Genetic Stock Composition of the Commercial and Sport Harvest of Chinook Salmon in Westward Region, 2014–2016

by

Kyle R. Shedd

M. Birch Foster

Michelle Wattum

Tyler Polum

Mark Witteveen

Michelle Stratton

Tyler H. Dann

Heather A. Hoyt

and

Christopher Habicht

December 2016

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc.$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	\mathbf{W}	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
	-	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	\log_{2} etc.
degrees Celsius	°C	Federal Information		minute (angular)	,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	pН	U.S.C.	United States	population	Var
(negative log of)			Code	sample	var
parts per million	ppm	U.S. state	use two-letter		
parts per thousand	ppt,		abbreviations		
	‰		(e.g., AK, WA)		
volts	V				
watts	W				

FISHERY MANUSCRIPT SERIES NO. 16-11

GENETIC STOCK COMPOSITION OF THE COMMERCIAL AND SPORT HARVEST OF CHINOOK SALMON IN WESTWARD REGION, 2014–2016

by

Kyle R. Shedd Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation Laboratory, Anchorage 333 Raspberry Road, Anchorage, AK 99518, USA

> M. Birch Foster and Michelle Wattum Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak 351 Research Ct, Kodiak, AK 99615, USA

Tyler Polum, Mark Witteveen and Michelle Stratton Alaska Department of Fish and Game, Division of Sport Fisheries, Kodiak 351 Research Ct, Kodiak, AK 99615, USA

and

Tyler H. Dann, Heather A. Hoyt, and Christopher Habicht
Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation Laboratory,
Anchorage
333 Raspberry Road, Anchorage, AK 99518, USA

Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

December 2016

This investigation was funded by State of Alaska general funds through the Chinook Salmon Research Initiative.

The Fishery Manuscript series was established in 1987 by the Division of Sport Fish for the publication of technically-oriented results of several years' work undertaken on a project to address common objectives, provide an overview of work undertaken through multiple projects to address specific research or management goal(s), or new and/or highly technical methods, and became a joint divisional series in 2004 with the Division of Commercial Fisheries. Fishery Manuscripts are intended for fishery and other technical professionals. Fishery Manuscripts are available through the Alaska State Library and on the Internet http://www.adfg.alaska.gov/sf/publications/ This publication has undergone editorial and peer review.

Note: Product names used in this publication are included for completeness but do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Kyle R. Shedd, Tyler H. Dann, Heather A. Hoyt, and Christopher Habicht Alaska Department of Fish and Game, Gene Conservation Laboratory, 333 Raspberry Rd, Anchorage AK 99518, USA

Matthew B. Foster and Michelle Wattum Alaska Department of Fish and Game, Division of Commercial Fisheries, 351 Research Ct, Kodiak AK 99615, USA

Tyler Polum, Mark Witteveen and Michelle Stratton Alaska Department of Fish and Game, Division of Sport Fisheries, 351 Research Ct, Kodiak AK 99615, USA

This document should be cited as follows:

Shedd, K. R., M. B. Foster, M. Wattum, T. Polum, M. Witteveen, M. Stratton, T. H. Dann, H. A. Hoyt, and C. Habicht. 2016. Genetic stock composition of the commercial and sport harvest of Chinook salmon in Westward Region, 2014–2016. Alaska Department of Fish and Game, Fishery Manuscript Series No. 16-11, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203
Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

TABLE OF CONTENTS

LIST OF TABLES	Page
LIST OF FIGURES	
LIST OF APPENDICES	
ABSTRACT	1
INTRODUCTION	1
Background	1
Chinook Salmon Harvest in Westward Region Commercial Fisheries	
Chinook Salmon Research Initiative	
Current Research Project	
Commercial Fisheries Sampling Area Descriptions Sport Fisheries	4
OBJECTIVES	
DEFINITIONS	5
METHODS	7
Genetic Tissue Sampling	7
Commercial Fisheries	
Sport Fisheries	
Age, Sex, and Length Sampling	
Coded Wire Tag Sampling	9
Selecting Genetic Tissue Samples for Analysis	
Commercial Fisheries	
Sport Fisheries	
Assaying Genotypes	
Laboratory Quality Control	
Statistical Analysis	
Data Retrieval and Genotype Quality Control	
Estimating Stock Compositions and Stock-Specific Harvests	
	11
BAYES Protocol	
RESULTS	
Genetic Tissue Sampling	
Commercial Fisheries	
Northwest Kodiak/Afognak (251, 253, 254)	
Southwest Kodiak/Alitak (255, 256, 257)	
Eastside Kodiak/Afognak (258, 259, 252)	
Mainland (262)	
Age, Sex, and Length Sampling	
Commercial Fisheries	

TABLE OF CONTENTS (Continued)

	Page
Southwest Kodiak/Alitak (255, 256, 257)	
Eastside Kodiak/Afognak (258, 259, 252)	
Sport Fisheries	
Coded Wire Tag Recoveries	
Commercial Fisheries	
Sport Fisheries	
Selecting Genetic Tissue Samples for Analysis	16
Commercial Fisheries	
Northwest Kodiak/Afognak (251, 253, 254)	
Southwest Kodiak/Alitak (255, 256, 257) Eastside Kodiak/Afognak (258, 259, 252)	
Mainland (262)	
Sport Fisheries	
Laboratory Analysis	17
Assaying Genotypes	17
Laboratory Quality Control	
Statistical Analysis	
Data Retrieval and Genotype Quality Control	
Stock Composition and Stock-Specific Harvest Estimates Commercial Harvest Estimates by Sampling Area by Year	
Commercial Harvest Estimates by Year	
Sport Harvest Estimates by Year	
Estimates by Reporting Group	
DISCUSSION	
Commercial Fisheries	
Sport Fisheries	
Harvest of Kodiak Stocks	
ACKNOWLEDGEMENTS	26
REFERENCES CITED	27
TABLES AND FIGURES	31
APPENDIX A: WESTWARD REGION CHINOOK SALMON RESEARCH INITIATIVE SARESULTS, 2014	
APPENDIX B: STOCK COMPOSITION AND STOCK-SPECIFIC HARVEST ESTIMATES OF C SALMON COMMERCIAL HARVEST IN SOUTH PENINSULA AND CHIGNIK MANAGEMEN 2014	T AREAS,
APPENDIX C: SAMPLE SELECTION SUMMARY	123
APPENDIX D: AGE AND LENGTH COMPOSITION OF COMMERCIAL FISHERY SAMPLES	133
APPENDIX E: AGE AND LENGTH COMPOSITION OF SPORT FISHERY SAMPLES	159
APPENDIX F: CHINOOK SALMON CODED WIRE TAG RECOVERIES FROM THE COMP FISHERY IN THE KODIAK AREA, 2014-2016	
APPENDIX G: CHINOOK SALMON CODED WIRE TAG RECOVERIES FROM THE MARIN FISHERY IN THE KODIAK AREA, 2014–2016	
APPENDIX H: RESULTS OF STATISTICAL QUALITY CONTROL	167

LIST OF TABLES

Fable		Page
1.	Westward Region Chinook salmon commercial harvest, 1985–2016, and the 2004–2013 10-year	
	average.	32
2.	Kodiak Regulatory Area Chinook salmon marine sport harvest according to the statewide harvest	
	survey and logbook program, 2006–2015, and the 10-year average.	33
3.	Genetic baseline tissue collections of Chinook salmon collected throughout their coastal range,	
	including reporting group used for mixed stock analysis, years sampled, and number of samples	
	analyzed from each collection included in the baseline	34
4.	Chinook salmon, 2014–2016, Kodiak Management Area, Westward Region: Summary of commercial	
_	and sport fishery harvests and number of fish sampled and genotyped by area and temporal strata	40
5.	Chinook salmon tissue samples collected in the Kodiak Regulatory Area marine sport fishery by	
_	statistical area, 2014–2016.	41
6.	Quality control results including the number of genotypes compared, discrepancy rates and estimated	
	error rates of the collections genotyped for the KMA Chinook salmon commercial and sport fishery	
-	samples.	41
7.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Northwest	40
0	Kodiak/Afognak (District 251, 253, 254), 2014	42
8.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Northwest	42
0	Kodiak/Afognak (District 251, 253, 254), 2014	43
9.	Annual estimates of stock composition and stock-specific harvest for the Northwest Kodiak/Afognak	4.4
10	(District 251, 253, 254), 2014.	44
10.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Northwest	15
1.1	Kodiak/Afognak (District 251, 253, 254), 2015 Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Northwest	45
11.	Kodiak/Afognak (District 251, 253, 254), 2015	16
12.	Annual estimates of stock composition and stock-specific harvest for the Northwest Kodiak/Afognak	40
12.	(District 251, 253, 254), 2015	17
13.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Northwest	4/
13.	Kodiak/Afognak (District 251, 253, 254), 2016	18
14.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Northwest	40
14.	Kodiak/Afognak (District 251, 253, 254), 2016	49
15.	Annual estimates of stock composition and stock-specific harvest for the Northwest Kodiak/Afognak	17
10.	(District 251, 253, 254), 2016	50
16.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2014.	51
17.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2014	52
18.	Annual estimates of stock composition and stock-specific harvest for the Southwest Kodiak/Alitak	
	(District 255, 256, 257), 2014	53
19.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2015	54
20.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2015	55
21.	Annual estimates of stock composition and stock-specific harvest for the Southwest Kodiak/Alitak	
	(District 255, 256, 257), 2015	56
22.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2016	57
23.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Southwest	
	Kodiak/Alitak (District 255, 256, 257), 2016	58
24.	Annual estimates of stock composition and stock-specific harvest for the Southwest Kodiak/Alitak	
25	(District 255, 256, 257), 2016	59
25.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Eastside	~
	Kodiak/Afognak (District 252, 258, 259), 2014	60

LIST OF TABLES (Continued)

Table		Page
26.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Eastside Kodiak/Afognak (District 252, 258, 259), 2014	
27.	Annual estimates of stock composition and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2014	62
28.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Eastside Kodiak/Afognak (District 252, 258, 259), 2015	63
29.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Eastside Kodiak/Afognak (District 252, 258, 259), 2015	64
30.	Annual estimates of stock composition and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2015	65
31.	Estimates of stock composition and stock-specific harvest for temporal stratum 1 of the Eastside Kodiak/Afognak (District 252, 258, 259), 2016	66
32.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Eastside Kodiak/Afognak (District 252, 258, 259), 2016	67
33.	Annual estimates of stock composition and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2016	68
34.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Mainland (District 262), 2014	69
35.	Annual estimates of stock composition and stock-specific harvest for the Mainland, 2014	70
36.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Mainland (District 262), 2015	
37.	Annual estimates of stock composition and stock-specific harvest for the Mainland, 2015	72
38.	Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 of the Mainland (District 262), 2016	
39.	Estimates of stock composition and stock-specific harvest for temporal stratum 2 of the Mainland (District 262), 2016	74
40.	Annual estimates of stock composition and stock-specific harvest for the Mainland, 2016	75
41.	Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2014	76
42.	Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2015	
43.	Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2016	78
44.	Annual estimates of stock composition (%) and stock-specific harvest for the Kodiak Area Sport Fishery, April 16–August 29, 2014	79
45.	Annual estimates of stock composition (%) and stock-specific harvest for the Kodiak Area Sport Fishery, May 17–August 14, 2015	80
46.	Annual estimates of stock composition (%) for the Kodiak Area Sport Fishery, May 22–August 13, 2016	81
-	LIST OF FIGURES	-
Figure		Page
1.	Map depicting the Westward Region and commercial salmon fishery districts of Kodiak, Chignik, and	
	Alaska Peninsula management areas.	82
2.	Westward Region Chinook salmon harvest in commercial fisheries by management area by year, 1958–2016.	83
3.	Westward Region Chinook salmon escapement estimates at the major systems monitored via weir, 1985–2015.	
4.	Map depicting the sport fish regulatory areas for Kodiak and the Alaska Peninsula.	85
5.	The location and reporting group affiliation of 211 populations of Chinook salmon included in the coastwide genetic baseline for genetic mixed stock analysis of commercial and sport harvest of	
	Chinook salmon in Westward Region, 2014–2016.	86
6.	Broad-scale view of a consensus Neighbor-Joining tree based upon pairwise F_{ST} among 211	
	populations of Chinook salmon included in the coastwide Chinook salmon baseline	87

LIST OF FIGURES (Continued)

Figure		Page
7.	Map depicting the 4 geographic regions in KMA where Chinook salmon were sampled from commercial salmon fisheries for genetic mixed stock analysis	Ü
8.	Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery b statistical area, 2014.	y
9.	Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery b statistical area, 2015.	
10.	Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery b statistical area, 2016.	
11.	Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Northwest Kodiak/Afognak districts, Kodiak Management Area, Alaska 2014–2016.	
12.	Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmo commercial harvest from the Northwest Kodiak/Afognak districts, Kodiak Management Area, Alaska 2014–2016.	on ı,
13.	Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Southwest Kodiak/Alitak districts, Kodiak Management Area, Alaska, 2014–2016.	
14.	Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmo commercial harvest from the Southwest Kodiak/Alitak districts, Kodiak Management Area, Alaska, 2014–2016.	on
15.	Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Eastside Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.	96
16.	Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmo commercial harvest from the Eastside Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.	
17.	Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Mainland District, Kodiak Management Area, Alaska, 2014–2016	98
18.	Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmo commercial harvest from the Mainland District, Kodiak Management Area, Alaska, 2014–2016	on
19.	Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Kodiak Management Area, Alaska, 2014–2016.	
20.	Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmo commercial harvest from the Kodiak Management Area, Alaska, 2014–2016.	on
21.	Stock composition estimates and 90% credibility intervals of samples of Chinook salmon sport harves sampled from Kodiak Harbor and Larsen Bay, Kodiak Management Area, Alaska, 2014–2016	st
22.	Annual stock-specific harvest estimates of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2014	
23.	Annual stock-specific harvest estimates of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2015	
24.	Annual stock-specific harvest estimates of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2016	

LIST OF APPENDICES

Appei	ndix Page
Ā1.	Westward Region Chinook salmon genetic samples from commercial harvest as part of the Chinook Salmon Research Initiative, 2014
B1.	Annual estimates of stock composition and stock-specific harvest for the South Peninsula and Chignik Management Areas, Alaska 2014
B2.	Stock composition and stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the South Peninsula and Chignik Management Areas, Alaska 2014.
B3.	Age composition estimates for temporal stratum 2 of the Chignik Bay District (District 271), Chignik Management Area, Westward Region, 2014
B4.	Length, sex, and adipose clip composition estimates by age for temporal stratum 2 of the Chignik Bay District (District 271), Chignik Management Area, Westward Region, 2014
B5.	Age composition estimates for temporal stratum 2 of the Eastern/Central/Western/Perryville Districts (District 272, 273, 275), Chignik Management Area, Westward Region, 2014
B6.	Length, sex, and adipose clip composition estimates by age for temporal stratum 2 of the Eastern/Central/Western/Perryville Districts (District 272, 273, 275), Chignik Management Area, Westward Region, 2014
B7.	Age composition estimates for temporal stratum 1 and 2 of the Southeastern/Southcentral Districts (District 282, 283), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014118
B8.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Southeastern/Southcentral Districts (District 282, 283), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014
B9.	Age composition estimates for temporal stratum 1 of the Unimak/Southwestern Districts (District 284, 285), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014
B10.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 of the Unimak/Southwestern Districts (District 284, 285), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014
B11.	Chinook salmon coded wire tag recoveries from the commercial fishery in the Chignik and South Peninsula areas, 2014.
C1.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Northwest Kodiak/Afognak (251, 253, 254), 2014–2016.
C2.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Northwest Kodiak/Afognak (251, 253, 254), 2014–2016
C3.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Southwest Kodiak/Alitak (255, 256, 257), 2014–2016
C4.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Southwest Kodiak/Alitak (255, 256, 257), 2014–2016.
C5.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Eastside Kodiak/Afognak (258, 259, 252), 2014–2016
C6.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Eastside Kodiak/Afognak (258, 259, 252), 2014–2016.
C7.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Mainland (262), 2014–2016
C8.	Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Mainland (262), 2014–2016
D1.	Age composition estimates for temporal stratum 1 and 2 of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2014

LIST OF APPENDICES (Continued)

Appe	endix	Page
D2.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2014	
D3.	Age composition estimates for temporal stratum 1 and 2 of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2015	
D4.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward	
D5.	Region, 2015	
D6.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2016	
D7.	Age composition estimates for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2014	
D8.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2014	
D9.	Age composition estimates for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2015	
D10.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2015	
D11.	Age composition estimates for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2016	
D12.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2016	
D13.	Age composition estimates for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2014	
D14.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2014	
D15.	Age composition estimates for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2015	
D16.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2015	
D17.	Age composition estimates for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2016	
D18.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2016	151
D19.	Age composition estimates for temporal stratum 2 of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2014	
D20.	Length, sex, and adipose clip composition estimates by age for temporal stratum 2 of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2014	
D21.	Age composition estimates for temporal stratum 2 of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2015	
D22.	Length, sex, and adipose clip composition estimates by age for temporal stratum 2 of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2015	
D23.	Age composition estimates for temporal stratum 1 and 2 of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2016	156

LIST OF APPENDICES (Continued)

Apper	ndix Page
D24.	Length, sex, and adipose clip composition estimates by age for temporal stratum 1 and 2 of the
	Mainland District (District 262), Kodiak Management Area, Westward Region, 2016157
E1.	Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2014160
E2.	Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak
	Regulatory Area, 2014
E3.	Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2015161
E4.	Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak
	Regulatory Area, 2014
E5.	Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2016162
E6.	Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak
	Regulatory Area, 2016
F1.	Chinook salmon coded wire tag recoveries from the commercial fishery in the Kodiak area, 2014–
	2016
G1.	Chinook salmon coded wire tag recoveries from the sport fishery in the Kodiak area, 2014-2016166
H1.	Results of the statistical quality control by spatiotemporal strata for Chinook salmon catch samples analyzed to estimate the stock composition of KMA commercial harvests in 2014–2016.
	Spatiotemporal strata are identified by area stratum, year, temporal stratum, and stratum period168

ABSTRACT

The primary goal of this study was to estimate the stock of origin, age, size, and sex composition of Chinook salmon, Oncorhynchus tshawytscha, harvested in Westward Region commercial and Kodiak area sport fisheries during 2014-2016 as part of the larger statewide Chinook Salmon Research Initiative. Chinook salmon commercial and sport harvest in the Kodiak area were sampled from 2014 to 2016; however, budgetary constraints limited sampling of North Peninsula, South Peninsula, and Chignik commercial harvest to 2014. A total of 10,154 Chinook salmon tissue samples were collected from 4 commercial fishery areas and sport fisheries in the Kodiak area. Of these, 8,829 samples were genotyped to represent 25 spatiotemporal strata. Stock compositions were estimated with genetic mixed stock analysis for all strata using a comprehensive, coastwide Chinook salmon baseline with important local stocks defined as separate reporting groups, to the extent possible. Harvests in both the commercial and marine sport fisheries were dominated by British Columbia and West Coast U.S. stocks, followed by smaller contributions from Southeast Alaska/Northeast Gulf of Alaska, Cook Inlet, and Kodiak. Stock composition estimates were consistent among strata within commercial and marine sport harvests, although there were differences between these fisheries. In the annual commercial harvest, over 50% of the fish were from British Columbia and over 30% of the fish were from the West Coast U.S. In the marine sport fishery, the relative abundance of British Columbia and West Coast U.S. fish varied, but jointly represented over 80% of annual harvest. In both the commercial and sport fisheries, the annual harvest of Kodiak-origin Chinook salmon was below 5% of the total harvest. These results provide the most comprehensive estimates of stock composition and stock-specific harvests of Chinook salmon in the Kodiak area, supplement previous studies, and should inform fishery management and regulatory decision makers.

Key words: Kodiak, KMA, Chinook salmon, *Oncorhynchus tshawytscha*, mixed stock analysis, MSA, genetic baseline, SNP, CSRI, Chignik, South Peninsula

INTRODUCTION

BACKGROUND

Chinook salmon *Oncorhynchus tshawytscha* spawn in freshwater but migrate to the ocean to grow and attain maturity (anadromy). Chinook salmon have 2 primary life histories, characterized as *ocean-type* or *stream-type*. *Ocean-type* fish immediately migrate to the ocean the year of emergence from the gravel whereas *stream-type* fish typically rear in freshwater for 1 year prior to outmigration. Chinook salmon of both life history types spend between 1 and 5 years in the ocean before returning to spawn in their natal stream (Healy 1991). The *stream-type* life history dominates in Alaska, whereas the *ocean-type* life history is more common in the southern extent of the species' range (Healy 1991). The Gulf of Alaska is within the migratory pathway of and furnishes feeding habitat for Chinook salmon throughout North America (Major et al. 1978; Larson et al. 2012; Guyon et al. 2015).

Chinook Salmon Harvest in Westward Region Commercial Fisheries

Chinook salmon are commercially harvested incidentally to directed sockeye *O. nerka*, pink *O. gorbuscha*, coho *O. kisutch*, and chum *O. keta* salmon commercial fisheries within Alaska Department of Fish and Game (ADF&G) Westward Region's Kodiak (Area K), Chignik (Area L), and Alaska Peninsula (Area M) management areas (Figure 1).

In the Kodiak Management Area (KMA), Chinook salmon spawn in 7 known streams (Jackson and Keyse 2013). Chignik River is the only substantial Chinook salmon system in the Chignik Management Area (Wilburn and Stumpf 2016), and so far, 16 different streams within the Alaska Peninsula Management Area (Witteveen and Shedd 2016) have had baseline genetic tissues collected. Only 4 major Chinook salmon systems are monitored via salmon counting weirs throughout the Westward Region (Ayakulik, Chignik, Nelson, and Karluk rivers).

The average commercial Chinook salmon harvest from 2004 to 2013 was 18,703 fish in Kodiak, 3,684 fish in Chignik, and 10,880 fish in Alaska Peninsula (Table 1). Since the mid-1990s harvest of Chinook salmon in the marine waters of the Westward Region has been fairly consistent (Figure 2). However, Chinook salmon escapement estimates at the major systems monitored via weir have demonstrated substantial reductions since 2005 (Figure 3), often struggling or failing to reach their respective escapement goals (Munro and Volk 2013).

In 2010, the Karluk River Chinook salmon system was designated a stock of management concern by the Alaska Board of Fisheries (BOF). As a result, the BOF prohibited commercial retention of Chinook salmon greater in size than 28 inches in the Southwest portion of Kodiak Island stretching from Cape Kuliuk to Low Cape from June 1 to July 5 (seine gear only). The intent was to preserve Chinook salmon bound for Karluk and Ayakulik rivers. In 2013, KMA experienced a high commercial Chinook salmon harvest of about 34,000 fish. This figure was the highest since 1993 when over 41,000 Chinook salmon were harvested (Table 1); however, that came at a time when Kodiak Chinook salmon escapement was over 22,000 fish (Figure 3). During the 2013 BOF meeting the Chinook salmon nonretention policy was expanded to include all of KMA from June 1 to July 5 (seine gear only) and extended for the entire season in the Southwest portion of Kodiak Island stretching from Cape Kuliuk to Low Cape. The intent of the board's decision was not only to preserve escapement of Chinook salmon to Karluk and Ayakulik rivers, but also to preserve Chinook salmon stocks from elsewhere in Alaska.

Chinook Salmon Harvest in Kodiak Regulatory Area Sport Fisheries

Chinook salmon are harvested in sport fisheries both in fresh and salt waters in Kodiak and the Alaska Peninsula (Figure 4). Directed freshwater sport harvests occur in the Kodiak Regulatory Area (KRA) on wild stocks in Karluk and Ayakulik rivers, as well on Karluk River-origin hatchery fish returning to Monashka and Salonie creeks and Olds and American rivers. Chinook salmon are harvested in marine waters throughout the Kodiak Archipelago, but the majority of fish harvested come from Chiniak, Marmot, and Ugak bays due to their proximity to the city of Kodiak. Other significant harvests occur near the village of Old Harbor, Larsen Bay, and the waters surrounding Afognak Island. Harvest of Chinook salmon occurs by both guided and unguided anglers; however, the majority of unguided effort occurs near the Port of Kodiak, and much of the harvest in remote areas is guided.

Sport harvests of Chinook salmon occur in fresh water in the Alaska Peninsula Aleutian Islands Regulatory Area (APAIRA) in the Chignik River on the south side of the Alaska Peninsula, and in North and Black Hills creeks and Steelhead, Sapsuk, Bear, Cinder, and Meshik rivers on the north side of the Alaska Peninsula. There is little saltwater effort on Chinook salmon in the APAIRA.

Chinook salmon harvests in the freshwater areas of KRA and APAIRA have been drastically lower during the past decade. Freshwater sport fisheries have been restricted at Karluk and Ayakulik rivers annually since 2005 either through bag limit reductions or sport fishery closures.

Saltwater Chinook salmon harvests in the KRA have averaged 8,304 fish in the last 10 years (2006–2015) according to ADF&G's Statewide Harvest Survey (Table 2). Harvests of Chinook salmon in Kodiak salt waters are variable from year to year but have generally been declining since 2007, when they reached a peak of 10,626 fish. The marine Chinook salmon sport fishery is managed by a management plan adopted by the Board of Fisheries in 2005 and amended in 2008. A guideline harvest level is in place with options for restriction of the fishery that could be

implemented by the board if the guideline harvest level is exceeded. To date, no restrictions have been needed or implemented.

CHINOOK SALMON RESEARCH INITIATIVE

Decreased returns of Chinook salmon in the region and throughout Alaska have prompted statewide concern about the health of Chinook salmon stocks (ADF&G Chinook Salmon Research Team 2013). To address these concerns, the Chinook Salmon Research Initiative (CSRI) implemented stock assessment programs targeting 12 indicator stocks from around the state, including the Karluk and Chignik rivers. In addition to basic research estimating adult spawning abundances and juvenile abundance in these indicator streams, 2 of the major knowledge gaps identified by the CSRI were the species' migratory pathways at sea, and the stock of origin in fishery catches. A coded wire tag (CWT) recovery study in the Kodiak marine waters in 1994 (Swanton 1997), and from 1997 to 1999 (Clark and Nelson 2001) showed hatchery stocks from British Columbia, Alaska, and Pacific Northwest dominated in adipose finclipped Chinook salmon sampled. These findings were similar to observer-examined CWT Chinook salmon recovered from foreign trawl and research vessels in international waters near Kodiak and the South Alaska Peninsula during the 1980s through the early 2000s (Myers et al. 2004), and genetic analysis of the same sources of samples from 2005 to 2011 (Larson et al. 2012). Genetic analysis of Bering Sea Chinook salmon trawl bycatch from 2005 to 2010 showed the presence of primarily Alaska, British Columbia, and Pacific Northwest stocks (Guyon et al. 2010a, b; Templin et al. 2011; Guthrie et al. 2012); however, of regional interest was the significant presence of North Alaska Peninsula Chinook salmon stocks (14–27%).

The Western Alaska Salmon Stock Identification Program (WASSIP), conducted from 2006 to 2009, was an objective measure of determining the stock of origin of chum and sockeye salmon caught in the inshore commercial salmon fisheries of western Alaska. To determine the stock of origin, WASSIP utilized genetic mixed stock analysis (MSA; Eggers et al. 2011). Stock compositions and stock-specific harvests and harvest rates were reported in 2012 (Dann et al. 2012b; Habicht et al. 2012a; Munro et al. 2012; Templin et al. 2012). However, MSA of the Chinook salmon catch in the Westward Region commercial salmon fisheries has never been conducted. Scientific knowledge of the temporal and spatial presence of both *local* and *nonlocal* Chinook salmon in these catches is of regional, statewide, and international importance. Currently, these harvests cannot be reliably attributed to *local* wild stocks, hatchery stocks, or *nonlocal* wild stocks.

CURRENT RESEARCH PROJECT

The principal objective of this project was to sample Chinook salmon commercial and marine sport fisheries in the Westward Region and use genetic mixed stock analysis (MSA) to estimate stock compositions and stock-specific harvest, specifically to quantify the harvest of Alaska indicator stocks (ADF&G Chinook Salmon Research Team 2013). ADF&G developed a comprehensive, coastwide genetic baseline for MSA based on Templin et al. (2011) with additional collections from Barclay and Habicht (2015) and Witteveen and Shedd (2016) to estimate the stock compositions of Chinook salmon harvests in the Westward Region commercial salmon fisheries (Foster and Dann 2014, 2015) and Kodiak sport marine fisheries (Tracy and Dann 2014; Tracy and Shedd 2015) from 2014 to 2016 (Table 3; Figures 5–6). There are 10 reporting groups in this study: 1) Russia, 2) Eastern Bering Sea, 3) North Alaska Peninsula, 4) Chignik, 5) Kodiak, 6) Cook Inlet, 7) Copper, 8) Southeast Alaska, 9) British

Columbia, and 10) West Coast US (Table 3; Figures 5–6). The final baseline contains 29,001 individuals from 403 collections representing 211 populations in 10 reporting groups. The Chignik group corresponds to one of CSRI's 12 indicator stocks, whereas another (Karluk River) is included within the Kodiak group.

Commercial Fisheries

The experimental design for the commercial fisheries component of this project is laid out in 2 Operational Plans (Foster and Dann 2014, 2015). The principal objective of this effort was to sample Chinook salmon commercial harvest in marine waters of the Westward Region. In 2014, the first year of this project, sampling of Chinook salmon in the commercial salmon fisheries of the Westward Region took place in the ports of Kodiak, Larsen Bay, and Alitak in KMA, Chignik in the Chignik Management Area, and Sand Point, King Cove, and Port Moller in the Alaska Peninsula Management Area. A total of 2,201 fish were sampled for age, sex, and length information and genetic tissue during the early strata and 2,908 fish were sampled during the late strata (Appendix A).

Due to reduction in the budget for CSRI, in late 2014, CSRI cut the Alaska Peninsula- and Chignik-based portions of this project (although a subsample of the original plan was ultimately analyzed; ADF&G Chinook Salmon Research Team 2013). As a result, the scope of this project was reduced to collect genetic tissue and age, sex, and length data from Chinook salmon harvested in the commercial salmon fisheries in the Kodiak area only during the 2015 and 2016 seasons.

Designated sampling areas in KMA encompass districts or partial districts as outlined below in Sampling Area Descriptions and are based on geographic location, harvest magnitude, and management, with consideration given to port delivery location. Overall, 2 general temporal strata were chosen (early and late). The early stratum (~June) coincides with the commercial fisheries targeting early-run sockeye salmon. The late stratum (~July) coincides with the commercial fisheries targeting early-run sockeye and/or pink and chum salmon (Table 4).

Sampling Area Descriptions

Sampling areas defined in this project were Northwest Kodiak/Afognak, Southwest Kodiak/Alitak, Eastside Kodiak/Afognak, and Mainland (Figure 7). District numbers represented within each sampling area are represented in Table 4. All were sampled during the early and late strata.

Northwest Kodiak/Afognak (251, 253, 254)

This area stratum consists of the Northwest Kodiak District and the western portions of the Afognak District (Figure 7), and includes statistical areas 251, 253, and 254. Both purse seine and set gillnet gear can be used in the majority of the Northwest Kodiak District, but Afognak District is limited to seine gear only. This area historically represents the largest Chinook salmon harvests in KMA. Samples for Northwest Kodiak/Afognak were collected at the processing plants in Larsen Bay and Kodiak.

Southwest Kodiak/Alitak (255, 256, 257)

This area stratum consists of the Southwest Kodiak and Alitak districts (Figure 7) and includes statistical areas 255, 256, and 257. Only seine gear can be used in Southwest Kodiak District and this district contains fishing areas terminal to Karluk and Ayakulik rivers. Both seine and set

gillnet gear can be used in Alitak district but are segregated by sections within the district. Samples for Southwest Kodiak/Alitak were collected at the processing plants in Larsen Bay, Kodiak, and Alitak.

Eastside Kodiak/Afognak (258, 259, 252)

This area stratum consists of the Eastside Kodiak District, eastern portions of the Afognak District, and western portions of the Northwest Kodiak District (Figure 7), and includes statistical areas 258, 259, and 252. A majority of this sampling area is limited to seine gear only but there is a gillnet area in statistical area 259 of the Northwest Kodiak District. Samples for Eastside Kodiak/Afognak were collected at the processing plants in Kodiak and Alitak.

Mainland (262)

This area stratum is the Mainland District (Figure 7), statistical area 262. Only seine gear can be used in this area. Samples for Mainland were collected at the processing plants in Kodiak, Larsen Bay, and Alitak.

Sport Fisheries

The experimental design for the sport fisheries component of this project is outlined in 2 Operational Plans (Tracy and Dann 2014; Tracy et al. 2015). The primary objectives were to estimate the stock composition, stock-specific harvest, and age composition of Chinook salmon harvests for the KRA marine recreational fishery. Initially in 2014, samples were to be taken at the Port of Kodiak and in the village of Larsen Bay; however, a reduction in budget and number of samplers resulted in sampling only harvests landed at the Port of Kodiak during 2015 and 2016. Due to the low availability of samples, each year had a single spatiotemporal stratum to represent the entire Kodiak Archipelago (Figure 4). Samples collected from Larsen Bay in 2014 are included in the pooled samples for the entire Kodiak Archipelago.

OBJECTIVES

The overall goal of this project is to provide information on commercial and marine sport harvest of Alaska Chinook salmon stocks, specifically of indicator stocks within the Westward Region (ADF&G Chinook Salmon Research Team 2013). This information will be useful for reconstructing runs, building accurate brood tables to define escapement goals, and refining management by identifying spatial and temporal harvest patterns of *local* and *nonlocal* stocks. This document has 2 objectives:

- 1. Report estimated stock proportions and stock-specific harvests of Chinook salmon sampled from Kodiak area commercial fisheries, 2014–2016.
- 2. Report estimated stock proportions of Chinook salmon sampled from Kodiak area sport fisheries, 2014–2016.

In addition, we report the estimated stock proportions of Chinook salmon sampled from South Peninsula and Chignik commercial fisheries in 2014 (Appendix B).

DEFINITIONS

To reduce confusion associated with the methods, results, and interpretation of this study, basic definitions of commonly used genetic and salmon management terms are offered here.

Allele. Alternative form(s) of a given gene or DNA sequence.

Brood (year). All salmon in a stock spawned in a specific year.

Coded Wire Tag (CWT). A small magnetized wire, placed in the snout of fish to identify its stock of origin. Often hatchery fish are implanted with CWTs but some wild stocks are tagged as well. Typically the adipose fin of a tagged fish is clipped to give an external indication of the presence of a CWT.

Credibility Interval. In Bayesian statistics, a credibility interval is a posterior probability interval. A credibility interval differs from a confidence interval in frequentist statistics in that it is a statement of probability: i.e., a 90% credibility interval has a 90% chance of containing the true answer.

District. A portion of a body of water, areas of which may be open to commercial salmon fishing. Districts are subdivided into statistical areas and used to document the spatial origin of fishery harvests. Commercial fishing districts, subdistricts, and sections in KMA commercial fishing areas are defined in statutes listed below under *Salmon administrative area*.

Escapement (or Spawning Abundance or Spawners). The annual estimated size of the spawning salmon stock—the quality of escapement may be determined not only by numbers of spawners, but also factors such as sex ratio, age composition, temporal entry into the system, and spatial distribution with the salmon spawning habitat (from 5 AAC 39.222(f)).

F-statistics. Measures used to partition genetic diversity within and among populations in a hierarchical fashion. Common measures include the following: $F_{\rm IS}$, the average departure of genotype frequencies from Hardy-Weinberg expectations within populations; $F_{\rm ST}$, the proportion of the variation due to allele frequency differences among populations; and $F_{\rm IT}$, the departure of genotype frequencies from Hardy-Weinberg expectations relative to the entire population. In this hierarchy, subscripts refer to comparisons between levels in the hierarchy: $_{\rm IS}$ refers to individuals within populations, $_{\rm ST}$ to subpopulations within the total population, and $_{\rm IT}$ to individuals within the total population. Hierarchies and subscript notation can be extended to any level to accommodate different study designs.

Gametic Disequilibrium (or Linkage Disequilibrium). A state that exists in a population when alleles at different loci are not distributed independently in the population's gamete pool, often because the loci are physically linked.

Genetic Marker. A genetic variant showing Mendelian inheritance, such as a DNA sequence that can be identified by a simple assay.

Genotype. The set of alleles for one or more loci for an individual.

Hardy-Weinberg Expectations (HWE). The genotype frequencies that would be expected from given allele frequencies assuming random mating, no mutation (the alleles do not change), no migration or emigration (no exchange of alleles between populations), infinitely large population size, and no selective pressure for or against any traits.

Harvest. The number of salmon or weight of salmon taken of a run from a specific stock.

Local. A salmon stock originating within the management area where it is caught.

Locus (Loci, plural). A fixed position or region on a chromosome that may contain more than 1 genetic marker.

Mixed stock Analysis (MSA). A method using allele frequencies from populations and genotypes from mixture samples to estimate stock compositions of mixtures.

Nonlocal. A salmon stock originating outside of the management area where it is caught.

Ocean-type. The life history form of Chinook salmon which migrates seaward immediately following emergence. This life history form is predominant in the species' southern range (Healy 1991; Quinn 2011).

Polymerase Chain Reaction (PCR). A method to amplify a single or few copies of a locus across several orders of magnitude, generating millions of copies of the DNA.

Reporting Group. A group of populations in a genetic baseline to which portions of a mixture are allocated with mixed stock analyses, constructed based on a combination of stakeholder needs and genetic distinction.

Run. The total number of salmon in a stock surviving to adulthood and returning to the vicinity of the natal stream in any calendar year, composed of both the harvest of adult salmon plus the escapement; the annual run in any calendar year. Except for pink salmon, a run is composed of several age classes of mature fish from the stock, derived from the spawning of a number of previous brood years (from 5 AAC 39.222(f)).

Salmon Administrative Area (Area). Geographic areas used to administer the registration of commercial salmon fishing permits (from 20 AAC 05.230). Commercial salmon fishing areas are designated by letter code and are defined by the following Alaska administrative code: Southeast Alaska (Area A; 5 AAC 33.100); Yakutat (Area D; 5 AAC 30.100); Prince William Sound (Area E; 5 AAC 24.100); Cook Inlet (Area H; 5 AAC 21.100); Kodiak (Area K; 5 AAC 18.100); Chignik (Area L; 5 AAC 15.100); Alaska Peninsula (Area M; 5 AAC 12.100, 5 AAC 09.100, and 5 AAC 11.101); Bristol Bay (Area T; 5 AAC 06.100); and Kuskokwim (Area W; 5 AAC 07.100). Districts and subdistricts within areas used to aid management are further defined by administrative code.

Salmon Stock. A locally interbreeding group of salmon that is distinguished by a distinct combination of genetic, phenotypic, life history, and habitat characteristics, or an aggregation of 2 or more interbreeding groups occurring in the same geographic area and managed as a unit (from 5 AAC 39.222(f)).

Single Nucleotide Polymorphism (SNP). DNA sequence variation occurring when a single nucleotide (A, T, C, or G) differs among individuals or within an individual between paired chromosomes.

Stream-type. The life history form of Chinook salmon which spends its first year after emergence in freshwater before migrating seaward. This life history form is predominant in the species' northern range (Healy 1991; Quinn 2011).

METHODS

GENETIC TISSUE SAMPLING

Commercial Fisheries

Catch samplers collected tissue samples for MSA at processing facilities located at the major KMA fish processing ports: Kodiak, Larsen Bay, and Alitak. The genetic tissue samples for

laboratory analysis were selected from the available harvest samples postseason by subsampling within each stratum proportional to the daily catches. This ensures that the stock compositions estimated from the MSA analysis are representative of the catch in the stratum. Sampling proportional to catch does come with caveats since it entails not only tracking daily harvest but projecting harvest throughout the stratum and oversampling to facilitate postseason subsampling. In postseason sample selection, some samples were excluded from analysis to most closely approximate the daily catch proportions of a stratum's harvest.

Chinook salmon tissue samples (pelvic fin axillary processes from the left side of fish) were collected by individual sampling procedures. In these procedures, sampled tissues from each fish were placed in individual, ethanol-filled cryovials with a unique individual sample number to allow pairing with age, sex, and length and CWT data. Samplers obtained fish ticket information before collecting samples to determine whether the fish were exclusively harvested from the area and timeframe designated to be sampled. If fish ticket data were not available, the processing facility dock foreman or tender operator was interviewed. Once fish ticket information became available, the origin of the catch was confirmed.

Sport Fisheries

A single catch sampler collected tissue samples at 4 locations in the Port of Kodiak: a seafood processing plant, St. Paul's Harbor, St. Herman's Harbor (Dog Bay), and the U.S. Coast Guard Base recreational boating launch. During 2014, additional catch samplers were available in Larsen Bay and sport fishing harvests were collected in conjunction with sampling of the commercial catch. Due to the low number of fish available for sampling, all samples were used in the analysis and no subsampling was necessary.

The methodology for tissue collection was the same as that of the commercial sampling. When available, sport anglers were interviewed to estimate the timing of harvest and geographic distribution of effort; CWT samples were collected if the adipose fin was clipped. The majority of samples collected came from 1 seafood processor that most Kodiak-based charter boats deliver their catch to. This precluded interviewing anglers, but was a central location for sampling charter-caught Chinook salmon. Sampling was conducted throughout the sampler's shift and rotated between the 4 locations. As a further cost-saving measure, sampling on the U.S. Coast Guard Base was limited due to the time and fuel needed to access this location.

AGE, SEX, AND LENGTH SAMPLING

The most common method of age determination in Pacific salmon is the analysis of the concentric rings (circuli) on the scale. Scales, when possible, were collected from the preferred area of each fish following the methods described by International North Pacific Fish Commission (1963) and Welander (1940) for both commercial and sport fishery samples. Four scales per fish were collected and mounted on scale "gum" cards and impressions made on acetate/diacetate cards (Clutter and Whitesel 1956). Fish ages were assigned by examining scale impressions for annual growth increments using a microfiche reader fitted with a 48X lens following designation criteria established by Mosher (1968). Ages were recorded using European notation (Koo 1962), with a decimal separating the number of winters spent in fresh water (after emergence) from the number of winters spent in salt water. Sex was determined, normally by visual inspection of gonads and by examining the fish for secondary sexual characteristics. Length (mid eye to tail fork; METF) was measured to the nearest millimeter.

CODED WIRE TAG SAMPLING

The presence/absence of an adipose fin clip was recorded for all Chinook salmon sampled as part of the genetics tissue sampling. Any Chinook salmon displaying an adipose clip was sampled additionally for CWT information (Foster and Dann 2014, 2015). A uniquely numbered cinch strap was attached to the head and recorded. The head was removed carefully with a utility knife. Each head, with the numbered cinch strap visible, was placed in an individual plastic bag. After tissue sampling was complete, a CWT sampling form was completed for each processor delivery (tender) if any adipose-clipped fish were present. All Chinook salmon heads collected were frozen and shipped to the ADF&G Mark, Tag, and Age Laboratory in Juneau for CWT extraction and reading.

SELECTING GENETIC TISSUE SAMPLES FOR ANALYSIS

All genetic tissue samples were selected randomly without respect to CWT sampling. As most stocks with CWT belong to highly identifiable reporting groups, incorporating CWT samples as known marks would probably add little value to the stock composition estimates derived solely from MSA.

Commercial Fisheries

A subset of the total samples collected was selected for analysis for each spatiotemporal stratum to be representative of harvests among days within each stratum. The sample size goal for each stratum was 380 fish. Samples were selected in proportion to the daily harvest that occurred. If the proportional number of samples was not available on a given sample day, all available samples were used and additional samples were selected in proportion from remaining sample days until the 380-sample goal was achieved. Sample selection followed predetermined temporal strata as defined in the operational plans (Foster and Dann 2014, 2015).

Sport Fisheries

Given the number of samples collected and the lack of day-specific harvest information with which to subsample proportional to harvest, all samples collected in a given year were genotyped.

LABORATORY ANALYSIS

Assaying Genotypes

We extracted genomic DNA from tissue samples using a NucleoSpin 96 Tissue Kit by Macherey-Nagel (Düren, Germany). We screened 48 SNP markers (Templin et al. 2011) using 2 Fluidigm 192.24 Dynamic Array Integrated Fluidic Circuits (IFCs), each of which systematically combined up to 24 assays and 192 samples into 4,608 parallel reactions. The components were pressurized into the IFC using the IFC Controller RX (Fluidigm). Each reaction was conducted in a 9 nL volume chamber consisting of a mixture of 20X Fast GT Sample Loading Reagent (Fluidigm), 2X TaqMan GTXpress Master Mix (Applied Biosystems), Custom TaqMan SNP Genotyping Assay (Applied Biosystems), 2X Assay Loading Reagent (Fluidigm), 50X ROX Reference Dye (Invitrogen), and 60–400 ng/µl DNA. Thermal cycling was performed on a Fluidigm FC1 Cycler using a Fast-PCR protocol as follows: an initial "Hot-Start" denaturation of 95°C for 2 min followed by 40 cycles of denaturation at 95°C for 2 sec and annealing at 60°C for 20 sec, with a final "Cool-Down" at 25°C for 10 sec. The Dynamic Array IFCs were read on a

Biomark or EP1 System (Fluidigm) after amplification and scored using Fluidigm SNP Genotyping Analysis software.

Assays that failed to amplify on the Fluidigm system were reanalyzed with the QuantStudio 12K Flex Real-Time PCR System (Life Technologies). Each reaction was performed in 384-well plates in a 5 μ L volume consisting of 6–40 ng/ μ l of DNA, 2X TaqMan GTXpress Master Mix (Applied Biosystems), and Custom TaqMan SNP Genotyping Assay (Applied Biosystems). Thermal cycling was performed on a Dual 384-Well GeneAmp PCR System 9700 (Applied Biosystems) as follows: an initial "Hot-Start" denaturation of 95°C for 10 min followed by 40 cycles of denaturation at 92°C for 1 sec and annealing at 60°C for 1 min, with a final "Cool-Down" hold at 10°C. The plates were scanned on the system after amplification and scored using the Life Technologies QuantStudio 12K Flex Software.

Genotypes produced on both platforms were imported and archived in the Gene Conservation Lab Oracle database, LOKI.

Laboratory Quality Control

We conducted quality control (QC) analyses to identify laboratory errors and to measure the background discrepancy rate of the genotyping process. The QC analyses were performed as a separate event from the original genotyping, with staff duties altered to reduce the likihood of repeated human errors. All samples were subject to the following QC protocol: re-extraction of 8% of project fish and genotyping them for the same SNPs assayed in the original project. Discrepancy rates were calculated as the number of conflicting genotypes divided by the total number of genotypes compared. These rates describe the difference between original project data and QC data for all SNPs, and are capable of identifying extraction, assay plate, and genotyping errors. Error rates in the original project data are half the rate of discrepancies, assuming that errors are equally likely to occur in original and QC genotyping. This QC method is the best representation of the error rate of our current genotype production.

STATISTICAL ANALYSIS

Data Retrieval and Genotype Quality Control

We retrieved genotypes from LOKI and imported them into *R* version 3.3.1 (Bug in Your Hair). All subsequent analyses were performed in *R* unless otherwise noted. Prior to MSA, we conducted 2 statistical QC analyses to ensure that only quality genotypic data was included in the estimation of stock compositions. First, we removed individuals that were missing substantial genotypic data from further analyses. We used what we refer to as the 80% rule, which excludes individuals missing genotypes for 20% or more of loci, because these individuals likely have poor quality DNA. The inclusion of individuals with poor quality DNA might introduce genotyping errors into the catch samples and reduce the accuracy and precision of MSA (Dann et al. 2012a).

Secondly, we identified individuals with duplicate genotypes and removed them from further analyses. Duplicate genotypes can occur as a result of sampling or extracting the same individual twice, and were defined as pairs of individuals sharing the same genotype in 95% of markers

_

^a R version 3.3.1 (Bug in Your Hair) was released on Tuesday 2016-06-21. The R project for statistical computing, Vienna, Austria. Available from https://www.R-project.org/.

screened. The individual with the most missing data from each duplicate pair was removed from further analyses. If both samples had the same amount of genotypic data, the first sample was removed from further analyses.

The number of Chinook salmon initially selected for analysis, the number genotyped in the laboratory, the numbers excluded for the 2 statistical QC analyses, and the final number included in MSA were tabulated for each catch sample.

Estimating Stock Compositions and Stock-Specific Harvests

Stock compositions of KMA fishery harvests were estimated using a Bayesian approach to MSA, the Pella-Masuda Model as implemented in the program *BAYES* (Pella and Masuda 2001). The Bayesian method of MSA estimates the proportion of stocks caught within each fishery using 4 pieces of information: 1) a baseline of allele frequencies for each population, 2) the grouping of populations into the reporting groups desired for MSA, 3) prior information about the stock proportions of the fishery, and 4) the genotypes of fish sampled from the fishery. The baseline of allele frequencies for Chinook salmon populations and the reporting groups into which the populations were combined are described in Templin et al. (2011).

Prior Choice

The Bayesian model implemented by *BAYES* places a Dirichlet distribution as the prior distribution for the stock proportions, and the parameters for this distribution must be specified. It was demonstrated during WASSIP that the choice of prior information about the stock proportions in a fishery, or the prior probability distribution (referred to hereafter as a *prior*) can be important to the outcome of MSA (Habicht et al. 2012b). For spatiotemporal strata that had no precedent (i.e., all "early" strata in 2014), we defined prior parameters for each reporting group to be equal (a *regionally flat* prior) with the prior for each reporting group subsequently divided equally to populations within that reporting group. Following this initial set of stock composition estimates, future strata were given a *sequential prior* according to WASSIP methods (Jasper et al. 2012) according to WASSIP methods, such that the prior for each subsequent temporal mixture was equal to the stock compositions from the preceding temporal mixture for a given geographic area. For subsequent years, the prior for the first temporal strata was equal to the stock compositions from the first temporal strata of the previous year. We set the sum of all prior parameters to 1 (prior weight), which is equivalent to adding 1 fish to each mixture (Pella and Masuda 2001).

BAYES Protocol

We ran 5 independent Markov Chain Monte Carlo (MCMC) chains of 40,000 iterations with different starting values and discarded the first 20,000 iterations (burn-in) to remove the influences of the initial start values. We defined the starting values for the first chain such that the first 1/5 of the baseline populations summed to 0.9 and the remaining populations summed to 0.1. Each chain had a different combination of 1/5 of baseline populations summing to 0.9. We combined the second halves of these chains to form the posterior distribution and tabulated median and mean estimates, 90% credibility intervals, the probability of an estimate being equal to zero, and standard deviations from a total of 100,000 iterations. For each tabulated measure, summary statistics were based upon the raw posterior, which was calculated out to 6 significant digits.

We also assessed the within- and among-chain convergence of these estimates using the Raftery-Lewis (within-chain) and Gelman-Rubin (among-chain) diagnostics. These values measure the convergence of each chain to stable estimates (Raftery and Lewis 1996), as well as measure the variation of estimates within a chain to the total variation among chains (Gelman and Rubin 1992), respectively. If the Gelman-Rubin diagnostic for any stock group estimate was greater than 1.2 we reanalyzed the mixture with 80,000-iteration chains following the same protocol. If the Gelman-Rubin diagnostic for any stock group estimate was greater than 1.2 after this reanalysis and its mean stock proportion was greater than 0.05 (i.e., 5%), we analyzed the mixture with the program HWLER (Pella and Masuda 2006). HWLER is similar to BAYES in that it estimates stock compositions based upon a Bayesian model, but differs in that it incorporates information about the effect of assigning mixture individuals to baseline populations with respect to the Hardy-Weinberg and linkage equilibria conditions observed in the baseline populations. In doing so it allows for the identification of extra-baseline individuals that contravene these equilibria conditions but contribute to the mixture in question. We incorporated this information into the definition of the posterior for those mixtures that failed to converge after reanalysis with 80,000-iteration chains in BAYES.

Applying Stock Compositions to Harvests

We calculated stock-specific harvests in the manner described by Dann et al. (2009). Briefly, median and mean harvest estimates, credibility intervals, and standard deviations for each temporal stratum were calculated by multiplying the harvest from that stratum by its unrounded reporting group stock proportion estimates. Temporal strata were combined within sampling areas into annual estimates by weighting them by their respective harvests. Annual estimates for each sampling area were combined into annual estimates for all sampling areas by weighting them by their respective harvests to arrive at overall annual estimates for KMA. Confidence intervals for the overall harvest of each stock in a sampling area was estimated via Monte Carlo simulation by resampling 100,000 draws of the posterior output from each of the constituent temporal strata and applying the harvest to the draws.

RESULTS

GENETIC TISSUE SAMPLING

Commercial Fisheries

Commercial Chinook salmon fisheries in KMA were sampled in 2014–2016. Approximately 9,014 Chinook salmon samples were collected in 22 spatiotemporal strata over the 3 years of sampling (Table 4).

Northwest Kodiak/Afognak (251, 253, 254)

Two temporal strata were targeted for sampling each year in the Northwest Kodiak/Afognak sampling area (Figure 7). Target sampling objectives (380 fish) were achieved in both strata for all years (Table 4). All strata were fished. Details of the sampling (i.e., daily tabulation of catch, samples collected, samples selected) for each of the years and temporal strata that were sampled and selected for MSA analysis are provided in Appendix C1–C2.

Southwest Kodiak/Alitak (255, 256, 257)

Two temporal strata were targeted for sampling each year in the Southwest Kodiak/Alitak sampling area (Figure 7). The target sampling objectives were achieved in 2 out of the 6 strata due to low harvest, but sufficient numbers (>250) were achieved to conduct analysis (Table 4). All strata were fished. Details of the sampling (i.e., daily tabulation of catch, samples collected, samples selected) for each of the years and temporal strata that were sampled and selected for MSA analysis are provided in Appendix C3–C4.

Eastside Kodiak/Afognak (258, 259, 252)

Two temporal strata were targeted for sampling each year in the Eastside Kodiak/Afognak sampling area (Figure 7). The target sampling objectives were achieved in 2 out of the 6 strata due to low harvest, but sufficient numbers (>250) were achieved to conduct analysis (Table 4). All strata were fished. Details of the sampling (i.e., daily tabulation of catch, samples collected, samples selected) for each of the years and temporal strata that were sampled and selected for MSA analysis are provided in Appendix C5–C6.

Mainland (262)

Two temporal strata were targeted for sampling each year in the Mainland sampling area (Figure 7). The target sampling objectives were achieved in 3 out of the 6 strata due to low harvest and closed fisheries, but sufficient numbers (>250) were achieved to conduct analysis in all strata fished (Table 4). No fishing occurred in the early stratum during 2014 and 2015 (Table 4). Details of the sampling (i.e., daily tabulation of catch, samples collected, samples selected) for each of the years and temporal strata that were sampled and selected for MSA analysis are provided in Appendix C7–C8.

Sport Fisheries

In 2014, sampling was based out of both Kodiak and Larsen Bay; however, in 2015 and 2016 sampling was solely based in Kodiak. A total of 1,140 tissue samples were collected from sport anglers between 2014 and 2016 (Tables 4–5; Figures 8–10). These samples came from 23 statistical areas in the salt waters of the KRA, but harvests occurred throughout the Kodiak Archipelago. In 2014, 417 tissue samples were obtained from 4 locations in the Port of Kodiak (295), and Larsen Bay (122). Due to budget constraints sampling in 2015 was limited to the 4 locations in the Port of Kodiak, resulting in 282 tissue samples collected. In 2016 the U.S. Coast Guard Base was cut as a sampling collection port, and 441 tissue samples were collected from the remaining 3 locations in the Port of Kodiak.

AGE, SEX, AND LENGTH SAMPLING

Commercial Fisheries

Estimates of age, size, sex, and percentage of adipose-clipped fish by area and stratum are found in Appendix D1–D24. The estimates of age and size are for all fish sampled from the stratum and may include additional fish that were not subsampled postseason for MSA.

Northwest Kodiak/Afognak (251, 253, 254)

Early

In 2014, the Northwest Kodiak/Afognak sampling area Chinook salmon harvest was predominately composed of age-0.3 (38%), -0.2 (33%), and -1.2 (14%) fish in the early stratum (Appendix D1). All fish sampled from this area and timeframe averaged 595 mm in length (METF), 63.1% were female, and 7.6% had a clipped adipose fin (Appendix D2). In 2015, age-0.2 (41%), -1.2 (29%), and -0.3 (17%) Chinook salmon accounted for the majority of the harvest (Appendix D3). The average length was 604 mm. Females made up approximately 46.8% of the sampled fish, and 14.5% had a clipped adipose fin (Appendix D4). The 2016 harvest was composed of age-0.2 (31%), -0.3 (31%), and -1.2 (19%) fish (Appendix D5). The average length was 593 mm, 45.6% were female, and 9.7% had a clipped adipose fin (Appendix D6).

Late

The late stratum harvest in 2014 from the Northwest Kodiak/Afognak sampling area was composed primarily of age-0.2 (38%), -0.3 (25%), and -0.1 (13%) Chinook salmon (Appendix D1). The average length of all ages was 554 mm, 52% were female, and 15.8% of the fish had a clipped adipose fin (Appendix D2). Age-0.2 (44%), -0.3 (17%), and -1.2 (17%) fish were the most abundant in the 2015 late stratum (Appendix D3). Samples averaged 627 mm, were 56.0% female and 19.0% had a clipped adipose fin (Appendix D4). In 2016, the predominant age classes of the harvest from the Northwest Kodiak/Afognak area during the last stratum were age-0.2 (35%), -1.2 (24%), and -0.3 (24%) Chinook salmon (Appendix D5). The mean length of all ages was 585 mm, samples were 51.9% female, and 10.1% had a clipped adipose fin (Appendix D6).

Southwest Kodiak/Alitak (255, 256, 257)

Early

Chinook salmon harvested in the Southwest Kodiak/Alitak sampling area during the early stratum in 2014 included predominately age-0.2 (62%), -0.3 (18%), and -1.2 (10%) fish (Appendix D7). Samples from all ages averaged 541 mm in length, 47.7% were female, and 11.1% had a clipped adipose fin (Appendix D8). In 2015, the harvests in this area were primarily age-0.2 (42%), -0.1 (17%), and -1.2 (16%) fish (Appendix D9). The mean length was 529 mm, 35.2% were female, and 15.6% had a clipped adipose fin (Appendix D10). Age-0.2 (54%) and -0.3 (23%) Chinook salmon dominated the Southwest Kodiak/Alitak area early stratum harvest in 2016 (Appendix D11). The average length of the fish sampled was 541 mm. Fish sampled were 50.8% female, and 15.5% had a clipped adipose fin (Appendix D12).

Late

The late stratum in 2014 was composed predominately of age-0.2 (47%) and age-0.3 (28%) Chinook salmon (Appendix D7). The average length of all ages combined was 568 mm, 47.8% of the samples were female, and 15.3% of the observed fish had a clipped adipose fin (Appendix D8). In 2015, age-0.2 (42%), -0.3 (23%), and -1.2 (15%) Chinook salmon dominated the late stratum harvest in the Southwest Kodiak/Alitak area (Appendix D9). The size of all samples averaged 641 mm in length, were 68.6% female, and 15.1% had a clipped adipose fin (Appendix D10). Age-0.3 (36%), -0.2 (34%), and -1.2 (14%) fish accounted for the majority of the Chinook salmon harvest in the Southwest Kodiak/Alitak area during the 2016 late stratum (Appendix

D11). Sampled fish averaged 621 mm in length, were 57.1% female, and 20.3% had a clipped adipose fin (Appendix D12).

Eastside Kodiak/Afognak (258, 259, 252)

Early

In the Eastside Kodiak/Afognak sampling area the harvest during the early stratum of 2014 was mainly composed of age-0.2 (44%), -0.3 (19%), and -0.1 (14%) Chinook salmon (Appendix D13). Fish sampled from this area and timeframe averaged 539 mm in length, 48.3% were female, and 18.3% had a clipped adipose fin (Appendix D14). During 2015, age-0.2 (38%), -1.2 (25%), and -0.1 (13%) fish accounted for the majority of the Chinook salmon harvest (Appendix D15). Samples from all ages averaged 497 mm, were 76.6% female, and 19.8% had a clipped adipose fin (Appendix D16). Age-0.1 (54%), -0.2 (15%), and -1.1 (15%) salmon dominated the Eastside Kodiak/Afognak Chinook harvest in the early stratum of 2016 (Appendix D17). Sampled fish averaged 446 mm in length, were 53.2% female, and 19.0% of the fish had a clipped adipose fin (Appendix D18).

Late

The late stratum harvest in the Eastside Kodiak/Afognak sampling area in 2014 was mainly composed of age-0.2 (33%), -0.1 (21%), -0.3 (17%), and -1.2 (15%) Chinook salmon (Appendix D13). The average length for all ages combined was 536 mm, 50.5% were female, and 16.8% had a clipped adipose fin (Appendix D14). In 2015, the harvest included age-0.2 (41%), -1.2 (18%), -0.1 (11%), and -0.3 (11%) Chinook salmon (Appendix D15). The average length of all ages combined was 549 mm. The samples were 69.2% female, and 22.5% of fish had a clipped adipose fin (Appendix D16). The Chinook salmon harvest in the Eastside Kodiak/Afognak area during the late stratum was composed primarily of age-0.3 (30%), -0.2 (29%), and -0.1 (19%) fish (Appendix D17). The average length of all samples was 566, 58.4% were female, and 21.7% of the fish had a clipped adipose fin (Appendix D18).

Mainland (262)

Early

In 2014 and 2015, no commercial fishing occurred in the Mainland area during the early stratum (Appendix D19–D22). In 2016, the early stratum catch was predominantly composed of age-0.2 (44%), -0.3 (26%), and -0.1 (14%) Chinook salmon (Appendix D23). The average length of all fish sampled was 522 mm. The observed fish were 58.3% female and 22.3% of the fish had a clipped adipose fin (Appendix D24).

Late

The predominant age classes for Chinook salmon harvested in the Mainland area during the late stratum of 2014 were age-0.2 (29%), age-0.3 (28%), and age-0.1 (24%; Appendix D19). The average length of all samples from this area and timeframe was 543 mm, 52.1% were female, 18.3% had a clipped adipose fin (Appendix D20). In 2015, age-0.2 (42%), -1.2 (16%), and -0.3 (15%) fish accounted for the majority of the Chinook salmon harvest in the Mainland area during the late stratum (Appendix D21). The fish averaged 598 mm in length, 60.3% were female, and 11.3% of all sampled fish had a clipped adipose fin (Appendix D22). Age-0.3 (41%) and age-0.2 (36%) Chinook salmon dominated the Mainland area Chinook salmon harvest during the late

stratum of 2016 (Appendix D23). All sampled fish averaged 581 mm in length. These fish were 53.5% female and 15.2% had a clipped adipose fin (Appendix D24).

Sport Fisheries

Age composition proportions from sport fishery harvests in 2014 were primarily age-0.3 (41%), age-0.2 (29%), and age-1.2 (18%; Appendix E1). Chinook salmon averaged 642 mm in length (METF), were 57.9% female, and 14.3% had a clipped adipose fin (Appendix E2). In 2015, age-0.2 (43%) and age-0.3 (39%) were the dominant age classes with all other age groups contributing much smaller proportions (Appendix E3). Samples from all ages averaged 681 mm in length, were 60.5% female, and 19.8% of the samples had a clipped adipose fin (Appendix E4). Age composition proportions from 2016 were similar to 2015 with age 0.2 (31%) and age 0.3 (44%); however, contributions from age-1.2 (9%) and -1.3 (9%) were slightly higher than previous years (Appendix E5). The average length of all samples was 653 mm, 51.2% were female, and 19.5% had a clipped adipose fin (Appendix E6).

CODED WIRE TAG RECOVERIES

Commercial Fisheries

All fish sampled as part of the GSI project were inspected for the presence of a clipped adipose fin. The sampling rate of the total Chinook salmon commercial harvest during the project timeframe was 47.7% in 2014, 38.1% in 2015, and 48.5% in 2016 (Table 4; Appendix F). The percent of CWT recoveries from inspected commercial fishery harvests was relatively consistent from year to year (Appendix F) with 5.7% recovered during 2014, 5.8% during 2015, and 6.5% in 2016. The majority of the CWTs were from fish released in Washington, followed by British Columbia, Oregon, Alaska, and Idaho (Appendix F).

Sport Fisheries

The percent of CWT recoveries from inspected sport fishery harvests was relatively consistent from year to year (Appendix G) with 5.8% recovered during 2014, 6.1% during 2015, and 8.7% in 2016. The majority of CWTs were from fish released in Washington, followed by British Columbia, Oregon, and Alaska (Appendix G).

SELECTING GENETIC TISSUE SAMPLES FOR ANALYSIS

Commercial Fisheries

Northwest Kodiak/Afognak (251, 253, 254)

Pooling of commercial fishery samples allowed estimation of stock compositions for all 6 strata (Table 4; Appendix C1–C2).

Southwest Kodiak/Alitak (255, 256, 257)

Pooling of commercial fishery samples allowed estimation of stock compositions for all 6 strata (Table 4; Appendix C3–C4). In instances where fewer than 380 samples were collected, all samples were analyzed.

Eastside Kodiak/Afognak (258, 259, 252)

Pooling of commercial fishery samples allowed estimation of stock compositions for all 6 strata (Table 4; Appendix C5–C6). In instances where fewer than 380 samples were collected, all samples were analyzed.

Mainland (262)

Pooling of commercial fishery samples allowed estimation of stock compositions for 4 of the 6 strata (Table 4; Appendix C7–C8). Fishing did not occur in the "Early" strata of 2014 and 2015, thus no samples were collected. In instances where fewer than 380 samples were collected, all samples were analyzed.

Sport Fisheries

Due to the relatively low number of samples collected, no subsampling was required and all genetic samples collected were analyzed in each year as a single spatiotemporal stratum per year (Table 4).

LABORATORY ANALYSIS

Assaying Genotypes

A total of 8,829 fish were genotyped from 25 strata representing harvests (Table 4).

Laboratory Quality Control

Laboratory QC identified errors in tissue and DNA handling. After these errors were corrected, we measured low levels of nonsystematic discrepancies between the original and QC analyses (Table 6). There were 37,152 genotypes compared between these analyses. The majority of discrepancies were between homozygote and heterozygote genotypes (0.51%), but some discrepancies between alternate homozygotes were observed (0.03%). Assuming all errors are equally likely to have occurred in the production and QC genotyping process, error rates for both error types was 0.27%. This level of error was well below the standard set by the laboratory as acceptable (1%).

STATISTICAL ANALYSIS

Data Retrieval and Genotype Quality Control

Of the 8,829 fish genotyped, 161 were excluded from analysis because they were missing genotypes for more than 20% of loci, and 22 were excluded because they appeared to represent duplicate individuals (Appendix H). In the end, a total of 8,646 fish were used to produce stock composition estimates for 25 strata. Average sample size of strata was 346 fish with a minimum of 267 fish and a maximum of 440 fish.

Stock Composition and Stock-Specific Harvest Estimates

Commercial Harvest Estimates by Sampling Area by Year

Northwest Kodiak/Afognak (251, 253, 254)

The stock composition in the Northwest Kodiak/Afognak sampling area was consistently dominated by British Columbia and West Coast US stocks across all 3 years (Tables 7–15; Figures 11–12). During 2014, the British Columbia reporting group contributed 72.1% and the

West Coast US reporting group contributed 15.7% to the first stratum (Table 7). The second stratum was similar, but saw a relative decrease in the proportion of British Columbia fish with 56.0% to British Columbia and 34.7% to West Coast US (Table 8). No other groups represented over 5% of the harvest in any strata (Figure 11). For 2014, stock-specific harvest in the Northwest Kodiak/Afognak area was estimated at 1,176 fish from the British Columbia reporting group, followed by 447 fish from West Coast US (Table 9; Figure 12).

In 2015, stock compositions were again dominated by British Columbia and West Coast US. For the first stratum, the majority of fish were from British Columbia (54.8%), followed by West Coast US with 24.3%, Southeast Alaska/Northeast Gulf of Alaska with 8.5%, and Cook Inlet with 6.4% (Table 10). The second stratum was very similar, with British Columbia (52.1%) and West Coast US (34.9%) reporting groups continuing to be the most prevalent (Table 11; Figure 11). Harvest by stock during 2015 consisted of 1,322 British Columbia fish, 697 West Coast US fish, 176 Southeast Alaska/Northeast Gulf of Alaska fish, and 139 Cook Inlet fish (Table 12; Figure 12).

In 2016, British Columbia remained in the majority for the first stratum with 59.6%, followed by West Coast US with 15.0%, Southeast Alaska/Northeast Gulf of Alaska with 12.7%, and Cook Inlet with 7.8% (Table 13). A similar pattern held in the second stratum: British Columbia with 63.9% of the harvest, followed by West Coast US with 19.4%, Southeast Alaska/Northeast Gulf of Alaska with 10.3%, and Cook Inlet with 5.6% (Table 14). No other groups represented over 5% of the harvest in any strata (Figure 11). The harvest of the British Columbia reporting group was 1,297 fish, followed by 364 fish from the West Coast US, 241 fish from Southeast Alaska/Northeast Gulf of Alaska, and 141 fish from Cook Inlet (Table 15; Figure 12).

Southwest Kodiak/Alitak (255, 256, 257)

The stock composition of the Southwest Kodiak/Alitak sampling area was similar to that of Northwest Kodiak/Afognak; the harvest was consistently dominated by British Columbia and West Coast US stocks across all 3 years, with the notable exception of the presence of Kodiak stocks (Tables 16–24; Figures 13–14). During 2014, the British Columbia reporting group contributed 51.2% to the first stratum, the West Coast US reporting group contributed 30.8%, followed by Kodiak with 10.0%, and Southeast Alaska/Northeast Gulf of Alaska with 6.1% (Table 16). The second stratum was almost exclusively British Columbia (54.5%) and West Coast US (39.0%) stocks (Table 17). No other groups represented over 5% of the harvest in any strata (Figure 13). For 2014, stock-specific harvest in the Southwest Kodiak/Alitak area were estimated at 909 fish from the British Columbia reporting group, followed by 627 fish from the West Coast US group (Table 18; Figure 14). While Kodiak stocks made up 10.0% of the catch for the first stratum, the number of fish harvested in the first stratum was much lower than in the second stratum where Kodiak stocks only made up 1.0% of the catch, resulting in only 3.3% of the annual 2014 catch in the Southwest Kodiak/Alitak area being attributed to Kodiak stocks, or approximately 55 fish (Table 18).

In 2015, stock compositions were similar to 2014, with the exception of Kodiak stocks, which were even more prevalent in the first stratum, accounting for 24.9% of the harvest, along with West Coast US (35.2%) and British Columbia (33.8%) stocks (Table 19). The second stratum saw an increase in the proportion of British Columbia stocks to 63.1%, and West Coast US stocks were similar to the first stratum with 30.3% (Table 20). No other stocks represented over

5% of the harvest in any strata (Figure 13). Harvest by stock during 2015 consisted of 1,462 British Columbia fish, 799 West Coast US fish, and 152 Kodiak fish (Table 21; Figure 14).

In 2016, the first and second stratum were very consistent, with both showing a higher proportion of British Columbia stock relative to West Coast US. The first stratum included 67.1% British Columbia and 24.6% West Coast US (Table 22), which was nearly identical to the second stratum with 69.2% British Columbia and 24.7% West Coast US (Table 23). No other groups represented over 5% of the harvest in any strata (Figure 13). Overall, the harvest of British Columbia stocks was 528 fish, followed by the West Coast US with 191 fish (Table 24; Figure 14).

Eastside Kodiak/Afognak (258, 259, 252)

The stock composition of commercial harvest from Eastside Kodiak/Afognak sampling area was largely consistent with other areas—it was dominated by British Columbia and West Coast US stocks; however, it appeared that there was less temporal variation within years compared to other areas in KMA (Tables 25–33; Figures 15–16). During 2014, there was almost no appreciable temporal variation between the first and second strata: the majority of the harvest was attributed to British Columbia (51.2% and 51.7%), followed by West Coast US (35.3% and 37.5%; Tables 25–26; Figure 15). While present in small numbers, no other stocks represented over 5% of the harvest in any strata (Figure 15). Stock-specific harvest in the Eastside Kodiak/Afognak area consisted of 1,514 British Columbia fish and 1,091 West Coast US fish (Table 27; Figure 16).

In 2015, the relative contribution of British Columbia and West Coast US stocks flipped for the first stratum, with the West Coast US reporting group representing 46.8% and British Columbia 36.5% of the harvest, followed by Cook Inlet with 7.8% (Table 28). In the second strata, British Columbia increased to just shy of the majority of the catch with 49.4%, followed by the West Coast US with 40.7% (Table 29). No other groups represented over 5% of the harvest in any strata (Figure 15). Overall, commercial harvest from Eastside Kodiak/Afognak consisted of 984 West Coast US fish, 910 British Columbia fish, and 120 Cook Inlet fish (Table 30; Figure 16).

In 2016, stock compositions were similar to those of 2014. In the first stratum, British Columbia consisted of 57.0% of the harvest, followed by West Coast US with 27.4% and Southeast Alaska/Northeast Gulf of Alaska with 6.4% (Table 31). The second strata saw a relative increase of West Coast US stocks with 39.5%, followed by British Columbia with 51.5% (Table 32; Figure 15). No other stocks contributed over 5% to the harvest in any strata (Figure 15). Overall, 655 British Columbia and 431 West Coast US fish were harvested (Table 33; Figure 16).

Mainland (262)

The stock composition of the Mainland District was similar to other areas; the harvest was largely from British Columbia and West Coast US stocks, with low numbers from Southeast Alaska/Northeast Gulf of Alaska (Tables 34–40; Figures 17–18). In 2014, fishing only occurred in the second stratum with 51.2% of the catch attributed to British Columbia and 39.5% to West Coast US (Tables 34–35). No other reporting groups represented over 5% of the harvest (Figure 17). Overall, harvest was low in 2014 and stock-specific harvest consisted of 216 British Columbia fish and 167 West Coast US fish (Table 35; Figure 18).

In 2015, similar to 2014, there was no fishing in the early stratum and overall harvest was low (Figure 18). The second stratum was dominated by British Columbia, with 64.0% of the catch,

followed by West Coast US with 19.6%, and Cook Inlet with 12.8% (Tables 36–37). No other stocks contributed over 5% to the harvest in any strata (Figure 15). Overall harvest was low in 2015, with 147 fish from British Columbia, 45 from West Coast US, and 29 from Cook Inlet (Table 37; Figure 18).

In 2016, fishing occurred in both strata and harvests were up relative to 2014 and 2015; however, stock composition was similar to other KMA areas—dominated by British Columbia and West Coast US. The first stratum harvest was evenly split between British Columbia with 46.6% and West Coast US with 44.1% (Table 38). In the late stratum, British Columbia increased to 54.1% and West Coast US decreased to 37.1%, with minor contributions from Southeast Alaska/Northeast Gulf of Alaska with 5.1% (Table 39). No other groups contributed over 5% of the harvest in any strata (Figure 17). Overall, harvest in 2015 consisted of 1,362 British Columbia fish and 1,088 West Coast US fish (Table 40; Figure 18).

Commercial Harvest Estimates by Year

All the commercial harvest results for each year were combined to estimate total KMA stock composition and stock-specific harvest summaries for commercial harvest from June 1 through August 5, 2014–2016. Overall, the results are surprisingly consistent across years with KMA commercial harvest dominated by British Columbia and West Coast US stocks, with minor contributions from Southeast Alaska/Northeast Gulf of Alaska, Cook Inlet, and Kodiak (Tables 41–43; Figures 19–20).

In 2014, the total KMA harvest of 6,867 Chinook salmon consisted of 55.6% British Columbia, 34.0% West Coast US, 3.4% Southeast Alaska/Northeast Gulf of Alaska, 2.6% Cook Inlet, 1.9% Kodiak, and 1.6% Eastern Bering Sea group fish (Table 41; Figure 19). The British Columbia group harvest was 3,815 fish, West Coast US group was 2,333 fish, Southeast Alaska/Northeast Gulf of Alaska was 233 fish, Cook Inlet group was 182 fish, Kodiak group was 134 fish, and the Eastern Bering Sea group was 113 fish (Table 41; Figure 20).

In 2015, the total KMA harvest of 7,477 Chinook salmon consisted of 51.6% British Columbia, 33.9% West Coast US, 4.9% Southeast Alaska/Northeast Gulf of Alaska, 4.5% Cook Inlet, and 4.5% Kodiak group fish (Table 42; Figure 19). The British Columbia group harvest was 3,840 fish, West Coast US group was 2,526 fish, Southeast Alaska/Northeast Gulf of Alaska was 368 fish, Cook Inlet group was 334 fish, and the Kodiak group was 333 fish (Table 42; Figure 20).

In 2016, the total KMA harvest of 6,791 Chinook salmon consisted of 56.6% British Columbia, 30.6% West Coast US, 6.2% Southeast Alaska/Northeast Gulf of Alaska, 3.8% Cook Inlet, and 1.3% Kodiak group fish (Table 43; Figure 19). The British Columbia group harvest was 3,842 fish, West Coast US group was 2,075 fish, Southeast Alaska/Northeast Gulf of Alaska was 424 fish, Cook Inlet group was 260 fish, and the Kodiak group was 91 fish (Table 43; Figure 20).

Sport Harvest Estimates by Year

The stock composition of KRA marine sport fisheries largely paralleled those of commercial fisheries; the harvest was dominated by British Columbia and West Cost US stocks, with minor contributions from Southeast Alaska/Northeast Gulf of Alaska and Kodiak stocks (Tables 44–46; Figure 21). In 2014, when sampling occurred in both Larsen Bay and Kodiak, harvest was evenly split between British Columbia (46.1%) and West Coast US (44.1%), followed by Southeast Alaska/Northeast Gulf of Alaska with 6.8%. The British Columbia group harvest was 3,712

Chinook salmon, West Coast US was 3,548, and Southeast Alaska/Northeast Gulf of Alaska was 550 (Table 44).

In 2015, when sampling only occurred in Kodiak, West Coast US stocks had a higher contribution (45.3%) than British Columbia (36.6%), with 3,042 West Coast US fish and 2,457 British Columbia fish. Stock composition estimates were similar to the commercial harvest from Eastside Kodiak, with additional contributions from Southeast Alaska/Northeast Gulf of Alaska of 10.6% (708 fish), and Kodiak with 5.0% (334 fish; Table 45).

In 2016, stock compositions were similar to 2015, with the relative contributions of British Columbia and West Coast US flipped, with 46.3% of the harvest attributed to British Columbia, 36.9% to West Coast US, and 11.8% to Southeast Alaska/Northeast Gulf of Alaska (Table 46). Stock-specific harvest estimates were not calculated in 2016 as the total marine sport harvest estimate was not available at the time of publication. No other stocks contributed to over 5% to the marine sport harvest in any of the 3 years (Figure 21).

Estimates by Reporting Group

Russia

Russian fish did not constitute greater than 5% of a mixture in any of the 22 commercial spatiotemporal strata analyzed. Overall, Russian fish contributions to the sampled annual KMA harvest were very small, amounting to 0.3% (21 fish), 0.1% (7 fish) and 0.0% (0 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Russian fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, Russian fish contributions to the sampled annual KRA harvest amounted to 0.0% in all 3 years of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Eastern Bering Sea

Eastern Bering Sea fish did not constitute greater than 5% of a mixture in any of the 22 commercial spatiotemporal strata analyzed. Overall, Eastern Bering Sea fish contributions to the sampled annual KMA harvest were very small, amounting to 1.6% (113 fish), 0.2% (15 fish) and 0.7% (47 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Eastern Bering Sea fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, Eastern Bering Sea fish contributions to the sampled annual KRA harvest amounted to 0.0%, 0.0%, and 0.5% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

North Alaska Peninsula

North Alaska Peninsula fish did not constitute greater than 5% of a mixture in any of the 22 commercial spatiotemporal strata analyzed. Overall, North Alaska Peninsula fish contributions to the sampled annual KMA harvest were very small, amounting to 0.0% (3 fish), 0.0% (0 fish) and 0.0% (0 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

North Alaska Peninsula fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, North Alaska Peninsula fish contributions to the sampled annual KRA harvest amounted to 0.0% in all 3 years of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Chignik

Chignik fish did not constitute greater than 5% of a mixture in any of the 22 commercial spatiotemporal strata analyzed. Overall, Chignik fish contributions to the sampled annual KMA harvest were very small, amounting to 0.1% (9 fish), 0.0% (0 fish) and 0.4% (26 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Chignik fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, Chignik fish contributions to the sampled annual KRA harvest amounted to 0.0% in all 3 years of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Kodiak

Kodiak fish only constituted greater than 5% of a mixture in 2 of the 22 commercial spatiotemporal strata analyzed. Kodiak fish were 10.0% of the harvest (41 fish) in the early temporal stratum of the Southwest Kodiak/Alitak sampling area in 2014 (Table 16) and 24.9% of the harvest (127 fish) in the early temporal stratum of the Southwest Kodiak/Alitak sampling area in 2015 (Table 19). Overall, Kodiak fish contributions to the sampled annual KMA harvest were small, amounting to 1.9% (134 fish), 4.5% (333 fish) and 1.3% (91 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Kodiak fish only constituted greater than 5% of a mixture in 1 of the 3 years of KRA marine sport samples analyzed. Overall, Kodiak fish contributions to the sampled annual KRA harvest amounted to 1.6% (129 fish), 5.0% (334 fish), and 3.9% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Cook Inlet

Cook Inlet fish only constituted greater than 5% of a mixture in 5 of the 22 commercial spatiotemporal strata analyzed. Harvest of Cook Inlet group fish occurred almost exclusively in the early temporal strata of the Northwest Kodiak/Afognak sampling area in 2015 and 2016, the early temporal strata of the Eastside Kodiak/Afognak sampling area in 2015, and the late temporal strata of the Mainland sampling area in 2015. Overall, Cook Inlet fish contributions to the sampled annual KMA harvest were small, amounting to 2.6% (182 fish), 4.5% (334 fish) and 3.8% (260 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Cook Inlet fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, Cook Inlet fish contributions to the sampled annual

b Marine sport harvest numbers from the statewide harvest survey not available for 2016 at time of publication.

KRA harvest amounted to 0.9% (71 fish), 1.7% (114 fish), and 0.0% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Copper

Copper fish did not constitute greater than 5% of a mixture in any of the 22 commercial spatiotemporal strata analyzed. Overall, Copper fish contributions to the sampled annual KMA harvest were very small, amounting to 0.1% (6 fish), 0.1% (7 fish) and 0.2% (15 fish) of the KMA commercial Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Copper fish did not constitute greater than 5% of a mixture in any of the 3 years of KRA marine sport samples analyzed. Overall, Copper fish contributions to the sampled annual KRA harvest amounted to 0.0% in all 3 years of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

Southeast Alaska/Northeast Gulf of Alaska

Southeast Alaska/Northeast Gulf of Alaska fish constituted greater than 5% of a mixture in 6 of the 22 commercial spatiotemporal strata analyzed. Harvest of Southeast Alaska/Northeast Gulf of Alaska group fish occurred sporadically, in all 4 sampling areas and both temporal strata, for all 3 years. Overall, Southeast Alaska/Northeast Gulf of Alaska fish contributions to the sampled annual KMA harvest were relatively small, amounting to 3.4% (233 fish), 4.9% (368 fish), and 6.2% (424 fish) of the KMA commercial sockeye salmon harvest from sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

Southeast Alaska/Northeast Gulf of Alaska fish constituted greater than 5% of a mixture in all 3 years of KRA marine sport samples analyzed. Overall, Southeast Alaska/Northeast Gulf of Alaska fish contributions to the sampled annual KRA harvest amounted to 6.8% (550 fish), 10.6% (708 fish), and 11.8% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

British Columbia

British Columbia fish constituted greater than 5% of a mixture in all 22 of the commercial spatiotemporal strata analyzed, accounting for the majority of fish harvested in all but 4 spatiotemporal strata. Harvest of British Columbia group fish occurred throughout all 4 sampling areas and both temporal strata for all 3 years. No clear temporal patterns in harvest emerged. Overall, British Columbia fish contributions to the sampled annual KMA harvest were very consistent across sampling years, amounting to 55.6% (3,815 fish), 51.6% (3,840 fish), and 56.6% (3,842 fish) of the KMA commercial sockeye salmon harvest from sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

British Columbia fish constituted greater than 5% of a mixture in all 3 years of KRA marine sport samples analyzed. Overall, British Columbia fish contributions to the sampled annual KRA harvest amounted to 46.1% (3,712 fish), 36.6% (2,457 fish), and 46.3% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

West Coast US

West Coast US fish constituted greater than 5% of a mixture in all 22 of the commercial spatiotemporal strata analyzed. Harvest of West Coast US group fish occurred throughout all 4 sampling areas and both temporal strata, for all 3 years. No clear temporal patterns in harvest emerged. Overall, West Coast US fish contributions to the sampled annual KMA harvest were very consistent across sampling years, amounting to 34.0% (2,333 fish), 33.9% (2,526 fish), and 30.6% (2,075 fish) of the KMA commercial sockeye salmon harvest from sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 41–43; Figures 22–24).

West Coast US fish constituted greater than 5% of a mixture in all 3 years of KRA marine sport samples analyzed. Overall, West Coast US fish contributions to the sampled annual KRA harvest amounted to 44.1% (3,548 fish), 45.3% (3,042 fish), and 36.9% of the marine sport Chinook salmon harvest from the sampling areas and temporal periods analyzed in this project, 2014–2016 (Tables 44–46).

DISCUSSION

The overall goal of this project was to comprehensively estimate stock-specific harvests of Chinook salmon in Kodiak Archipelago commercial and marine sport fisheries using a combination of MSA and CWT recoveries. This project was needed to estimate contributions of relevant indicator stocks (i.e., Karluk and Chignik) in mixed-stock harvests around the Kodiak Archipelago and broadly characterize the stock of origin, age, sex, and length of harvests (ADF&G Chinook Salmon Research Team 2013). Of the 10,154 Chinook salmon genetic tissue samples collected in 25 strata, 8,829 were genotyped and 8,646 were ultimately used for MSA. These samples were genotyped for 48 SNPs chosen specifically for MSA and analyzed with a robust baseline containing 29,001 individuals from 403 collections representing 211 populations in 10 reporting groups. These reporting groups represent all major North Pacific Chinook salmon stocks (Templin et al. 2011). These results represent all commercial salmon harvests and all accessible marine sport harvests in the Kodiak Archipelago and should improve our understanding of stock productivity and migration patterns.

COMMERCIAL FISHERIES

Chinook salmon commercial harvests from all districts of KMA were sampled as 4 spatial areas over 2 temporal strata from June 1 to August 5, 2014–2016, representing 81.9%, 92.1%, 90.8% of the total commercial harvest in these years (Table 4). British Columbia and West Coast US Chinook salmon dominated the KMA commercial harvest consistently across all years and temporal stratum (Figures 22–24). The only Alaska reporting group estimates at or above 10% in any strata was the Kodiak reporting group in Southwest Kodiak/Alitak early strata 2014 (10.0%) and 2015 (24.9%), Cook Inlet reporting group in the Mainland late stratum 2015 (12.8%), and Southeast Alaska/Northeast Gulf of Alaska reporting group in the Northwest Kodiak/Afognak early (12.7%) and late (10.3%) strata 2016.

The highest proportions of Kodiak reporting group fish were caught in the early temporal strata of the Southwest Kodiak/Alitak area (Figure 13). This pattern of higher *local* harvest during the early strata coincides with when returning adults are migrating through commercial fisheries to their natal streams. Higher *local* Kodiak reporting group harvest in the Southwest Kodiak/Alitak area is also expected given that the 2 primary wild stocks in the Kodiak Archipelago, Karluk and Ayakulik, are in Southwest Kodiak District (Figure 5).

Age composition of the commercial harvests demonstrated a mix of both "ocean-type" (age-0.x) and "stream-type" (age-1.x) fish (Healy 1991). The dominant ages in order of relative abundance were: age-0.2, -0.3, -1.2, -0.1, -1.3, -1.1, -0.4, -1.4, -2.2, -2.1, and -0.5 (Appendix D). The presence of both life history types, a multitude of ages, large size ranges, CWT recoveries, and estimates of genetic stock of origin illustrate that the Northern Gulf of Alaska, specifically Kodiak Archipelago, is a within a major migratory route of maturing Chinook salmon populations from the entirety of Western North America.

Recoveries of CWTs in the commercial fishery are comparable to the historical CWT studies in the Kodiak area where recoveries were mainly *nonlocal* fish, predominantly British Columbia and West Coast US (Swanton 1997; Clark and Nelson 2001). This study documented CWTs primarily from the West Coast US (primarily Washington) and British Columbia (Appendix F). Only 38 CWTs from Alaska were recovered from the commercial fishery during the 3 years of sampling, with 3 fish of wild stock origin (Taku, Stikine, and Unuk rivers).

This study represents the most comprehensive project to date on the genetic stock of origin of Chinook salmon commercial harvest in KMA. The most comparable recent study is Guthrie et al. (2016), which analyzed the genetic stock composition of Chinook salmon bycatch samples from the Gulf of Alaska trawl fisheries offshore from both Kodiak Archipelago and the South Alaska Peninsula from 2010 to 2014. British Columbia and West Coast US stocks dominated the harvest in both the trawl and salmon fisheries, although sampling from the trawl fisheries only overlapped with sampling from the commercial salmon fishery in one year (2014). Nevertheless, Chinook salmon bycatch in the trawl fishery had higher proportions of Southeast Alaska stocks than were observed in this study, which may be a function of the migration distribution of *stream-type* Chinook salmon theorized to be more offshore oriented than *ocean-type* Chinook salmon (Sharma and Quinn 2012).

SPORT FISHERIES

Sport harvests were generally sampled from mid-May through mid-September, 2014–2016. However, samples were not collected from the entire KRA; they came primarily from the Port of Kodiak, with the exception of samples from Larsen Bay in 2014. Samples were not collected from several Chinook salmon sport fisheries such as areas near the village of Old Harbor and Afognak Island; stock compositions are unknown for sport harvests in these areas. However, samples collected from the Port of Kodiak were similar in stock compositions to those collected in commercial fisheries throughout the Kodiak Area and it is likely that they were representative sport harvests in the greater Kodiak Area.

British Columbia, West Coast US, and to a lesser extent, Southeast Alaska/Northeast Gulf of Alaska stocks dominated marine sport harvest in KRA from 2014 to 2016 (Figures 22–24). Harvest of Kodiak stocks increased in 2015 and 2016 relative to samples collected in 2014, when Larsen Bay samples were included. Although never greater than 5.0% of the total sport harvest, Kodiak stocks represented the fourth largest portion of the harvest after the West Coast US, British Columbia, and Southeast Alaska. Increased harvests of Kodiak stocks in 2015 and 2016 coincided with the largest returns to date of hatchery Chinook salmon to the Kodiak road system, due in part to an ongoing Chinook salmon enhancement project in several local streams. Although separation of local Kodiak stocks (Karluk, Ayakulik, and Kodiak hatchery-origin fish) in the harvest was not possible, it is likely that this increase reflects these large returns of Kodiak

hatchery-origin fish. Harvests of Chinook salmon from other areas were minimal across all 3 years of sampling.

Stock compositions of marine sport and commercial harvests were similar, but did differ in some ways, despite differences in sampling timeframe, gear type, and the larger average size sampled as part of the sport harvest. Both sport and commercial harvests were dominated by the British Columbia and West Coast US stocks (Tables 44–46). However, sport harvests tended to have lower percentages of British Columbia and Cook Inlet stocks and higher percentages of Southeast Alaska/Northeast Gulf of Alaska and West Coast US than commercial harvests.

Results were largely in agreement with current and previous CWT work. This work indicated that the vast majority of stocks incidentally harvested in the commercial fisheries or targeted in the marine sport fisheries in the KMA are non-Alaska stocks from British Columbia and the West Coast US. In marine sport fishery harvests, most CWT recoveries were from Washington state hatcheries (Appendix G) with little variation in the percent recovered. Only 5 CWTs from Alaska were recovered from the sport fishery during the 3 years of sampling.

HARVEST OF KODIAK STOCKS

Kodiak stocks made up a relatively small proportion of the overall commercial and sport marine Chinook salmon harvests (Tables 41–46). From 2014 to 2016, the total commercial harvest of Chinook salmon in KMA attributed to Kodiak stocks ranged from 91 to 333 fish and never exceeded 5% of the total KMA Chinook salmon harvest (Tables 41–43; Figures 22–24). Total marine sport harvest of Kodiak stocks in the KRA was 129 fish in 2014 and 334 in 2015 (harvest estimates were not available for 2016 by time of publication), and never exceeded 5% of the total KMA Chinook salmon harvest (Tables 44–46). It is important to note that hatchery-produced Chinook salmon from Pillar Creek hatchery are included in the Kodiak reporting group, and are not distinguishable from *local* wild stocks, because Karluk River was the brood source. Results from this study indicate that harvest of 2 key CSRI indicator stocks, Chignik and Karluk rivers, are minimal in Kodiak commercial and marine sport fisheries.

ACKNOWLEDGEMENTS

We thank the following dedicated members of the Gene Conservation Laboratory team: Heather Liller, Paul Kuriscak, Erica Chenoweth, Zach Pechacek, Christina Elmaleh, and Bruce Whelan, for producing quality data in a timely fashion. Gene Conservation Laboratory member Judy Berger archived samples and ensured accurate metadata; Eric Lardizabal provided database support. We thank Commercial Fisheries and Sport Fish staff for their input, assistance and collection sampling, especially Molly McFarland, Laura Griffing, Chloe Ivanoff, Bri Bierma, Connor Murphy, Stig Yngve, Hannah Christian, Nyssa Baechler, Casey Dinnocenzo, Tracie Pedersen, Myra Scholz, Rose Wallin, Daniel Zimmer, Amanda Dorner, Amanda Bowers, Michelle Canete, and Jennifer Newby. The authors additionally would like to thank the staff of the Mark Tag and Age Laboratory for reading CWTs and the salmon processors of the Westward Region for allowing ADF&G staff to sample in their facilities. Funding for sample collection and laboratory analysis of Chinook salmon collections was provided by the State of Alaska Finally as part of the Chinook Salmon Research Initiative.

REFERENCES CITED

- ADF&G Chinook Salmon Research Team. 2013. Chinook salmon stock assessment and research plan, 2013. Alaska Department of Fish and Game, Special Publication No. 13-01, Anchorage.
- Barclay, A. W., and C. Habicht. 2015. Genetic baseline for Upper Cook Inlet Chinook salmon: 42 SNPs and 7,917 fish. Alaska Department of Fish and Game, Fishery Manuscript Series No. 15-01, Anchorage.
- Clark, R. A., and P. A. Nelson. 2001. Assessment of harvests of Cook Inlet-origin Chinook salmon in commercial fisheries in the Kodiak management area, 1997-1999. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-38, Kodiak.
- Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Commission, Bulletin 9. Westminster, British Columbia, Canada.
- Dann, T. H., C. Habicht, J. R. Jasper, H. A. Hoyt, A. W. Barclay, W. D. Templin, T. T. Baker, F. W. West, and L. F. Fair. 2009. Genetic stock composition of the commercial harvest of sockeye salmon in Bristol Bay, Alaska, 2006-2008. Alaska Department of Fish and Game, Fishery Manuscript Series No. 09-06, Anchorage.
- Dann, T. H., C. Habicht, J. R. Jasper, E. K. C. Fox, H. A. Hoyt, H. L. Liller, E. S. Lardizabal, P. A. Kuriscak, Z. D. Grauvogel, and W. D. Templin. 2012a. Sockeye salmon baseline for the Western Alaska Salmon Stock Identification Project. Alaska Department of Fish and Game, Special Publication No. 12-12, Anchorage.
- Dann, T. H., C. Habicht, S. D. R. Olive, H. L. Liller, E. K. C. Fox, J. R. Jasper, A. R. Munro, M. J. Witteveen, T. T. Baker, K. G. Howard, E. C. Volk, and W. D. Templin. 2012b. Stock composition of sockeye salmon harvests in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2006–2008. Alaska Department of Fish and Game, Special Publication No. 12-22, Anchorage.
- Eggers, D. M., M. J. Witteveen, T. T. Baker, D. F. Evenson, J. M. Berger, H. A. Hoyt, H. L. Hildebrand, W. D. Templin, C. Habicht, and E. C. Volk. 2011. Results from sampling the 2006–2009 commercial and subsistence fisheries in the Western Alaska Salmon Stock Identification Project. Alaska Department of Fish and Game, Special Publication No. 11-10, Anchorage.
- Foster, M. B., and T. H. Dann. 2014. Assessment of genetic stock of origin of Chinook salmon harvested in commercial salmon fisheries of the Westward Region, 2014. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Operational Plan ROP.CF.4K.2014.02, Kodiak.
- Foster, M. B., and T. H. Dann. 2015. Assessment of genetic stock of origin of Chinook salmon harvested in commercial salmon fisheries of the Westward Region, 2015–2016. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.4K.2015.17, Kodiak.
- Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:457–511.
- Guthrie, C. M., H. Nguyen, and J. R. Guyon. 2012. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2010 Bering Sea trawl fisheries. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-232.
- Guthrie, C. M., H. Nguyen, and J. R. Guyon. 2016. Genetic stock composition analysis of the Chinook salmon bycatch samples from the 2014 Gulf of Alaska trawl fishery. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-311. doi: 10.7289/V5/TM-AFSC-311
- Guyon, J. R., C. M. Guthrie, and H. Nguyen. 2010a. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2008 Bering Sea Pollock trawl fisheries. North Pacific Fishery Management Council, 605 W. 4th Avenue, Anchorage AK 99510.
- Guyon, J. R., C. M. Guthrie, and H. Nguyen. 2010b. Genetic stock composition analysis of Chinook salmon bycatch samples from the 2007 "B" Season and 2009 Bering Sea trawl fisheries. North Pacific Fishery Management Council, 605 W. 4th Avenue, Anchorage AK 99510.

REFERENCES CITED (Continued)

- Guyon, J. R., C. M. Guthrie, A. Munro, J. Jasper, and W. Templin. 2015. Genetic stock composition analysis of the Chinook salmon bycatch in the Gulf of Alaska Walleye Pollock (*Gadus chalcogrammus*) trawl fisheries, 2013. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-291.
- Habicht, C., A. R. Munro, T. H. Dann, D. M. Eggers, W. D. Templin, M. J. Witteveen, T. T. Baker, K. G. Howard, J. R. Jasper, S. D. R. Olive, H. L. Liller, E. L. Chenoweth, and E. C. Volk. 2012a. Harvest and harvest rates of sockeye salmon stocks in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2006–2008. Alaska Department of Fish and Game, Special Publication No. 12-24, Anchorage.
- Habicht, C., W. D. Templin, and J. R. Jasper. 2012b. Western Alaska Salmon Stock Identification Program Technical Document 16: Prior sensitivity using the chum salmon baseline. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J12-23, Anchorage.
- Healy, M. C. 1991. Life history of Chinook salmon (*Oncorhynchus tshawytscha*). Pages 311–393 [*in*] C. Groot, and L. Margolis, editors. Pacific salmon life histories, Volume 1. University of British Columbia Press, Vancouver, BC.
- INPFC (International North Pacific Fisheries Commission). 1963. Annual report, 1961. International North Pacific Fisheries Commission, Vancouver, BC.
- Jackson, J., and M. Keyse. 2013. Kodiak Management Area commercial salmon fishery annual management report, 2013. Alaska Department of Fish and Game, Fishery Management Report No. 13-44, Anchorage.
- Jasper, J. R., S. M. Turner, and C. Habicht. 2012. Western Alaska Salmon Stock Identification Program technical document 13: Selection of a prior for a mixed stock analysis. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J12-20.
- Koo, T. S. Y. 1962. Studies of Alaska red salmon. University of Washington Press, Seattle.
- Larson, W. A., F. M. Utter, K. W. Myers, W. D. Templin, J. E. Seeb, C. M. I. Guthrie, A. V. Bugaev, and L. S. Seeb. 2012. Single-nucleotide polymorphisms reveal distribution and migration of Chinook salmon (Oncorhynchus tshawytscha) in the Bering Sea and North Pacific Ocean. Canadian Journal of Fisheries and Aquatic Sciences 70(1):128–141.
- Major, R. L., J. Ito, and H. Godfrey. 1978. Distribution and origin of Chinook salmon (*Onchorhynchus tshawytscha*) in offshore waters of the North Pacific Ocean. International North Pacific Fisheries Commission, Bulletin 38, Vancouver, BC.
- Mosher, K. H. 1968. Photographic atlas of sockeye salmon scales. U.S. Fish and Wildlife Service, Fishery Bulletin 67:243–280.
- Munro, A. R., C. Habicht, T. H. Dann, D. M. Eggers, W. D. Templin, M. J. Witteveen, T. T. Baker, K. G. Howard, J. R. Jasper, S. D. R. Olive, H. L. Liller, E. L. Chenoweth, and E. C. Volk. 2012. Harvest and harvest rates of chum salmon stocks in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2007–2009. Alaska Department of Fish and Game, Special Publication No. 12-25, Anchorage.
- Munro, A. R., and E. C. Volk. 2013. Summary of Pacific salmon escapement goals in Alaska with a review of escapements from 2004 to 2012. Alaska Department of Fish and Game, Fishery Manuscript Series No. 13-05, Anchorage.
- Myers, K. W., A. G. Celewycz, and E. V. Farley Jr. 2004. High seas salmonid coded-wire tag recovery data, 2004. North Pacific Anadromous Fish Commission Document 804. SAFS-UW-04. School of Aquatic and Fishery Sciences, University of Washington, Seattle WA.
- Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99:151–167.
- Pella, J. J., and M. Masuda. 2006. The Gibbs and split-merge sampler for population mixture analysis from genetic data with incomplete baselines. Canadian Journal of Fisheries and Aquatic Sciences 63(3):576–596.
- Quinn, T. P. 2011. The behavior and ecology of Pacific salmon and trout. UBC Press.

REFERENCES CITED (Continued)

- Raftery, A. E., and S. M. Lewis. 1996. Implementing MCMC. Pages 115–130 [*In*] W. R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov chain Monte Carlo in practice. Chapman and Hall, Inc., London.
- Sharma, R., and T. P. Quinn. 2012. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha. Acta Oecologica 41:1–13.
- Swanton, C. O. 1997. Incidence and contribution of coded-wire tagged Chinoook salmon to Kodiak Management Area commercial catches 9 June 6 August, 1994. Alaska Department of Fish and Game, Division of Commercial Fisheries, Management and Development, Regional Information Report 4K97-07, Kodiak.
- Templin, W. D., J. E. Seeb, J. R. Jasper, A. W. Barclay, and L. W. Seeb. 2011. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies. Molecular Ecology Resources 11(S1):226–246.
- Templin, W. D., N. A. DeCovich, S. D. R. Olive, H. L. Liller, E. K. C. Fox, J. R. Jasper, M. J. Witteveen, T. T. Baker, K. G. Howard, A. R. Munro, E. C. Volk, and C. Habicht. 2012. Stock composition of chum salmon harvests in fisheries of the Western Alaska Salmon Stock Identification Program (WASSIP), 2007–2009. Alaska Department of Fish and Game, Special Publication No. 12-23, Anchorage.
- Tracy, D., and T. H. Dann. 2014. Kodiak Chinook salmon marine recreational harvest assessment. Alaska Department of Fish and Game, Regional Operational Plan ROP.SF.2A.2014.18, Anchorage.
- Tracy, D., and K. R. Shedd. 2015. Operational plan: Kodiak Chinook salmon marine recreational harvest assessment. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan SF.2A.2015.19, Anchorage.
- Tracy, D. A., T. B. Polum, and D. G. Evans. 2015. Operational plan: Estimating Buskin River coho salmon escapement using radio telemetry and partial weir counts, 2015. Alaska Department of Fish and Game, Regional Operational Plan ROP.SF.2A.2015.23, Anchorage.
- Welander, A. D. 1940. A study of the development of the scale of Chinook salmon *Oncorhynchus tshawytscha*. Master's thesis. University of Washington, Seattle.
- Wilburn, D. M., and L. K. Stumpf. 2016. Chignik Management Area salmon annual management report, 2015. Alaska Department of Fish and Game, Fishery Management Report No. 16-01, Anchorage.
- Witteveen, M. J., and K. Shedd. 2016. Chinook salmon genetic sampling along the Alaska Peninsula and adjacent areas results, 2012–2014. Alaska Department of Fish and Game, Fishery Data Series No. 16-25, Anchorage.

TABLES AND FIGURES

Table 1.-Westward Region Chinook salmon commercial harvest, 1985–2016, and the 2004–2013 10-year average.

		Kodiak			Chignik		Al	aska Peninsı	ıla
		(Area K)			(Area L)			(Area M)	
			Avg			Avg			Avg
Year	Number	Pounds	Wt (lbs)	Number	Pounds	Wt (lbs)	Number	Pounds	Wt (lbs)
1985	4,970	96,106	19.34	1,887	44,874	23.78	30,210	588,718	19.49
1986	4,381	66,901	15.27	3,037	66,772	21.99	17,340	300,187	17.31
1987	4,612	59,083	12.81	2,651	49,482	18.67	23,360	434,501	18.60
1988	22,394	296,062	13.22	7,296	128,880	17.66	27,880	476,182	17.08
1989	106	2,037	19.22	3,542	76,698	21.65	18,013	322,596	17.91
1990	18,808	229,337	12.19	9,901	134,265	13.56	28,844	467,986	16.22
1991	22,234	269,911	12.14	3,288	69,686	21.19	17,345	283,025	16.32
1992	24,299	347,817	14.31	10,832	138,090	12.75	21,170	352,301	16.64
1993	41,029	496,917	12.11	19,515	234,253	12.00	37,998	658,184	17.32
1994	22,576	315,000	13.95	3,919	71,865	18.34	28,649	527,155	18.40
1995	18,704	257,744	13.78	5,261	111,187	21.13	25,024	494,265	19.75
1996	13,071	178,538	13.66	3,105	62,603	20.16	10,461	179,197	17.13
1997	18,728	186,869	9.98	3,032	47,224	15.58	18,164	292,768	16.12
1998	17,341	249,285	14.38	4,395	66,530	15.14	10,847	166,161	15.32
1999	18,299	232,505	12.71	3,296	56,706	17.20	9,960	151,196	15.18
2000	12,293	183,423	14.92	2,592	34,757	13.41	9,350	146,006	15.62
2001	23,827	330,896	13.89	2,849	39,372	13.82	7,045	97,845	13.89
2002	19,263	192,096	9.97	1,444	13,750	9.52	10,280	137,485	13.37
2003	18,531	189,436	10.22	2,759	39,729	14.40	7,419	97,912	13.20
2004	28,899	328,129	11.35	2,343	43,736	18.67	17,525	279,818	15.97
2005	14,411	168,336	11.68	3,137	55,638	17.74	13,752	186,102	13.53
2006	20,283	209,359	10.32	2,188	38,036	17.38	13,090	181,129	13.84
2007	17,222	163,518	9.49	1,757	29,973	17.06	12,933	166,327	12.86
2008	17,176	138,103	8.04	955	14,463	15.14	6,178	102,638	16.61
2009	7,219	66,207	9.17	3,244	30,791	9.49	9,064	144,441	15.94
2010	14,548	116,085	7.98	10,262	102,684	10.01	10,637	147,277	13.85
2011	18,454	173,049	9.38	6,444	72,350	11.23	9,585	126,945	13.24
2012	14,785	108,957	7.37	3,636	48,850	13.44	8,750	139,671	15.96
2013	34,028	255,031	7.49	2,877	35,653	12.39	7,281	86,465	11.88
2014	8,382	61,179	7.30	8,811	75,753	8.60	8,260	85,097	10.30
2015	8,087	73,683	9.11	9,120	71,882	7.88	56,080	374,267	6.67
2016	7,482	62,871	8.40	20,684	155,088	7.50	17,183	157,205	9.15
Average									
2004–2013	18,703	172,677	9.23	3,684	47,217	14.25	10,880	156,081	14.37

Note: 2016 harvest numbers are preliminary as of fish tickets entered by 9/26/16.

Table 2.–Kodiak Regulatory Area Chinook salmon marine sport harvest according to the statewide harvest survey and logbook program, 2006–2015, and the 10-year average.

		Chinook Salmon Harv	vest		
	Chiniak I	Bay	Kodiak Regulatory Area		
Year	Guided	SWHS ^a	Guided	SWHS ^a	
2006	2,737	5,640	5,011	10,333	
2007	3,812	7,203	4,984	10,626	
2008	2,705	7,714	3,527	9,408	
2009	1,331	6,628	2,124	8,773	
2010	601	2,747	1,524	5,208	
2011	1,334	4,171	2,230	7,926	
2012	1,070	4,516	3,036	7,558	
2013	384	4,166	1,687	8,452	
2014	377	3,853	2,925	8,049	
2015	328	3,099	2,138	6,709	
Average 2006–2015	1,468	4,974	2,919	8,304	

^a Statewide harvest survey is an estimate of the total harvest

Table 3.—Genetic baseline tissue collections of Chinook salmon collected throughout their coastal range, including reporting group used for mixed stock analysis, years sampled, and number of samples analyzed from each collection included in the baseline (n).

Pop. No.	Reporting Group	Location ^a	Sample Year(s)	n
1	Russia	Bistraya River	1998	94
2		Bolshaya River	1998, 2002	76
3		Kamchatka River late	1997-1998	115
4		Pakhatcha River	2002	50
			Russia Total	335
5	Eastern Bering Sea	Pilgrim River	2005–2006	72
6		Unalakleet River	2005	82
7		Golsovia River	2005–2006	112
8		Andreafsky River	2002–2003	232
9		Anvik River	2002	51
10		Gisasa River	2001	99
11		Tozitna River	2002–2003	355
12		Henshaw Creek	2001	145
13		South Fork Koyukuk River	2003	51
14		Kantishna River	2005	187
15		Chena River	2001	181
16		Salcha River	2005	188
17		Beaver Creek	1997	91
18		Chandalar River	2002–2004	168
19		Sheenjek River	2002, 2004, 2006	47
20		Chandindu River	2000–2001, 2003	237
21		Klondike River	1995, 2001, 2003	74
22		Stewart River	1997	98
23		Mayo River	1992, 1997, 2003	122
24		Blind River	2003	134
25		Pelly River	1996, 1997	116
26		Little Salmon River	1987, 1997	86
27		Big Salmon River	1987, 1997	106
28		Tatchun Creek	1987, 1997, 2002–2003	163
29		Nordenskiold River	2003	55
30		Nisutlin River	1987, 1997	55
31		Takhini River	1997, 2002–2003	160
32		Whitehorse Hatchery	1985, 1987, 1997	218
33		Goodnews River	1993, 2005–2006	367
34		Arolik River	2005	148
35		Kanektok River	1992–1993, 2005	243
36		Eek River	2002, 2005	171
37		Kwethluk River	2001	94

Table 3.–Page 2 of 6.

Pop. No.	Reporting Group	Location ^a	Sample Year(s)	n
38	Eastern Bering Sea	Kisaralik River	2001, 2005	191
39		Tuluksak River	1993–1994, 2005	195
40		Aniak River	2002, 2006	251
41		George River	2002, 2005	191
42		Kogrukluk River	1992–1993, 2005	149
43		Stony River	1994	94
44		Cheeneetnuk River	2002, 2006	115
45		Gagaryah River	2006	190
46		Takotna River	1994, 2005	170
47		Tatlawiksuk River	2002, 2005	190
48		Salmon River - Pitka Fork	1995	96
49		Togiak River	1993–1994	154
50		Nushagak River	1992–1993	57
51		Mulchatna River	1994	97
52		Stuyahok River	1993–1994	87
53		Naknek River	1995, 2004	110
54		Big Creek	2004, 2008	102
			Eastern Bering Sea Total	7,147
55	North Peninsula	King Salmon River	2006	131
56		Meshik River	2006, 2012, 2014	167
57		Milky River	2006	66
58		Nelson River	2006, 2012–2013	189
59		Black Hills Creek	2006–2007	121
60		Steelhead Creek	2006	93
			North Peninsula Total	767
61	Chignik	Chignik River	1995, 2006, 2012	141
			Chignik Total	141
62	Kodiak	Ayakulik River	1993, 2006–2007	336
63		Karluk River	1993, 2006–2007, 2012	305
			Kodiak Total	641
64	Cook Inlet	Straight Creek	2010	95
65		Chuitna River	2008–2009	134
66		Coal Creek	2009–2011	118
67		Theodore River	2010–2012	191
68		Lewis River	2011–2012	87
69		Red Creek	2012–2013	111
70		Hayes River	2012–2013	50
71		Canyon Creek	2012–2013	91
		•		

Table 3.–Page 3 of 6.

Pop. No.	Reporting Group	Location ^a	Sample Year(s)	n
73	Cook Inlet	Sunflower Creek	2009, 2011	123
74		Peters Creek	2009–2012	107
75		Portage Creek	2009–2011, 2013	162
76		Indian River	2013	79
77		Chulitna River middle fork	2009–2010	169
78		Chulitna River east fork	2009–2011, 2013	77
79		Byers Creek	2013	55
80		Spink Creek	2013	56
81		Troublesome Creek	2013	71
82		Bunco Creek	2013	99
83		unnamed Talkeetna trib	2013	69
84		Prairie Creek	1995, 2008	162
85		Iron Creek	2013	57
86		Disappointment Creek	2013	64
87		Chunilna Creek	2009, 2012	80
88		Montana Creek	2008–2010	213
89		Little Willow Creek	2013	54
90		Willow Creek	2005, 2009	170
91		Deshka River	1995, 2005, 2012	303
92		Sucker Creek	2011–2012	144
93		Little Susitna River	2009–2010	124
94		Moose Creek	1995, 2008–2009, 2012	149
95		Eagle River	2009, 2011–2012	77
96		Ship Creek	2009	268
97		Campbell Creek	2010–2012	110
98		Carmen River	2011–2012	50
99		Resurrection Creek	2010–2012	97
100		Chickaloon River	2008, 2010–2011	128
101		Grant Creek	2011–2012	55
102		Quartz Creek	2006–2011	131
103		Crescent Creek	2006	163
104		Juneau Creek	2005–2007	142
105		Russian River	2005–2008	214
106		Kenai Upper Mainstem	2009	191
107		Benjamin Creek	2005–2006	204
108		Killey River	2005–2006	255
109		Funny River	2005–2006	219
110		Kenai Middle Mainstem	2003–2004, 2006	299
111		Kenai Lower Mainstem	2010–2011	126

Table 3.–Page 4 of 6.

Pop. No.	Reporting Group	Location ^a	Sample Year(s)	n
112	Cook Inlet	Slikok Creek	2004–2005, 2008	137
113		Kasilof River mainstem	2005	316
114		Crooked Creek	2005, 2011	306
115		Ninilchik River	2006, 2010	209
116		Deep Creek	2009–2010	196
117		Stariski Creek	2011–2012	99
118		Anchor River	2006, 2010	250
			Cook Inlet Total	7,884
119	Copper	Indian River	2004–2005	50
120		Bone Creek	2004–2005	78
121		E. Fork Chistochina River	2004	132
122		Otter Creek	2005	128
123		Sinona Creek	2004–2005	156
124		Gulkana River	2004	210
125		Mendeltna Creek	2004	132
126		Kiana Creek	2004	75
127		Manker Creek	2004–2005	62
128		Tonsina River	2004, 2006	96
129		Tebay River	2004–2006	68
			Copper Total	1,187
130	Southeast AK	Situk River	1988, 1990–1992	127
131		Big Boulder Creek	1992–1993, 1995, 2004	171
132		Tahini River	1992, 2004	168
133		Tahini River - Pullen Creek Hatchery	2005	78
134		Kelsall River	2004	153
135		King Salmon River	1989–1990, 1993	142
136		King Creek	2003	172
137		Chickamin River	1990, 2003	134
138		Little Port Walter	1993, 2005	217
139		Whitman Lake Hatchery	1992, 1998, 2005	378
140		Humpy Creek	2003	123
141		Butler Creek	2004	190
142		Clear Creek	1989, 2003–2004	194
143		Cripple Creek	1988, 2003	142
144		Genes Creek	1989, 2003–2004	93
145		Kerr Creek	2003–2004	151
146		Unuk River - Little Port Walter	2005	149
147		Unuk River - Deer Mountain Hatchery	1992, 1994	147
148		Keta River	1989, 2003	144

Table 3.–Page 5 of 6.

Pop. No.	Reporting Group	Location ^a	Sample Year(s)	n
149	Southeast AK	Blossom River	2004	189
150		Andrews Creek	1989, 2004	151
151		Crystal Lake Hatchery	1992, 1994, 2005	396
152		Medvejie Hatchery	1998, 2005	273
153		Hidden Falls Hatchery	1994, 1998	154
154		Macaulay Hatchery	2005	135
155		Klukshu River	1989–1990	170
156		Kowatua River	1989–1990	135
157		Little Tatsemeanie River	1989–1990, 2005	230
158		Upper Nahlin River	1989–1990	130
159		Nakina River	1989–1990	132
160		Dudidontu River	2005	85
161		Tahltan River	1989	95
			Southeast AK Total	5,348
162	British Columbia	Kateen River	2005	94
163		Damdochax Creek	1996	65
164		Kincolith Creek	1996	109
165		Kwinageese Creek	1996	62
166		Oweegee Creek	1996	80
167		Bulkley River	1999	91
168		Sustut River	2001	130
169		Ecstall River	2001–2002	86
170		Lower Kalum River	2001	142
171		Lower Atnarko River	1996	143
172		Kitimat River	1997	140
173		Wannock River	1996	144
174		Klinaklini River	1997	83
175		Porteau Cove	2003	154
176		Conuma River	1997–1998	108
177		Marble Creek	1996, 1999–2000	144
178		Nitinat River	1996	99
179		Robertson Creek	1996, 2003	103
180		Sarita River	1997, 2001	155
181		Big Qualicum River	1996	141
182		Nanaimo River	2002	78
183		Quinsam River	1996	119
184		Morkill River (Su)	2001	153
185		Salmon River (Su)	1997	92
186		Torpy River (Su)	2001	85

Table 3.–Page 6 of 6.

Don Mc	Donorting Cross	Location ^a	Comple Veer(a)	_
Pop. No. 187	Reporting Group British Columbia		Sample Year(s)	242
	British Columbia	Chilko River (Su)	1995–1996, 1999, 2002	
188		Nechako River (Su)	1996	115
189		Quesnel River (Su)	1996	144
190		Stuart River (Su)	1996	161
191		Clearwater River (Su)	1997	147
192		Louis River (Sp)	2001	178
193		Lower Adams River (Fa)	1996	44
194		Lower Thompson River (Fa)	2001	100
195		Middle Shuswap River (Su)	1986, 1997	125
196		Birkenhead River (Sp)	1997, 1999, 2001–2003	91
197		Harrison River	2002	96
			British Columbia Total	4,243
198	West Coast US	Makah National Fish Hatchery (Fa)	2001, 2003	79
199		Forks Creek (Fa)	2005	149
200		Upper Skagit River (Su)	2006	89
201		Soos Creek Hatchery (Fa)	2004	117
202		Lyons Ferry Hatchery (Su/Fa)	2002–2003	118
203		Hanford Reach	2000, 2004, 2006	107
204		Lower Deschutes River (Fa)	2002	86
205		Carson Hatchery (Sp)	2001	95
206		McKenzie River (Sp)	2004	94
207		Alsea River (Fa)	2004	69
208		Siuslaw River (Fa)	2001	75
209		Klamath River	1990, 2006	52
210		Eel River (Fa)	2000–2001	83
211		Sacramento River (Wi)	2005	95
			West Coast US Total	1,308
			Russia to California Total	29,001

^a Sp = spring run; Su = summer run; Fa = fall run; Wi = winter run.

40

Table 4.—Chinook salmon, 2014–2016, Kodiak Management Area, Westward Region: Summary of commercial and sport fishery harvests and number of fish sampled and genotyped by area and temporal strata. Sample goals for all strata in the plan were 380 fish.

Geographic	District or	Temporal		2014				2015				2016		
Area	Section(s)	Stratum	Period	Harvest	Samp.	Anlyz.	Period	Harvest	Samp.	Anlyz.	Period	Harvest	Samp.	Anlyz.
NW Kodiak/Afognak	251, 253, 254	Early	6/1-7/5	975	657	379	6/1-7/5	1,526	567	380	6/1-7/5	1,004	583	379
		Late	7/6-8/5	846	406	380	7/6-8/5	932	404	380	7/6-8/5	1,094	453	379
	Pos	t Sampling	>8/5	806	Not in	n Plan	>8/5	384	Not in	n Plan	>8/5	496	Not in	n Plan
SW Kodiak/Alitak	255, 256, 257	Early	6/1-7/5	414	287	287	6/1-7/5	511	307	376 ^a	6/1-7/5	347	310	310
		Late	7/6-8/5	1,280	426	378	7/6-8/5	2,042	496	378	7/6-8/5	427	291	291
	Pos	t Sampling	>8/5	653	Not in	n Plan	>8/5	98	Not in	n Plan	>8/5	172	Not in	n Plan
Eastside Kodiak/Afognal	ak 258, 259, 252	Early	6/1-7/5	377	294	293	6/1-7/5	1,400	434	380	6/1-7/5	446	316	316
		Late	7/6-8/5	2,553	505	379	7/6-8/5	807	285	285	7/6-8/5	779	322	322
	Pos	t Sampling	>8/5	56	Not in	n Plan	>8/5	71	Not in	ı Plan	>8/5	12	Not in	n Plan
Mainland	262	Early	6/1-7/5	Closed	No Sa	mples	6/1-7/5	Closed	No Sa	mples	6/1-7/5	1,263	461	379
		Late	7/6-8/5	422	475	379	7/6-8/5	229	282	282	7/6-8/5	1,431	453	379
	Pos	t Sampling	>8/5	0	Not in	n Plan	>8/5	87	Not in	ı Plan	>8/5	0	Not in	n Plan
	Commercial Fi	shery Total		8,382	3,050	2,475		8,087	2,775	2,461		7,471	3,189	2,755
Sport Fishery	Kodiak Area	Annual	4/16–8/29	8,049	417	414	5/17-8/14	6,709	282	283	5/22-8/13	NA	441	441
Comme	rcial and Sport Fi	shery Total		16,431	3,467	2,889		14,796	3,057	2,744		7,471	3,630	3,196

^a In 2015, 70 fish sampled on 7/6/2015 were included in the Early stratum.

Table 5.—Chinook salmon tissue samples collected in the Kodiak Regulatory Area marine sport fishery by statistical area, 2014–2016.

		,	Year	
Stat Area	2014	2015	2016	All Years
25111	9	0	0	9
25190	10	0	0	10
25230	5	0	0	5
25335	8	7	145	160
25410	97	0	0	97
25420	3	0	0	3
25421	1	0	0	1
25440	20	0	0	20
25441	1	0	0	1
25910	7	5	0	12
25921	30	44	167	241
25923	0	2	3	5
25924	15	26	9	50
25925	74	27	34	135
25926	0	23	10	33
25927	7	28	12	47
25933	0	20	0	20
25935	0	1	0	1
25938	6	27	4	37
25939	0	0	1	1
25940	64	16	4	84
25941	0	9	0	9
25946	39	0	50	89
No Stat Area	21	47	2	70
Total	417	282	441	1140

Table 6.–Quality control (QC) results including the number of genotypes compared, discrepancy rates and estimated error rates of the collections genotyped for the KMA Chinook salmon commercial and sport fishery samples.

	Discrepan	cy rate ^a	<u>-</u>	
Genotypes Compared	Homo-homo	Homo-het	Overall	Error Rate ^b
37,152	0.03%	0.51%	0.55%	0.27%

^a Discrepancy rates include the rate due to differences of alternate homozygote genotypes (Homo-homo), of homozygote and heterozygote genotypes (Homo-het), and the total discrepancy rate.

b Error rate assumes that discrepancies are the result of errors that are equally likely to have occurred in the production and QC genotyping process.

42

Table 7.–Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 975; n = 376) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	Stock-specific Harvest			
	90% CI					90% CI					
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.3	0.0	1.3	0.00	0.4	0.4	3	0	12	4	4
Eastern Bering Sea	1.9	0.7	3.6	0.00	2.0	0.9	19	7	35	19	9
North Alaska Peninsula	0.0	0.0	0.3	0.42	0.0	0.1	0	0	3	0	1
Chignik	0.0	0.0	0.3	0.42	0.0	0.1	0	0	3	0	1
Kodiak	4.3	2.6	6.4	0.00	4.4	1.1	42	26	62	42	11
Cook Inlet	2.7	1.1	4.9	0.00	2.8	1.1	26	11	47	27	11
Copper	0.0	0.0	0.5	0.34	0.1	0.2	0	0	5	1	2
Southeast Alaska/Northeast Gulf of Alaska	2.4	1.1	4.3	0.00	2.5	1.0	23	10	42	24	10
British Columbia	72.1	67.9	76.1	0.00	72.0	2.5	703	662	742	702	24
West Coast US	15.7	12.6	19.2	0.00	15.7	2.0	153	122	187	153	20
									Total	975	

43

Table 8.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 846; n = 375) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				tock-sp	ecific H	arvest	
		90%	6 CI	_				909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.89	0.0	0.1	0	0	0	0	1
Eastern Bering Sea	0.2	0.0	1.1	0.20	0.3	0.4	2	0	10	3	3
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Chignik	0.6	0.0	1.6	0.10	0.6	0.5	5	0	14	5	4
Kodiak	1.2	0.4	2.4	0.00	1.3	0.6	10	3	20	11	5
Cook Inlet	2.2	1.0	3.9	0.00	2.3	0.9	19	8	33	19	8
Copper	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Southeast Alaska/Northeast Gulf of Alaska	4.6	2.6	7.1	0.00	4.7	1.4	39	22	60	40	12
British Columbia	56.0	51.4	60.5	0.00	56.0	2.8	474	435	512	474	23
West Coast US	34.7	30.6	39.1	0.00	34.8	2.6	294	259	330	294	22
									Total	846	

4

Table 9.—Annual estimates of stock composition (%) and stock-specific harvest for the Northwest Kodiak/Afognak (District 251, 253, 254), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-	specific Ha	rvest	
		90%	6 CI	_				9	0% CI	_	
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	n 5	% 95%	Mean	SD
Russia	0.2	0.0	0.7	0.00	0.2	0.2		3	0 13	4	4
Eastern Bering Sea	1.2	0.5	2.1	0.00	1.2	0.5	2	1	9 39	22	9
North Alaska Peninsula	0.0	0.0	0.2	0.39	0.0	0.1		0	0 3	0	1
Chignik	0.3	0.0	0.8	0.04	0.3	0.2		5	0 14	6	4
Kodiak	2.9	1.9	4.1	0.00	2.9	0.7	:	2 3	34 75	53	12
Cook Inlet	2.5	1.4	3.9	0.00	2.6	0.7	4	6 2	26 70	47	13
Copper	0.0	0.0	0.3	0.32	0.1	0.1		0	0 5	1	2
Southeast Alaska/Northeast Gulf of Alaska	3.5	2.2	5.0	0.00	3.5	0.8		53 4	1 90	64	15
British Columbia	64.6	61.5	67.6	0.00	64.6	1.9	1,1	6 1,12	20 1,231	1,176	34
West Coast US	24.6	22.0	27.3	0.00	24.6	1.6	44	7 40	00 496	448	29
									Total	1,821	

45

Table 10.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,526; n = 378) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-specific Harvest					
		90%	6 CI					90	% CI		_		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD		
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1		
Eastern Bering Sea	0.9	0.2	2.5	0.00	1.1	0.7	14	3	39	17	11		
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1		
Chignik	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0		
Kodiak	4.5	2.9	6.6	0.00	4.6	1.1	69	45	101	71	17		
Cook Inlet	6.4	4.4	9.0	0.00	6.5	1.4	98	66	137	100	21		
Copper	0.0	0.0	0.4	0.76	0.1	0.2	0	0	6	1	3		
Southeast Alaska/Northeast Gulf of Alaska	8.5	5.5	11.8	0.00	8.5	1.9	129	84	179	130	29		
British Columbia	54.8	50.0	59.6	0.00	54.8	2.9	836	763	909	836	44		
West Coast US	24.3	20.6	28.3	0.00	24.4	2.3	371	315	431	372	35		
									Total	1,526			

46

Table 11.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 932; n = 378) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI	_				909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Eastern Bering Sea	0.0	0.0	0.0	0.90	0.0	0.1	0	0	0	0	1
North Alaska Peninsula	0.0	0.0	0.1	0.87	0.0	0.2	0	0	1	0	2
Chignik	0.0	0.0	0.2	0.85	0.0	0.1	0	0	1	0	1
Kodiak	3.2	1.8	5.1	0.00	3.3	1.0	30	17	47	31	9
Cook Inlet	4.3	2.6	6.4	0.00	4.3	1.2	40	24	59	40	11
Copper	0.2	0.0	0.9	0.18	0.3	0.3	1	0	8	2	3
Southeast Alaska/Northeast Gulf of Alaska	4.9	3.0	7.3	0.00	5.0	1.3	45	28	68	46	12
British Columbia	52.1	47.4	56.8	0.00	52.1	2.9	486	441	529	486	27
West Coast US	34.9	30.6	39.5	0.00	35.0	2.7	326	285	368	326	25
									Total	932	

47

Table 12.—Annual estimates of stock composition (%) and stock-specific harvest for the Northwest Kodiak/Afognak (District 251, 253, 254), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-spe	ecific Ha	rvest	
		90%	6 CI	_				90%	6 CI	_	
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.86	0.0	0.0	0	0	0	0	1
Eastern Bering Sea	0.6	0.1	1.6	0.00	0.7	0.5	15	3	39	17	11
North Alaska Peninsula	0.0	0.0	0.1	0.81	0.0	0.1	0	0	2	0	2
Chignik	0.0	0.0	0.1	0.80	0.0	0.0	0	0	2	0	1
Kodiak	4.1	2.9	5.5	0.00	4.1	0.8	100	71	135	101	19
Cook Inlet	5.7	4.2	7.4	0.00	5.7	1.0	139	103	181	140	24
Copper	0.1	0.0	0.4	0.13	0.1	0.2	2	0	11	3	4
Southeast Alaska/Northeast Gulf of Alaska	7.1	5.1	9.4	0.00	7.2	1.3	176	126	230	177	31
British Columbia	53.8	50.3	57.2	0.00	53.8	2.1	1,322	1,236	1,407	1,322	52
West Coast US	28.4	25.5	31.3	0.00	28.4	1.8	697	627	770	698	43
									Total	2,458	

48

Table 13.–Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,004; n = 379) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-specific Harvest					
		90%	6 CI					90	% CI		_		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	5%	95%	Mean	SD		
Russia	0.0	0.0	0.0	0.91	0.0	0.0	(0	0	0	0		
Eastern Bering Sea	0.7	0.0	2.0	0.04	0.8	0.6	7	0	20	8	6		
North Alaska Peninsula	0.0	0.0	0.0	0.91	0.0	0.1	(0	0	0	1		
Chignik	0.4	0.0	1.3	0.16	0.5	0.4	4	0	13	5	4		
Kodiak	3.2	1.8	5.2	0.00	3.3	1.1	32	18	53	33	11		
Cook Inlet	7.8	5.5	10.5	0.00	7.9	1.5	78	55	106	79	16		
Copper	0.0	0.0	0.5	0.82	0.1	0.2	(0	5	1	2		
Southeast Alaska/Northeast Gulf of Alaska	12.7	9.3	16.5	0.00	12.8	2.2	127	93	166	128	22		
British Columbia	59.6	54.7	64.4	0.00	59.6	2.9	598	549	646	598	30		
West Coast US	15.0	11.9	18.6	0.00	15.1	2.0	151	120	187	152	20		
									Total	1,004			

49

Table 14.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 1,094; n = 371) of the Northwest Kodiak/Afognak (District 251, 253, 254), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-specific Harvest					
		90%	6 CI					90	% CI		_		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Mediar	5%	95%	Mean	SD		
Russia	0.0	0.0	0.0	0.92	0.0	0.0	(0	0	0	0		
Eastern Bering Sea	0.0	0.0	0.0	0.92	0.0	0.0	(0	0	0	0		
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	(0	0	0	1		
Chignik	0.3	0.0	1.2	0.05	0.4	0.4	4	0	13	5	4		
Kodiak	0.0	0.0	0.9	0.61	0.1	0.4	(0	10	2	4		
Cook Inlet	5.6	3.4	8.1	0.00	5.7	1.4	62	37	88	62	15		
Copper	0.0	0.0	0.4	0.79	0.1	0.2	(0	4	1	2		
Southeast Alaska/Northeast Gulf of Alaska	10.3	7.2	14.0	0.00	10.4	2.1	113	79	153	114	23		
British Columbia	63.9	59.1	68.5	0.00	63.8	2.9	699	646	749	698	31		
West Coast US	19.4	15.9	23.2	0.00	19.4	2.2	212	174	253	213	24		
									Total	1,094			

5

Table 15.—Annual estimates of stock composition (%) and stock-specific harvest for the Northwest Kodiak/Afognak (District 251, 253, 254), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-spe	cific Ha	rvest	
		90%	6 CI					90%	CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.85	0.0	0.0	0	0	0	0	1
Eastern Bering Sea	0.3	0.0	1.0	0.04	0.4	0.3	7	0	20	8	6
North Alaska Peninsula	0.0	0.0	0.0	0.85	0.0	0.0	0	0	0	0	1
Chignik	0.4	0.1	1.0	0.01	0.4	0.3	8	1	21	9	6
Kodiak	1.6	0.9	2.6	0.00	1.7	0.5	34	18	56	35	11
Cook Inlet	6.7	5.1	8.5	0.00	6.7	1.0	141	106	178	141	22
Copper	0.0	0.0	0.4	0.65	0.1	0.2	0	0	8	1	3
Southeast Alaska/Northeast Gulf of Alaska	11.5	9.2	14.1	0.00	11.5	1.5	241	192	295	242	31
British Columbia	61.8	58.4	65.1	0.00	61.8	2.0	1,297	1,225	1,367	1,296	43
West Coast US	17.3	15.0	19.9	0.00	17.4	1.5	364	314	417	365	32
									Total	2,098	

51

Table 16.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 414; n = 278) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	ock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.8	0.27	0.2	0.3	0	0	3	1	1
Eastern Bering Sea	0.0	0.0	0.7	0.36	0.1	0.3	0	0	3	1	1
North Alaska Peninsula	0.0	0.0	0.2	0.43	0.0	0.1	0	0	1	0	1
Chignik	0.0	0.0	0.2	0.43	0.0	0.1	0	0	1	0	0
Kodiak	10.0	7.2	13.3	0.00	10.1	1.9	41	30	55	42	8
Cook Inlet	1.1	0.1	2.9	0.02	1.2	0.9	5	0	12	5	4
Copper	0.0	0.0	0.5	0.39	0.1	0.2	0	0	2	0	1
Southeast Alaska/Northeast Gulf of Alaska	6.1	3.8	8.9	0.00	6.2	1.5	25	16	37	26	6
British Columbia	51.2	46.1	56.4	0.00	51.2	3.1	212	191	234	212	13
West Coast US	30.8	26.1	35.7	0.00	30.8	2.9	127	108	148	128	12
									Total	414	

52

Table 17.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 1,280; n = 374) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				stock-sp	ecific H	arvest	
		90%	6 CI	_			-	90	% CI		_
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0
Eastern Bering Sea	0.0	0.0	2.1	0.56	0.5	0.8	C	0	27	6	10
North Alaska Peninsula	0.0	0.0	1.8	0.47	0.4	0.6	C	0	22	5	8
Chignik	0.0	0.0	0.2	0.86	0.0	0.1	C	0	2	0	2
Kodiak	1.0	0.4	2.2	0.00	1.1	0.6	13	5	28	14	7
Cook Inlet	1.4	0.3	2.9	0.03	1.5	0.8	17	4	38	19	10
Copper	0.0	0.0	0.0	0.91	0.0	0.1	C	0	0	0	1
Southeast Alaska/Northeast Gulf of Alaska	2.9	1.2	5.0	0.00	3.0	1.2	37	16	64	38	15
British Columbia	54.5	49.6	59.2	0.00	54.5	2.9	697	635	758	697	37
West Coast US	39.0	34.5	43.7	0.00	39.1	2.8	500	442	560	500	36
									Total	1,280	

53

Table 18.–Annual estimates of stock composition (%) and stock-specific harvest for the Southwest Kodiak/Alitak (District 255, 256, 257), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position		Stock-specific Harvest					
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.2	0.29	0.0	0.1	0	0	4	1	1
Eastern Bering Sea	0.0	0.0	1.6	0.23	0.4	0.6	1	0	27	7	10
North Alaska Peninsula	0.1	0.0	1.3	0.24	0.3	0.5	1	0	23	5	8
Chignik	0.0	0.0	0.2	0.43	0.0	0.1	0	0	3	1	2
Kodiak	3.3	2.4	4.4	0.00	3.3	0.6	55	40	75	56	11
Cook Inlet	1.3	0.5	2.6	0.00	1.4	0.6	23	8	44	24	11
Copper	0.0	0.0	0.1	0.42	0.0	0.1	0	0	2	0	1
Southeast Alaska/Northeast Gulf of Alaska	3.7	2.3	5.4	0.00	3.7	0.9	62	39	91	63	16
British Columbia	53.7	49.8	57.5	0.00	53.7	2.3	909	843	974	909	40
West Coast US	37.0	33.4	40.8	0.00	37.1	2.2	627	566	690	628	38
									Total	1,694	

54

Table 19.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 511; n = 365) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Stoc	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI	_				909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Eastern Bering Sea	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Chignik	0.0	0.0	0.1	0.89	0.0	0.1	0	0	0	0	1
Kodiak	24.9	21.2	28.8	0.00	24.9	2.3	127	108	147	127	12
Cook Inlet	2.5	1.2	4.4	0.00	2.6	1.0	13	6	23	13	5
Copper	0.0	0.0	0.1	0.88	0.0	0.1	0	0	0	0	0
Southeast Alaska/Northeast Gulf of Alaska	3.2	1.1	5.6	0.00	3.3	1.4	16	6	29	17	7
British Columbia	33.8	29.3	38.6	0.00	33.9	2.8	173	150	197	173	14
West Coast US	35.2	31.0	39.7	0.00	35.3	2.6	180	158	203	180	13
									Total	511	

55

Table 20.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 2,042; n = 371) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			Stock-specific Harvest						
		6 CI	_				90% CI						
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD		
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1		
Eastern Bering Sea	0.0	0.0	0.0	0.90	0.0	0.1	0	0	0	0	2		
North Alaska Peninsula	0.0	0.0	1.0	0.67	0.2	0.4	0	0	21	3	8		
Chignik	0.0	0.0	0.6	0.61	0.1	0.2	0	0	11	2	4		
Kodiak	1.2	0.3	2.5	0.00	1.3	0.7	24	7	51	26	13		
Cook Inlet	1.4	0.6	2.7	0.00	1.5	0.7	29	12	56	31	14		
Copper	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1		
Southeast Alaska/Northeast Gulf of Alaska	3.4	1.7	5.8	0.00	3.5	1.2	69	35	118	72	25		
British Columbia	63.1	58.5	67.6	0.00	63.1	2.8	1,289	1,195	1,380	1,288	56		
West Coast US	30.3	26.2	34.6	0.00	30.3	2.6	619	535	707	620	52		
									Total	2,042			

56

Table 21.—Annual estimates of stock composition (%) and stock-specific harvest for the Southwest Kodiak/Alitak (District 255, 256, 257), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			Stock-specific Harvest						
		6 CI	_				90% CI						
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD		
Russia	0.0	0.0	0.0	0.86	0.0	0.0	0	0	0	0	1		
Eastern Bering Sea	0.0	0.0	0.0	0.84	0.0	0.1	0	0	1	0	2		
North Alaska Peninsula	0.0	0.0	0.8	0.63	0.1	0.3	0	0	21	4	8		
Chignik	0.0	0.0	0.4	0.55	0.1	0.2	0	0	11	2	4		
Kodiak	6.0	4.9	7.2	0.00	6.0	0.7	152	126	184	153	18		
Cook Inlet	1.7	0.9	2.8	0.00	1.7	0.6	42	23	70	44	15		
Copper	0.0	0.0	0.0	0.82	0.0	0.0	0	0	1	0	1		
Southeast Alaska/Northeast Gulf of Alaska	3.4	2.0	5.3	0.00	3.5	1.0	86	50	136	88	26		
British Columbia	57.3	53.5	61.0	0.00	57.2	2.3	1,462	1,365	1,557	1,461	58		
West Coast US	31.3	27.9	34.8	0.00	31.3	2.1	799	712	890	800	54		
									Total	2,553			

57

Table 22.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 347; n = 308) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position		S	Stock-specific Harvest						
		90%	6 CI					909	% CI		_		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD		
Russia	0.0	0.0	0.7	0.59	0.1	0.3	0	0	2	0	1		
Eastern Bering Sea	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0		
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0		
Chignik	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0		
Kodiak	2.9	1.5	4.9	0.00	3.0	1.0	10	5	17	10	4		
Cook Inlet	1.4	0.5	3.0	0.00	1.5	0.8	5	2	10	5	3		
Copper	0.0	0.0	1.4	0.46	0.3	0.5	0	0	5	1	2		
Southeast Alaska/Northeast Gulf of Alaska	3.1	1.3	5.5	0.01	3.2	1.3	11	4	19	11	5		
British Columbia	67.1	62.3	71.8	0.00	67.1	2.9	233	216	249	233	10		
West Coast US	24.6	20.5	29.0	0.00	24.6	2.6	85	71	101	86	9		
									Total	347			

58

Table 23.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 427; n = 267) of the Southwest Kodiak/Alitak (District 255, 256, 257), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position		Stock-specific Harvest					
		6 CI	_				90	% CI	_		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	-) 0	0	0	0
Eastern Bering Sea	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0
North Alaska Peninsula	0.0	0.0	0.0	0.91	0.0	0.1		0	0	0	0
Chignik	0.1	0.0	0.9	0.38	0.2	0.3		0	4	1	1
Kodiak	1.1	0.4	2.6	0.00	1.3	0.7		5 2	11	5	3
Cook Inlet	2.5	1.2	4.4	0.00	2.6	1.0	1	1 5	19	11	4
Copper	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0
Southeast Alaska/Northeast Gulf of Alaska	1.8	0.1	4.3	0.03	2.0	1.3		3 1	18	8	5
British Columbia	69.2	63.7	74.3	0.00	69.1	3.2	29	5 272	317	295	14
West Coast US	24.7	20.1	29.7	0.00	24.8	2.9	10	5 86	127	106	13
									Total	427	

59

Table 24.—Annual estimates of stock composition (%) and stock-specific harvest for the Southwest Kodiak/Alitak (District 255, 256, 257), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position		Stock-specific Harvest					
		6 CI	_				90	% CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	5%	95%	Mean	SD
Russia	0.0	0.0	0.3	0.55	0.1	0.1		0	2	0	1
Eastern Bering Sea	0.0	0.0	0.0	0.85	0.0	0.0	(0	0	0	0
North Alaska Peninsula	0.0	0.0	0.0	0.85	0.0	0.0	(0	0	0	0
Chignik	0.0	0.0	0.5	0.35	0.1	0.2	(0	4	1	1
Kodiak	2.0	1.2	3.1	0.00	2.1	0.6	15	9	24	16	5
Cook Inlet	2.1	1.2	3.3	0.00	2.1	0.7	10	9	26	16	5
Copper	0.0	0.0	0.6	0.42	0.2	0.2	(0	5	1	2
Southeast Alaska/Northeast Gulf of Alaska	2.5	1.2	4.1	0.00	2.5	0.9	19	9	32	20	7
British Columbia	68.2	64.6	71.8	0.00	68.2	2.2	528	500	556	528	17
West Coast US	24.7	21.5	28.0	0.00	24.7	2.0	193	167	217	191	15
									Total	774	

60

Table 25.–Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 377; n = 287) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position		S	Stock-specific Harvest					
		6 CI					90% CI					
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD	
Russia	0.6	0.1	1.7	0.00	0.7	0.5	2	0	6	3	2	
Eastern Bering Sea	2.6	1.2	4.6	0.00	2.7	1.1	10	4	17	10	4	
North Alaska Peninsula	0.0	0.0	0.3	0.42	0.0	0.1	0	0	1	0	1	
Chignik	0.6	0.1	1.7	0.01	0.7	0.5	2	0	6	3	2	
Kodiak	4.2	2.4	6.7	0.00	4.3	1.3	16	9	25	16	5	
Cook Inlet	0.3	0.0	1.8	0.15	0.5	0.6	1	0	7	2	2	
Copper	0.0	0.0	0.4	0.40	0.1	0.2	0	0	2	0	1	
Southeast Alaska/Northeast Gulf of Alaska	4.2	1.9	7.3	0.00	4.3	1.6	16	7	27	16	6	
British Columbia	51.2	45.9	56.6	0.00	51.2	3.3	193	173	213	193	12	
West Coast US	35.3	30.5	40.3	0.00	35.4	3.0	133	115	152	133	11	
									Total	377		

Table 26.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 2,553; n = 375) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-spe	cific Ha	rvest	
		90%	6 CI	_				90%	CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.4	0.1	1.3	0.00	0.5	0.4	11	2	32	13	10
Eastern Bering Sea	2.7	1.3	4.6	0.00	2.8	1.0	69	34	116	71	25
North Alaska Peninsula	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	2
Chignik	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1
Kodiak	0.1	0.0	0.8	0.28	0.2	0.3	2	0	21	5	8
Cook Inlet	4.0	2.4	6.1	0.00	4.1	1.1	102	61	156	105	29
Copper	0.2	0.0	1.2	0.26	0.3	0.4	4	0	30	8	11
Southeast Alaska/Northeast Gulf of Alaska	2.6	0.8	5.4	0.01	2.8	1.4	67	20	137	71	36
British Columbia	51.7	46.9	56.6	0.00	51.7	2.9	1,321	1,197	1,444	1,320	75
West Coast US	37.5	33.2	41.9	0.00	37.5	2.6	958	848	1,071	959	68
									Total	2,553	

62

Table 27.—Annual estimates of stock composition (%) and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-sp	ecific Ha	rvest	
		90%	6 CI	_				90	% CI	_	
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Medi	n 5%	95%	Mean	SD
Russia	0.5	0.1	1.2	0.00	0.6	0.3		4 4	35	16	10
Eastern Bering Sea	2.7	1.5	4.3	0.00	2.8	0.9	,	9 43	127	81	26
North Alaska Peninsula	0.0	0.0	0.1	0.47	0.0	0.1		0 0	2	0	2
Chignik	0.1	0.0	0.2	0.01	0.1	0.1		2 0	7	3	2
Kodiak	0.7	0.4	1.3	0.00	0.7	0.3	Ź	20 10	39	21	9
Cook Inlet	3.6	2.1	5.4	0.00	3.6	1.0	10	04 62	159	107	29
Copper	0.2	0.0	1.0	0.12	0.3	0.4		5 0	30	8	11
Southeast Alaska/Northeast Gulf of Alaska	2.9	1.2	5.3	0.00	3.0	1.2	:	35	154	88	37
British Columbia	51.7	47.4	55.9	0.00	51.7	2.6	1,5	4 1,388	1,639	1,513	76
West Coast US	37.2	33.5	41.1	0.00	37.3	2.3	1,09	981	1,206	1,092	69
									Total	2,930	

63

Table 28.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,400; n = 373) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.4	0.1	1.2	0.00	0.5	0.4	6	1	17	7	5
Eastern Bering Sea	0.0	0.0	0.1	0.79	0.0	0.1	0	0	1	0	1
North Alaska Peninsula	0.0	0.0	0.1	0.88	0.0	0.2	0	0	1	1	3
Chignik	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Kodiak	3.1	1.6	5.0	0.00	3.2	1.0	43	23	70	44	14
Cook Inlet	7.8	5.4	10.5	0.00	7.8	1.5	109	76	147	110	22
Copper	0.1	0.0	1.1	0.40	0.3	0.4	1	0	15	4	5
Southeast Alaska/Northeast Gulf of Alaska	4.8	2.7	7.4	0.00	4.9	1.4	67	38	104	68	20
British Columbia	36.5	31.8	41.4	0.00	36.5	2.9	511	445	579	511	41
West Coast US	46.8	42.1	51.6	0.00	46.8	2.9	655	589	722	655	40
									Total	1,400	

4

Table 29.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 807; n = 278) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.90	0.0	0.1	0	0	0	0	1
Eastern Bering Sea	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	1
North Alaska Peninsula	0.0	0.0	0.0	0.89	0.0	0.1	0	0	0	0	1
Chignik	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	0
Kodiak	4.3	2.5	6.8	0.00	4.4	1.3	35	20	55	36	11
Cook Inlet	1.3	0.3	3.1	0.00	1.4	0.9	10	2	25	12	7
Copper	0.0	0.0	1.1	0.50	0.2	0.4	0	0	9	2	3
Southeast Alaska/Northeast Gulf of Alaska	3.5	1.4	6.3	0.01	3.6	1.5	28	11	51	29	12
British Columbia	49.4	43.9	54.9	0.00	49.4	3.3	399	354	443	399	27
West Coast US	40.7	35.6	46.0	0.00	40.8	3.2	329	288	371	329	25
									Total	807	

65

Table 30.—Annual estimates of stock composition (%) and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			St	ock-sp	ecific Ha	arvest	
		90%	6 CI	_				909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	 Median	5%	95%	Mean	SD
Russia	0.3	0.0	0.8	0.00	0.3	0.2	6	1	17	7	5
Eastern Bering Sea	0.0	0.0	0.1	0.73	0.0	0.1	0	0	1	0	2
North Alaska Peninsula	0.0	0.0	0.2	0.79	0.0	0.2	0	0	4	1	3
Chignik	0.0	0.0	0.0	0.85	0.0	0.0	0	0	0	0	1
Kodiak	3.6	2.4	5.0	0.00	3.6	0.8	79	53	111	80	18
Cook Inlet	5.5	3.9	7.3	0.00	5.5	1.0	120	86	160	121	23
Copper	0.2	0.0	0.8	0.20	0.3	0.3	4	0	19	6	6
Southeast Alaska/Northeast Gulf of Alaska	4.4	2.8	6.3	0.00	4.4	1.1	97	61	139	98	24
British Columbia	41.2	37.6	44.9	0.00	41.2	2.2	910	830	991	910	49
West Coast US	44.6	41.1	48.1	0.00	44.6	2.2	984	906	1,063	984	48
									Total	2,207	

99

Table 31.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 446; n = 313) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Eastern Bering Sea	2.2	1.0	4.1	0.00	2.3	1.0	10	4	18	10	4
North Alaska Peninsula	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	0
Chignik	0.3	0.0	1.3	0.03	0.4	0.4	1	0	6	2	2
Kodiak	2.6	1.2	4.7	0.00	2.8	1.1	12	5	21	12	5
Cook Inlet	2.3	1.0	4.1	0.00	2.4	1.0	10	4	18	11	4
Copper	0.9	0.2	2.3	0.02	1.1	0.7	4	1	10	5	3
Southeast Alaska/Northeast Gulf of Alaska	6.4	3.7	10.0	0.00	6.6	1.9	29	16	44	29	9
British Columbia	57.0	51.5	62.4	0.00	57.0	3.3	254	230	278	254	15
West Coast US	27.4	23.1	32.1	0.00	27.5	2.7	122	103	143	123	12
									Total	446	

67

Table 32.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 779; n = 319) of the Eastside Kodiak/Afognak (District 252, 258, 259), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				tock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Eastern Bering Sea	0.0	0.0	0.0	0.82	0.0	0.1	0	0	0	0	1
North Alaska Peninsula	0.0	0.0	0.0	0.90	0.0	0.1	0	0	0	0	1
Chignik	0.0	0.0	0.6	0.63	0.1	0.3	0	0	5	1	2
Kodiak	2.8	1.4	4.8	0.00	2.9	1.0	22	11	38	23	8
Cook Inlet	3.8	2.2	6.0	0.00	3.9	1.2	30	17	47	30	9
Copper	0.3	0.0	1.6	0.31	0.5	0.6	2	0	13	4	4
Southeast Alaska/Northeast Gulf of Alaska	1.3	0.0	3.6	0.09	1.4	1.2	10	0	28	11	9
British Columbia	51.5	46.1	56.9	0.00	51.5	3.2	401	359	443	401	25
West Coast US	39.5	34.6	44.7	0.00	39.6	3.1	308	269	348	308	24
									Total	779	

89

Table 33.—Annual estimates of stock composition (%) and stock-specific harvest for the Eastside Kodiak/Afognak (District 252, 258, 259), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Sto	ck-spe	ecific Ha	arvest	
		90%	6 CI	_					90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Medi	ın	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.86	0.0	0.0		0	0	0	0	0
Eastern Bering Sea	0.8	0.4	1.5	0.00	0.9	0.4		0	4	18	10	4
North Alaska Peninsula	0.0	0.0	0.0	0.83	0.0	0.1		0	0	1	0	1
Chignik	0.2	0.0	0.7	0.02	0.2	0.2		2	0	8	3	3
Kodiak	2.8	1.7	4.2	0.00	2.9	0.8		34	21	52	35	9
Cook Inlet	3.3	2.1	4.8	0.00	3.4	0.8		10	26	59	41	10
Copper	0.6	0.1	1.5	0.00	0.7	0.4		8	2	19	9	5
Southeast Alaska/Northeast Gulf of Alaska	3.2	1.8	5.1	0.00	3.3	1.0		89	22	63	40	13
British Columbia	53.5	49.5	57.4	0.00	53.5	2.4	6.	55	607	704	655	29
West Coast US	35.1	31.6	38.8	0.00	35.2	2.2	4:	31	387	475	431	27
										Total	1,225	

69

Table 34.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 422; n = 362) of the Mainland (District 262), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-s _j	ecific H	arvest	
		90%	6 CI	_				90	% CI	_	
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	5%	95%	Mean	SD
Russia	0.2	0.0	0.9	0.01	0.3	0.3		1 0	4	1	1
Eastern Bering Sea	1.1	0.3	2.4	0.00	1.2	0.6		5 1	10	5	3
North Alaska Peninsula	0.0	0.0	0.2	0.44	0.0	0.1		0 (1	0	0
Chignik	0.1	0.0	0.8	0.13	0.2	0.3		1 0	3	1	1
Kodiak	0.9	0.2	2.0	0.00	1.0	0.6		4 1	9	4	2
Cook Inlet	1.5	0.6	3.0	0.00	1.6	0.7		5 2	13	7	3
Copper	0.0	0.0	0.2	0.43	0.0	0.1		0 (1	0	0
Southeast Alaska/Northeast Gulf of Alaska	4.8	1.4	9.2	0.00	5.0	2.4	2) 6	39	21	10
British Columbia	51.2	45.3	57.0	0.00	51.2	3.6	21	5 191	241	216	15
West Coast US	39.5	35.0	44.1	0.00	39.5	2.8	16	7 148	186	167	12
									Total	422	

Table 35.–Annual estimates of stock composition (%) and stock-specific harvest for the Mainland (District 262), 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI					909	% CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.2	0.0	0.9	0.01	0.3	0.3	1	0	4	1	1
Eastern Bering Sea	1.1	0.3	2.4	0.00	1.2	0.6	5	1	10	5	3
North Alaska Peninsula	0.0	0.0	0.2	0.44	0.0	0.1	0	0	1	0	0
Chignik	0.1	0.0	0.8	0.13	0.2	0.3	1	0	3	1	1
Kodiak	0.9	0.2	2.0	0.00	1.0	0.6	4	1	9	4	2
Cook Inlet	1.5	0.6	3.0	0.00	1.6	0.7	6	2	13	7	3
Copper	0.0	0.0	0.2	0.43	0.0	0.1	0	0	1	0	0
Southeast Alaska/Northeast Gulf of Alaska	4.8	1.4	9.2	0.00	5.0	2.4	20	6	39	21	10
British Columbia	51.2	45.3	57.0	0.00	51.2	3.6	216	191	241	216	15
West Coast US	39.5	35.0	44.1	0.00	39.5	2.8	167	148	186	167	12
									Total	422	

71

Table 36.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 229; n = 277) of the Mainland (District 262), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			 Ste	ock-sp	ecific Ha	arvest	
		90%	6 CI	_				90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	 Median	5%	95%	Mean	SD
Russia	0.3	0.0	1.1	0.00	0.4	0.4	1	0	2	1	1
Eastern Bering Sea	0.0	0.0	0.3	0.84	0.0	0.2	0	0	1	0	0
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Chignik	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Kodiak	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Cook Inlet	12.8	9.7	16.3	0.00	12.9	2.0	29	22	37	29	5
Copper	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	0
Southeast Alaska/Northeast Gulf of Alaska	3.0	0.3	5.6	0.03	3.0	1.5	7	1	13	7	4
British Columbia	64.0	58.6	69.4	0.00	64.0	3.3	147	134	159	147	8
West Coast US	19.6	15.5	24.2	0.00	19.7	2.6	45	35	55	45	6
									Total	229	

Table 37.—Annual estimates of stock composition (%) and stock-specific harvest for the Mainland (District 262), 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				St	ock-sp	ecific H	arvest	
		90%	6 CI			_			90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Me	dian	5%	95%	Mean	SD
Russia	0.3	0.0	1.1	0.00	0.4	0.4		1	0	2	1	1
Eastern Bering Sea	0.0	0.0	0.3	0.84	0.0	0.2		0	0	1	0	0
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0	0
Chignik	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0	0
Kodiak	0.0	0.0	0.0	0.92	0.0	0.0		0	0	0	0	0
Cook Inlet	12.8	9.7	16.3	0.00	12.9	2.0		29	22	37	29	5
Copper	0.0	0.0	0.0	0.91	0.0	0.1		0	0	0	0	0
Southeast Alaska/Northeast Gulf of Alaska	3.0	0.3	5.6	0.03	3.0	1.5		7	1	13	7	4
British Columbia	64.0	58.6	69.4	0.00	64.0	3.3		147	134	159	147	8
West Coast US	19.6	15.5	24.2	0.00	19.7	2.6		45	35	55	45	6
										Total	229	

73

Table 38.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,263; n = 368) of the Mainland (District 262), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI					90% CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.2	0.43	0.0	0.1	0	0	3	1	2
Eastern Bering Sea	2.1	1.0	3.7	0.00	2.2	0.8	26	12	47	28	11
North Alaska Peninsula	0.0	0.0	0.5	0.38	0.1	0.2	0	0	7	1	3
Chignik	0.2	0.0	0.9	0.03	0.3	0.3	3	0	11	4	4
Kodiak	0.3	0.0	1.3	0.02	0.5	0.4	4	0	17	6	5
Cook Inlet	1.9	0.7	3.7	0.00	2.0	0.9	24	8	46	25	12
Copper	0.2	0.0	1.8	0.21	0.5	0.6	2	0	23	6	8
Southeast Alaska/Northeast Gulf of Alaska	3.6	1.6	6.3	0.00	3.8	1.4	46	21	80	47	18
British Columbia	46.6	41.8	51.4	0.00	46.6	2.9	588	528	649	588	36
West Coast US	44.1	39.5	48.7	0.00	44.1	2.8	557	499	615	557	35
									Total	1,263	

74

Table 39.—Estimates of stock composition (%) and stock-specific harvest for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 1,431; n = 357) of the Mainland (District 262), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position			S	tock-sp	ecific H	arvest	
		90%	6 CI	_		_		90% CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	1
Eastern Bering Sea	0.0	0.0	1.1	0.70	0.1	0.4	0	0	15	2	6
North Alaska Peninsula	0.0	0.0	0.0	0.91	0.0	0.1	0	0	0	0	1
Chignik	0.7	0.2	1.7	0.00	0.7	0.5	9	2	24	11	7
Kodiak	0.0	0.0	0.0	0.92	0.0	0.0	0	0	0	0	0
Cook Inlet	2.5	1.3	4.2	0.00	2.6	0.9	36	18	60	37	13
Copper	0.0	0.0	0.2	0.84	0.0	0.1	0	0	3	0	2
Southeast Alaska/Northeast Gulf of Alaska	5.1	3.1	7.9	0.00	5.3	1.5	74	44	113	75	21
British Columbia	54.1	49.1	58.9	0.00	54.1	3.0	774	703	843	774	42
West Coast US	37.1	32.7	41.8	0.00	37.2	2.8	531	467	598	532	40
									Total	1,431	

Table 40.—Annual estimates of stock composition (%) and stock-specific harvest for the Mainland (District 262), 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-spe	ecific Ha	rvest	
		90%	6 CI					90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.0	0.0	0.1	0.44	0.0	0.1	0	0	3	1	2
Eastern Bering Sea	1.0	0.5	1.9	0.00	1.1	0.5	28	13	52	30	12
North Alaska Peninsula	0.0	0.0	0.3	0.38	0.0	0.1	0	0	7	1	3
Chignik	0.5	0.2	1.1	0.00	0.5	0.3	13	4	29	14	8
Kodiak	0.2	0.0	0.6	0.02	0.2	0.2	4	0	17	6	5
Cook Inlet	2.3	1.3	3.4	0.00	2.3	0.6	61	36	93	62	17
Copper	0.1	0.0	0.9	0.20	0.2	0.3	3	0	24	6	8
Southeast Alaska/Northeast Gulf of Alaska	4.5	3.0	6.4	0.00	4.6	1.0	121	81	172	123	28
British Columbia	50.6	47.1	54.0	0.00	50.6	2.1	1,362	1,270	1,454	1,362	56
West Coast US	40.4	37.2	43.7	0.00	40.4	2.0	1,088	1,002	1,177	1,089	53
									Total	2,694	

Table 41.—Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-spe	ecific Ha	rvest	
		90%	6 CI	_				90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	0.3	0.1	0.6	0.00	0.3	0.2	21	8	43	22	11
Eastern Bering Sea	1.6	1.0	2.4	0.00	1.7	0.4	113	71	167	115	29
North Alaska Peninsula	0.0	0.0	0.4	0.04	0.1	0.1	3	0	24	6	9
Chignik	0.1	0.0	0.3	0.00	0.1	0.1	9	3	20	10	5
Kodiak	1.9	1.5	2.4	0.00	2.0	0.3	134	106	167	135	19
Cook Inlet	2.6	1.9	3.5	0.00	2.7	0.5	182	131	243	184	34
Copper	0.1	0.0	0.5	0.01	0.1	0.2	6	0	32	10	11
Southeast Alaska/Northeast Gulf of Alaska	3.4	2.5	4.6	0.00	3.4	0.6	233	170	313	236	44
British Columbia	55.6	53.3	57.8	0.00	55.5	1.4	3,815	3,660	3,967	3,815	93
West Coast US	34.0	32.0	36.0	0.00	34.0	1.2	2,333	2,196	2,474	2,334	85
									Total	6,867	

Table 42.—Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-sp	ecific Ha	rvest	
		90%	6 CI	_					6 CI	_	
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Mediar	5%	95%	Mean	SD
Russia	0.1	0.0	0.3	0.00	0.1	0.1	7	1	19	8	5
Eastern Bering Sea	0.2	0.0	0.5	0.00	0.2	0.2	15	3	40	18	12
North Alaska Peninsula	0.0	0.0	0.3	0.41	0.1	0.1	(0	24	5	9
Chignik	0.0	0.0	0.2	0.38	0.0	0.1	(0	12	3	5
Kodiak	4.5	3.8	5.2	0.00	4.5	0.4	333	284	389	334	32
Cook Inlet	4.5	3.7	5.3	0.00	4.5	0.5	334	277	396	335	36
Copper	0.1	0.0	0.3	0.02	0.1	0.1	7	0	24	9	8
Southeast Alaska/Northeast Gulf of Alaska	4.9	4.0	6.0	0.00	5.0	0.6	368	294	450	370	48
British Columbia	51.6	49.5	53.6	0.00	51.6	1.2	3,840	3,688	3,992	3,840	92
West Coast US	33.9	32.1	35.8	0.00	33.9	1.1	2,526	2,388	2,666	2,526	85
									Total	7,447	

Table 43.—Annual estimates of stock composition (%) and stock-specific harvest for KMA, 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-sp	ecific Ha	rvest	
		90%	6 CI	_				90% CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	n 5%	95%	Mean	SD
Russia	0.0	0.0	0.1	0.21	0.0	0.0		0 0	5	1	2
Eastern Bering Sea	0.7	0.4	1.1	0.00	0.7	0.2	4	17 28	74	48	14
North Alaska Peninsula	0.0	0.0	0.1	0.27	0.0	0.0		0 0	8	2	3
Chignik	0.4	0.2	0.7	0.00	0.4	0.2	2	26 13	46	28	10
Kodiak	1.3	1.0	1.8	0.00	1.4	0.2	9	01 67	121	92	16
Cook Inlet	3.8	3.1	4.6	0.00	3.8	0.4	20	50 213	312	261	30
Copper	0.2	0.1	0.6	0.00	0.3	0.2		5 4	38	17	10
Southeast Alaska/Northeast Gulf of Alaska	6.2	5.2	7.4	0.00	6.3	0.7	42	24 354	500	425	44
British Columbia	56.6	54.7	58.4	0.00	56.6	1.1	3,84	3,713	3,969	3,842	78
West Coast US	30.6	28.9	32.2	0.00	30.6	1.0	2,0	5 1,963	2,190	2,076	69
									Total	6,791	

Table 44.—Annual estimates of stock composition (%) and stock-specific harvest for the Kodiak Area Sport Fishery, April 16—August 29, 2014. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and SD.

		Sto	ck Com	position				Stock-sp	ecific H	arvest	
		90%	6 CI					90% CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Media	5%	95%	Mean	SD
Russia	0.0	0.0	0.1	0.45	0.0	0.1		0	12	2	6
Eastern Bering Sea	0.0	0.0	0.5	0.37	0.1	0.2	(0	38	7	16
North Alaska Peninsula	0.0	0.0	0.2	0.44	0.0	0.1	(0	15	3	8
Chignik	0.0	0.0	0.2	0.44	0.0	0.1	(0	14	2	7
Kodiak	1.6	0.7	3.0	0.00	1.7	0.7	129	57	239	136	56
Cook Inlet	0.9	0.3	1.9	0.00	1.0	0.5	7	22	156	77	42
Copper	0.0	0.0	0.3	0.39	0.1	0.1	(0	28	5	12
Southeast Alaska/Northeast Gulf of Alaska	6.8	4.2	9.7	0.00	6.9	1.7	550	341	782	554	135
British Columbia	46.1	41.4	51.0	0.00	46.2	2.9	3712	2 3330	4105	3715	236
West Coast US	44.1	39.6	48.6	0.00	44.1	2.7	3548	3188	3910	3548	220
									Total	8,049	

80

Table 45.—Annual estimates of stock composition (%) and stock-specific harvest for the Kodiak Area Sport Fishery, May 17—August 14, 2015. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				S	tock-spe	ecific Ha	arvest	
		90%	6 CI	_			90% CI					
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Me	dian	5%	95%	Mean	SD
Russia	0.0	0.0	0.0	0.91	0.0	0.1		0	0	0	1	5
Eastern Bering Sea	0.0	0.0	1.5	0.68	0.3	0.5		0	0	100	17	36
North Alaska Peninsula	0.0	0.0	1.0	0.74	0.1	0.4		0	0	65	10	25
Chignik	0.0	0.0	0.0	0.92	0.0	0.1		0	0	0	0	3
Kodiak	5.0	3.0	7.6	0.00	5.1	1.4		334	203	507	341	93
Cook Inlet	1.7	0.6	3.5	0.00	1.8	0.9		114	42	232	122	59
Copper	0.0	0.0	0.0	0.92	0.0	0.1		0	0	0	0	4
Southeast Alaska/Northeast Gulf of Alaska	10.6	6.6	15.1	0.00	10.6	2.6		708	442	1011	714	173
British Columbia	36.6	31.0	42.6	0.00	36.7	3.5	2	2457	2078	2856	2461	237
West Coast US	45.3	40.1	50.6	0.00	45.4	3.2	3	3042	2690	3397	3043	214
										Total	6,709	

81

Table 46.–Annual estimates of stock composition (%) for the Kodiak Area Sport Fishery, May 22–August 13, 2016. Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD). Note that harvest estimates were not available for the Kodiak Regulatory Area sport fishery in 2016.

		Sto	ck Compos	sition		
		90%	CI			
Reporting Group	Median	5%	95%	P = 0	Mean	SD
Russia	0.0	0.0	0.0	0.92	0.0	0.0
Eastern Bering Sea	0.5	0.0	1.6	0.25	0.6	0.5
North Alaska Peninsula	0.0	0.0	0.0	0.92	0.0	0.0
Chignik	0.0	0.0	0.0	0.92	0.0	0.0
Kodiak	3.9	2.5	5.7	0.00	4.0	1.0
Cook Inlet	0.0	0.0	1.4	0.62	0.3	0.5
Copper	0.0	0.0	0.0	0.90	0.0	0.1
Southeast Alaska/Northeast Gulf of Alaska	11.8	8.3	15.6	0.00	11.9	2.2
British Columbia	46.3	41.3	51.4	0.00	46.3	3.1
West Coast US	36.9	32.8	41.2	0.00	36.9	2.5

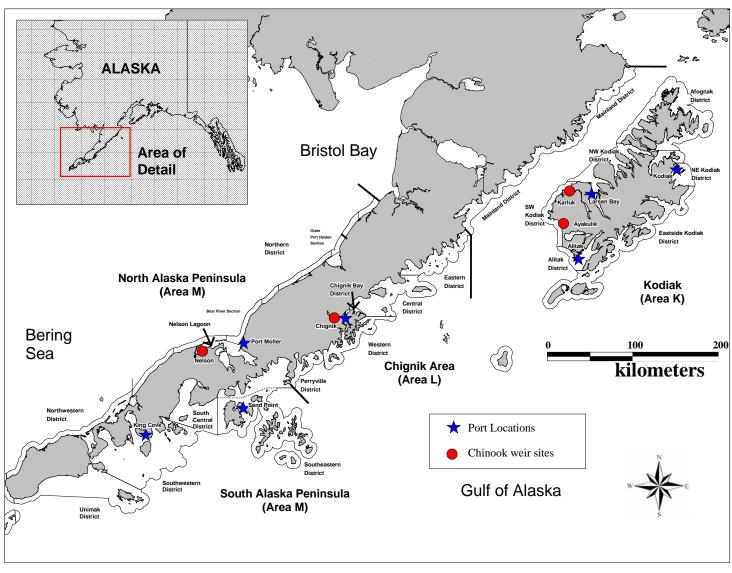


Figure 1.—Map depicting the Westward Region and commercial salmon fishery districts of Kodiak, Chignik, and Alaska Peninsula management areas.

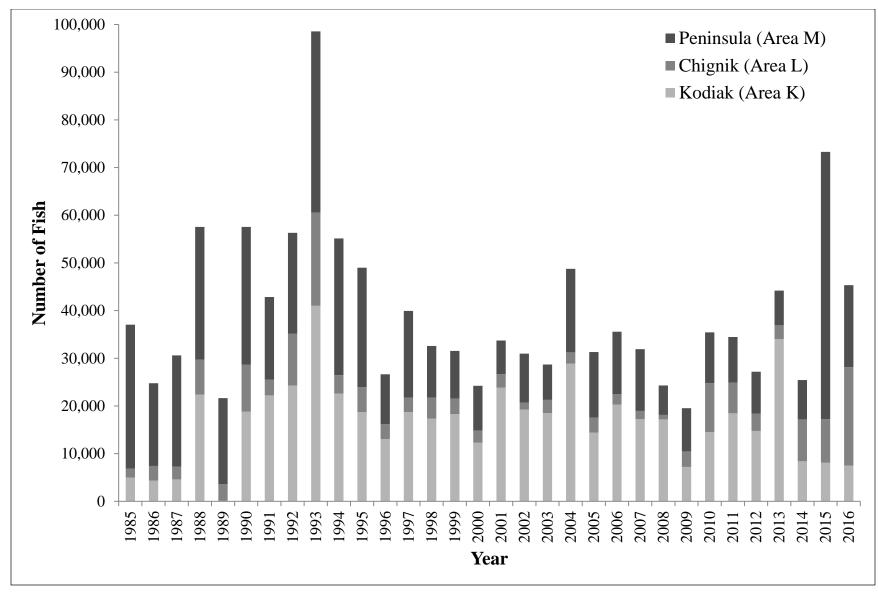


Figure 2.-Westward Region Chinook salmon harvest in commercial fisheries by management area by year, 1958–2016.

Figure 3.-Westward Region Chinook salmon escapement estimates at the major systems monitored via weir, 1985–2015.

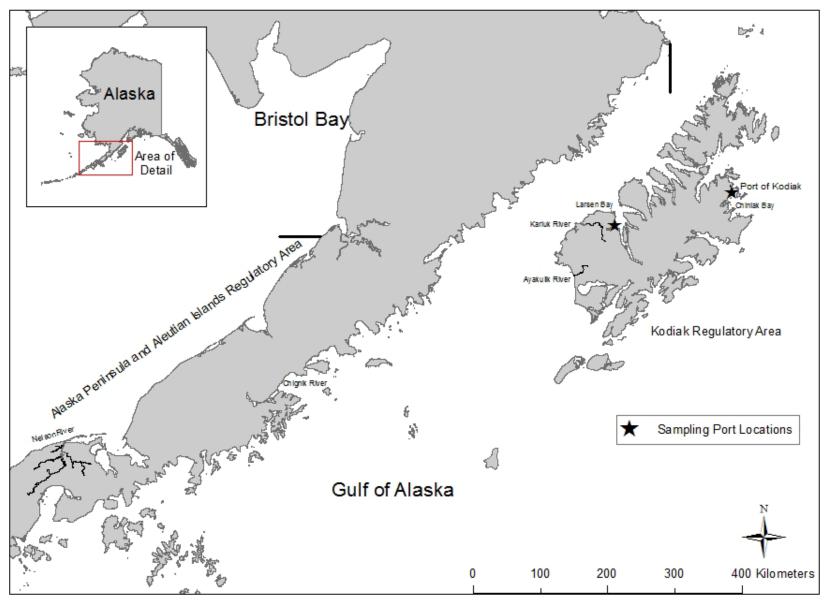


Figure 4.–Map depicting the sport fish regulatory areas for Kodiak and the Alaska Peninsula.

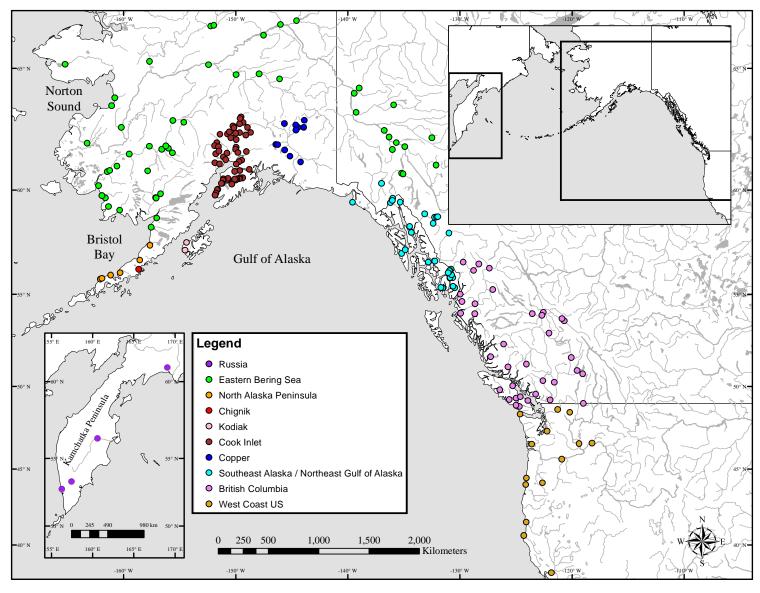


Figure 5.—The location and reporting group affiliation of 211 populations of Chinook salmon included in the coastwide genetic baseline for genetic mixed stock analysis of commercial and sport harvest of Chinook salmon in Westward Region, 2014–2016.

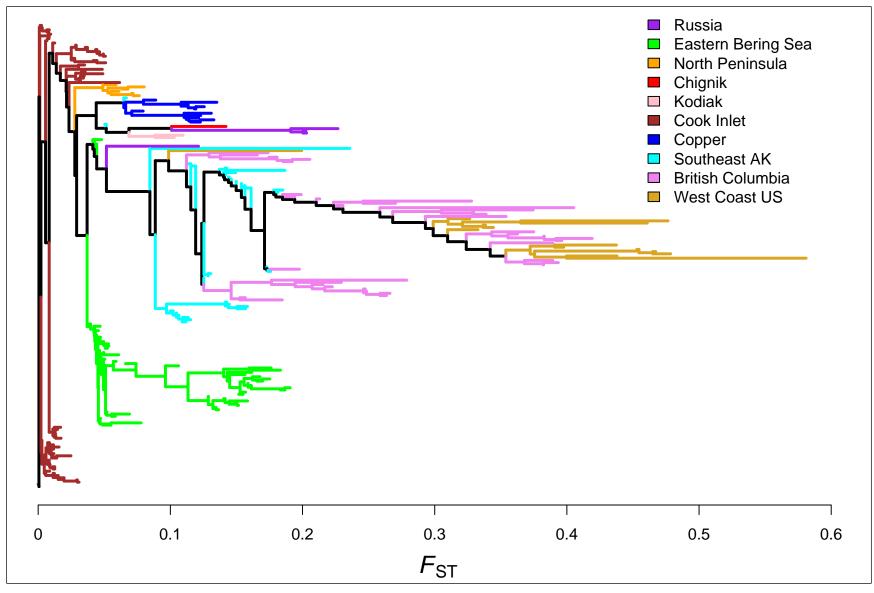


Figure 6.—Broad-scale view of a consensus Neighbor-Joining tree based upon pairwise $F_{\rm ST}$ among 211 populations of Chinook salmon included in the coastwide Chinook salmon baseline. Tree branch colors denote reporting group affiliation of populations.

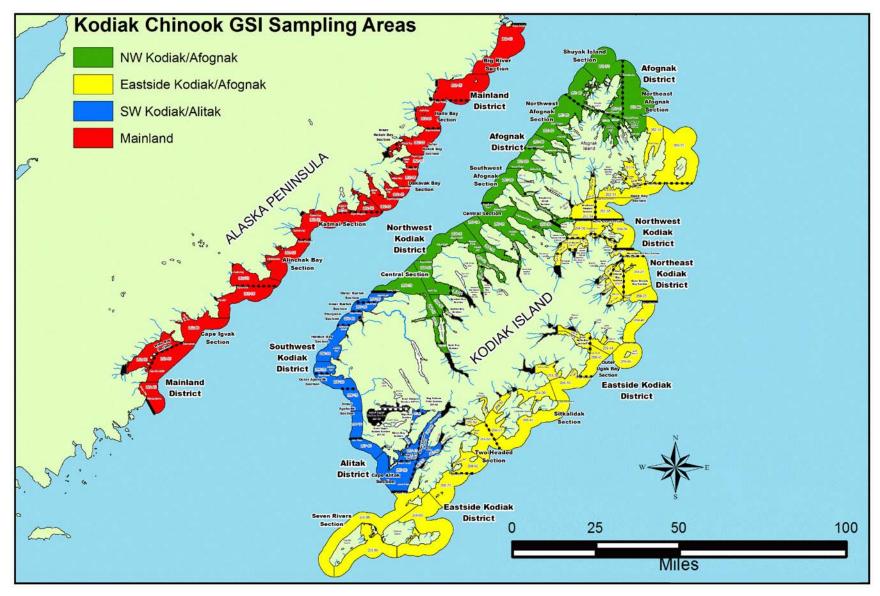


Figure 7.—Map depicting the 4 geographic regions in KMA where Chinook salmon were sampled from commercial salmon fisheries for genetic mixed stock analysis.

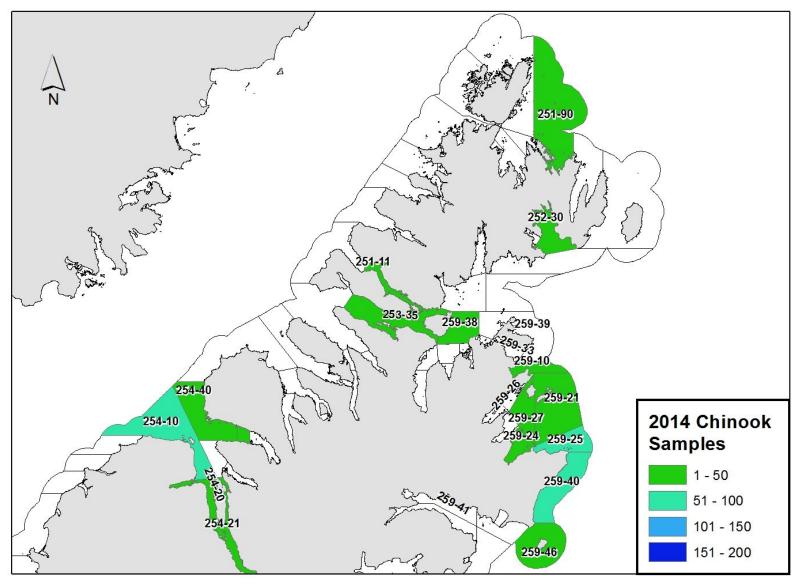


Figure 8.-Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery by statistical area, 2014.

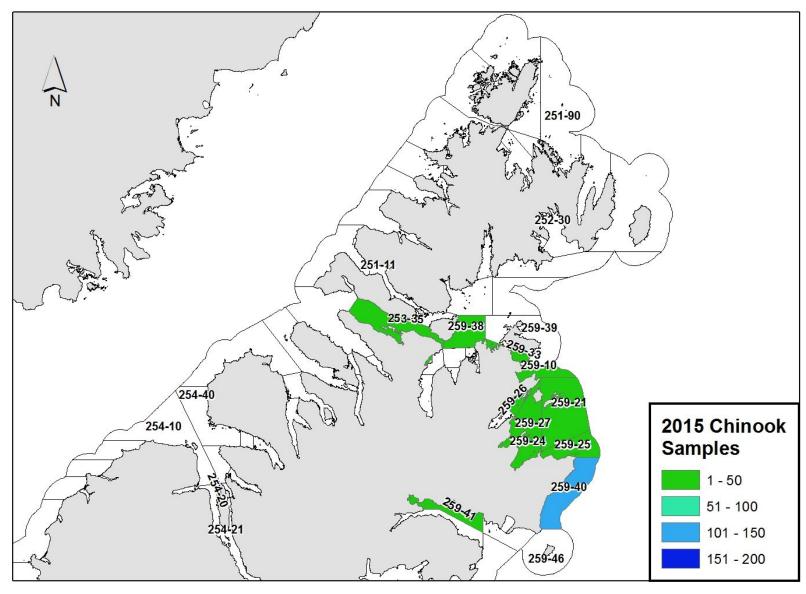


Figure 9.—Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery by statistical area, 2015.

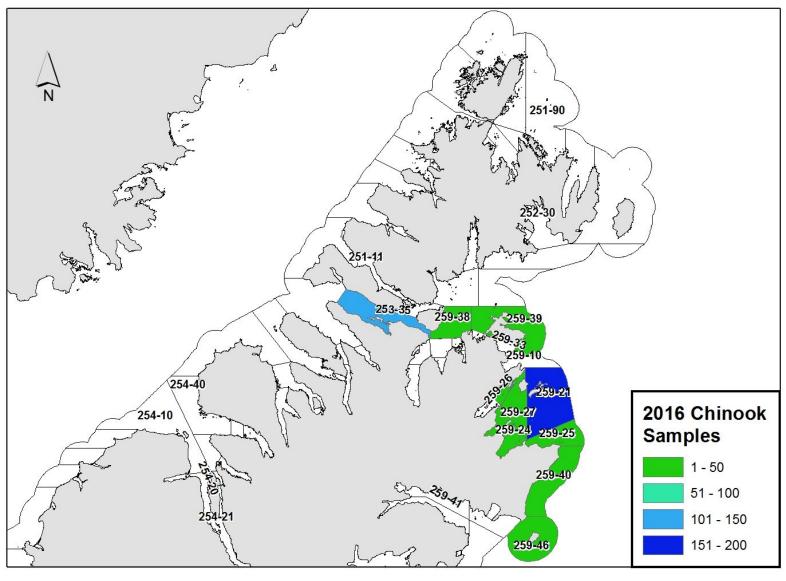


Figure 10.-Map depicting the number of samples collected in the Kodiak Regulatory Area marine sport fishery by statistical area, 2016.

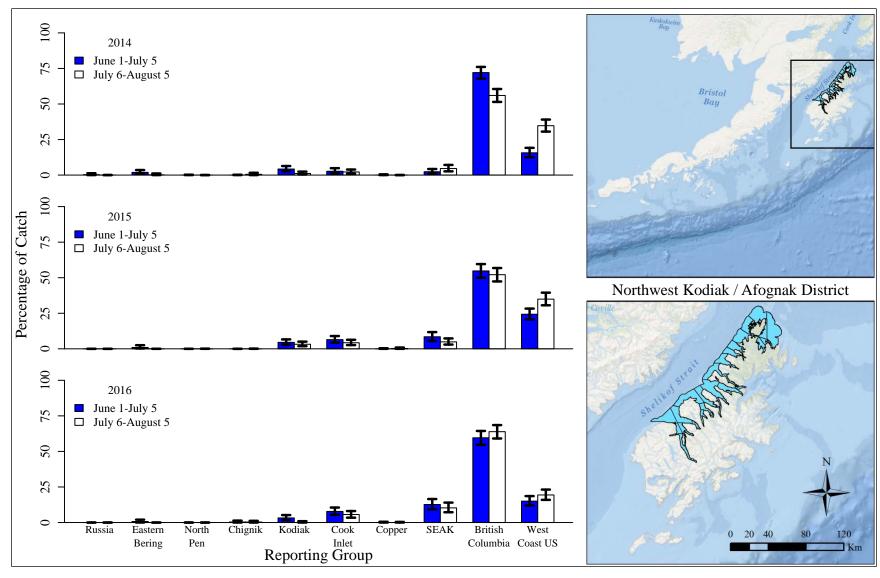


Figure 11.–Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Northwest Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.

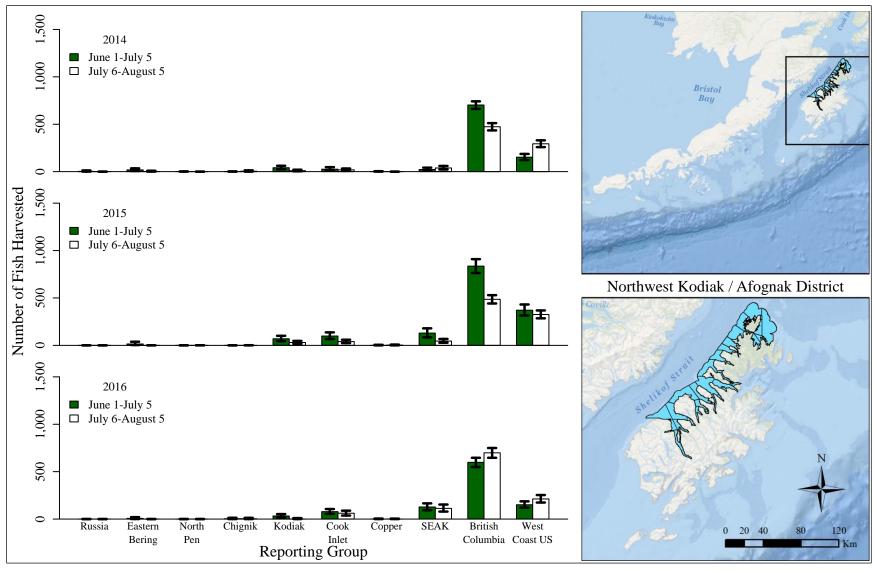


Figure 12.—Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Northwest Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.

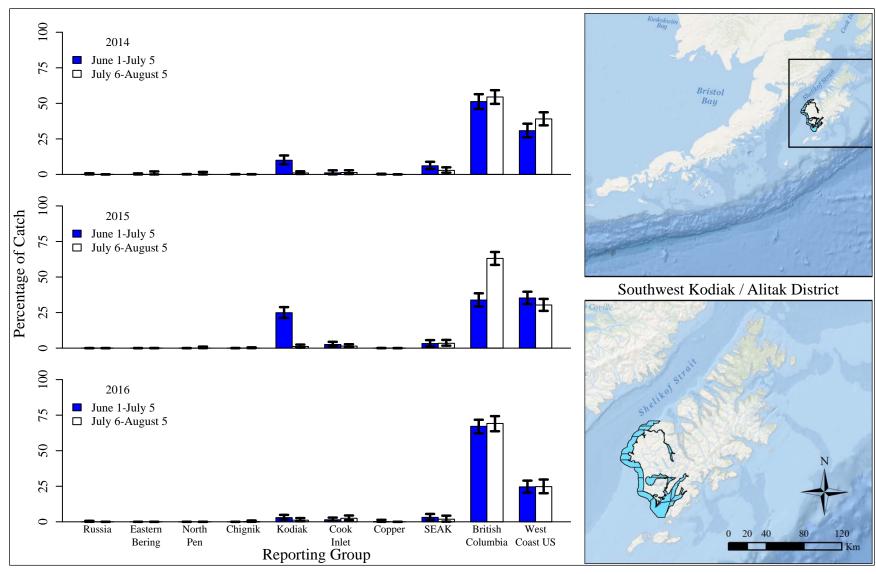


Figure 13.–Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Southwest Kodiak/Alitak districts, Kodiak Management Area, Alaska, 2014–2016.

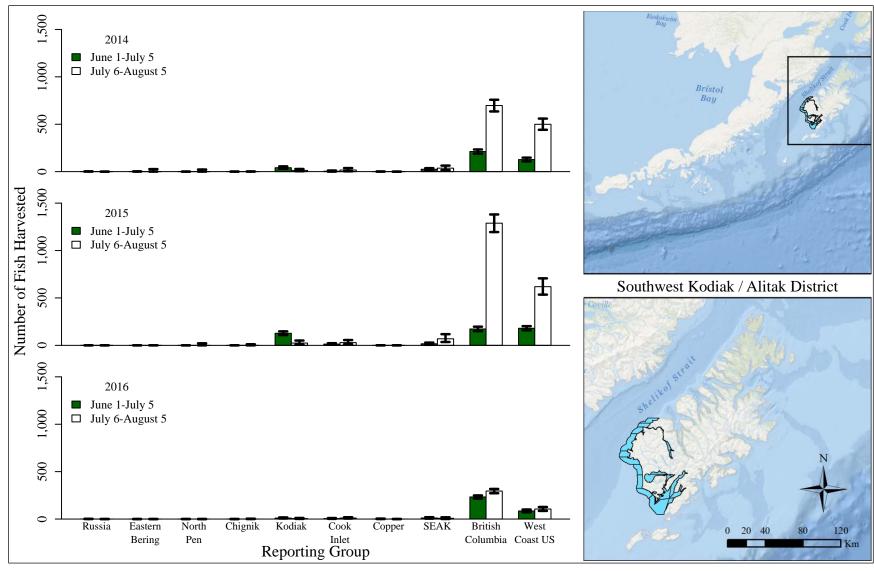


Figure 14.—Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Southwest Kodiak/Alitak districts, Kodiak Management Area, Alaska, 2014–2016.

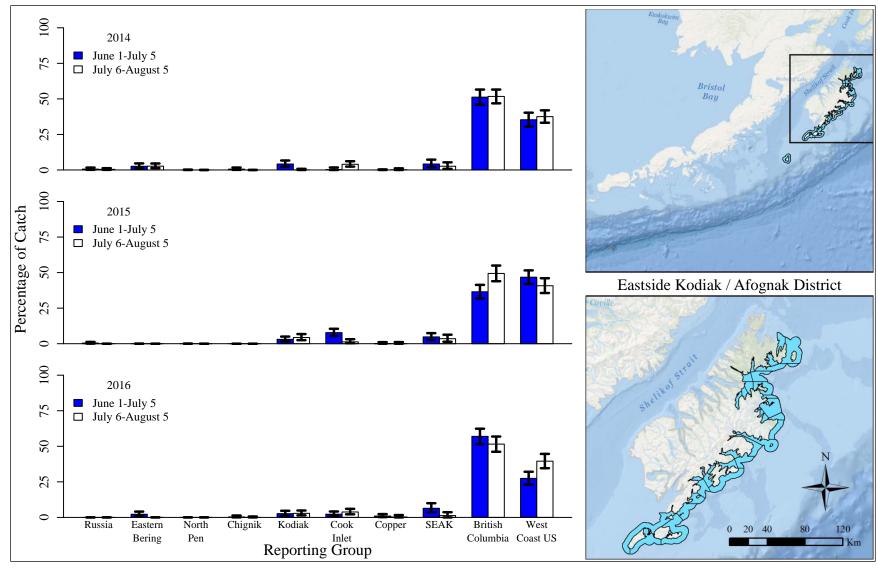


Figure 15.–Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Eastside Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.

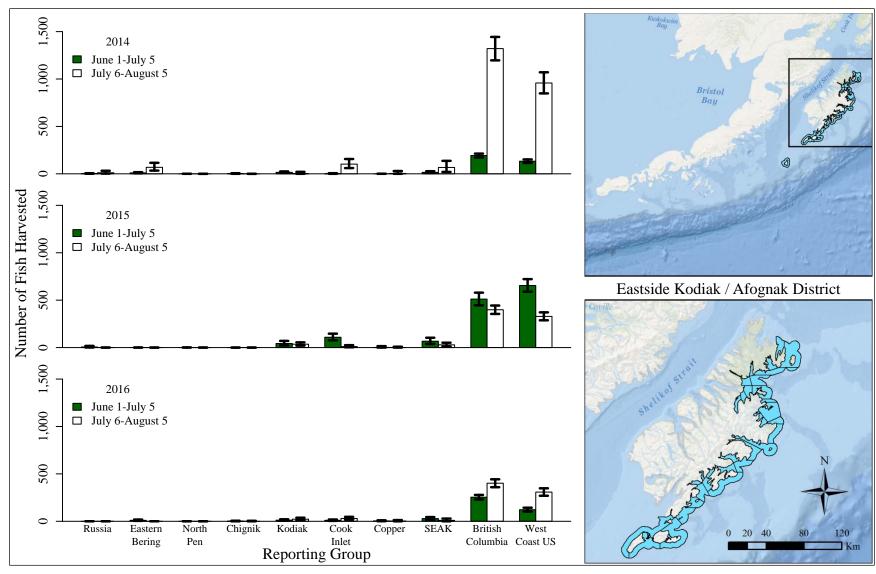


Figure 16.–Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Eastside Kodiak/Afognak districts, Kodiak Management Area, Alaska, 2014–2016.

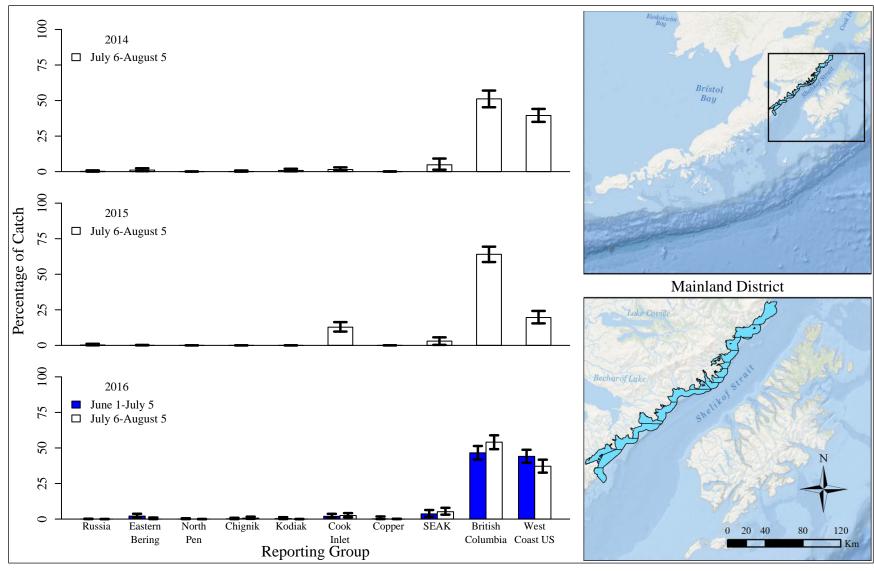


Figure 17.–Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Mainland District, Kodiak Management Area, Alaska, 2014–2016.

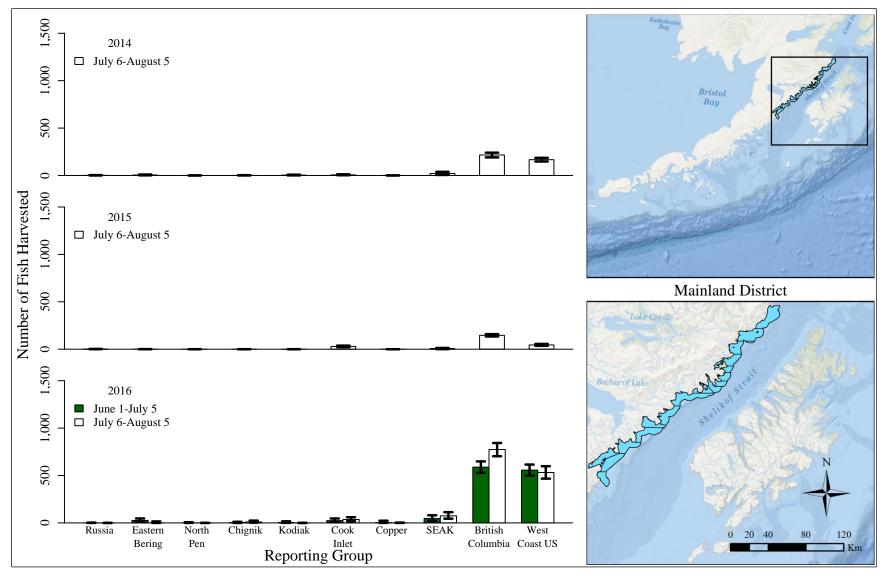


Figure 18.—Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Mainland District, Kodiak Management Area, Alaska, 2014–2016.

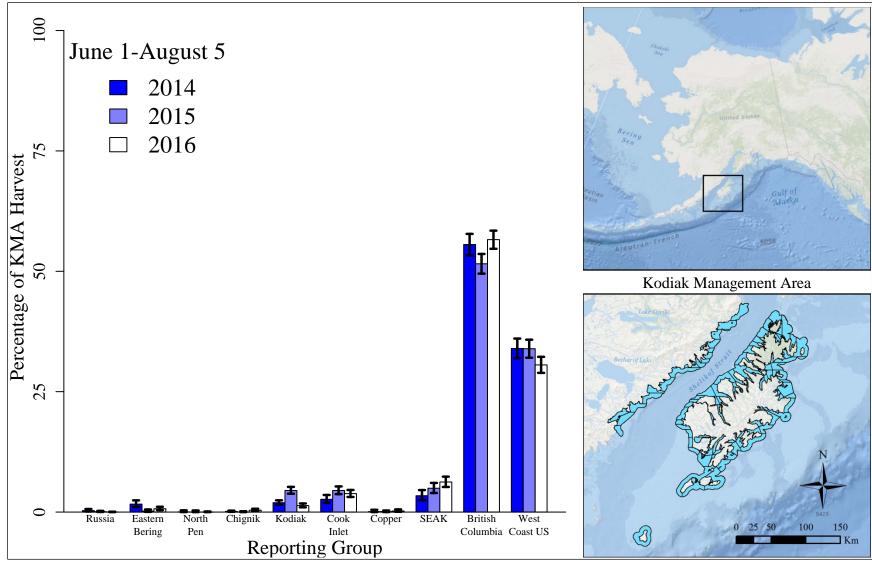


Figure 19.–Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Kodiak Management Area, Alaska, 2014–2016.

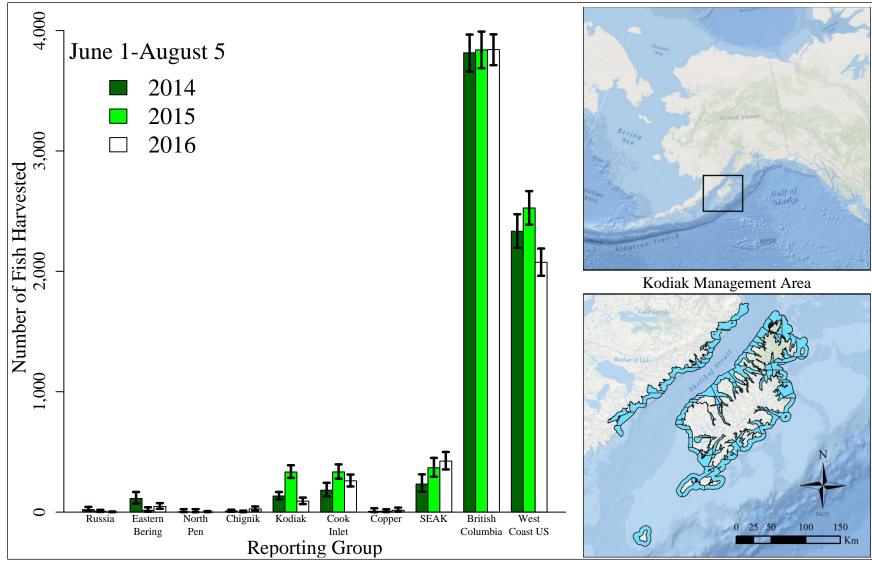


Figure 20.—Stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the Kodiak Management Area, Alaska, 2014–2016.

Figure 21.—Stock composition estimates (medians) and 90% credibility intervals of samples of Chinook salmon sport harvest sampled from Kodiak Harbor and Larsen Bay (2014 only), Kodiak Management Area, Alaska, 2014–2016.

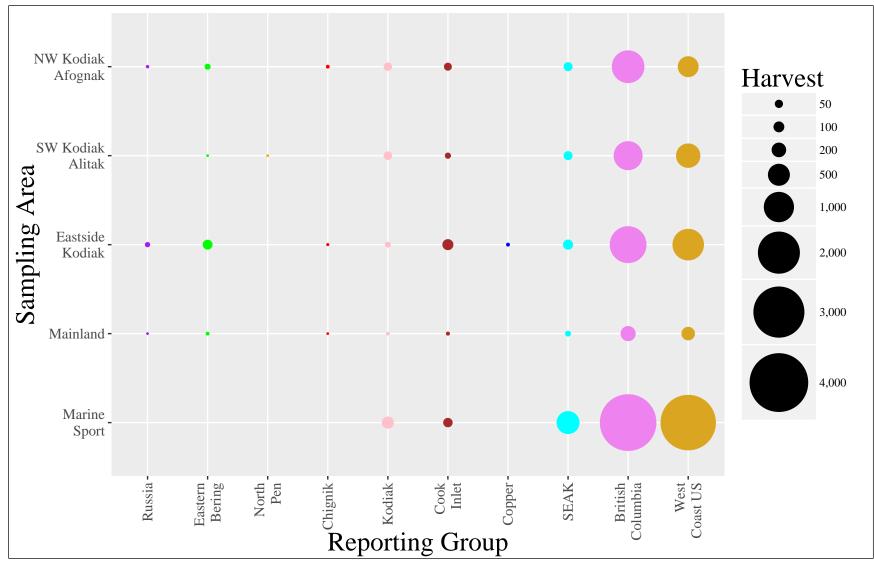


Figure 22.—Annual stock-specific harvest estimates (medians) of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2014.

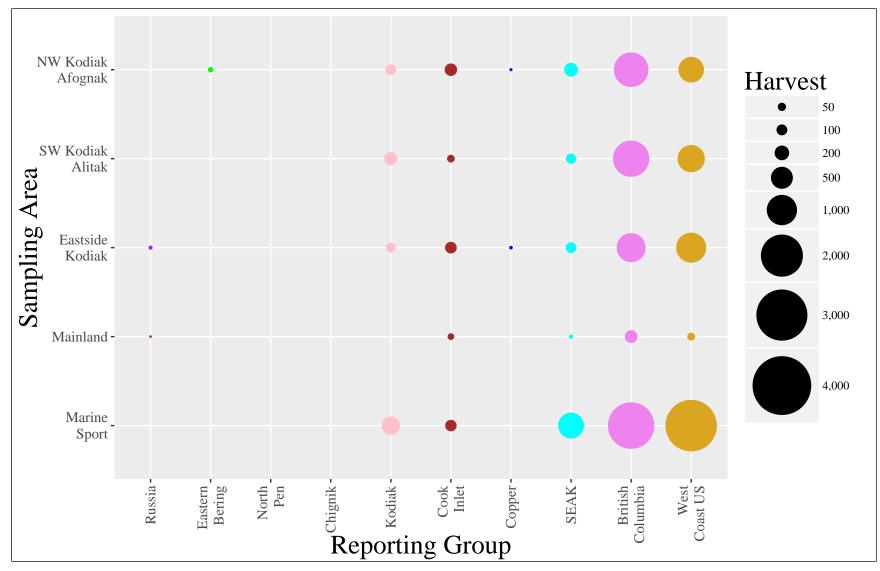


Figure 23.—Annual stock-specific harvest estimates (medians) of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2015.

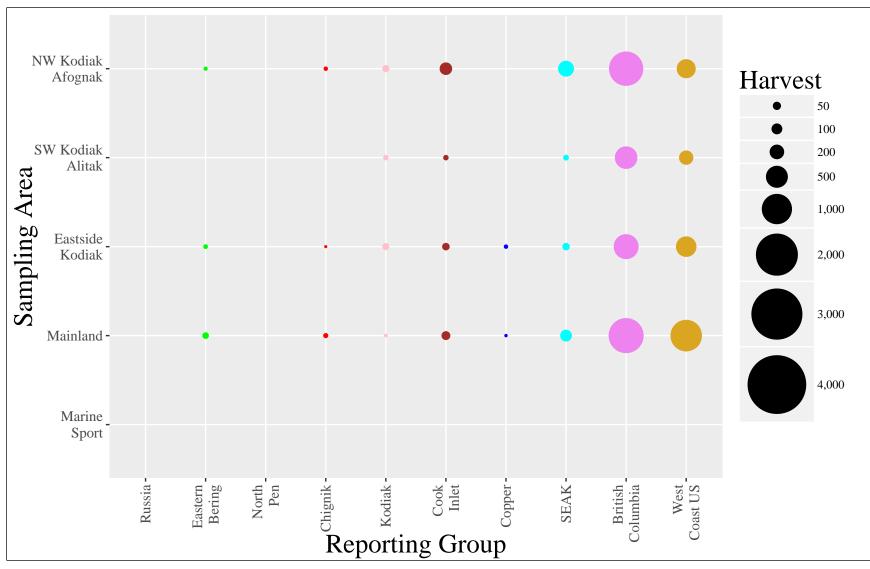


Figure 24.—Annual stock-specific harvest estimates (medians) of Chinook salmon from spatial areas sampled in Kodiak Management Area commercial harvest and Kodiak Regulatory Area marine sport harvest, 2016. Harvest estimates were not available for the Kodiak Regulatory Area sport fishery in 2016.

APPENDIX A: WESTWARD REGION CHINOOK SALMON RESEARCH INITIATIVE SAMPLING RESULTS, 2014

108

Appendix A1.—Westward Region Chinook salmon genetic samples from commercial harvest as part of the Chinook Salmon Research Initiative, 2014.

						Str	ata	
					(1)	Early	(2)Late
Area	District(s)	Statistical Areas	Sampling Site	Gear Type	Harvest	Samples	Harvest	Samples
Kodiak	NW Kodiak/Afognak	251,253,254	Larsen Bay	Seine/Gillnet	975	657	840	6 406
	SW Kodiak/Alitak	255,256,257	Alitak	Seine	414	287	1,280	0 426
	Eastside Kodiak/Afognak	258,259,252	Kodiak	Seine	377	294	2,553	3 505
	Mainland	262	Kodiak	Seine	() -	422	2 475
Chignik	Chignik Bay	271	Chignik	Seine	() -	239	9 84
	Eastern/Central/Western/Perryville	272,273,275	Chignik	Seine	() -	5,684	553 ^a
South Pen.	Southeastern/South Central	282,283	Sand Point	Seine/Gillnet	1,287	324 ^a	4,236	^a 386 ^a
	Unimak/Southwestern	284,285	King Cove	Seine/Gillnet	1,002	405 ^a	60	1 0
North Pen.	Northern District	314,315,316,317	Port Moller	Gillnet	167	52	23	7 73
	Nelson Lagoon	313-30	Port Moller	Gillnet	432	182	19	9 0
	Total			Total	4,654	2,201	16,11	7 2,908

^a Samples from strata were analyzed as a single, stratified mixture to estimate stock composition of Chinook salmon harvest in Chignik (excluding Chignik Bay) and the South Alaska Peninsula (Appendix B).

APPENDIX B: STOCK COMPOSITION AND STOCK-SPECIFIC HARVEST ESTIMATES OF CHINOOK SALMON COMMERCIAL HARVEST IN SOUTH PENINSULA AND CHIGNIK MANAGEMENT AREAS, 2014

TABLE OF CONTENTS

	Page
INTRODUCTION	111
METHODS	111
RESULTS	112
DISCUSSION	112

INTRODUCTION

Sampling of Chinook salmon (Oncorhynchus tshawytscha) in the commercial salmon fisheries of the Westward Region did not happen as originally planned under the Chinook Salmon Research Initiative (ADF&G Chinook Salmon Research Team 2013; Foster and Dann 2014). Sampling was planned over 3 years (2014–2016) in the ports of Kodiak, Larsen Bay, and Alitak in KMA (Area K), Chignik in the CMA (Area L), and Sand Point, King Cove, and Port Moller in the Alaska Peninsula Management Area (Area M). In the first year of the project, 2014, a total of 2,201 fish were sampled successfully for age, sex, and length information and genetic tissue during the early strata, and a total of 2,908 fish were sampled during the late strata (Appendix A). However, budgetary restrictions for the Chinook Salmon Research Initiative (CSRI) beginning in 2015 resulted in reducing the scope of the project to only sampling commercial harvests in KMA for the 2015 and 2016 fishing seasons. Thus, harvests in Chignik, North Alaska Peninsula, and South Alaska Peninsula areas were only sampled during a single season, 2014. Given the inherent interannual variability in stock abundance and movements, environmental conditions, fishing operations and other normal factors in sampling fisheries, ADF&G's policy and best practices for genetic mixed stock analyses (MSA) are to begin with 3 years of samples. The experience from 25 years of MSA in multiple fisheries has demonstrated that the results from a single year cannot be reliably extrapolated to other years.

Despite collecting samples for only 1 year, harvest sampling was well designed and successful and can be expected to represent harvests in 2014. In addition, the absence of historical data from Chinook salmon harvests in the Chignik and South Alaska Peninsula areas led to considerable interest in the samples collected in 2014 from these regions (Appendix A). Given the lack of multiyear context and lack of funding for the analysis, the decision was made to analyze the samples from Chignik (not including Chignik Bay) and South Peninsula as a single mixture stratified by harvest in 4 spatiotemporal strata originally defined in the operational plan: 1) Chignik, Eastern/Central/Western/Perryville districts (272/273/275), late strata; 2) South Peninsula, Southeastern/Southcentral districts (282/283), early strata; 3) South Peninsula, Southeastern/Southcentral districts (282/283), late strata; and 4) South Peninsula, Unimak/Southwestern districts (284/285), early strata (Foster and Dann 2014; Appendix A). This approach was designed to provide estimates for the larger area while accounting for the variation across pace and time. Genetic stock composition estimates for specific areas are more likely to have higher interannual variation due to statistical sampling error. Regardless, age, sex, and length and CWT data are presented for the original spatiotemporal strata to provide context for the MSA results.

METHODS

A single spatiotemporal stratum was created to represent harvest from the Eastern, Central, Western, and Perryville districts of the Chignik Management Area from July 6 to August 5; the Southeastern and Southcentral districts of the South Peninsula Management Area from June 1 to August 5; and the Unimak and Southwestern districts of the South Peninsula Management Area from June 1 to July 5 (Appendix A). A subset of 380 samples was selected for analysis from all the samples collected proportional to harvest in each stratum (Foster and Dann 2014). Within strata samples were selected from the available samples in proportion to the daily harvest. If the correct proportion of the 380-sample goal was not available on a given sample day, all of the

available samples were used and the remaining proportion available was selected from the remaining days until the 380-sample goal was achieved.

RESULTS

In 2014, the total harvest of Chinook salmon in the strata sampled in the Chignik Districts outside of Chignik Bay and the South Peninsula Management Area was 12,209 fish (Appendix A). The stock composition for this harvest consisted mainly of British Columbia (42.3%), West Coast US (21.9%), Eastern Bering Sea (20.5%), and Southeast Alaska/Northeast Gulf of Alaska groups (Appendix B1–B2). No other reporting groups contributed to greater than 5% of the mixture. Estimated harvests of the largest contributors were British Columbia, 5,169 fish; West Coast US, 2,678 fish; Eastern Bering Sea, 2,498 fish; and Southeast Alaska/Northeast Gulf of Alaska, 954 fish. Harvest from the Chignik stock group, the nearest local indicator stock was limited to 281 fish (Appendix B1–B2).

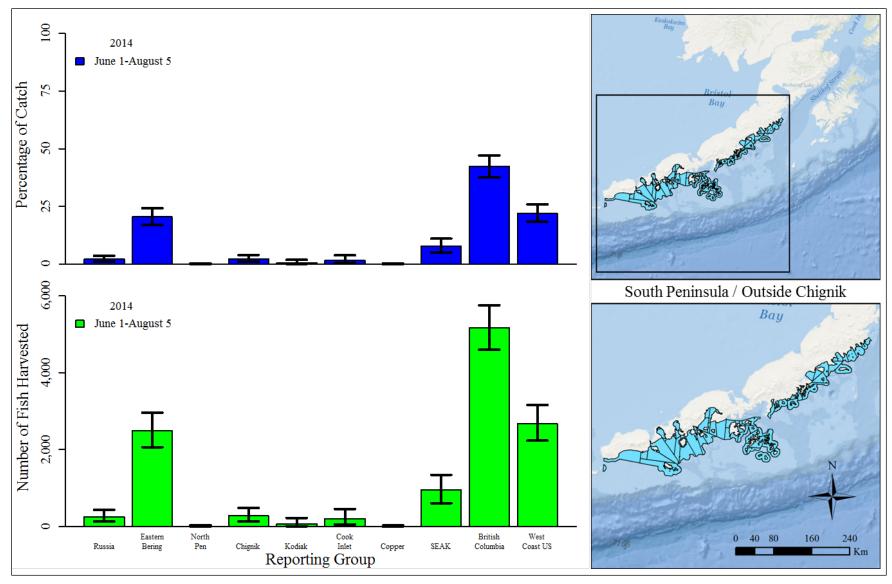
Estimates of age, size, sex, and the percentage of adipose clipped fish by stratum are found in Appendix B3–B10. The Chignik Bay late stratum harvest was dominated by age-1.3 and -1.2 fish (Appendix B3), whereas the harvest in the Eastern/Central/Western/Perryville districts of Chignik during the same period was dominated by age-0.3 and -0.2 fish (Appendix B5). Harvest in the Southeastern/Southcentral districts of the South Peninsula was dominated (in order of prevalence) by age-1.3, -1.2, and 0.3 fish in the early stratum but changed in the late stratum to mostly age-0.3, followed by age-1.2, and -1.3 fish (Appendix B7). The Unimak/Southwestern districts of the South Peninsula was dominated by age-1.3 and -1.2 fish in the early stratum harvest (Appendix B9).

The percentage of Chinook salmon that possessed an adipose finclip in Chignik Bay late stratum harvest samples was 1.2% (Appendix B4), whereas the Eastern/Central/Western/Perryville districts of Chignik was 3.8% (Appendix B6). The percentage of Chinook salmon that possessed an adipose finclip in Southeastern/Southcentral districts harvest samples was 3.7% in the early stratum, but increased to 6.0% in the late stratum (Appendix B8). The percentage of Chinook salmon that possessed an adipose finclip in Unimak/Southwestern districts early stratum harvest samples of the South Peninsula was 0.5% (Appendix B10).

DISCUSSION

The 2014 Chinook salmon stock contribution estimates from the combined Chignik and South Peninsula management areas were generally similar to the overall Kodiak results. British Columbia and West Coast US were the largest contributors, accounting for approximately 64% of the harvest (Appendix B1–B2). All of the CWT recoveries originated in these areas (Appendix B11). The major difference between compositions in Chignik/South Peninsula and Kodiak management areas was the presence of Eastern Bering Sea fish (20.5%; Appendix B1–B2). While this stock group was detected occasionally in Kodiak area fisheries, its greatest estimated contribution was 2.7% of the harvest. The Eastern Bering Sea reporting group is a composite of a large number of populations spawning in the Nushagak, Kuskokwim, and Yukon rivers and the smaller coastal drainages from Bristol Bay to Norton Sound. While this large group contains smaller, genetically distinct subgroups, further distinction into smaller units would lead to an attendant loss of accuracy and precision.

Age composition of the commercial harvest samples demonstrate a mix of both *stream-type* (age-1.x) and *ocean-type* (age-0.x) fish (Healy 1991); however, their relative proportions differ


in the areas and times sampled. In general, the size and age of the Chinook salmon sampled was both older and larger than those observed and sampled in the Kodiak commercial harvest study (Appendix D). The percentage of Chinook salmon that possessed an adipose finclip in the Chignik and South Peninsula harvest samples was significantly lower than observed in the overall Kodiak commercial harvest samples.

Despite collecting samples for only 1 year, harvest sampling was well designed and successfully implemented and can be expected to represent harvest in 2014. Given the inherent interannual variability in stock abundance and movements, environmental conditions, fishing operations, and other normal factors affecting fisheries, ADF&G's policy and best practices for genetic mixed stock analyses require 3 years of fishery coverage when first reporting stock composition analyses. The experience from 25 years of MSA in multiple fisheries has demonstrated that the results from a single year may not reliably apply to other years, and having 3 years of observations provides an opportunity to sample the fishery under a range of environmental and fishery conditions to gain a measure of variation.

Appendix B1.—Annual estimates of stock composition (%) and stock-specific harvest for the South Peninsula and Chignik Management Areas, Alaska 2014 (June 1—August 5; Harvest = 12,209; n = 376). Estimates include median, 90% credibility interval (CI), the probability that the group estimate is equal to zero (P = 0), mean, and standard deviation (SD).

		Sto	ck Com	position				Stock-sp	ecific Ha	arvest	
		90%	6 CI					90%	6 CI		
Reporting Group	Median	5%	95%	P = 0	Mean	SD	Median	5%	95%	Mean	SD
Russia	2.1	1.1	3.6	0.00	2.2	0.8	257	134	436	268	93
Eastern Bering Sea	20.5	16.9	24.3	0.00	20.5	2.2	2,498	2,064	2,962	2,503	273
North Alaska Peninsula	0.0	0.0	0.3	0.42	0.0	0.2	0	0	35	6	19
Chignik	2.3	1.1	4.0	0.00	2.4	0.9	281	136	487	292	108
Kodiak	0.6	0.0	1.8	0.01	0.7	0.6	72	6	224	88	70
Cook Inlet	1.7	0.5	3.8	0.00	1.9	1.0	209	58	460	227	125
Copper	0.0	0.0	0.2	0.43	0.0	0.1	0	0	28	5	16
Southeast Alaska/Northeast Gulf of Alaska	7.8	5.0	11.0	0.00	7.9	1.8	954	612	1,345	963	224
British Columbia	42.3	37.6	47.1	0.00	42.4	2.9	5,169	4,596	5,756	5,172	352
West Coast US	21.9	18.3	25.9	0.00	22.0	2.3	2,678	2,235	3,160	2,685	282
									Total	12,209	

Note: Stock composition estimates may not sum to 100% and stock-specific harvest estimates may not sum to the total harvest due to rounding error.

Appendix B2.—Stock composition and stock-specific harvest estimates (medians) and 90% credibility intervals of samples of Chinook salmon commercial harvest from the South Peninsula and Chignik Management Areas, Alaska 2014.

Appendix B3.—Age composition estimates for temporal stratum 2 ("Late"; July 1–August 5; Harvest = 239; n = 73) of the Chignik Bay District (District 271), Chignik Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Late		
Age			90% CI		
Class	Number	Proportion	5%	95%	SE
0.1	5	0.07	0.01	0.12	0.030
0.2	8	0.11	0.04	0.18	0.037
0.3	7	0.10	0.03	0.16	0.035
0.4	0	_	_	_	_
1.1	9	0.12	0.05	0.19	0.039
1.2	17	0.23	0.14	0.32	0.050
1.3	22	0.30	0.20	0.40	0.054
1.4	5	0.07	0.01	0.12	0.030
2.2	0	_	_	_	_
2.3	0	_	_	_	_
Total	73	1.00			

Appendix B4.—Length, sex, and adipose clip composition estimates by age for temporal stratum 2 ("Late"; July 1—August 5; Harvest = 239; n = 84) of the Chignik Bay District (District 271), Chignik Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Late			
		l	Length (mm)	METF			
Age			90% C	ĽI		%	%
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	5	385	359	412	16.1	0.0	0.0
0.2	8	571	518	624	31.8	16.7	12.5
0.3	7	779	742	816	22.4	71.4	0.0
0.4	_	_	_	_	_	_	_
1.1	9	399	383	414	9.2	0.0	0.0
1.2	17	616	590	642	15.6	11.8	0.0
1.3	22	783	759	806	14.1	31.8	0.0
1.4	5	883	836	930	28.1	60.0	0.0
2.2	_	_	_	_	_	_	_
2.3	_	_	_	_	_	_	_
Unknown	11	564	479	650	51.3	11.1	0.0
Total	84	641	610	672	18.5	26.8	1.2

Appendix B5.—Age composition estimates for temporal stratum 2 ("Late"; July 1—August 5; Harvest = 5,684; n=414) of the Eastern/Central/Western/Perryville Districts (District 272, 273, 275), Chignik Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Late						
Age			90% CI						
Class	Number	Proportion	5%	95%	SE				
0.1	22	0.05	0.03	0.07	0.011				
0.2	93	0.22	0.19	0.26	0.021				
0.3	190	0.46	0.42	0.50	0.025				
0.4	8	0.02	0.01	0.03	0.007				
1.1	5	0.01	0.00	0.02	0.005				
1.2	42	0.10	0.08	0.13	0.015				
1.3	50	0.12	0.09	0.15	0.016				
1.4	1	0.00	_	_	_				
2.2	3	0.01	0.00	0.02	0.004				
2.3	0	_	_	_	_				
Total	414	1.00							

Appendix B6.–Length, sex, and adipose clip composition estimates by age for temporal stratum 2 ("Late"; July 1–August 5; Harvest = 5,684; n = 414) of the Eastern/Central/Western/Perryville Districts (District 272, 273, 275), Chignik Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Late			
			Length (mm)	METF			
Age			90% C	I	_	%	%
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	22	373	366	381	4.8	11.1	0.0
0.2	93	582	571	593	6.7	61.8	3.2
0.3	190	688	681	694	4.1	81.6	2.6
0.4	8	829	783	874	27.5	87.5	12.5
1.1	5	500	416	584	50.9	25.0	0.0
1.2	42	652	637	667	9.1	66.7	4.8
1.3	50	763	744	782	11.6	66.0	2.0
1.4	1	900	_	_	_	0.0	0.0
2.2	3	669	607	730	37.2	66.7	0.0
2.3	0	_	_	_	_	_	_
Unknown	137	591	574	609	10.4	58.4	6.6
Total	551	638	630	646	5.0	67.2	3.8

Appendix B7.—Age composition estimates for temporal stratum 1 ("Early"; June 1–June 30; Harvest = 1,287; n = 256) and 2 (July 1-July 31; Harvest = 4,236; n = 336) of the Southeastern/Southcentral Districts (District 282, 283), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	Number	Proportion	5%	95%	SE	Number	Proportion	5%	95%	SE
0.1	0	_	_	_	_	0	_	_	_	_
0.2	7	0.03	0.01	0.05	0.010	16	0.05	0.03	0.07	0.012
0.3	47	0.18	0.14	0.23	0.024	152	0.45	0.41	0.50	0.027
0.4	7	0.03	0.01	0.05	0.010	4	0.01	0.00	0.02	0.006
1.1	3	0.01	0.00	0.02	0.007	1	0.00	_	_	_
1.2	56	0.22	0.17	0.26	0.026	85	0.25	0.21	0.29	0.024
1.3	109	0.43	0.37	0.48	0.031	74	0.22	0.18	0.26	0.023
1.4	26	0.10	0.07	0.13	0.019	2	0.01	0.00	0.01	0.004
2.2	0	_	_	_	_	0	_	_	_	_
2.3	1	0.00	_	_	_	2	0.01	0.00	0.01	0.004
Total	256	1.00				336	1.00			

Appendix B8.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1-June 30; Harvest = 1,287; n = 321) and 2 (July 1-July 31; Harvest = 4,236; n = 385) of the Southeastern/Southcentral Districts (District 282, 283), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Leng	gth (mn	n) MET	F			_	Len	gth (mn	n) METF	7		
Age	Age 90% CI %					%	90% CI					%	%	
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
0.2	7	564	507	620	34.5	14.3	0.0	16	624	607	641	10.2	92.9	0.0
0.3	47	686	675	697	6.4	71.1	6.3	152	680	675	685	3.3	88.2	7.2
0.4	7	838	803	874	21.7	71.4	0.0	4	809	767	850	25.2	100.0	25.0
1.1	3	362	353	371	5.6	0.0	100.0	1	651	_	_	_	100.0	0.0
1.2	56	657	647	666	5.8	37.5	3.6	85	651	643	659	4.8	80.0	0.0
1.3	109	773	763	783	6.1	45.9	0.9	74	714	691	737	13.9	80.0	6.8
1.4	26	862	840	883	13.0	68.0	3.8	2	844	668	1,020	107.0	100.0	50.0
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.3	1	810	_	_	_	0.0	0.0	2	718	581	854	82.5	100.0	0.0
Unknown	65	734	713	755	12.7	47.7	3.1	49	682	642	722	24.2	76.1	10.2
Total	321	732	723	742	5.6	49.4	3.7	385	680	673	688	4.7	83.8	6.0

Appendix B9.—Age composition estimates for temporal stratum 1 ("Early"; June 1–June 30; Harvest = 1,002; n = 336) of the Unimak/Southwestern Districts (District 284, 285), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early		
Age			90% CI		
Class	Number	Proportion	5%	95%	SE
0.1	0	_	_	_	_
0.2	17	0.05	0.03	0.07	0.012
0.3	30	0.09	0.06	0.12	0.016
0.4	4	0.01	0.00	0.02	0.006
1.1	0	_	_	_	_
1.2	93	0.28	0.23	0.32	0.024
1.3	151	0.45	0.40	0.50	0.027
1.4	40	0.12	0.09	0.15	0.018
2.2	1	0.00	_	_	_
2.3	0	_	_	_	_
Total	336	1.00			

Appendix B10.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–June 30; Harvest = 1,002; n = 336) of the Unimak/Southwestern Districts (District 284, 285), South Peninsula, Alaska Peninsula Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early			
	_	I	ength (mm)	METF			
			90% C	ĽI			
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	0	_	_	_	_	_	_
0.2	17	559	532	585	15.9	6.7	0.0
0.3	30	698	677	719	12.6	53.3	0.0
0.4	4	798	763	833	21.3	100.0	0.0
1.1	0	_	_	_	_	_	_
1.2	93	618	604	632	8.6	21.5	1.1
1.3	151	753	740	766	7.8	51.0	0.0
1.4	40	885	873	897	7.3	57.5	0.0
2.2	1	660	_	_	_	100.0	0.0
2.3	0	_	_	_	_	_	_
Unknown	69	724	696	751	16.6	38.2	1.4
Total	405	718	708	728	6.2	41.8	0.5

Appendix B11.–Chinook salmon coded wire tag recoveries from the commercial fishery in the Chignik and South Peninsula areas, 2014.

State/Province-Country	
Specific Location	
British Columbia-Canada	17
H-Deep Creek/ Skeena Hatchery	1
H-Robertson Creek Hatchery	8
H-Snootli Creek Hatchery	6
H-Toboggan Creek Hatchery	1
H-Tofino Hatchery	1
Washington-USA	9
(W) Hanford Reach Stock	1
(W) Lewis R -Nf 27.0168	1
Chelan Falls Hatchery	1
Hoko Falls Hatchery	1
Little White Salmon National Fish Hatchery	1
Quinault Lake Hatchery	1
Salmon River Hatchery	2
Wells Hatchery	1
Oregon-USA	5
Marion Forks Hatch	3
Mckenzie Hatchery	2
Total CWT	31
Total Chinook salmon inspected	1,749
% CWT	1.8

APPENDIX C: SAMPLE SELECTION SUMMARY

Appendix C1.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Northwest Kodiak/Afognak (251, 253, 254), 2014–2016.

			2014			2015		2016		
Temporal			Ger	netic		Ger	netic		Ger	netic
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.
1	1-Jun	0		-	0		-	0		-
	2-Jun	0			0			12	22	21
	3-Jun	0			86	32	22	19		
	4-Jun	0			76	37	27	5	5	2
	5-Jun	20			62	43	33	0		
	6-Jun	16	9	9	0			0		
	7-Jun	26	21	1	0			0		
	8-Jun	29	15	15	0			33	9	6
	9-Jun	44	25	25	27	25	15	41	44	24
	10-Jun	30	10		56	33	23	10	11	11
	11-Jun	38	28		38	50	40	0		
	12-Jun	21	30	30	0	10		0		
	13-Jun	67	8	8	0			0		
	14-Jun	17	35		52	55	22	35	24	19
	15-Jun	20	11	11	53	24	24	27	37	15
	16-Jun	27	33	30	27	15	15	58	52	27
	17-Jun	12	12	1	54	35	21	45	44	23
	18-Jun	12	10	10	35	28	18	61	68	20
	19-Jun	0			34	19	9	31	33	
	20-Jun	0			9			47	2	2
	21-Jun	62	24		23	10		53	5	5
	22-Jun	102	74	67	30	16	16	19	26	24
	23-Jun	27	11	1	47	32	22	32	28	18
	24-Jun	25	21	21	50	39	19	56	40	30
	25-Jun	35	31		34	5	5	50	18	18
	26-Jun	66	37	37	62			35		
	27-Jun	95	49		84			24		
	28-Jun	30	66	58	45			48	53	52
	29-Jun	24	20		68	27	17	0		
	30-Jun	40	30	30	36	14	14	0		
	1-Jul	15	14		317	10	10	0		
	2-Jul	18	12	12	27			0		
	3-Jul	18		3	54			92	50	50
	4-Jul	13	11		24			105	12	12
	5-Jul	26	10	10	16	8	8	66		
Period	d Subtotal	975	657	379	1,526	567	380	1,004	583	379

Appendix C2.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Northwest Kodiak/Afognak (251, 253, 254), 2014–2016.

			2014			2015		2016		
Temporal			Ger	netic		Ger	netic		Ger	netic
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.
2	6-Jul	17	15	15	85	7	7	69	10	10
	7-Jul	17	15	15	78	64	54	84	55	30
	8-Jul	14	4	4	52	30	30	49	19	3
	9-Jul	42	18	18	0			80	57	44
	10-Jul	52	1	1	0			38	45	26
	11-Jul	0			0			0		
	12-Jul	0			0			0		
	13-Jul	14	19	19	80	6	6	0		
	14-Jul	44	28	28	42	20	20	128	77	76
	15-Jul	29	13	13	37	37	37	43	39	39
	16-Jul	25	11	11	63	4	4	41	10	10
	17-Jul	17	5	5	92	38	38	48		
	18-Jul	0			0			0		
	19-Jul	0			0			0		
	20-Jul	40	12	12	52	47	33	0		
	21-Jul	13	7	7	45	24	24	0		
	22-Jul	114	130	110	84	6	6	90	75	75
	23-Jul	29			20	7	7	25	4	4
	24-Jul	37			57	18	18	54	10	10
	25-Jul	0			13	6	6	52		
	26-Jul	0	12		41	16	16	0		
	27-Jul	22	10	6	11	28	28	0		
	28-Jul	11		10	25	11	11	0		
	29-Jul	16	3	3	7	6	6	0		
	30-Jul	71	12	12	0	2	2	156	23	23
	31-Jul	90	29	29	0			65	29	29
	1-Aug	0			0			72		
	2-Aug	0			10	13	13	0		
	3-Aug	23	20	20	8	3	3	0		
	4-Aug	68	32	32	17	2	2	0		
	5-Aug	41	10	10	13	9	9	0		
Period	l Subtotal	846	406	380	932	404	380	1,094	453	379

Appendix C3.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Southwest Kodiak/Alitak (255, 256, 257), 2014–2016.

			2014			2015			2016	
Tempo	oral		Ger	netic		Ger	netic		Ger	netic
Stratu	m Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.
1	1-Jun	0			0			0		
	2-Jun	0			0			0		
	3-Jun	0			0			0		
	4-Jun	0			0			0		
	5-Jun	5			0			0		
	6-Jun	0	1	1	0			0		
	7-Jun	9	4	4	0			0		
	8-Jun	1			0			0		
	9-Jun	2			0			0		
	10-Jun	7	3	3	0			0		
	11-Jun	1			0			0		
	12-Jun	0			0			0		
	13-Jun	0			0			0		
	14-Jun	0	6	6	0	14	14	7		
	15-Jun	7	1	1	48	1	1	0	33	33
	16-Jun	0	2	2	42	33	33	29	3	3
	17-Jun	0			44	43	43	9		
	18-Jun	8			48	28	28	0		
	19-Jun	0			15			134	100	100
	20-Jun	0			24	51	51	0		
	21-Jun	27	35	35	24	12	12	10	26	26
	22-Jun	12	32	32	19	5	5	0		
	23-Jun	37	32	32	37			11	9	9
	24-Jun	17	4	4	18			2	2	2
	25-Jun	93			0			67	99	99
	26-Jun	59	86	86	8			1	17	17
	27-Jun	32	25	25	71	13	13	25		
	28-Jun	0	28	28	4	44	44	0		
	29-Jun	12			35	33	33	0		
	30-Jun	0	2	2	16			0		
	1-Jul	32			26			0		
	2-Jul	20	6	6	7			0		
	3-Jul	18	20	20	25			3	3	3
	4-Jul	6			0			18	7	7
	5-Jul	9			0	30	30	31	11	11
P	eriod Subtotal	414	287	287	511	307	307	347	310	310

Note: The number of samples collected is as reported in the field and may be less than the number of samples genotyped. Seventy fish sampled on July 6, 2015, were put into the early stratum in order to reach sampling goals.

Appendix C4.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Southwest Kodiak/Alitak (255, 256, 257), 2014–2016.

			2014			2015		2016		
Temporal			Ger	etic		Ger	netic	Genetic		
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.
2	6-Jul	61			572	136	126	28	32	32
	7-Jul	9	37	36	128			21		
	8-Jul	33	7	7	314	50	48	0		
	9-Jul	55	10	10	235	61	51	1		
	10-Jul	97			0			0		
	11-Jul	0			0			0		
	12-Jul	0			0			0		
	13-Jul	68	12	12	144	56	40	32	4	4
	14-Jul	15			135	63	53	123	110	110
	15-Jul	67	41	40	59	7	7	27	4	4
	16-Jul	8	12	12	26			48	41	41
	17-Jul	26	17	17	67			63	31	31
	18-Jul	0			0			0		
	19-Jul	0			0			0		
	20-Jul	9	6	6	72	13	13	0		
	21-Jul	61	38	38	32	39	39	0		
	22-Jul	18	27	27	7			26	3	3
	23-Jul	46	55	32	0			4		
	24-Jul	59	57	34	20	31	31	13	18	18
	25-Jul	0			4	2	2	1		
	26-Jul	1	6	6	0			0		
	27-Jul	7			9	13	13	0		
	28-Jul	80	20	20	7			0		
	29-Jul	29	19	19	45	5	5	0		
	30-Jul	78	1	1	12	10	10	19	10	10
	31-Jul	86	11	11	14			1	11	11
	1-Aug	0			86			2		
	2-Aug	0			8			2	2	2
	3-Aug	79			23	10	10	16	25	25
	4-Aug	205	50	50	9			0		
	5-Aug	83			14			0		
Period	l Subtotal	1,280	426	378	2,042	496	448	427	291	291

Note: The number of samples collected is as reported in the field and may be less than the number of samples genotyped. Seventy fish sampled on July 6, 2015, were put into the early stratum in order to reach sampling goals.

Appendix C5.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Eastside Kodiak/Afognak (258, 259, 252), 2014–2016.

			2014			2015		2016			
Temporal			Ger	netic		Ger	netic		Ger	netic	
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	
1	1-Jun	0			0			0			
	2-Jun	0			0			0			
	3-Jun	0			10	7	7	1	1	1	
	4-Jun	0			3			0			
	5-Jun	0			68	15	15	0			
	6-Jun	4			5			0			
	7-Jun	3			0			0	2	2	
	8-Jun	24			58			10			
	9-Jun	6			23			2	8	8	
	10-Jun	2			28	17	17	1			
	11-Jun	9			8	35	25	4			
	12-Jun	2			62	3	1	0			
	13-Jun	4			11	50	40	0			
	14-Jun	20			89	89	67	34	15	15	
	15-Jun	7	5	5	19	38	38	1	24	24	
	16-Jun	6	19	19	45	27	27	0	2	2	
	17-Jun	0			75			3	3	3	
	18-Jun	1	4	4	1			0			
	19-Jun	3			37			1	3	3	
	20-Jun	2			14	38	28	0			
	21-Jun	61	141	141	289	11	11	335	240	240	
	22-Jun	19	29	29	126	49	49	2			
	23-Jun	42	28	27	53	3	3	30			
	24-Jun	7	13	13	62			0			
	25-Jun	31	16	16	43			3			
	26-Jun	7			21	3	3	0	6	6	
	27-Jun	40	4	4	50	3	3	9	3	3	
	28-Jun	20	1	1	15	10	10	0	1	1	
	29-Jun	17	8	8	46	13	13	0			
	30-Jun	5			21	4	4	4			
	1-Jul	14	6	6	33	19	19	0	2	2	
	2-Jul	3	5	5	6			0			
	3-Jul	3			65			3			
	4-Jul	3	15	15	3			3	4	4	
	5-Jul	12			11			0	2	2	
Period	Subtotal	377	294	293	1,400	434	380	446	316	316	

Appendix C6.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Eastside Kodiak/Afognak (258, 259, 252), 2014–2016.

			2014			2015			2016		
Temp	oral		Ger	netic		Ger	netic		Ger	netic	
Strat	tum Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	
2	e 6-Jul	863	164	103	74	10	10	78	45	45	
	7-Jul	100	109	64	15	59	59	1	12	12	
	8-Jul	184	82	83	46	10	10	48			
	9-Jul	91	46	25	0			51	20	20	
	10-Ju	645			0			21	21	21	
	11-Ju	0			14	12	12	28			
	12-Ju	0			1			19	22	22	
	13-Jul	287	50	50	83			20	16	16	
	14-Ju	4	7	7	4	44	44	37	86	86	
	15-Ju	78			106			63	33	33	
	16-Ju	11			13	15	15	28	6	6	
	17-Ju	79			28	11	11	12	5	5	
	18-Ju	0			18			4			
	19-Ju	0			23			0			
	20-Jul	4			135	16	16	14	7	7	
	21-Jul	10			8			0			
	22-Jul	29	5	5	5	5	5	7	1	1	
	23-Jul	23			5			0	3	3	
	24-Jul	37			21	5	5	23	14	14	
	25-Jul	4			16			35	29	29	
	26-Ju	10	8	8	14	14	14	0			
	27-Jul	12	1	1	32	55	55	1			
	28-Jul	4	2	2	29	2	2	0			
	29-Jul	4			18	4	4	0			
	30-Jul	37	1	1	0			21	1	1	
	31-Jul	16	17	17	0			262			
	1-Aug	7			0			6	1	1	
	2-Aug	0			12	8	8	0			
	3-Aug		2	2	23	6	6	0			
	4-Aug		8	8	17			0			
	5-Aug		3	3	47	9	9	0			
	Period Subtotal		505	379	807	285	285	779	322	322	

Appendix C7.—Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 1 of the Mainland (262), 2014–2016.

			2014			2015		2016			
Temporal			Ger	netic		Ger	netic		Ger	netic	
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	
1	1-Jun	0		-	0		-	0			
	2-Jun	0			0			0			
	3-Jun	0			0			0			
	4-Jun	0			0			0			
	5-Jun	0			0			0			
	6-Jun	0			0			0			
	7-Jun	0			0			0			
	8-Jun	0			0			33	76	38	
	9-Jun	0			0			13	24	12	
	10-Jun	0			0			0			
	11-Jun	0			0			0			
	12-Jun	0			0			0			
	13-Jun	0			0			0			
	14-Jun	0			0			0			
	15-Jun	0			0			0			
	16-Jun	0			0			0			
	17-Jun	0			0			0			
	18-Jun	0			0			92	131	120	
	19-Jun	0			0			21	7		
	20-Jun	0			0			479	162	153	
	21-Jun	0			0			46	45	40	
	22-Jun	0			0			325			
	23-Jun	0			0			154			
	24-Jun	0			0			92			
	25-Jun	0			0			8			
	26-Jun	0			0			0	16	16	
	27-Jun	0			0			0			
	28-Jun	0			0			0			
	29-Jun	0			0			0			
	30-Jun	0			0			0			
	1-Jul	0			0			0			
	2-Jul	0			0			0			
	3-Jul	0			0			0			
	4-Jul	0			0			0			
	5-Jul	0			0			0			
Period	l Subtotal	0	0	0	0	0	0	1,263	461	379	

Appendix C8.–Daily commercial Chinook salmon harvest, number of genetic samples collected (Samp.), and number of genetic samples analyzed (Anlyz.) for temporal stratum 2 of the Mainland (262), 2014–2016.

			2014			2015		2016		
Temporal			Ger	netic		Ger	netic	Genetic		
Stratum	Date(s)	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.	Harvest	Samp.	Anlyz.
2	6-Jul	49	30	30	41			172	113	69
	7-Jul	19	25	23	3	3	3	35	4	
	8-Jul	22			0			24		
	9-Jul	0			0			0		
	10-Jul	0			0			0		
	11-Jul	0			0			0		
	12-Jul	0			0			354		
	13-Jul	31	153	99	0			7	152	152
	14-Jul	10			23	21	21	93		
	15-Jul	3			5			19		
	16-Jul	0			4	9	9	57		
	17-Jul	0			0			62		
	18-Jul	0			1			0	53	53
	19-Jul	0			0			0		
	20-Jul	26	10	10	31			112	36	30
	21-Jul	22	117	77	25	100	100	146	25	25
	22-Jul	18			14			162		
	23-Jul	0			0			45		
	24-Jul	0			0			21		
	25-Jul	0			0			0		
	26-Jul	0			0			0		
	27-Jul	139	56	56	16			0		
	28-Jul	21	78	78	0	17	17	0		
	29-Jul	49	6	6	11	26	26	0		
	30-Jul	0			0			93	70	50
	31-Jul	0			0			18		
	1-Aug	0			0			11		
	2-Aug	0			17	47	47	0		
	3-Aug	0			18	27	27	0		
	4-Aug	11			11	27	27	0		
	5-Aug	2			9	5	5	0		
Period	l Subtotal	422	475	379	229	282	282	1,431	453	379

APPENDIX D: AGE AND LENGTH COMPOSITION OF COMMERCIAL FISHERY SAMPLES

Appendix D1.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 975; n = 495) and 2 (July 6-August 5; Harvest = 846; n = 309) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	Number	Proportion	5%	95%	SE	Number	Proportion	5%	95%	SE
0.1	5	0.01	0.00	0.02	0.004	40	0.13	0.10	0.16	0.019
0.2	163	0.33	0.29	0.37	0.021	117	0.38	0.33	0.43	0.028
0.3	190	0.38	0.35	0.42	0.022	76	0.25	0.20	0.29	0.025
0.4	8	0.02	0.01	0.03	0.006	8	0.03	0.01	0.04	0.009
0.5	0	_	_	_		1	0.00	_	_	_
1.1	8	0.02	0.01	0.03	0.006	10	0.03	0.01	0.05	0.010
1.2	71	0.14	0.12	0.17	0.016	37	0.12	0.09	0.15	0.018
1.3	42	0.08	0.06	0.11	0.013	18	0.06	0.03	0.08	0.013
1.4	4	0.01	0.00	0.02	0.004	2	0.01	0.00	0.02	0.005
1.5	0	_	_	_	_	0	_	_	_	_
2.1	2	0.00	0.00	0.01	0.003	0	_	_	_	_
2.2	2	0.00	0.00	0.01	0.003	0	_	_	_	_
Total	495	1.00				309	1.00			

Appendix D2.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 975; n = 656) and 2 (July 6–August 5; Harvest = 846; n = 405) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
	_	Lei	ngth (mm	n) METF					Ler	ngth (mm) METF			
Age	_		90% (CI		%	%	_		90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	5	394	373	415	12.6	60.0	0.0	40	379	370	388	5.5	40.0	25.0
0.2	162	540	534	546	3.4	50.9	5.5	117	548	542	554	3.6	53.0	12.0
0.3	190	635	630	641	3.4	78.9	4.7	76	653	643	664	6.2	63.5	14.5
0.4	8	796	762	829	20.2	75.0	0.0	8	762	725	800	22.8	87.5	12.5
0.5	0	_	_	_	_	_	_	1	784	_	_	_	100.0	0.0
1.1	8	443	398	488	27.4	25.0	0.0	10	429	410	449	11.9	50.0	30.0
1.2	71	583	572	594	6.8	49.3	11.3	36	609	594	624	9.2	43.2	16.2
1.3	42	694	672	716	13.5	61.9	14.3	18	694	657	731	22.3	72.2	16.7
1.4	4	856	772	941	51.3	25.0	0.0	2	907	789	1024	71.5	0.0	0.0
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	2	574	551	596	13.5	50.0	0.0	0	_	_	_	_	_	_
2.2	2	625	617	633	5.0	100.0	0.0	0	_	_	_	_	_	_
Unknown	162	580	568	591	7.1	64.8	11.1	97	494	471	517	14.0	44.2	16.5
Total	656	595	589	601	3.4	63.1	7.6	405	554	544	564	6.1	52.0	15.8

Appendix D3.–Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,526; n = 485) and 2 (July 6–August 5; Harvest = 932; n = 363) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI	<u>.</u>			90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	5	0.01	0.00	0.02	0.005	4	0.01	0.00	0.02	0.005
0.2	201	0.41	0.38	0.45	0.022	161	0.44	0.40	0.49	0.026
0.3	83	0.17	0.14	0.20	0.017	63	0.17	0.14	0.21	0.020
0.4	9	0.02	0.01	0.03	0.006	36	0.10	0.07	0.13	0.016
0.5	0	_	_	_	_	0	_	_	_	_
1.1	4	0.01	0.00	0.02	0.004	9	0.02	0.01	0.04	0.008
1.2	139	0.29	0.25	0.32	0.021	61	0.17	0.13	0.20	0.020
1.3	40	0.08	0.06	0.10	0.013	24	0.07	0.04	0.09	0.013
1.4	4	0.01	0.00	0.02	0.004	3	0.01	0.00	0.02	0.005
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	2	0.01	0.00	0.01	0.004
Total	485	1.00				363	1.00			

Appendix D4.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,526; n = 567) and 2 (July 6–August 5; Harvest = 932; n = 410) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
_		Le	ngth (mn						Ler	ngth (mm)				
Age	_		90% (ĊI		%	%	-		90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	5	339	297	381	25.5	20.0	0.0	4	369	342	395	16.4	20.0	0.0
0.2	201	556	551	561	3.1	45.7	13.9	161	566	560	573	3.7	62.1	16.8
0.3	83	673	660	687	8.4	74.3	15.7	63	707	690	725	10.7	59.1	20.6
0.4	9	775	743	806	19.0	66.7	11.1	36	819	806	832	7.9	66.7	0.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	4	429	411	447	11.1	25.0	25.0	9	452	425	478	16.0	0.0	0.0
1.2	139	587	579	594	4.5	28.5	13.7	61	603	591	615	7.1	43.1	27.9
1.3	40	730	712	748	10.9	71.1	12.5	24	716	685	747	18.8	57.1	20.8
1.4	4	807	766	849	25.1	100.0	25.0	3	794	662	926	80.0	100.0	66.7
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	2	588	527	648	36.5	50.0	0.0
Unknown	82	614	594	635	12.5	41.0	17.1	47	610	589	630	12.5	55.4	29.8
Total	567	604	597	610	3.9	46.8	14.5	410	627	618	636	5.4	56.0	19.0

Appendix D5.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,004; n = 502) and 2 (July 6–August 5; Harvest = 1,094; n = 393) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	2	0.00	0.00	0.01	0.003	14	0.04	0.02	0.05	0.009
0.2	155	0.31	0.27	0.34	0.021	136	0.35	0.31	0.39	0.024
0.3	157	0.31	0.28	0.35	0.021	93	0.24	0.20	0.27	0.021
0.4	3	0.01	0.00	0.01	0.003	5	0.01	0.00	0.02	0.006
0.5	0	_	_	_	_	0	_	_	_	_
1.1	5	0.01	0.00	0.02	0.004	8	0.02	0.01	0.03	0.007
1.2	97	0.19	0.16	0.22	0.018	96	0.24	0.21	0.28	0.022
1.3	79	0.16	0.13	0.19	0.016	39	0.10	0.07	0.13	0.015
1.4	4	0.01	0.00	0.02	0.004	1	0.00	_	_	_
1.5	0	_	_	_	_ -	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	1	0.00	_	_	_
Total	502	1.00				393	1.00			

Appendix D6.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,004; n = 585) and 2 (July 6–August 5; Harvest = 1,094; n = 454) of the Northwest Kodiak/Afognak Districts (District 251, 253, 254), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Ler	ngth (mm) METF				_	Lei	ngth (mm) METF			
Age			90% (CI		%	%		_	90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	2	355	353	357	1.0	50.0	0.0	14	371	362	381	5.8	64.3	14.3
0.2	155	522	517	528	3.2	62.2	9.0	136	535	529	541	3.6	39.7	5.9
0.3	157	617	610	625	4.7	26.7	7.0	93	629	619	639	6.0	62.0	10.8
0.4	3	871	803	938	41.1	33.3	33.3	5	735	665	805	42.2	80.0	20.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	5	417	380	454	22.5	75.0	0.0	8	391	360	423	19.0	75.0	12.5
1.2	97	564	555	574	6.0	54.9	14.4	96	589	580	599	6.0	40.6	16.7
1.3	79	688	670	705	10.4	34.2	10.1	39	719	687	752	19.7	71.1	5.1
1.4	4	916	882	950	20.9	25.0	0.0	1	854	_	_	_	100.0	-
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	1	767	_	_	_	-	0.0
Unknown	83	611	595	627	9.9	50.0	10.8	61	594	570	618	14.6	61.7	9.8
Total	585	593	586	599	3.9	45.6	9.7	454	585	577	593	4.8	51.9	10.1

Appendix D7.–Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 414; n = 243) and 2 (July 6–August 5; Harvest = 1,280; n = 310) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	9	0.04	0.01	0.06	0.012	30	0.10	0.07	0.13	0.017
0.2	151	0.62	0.57	0.67	0.031	147	0.47	0.43	0.52	0.028
0.3	44	0.18	0.14	0.22	0.025	87	0.28	0.24	0.32	0.026
0.4	1	0.00	_	_	_	7	0.02	0.01	0.04	0.008
0.5	0	_	_	_	_	0	_	_	_	_
1.1	9	0.04	0.01	0.06	0.012	8	0.03	0.01	0.04	0.009
1.2	25	0.10	0.07	0.14	0.020	12	0.04	0.02	0.06	0.011
1.3	3	0.01	0.00	0.03	0.007	19	0.06	0.04	0.09	0.014
1.4	0	_	_	_	_	0	_	_	_	_
1.5	0	_	_	_	_	0	_	_	_	_
2.1	1	0.00	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	243	1.00				310	1.00			

Appendix D8.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 414; n = 287) and 2 (July 6–August 5; Harvest = 1,280; n = 426) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
	_	Le	ngth (mm) METF				_	Ler	igth (mm) METF			
Age			90% (CI		%	%			90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	9	370	352	388	10.8	11.1	22.2	30	375	363	387	7.2	43.3	16.7
0.2	151	522	517	528	3.4	49.7	10.6	147	542	536	547	3.2	43.2	14.3
0.3	44	631	617	646	8.9	47.7	9.1	87	711	697	726	8.9	58.6	13.8
0.4	1	676	_	_	_	100.0	0.0	7	836	802	869	20.4	85.7	0.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	9	417	400	434	10.5	33.3	11.1	8	451	403	499	29.0	12.5	12.5
1.2	25	570	554	585	9.2	44.0	20.0	12	592	551	634	25.2	83.3	41.7
1.3	3	693	633	752	35.9	66.7	0.0	19	770	736	804	20.7	57.9	21.1
1.4	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	1	620	_	_	_	100.00	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	44	541	521	562	12.7	50.0	9.1	116	499	477	521	13.5	41.4	14.7
Total	287	541	533	548	4.6	47.7	11.1	426	568	556	579	6.9	47.8	15.3

Appendix D9.–Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 511; n = 260) and 2 (July 6–August 5; Harvest = 2,042; n = 431) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age	·		90% (CI		-		90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	44	0.17	0.13	0.21	0.023	10	0.02	0.01	0.04	0.007
0.2	108	0.42	0.36	0.47	0.031	181	0.42	0.38	0.46	0.024
0.3	39	0.15	0.11	0.19	0.022	101	0.23	0.20	0.27	0.020
0.4	3	0.01	0.00	0.02	0.007	50	0.12	0.09	0.14	0.015
0.5	0	_	_	_	_	0	_	_	_	_
1.1	16	0.06	0.03	0.09	0.015	2	0.00	0.00	0.01	0.003
1.2	42	0.16	0.12	0.20	0.023	64	0.15	0.12	0.18	0.017
1.3	6	0.02	0.01	0.04	0.009	17	0.04	0.02	0.06	0.009
1.4	2	0.01	0.00	0.02	0.005	6	0.01	0.00	0.02	0.006
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	260	1.00				431	1.00			

Appendix D10.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 511; n = 306) and 2 (July 6–August 5; Harvest = 2,042; n = 496) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Lei	ngth (mm) METF					Lei	ngth (mm) METF			
Age			90% (CI		%	%			90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	44	362	349	374	7.4	5.0	4.5	10	361	344	379	10.6	-	30.0
0.2	108	536	528	544	4.7	42.9	13.0	181	576	569	583	4.2	65.2	11.6
0.3	39	648	632	663	9.4	58.1	23.1	101	707	694	720	7.7	78.9	14.9
0.4	2	744	716	771	16.5	100.0	0.0	50	797	782	812	8.9	85.7	2.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	16	375	360	390	8.9	0.0	6.3	2	396	323	469	44.0	100.0	0.0
1.2	42	595	581	610	8.9	28.1	14.3	64	618	607	629	6.9	37.0	23.4
1.3	6	697	648	745	29.2	83.3	16.7	17	708	680	736	17.0	77.8	29.4
1.4	2	792	787	796	2.5	100.0	0.0	6	824	776	872	29.1	60.0	-
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	47	524	496	552	16.9	33.3	31.9	65	637	611	663	15.8	63.2	23.1
Total	306	529	518	540	6.6	35.2	15.6	496	641	632	649	5.1	68.6	15.1

Appendix D11.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 347; n = 265) and 2 (July 6–August 5; Harvest = 427; n = 261) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI		·		90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	10	0.04	0.02	0.06	0.012	13	0.05	0.03	0.07	0.013
0.2	144	0.54	0.49	0.60	0.031	88	0.34	0.29	0.39	0.029
0.3	61	0.23	0.19	0.27	0.026	95	0.36	0.31	0.42	0.030
0.4	1	0.00	_	_	_	3	0.01	0.00	0.02	0.007
0.5	0	_	_	_	_	0	_	_	_	_
1.1	4	0.02	0.00	0.03	0.008	3	0.01	0.00	0.02	0.007
1.2	36	0.14	0.10	0.17	0.021	37	0.14	0.10	0.18	0.022
1.3	9	0.03	0.01	0.05	0.011	22	0.08	0.05	0.11	0.017
1.4	0	_	_	_	_	0	_	_	_	_
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	265	1.00				261	1.00			

Appendix D12.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 347; n = 310) and 2 (July 6–August 5; Harvest = 427; n = 299) of the Southwest Kodiak/Alitak Districts (District 255, 256, 257), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early								Late			
		Lei	ngth (mm) METF					_	Ler	ngth (mm) METF			
Age			90% (CI		%	%				90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	N	o.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	10	396	377	415	11.4	44.4	20.0		12	386	369	404	10.6	53.8	23.1
0.2	144	502	495	510	4.4	47.6	16.0	8	88	542	534	551	5.3	49.3	13.6
0.3	61	624	609	639	8.8	65.7	16.4	(95	688	677	699	6.7	69.8	22.1
0.4	1	675	_	_	_	_	0.0		3	772	710	834	37.8	_	0.0
0.5	0	_	_	_	_	_	_		0	_	_	_	_	_	_
1.1	4	404	380	428	14.6	25.0	0.0		3	421	376	465	27.2	33.3	33.3
1.2	36	566	547	585	11.6	43.3	16.7	3	37	628	610	645	10.5	47.4	27.0
1.3	9	630	590	671	24.5	62.5	0.0	,	22	717	692	742	15.2	80.0	13.6
1.4	0	_	_	_	_	_	_		0	_	_	_	_	_	_
1.5	0	_	_	_	_	_	_		0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_		0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_		0	_	_	_	_	_	_
Unknown	45	554	525	584	17.9	56.3	15.6	3	39	655	631	679	14.7	60.0	28.2
Total	310	541	532	549	5.2	50.8	15.5	29	99	621	611	632	6.1	57.1	20.3

Appendix D13.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 377; n = 246) and 2 (July 6–August 5; Harvest = 2,553; n = 413) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age	'-		90% (CI	<u> </u>			90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	34	0.14	0.10	0.18	0.022	85	0.21	0.17	0.24	0.020
0.2	108	0.44	0.38	0.49	0.032	137	0.33	0.29	0.37	0.023
0.3	47	0.19	0.15	0.23	0.025	72	0.17	0.14	0.21	0.019
0.4	2	0.01	0.00	0.02	0.006	6	0.01	0.00	0.03	0.006
0.5	1	0.00	_	_	_	0	_	_	_	_
1.1	16	0.07	0.04	0.09	0.016	42	0.10	0.08	0.13	0.015
1.2	32	0.13	0.09	0.17	0.021	61	0.15	0.12	0.18	0.017
1.3	6	0.02	0.01	0.04	0.010	9	0.02	0.01	0.03	0.007
1.4	0	_	_	_	_	1	0.00	_	_	_
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	246	1.00				413	1.00			

Appendix D14.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 377; n = 294) and 2 (July 6–August 5; Harvest = 2,553; n = 506) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Lei	ngth (mm) METF				·	Lei	ngth (mm) METF			
Age			90% (CI		%	%			90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	33	368	358	378	6.3	24.2	14.7	85	377	370	384	4.3	42.4	9.4
0.2	108	520	513	527	4.3	47.2	16.7	137	543	535	551	4.8	50.7	17.5
0.3	47	654	640	669	8.7	72.1	12.8	72	662	653	671	5.6	60.6	9.7
0.4	2	755	717	793	23.0	50.0	0.0	6	762	709	814	31.6	60.0	0.0
0.5	1	1053	_	_	_	-	-	0	_	_	_	_	_	_
1.1	16	433	414	452	11.6	43.8	31.3	42	428	417	439	6.6	53.7	11.9
1.2	32	629	614	643	8.5	50.0	9.4	61	609	596	623	8.3	51.7	11.5
1.3	6	709	650	768	35.9	66.7	50.0	9	689	662	716	16.4	62.5	11.1
1.4	0	_	_	_	_	_	_	1	925	_	_	_	100.0	_
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	49	519	494	543	15.1	42.9	28.6	93	541			10.2	45.7	35.5
Total	294	539	528	549	6.6	48.3	18.3	506	536	528	545	5.2	50.5	16.8

Appendix D15.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,400; n = 358) and 2 (July 6–August 5; Harvest = 807; n = 237) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	45	0.13	0.10	0.16	0.018	26	0.11	0.07	0.15	0.020
0.2	135	0.38	0.33	0.42	0.026	98	0.41	0.36	0.47	0.032
0.3	28	0.08	0.05	0.10	0.014	26	0.11	0.07	0.15	0.020
0.4	3	0.01	0.00	0.02	0.005	11	0.05	0.02	0.07	0.014
0.5	0	_	_	_	_	0	_	_	_	_
1.1	41	0.11	0.09	0.14	0.017	19	0.08	0.05	0.11	0.018
1.2	88	0.25	0.21	0.28	0.023	42	0.18	0.13	0.22	0.025
1.3	17	0.05	0.03	0.07	0.011	12	0.05	0.02	0.08	0.014
1.4	1	0.00	_	_	_	2	0.01	0.00	0.02	0.006
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	1	0.00	_	_	_
Total	358	1.00				237	1.00			

Appendix D16.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,400; n = 434) and 2 (July 6–August 5; Harvest = 807; n = 284) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Ler	ngth (mm) METF				_	Le	ngth (mn	n) METF			
Age			90% (CI		%	%			90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	45	344	337	351	4.3	86.7	26.7	26	356	349	364	4.6	71.4	15.4
0.2	135	504	498	510	3.7	83.7	15.6	98	539	530	548	5.3	75.0	25.5
0.3	28	640	619	660	12.3	72.7	32.1	26	695	670	719	14.9	76.2	15.4
0.4	3	783	728	838	33.4	100.0	0.0	11	824	788	861	22.0	60.0	0.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	41	413	398	429	9.4	56.7	9.8	19	423	407	439	9.9	35.7	26.3
1.2	88	539	526	551	7.6	72.6	30.7	42	576	561	592	9.5	65.5	28.6
1.3	17	769	729	809	24.2	69.2	0.0	11	789	754	825	21.7	20.0	25.0
1.4	1	1005	_	_	_	_	0.0	2	865	776	953	53.5	100.0	_
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	1	525	_	_	_	100.0	0.0
Unknown	76	443	420	466	13.9	77.3	17.1	48	487	447	527	24.2	86.2	35.5
Total	434	497	488	507	5.8	76.6	19.8	284	549	535	563	8.5	69.2	22.5

Appendix D17.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 446; n = 280) and 2 (July 6–August 5; Harvest = 779; n = 280) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age	_		90% (CI	<u> </u>			90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	150	0.54	0.48	0.59	0.030	53	0.19	0.15	0.23	0.023
0.2	43	0.15	0.12	0.19	0.022	82	0.29	0.25	0.34	0.027
0.3	18	0.06	0.04	0.09	0.015	83	0.30	0.25	0.34	0.027
0.4	1	0.00	_	_	_	3	0.01	0.00	0.02	0.006
0.5	0	_	_	_	_	0	_	_	_	_
1.1	42	0.15	0.11	0.19	0.021	11	0.04	0.02	0.06	0.012
1.2	11	0.04	0.02	0.06	0.012	28	0.10	0.07	0.13	0.018
1.3	13	0.05	0.02	0.07	0.013	18	0.06	0.04	0.09	0.015
1.4	2	0.01	0.00	0.02	0.005	2	0.01	0.00	0.02	0.005
1.5	0	_	_	_	_	0	_	_	_	_
2.1	0	_	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	280	1.00				280	1.00			

Appendix D18.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 446; n = 315) and 2 (July 6–August 5; Harvest = 779; n = 322) of the Eastside Kodiak/Afognak Districts (District 258, 259, 252), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Lei	ngth (mm) METF					Le	ngth (mn	n) METF			
Age			90% (CI		%	%		_	90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	149	366	362	370	2.3	52.0	16.7	53	376	367	385	5.5	56.6	15.1
0.2	43	473	463	482	6.0	55.8	37.2	82	528	520	536	5.0	56.3	31.7
0.3	18	636	602	669	20.5	69.2	5.6	83	652	641	663	6.7	69.5	15.5
0.4	1	790	_	_	_	_	0.0	3	964	773	1,155	115.8	100.0	0.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	42	418	409	428	5.8	38.1	16.7	11	450	434	467	9.9	45.5	9.1
1.2	11	608	569	648	23.9	55.6	9.1	28	610	588	632	13.4	50.0	14.3
1.3	13	725	683	767	25.5	80.0	15.4	18	729	691	766	22.8	33.3	16.7
1.4	2	892	838	946	33.0	0.0	0.0	2	918	781	1,055	83.0	100.0	-
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	36	500	457	544	26.4	65.6	22.2	42	597	559	634	22.9	60.0	35.7
Total	315	446	435	458	7.1	53.2	19.0	322	566	553	579	7.6	58.4	21.7

Appendix D19.—Age composition estimates for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 442; n = 396) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1			_	_	_	97	0.24	0.21	0.28	0.022
0.2			_	_	_	115	0.29	0.25	0.33	0.023
0.3			_	_	_	110	0.28	0.24	0.32	0.023
0.4			_	_	_	4	0.01	0.00	0.02	0.005
0.5			_	_	_	1	0.00	_	_	_
1.1			_	_	_	22	0.06	0.04	0.08	0.012
1.2			_	_	_	26	0.07	0.04	0.09	0.012
1.3			_	_	_	18	0.05	0.03	0.06	0.010
1.4			_	_	_	3	0.01	0.00	0.02	0.004
1.5			_	_	_	0	_	_	_	_
2.1			_	_	_	0	_	_	_	_
2.2			_	_	_	0	_	_	_	_
Total						396	1.00			

Appendix D20.—Length, sex, and adipose clip composition estimates by age for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 442; n = 474) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2014. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early			_				Late			
		Le	ngth (mn	n) METF					Lei	ngth (mm) METF			
Age			90 %	CI		%	%			90 %	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	_	_	_	_	_	_	_	96	374	368	380	3.4	28.6	15.5
0.2	_	_	_	_	_	_	_	115	526	516	535	5.7	63.2	26.1
0.3	_	_	_	_	_	_	_	110	693	683	702	5.6	68.5	15.5
0.4	_	_	_	_	_	_	_	4	827	787	866	24.2	100.0	0.0
0.5	_	_	_	_	_	_	_	1	971	_	_	_	_	_
1.1	_	_	_	_	_	_	_	22	413	399	427	8.5	50.0	9.1
1.2	_	_	_	_	_	_	_	26	599	577	620	13.0	48.0	-
1.3	_	_	_	_	_	_	_	17	696	663	729	19.9	75.0	11.1
1.4	_	_	_	_	_	_	_	3	867	767	967	60.5	33.3	_
1.5	_	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	_	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	_	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	_	_	_	_	_	_	_	80	519	494	545	15.3	52.9	26.3
Total	_	_	_	_	_	_	_	474	543	532	554	6.5	52.1	18.3

Appendix D21.—Age composition estimates for temporal stratum 2 ("Late"; July 6–August 5; Harvest = 229; n = 252) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

		,	Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1			_	_	_	28	0.11	0.08	0.15	0.020
0.2			_	_	_	107	0.42	0.37	0.48	0.031
0.3			_	_	_	37	0.15	0.11	0.19	0.022
0.4			_	_	_	12	0.05	0.02	0.07	0.013
0.5			_	_	_	1	0.00	_	_	_
1.1			_	_	_	4	0.02	0.00	0.03	0.008
1.2			_	_	_	41	0.16	0.12	0.20	0.023
1.3			_	_	_	9	0.04	0.01	0.06	0.012
1.4			_	_	_	13	0.05	0.03	0.08	0.014
1.5			_	_	_	0	_	_	_	_
2.1			_	_	_	0	_	_	_	_
2.2			_	_	_	0	_	_	_	_
Total						252	1.00			

Appendix D22.—Length, sex, and adipose clip composition estimates by age for temporal stratum 2 ("Late"; July 6—August 5; Harvest = 229; n = 282) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2015. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
_	_	Lei	ngth (mm) METF					Le	ngth (mm	n) METF			
Age			90% (CI		%	%	_		90% (CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	_	_	_	_	_	_	_	28	366	358	375	5.2	100.0	14.3
0.2	_	_	_	_	_	_	_	107	560	551	569	5.5	66.2	10.3
0.3	_	_	_	_	_	_	_	37	728	709	747	11.5	61.5	10.8
0.4	_	_	_	_	_	_	_	12	816	785	847	18.6	62.5	0.0
0.5	_	_	_	_	_	_	_	1	1,006	_	_	_	_	_
1.1	_	_	_	_	_	_	_	4	427	359	494	41.0	0.0	0.0
1.2	_	_	_	_	_	_	_	41	585	569	602	9.9	43.3	14.6
1.3	_	_	_	_	_	_	_	9	778	714	843	39.0	28.6	_
1.4	_	_	_	_	_	_	_	13	891	862	920	17.6	44.4	_
1.5	_	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	_	_	_	_	_	_	_	0	_	_	_	_	_	_
2.2	_	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	_	_	_	_	_	_	_	30	545	507	584	23.2	84.6	23.3
Total	_	_	_	_	_	_	_	282	598	583	612	8.7	60.3	11.3

Appendix D23.—Age composition estimates for temporal stratum 1 ("Early"; June 1–July 5; Harvest = 1,263; n = 382) and 2 (July 6–August 5; Harvest = 1,431; n = 392) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

			Early					Late		
Age			90% (CI				90% (CI	
Class	No.	Proportion	5%	95%	SE	No.	Proportion	5%	95%	SE
0.1	52	0.14	0.11	0.17	0.018	31	0.08	0.06	0.10	0.014
0.2	167	0.44	0.39	0.48	0.025	142	0.36	0.32	0.40	0.024
0.3	98	0.26	0.22	0.29	0.022	159	0.41	0.36	0.45	0.025
0.4	4	0.01	0.00	0.02	0.005	2	0.01	0.00	0.01	0.004
0.5	0	_	_	_	_	0	_	_	_	_
1.1	10	0.03	0.01	0.04	0.008	3	0.01	0.00	0.02	0.004
1.2	36	0.09	0.07	0.12	0.015	35	0.09	0.06	0.11	0.014
1.3	14	0.04	0.02	0.05	0.010	15	0.04	0.02	0.06	0.010
1.4	0	_	_	_	- -	5	0.01	0.00	0.02	0.006
1.5	0	_	_	_	- -	0	_	_	_	_
2.1	1	0.00	_	_	_	0	_	_	_	_
2.2	0	_	_	_	_	0	_	_	_	_
Total	382	1.00				392	1.00			

Appendix D24.—Length, sex, and adipose clip composition estimates by age for temporal stratum 1 ("Early"; June 1—July 5; Harvest = 1,263; n = 462) and 2 (July 6—August 5; Harvest = 1,431; n = 454) of the Mainland District (District 262), Kodiak Management Area, Westward Region, 2016. Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

				Early							Late			
		Lei	ngth (mm	n) METF					Le	ngth (mn	n) METF			
Age			90% (CI		%	%		_	90%	CI		%	%
Class	No.	Mean	0.05	0.95	SE	Female	Ad. Clip	No.	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	52	359	351	367	4.7	45.8	11.5	31	385	376	395	5.8	38.7	12.9
0.2	167	475	470	480	3.1	54.9	29.3	142	529	523	536	4.0	51.1	10.6
0.3	98	634	624	645	6.2	72.4	18.4	159	642	634	650	4.8	61.4	15.7
0.4	4	742	720	764	13.4	75.0	25.0	2	813	712	914	61.0	100.0	0.0
0.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
1.1	10	417	404	431	8.4	40.0	20.0	3	426	379	472	28.4	0.0	33.3
1.2	36	595	574	617	13.0	63.0	25.0	35	587	573	602	8.6	53.3	28.6
1.3	14	687	651	724	22.1	80.0	14.3	15	712	669	756	26.4	42.9	26.7
1.4	0	_	_	_	_	_	_	5	899	844	954	33.3	50.0	_
1.5	0	_	_	_	_	_	_	0	_	_	_	_	_	_
2.1	1	588	_	_	_	_	_	0	_	_	_	_	_	_
2.2	0	_	_	_	_	_	_	0	_	_	_	_	_	_
Unknown	80	527	504	549	13.7	54.8	20.0	62	581	559	603	13.5	51.9	16.1
Total	462	522	513	531	5.3	58.3	22.3	454	581	573	589	4.9	53.5	15.2

APPENDIX E: AGE AND LENGTH COMPOSITION OF SPORT FISHERY SAMPLES

Appendix E1.—Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2014 (April 16–August 29; Harvest = 8,049; n = 323). Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

Age			90% CI		
Class	Number	Proportion	5%	95%	SE
0.2	94	0.29	0.25	0.33	0.025
0.3	132	0.41	0.36	0.46	0.027
0.4	2	0.01	0.00	0.01	0.004
1.1	11	0.03	0.02	0.05	0.010
1.2	57	0.18	0.14	0.21	0.021
1.3	25	0.08	0.05	0.10	0.015
1.4	1	0.00	0.00	0.01	0.003
2.1	1	0.00	0.00	0.01	0.003
Total	323	1.00			

Note: Age composition estimates may not sum to 1 due to rounding error.

Appendix E2.—Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak Regulatory Area, 2014 (April 16–August 29; Harvest = 8,049; n = 398). Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

		L					
Age			90% (CI		%	%
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.2	94	589	579	599	6.1	51.9	10.6
0.3	132	675	665	685	6.4	63.4	6.8
0.4	2	865	626	1,104	145.0	50.0	0.0
1.1	11	473	445	501	17.2	16.7	9.1
1.2	57	624	611	637	7.9	61.7	26.3
1.3	25	716	683	749	20.0	57.1	36.0
1.4	1	710				0	100.0
2.1	1	562				100.0	100.0
Unknown	75	657	639	675	10.8	57.6	14.6
Total	398	642	635	649	4.5	57.9	14.3

Appendix E3.—Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2015 (May 17–August 14; Harvest = 6,709; n = 255). Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

Age			90% CI		
Class	Number	Proportion	5%	95%	SE
0.2	110	0.43	0.38	0.48	0.031
0.3	100	0.39	0.34	0.44	0.031
0.4	2	0.01	0.00	0.02	0.006
1.1	9	0.04	0.01	0.06	0.012
1.2	20	0.08	0.05	0.11	0.017
1.3	11	0.04	0.02	0.07	0.013
1.4	3	0.01	0.00	0.02	0.007
Total	255	1.00			

Note: Age composition estimates may not sum to 1 due to rounding error.

Appendix E4.—Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak Regulatory Area, 2014 (April 16—August 29; Harvest = 8,049; n = 278). Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

		L	ength (mm)	METF			
Age			90% C	'I		%	%
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.2	106	640	480	800	9.4	48.2	12.7
0.3	93	722	550	894	10.8	72.0	6.1
0.4	1	830				100.0	0.0
1.1	9	627	377	877	50.4	75.0	44.4
1.2	19	684	477	891	28.8	80.0	45.0
1.3	11	730	567	893	29.8	63.6	63.6
1.4	3	747	542	952	71.7	100.0	-
Unknown	36	684	514	854	17.1	43.8	40.0
Total	278	681	499	863	6.6	60.5	19.8

Appendix E5.—Age composition estimates for Chinook salmon sport harvest, Kodiak Regulatory Area, 2016 (May 22—August 13; Harvest = NA; n = 343). Estimates include the number of samples, mean proportion, 90% confidence interval (CI), and standard error (SE).

Age			90% CI		
Class	Number	Proportion	5%	95%	SE
0.1	4	0.01	0.00	0.02	0.006
0.2	107	0.31	0.27	0.35	0.025
0.3	152	0.44	0.40	0.49	0.027
0.4	3	0.01	0.00	0.02	0.005
1.1	16	0.05	0.03	0.07	0.011
1.2	30	0.09	0.06	0.11	0.015
1.3	32	0.09	0.07	0.12	0.016
1.4	3	0.01	0.00	0.02	0.005
Total	343	1.00	_	_	

Note: Age composition estimates may not sum to 1 due to rounding error.

Appendix E6.—Length, sex, and adipose clip composition estimates by age for Chinook salmon sport harvest, Kodiak Regulatory Area, 2016 (May 22–August 13; Harvest = NA; n = 450). Estimates include the number of samples, mean length, 90% confidence interval (CI), standard error (SE), and percentages of female and adipose clipped (% Ad. Clip) fish.

		L	ength (mm)	METF			
Age			90% C	CI		%	%
Class	Number	Mean	0.05	0.95	SE	Female	Ad. Clip
0.1	4	440	390	490	15.1	50.0	0.0
0.2	107	597	509	685	5.2	45.3	15.0
0.3	152	693	594	792	4.9	55.7	13.8
0.4	3	793	715	871	27.3	100.0	0.0
1.1	16	490	391	589	15.0	50.0	25.0
1.2	30	640	544	736	10.6	42.9	30.0
1.3	31	718	620	816	10.7	41.7	12.9
1.4	3	805	732	878	25.7	100.0	0.0
Unknown	104	665	514	816	9.0	53.3	31.5
Total	450	653	508	798	4.2	51.2	19.5

APPENDIX F: CHINOOK SALMON CODED WIRE TAG RECOVERIES FROM THE COMMERCIAL FISHERY IN THE KODIAK AREA, 2014-2016

164

Appendix F1.—Chinook salmon coded wire tag recoveries from the commercial fishery in the Kodiak area, 2014–2016.

State/Province-Country	Year			State/Province Year State/Province		State/Province		Year			
Specific Location	2014	2015	2016	Specific Location	2014	2015	2016	Specific Location	2014	2015	2016
Alaska-USA	11	6	21	Washington-USA	93	89	82	Oregon-USA	44	25	27
(W) Stikine R 108-40	1	0	0	(W) Hanford Reach Stock	0	1	1	(W) Salmon R Wild	1	0	0
(W) Taku R 111-32	1	0	0	(W) Lewis R -Nf 27.0168	0	1	0	Bonneville Hatchery	1	0	0
(W) Unuk R 101-75	0	0	1	Bear Springs 1 (20)	1	0	0	Cedar Cr Hatchery	0	1	0
Crystal Lake	3	2	4	Carlton Acclimation Pond	4	5	2	Cedc Youngs Bay Net	0	1	1
Little Port Walter	2	1	8	Chelan Falls Hatchery	13	14	13	Clackamas Hatchery	2	2	0
Macaulay	0	0	3	Chief Joseph Hatchery	0	1	3	Dexter Ponds (Willam	0	2	1
Medvejie	1	0	1	Cle Elum Hatchery	1	0	0	Elk R Hatchery	1	0	0
Port Saint Nicholas	0	0	1	Cowlitz Salmon Hatchery	0	0	1	Gnat Cr Hatchery	0	2	0
Whitman Lake	3	3	1	Dryden Pond	9	13	4	Marion Forks Hatch	8	4	5
William Jack Hernandez	0	0	2	Entiat Nfh	6	7	1	Mckenzie Hatchery	8	4	8
British Columbia-Canada	36	44	85	Fallert Cr Hatchery	1	0	2	Minto Ponds (N Santiam R)	0	0	3
H-Alberni Inlet Seapen	0	0	2	Forks Creek Hatchery	0	1	6	Morgan Cr (Step-Coos	1	0	0
H-Bedwell Est Seapen	0	0	11	Gobar Pond (27)	1	1	1	Salmon R Hatchery	4	1	2
H-Deep Creek/ Skna H	10	3	2	Hoko Falls Hatchery	1	2	3	Sandy Hatchery	1	1	2
H-Discovery Passage Seape	0	1	0	Kalama Falls Hatchery	2	0	0	South Santiam Hatch	3	0	5
H-Omega Pacific H	2	0	0	Klickitat Hatchery (Ykfp)	1	1	5	Trask R Hatchery	0	1	0
H-Phillips River H	1	0	1	Lewis River Hatchery	0	0	1	Umatilla Hatchery	0	2	0
H-Port Renfrew Seapen	0	0	3	Lonesome Cr Hatchery	0	1	2	Warm Springs Nfh	2	1	0
H-Puntledge River H	0	0	2	Ltl White Salmon Nfh	2	2	1	Willamette Hatchery	12	3	0
H-Quinsam River H	0	1	1	Lyons Ferry Hatchery	2	0	0	Idaho-USA	2	0	0
H-Robertson Creek H	9	29	49	Makah Nfh On Tsoo-Yess R	3	3	0	Npt Hatchery	2	0	0
H-Shuswap River, Middle,	1	1	3	Priest Rapids Hatchery	7	4	4				
H-Snootli Creek H	11	7	11	Quinault Lk Hatchery	10	5	11	Total CWT	186	164	215
H-Spius Creek H	1	0	0	Ringold Springs Hatchery	0	1	0				
H-Wannock Estuary Seapen	1	2	0	Salmon R Fish Cultur	6	5	4	Total Chinook inspected	3,275	2,839	3,292
				Similkameen Hatchery	15	14	4				
				Wells Hatchery	8	7	13	% CWT	5.7	5.8	6.5

APPENDIX G: CHINOOK SALMON CODED WIRE TAG RECOVERIES FROM THE MARINE SPORT FISHERY IN THE KODIAK AREA, 2014–2016

Appendix G1.-Chinook salmon coded wire tag recoveries from the sport fishery in the Kodiak area, 2014-2016.

State/Province				
	Specific Location	2014	2015	2016
AK		0	1	4
	Little Port Walter	0	0	2
	Medvedjie	0	0	1
	Whitman Lake	0	1	1
BC		8	5	15
	Robertson Creek	1	1	7
	Snootli Creek	2	2	6
	Shuswap River	0	0	1
	Deep Creek	5	1	1
	Discovery Passage	0	1	0
WA		11	8	18
	Chelan Falls	0	1	5
	Salmon R. Fish Culture	4	2	3
	Lonesome Creek	0	0	2
	Quinault Lake	2	1	0
	Wells Hatchery	1	2	2
	Simikameen Hatchery	1	0	2
	Hoko Falls	0	0	1
	Fallert Creek	0	0	1
	Entiat Hatchery	0	0	1
	Dryden Pond	1	1	1
	Carlton Acclimation Pond	1	0	0
	Lyons Ferry	1	0	0
	Priest Rapids	0	1	0
OR		4	3	2
	Marion Forks	2	0	0
	McKenzie Hatchery	1	1	0
	Trask Hatchery	1	0	0
	Clackamas	0	1	0
	Elk River	0	1	0
	South Santiam	0	0	2
Total Number	of CWT recoveries	23	17	39
Total number a	adipose clipped fish	56	59	84
	e clips with CWT	41.1	28.8	46.4
Total number of samples collected		398	278	450
Percent of CW	T from samples	5.8	6.1	8.7

APPENDIX H: RESULTS OF STATISTICAL QUALITY CONTROL

Appendix H1.—Results of the statistical quality control by spatiotemporal strata for Chinook salmon catch samples analyzed to estimate the stock composition of KMA commercial harvests in 2014–2016. Spatiotemporal strata are identified by area stratum, year, temporal stratum, and stratum period. The number of fish genotyped, and excluded from statistical analysis because of missing loci and duplicate fish, and the final number statistically analyzed are provided.

					Number of Fish	h	
					Fish Remo	ved	
Area Stratum	Year	Temporal Stratum	Period	Genotyped	Missing Loci	Duplicate	Final
Northwest Kodiak/Afognak	2014	1	6/1-7/5	379	2	1	376
Northwest Kodiak/Afognak	2014	2	7/6-8/5	380	3	2	375
Northwest Kodiak/Afognak	2015	1	6/1-7/5	380	1	1	378
Northwest Kodiak/Afognak	2015	2	7/6-8/5	380	2	0	378
Northwest Kodiak/Afognak	2016	1	6/1-7/5	379	0	0	379
Northwest Kodiak/Afognak	2016	2	7/6-8/5	379	7	1	371
Southwest Kodiak/Alitak	2014	1	6/1-7/5	287	9	0	278
Southwest Kodiak/Alitak	2014	2	7/6-8/5	378	4	0	374
Southwest Kodiak/Alitak	2015	1	6/1-7/5	376	10	1	365
Southwest Kodiak/Alitak	2015	2	7/6-8/5	378	7	0	371
Southwest Kodiak/Alitak	2016	1	6/1-7/5	310	2	0	308
Southwest Kodiak/Alitak	2016	2	7/6-8/5	291	24	0	267
Eastside Kodiak/Afognak	2014	1	6/1-7/5	293	5	1	287
Eastside Kodiak/Afognak	2014	2	7/6-8/5	379	4	0	375
Eastside Kodiak/Afognak	2015	1	6/1-7/5	380	5	2	373
Eastside Kodiak/Afognak	2015	2	7/6-8/5	285	7	0	278
Eastside Kodiak/Afognak	2016	1	6/1-7/5	316	3	0	313
Eastside Kodiak/Afognak	2016	2	7/6–8/5	322	3	0	319
-			Total	6,272	98	9	6,165

-continued-

Appendix H1.–Page 2 of 2.

			_		Number of Fi	sh	
				_	Fish Rem	oved	
Area Stratum	Year	Temporal Stratum	Period	Genotyped	Missing Loci	Duplicate	Final
Mainland	2014	2	7/6-8/5	379	15	2	362
Mainland	2015	2	7/6–8/5	282	4	1	277
Mainland	2016	1	6/1-7/5	379	10	1	368
Mainland	2016	2	7/6–8/5	379	22	0	357
Sport Fishery	2014		4/16-8/29	414	9	2	403
Sport Fishery	2015		5/17-8/14	283	2	7	274
Sport Fishery	2016		5/22-813	441	1	0	440
			Total	2,557	63	13	2,481
			Overall KMA Total	8,829	161	22	8,646