1_Elapsed event, add the logic that your service is being built to perform.

Now, you have to set a couple of properties on the service class (you can do this in
the property window in design view):

• Name = can be anything you like, but like all control names in .Net, don't use
spaces

• ServiceName = the name you would like to be displayed in the Services
control panel and in the Event Log (can have spaces)

Logging Errors
Troubleshooting Windows services can be tricky, so it is a good idea to add event
logging to your error handlers. Something like this should be adequate:

try
{
// your logic here
}
catch(Exception ex)
{
EventLog.WriteEntry(this.ServiceName,"Error: "+ ex.ToString(),
System.Diagnostics.EventLogEntryType.Error);
}

InstallerClass
Now, you're ready to add the missing Installer class. Just add a blank class file and

copy and past the code below.

You might be wondering why Microsoft doesn't automatically add this class when you
create a Windows service project. I wonder it as well. However, if you don't add this
class your service will simply not work. So, better to keep this code handy, you'll
need it every time you create a new service.

using System.ComponentModel;
using System.ServiceProcess;

namespace YourNamespaceHere
{
[RunInstallerAttribute(true)]
public class InstallerClass: System.Configuration.Install.Installer
{
public InstallerClass()
{
ServiceInstaller si = new ServiceInstaller();
ServiceProcessInstaller spi = new ServiceProcessInstaller();

si.ServiceName = "DBNotifier";
si.DisplayName = "DB Notifier";
this.Installers.Add(si);

spi.Account = System.ServiceProcess.ServiceAccount.LocalSystem;
spi.Username=null;
spi.Password=null;
this.Installers.Add(spi);
}
}
}

Potential Problems
There are a few potential problems when implementing a Windows service in .Net.
Here are some issues to watch out for:

Dependencies - If your service is dependent on other services, you need to make
sure this dependency information is set properly in the registry. Warning:
improperly setting service dependency information in the registry could
make a computer unbootable due to issues like circular dependencies -
Service A cannot start before Service B and Service B cannot start before
Service A - resulting in neither service ever starting. Be very careful here.

Using RegEdt32 (RegEdit will not work here due to it’s inability to add
REG_MULTI_SZ types), go to
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\[YOUR SERVICE] and
create a new value with a name of DependOnService and a data type of
REG_MULTI_SZ. Set the data to the name of the key of the service your Windows
service depends on. For example, if your Windows service depends on MSMQ the
enter MSMQ since MSMQ is the name of the key in this services branch. If your
Windows service depends on multiple services, add each service on its own line. If
you are creating distribution media for your Windows service, you can include a .reg
file which includes this information (easing deployment efforts).

Location of EXE - It is important that the executable you created for your Windows
service be located on a local drive to the machine on which the service will run. If the
executable is on a remote drive, the service will not run throwing Error 5: Access is
denied.

Set User Account - Usually you will set the user account of your new Windows
service after it is installed. However, you do have the option of setting the user
account and password properties in the InstallerClass. If you do not set this
information, the service will be set to use the Local System account. Make sure that
the account you choose has the appropriate security permissions to perform the
tasks that you are asking the service to perform. All processing, including calls out to
ActiveX EXEs, will use the security context from your service.

Settings - If you will use the registry to store settings for your service, then you
should use Microsoft.Win32.Registry.LocalMachine as opposed to
Microsoft.Win32.Registry.CurrentUser, which might not work since there may be no
user logged onto the computer where your service runs).

Installation
Windows Services need to be installed. I am not referring to setup media here but
rather installing into the Service Control Manager (SCM). To install a service into the
SCM you need to use InstallUtil.exe. This is quite simple. Just locate the
InstallUtil.exe under your framework directory (e.g.,
C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322) and pass to it the full path to
your new service (e.g., C:\DBNotifier\DBNotifier.exe). You can pass -u to uninstall
the service from the SCM. You will want to do this from a command prompt in case
you want to read the output from InstallUtil.exe.

Summary
Writing a Windows service in C# (or any .Net language) is much easier than it ever
way before. Yes, you need to remember to include the missing InstallerClass but
once you do that, it should be clear sailing.

