Ecology of Alaska Chinook Salmon in the Open Ocean

Kate Myers School of Aquatic & Fishery Sciences, High Seas Salmon Research Program University of Washington (Ret.)

Presentation for the Chinook Salmon Symposium, Alaska Department of Fish & Game, LaPerouse Hall at the Egan Convention Center in Anchorage, Alaska, October 22-23, 2012

Why is the open ocean important to Alaska king salmon management?

Local and traditional knowledge important to open ocean research, monitoring, & evaluation

- <u>Salmon</u>: abundance, body size, diseases, parasites, and scars
- <u>Climate change</u>: wind, ice, temperature, algae, & jellyfish
- Fishing: harvests & bycatch

Data source: Julie Raymond-Yakoubian, Kawerak, Inc.

How do Alaska king salmon respond to ocean fishing?

Long-term trends in commercial catch/bycatch of king salmon, 1925-2011

How do Alaska king salmon respond to climate change?

Monthly values for the Pacific Decadal Oscillation index (PDO): 1900-2011 (http://jisao.washington.edu/pdo/)

Ecological process studies and modeling to understand mechanisms of climate & fishing effects on Alaska kings

- Salmon distribution (horizontal and vertical)
- Salmon food habits
- Salmon growth and bioenergetics
- Climate/ocean effects on salmon and their habitats

The Bering Sea and Gulf of Alaska are the most important open-ocean habitats of Alaska kings

Critical habitats for Alaska kings in the Bering Sea

Western Bering Sea (Russian EEZ) Eastern Bering Sea – epipelagic shelf habitat

Aleutian Basin (central & northwestern Bering Sea) Aleutian Islands & passes

intertidal

zone –

eastern.

Bering Sea

Ocean recoveries of tagged Yukon Kings, 1956-2004

Conceptual Model of Bering Sea Distribution of AYK Kings

Stable isotope composition of kings in the BSAI bycatch supports seasonal distribution model

Depleted $_{13}C$ = basin habitats, Enriched $_{13}C$ = shelf/slope habitats

Data from Wyatt Fournier (2011)

Ocean recoveries of tagged Cook Inlet Kings, 1956-2004

Ocean recoveries of tagged SE Alaska Kings, 1956-2004

Vertical distribution of trawl bycatch of kings by ocean age group in winter

Data are from 1997-1999

Temperature (red) & Depth (blue) data storage tag record (16,246 data points) for an individual fish

Chinook salmon tagged at 56°30′N, 179°00′W in the Bering Sea on 8 July 2002 and recovered at age 1.4 near Kotlik, Alaska, in the Yukon River on 21 June 2004.

Summer diets of immature kings in Bering Sea basin habitats

Winter diets of kings in Bering Sea shelf habitats – BSAI bycatch 2007

Summer diets of immature kings in the Central Gulf of Alaska (50-56°N, 145°W)

Data from Kaeriyama et al. 2004

Life-stage specific responses of Bering Sea kings to natural climate change

Bioenergetics and growth results for Bering Sea stocks

- Immature kings respond to cool vs. warm climate regimes by changes in body size
- 1st winter at sea most critical growth period affected by warm vs. cold climate change
- Female Yukon kings showed a positive shift in growth around 2000
- Climate/ocean variables correlated to increased high seas growth: low sea ice cover and warm temperatures

Body size response of immature kings to cool &

warm climate shifts

Sequential t-test analysis of regime shifts (Rodinov 2005) using Japanese salmon research vessel data (1971-2008) - significant shifts in 1978 and 1991. Immature age 1.2 female kings in Bering Sea.

1st winter at sea -most critical growth Winter Summer period Central BS basin Southeast BS shelf break 45 45 ocean age-0 to -1 ocean age-1 immature Jun1-Sep 30 juvenile to immature 35 35 Nov 1-May 31 25 25 Estimated

conversion efficiency (%) = net growth/total prey consumption

Bioenergetics Model C = M + W + G

fast

fast

Efficiency (%)

1972-76

1977-81

slow

slow

ocean age-3

Jun 1-Sep 30

slow

Growth rate

Cool

Warm

climate

climate

limmature

Growth rate

Growth rate

45

35

25

15

Positive shift in growth of Yukon kings around 1999-2000

Age 1.4 Yukon King Scale

Data sources: G. Ruggerone & Bev Agler; UW High Seas Project

How will kings respond to changes in thermal habits given projected changes due to greenhouse gas emissions?

•Multimodel averages for A1B emissions scenario (18 different Global Climate Models) •2080s: SST warms by 2-3°C, with greatest warming in the western North Pacific and least in the northeast Pacific

60°0'0"E 60°0'0"W 120°0'0"E 120°0'0"/ 180°0'0" 0.80.650°0'0"N 50°0'0"N N"0'0°0 2.8 2.2 2.6160°0'0"E 180°0'0" 160°0'0"W 140°0'0"W 140°0'0"E

SST increase-July 2080s-a1b

Projected change in summer (July) sea surface temp. habitat- under medium greenhouse gas emission scenario Data from Abdul-Aziz et al. 2011

Projected changes in open ocean thermal habitats of king salmon - winter

Data from Abdul-Aziz et al. 2011

Data from Abdul-Aziz et al. 2011

Hypothesis: Human forcing of open-ocean ecological processes is contributing to long-term declines in productivity of Alaska Chinook salmon

Important research areas and questions

- **1.** Climate-Change/Ocean Acidification (CCOA): What are the past, current, and projected effects of CCOA on salmon productivity?
- 2. Industrial-Scale Fisheries (ISF): Are ISF both predators and competitors of salmon? Is there a threshold of maximum salmon biomass or minimal prey biomass or density needed in open-ocean ecosystems to sustain long-term salmon productivity? Are discarded fish processing wastes a vector for spreading disease and parasites?
- **3.** Hatchery-wild interactions (HWI): Do HWI in the open ocean affect the productivity of wild Alaska salmon?
- **4. Marine pollution (MP):** Does open-ocean MP affect salmon productivity?
- **5. Multiple Human Stressors (MHS)**: What are the cumulative effects of open-ocean MHS (climate change, fishing, hatchery production, and pollution) on salmon productivity?

Acknowledgements

- Research funded by award #NA04NMF4380162 NOAA), administered by ADFG for Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (http://www.aykssi.org/).
- Co-Investigators: Trey Walker, Nancy Davis, Jan Armstrong, Wyatt Fournier, Nate Mantua, Julie Raymond-Yakoubian, Kerim Aydin, Jerry Berger, Ed Farley, Masa-aki Fukuwaka, Masahide Kaeriyama, Greg Ruggerone, Jennifer Nielsen, Jim Seeb, and many others
- The statements, findings, conclusions, and recommendations are those of the author and do not necessarily reflect the views of NOAA, the U.S. Department of Commerce, or ADFG.

Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (AYK SSI) Chinook Salmon Outreach Workshop

> December 11-12, 2012 Anchorage, Alaska

For more information contact: AYK SSI - Karen Gillis & Joe Spaeder, 1130 W. 6th Avenue, Suite 110 Anchorage, AK 99501 (907) 279-6519