Stock Assessment of the Return of Late-run Chinook Salmon to the Kenai River, 1996

by

S. L. Hammarstrom

May 1997

Alaska Department of Fish and Game

Division of Sport Fish

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used in Division of Sport Fish Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications without definition. All others must be defined in the text at first mention, as well as in the titles or footnotes of tables and in figures or figure captions.

Weights and measures (metric)		General		Mathematics, statistics, f	fisheries
centimeter	cm	All commonly accepted	e.g., Mr., Mrs.,	alternate hypothesis	H _A
deciliter	dL	abbreviations.	a.m., p.m., etc.	base of natural	e
gram	g	All commonly accepted	e.g., Dr., Ph.D.,	logarithm	
hectare	ha	professional titles.	R.N., etc.	catch per unit effort	CPUE
kilogram	kg	and	&	coefficient of variation	CV
kilometer	km	at	a	common test statistics	F, t, χ^2 , etc.
liter	L	Compass directions:		confidence interval	C.I.
meter	m	east	E	correlation coefficient	R (multiple)
metric ton	mt	north	Ν	correlation coefficient	r (simple)
milliliter	ml	south	S	covariance	cov
millimeter	mm	west	W	degree (angular or	0
		Copyright	©	temperature)	
Weights and measures (English)	1	Corporate suffixes:		degrees of freedom	df
cubic feet per second	ft ³ /s	Company	Co.	divided by	÷ or / (in
foot	ft	Corporation	Corp.		equations)
gallon	gal	Incorporated	Inc.	equals	=
inch	in	Limited	Ltd.	expected value	Е
mile	mi	et alii (and other	et al.	fork length	FL
ounce	oz	people)		greater than	>
pound	lb	et cetera (and so forth)	etc.	greater than or equal to	\geq
quart	qt	exempli gratia (for	e.g.,	harvest per unit effort	HPUE
yard	yd	example)		less than	<
Spell out acre and ton.	-	id est (that is)	i.e.,	less than or equal to	\leq
		latitude or longitude	lat. or long.	logarithm (natural)	ln
Time and temperature		monetary symbols	\$, ¢	logarithm (base 10)	log
day	d	(U.S.)	I D	logarithm (specify base)	log _{2,} etc.
degrees Celsius	°C	months (tables and figures): first three	Jan,,Dec	mideye-to-fork	MEF
degrees Fahrenheit	°F	letters		minute (angular)	,
hour (spell out for 24-hour clock)	h	number (before a	# (e.g., #10)	multiplied by	х
minute	min	number)	(0. 8., <i>11</i> 0)	not significant	NS
second	s	pounds (after a number)	# (e.g., 10#)	null hypothesis	Ho
Spell out year, month, and week.		registered trademark	®	percent	%
		trademark	тм	probability	Р
Physics and chemistry		United States	U.S.	probability of a type I	α
all atomic symbols		(adjective)		error (rejection of the	
alternating current	AC	United States of	USA	null hypothesis when	
ampere	А	America (noun)		true)	0
calorie	cal	U.S. state and District	use two-letter	probability of a type II error (acceptance of	β
direct current	DC	of Columbia	abbreviations	the null hypothesis	
hertz	Hz	abbreviations	(e.g., AK, DC)	when false)	
horsepower	hp			second (angular)	"
hydrogen ion activity	pН			standard deviation	SD
parts per million	ppm			standard error	SE
parts per thousand	ppt, ‰			standard length	SL
volts	V			total length	TL
watts	W			variance	Var
-				, an unice	· u1

FISHERY DATA SERIES NO. 97-11

STOCK ASSESSMENT OF THE RETURN OF LATE-RUN CHINOOK SALMON TO THE KENAI RIVER, 1996

by

S. L. Hammarstrom Division of Sport Fish, Soldotna

Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1599

May 1997

This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under project F-10-12, Job No. S-2-5.

The Fishery Data Series was established in 1987 for the publication of technically-oriented results for a single project or group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication distribution centers, libraries and individuals and, on request, to other libraries, agencies, and individuals. This publication has undergone editorial and peer review.

S. L. Hammarstrom Alaska Department of Fish and Game, Division of Sport Fish 34828 Kalifornsky Beach Road, Suite B Soldotna, AK 99669-8367, USA

This document should be cited as:

Hammarstrom, S. L. 1997. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1996. Alaska Department of Fish and Game, Fishery Data Series No. 97-11, Anchorage.

The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications, contact the department ADA Coordinator at (voice) 907-465-4120, or (TDD) 907-465-3646. Any person who believes s/he has been discriminated against should write to: ADF&G, PO Box 25526, Juneau, AK 99802-5526; or O.E.O., U.S. Department of the Interior, Washington, DC 20240.

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	iii
LIST OF APPENDICES	iv
ABSTRACT	1
INTRODUCTION	1
SUMMARY OF HISTORICAL DATA	4
Harvest and Escapement Brood and Sibling Relationships Migratory Timing	5
ASSESSMENT OF THE 1996 LATE RETURN OF CHINOOK SALMON TO THE KENAI RIVER	6
Effort and Harvest of Late-Run Chinook Salmon Inriver Return Escapement and Total Return Brood Relationships Sibling Relationships Migratory Timing Models	
DISCUSSION	
ACKNOWLEDGMENTS	
LITERATURE CITED	
APPENDIX A. KENAI RIVER LATE KING SALMON MANAGEMENT PLAN	
APPENDIX B. STATISTICAL METHODS	
APPENDIX C. SUPPORTING STATISTICS	

LIST OF TABLES

Table		Page
1.	Summary of late-run Kenai River chinook salmon population data, 1984-1996	7
2.	Estimates by age class of the number of Kenai River late-run chinook salmon harvested in the Upper Subdistrict commercial set and drift gillnet fisheries, personal use fisheries, and educational fisheries, Upper Cook Inlet, 1996.	8
3.	Summary of historical harvest, angler effort, and harvest rate in the recreational fishery for late-run chinook salmon, Kenai River, 1974-1996.	
4.	Estimates by age class of the number of late-run chinook salmon harvested in the recreational fishery on the Kenai River, 1996.	12
5.	Estimates by age class of the number of late-run chinook salmon harvested in the recreational fishery on the Kenai River, 1986-1996.	
6.	Estimates of the number of late-run chinook salmon mortalities attributable to hook-and-release fishing Kenai River, 1986-1996.	<i>.</i> ,
7.	Estimates by age class of the number of late-run chinook salmon that died as a result of hook-and-release fishing in the recreational fishery on the Kenai River, 1996.	15
8.	Historical sonar counts of chinook salmon in the Kenai River during the late run, 1987-1996.	
9.	Estimates by age class of the number of late-run chinook salmon in the inriver return to the Kenai River, 1996.	
10.	Estimates by age class of the number of late-run chinook salmon in the total return to the Kenai River, 1986-1996.	
11.	Estimates by age class of the number of late-run chinook salmon in the spawning escapement to the Kenai River, 1986-1996.	20
12.	Age components of total returns of Kenai River late-run chinook salmon, 1986-1996	
13.	Summary of returns from each brood year, late-run Kenai River chinook salmon, 1978-1996	
14.	Sibling return ratios for late-run Kenai River chinook salmon from brood years 1980-1992.	24
15.	Summary of expected returns based on sibling return ratios versus observed returns for late-run Kenai River chinook salmon, 1990-1996, and 1997 projections.	

LIST OF FIGURES

Figure	
1.	Map of the Kenai River drainage.
2.	Historical harvest and effort in the recreational fish-

3.

4.

5.

6.

7.

Map of the Kenai River drainage.	2
Historical harvest and effort in the recreational fishery for late-run chinook salmon, Kenai River, 1974- 1996.	3
Escapement levels and required actions according to the Kenai River Late King Salmon Management Plan.	3
Daily projections of total inriver return vs. the actual inriver return of late-run chinook salmon, Kenai River, 1996.	.26
Cumulative proportions by date for the inriver return of late-run chinook salmon to the Kenai River, 1985-1995 mean vs. 1996.	.26
Daily projections of seasonal (1 July-31 July) harvest and catch (solid lines) vs. realized harvest and catch (dotted lines) of late-run chinook salmon by the recreational fishery, Kenai River, 1996	.27
chinook salmon, Kenai River, 1996.	.27

Page

LIST OF APPENDICES

Appen	ndix	Page
Ā1.	Kenai River late king salmon management plan	34
B1.	Statistical methods for estimating sibling ratios and expected returns	36
B2.	Statistical methods for analyzing migratory timing.	38
C1.	Historical daily cumulative proportions of the inriver return of late-run chinook salmon to the Kenai	
C2.	River, 1985-1996 Historical daily cumulative proportions of the effort by unguided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	
C3.	Historical daily cumulative proportions of the harvest of chinook salmon by unguided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	44
C4.	Historical daily cumulative proportions of the catch of chinook salmon by unguided anglers during th return of late-run chinook salmon to the Kenai River, 1984-1996.	
C5.	Historical daily cumulative proportions of the effort by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	48
C6.	Historical daily cumulative proportions of the harvest of chinook salmon by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	
C7.	Historical daily cumulative proportions of the catch of chinook salmon by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	

ABSTRACT

The estimated total return of late-run chinook salmon *Oncorhynchus tshawytscha* to the Kenai River in 1996 was 66,286 (SE = 1,059) fish. This estimate does not include fish harvested in the recreational marine fishery near Deep Creek, which will be estimated by a postal questionnaire with results available in 1997. Total harvest in marine commercial gillnet fisheries (drift and set), the inriver personal use dip net fishery, and Kenaitze Indian educational set gillnet fishery was 12,037 chinook salmon. The total inriver return of late-run chinook salmon was 54,249 (SE = 1,059) fish estimated through hydroacoustic techniques and a creel survey of harvest downstream of the sonar counter. In the downstream section (Cook Inlet to the Soldotna Bridge), angler effort and harvest estimated from a creel survey were 238,495 (SE = 7,285) angler-hours and 5,984 (SE = 404) chinook salmon, respectively.

Release mortality from the inriver fishery upstream of the sonar counter was an estimated 64 (SE = 50) chinook salmon. Spawning escapement, which was estimated by subtracting total fishing mortality from total inriver return, was 48,054 (SE = 1,126) chinook salmon and exceeded the optimum spawning escapement of 22,300 stipulated in the management plan. The predominant age class of the commercial harvest, inriver return, and recreational harvest was age-1.4 fish.

Migratory timing models were used to project spawning escapement during the 1996 fishery. No additional restrictions to the fishery were required to achieve escapement goals. A relatively strong return allowed for an additional 4 days of recreational fishing in August.

Production from the 1984-1988 broods ranged from 0.98 to 2.13 returning fish per spawner. Production from the 1989 brood has been 2.26 returning fish per spawner, with age 8 to return in 1997. Production from the 1990 brood has been 2.09 returning fish per spawner, with ages 7 and 8 to return in 1997 and 1998, respectively.

Based on a sibling model, the forecast for the 1997 late-run return to the Kenai River is 120,514 (SE = 32,788) chinook salmon.

Key words: Kenai River, chinook salmon, *Oncorhynchus tshawytscha*, late run, creel survey, effort, harvest, migratory timing, sibling ratios, brood tables, sonar, forecast.

INTRODUCTION

The largest freshwater recreational fishery in Alaska occurs in the Kenai River with an average of nearly 350,000 angler-days of effort each year from 1983-1995 (Mills 1984-1994, Howe et al. 1995 and 1996). This represents approximately 15% of the state's recreational fishing effort. The majority of angler effort occurs between the Soldotna Bridge and Cook Inlet (Figure 1) and is directed primarily at returning chinook salmon *Oncorhynchus tshawytscha* during May, June, and July.

Two stocks of Kenai River chinook salmon are recognized: an early run which enters the river from mid-May through June, and a late run which enters the river from late June through early August (Burger et al. 1985; Bendock and Alexandersdottir 1992). Earlyrun fish are destined primarily for tributary spawning locations although some mainstem spawning also occurs (Burger et al. 1985). Late-run fish are destined almost exclusively for mainstem spawning locations and are the focus of this report.

Prior to 1970, the recreational fishery in the Kenai River comprised shorebased anglers targeting sockeye salmon *O. nerka* in July and coho salmon *O. kisutch* in August and early September. In 1973, anglers began experimenting with bouncing brightly colored terminal gear along the river bottom from a drifting boat. This technique had been used effectively by anglers fishing for chinook salmon on rivers in the Pacific Northwest. It proved to be a very effective method for catching chinook salmon on the Kenai River, and the fishery expanded rapidly (Figure 2).

As fisheries targeting both the early and late runs grew during the early 1980s, concerns

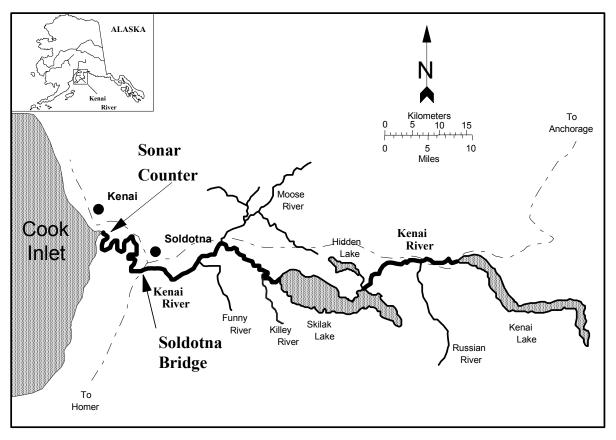
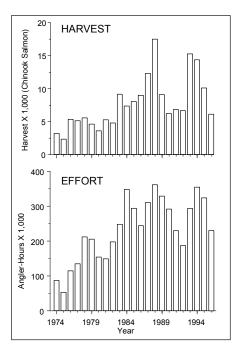



Figure 1.-Map of the Kenai River drainage.

about overexploitation were heightened. In 1988, the Board of Fisheries (BOF) adopted management plans for the early and late returns of chinook salmon to the Kenai River (McBride et al. 1989). These plans, which have been in effect since 1989, stipulate both escapement goals for which the fisheries will be managed by the Alaska Department of Fish and Game (ADF&G), and the manner in which these fisheries will be managed in the event of a conservation shortfall (Figure 3; Appendix A1).

Sport fishing regulations for chinook salmon in the Kenai River are detailed in the management plans, and are now among the most restrictive in Alaska. The recreational fishery for late-run chinook salmon on the Kenai River is 1 July through 31 July. Only the mainstem Kenai River between the outlet of Skilak Lake and Cook Inlet (Figure 1) is open to fishing for chinook salmon. The daily bag and possession limits are one chinook salmon per day greater than 41 cm (16 in) total length and a seasonal limit of two chinook salmon greater than 41 cm. Harvest of chinook salmon less than 41 cm is limited only by the daily bag limit of 10. An amendment to the late-run management plan, which went into effect during the 1991 season, provides for retention of large fish, 132 cm (52 in) or larger, if hook-and-release fishing is imposed (termed "trophy fishing").

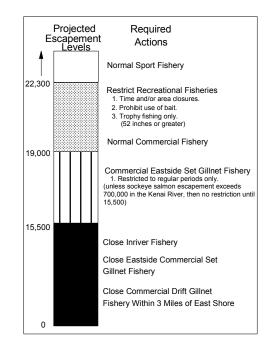

Since 1983, fishing from boats downstream from the outlet of Skilak Lake has been prohibited on Mondays in July. Anyone retaining a chinook salmon that is 41 cm in

Figure 2.-Historical harvest and effort in the recreational fishery for late-run chinook salmon, Kenai River, 1974-1996.

length or greater is prohibited from fishing from a boat in the Kenai River for the remainder of that day. Anglers employing guides are restricted further: during July, fishing from a guided boat is allowed only between 0600 and 1800 hours, and on Tuesday through Saturday only.

Implementation of the management plan hinges upon the department's ability to project the strength of the current year's return early in the season. A comprehensive stock assessment program, which was initiated in the mid-1980s in response to the growing chinook salmon fisheries, and creel surveys, which have been conducted on the Kenai River since 1974, are the primary means of collecting the data necessary for implementing the plans. The objectives of these continuing studies are two-fold: to assess production by estimating harvest and abundance by age and inriver returns

Figure 3.-Escapement levels and required actions according to the Kenai River Late King Salmon Management Plan.

(Hammarstrom and Larson 1986)¹; and to model run timing, including migratory timing estimates of effort, harvest, and abundance. Because of the diversity and complexity of these studies, results of each study are published in separate reports.

This report compiles statistics for the 1996 late run, including estimates of inriver return, total fishing mortality, and escapement. The estimates are compared to historic data and their application to the 1996 return is discussed. Finally, a forecast of the 1997 return is presented.

Previous studies of the chinook salmon fisheries in the Kenai River include the following: Hammarstrom (1975-1981, 1988-

To clarify terms, inriver return refers to all fish that are counted by sonar in the Kenai River. Total return refers to all late-run Kenai River chinook salmon harvested in Upper Cook Inlet marine waters plus the inriver return. Escapement (fish that survive all fisheries and are potential spawners) is estimated by subtracting total mortalities from the recreational fishery (harvest plus hook-and-release mortalities) from the inriver return.

1991, 1992a and b, 1993a and b, 1994a and b, 1995, 1996); Hammarstrom and Larson (1982-1984, 1986): Hammarstrom et al. (1985); Conrad and Hammarstrom (1987); and King (1995, 1996). Details of the 1996 creel survey of the recreational fishery are reported by King (1997). In addition, angler effort and harvest by species for the recreational fishery were estimated by Mills (1979-1994) and Howe et al. (1995, 1996) via postseason postal questionnaire. Rationale for the escapement goals and migratory timing data to implement the management plans are contained in McBride et al. (1989). Bendock and Alexandersdottir (1992) estimated hooking mortality for chinook salmon in Kenai River recreational fisheries. Estimates of total return by age were summarized through 1990 by Sonnichsen and Alexandersdottir (1991) and 1991-1995 by Hammarstrom (1992b, 1993b, 1994b, 1995, 1996).

SUMMARY OF HISTORICAL DATA

HARVEST AND ESCAPEMENT

Late-run Kenai River chinook salmon are harvested at several locations during their spawning migration. Chinook salmon harvested in the marine waters of Cook Inlet after 1 July are assumed to be of Kenai River origin because chinook salmon of the Kasilof River, the only other population of late-run chinook salmon in Cook Inlet, are believed to be much less abundant than the Kenai River population (McBride et al. 1985). The first significant harvest of late-run chinook salmon occurs in the recreational marine fishery in the vicinity of Deep Creek. This harvest has been estimated by postal questionnaire, the results of which are unavailable until the following year (Mills 1979-1994; Howe et al. 1995, 1996). The estimates do not differentiate between early and late runs and thus the harvest of late-run fish was estimated based the historical average proportion on

determined by creel surveys conducted onsite from 1973-1985 (Hammarstrom 1975-1981; Hammarstrom and Larson 1982-1984, 1986; Hammarstrom et al. 1985). In 1994 and 1995, Sport Fish Division once again surveyed this fishery with an onsite creel survey (McKinley 1995, 1996). In 1996, the fishery was sampled for age composition and coded-wiretag recovery (McKinley *In prep*).

Additional harvest occurs in the commercial set gillnet fishery along the eastern shore of Cook Inlet and to a lesser degree in the commercial drift gillnet fishery. Total commercial harvest is determined from sales receipts (fish tickets) (ADF&G *Unpublished*). Both of these commercial fisheries target sockeye salmon and the chinook salmon harvest is bycatch. The commercial fisheries are managed according to the Upper Cook Inlet Salmon Management Plan.

Two single-net educational fisheries for members of the Kenaitze Indian tribe and the Village of Ninilchik have been authorized since 1989 and 1994, respectively, and total harvest is reported to the department per the terms of the permits.

Inriver returns have been estimated annually Two methods have been since 1984. employed: a mark-recapture program from 1984-1990 (Hammarstrom and Larson 1986; Conrad and Larson 1987; Conrad 1988; Carlon and Alexandersdottir 1989: Alexandersdottir and Marsh 1990); and a hydroacoustic (sonar) program from 1984-1995 (Eggers et al. 1995; Burwen and Bosch 1995a, 1995b, 1996). Since 1987, sonar has been used to estimate the inriver return. The mark-recapture program was last conducted in Since 1984, the inriver return has 1990. averaged 42,740 chinook salmon.

The inriver return is sampled to estimate abundance by age. Prior to 1991, scale samples were collected from chinook salmon captured with large-mesh gillnets during the mark-recapture studies. Although the marking program was discontinued in 1991, age, sex, and length samples are still collected using gillnets (Hammarstrom and Larson 1986).

The commercial set gillnet harvest in Cook Inlet is sampled for age, sex, and size composition by the Commercial Fisheries Management and Development Division (CFMD) of ADF&G (Waltemyer and Tobias 1997). These data provide estimates of the numbers of chinook salmon by age, sex, and size in the commercial set gillnet, drift gillnet, and subsistence gillnet harvests. Age, sex, and size composition of the drift, subsistence, and personal use gillnet harvests are assumed to be the same as the commercial set gillnet harvest because the gear is similar and harvest in the subsistence and personal use fisheries is relatively minor.

The age, sex, and size composition of the sport harvest in the Kenai River is estimated from samples collected during angler interviews conducted in the creel survey (King 1997).

Mortality due to hook-and-release fishing on late-run fish was estimated to be 13.2% for small males (< 750 mm); 5.0% for large males (> 750 mm); and 5.0% for females Alexandersdottir (Bendock and 1992). However, it is not possible to measure the size or sex composition of the release component. Therefore, a grand average of the estimated mortality rates on late-run fish (8.3%) was used to estimate hook-and-release mortality for this stock. Because of the higher mortality for small males and the tendency of anglers to release smaller fish, this approach tends to underestimate mortality. Age, sex, and size composition of the fish that were released and died was assumed equal to that of the inriver return. This assumption also introduces an unknown bias to estimates

BROOD AND SIBLING RELATIONSHIPS

Chinook salmon in the Kenai River are managed to achieve optimum sustained production. In 1988, spawning requirements were computed to sustain levels of production realized during the years 1984 to 1988. These escapement goals were based on limited information from the Kenai River and the experiences of other researchers working with chinook salmon on the west coast of North America (McBride et al. 1989). Total return data are being compiled to assess production and refine these escapement goals. A good stock-recruit analysis requires data that span decades, since one year's return must be compared to returns from parent generations many years earlier.

А predictable relationship between consecutive-year returns of the same brood (i.e. sibling relationships) was established for the late run (Sonnichsen and Alexandersdottir 1991). As a result, mean sibling ratios (the ratio of one age to one or more younger ages for a brood) for years with complete return data were used to predict returns for 1990-1996. By using mean sibling ratios of those years for which complete return data are available, models were developed to predict the returns for 1990-1996 (Sonnichsen and Alexandersdottir 1991; Hammarstrom 1992a, 1993a, 1994a, 1995; 1996, Appendix B1).

MIGRATORY TIMING

The following databases were used to estimate the annual migratory timing of chinook salmon returning to the Kenai River during the late run: (1) inriver return, measured by daily gillnet CPUE for 1984 to 1986 and by daily sonar counts for 1987 to 1995; and (2) inriver recreational fishery statistics including angler effort, harvest, and catch for 1984-1995.

Historic cumulative daily proportions of each of these statistics were used to generate migratory timing models of each statistic that were applied to the current year's data to predict season-end values (McBride et al. 1989; Appendix B2). Cumulative daily proportions of the inriver return for the years 1985-1995 were averaged to formulate the model (referred to as mean timing model) that projected total inriver return for 1996 (Appendix C1). Although other models have been evaluated (Hammarstrom 1994b), the mean timing model has been the most consistent and was utilized in 1996.

Cumulative daily proportions of recreational effort, harvest, and catch for the years 1984-1995 were used to generate the model that projected harvest and catch for 1996 (Appendices C2-C7).

Projected end-of-season escapement was the difference between the projected end-ofseason inriver return and the projected end-ofseason mortality (harvest plus hook-andrelease mortality) which was updated daily throughout the season.

ASSESSMENT OF THE 1996 LATE RETURN OF CHINOOK SALMON TO THE KENAI RIVER

EFFORT AND HARVEST OF LATE-RUN CHINOOK SALMON

Estimates of harvest from the 1996 recreational marine fishery near Deep Creek are unavailable until the results of the 1996 postal questionnaire are reported in 1997.

The commercial harvest in the set gillnet fishery along the eastern shore of Cook Inlet was 11,333 chinook salmon, approximately the 1984-1995 mean harvest of chinook salmon in that fishery. Harvest of chinook salmon in the drift gillnet fishery was 365 fish, well below the historical mean. A reported 45 chinook salmon were retained for personal use from the combined commercial set and drift gillnet harvest (Table 1). Age composition of the commercial set gillnet harvest was based on a sample of 2,184 chinook salmon with readable scales. Because there was a significant ($\chi^2 = 380.6$, df = 9, P < 0.01) difference in the age composition of the four major age groups over time, the age data were poststratified into four time intervals to estimate harvest by age. The commercial set gillnet harvest comprised mostly chinook salmon aged 1.4 (43%), 1.3 (35%), and 1.2 (16%) (Table 2).

In 1996, no personal use (termed subsistence in 1994) set gillnet fishery was authorized in Cook Inlet. However, a personal use dip net fishery was allowed in the lower 9.3 km (5.0 miles) of the Kenai River. Participants were required to be Alaska residents and obtain a permit from the department. Harvest was recorded on the permit which had to be returned to the department by the end of the season. These fisheries were administered by the Sport Fish Division. Only chinook salmon harvested from 1 July and later were considered of late-run Kenai River origin. Total subsistence harvest of late-run chinook salmon was 294 fish: 274 in the dip net fishery, 1 in the Kenaitze educational fishery, and 19 in the Ninilchik educational fishery (Table 1).

The 1996 inriver recreational fishery for laterun chinook salmon started 1 July. To more accurately estimate the inriver return and escapement, the creel survey of the recreational fishery in the Kenai River was stratified in 1996 to estimate harvest upstream and downstream of the sonar counter (King 1997). Creel data were also combined solely

	Deep							Kenai River	r	
Year	Creek Marine Harvest	Set Net Harvest	Drift Gillnet Harvest	Personal Use	Subsistence ^a	Inriver Return	Total Return	Sport Harvest	Release Mortality	Escape- ment
1984	835	6,165	1,377			39,172	47,549	7,376	Unknown	31,796
1985	1,731	17,723	2,046			29,763	51,263	8,055	Unknown	21,708
1986	630	19,810	1,834			57,563	79,837	9,004	522	48,037
1987	1,097	20,588	4,551			48,123	74,359	12,237	368	35,518
1988	1,262	12,870	2,216			52,008	68,356	17,512	472	34,024
1989	1,294	10,919	0 ^t	° 4	22	29,035	41,274	9,127	327	19,581
1990	1,318	4,139	621	91	13	33,474	39,656	6,247	141	27,086
1991	1,325	4,891	241	130	288	34,614	41,489	6,849	103	27,662
1992	2,346	10,718	543	50	402 ^c	30,314	44,373	6,680	308	23,326
1993	3,344	14,002	751	129	27 ^d	49,674	67,927	15,279	363	34,032
1994	2,301	15,885	460	13	392 ^e	53,281	72,332	14,388	344	38,549
1995	2,539	12,032	523	36	646 ^f	44,336	60,112	10,125	312	33,899
1996 ^g	Unknown	11,333	365	45	294 ^h	54,249 ⁱ	66,286	5,816 ^j	64	48,369

Table 1.-Summary of late-run Kenai River chinook salmon population data, 1984-1996.

^a Includes harvest in Kenaitze educational gillnet fishery.

^b Drift gillnet fishery closed due to *Exxon Valdez* oil spill.

^c Includes 10 fish harvested in the Kenaitze educational fishery, 260 fish harvested in the subsistence set net fishery and 132 fish harvested in the subsistence dip net fishery.

^d Only Kenaitze educational fishery open to subsistence fishing.

^e Includes 1 fish harvested in the Kenaitze educational fishery, 274 fish harvested in the subsistence set net fishery and 117 fish harvested in the subsistence dip net fishery.

^f Includes 2 fish harvested in the Kenaitze educational fishery, 580 fish harvested in the subsistence set net fishery, 74 fish harvested in the subsistence dip net fishery, and 12 fish harvested in the Ninilchik educational fishery.

^g Preliminary data.

^h Includes 1 fish harvested in the Kenaitze educational fishery, 274 fish harvested in the personal use dip net fishery and 19 fish harvested in the Ninilchik educational fishery.

¹ Includes 4,179 fish identified as downstream targets, 304 fish harvested and 11 mortalities from hook-and-release fishing downstream of the sonar counter.

^j Fishing mortality upstream of the sonar counter.

-				1	Age Class					
	1.1	1.2	1.3	2.2	1.4	2.3	1.5	2.4	2.5	Tota
<u>1 July - 8 July</u>										
Males										
Sample Size	63	199	124	1	61	1	8	0	0	457
Percent	11.4	35.9	22.3	0.2	11.0	0.2	1.4	0.0	0.0	82.3
SE Percent	1.3	2.0	1.8	0.2	1.3	0.2	0.5	0.0	0.0	1.6
Harvest	208	658	410	3	203	3	26	0	0	1,510
SE Harvest	25	37	32	3	24	3	9	0	0	30
Females										
Sample Size	1	5	37	0	52	1	1	1	0	98
Percent	0.2	0.9	6.7	0.0	9.4	0.2	0.2	0.2	0.0	17.7
SE Percent	0.2	0.4	1.1	0.0	1.2	0.2	0.2	0.2	0.0	1.6
Harvest	3	17	122	0	172	3	3	2	0	324
SE Harvest	3	7	19	0	23	3	3	3	0	30
Combined										
Sample Size	64	204	161	1	113	2	9	I	0	555
Percent	11.5	36.8	29.0	0.2	20.4	0.4	1.6	0.2	0.0	100.0
SE Percent	1.4	2.0	1.9	0.2	1.7	0.3	0.5	0.2	0.0	
Harvest	211	674	532	3	373	7	30	3	0	1,834
SE Harvest	25	38	35	3	31	5	10	3	0	
<u>9 July - 16 July</u>										
Males										
Sample Size	29	131	166	3	95	3	8	2	0	437
Percent	4.6	20.6	26.1	0.5	14.9	0.5	1.3	0.3	0.0	68.6
SE Percent	0.8	1.6	1.7	0.3	1.4	0.3	0.4	0.2	0.0	1.8
Harvest	149	672	852	15	488	15	41	10	0	2,243
SE Harvest	27	52	57	9	46	9	14	7	0	60
Females										
Sample Size	0	0	71	0	127	1	1	0	0	200
Percent	0.0	0.0	11.1	0.0	19.9	0.2	0.2	0.0	0.0	31.4
SE Percent	0.0	0.0	1.2	0.0	1.6	0.2	0.2	0.0	0.0	1.8
Harvest	0	0	364	0	652	5	5	0	0	1,026
SE Harvest	0	0	41	0	52	5	5	0	0	60
Combined										
Sample Size	29	131	237	3	222	4	9	2	0	637
Percent	4.6	20.6	37.2	0.5	34.9	0.6	1.4	0.3	0.0	100.0
SE Percent	0.8	1.6	1.9	0.3	1.9	0.3	0.5	0.2	0.0	
Harvest	149	672	1,216	15	1,139	21	46	10	0	3,269
SE Harvest	27	52	63	9	62	10	15	7	0	

Table 2.-Estimates by age class of the number of Kenai River late-run chinook salmon harvested in the Upper Subdistrict commercial set and drift gillnet fisheries, personal use fisheries, and educational fisheries, Upper Cook Inlet, 1996.

-continued-

_				ŀ	Age Class					
	1.1	1.2	1.3	2.2	1.4	2.3	1.5	2.4	2.5	Total
<u> 17 July - 25 July</u>										
Males										
Sample Size	1	59	112	0	114	3	4	3	1	297
Percent	0.2	11.1	21.0	0.0	21.4	0.6	0.8	0.6	0.2	55.7
SE Percent	0.2	1.4	1.8	0.0	1.8	0.3	0.4	0.3	0.2	2.2
Harvest	7	417	791	0	805	21	28	21	7	2,099
SE Harvest	7	51	67	0	67	12	14	12	7	81
Females										
Sample Size	0	0	84	0	141	4	6	1	0	236
Percent	0.0	0.0	15.8	0.0	26.5	0.8	1.1	0.2	0.0	44.3
SE Percent	0.0	0.0	1.6	0.0	1.9	0.4	0.5	0.2	0.0	2.2
Harvest	0	0	594	0	996	28	42	7	0	1,667
SE Harvest	0	0	59	0	72	14	17	7	0	81
Combined										
Sample Size	1	59	196	0	255	7	10	4	1	533
Percent	0.2	11.1	36.8	0.0	47.8	1.3	1.9	0.8	0.2	100.0
SE Percent	0.2	1.4	2.1	0.0	2.2	0.5	0.6	0.4	0.2	
Harvest	7	417	1,385	0	1,802	49	71	28	7	3,766
SE Harvest	7	51	79	0	82	19	22	14	7	
26 July -14 August										
Males										
Sample Size	1	17	85	0	127	12	1	0	0	243
Percent	0.2	3.7	18.5	0.0	27.7	2.6	0.2	0.0	0.0	52.9
SE Percent	0.2	0.9	1.8	0.0	2.1	0.7	0.2	0.0	0.0	2.3
Harvest	7	117	587	0	877	83	7	0	0	1,677
SE Harvest	7	28	58	0	66	24	7	0	0	74
Females										
Sample Size	0	0	74	0	134	4	3	1	0	216
Percent	0.0	0.0	16.1	0.0	29.2	0.9	0.7	0.2	0.0	47.1
SE Percent	0.0	0.0	1.7	0.0	2.1	0.4	0.4	0.2	0.0	2.3
Harvest	0	0	511	0	925	28	21	7	0	1,491
SE Harvest	0	0	54	0	67	14	12	7	0	74
Combined										
Sample Size	1	17	159	0	261	16	4	1	0	459
Percent	0.2	3.7	34.6	0.0	56.9	3.5	0.9	0.2	0.0	100.0
SE Percent	0.2	0.9	2.2	0.0	2.3	0.9	0.4	0.2	0.0	
Harvest	7	117	1,097	0	1,801	110	28	7	0	3,168
SE Harvest	7	28	70	0	73	27	14	7	0	

Table 2.-Page 2 of 3.

-continued-

				1	Age Class					
	1.1	1.2	1.3	2.2	1.4	2.3	1.5	2.4	2.5	Total
Total										
Males										
Percent	3.1	15.5	21.9	0.2	19.7	1.0	0.9	0.3	0.1	62.5
SE Percent	0.3	0.7	0.9	0.1	0.9	0.2	0.2	0.1	0.1	1.1
Harvest	371	1,864	2,640	19	2,372	123	103	31	7	7,528
SE Harvest	38	87	110	9	108	28	23	14	7	129
Females										
Percent	0.0	0.1	13.2	0.0	22.8	0.5	0.6	0.1	0.0	37.5
SE Percent	0.0	0.1	0.8	0.0	0.9	0.2	0.2	0.1	0.0	1.1
Harvest	3	17	1,591	0	2,745	64	72	16	0	4,509
SE Harvest	3	7	92	0	114	21	22	10	0	129
Combined										
Percent	3.1	15.6	35.1	0.2	42.5	1.6	1.4	0.4	0.1	100.0
SE Percent	0.3	0.7	1.1	0.1	1.1	0.3	0.3	0.1	0.1	
Harvest	374	1,881	4,231	19	5,116	187	174	49	7	12,037
SE Harvest	38	87	128	9	130	35	32	18	7	

Table 2.-Page 3 of 3.

to provide estimates that can be compared with those of previous years. Angler effort was an estimated 238,495 (SE = 7,285) angler-hours (King 1997). The estimated harvest of 5,984 (SE = 404) chinook salmon was only 78% of the 1974-1995 average (Table 3). Catch was an estimated 6,938 (SE = 428) chinook salmon. Anglers employing professional guides accounted for 65% of the harvest and 48% of the effort.

Based on a sample 234 fish with readable scales, there was a significant ($\chi^2 = 24.0$, df = 3, P < 0.01) difference in the age composition of the recreational harvest between two temporal strata, even of the two age groups that composed over 90% of the sport harvest ($\chi^2 = 6.7$, df = 1, P = 0.01). Because chinook salmon were sampled almost exactly in proportion to the harvest of the two temporal strata, combining the age data across the two strata did not produce biased estimates of harvest by age. Therefore, all samples were combined to estimate harvest by age (Table 4). The harvest was predominantly fish aged 1.4 (55%) with the proportion of fish aged 1.3 (37%) the second greatest observed since 1986 (Table 5).

In 1996, an estimated 13% of the catch was released (Table 6). Since 1986, the first year that estimates of total catch in the recreational fishery were available, an average of 27% of the catch was released. In 1996, release mortality upstream of the sonar counter was an estimated 64 (SE = 50) fish. The age and sex composition of the hook-and-release mortality was assumed equal to that of the inriver return (Table 7).

INRIVER RETURN

The sonar was in operation from 16 May through 31 July (Burwen and Bosch *In prep*). Inriver return estimated past the sonar counter from 1 July through 31 July was 53,934

		Harvest		Effort	in Angler H	Hours	Harv	est per Ho	ur
Year	Unguided	Guided	Total	Unguided	Guided	Total	Unguided	Guided	Total
1974			3,225			87,162			0.037
1975			2,355			53,523			0.044
1976			5,353			114,795			0.043
1977			5,148			135,082			0.038
1978			5,578			212,217			0.020
1979			4,634			205,887			0.023
1980			3,608			154,435			0.023
1981	2,755	2,530	5,285	112,569	36,727	149,296	0.024	0.069	0.03
1982	2,413	2,397	4,810	146,947	50,828	197,775	0.016	0.047	0.024
1983	4,064	5,110	9,174	197,324	51,195	248,519	0.021	0.100	0.03
1984	4,448	2,928	7,376	302,915	45,664	348,579	0.015	0.064	0.02
1985	5,010	3,045	8,055	248,517	45,936	294,453	0.020	0.066	0.02
1986	5,458	3,546	9,004	191,597	52,843	244,440	0.028	0.067	0.03
1987	6,361	5,966	12,327	231,511	79,329	310,840	0.027	0.075	0.04
1988	8,103	9,409	17,512	266,578	95,181	361,759	0.030	0.099	0.04
1989	3,799	5,328	9,127	231,085	97,966	329,051	0.016	0.054	0.02
1990 ^a	2,439	3,808	6,247	190,743	101,223	291,966	0.013	0.038	0.02
1991	2,985	3,864	6,849	147,293	82,706	229,999	0.020	0.047	0.03
1992 ^a	2,504	4,176	6,680	112,091	75,324	187,415	0.024	0.064	0.03
1993	7,413	7,866	15,279	201,695	92,213	293,908	0.037	0.085	0.05
1994	7,760	6,628	14,388	244,729	110,049	354,778	0.032	0.060	0.04
1995	4,914	5,211	10,125	200,397	123,585	323,982	0.025	0.042	0.03
Mean	4,695	4,787	7,825	201,733	76,051	233,176	0.023	0.065	0.03
1996 ^b	2,131	3,853	5,984	128,438	110,057	238,495	0.017	0.035	0.02

Table 3.-Summary of historical harvest, angler effort, and harvest rate in the recreational fishery for late-run chinook salmon, Kenai River, 1974-1996.

^a Harvest per hour only for periods open to retention of chinook salmon.

^b Estimates with all of the creel data combined. The creel survey was stratified to provide estimates for upstream and downstream of the sonar counter. Stratified estimates may not sum to the same values shown here.

			Age Class			
	1.2	1.3	1.4	1.5	Other	Tota
Upstream of sonar c	counter ^a					
Males	<u>o curror</u>					
Sample Size	10	29	55	1	1	96
Percent	4.3	12.4	23.5	0.4	0.4	41.0
SE Percent	1.3	2.2	2.8	0.4	0.4	3.2
Harvest	249	721	1,367	25	25	2,386
SE Harvest	79	134	184	25	25	243
Females						
Sample Size	4	57	74	3	0	138
Percent	1.7	24.4	31.6	1.3	0.0	59.0
SE Percent	0.8	2.8	3.0	0.7	0.0	3.2
Harvest	99	1,417	1,839	75	0.0	3,430
SE Harvest	50	188	214	43	0	291
Combined					Ť	
Sample Size	14	86	129	4	1	234
Percent	6.0	36.8	55.1	4 1.7	1 0.4	100.0
SE Percent	1.6	3.2	3.3	0.8	0.4	100.0
Harvest	348	2,138	3,206	0.8 99	25	5,816
SE Harvest	93	2,138	282	50	25	3,810
		200	202	50	25	577
Downstream of sona	ar counter					
Males	10	•		_		
Sample Size	10	29	55	1	1	96
Percent	4.3	12.4	23.5	0.4	0.4	41.0
SE Percent	1.3	2.2	2.8	0.4	0.4	3.2
Harvest	13	38	71	1	1	125
SE Harvest	6	15	26	1	1	44
Females						
Sample Size	4	57	74	3	0	138
Percent	1.7	24.4	31.6	1.3	0.0	59.0
SE Percent	0.8	2.8	3.0	0.7	0.0	3.2
Harvest	5	74	96	4	0	179
SE Harvest	3	27	35	3	0	63
Combined						
Sample Size	14	86	129	4	1	234
Percent	6.0	36.8	55.1	1.7	0.4	100.0
SE Percent	1.6	3.2	3.3	0.8	0.4	10010
Harvest	18	112	168	5	1	304
SE Harvest	8	40	59	3	1	106

Table 4.-Estimates by age class of the number of late-run chinook salmon harvested in the recreational fishery on the Kenai River, 1996.

^a Location of harvest of sampled fish was unknown. Assume age structure of harvest was the same regardless of location of harvest.

					Age Cl	ass						
	1.1	1.2	1.3	1.4	1.5	1.6	2.2	2.3	2.4	2.5	Other	Tota
1986												
Percent	0.4	10.1	39.0	45.2	5.3							100.0
Harvest	37	913	3,507	4,072	475							9,004
SE Harvest	26	131	266	289	94							458
1987												150
Percent	0.4	1.0	22.8	72.7	3.1							100.0
Harvest	51	127	2,787	8,892	380							12,237
SE Harvest	36	57	292	611	99							769
1988												105
Percent	0.7	0.2	3.4	78.6	17.1							100.0
Harvest	126	42	589	13,766	2,989							17,512
SE Harvest	73	42	159	887	368							1,036
1989				007	500							1,050
Percent		1.0	10.9	71.3	15.8				1.0			100.0
Harvest		90	994	6,507	1,446				90			9,127
SE Harvest		90	291	585	345				90			582
1990		20	271	505	545				90			362
Percent	0.6	9.7	15.8	62.2	11.7							100.0
Harvest	37	605	989	3,883	733							
SE Harvest	26	109	142	322	121							6,247
1991	20	109	142	322	141							445
Percent		4.9	11.7	76.2	6.3			0.9				100.0
Harvest		338	799	5,221	430			61				100.0
SE Harvest		101	155	369	430 114			43				6,849
1992		101	155	309	114			43				410
Percent	0.5	2.0	15.4	76.1	6.0							100.0
Harvest	33	133	1,030	5,085	399							6,680
SE Harvest	33	66	185	405	115							462
1993	55	00	105	405	115							402
Percent		1.9	5.7	85.6	5.8		0.6	0.3	0.1			100.0
Harvest		288	865	13,084	887		89	44	22			15,279
SE Harvest		80	139	569	141		44	31	22			620
1994		00	,	007				51	22			020
Percent	0.3	2.3	4.7	90.5	2.2							100.0
Harvest	36	325	681	13,026	320							14,388
SE Harvest	36	107	152	209	106							637
1995												057
Percent	0.6	7.0	9.8	71.9	10.7							100.0
Harvest	65	704	991	7,279	1,086							10,125
SE Harvest	38	124	153	424	162							511
1996 ^a												511
Percent	0.4	6.0	36.8	55.1	1.7							100.0
Harvest	25	348	2,138	3,206	99							5,816
SE Harvest	25	93	230	282	50							379

Table 5.-Estimates by age class of the number of late-run chinook salmon harvested in the recreational fishery on the Kenai River, 1986-1996.

^a Estimates for upstream of the sonar counter only.

							Hook-and-	
	Sport	Sport	Number	SE	Percent	SE	Release	SE
Year	Catch	Harvest	Released	Released	Mortality ^a	Percent	Mortality	Mortality
1986	15,331	9,004	6,327	872	8.3 (E)	3.39	522	220
1987	16,701	12,237	4,464	1,214	8.3 (E)	3.39	368	174
1988	23,238	17,512	5,726	1,590	8.3 (E)	3.39	472	225
1989	12,210	9,127	3,083	1,097	10.6 (M)	3.30	327	148
1990	8,637	6,247	2,390	709	5.9 (M)	3.30	141	65
1991	8,091	6,849	1,242	631	8.3 (E)	3.39	103	64
1992	10,394	6,680	3,714	771	8.3 (E)	3.39	308	139
1993	19,660	15,279	4,381	1,002	8.3 (E)	3.39	363	167
1994	18,539	14,388	4,151	999	8.3 (E)	3.39	344	160
1995	13,899	10,125	3,774	825	8.3 (E)	3.39	312	142
1996 ⁶ D U	436 6,592	304 5,816	132 776	163 562	8.3 (E) 8.3 (E)	3.39 3.39	11 64	13 50

Table 6.-Estimates of the number of late-run chinook salmon mortalities attributable to hook-and-release fishing, Kenai River, 1986-1996.

^a E = estimated as the mean of the 1989 and 1990 mortality rates (Bendock and Alexandersdottir 1992) and M is the estimated rate during this study.

^b D indicates downstream and U indicates upstream of the sonar counter.

			Age Class			
	1.2	1.3	1.4	1.5	Other	Total
Upstream of sonar co	unter					
Males						
Sample Size ^a	36	96	140	2	1	275
Percent	7.7	20.5	29.9	0.4	0.2	58.6
SE Percent	1.2	1.9	2.1	0.3	0.2	2.3
Mortality	5	13	19	0	0	38
SE Mortality	4	10	15	0	0	29
Females						
Sample Size ^a	0	63	129	2	0	194
Percent	0.0	13.4	27.5	0.4	0.0	41.4
SE Percent	0.0	1.6	2.1	0.3	0.0	2.3
Mortality	0	9	18	1	0.0	2.5
SE Mortality	0	7	14	0	0	20
_	-	,		Ū	Ū	21
Combined	26	1.50	•			
Sample Size ^a	36	159	269	4	1	469
Percent	7.7	33.9	57.4	0.9	0.2	100.0
SE Percent	1.2	2.2	2.3	0.4	0.2	
Mortality	5	22	37	1	0	64
SE Mortality	4	17	29	0	0	50
Downstream of sonar	counter					
Males						
Sample Size ^a	36	96	140	2	1	275
Percent	7.7	20.5	29.9	0.4	0.2	58.6
SE Percent	1.2	1.9	2.1	0.3	0.2	2.3
Mortality	1	2	3	0	0	7
SE Mortality	1	3	4	0	0	8
Females						
Sample Size ^a	0	63	129	2	0	194
Percent	0.0	13.4	27.5	0.4	0.0	41.4
SE Percent	0.0	1.6	27.5	0.4	0.0	2.3
Mortality	0.0	2	3	0.5	0.0	
SE Mortality	0	2	4	0	0	5 5
Combined	U U	~	•	Ŭ	Ū	5
Sample Size ^a	36	150	260	4	1	100
Percent	30 7.7	159	269	4	1	469
SE Percent		33.9	57.4	0.9	0.2	100.0
	1.2	2.2	2.3	0.4	0.2	
Mortality	1	4	6	0	0	11
SE Mortality	1	4	7	0	0	13

Table 7.-Estimates by age class of the number of late-run chinook salmon that died as a result of hook-and-release fishing in the recreational fishery on the Kenai River, 1996.

^a Age/sex composition of released fish that died as a result of hook-and-release fishing was assumed equal to the age/sex composition of the inriver return during strata 7/1-7/23 and 7/24-7/31 combined.

(SE = 1,059) fish (Burwen and Bosch *In prep*; Table 8). Large numbers of pink salmon *O*. *gorbuscha* holding in the sonar beam made counting of chinook salmon unreliable after 31 July. The 1996 inriver return was 30% larger than the 1984-1995 mean of 41,780 fish (Table 1).

A sample of 469 late-run chinook salmon were captured with gillnets to estimate age composition of the inriver return. There was no significant ($\chi^2 = 2.3$, df = 1, P = 0.13) difference in the age composition between 1 July-23 July and 24 July-15 August for the two age classes making up over 90% of the return. The inriver return was predominantly age 1.4 (57%) followed by age classes 1.3, 1.2, and 1.5 (34%, 8%, 1%, respectively) (Table 9). Age-1.4 fish have historically dominated the total inriver return (Table 10).

ESCAPEMENT AND TOTAL RETURN

Spawning escapement by age class was estimated by subtracting total inriver fishing mortality upstream of the sonar counter from the sonar count. In 1996, an estimated 48,054 (SE = 1,126) chinook salmon escaped all fisheries (Table 11). The majority (58%) of these spawners were age class 1.4. This age class has been the predominant spawning age class since estimates were first made in 1986.

The total return of late-run chinook salmon to the Kenai River is the sum of the commercial, recreational, personal use and subsistence harvests plus the escapement. The estimated total return of chinook salmon to the Kenai River in 1996 was 66,286 (SE = 1,059) fish (Tables 1 and 10).

BROOD RELATIONSHIPS

Age components of measured returns are presented in Table 12 and a summary of the production from each brood year appears in Table 13. Production of 19,581 fish from the 1989 escapement, the smallest measured so far, produced the largest return-per-spawner (RPS) ratio (2.26) with age-7 fish to return in 1997. The 1990 escapement of 27,086 chinook salmon has the third largest RPS ratio, with ages 7 and 8 still to return. The 1991 escapement of 27,662 chinook salmon also appears to be producing very well, with an RPS ratio of 1.32 and ages 6-8 yet to return.

SIBLING RELATIONSHIPS

Sibling return ratios (Sonnichsen and Alexandersdottir 1991) have been used to forecast returns since 1990 (Table 14). Observed returns have ranged from 28% less than the forecasted value to 37% greater than the forecasted value, averaging within 3% of the anticipated return (Table 15). The 1997 forecast for the Kenai River late run is 120,514 (SE = 32,788) chinook salmon (Table 15).

MIGRATORY TIMING MODELS

The mean timing model used to predict the inriver return performed well in 1996 (Figure 4). Cumulative proportions by date for 1996 remained within the 1985-1995 95% confidence interval throughout the late run, except for 25-30 July (Figure 5). The mean timing model was the basis for extending the recreational fishery into August.

The models used to predict end of season (31 July) harvest and catch did not perform as well as in the past. The fishery, in general, appeared to be quite different than previous seasons. Daily projections of end of season harvest and catch did not appear to be reliable until 20 July (Figure 6). The final escapement is predicted by combining the inriver return, harvest, and catch models. The erratic fishery and the fact that the August component of the return was not assessed resulted in less accurate projections of the final escapement (Figure 7).

		Counts	1988	Counts	1989	Counts	1990	Counts	1991	Counts	1992	Counts	199	3 Counts	1994	Counts	1995	Counts	1996	Counts
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum												
7/01	507	507	526	526	769	769	578	578	267	267	364	364	539	539	663	663	350	350	341	34 1
7/02	429	936	404	930	489	1,258	305	883	300	567	297	661	432	971	342	1,005	398	748	240	581
7/03	405	1,341	398	1,328	353	1,611	486	1,369	333	900	320	981	325	1,296	625	1,630	353	1,101	303	884
7/04	628	1,969	292	1,620	566	2,177	436	1,805	519	1,419	198	1,179	397	1,693	858	2,488	439	1,540	393	1,277
7/05	596	2,565	482	2,102	1,106	3,283	853	2,658	316	1,735	225	1,404	429	2,122	705	3,193	667	2,207	1,067	2,344
7/06	523	3,088	654	2,756	879	4,162	795	3,453	242	1,977	331	1,735	884	3,006	1,069	4,262	720	2,927	879	3,223
7/07	769	3,857	379	3,135	680	4,842	929	4,382	186	2,163	247	1,982	1,572	4,578	1,050	5,312	931	3,858	780	4,003
7/08	483	4,340	725	3,860	776	5,618	432	4,814	139	2,302	170	2,152	1,855	6,433	655	5,967	417	4,275	867	4,870
7/09	384	4,724	471	4,331	1,404	7,022	309	5,123	393	2,695	205	2,357	1,876	8,309	744	6,711	519	4,794	768	5,638
7/10	314	5,038	1,732	6,063	560	7,582	359	5,482	481	3,176	221	2,578	820	9,129	1,275	7,986	450	5,244	1,023	6,661
7/11	340	5,378	1,507	7,570	2,010	9,592	778	6,260	403	3,579	143	2,721	1,238	10,367	509	8,495	325	5,569	1,146	7,807
7/12	751	6,129	1,087	8,657	2,763	12,355	557	6,817	330	3,909	1,027	3,748	676	11,043	828	9,323	276	5,845	714	8,521
7/13	747	6,876	2,251	10,908	910	13,265	1,175	7,992	308	4,217	605	4,353	3,345	14,388	1,066	10,389	570	6,415	1,128	9,649
7/14	761	7,637	2,370	13,278	2,284	15,549	1,481	9,473	572	4,789	689	5,042	3,177	17,565	1,332	11,721	714	7,129	4,437	14,086
7/15	913	8,550	2,405	15,683	1,111	16,660	1,149	10,622	542	5,331	745	5,787	2,233	19,798	2,211	13,932	750	7,879	3,222	17,308
7/16	1,466	10,016	1,259	16,942	1,344	18,004	1,011	11,633	1,029	6,360	703	6,490	2,329	22,127	3,825	17,757	1,962	9,841	3,494	20,802
7/17	1,353	11,369	1,520	18,462	963	18,967	2,395	14,028	2,052	8,412	570	7,060	2,037	24,164	4,692	22,449	1,128	10,969	2,253	23,055
7/18	841	12,210	2,180	20,642	1,382	20,349	2,113	16,141	3,114	11,526	853	7,913	1,438	25,602	2,157	24,606	3,942	14,911	2,820	25,875
7/19	2,071	14,281	1,724	22,366	425	20,774	1,363	17,504	1,999	13,525	1,128	9,041	715	26,317	3,493	28,099	4,692	19,603	2,236	28,111
7/20	3,709	17,990	2,670	25,036	820	21,594	1,499	19,003	1,422	14,947	1,144	10,185	1,348	27,665	2,317	30,416	4,779	24,382	2,609	30,720
7/21	3,737	21,727	3,170	28,206	916	22,510	787	19,790	1,030	15,977	799	10,984	981	28,646	1,695	32,111	3,132	27,514	3,435	34,155
7/22	1,835	23,562	1,302	29,508	583	23,093	573	20,363	1,050	17,027	619	11,603	1,166	29,812	1,386	33,497	3,465	30,979	2,250	36,405
7/23	1,700	25,262	1,502	31,010	756	23,849	642	21,005	2,632	19,659	1,449	13,052	1,163	30,975	1,050	34,547	2,421	33,400	3,050	39,455
7/24	2,998	28,260	1,386	32,396	783	24,632	1,106	22,111	2,204	21,863	711	13,763	1,344	32,319	1,232	35,779	831	34,231	3,634	43,089
7/25	1,915	30,175	999	33,395	495	25,127	810	22,921	1,306	23,169	1,713	15,476	2,245	34,564		37,191	840	35,071	3,240	46,329
7/26	1,968	32,143	924	34,319	432	25,559	671	23,592	1,216	24,385	1,296	16,772	1,421	35,985	1,378	38,569	1,683	36,754	2,319	48,648
7/27	1,523	33,666	960	35,279	618	26,177	755	24,347	1,195	25,580	1,561	18,333	1,952	37,937	1,244	39,813	1,806	38,560	1,782	50,430
7/28	2,101	35,767	1,398	36,677	538	26,715	603	24,950	1,901	27,481	1,957	20,290	1,915	39,852	2,180	41,993	789	39,349	861	51,291
7/29	1,923	37,690	1,400	38,077	441	27,156	546	25,496	1,146	28,627	1,533	21,823	1,363	41,215	1,327	43,320	558	39,907	474	51,765
7/30	2,595	40,285	1,158	39,235	391	27,547	382	25,878	791	29,418	1,198	23,021	1,628	42,843	1,776	45,096	510	40,417	621	52,386
7/31	2,372	42,657	910	40,145	383	27,930	316	26,194	974	30,392	951	23,972	862	43,705	1,808	46,904	480	40,897	1,548	53,934
8/01	470	43,127	925	41,070	351	28,281	393	26,587	897	31,289	921	24,893	767	44,472	1,037	47,941	474	41,371		
8/02	314	43,441	781	41,851	201	28,482	388	26,975	867	32,156	1,018	25,911	613	45,085	1,226	49,167	369	41,740		
8/03	263	43,704	989	42,840	132	28,614	533	27,508	392	32,548	837	26,748	337	45,422	1,081	50,248	447	42,187		
8/04	835	44,539	1,524	44,364	142	28,756	717	28,225	331	32,879	862	27,610	463	45,885	658	50,906	519	42,706		
8/05	904	45,443	1,091	45,455	107	28,863	723	28,948	174	33,053	861	28,471	711	46,596	536	51,442	404	43,110		
8/06	648	46,091	1,333	46,788	107	28,970	552	29,500	343	33,396	654	29,125	1,079	47,675	1,042	52,484	408	43,518		
8/07	694	46,785	1,186	47,974	65	29,035	516	30,016	618	34,014	558	29,683	656	48,331	797	53,281	279	43,797		
8/08	658	47,443	1,449	49,423			682	30,698	600	34,614	217	29,900	669	49,000			267	44,064		
8/09	368	47,811	1,132	50,555			679	31,377			165	30,065	422	49,422			272	44,336		
8/10	312	48,123	755	51,310			678	32,055			249	30,314	252	49,674						
8/11		48,123	698	52,008			547	32,602												
8/12							362	32,964												
8/13							221	33,185												
8/14							139	33,324												
8/15							150	33,474												
fotal		48,123		52,008		29.035		33,474		34,614		30,314		49.674		53,281		44,336		53,934

Table 8.-Historical sonar counts of chinook salmon in the Kenai River during the late run, 1987-1996.

			Age Class			
	1.2	1.3	1.4	1.5	Other	Total
Sonar count						
Males						
Sample Size	36	96	140	2	1	275
Percent	7.7	20.5	29.9	0.4	0.2	58.6
SE Percent	1.2	1.9	2.1	0.3	0.2	2.3
Return	4,140	11,040	16,100	230	115	31,624
SE Return	668	1,029	1,183	162	115	1,374
Females						
Sample Size	0	63	129	2	0	194
Percent	0.0	13.4	27.5	0.4	0.0	41.4
SE Percent	0.0	1.6	2.1	0.3	0.0	2.3
Return	0	7,245	14,835	230	0	22,310
SE Return	0	862	1,150	162	0	1,303
Combined						
Sample Size	36	159	269	4	1	469
Percent	7.7	33.9	57.4	0.9	0.2	100.0
SE Percent	1.2	2.2	2.3	0.4	0.2	
Return	4,140	18,285	30,934	460	115	53,934
SE Return	668	1,233	1,373	229	115	1,054
Sport harvest downstream Males	<u>ı of sonar</u>					
Harvest	13	38	71	1	1	125
SE Harvest	6	15	26	1	1	44
Females						
Harvest	5	74	96	4	0	179
SE Harvest	3	27	35	3	0	63
Combined						
Harvest	18	112	168	5	1	304
SE Harvest	8	40	59	3	1	106
Hook and release mortali	ty downstream of s	onar				
Males						
Mortality	1	2	3	0	0	7
SE Mortality	1	3	4	0	0	8
Females						
Mortality	0	2	3	0	0	5
SE Mortality	0	2	4	0	0	5
Combined						
Mortality	1	4	6	0	0	11
SE Mortality	1	4	7	0	0	13
Total inriver return						
Males						
Percent	7.7	20.4	29.8	0.4	0.2	58.5
Return	4,154	11,080	16,174	231	116	31,756
SE Return	668	1,029	1,184	162	115	1,375
Females						
Percent	0.0	13.5	27.5	0.4	0.0	41.5
Return	5	7,321	14,934	234	0	22,494
SE Return	3	862	1,151	163	0	1,304
Combined						
Percent	7.7	33.9	57.3	0.9	0.2	100.0
Return	4,159	18,401	31,108	465	116	54,249
SE Return	669	1,234				

Table 9.-Estimates by age class of the number of late-run chinook salmon in the inriver return to the Kenai River, 1996.

								Age Class								
	0.2	0.3	0.4	0.5	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	2.5	Total
1986																
Percent	0.1	0.1	0.0	0.0	0.3	15.1	44.2	36.4	3.5	0.0	0.1	0.1	0.2	0.1	0.0	100.0
Return	43	43	22	22	260	12,017	35,314	29,039	2,774	22	43	43	152	43	0	79,837
SE Return	24	24	17	17	60	3,436	9,106	6,482	776	17	24	24	46	24		19,458
1987																
Percent	0	0	0	0	0.5	4.9	30.2	63.0	1.0	0.1	0.1	0.1	0.1	0.1	0.0	100.0
Return	0	0	0	0	361	3,635	22,427	46,812	775	99	51	44	97	58	0	74,359
SE Return					75	315	796	823	173	70	51	23	57	50		0
1988																
Percent	0	0	0.1	0	0.7	3.3	6.0	75.0	14.8	0	0	0.1	0.0	0.1	0.0	100.0
Return	0	0	35	0	454	2,235	4,116	51,233	10,121	0	0	46	15	101	0	68,356
SE Return			17		72	241	375	820	735			23	13	36		0
1989																
Percent	0	0	0	0	0.3	12.2	15.0	60.3	11.8	0.2	0.0	0.1	0	0.0	0.0	100.0
Return	0	0	0	0	108	5,053	6,194	24,908	4,888	76	0.0	34	0	13	0.0	41,274
SE Return					38	438	468	662	456	69		24		13	0	0
1990																
Percent	0	0.0	0.0	0	0.2	14.5	16.6	63.6	4.6	0	0.1	0.1	0.1	0.2	0.0	100.0
Return	0	11	11	0	65	5,749	6,572	25,237	1,841	0	45	23	23	79	0.0	39,656
SE Return		10	10		22	480	519	655	307	-	19	14	14	26	ů	0
1991																
Percent	0.0	0	0.1	0	0.1	10.3	18.5	64.4	5.8	0	0.0	0	0.6	0.0	0.0	100.0
Return	15	0	31	0	46	4,291	7,687	26,732	2,396	0	15	0	261	15	0.0	41,489
SE Return	15		22		27	526	721	903	479	0	15	Ŷ	154	15	0	41,489 0
1992																
Percent	0	0	0	0	0.8	9.7	19.7	66.5	2.8	0	0	0.2	0.7	0.0	0.0	100.0
Return	0	0	0	0	347	4,311	8,746	29,515	1,230	0	0	82	0.3 123	0.0 19	0.0 0	100.0
SE Return	Ū	0	Ū	Ŭ	83	468	649	766	267	U	U	41	50	19	0	44,373 0
1993																
Percent	0	0	0	0	0.8	9.4	15.9	68.0	5.3	0	0	0.0	0.6	0.1	0.0	100.0
Return	0	0	0	0	528	6,367	10,770	46,188	3,570	0	0	19	406	0.1 79	0.0 0	100.0
SE Return	0	Ū	Ū	v	99	739	950	1,215	624	U	U	19	207	39	0	67,927 0
1994																
Percent	0	0	0	0	0.9	7.2	12.1	74.2	4.5	0	0	0.1	0.1	0.0	0.0	100.0
Return	0	0	0	0	625	5,218	8,758	53,663	4.3 3,262	10	0	44	0.1 77	0.9 675	0.0 0	100.0
SE Return	-	, in the second s	Ū	Ŭ	73	610	837	1,071	530	10	0	22	29	389	0	72,332 0
1995																
Percent	0	0	0	0	0.7	22.4	12.0	46.0		0	0		0.0			
Return	0	0	0	0	398	13,357	23.9 14,250	46.9 27,965	5.5	0 0	0 0	0.2	0.0	0.4	0.0	100.0
SE Return	0	0	ů	0	55	1,298	1,280	1,558	3,270 701	0	0	101 30	15 11	252 216	7 7	59,615 65
1996																
Percent	0	0	0	0	07	0.1	24.1	EAT	1.0	^	~	0.0		. .	0.0	
Return	0	0	0	0	0.7 490	9.1 6,040	34.1 22,631	54.6	1.0	0	0	0.0	0.3	0.1	0.0	100.0
SE Return	0	0	0	0	121	6,040 674		36,224	639	0	0	19	187	49	7	66,286
SE Return	v	v	0	U	121	0/4	1,240	1,380	232	0	0	9	35	18	7	1,059

Table 10.-Estimates by age class of the number of late-run chinook salmon in the total return to the Kenai River, 1986-1996.

				Age (Class					
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	Total
1986										
Inriver Return	0	7,009	27,141	21,413	2,000	0	0	0	0	57,563
SE Return	0	3,428	9,101	6,474	769	0	0	0	Õ	19,457
Harvest	37	913	3,507	4,072	475	0	Ō	0	õ	9,004
SE Harvest	26	131	266	289	94	0	0	0	0	458
H&R ^a Mortality	0	63	229	207	23	0	0	0	0	522
SE H&R	0	27	96	87	10	0	Ō	0	Õ	220
Escapement ^b	0	6,033	23,405	17,134	1,502	0	0	0	Ō	48,037
SE Escapement	0	3,431	9,105	6,481	775	0	0	0	0	19,464
1987										
Inriver Return	0	898	13,407	33,119	500	99	50	0	50	48,123
SE Return	0	209	696	719	157	70	50	0	50	0
Harvest	51	127	2,787	8,892	380	0	0	Ő	0	12,237
SE Harvest	36	57	292	611	99	0	0	Ō	Õ	769
H&R ^a Mortality	0	7	103	253	4	1	0	0	0	368
SE H&R	0	4	49	120	2	1	Õ	Õ	Ő	174
Escapement ^b	0	764	10,517	23,974	116	98	50	Õ	50	35,518
SE Escapement	0	217	756	951	186	70	50	0	50	788
1988										
Inriver Return	0	628	1,888	39,860	9,632	0	0	0	0	52,008
SE Return	0	198	340	793	732	Ő	Ő	Ő	õ	02,000
Harvest	126	42	589	13,766	2,989	0	Õ	Ő	Õ	17,512
SE Harvest	73	42	159	887	368	0	Õ	0	0	1,036
H&R ^a Mortality	0	6	18	367	81	0	Ő	õ	Ő	472
SE H&R	0	3	9	175	39	Ő	Ő	ő	õ	225
Escapement ^b	0	580	1,281	25,727	6,562	Ő	ŏ	ŏ	ő	34,024
SE Escapement	0	202	375	1,203	820	0	Ő	0 0	0	1,060
1989										
Inriver Return	8	3,129	3,734	18,366	3,722	76	0	0	0	29,035
SE Return	8	409	437	629	440	69	0	0	Õ	0
Harvest	0	90	994	6,507	1,446	0	0	0	90	9,127
SE Harvest	0	90	291	585	345	0	0	0	90	582
H&R ^a Mortality	1	34	40	211	40	1	Ő	Ő	0	327
SE H&R	1	16	19	96	18	1	Ő	Õ	Õ	148
Escapement ^b	7	3,005	2,700	11,648	2,236	75	õ	Ő	0	19,581
SE Escapement	8	419	525	864	559	69	ő	0	0	601
1990										
Inriver Return	0	4,204	4,934	22,808	1,528	0	0	0	0	33,474
SE Return	0	471	510	647	304	0	Ō	0	Õ	0
Harvest	37	605	989	3,883	733	0	0	0	0	6,247
SE Harvest	26	109	142	322	121	0	0	0	0	445
H&R ^a Mortality	0	17	21	97	6	0	0	0	0	141
SE H&R	0	8	10	45	3	0	0	0	0	65
Escapement ^b	0	3,582	3,924	18,828	789	0	0	0	0	27,086
SE Escapement	0	484	529	724	327	0	0	0	0	450
1991										
Inriver Return	0	2,580	5,482	24,080	2,257	0	0	215	0	34,614
SE Return	Ő	507	705	889	477	0	0	152	0	J4,014 0
Harvest	õ	338	799	5,221	430	0	0	61	0	6,849
SE Harvest	Ő	101	155	369	114	0	0	43	0	410
H&R ^a Mortality	Ő	5	133	79	6	0	0	43	0	103
SE H&R	0	3	8	49	4	0	0	1	0	64
Escapement ^b	0	2,237	4,671	18,780	1,821	0	0	153	0	27,662
SE Escapement	0	517	722	964	490	0	0	153	0	415

Table 11.-Estimates by age class of the number of late-run chinook salmon in the spawning escapement to the Kenai River, 1986-1996.

-continued-

Table 11.-Page 2 of 2.

				Age	Class					
	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.3	2.4	Total
1992										
Inriver Return	0	2,206	4,863	22,546	699	0	0	0	0	30,314
SE Return	0	427	603	718	247	0	0	0	0	Ċ
Harvest	33	133	1,030	5,085	399	0	0	0	0	6,680
SE Harvest	33	66	185	405	115	0	0	0	0	462
H&R ^a Mortality	0	21	49	231	7	Ő	ŏ	Õ	ŏ	308
SE H&R	0	10	23	105	4	ŏ	Ŏ	ŏ	Ŏ	139
Escapement ^b	0	2,052	3,784	17,230	293	Ő	Ő	ŏ	ů 0	23,326
SE Escapement	0	432	631	831	272	Ő	0	ů	Ő	482
1993										
Inriver Return	0	4,012	6,985	35,565	2,825	0	0	287	0	49,674
SE Return	0	712	919	1,180	613	ŏ	Ő	202	Ő	(),074
Harvest	0	288	865	13,084	887	ŏ	89 [°]	44	22	15,279
SE Harvest	0	80	139	569	141	ŏ	44	31	22	620
H&R ^a Mortality	0	45	64	236	15	ŏ	2	1	0	363
SE H&R	0	22	31	109	8	ŏ	2	1	Ő	167
Escapement ^b	0	3,679	6,056	22,245	1,923	ŏ	õ	242	ŏ	34,032
SE Escapement	0	717	930	1,315	629	Ő	Ő	204	ů	642
1994										
Inriver Return	0	2,954	6,041	41,714	2,187	0	0	0	385	53,28
SE Return	0	593	822	1,050	520	ŏ	Ő	ŏ	222	(
Harvest	36	325	681	13,026	320	Õ	ŏ	ŏ	0	14,38
SE Harvest	36	107	152	209	106	Ő	ŏ	ŏ	Ő	63
H&R ^a Mortality	0	28	51	244	17	ŏ	ŏ	ŏ	ů 4	344
SE H&R	0	14	25	114	9	ŏ	ŏ	ŏ	3	160
Escapement ^b	0	2,601	5,309	28,444	1,850	ŏ	Ő	ŏ	381	38,549
SE Escapement	0	603	836	1,077	531	0	Ő	0	222	657
1995										
Inriver Return	0	9,900	9,470	22,383	2,367	0	0	0	215	44,336
SE Return	Ő	1,290	1,269	1,548	696	Ő	Ő	0	215	,550 (
Harvest	65	704	991	7,279	1,086	Ő	0	0	0	10,125
SE Harvest	38	124	153	424	162	0 0	0	0	0	511
H&R ^a Mortality	0	70	67	158	102	0	0	0	0	312
SE H&R	0	33	31	72	9	0	0	0	0	142
Escapement ^b	0	9,126	8,412	14,946	1,264	0	0	0	215	33,899
SE Escapement	0	1,296	1,279	1,607	715	0	0	0	215	53,695 53(
1996										
Inriver Return	115	4,140	18,285	20 024	120	0	0	0	0	52.02
SE Return				30,934	460	0	0	0	0	53,934
Harvest	115 25	668 348	1,233	1,373	229	0	0	0	0	1,059
			2,138	3,206	99 50	0	0	0	0	5,816
SE Harvest H&R ^a Mortality	25	93	230	282	50	0	0	0	0	379
	0	5	22	37	1	0	0	0	0	64
SE H&R	0	4	17	29	0	0	0	0	0	50
Escapement ^b	90	3,787	16,125	27,691	360	0	0	0	0	48,054
SE Escapement	118	674	1,254	1,402	234	0	0	0	0	1,120

^a Hook and Release.

^b For some age classes in some years the estimates of the number harvested in the sport fishery is greater than the estimate of the number in the inriver return. The spawning escapement for the age class was set to zero. When this occurred, the total spawning escapement (calculated by subtracting the total sport harvest plus hook-and-release mortality from the inriver return) is not the sum of the escapement across age classes.

Year	(0.2, 1.1) Age 3	(0.3, 1.2, 2.1) Age 4	(0.4, 1.3, 2.2) Age 5	(0.5, 1.4, 2.3) Age 6	(1.5, 2.4) Age 7	(1.6, 2.5) Age 8	Total Return
1986	303	12,103	35,379	29,213	2,817	22	79,837
1987	361	3,686	22,471	46,909	833	99	74,359
1988	454	2,235	4,197	51,249	10,221		68,356
1989	108	5,053	6,228	24,908	4,901	76	41,274
1990	65	5,805	6,606	25,260	1,920		39,656
1991	61	4,306	7,718	26,993	2,411		41,489
1992	347	4,311	8,828	29,638	1,249		44,373
1993	528	6,367	10,789	46,594	3,649		67,927
1994	625	5,218	8,802	53,740	3,937	10	72,332
1995	398	13,357	14,351	27,980	3,522	7	59,615
1996	490	6,040	22,650	36,411	688	7	66,286

Table 12.-Age components of total returns of Kenai River late-run chinook salmon, 1986-1996.

				Retur	'n			Total	Return
	Spawning	(0.2,1.1)	(0.3,1.2,2.1)	(0.4,1.3,2.2)	(0.5,1.4,2.3)	(1.5,2.4)	(1.6,2.5)	Return	Per
Year	Escapement	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	To Date	Spawner
1070	Linkaaraa						(1986)		
1978	Unknown						22	22	
1070						(1986)	(1987)		
1979	Unknown					2,817	99	2,916	
1000					(1986)	(1987)			
1980	Unknown				29,213	833		30,046	
1001				(1986)	(1987)	(1988)	(1989)		
1981	Unknown			35,379	46,909	10,222	76	92,586	
			(1986)	(1987)	(1988)	(1989)			
1982	Unknown		12,103	22,471	51,248	4,901		90,723	
		(1986)	(1987)	(1988)	(1989)	(1990)			
1983	Unknown	303	3,686	4,197	24,908	1,920		35,014	
		(1987)	(1988)	(1989)	(1990)	(1991)			
1984	31,796	361	2,235	6,228	25,260	2,411		36,495	1.15
		(1988)	(1989)	(1990)	(1991)	(1992)			
1985	21,708	454	5,053	6,606	26,993	1,249		40,355	1.86
		(1989)	(1990)	(1991)	(1992)	(1993)	(1994)		
1986	48,037	108	5,805	7,718	29,638	3,649	10	46,928	0.98
		(1990)	(1991)	(1992)	(1993)	(1994)	(1995)	ŗ	
1987	35,518	65	4,306	8,828	46,594	3,937	7	63,737	1.79
		(1991)	(1992)	(1993)	(1994)	(1995)	(1996)	,	
1988	34,024	61	4,311	10,789	53,740	3,522	7	72,430	2.13
		(1992)	(1993)	(1994)	(1995)	(1996)		,	
1989	19,581	347	6,367	8,802	27,980	688		44,184	2.26
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1993)	(1994)	,	<i>.</i>	000			2.20
1990	27,086	528	5,218	(1995) 14,351	(1996) 36,411			56,508	2.09
.,,,,	27,000				50,411			50,508	2.09
1991	27,662	(1994) 625	(1995) 13,357	(1996) 22,650				26 622	1 20
1771	27,002			22,050				36,632	1.32
1992	23,326	(1995) 398	(1996) 6,040					6 120	0.29
1772	25,520		0,040					6,438	0.28
1993	34,032	(1996) 490						400	0.01
1995	54,052	490						490	0.01
1994	28 540							0	
1994	38,549							0	0.00
1005	22.000								
1995	33,899							0	0.00
1007	10 0 5								
1996	48,054							0	0.00

Table 13.-Summary of returns from each brood year, late-run Kenai River chinook salmon, 1978-1996.

Brood Year	Age 4/ Age 3	Age 5/ Age 4	Age 6/ Age 5	Age 6/ Age 4+5	Age 7/ Age 6	Age 7/ Age 5+6	Age 7/ Age 4+5+6
1980					0.03		
1981			1.33		0.22	0.12	
1982		1.86	2.28	1.48	0.10	0.07	0.06
1983	12.17	1.14	5.93	3.16	0.08	0.07	0.06
1984	6.19	2.79	4.06	2.98	0.10	0.08	0.07
1985	11.13	1.31	4.09	2.32	0.05	0.04	0.03
1986	53.75	1.33	3.84	2.19	0.12	0.10	0.08
1987	66.25	2.05	5.28	3.55	0.08	0.07	0.07
1988	70.67	2.50	4.98	3.56	0.07	0.06	0.05
1989	18.35	1.38	3.18	1.85	0.03	0.02	0.02
1990	9.88	2.75	2.54	1.86			
1991	21.37	1.70					
1992	15.18						
Mean SD	28.49 24.91	1.88 0.62	3.75 1.44	2.55 0.78	0.09 0.05	0.07 0.03	0.05 0.02
% Co Var Maximum Minimum	87 70.67 6.19	33 2.79 1.14	38 5.93 1.33	31 3.56 1.48	63 0.22 0.03	44 0.12 0.02	38 0.08 0.02

Table 14.-Sibling return ratios for late-run Kenai River chinook salmon from brood years 1980-1992.

^a % Coefficient of variation.

			Return			
	Age 3	Age 4	Age 5	Age 6	Age 7	Total
1990						
Expected	306	1,061	9,736	19,639	2,775	33,517
Observed	65	5,806	6,606	25,259	1,920	39,656
Difference	(241)	4,745	(3,130)	5,620	(855)	6,139
Obs. as % of Exp.	21.2	547.2	67.9	128.6	69.2	118.3
1991						
Expected	258	1,353	10,289	29,637	1,950	43,487
Observed	61	4,306	7,718	26,993	2,411	41,489
Difference	(197)	2,953	(2,571)	(2,644)	461	
Obs. as % of Exp.	23.6	318.3				(1,998)
-	23.0	516.5	75.0	91.1	123.6	95.4
1992	222	1 000				
Expected	223	1,328	6,634	32,397	2,367	42,949
Observed	347	4,311	8,828	29,638	1,249	44,373
Difference	124	2,983	2,194	(2,759)	(1,118)	1,424
Obs. as % of Exp.	155.6	324.6	133.1	91.5	52.8	103.3
1993						
Projected	234	10,327	6,808	30,048	2,279	49,696
Observed	528	6,367	10,789	46,594	3,649	67,927
Difference	294	(3,960)	3,981	16,546	1,370	18,231
Obs. as % of Exp.	225.6	61.7	158.5	155.1	160.1	136.7
1994						
Projected	267	14,916	10,894	37,331	3,468	66,876
Observed	625	5,218	8,802	53,740	3,937	72,332
Difference	358	(9,698)	(2,092)	16,409	469	5,456
Obs. as % of Exp.	234.1	35.0	80.8	144.0	113.5	108.2
•	23 1.1	55.0	00.0	144.0	115.5	100.2
1995 Projected	316	10.276	0 201	41 500	4 220	74 (15
Observed		19,276	9,301	41,502	4,220	74,615
	398	13,357	14,351	27,980	3,522	59,615
Difference	82	(5,919)	5,050	(13,522)	(698)	(15,000)
Obs. as % of Exp.	125.9	69.3	154.3	67.4	83.5	79.9
1996						
Projected	325	11,929	25,385	51,576	2,596	91,811
Observed	490	6,040	22,650	36,411	688	66,286
Difference	165	(5,889)	(2,735)	(15,165)	(1,908)	(25,525)
Obs. as % of Exp.	150.8	50.6	89.2	· 70.6	26.5	72.2
1997						
Projected	340	13,962	11,355	91,799	3,058	120,514
Standard Error	191	14,314	4,339	29,146	1,356	120,314

Table 15.-Summary of expected returns based on sibling return ratios versus observed returns for late-run Kenai River chinook salmon, 1990-1996, and 1997 projections.

^a Includes 10 age-8 fish.

^b Includes seven age-8 fish.

^c Includes seven age-8 fish.

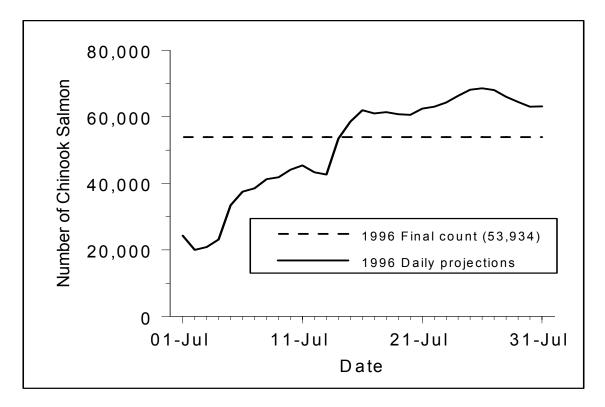


Figure 4.-Daily projections of total inriver return vs. the actual inriver return of late-run chinook salmon, Kenai River, 1996.

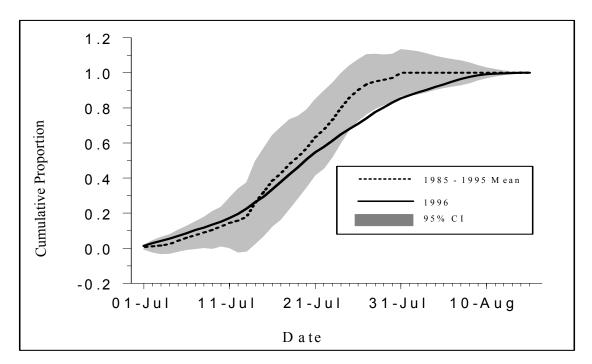


Figure 5.-Cumulative proportions by date for the inriver return of late-run chinook salmon to the Kenai River, 1985-1995 mean vs. 1996.

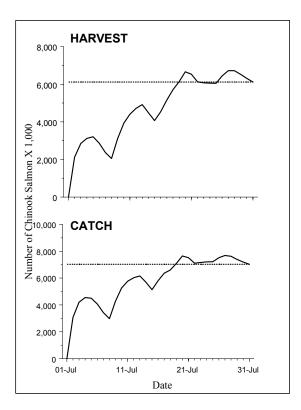


Figure 6.-Daily projections of seasonal (1 July-31 July) harvest and catch (solid lines) vs. realized harvest and catch (dotted lines) of late-run chinook salmon by the recreational fishery, Kenai River, 1996.

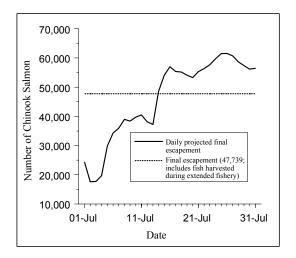


Figure 7.-Daily projections of final escapement of chinook salmon during the recreational fishery for late-run chinook salmon, Kenai River, 1996.

DISCUSSION

Timely estimates of harvest and inriver return allow for the precise management specified in the management plan. The ability to obtain real-time estimates of inriver return provides the basis for the department to react to changing situations on relatively short notice. During 1996, the fishery was liberalized by adding 4 days in August based on projections of exceeding the desired escapement goals set out in the management plan.

Analysis of four run timing models to predict the inriver return was completed in 1993 (Hammarstrom 1994a) and the mean timing model was selected as the model of choice. This model performed reasonably well again in 1996 and should be used in 1997.

Results of the sibling model to predict future returns have been encouraging. Projected returns for 1990-1996 ranged from 33,517 to 91.811 chinook salmon and realized returns ranged from 39,656 to 72,332 chinook salmon. Forecasts have been less than observed returns for 4 of the 7 years this model has been used. Observed returns have ranged from 73% to 137% of the expected return with the 1992 forecast being the closest to the realized return (103%). Predictions have been within an average of 3% of the actual returns. Although the fishery is managed based on inseason return, forecasts are beneficial in preparing the fishing public, in a general sense, for the type of fishery to expect. Evaluation of this model should therefore continue, and I recommend that the sibling model be used for 1997.

The escapement objective of 22,300 fish has been exceeded in every year since 1984, except for 1985 and 1989. Omitting those two years, the goal has been exceeded by an average of 12,500 chinook salmon. Restrictions to the recreational fishery were employed in 1990 and again in 1992. The

commercial fishery was restricted in 1992. The recreational fishery was liberalized in 1991, 1993, 1994, 1995 and 1996. The anticipated total return of over 120,000 chinook salmon in 1997 would allow for a harvest of nearly 100,000 fish by all fisheries. Over 75% (91,799 fish) of the forecast is age-6 fish from the 1991 brood, which is 70% higher than any observed return of age-6 fish (Table 13). Should the forecast be realized and normal timing occur, some liberalization to the recreational fishery is probable and no inseason restrictions to the commercial fishery based on conservation concerns for chinook salmon should be required.

Over the past 3 years, the department has been examining some of the assumptions necessary to incorporate hydroacoustic enumeration of chinook salmon into the Kenai River. Testing of two critical assumptions, that target strength is definitive in separating larger chinook salmon from smaller more abundant sockeye salmon, and that spatial separation of two species provides reasonable the distinction between the species, has not been conclusive. These problems may be more pronounced at times of relatively high sockeye salmon abundance which is more of a concern during the late run. Additional testing and a program to further define laterun inriver exploitation was accomplished in 1996.

Results from a telemetry study to estimate exploitation rate in the recreational fishery are preliminary at this time There seems to be relative agreement between inriver return estimated as a function of harvest and exploitation with that of the sonar counter and the creel survey to estimate exploitation rate. This telemetry study will be repeated again in 1997.

Implementation of the current management plan relies on the ability to assess the magnitude of the chinook salmon return inseason. Evaluation of escapement goals and production requires accurate determination of run strength. Sonar seems to provide the potential to accomplish both tasks; however, to be successful, the aforementioned concerns need to be resolved.

ACKNOWLEDGMENTS

I would like to express my gratitude to those individuals who assisted with data collection, compilation, and analysis. Mary King provided daily coordination of the field staff, most of the local data processing support, including daily downloading and inseason repair to the Epson PX8, Epson HX20, and HPLX95 Hewlett Packard field data recorders, preparing and aging the scale samples collected, and the daily reports of the field operation. Mike Purviance, Stacie Mallette, Justin Broyles, and Eric O'Guinn sampled the inriver return using drift gillnets. Gary Titus, Ed Borden, Joy Langston, and Kate Durning conducted the creel survey in the downstream section of the Kenai River. Larry Marsh and Jay Carlon provided much of the programming required for downloading the data recorders. Debbie Burwen and Dan Bosch provided daily sonar estimates from the hydroacoustic project. I also thank the Research and Technical Services staff. especially Jim Hasbrouck who provided valuable technical assistance with study design and biometric support. Further thanks are directed toward Doug McBride for his continued guidance and Bob Clark for review of the report.

LITERATURE CITED

- ADF&G (Alaska Department of Fish and Game). *Unpublished*. Fish ticket files, Computer Services, Juneau.
- Alexandersdottir, M. and L. Marsh. 1990. Abundance estimates of the escapement of chinook salmon into the Kenai River, Alaska, by analysis of tagging data, 1989. Alaska Department of Fish and Game, Fishery Data Series No. 90-55, Anchorage.
- Bendock, T. and M. Alexandersdottir. 1992. Mortality and movement behavior of hooked and released chinook salmon in the Kenai River recreational fishery, 1988-1991. Alaska Department of Fish and Game, Fishery Manuscript No. 92-2, Anchorage.
- Burger, C. V., R. L. Wilmot, and D. B Wangaard. 1985. Comparison of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 42(4):693-700.
- Burwen, D. and D. Bosch. 1995a. Estimates of chinook salmon abundance in the Kenai River using dual-beam sonar, 1993. Alaska Department of Fish and Game, Fishery Data Series No. 95-31, Anchorage.
- Burwen, D. and D. Bosch. 1995b. Estimates of chinook salmon abundance in the Kenai River using dual-beam sonar, 1994. Alaska Department of Fish and Game, Fishery Data Series No. 95-38, Anchorage.
- Burwen, D. and D. Bosch. 1996. Estimates of chinook salmon abundance in the Kenai River using splitbeam sonar, 1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-9, Anchorage.
- Burwen, D. and D. Bosch. *In prep.* Estimates of chinook salmon abundance in the Kenai River using split-beam sonar, 1996. Alaska Department of Fish and Game, Fishery Data Series Report, Anchorage.
- Carlon, J. and M. Alexandersdottir. 1989. Abundance estimates of the escapement of chinook salmon into the Kenai River, Alaska, by analysis of tagging data, 1988. Alaska Department of Fish and Game, Fishery Data Series No. 107, Juneau.
- Conrad, R. H. 1988. Abundance estimates of the escapement of chinook salmon into the Kenai River, Alaska, by analysis of tagging data, 1987. Alaska Department of Fish and Game, Fishery Data Series No. 67, Juneau.

- Conrad, R. H. and S. L. Hammarstrom. 1987. Harvest of chinook salmon Oncorhynchus tshawytscha and coho salmon O. kisutch and angler-effort by the lower Kenai River recreational fisheries, 1986. Alaska Department of Fish and Game, Fishery Data Series No. 6, Juneau.
- Conrad, R. H. and L. L. Larson. 1987. Abundance estimates for chinook salmon (Oncorhynchus tshawytscha) into the Kenai River, Alaska, by analysis of tagging data, 1986. Alaska Department of Fish and Game, Fishery Data Series No. 34, Juneau.
- Eggers, D. M., P. A. Skvorc and D. L. Burwen. 1995. Abundance estimates of chinook salmon in the Kenai River using dual-beam sonar. Alaska Department of Fish and Game, Research Bulletin 2(1):1-22. Juneau.
- Hammarstrom, S. L. 1975. Inventory and cataloging of Kenai Peninsula, Cook Inlet drainages and fish stocks. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1974-1975, Project F-9-7, 16 (G-I-C), Juneau.
- Hammarstrom, S. L. 1976. Inventory and cataloging of Kenai Peninsula, Cook Inlet drainages and fish stocks. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1975-1976, Project F-9-8, 17 (G-I-C), Juneau.
- Hammarstrom, S. L. 1977. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1976-1977, Project F-9-9, 18 (G-II-L), Juneau.
- Hammarstrom, S. L. 1978. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1977-1978, Project F-9-10, 19 (G-II-L), Juneau.
- Hammarstrom, S. L. 1979. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1978-1979, Project F-9-11, 20 (G-II-L), Juneau.

LITERATURE CITED (Continued)

- Hammarstrom, S. L. 1980. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1979-1980, Project F-9-12, 21 (G-II-L), Juneau.
- Hammarstrom, S. L. 1981. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1980-1981, Project F-9-13, 22 (G-II-L), Juneau.
- Hammarstrom, S. L. 1988. Angler effort and harvest of chinook salmon Oncorhynchus tshawytscha and coho salmon O. kisutch by the recreational fisheries in the lower Kenai River, 1987. Alaska Department of Fish and Game, Fishery Data Series No. 50, Juneau.
- Hammarstrom, S. L. 1989. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1988. Alaska Department of Fish and Game, Fishery Data Series No. 100, Juneau.
- Hammarstrom, S. L. 1990. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1989. Alaska Department of Fish and Game, Fishery Data Series No. 90-22, Anchorage.
- Hammarstrom, S. L. 1991. Angler effort and harvest of chinook salmon and coho salmon by the recreational fisheries in the lower Kenai River, 1990. Alaska Department of Fish and Game, Fishery Data Series No. 91-44, Anchorage.
- Hammarstrom, S. L. 1992a. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1991. Alaska Department of Fish and Game, Fishery Data Series No. 92-38, Anchorage.
- Hammarstrom, S. L. 1992b. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1991. Alaska Department of Fish and Game, Fishery Data Series No. 92-25, Anchorage.
- Hammarstrom, S. L. 1993a. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1992. Alaska Department of Fish and Game, Fishery Data Series No. 93-39, Anchorage.

- Hammarstrom, S. L. 1993b. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1992. Alaska Department of Fish and Game, Fishery Data Series No. 93-40, Anchorage.
- Hammarstrom, S. L. 1994a. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1993. Alaska Department of Fish and Game, Fishery Data Series No. 94-8, Anchorage.
- Hammarstrom, S. L. 1994b. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1993. Alaska Department of Fish and Game, Fishery Data Series No. 94-7, Anchorage.
- Hammarstrom, S. L. 1995. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1994. Alaska Department of Fish and Game, Fishery Data Series No. 95-3, Anchorage.
- Hammarstrom, S. L. 1996. Stock assessment of the return of late-run chinook salmon to the Kenai River, 1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-12, Anchorage.
- Hammarstrom, S. L. and L. L. Larson. 1982. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1981-1982, Project F-9-14, 23 (G-II-L), Juneau.
- Hammarstrom, S. L. and L. L. Larson. 1983. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1982-1983, Project F-9-15, 24 (G-II-L), Juneau.
- Hammarstrom, S. L. and L. L. Larson. 1984. Evaluation of chinook salmon fisheries of the Kenai Peninsula. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1983-1984, Project F-9-16, 25 (G-II-L), Juneau.
- Hammarstrom, S. L. and L. L. Larson. 1986. Cook Inlet chinook and coho salmon studies. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1985-1986, Project F-9-18, 27 (G-32-1,2,4,5), Juneau.

LITERATURE CITED (Continued)

- Hammarstrom, S. L., L. L. Larson, M. Wenger, and J. Carlon. 1985. Kenai River chinook and coho salmon studies/Kenai River chinook salmon hook and release study. Alaska Department of Fish and Game. Federal Aid in Fish Restoration/ Anadromous Fish Study, Annual Performance Report, 1984-1985, Project F-9-17/AFS-50, 26 (G-II-L), Juneau.
- Howe, Allen L., Gary Fidler, Allen E. Bingham, and Michael J. Mills. 1996. Harvest, catch, and participation in Alaska sport fisheries during 1995. Alaska Department of Fish and Game, Fishery Data Series No. 96-32, Anchorage.
- Howe, Allen L., Gary Fidler, and Michael J. Mills. 1995. Harvest, catch, and participation in Alaska sport fisheries during 1994. Alaska Department of Fish and Game, Fishery Data Series No. 95-24, Anchorage.
- King, M. 1995. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1994. Alaska Department of Fish and Game, Fishery Data Series, No. 95-12, Anchorage.
- King, M. 1996. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1995. Alaska Department of Fish and Game, Fishery Data Series 96-22, Anchorage.
- King, M. 1997. Angler effort and harvest of chinook salmon by the recreational fisheries in the lower Kenai River, 1996. Alaska Department of Fish and Game, Fishery Data Series 97-9, Anchorage
- McBride, D. N., R. D. Harding, B. A. Cross, and R. H. Conrad. 1985. Origins of chinook salmon, Oncorhynchus tshawytscha (Walbaum), in the commercial catches from the central district eastside set gillnet fishery in Upper Cook Inlet, 1984. Alaska Department of Fish and Game, Informational Leaflet No. 251.
- McBride, D. N., M. Alexandersdottir, S. L. Hammarstrom, D. Vincent-Lang. 1989. Development and implementation of an escapement goal policy for the return of chinook salmon to the Kenai River. Alaska Department of Fish and Game, Fishery Manuscript Series No. 8, Juneau.

- McKinley, T. 1995. Angler effort and harvest of chinook salmon and Pacific halibut in the marine recreational fishery of central Cook Inlet, 1994. Alaska Department of Fish and Game, Fishery Data Series, No. 95-34, Anchorage.
- McKinley, T. 1996. Angler effort and harvest of chinook salmon and Pacific halibut in the marine recreational fishery of central Cook Inlet, 1995. Alaska Department of Fish and Game, Fishery Data Series 96-46, Anchorage.
- Mills, M. J. 1979. Alaska statewide sport fish harvest studies. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1978-1979, Project F-9-11, 20 (SW-1), Juneau.
- Mills, M. J. 1980. Alaska statewide sport fish harvest studies. Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1979-1980, Project F-9-12, 21 (SW-1), Juneau.
- Mills, M. J. 1981a. Alaska statewide sport fish harvest studies (1979). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1980-1981, Project F-9-13, 22 (SW-I-A), Juneau.
- Mills, M. J. 1981b. Alaska statewide sport fish harvest studies (1980). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1980-1981, Project F-9-13, 22 (SW-I-A), Juneau.
- Mills, M. J. 1982. Alaska statewide sport fish harvest studies (1981). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1981-1982, Project F-9-14, 23 (SW-I-A), Juneau.
- Mills, M. J. 1983. Alaska statewide sport fish harvest studies (1982). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1982-1983, Project F-9-15, 24 (SW-I-A), Juneau.
- Mills, M. J. 1984. Alaska statewide sport fish harvest studies (1983). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1983-1984, Project F-9-16, 25 (SW-I-A), Juneau.

LITERATURE CITED (Continued)

- Mills, M. J. 1985. Alaska statewide sport fish harvest studies (1984). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1984-1985, Project F-9-17, 26 (SW-I-A), Juneau.
- Mills, M. J. 1986. Alaska statewide sport fish harvest studies (1985). Alaska Department of Fish and Game. Federal Aid in Fish Restoration, Annual Performance Report, 1985-1986, Project F-10-1, 27 (RT-2), Juneau.
- Mills, M. J. 1987. Alaska statewide sport fisheries harvest report. Alaska Department of Fish and Game, Fishery Data Series No. 2, Juneau.
- Mills, M. J. 1988. Alaska statewide sport fisheries harvest report. Alaska Department of Fish and Game, Fishery Data Series No. 52, Juneau.
- Mills, M. J. 1989. Alaska statewide sport fisheries harvest report. Alaska Department of Fish and Game, Fishery Data Series No. 122, Juneau.
- Mills, M. J. 1990. Harvest and participation in Alaska sport fisheries during 1989. Alaska Department of Fish and Game, Fishery Data Series No. 90-44, Anchorage.
- Mills, M. J. 1991. Harvest, catch, and participation in Alaska sport fisheries during 1990. Alaska Department of Fish and Game, Fishery Data Series No. 91-58, Anchorage.
- Mills, M. J. 1992. Harvest, catch, and participation in Alaska sport fisheries during 1991. Alaska Department of Fish and Game, Fishery Data Series No. 92-40, Anchorage.

- Mills, M. J. 1993. Harvest, catch, and participation in Alaska sport fisheries during 1992. Alaska Department of Fish and Game, Fishery Data Series No. 93-42, Anchorage.
- Mills, M. J. 1994. Harvest, catch, and participation in Alaska sport fisheries during 1993. Alaska Department of Fish and Game. Fishery Data Series No. 94-28, Anchorage.
- Mundy, P. R. 1982. Migratory timing of adult chinook salmon (king Oncorhynchus tshawytscha) in the Lower Yukon River, Alaska with respect to fisheries management. Department of Oceanography, School of Science and Health Professions, Old Dominion University, Technical Report 82-1, Norfolk, Virginia.
- Sonnichsen, S. and M. Alexandersdottir. 1991. Estimates of total return by age for Kenai River chinook salmon, 1986-1990. Alaska Department of Fish and Game, Fishery Data Series No. 91-69, Anchorage.
- Waltemyer, David C. and Terri M. Tobias. 1997. Age, sex, and size composition of chinook, sockeye, coho and chum salmon returning to Upper Cook Inlet, Alaska, in 1996. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Regional Information Report No. 2A97-15, Anchorage.

APPENDIX A. KENAI RIVER LATE KING SALMON MANAGEMENT PLAN

Appendix A1.-Kenai River late king salmon management plan.

5 AAC 21.359 KENAI RIVER LATE KING SALMON MANAGEMENT PLAN

- (a) The purpose of this management plan is to insure an adequate escapement of late run chinook salmon into the Kenai River system and to provide management guidelines to the department.
- (b) The department shall manage the late run Kenai River chinook salmon to achieve a minimum spawning escapement level of 15,500 salmon and an optimum spawning escapement level of 22,300 salmon as follows:
 - (1) if the projected spawning escapement level is less than 15,500, the department shall
 - (A) close the recreational fisheries in the Kenai River and in the salt waters of Cook Inlet north of the latitude of Bluff Point to the taking of chinook salmon;
 - (B) close the drift gill net fishery in the Central District within 3 miles of the Kenai Peninsula shoreline; and
 - (C) close the set gill net fishery in the Upper Subdistrict of the Central District;
 - (2) if the projected spawning escapement level is between 15,500 and 22,300 chinook salmon, the department shall restrict the taking of chinook salmon in the Kenai River recreational fisheries as necessary to achieve the optimum escapement; the department shall establish periods by emergency order during which
 - (A) time or area is reduced;
 - (B) bag or possession limits are zero; when the sport fishery is restricted to catch and release only, king salmon 52 inches or more in length may be retained; or

Note: changed from "(B) bag or possession limits are zero; or" in 1990

(C) only artificial lures may be used.

Note: The following sections modified the original plan above and were adopted at the December 1990 meeting of the Board of Fisheries.

- (3) if the projected spawning escapement of chinook salmon is between 15,500 and 19,900, the department shall limit the set gill net fishery in the Upper Subdistrict of the Central District to regular periods;
- (c) however, if the final inriver sonar count is projected to exceed 700,000 sockeye salmon, then the drift gill net fishery and the set gill net fishery will not be restricted to conserve Kenai River chinook salmon unless the projected spawning escapement is less than 15,500, consistent with (b)(1).
- (d) consistent with the purpose of this management plan, the department shall not reduce closed waters at the mouth of the Kenai River when the projected escapement level is less than 22,300 chinook salmon.
- (e) the Kasilof River Sockeye Salmon Special Harvest Area Management Plan (5 AAC 21.356) is exempt from all provisions of this management plan.

Effective 1989, modified 1991, 1996.

APPENDIX B. STATISTICAL METHODS

Appendix B1.-Statistical methods for estimating sibling ratios and expected returns.

Age structure is a conservative trait in salmonids, the age classes represented within brood years in a stock do not change drastically across years. The distribution of numbers returning in each age class within a brood year may also be a stable character within a stock. The relationships between ages within a brood year, or sibling relationships, were used to estimate future returns by brood year.

Sibling ratios, r_{ab} , were estimated as the ratio of the return at age a to the total return at one or more younger ages for each brood year b:

$$\hat{\mathbf{r}}_{ab} = \frac{\hat{\mathbf{n}}_{ab}}{\hat{\mathbf{n}}_{a'b}},\tag{B1.1}$$

where \hat{n}_{ab} is the estimated number of fish from brood year b returning at age a and $\hat{n}_{a'b}$ is the estimated number from brood year b returning at ages 3 through "a - 1":

$$\hat{n}_{a'b} = \sum_{j=4}^{a-1} \hat{n}_{jb} .$$
(B1.2)

Age 3 is the first year at which late-run Kenai River chinook salmon return in substantial numbers. Sibling ratios were estimated for ages 4 through 7. The variances of the estimated sibling ratios were estimated as:

$$\hat{V}[\hat{r}_{ab}] = \hat{r}_{ab}^{2} \left(\frac{\hat{V}[\hat{n}_{ab}]}{\hat{n}_{ab}^{2}} + \frac{\hat{V}[\hat{n}_{a'b}]}{\hat{n}_{a'b}^{2}} \right),$$
(B1.3)

where:

$$\hat{V}[\hat{n}_{a'b}] = \sum_{j=4}^{a-1} \hat{V}[\hat{n}_{jb}] \quad .$$
(B1.4)

The expected returns of fish aged a = 4, 5, 6, and 7 in the year (Y) to be forecasted are:

$$\widetilde{\mathbf{n}}_{a} = \overline{\mathbf{r}}_{a} \hat{\mathbf{n}}_{a'b} , \qquad (B1.5)$$

where \bar{r}_a is the mean age-a sibling ratio, averaged over all m_a brood years for which the ratio could be estimated:

$$\bar{r}_a = \frac{1}{m_a} \sum_{b=1}^{m_a} \hat{r}_{ab}$$
, (B1.6)

and where b = Y - a.

-continued-

The variance of the forecasted returns by age was estimated as:

$$\hat{V}[\tilde{n}_{a}] = \bar{r}_{a}^{2} \hat{V}[\hat{n}_{a'b}] + \hat{n}_{a'b}^{2} \hat{V}'[\bar{r}_{a}] - \hat{V}'[\bar{r}_{a}] \hat{V}[\hat{n}_{a'b}], \qquad (B1.7)$$

where $\hat{V}'[\bar{r}_a]$ is the squared prediction error of \bar{r}_a :

$$\hat{V}'[\bar{r}_{a}] = \frac{\sum_{b=1}^{m_{a}} (\hat{r}_{ab} - \bar{r}_{a})^{2}}{m_{a} - 1} + \frac{\sum_{b=1}^{m_{a}} \hat{V}[\hat{r}_{ab}]}{m_{a}}.$$
(B1.8)

The expected return of age-3 fish in 1996 was forecast to be the mean of past age-3 returns:

$$\widetilde{n}_{3} = \frac{\sum_{b=1}^{m_{a}} \widehat{n}_{3b}}{m_{a}}.$$
(B1.9)

The variance of the forecasted return of age 3 fish was estimated as the sample variance:

$$\hat{V}[\tilde{n}_3] = \frac{\sum_{b=1}^{m_a} (\hat{n}_{3b} - \tilde{n}_3)^2}{m_a - 1}.$$
(B1.10)

Total return was forecast to be:

$$\widetilde{\mathbf{n}} = \sum_{\mathbf{a}=3}^{7} \widetilde{\mathbf{n}}_{\mathbf{a}} , \qquad (B1.11)$$

with variance:

$$\hat{\mathbf{V}}[\tilde{n}] = \sum_{a=3}^{7} \hat{\mathbf{V}}[\tilde{n}_{a}].$$
(B1.12)

Appendix B2.-Statistical methods for analyzing migratory timing.

The distribution over time of salmon migrating past any fixed location can be described by a migratory time distribution function (Mundy 1982). We used historical databases of sonar counts, sport fishing effort, harvest per hour, catch per hour, harvest, and catch to predict final estimates of these parameters inseason. Our databases consisted of values, for example counts or harvests of chinook salmon, by day (t). Daily cumulative proportions were calculated for each year (i) of data and for each parameter. Daily values were summed to calculate a total (N_i) for the year. For each day t and year i, the cumulative proportion p_{ti} was calculated as:

$$\mathbf{p}_{\mathrm{ti}} = \mathbf{n}_{\mathrm{ti}} / \mathbf{N}_{\mathrm{i}} \quad , \tag{B2.1}$$

where n_{ti} is the cumulative sum to date. For each year i, the set P_i of all cumulative proportions $(p_{1i}, p_{2i}, p_{3i}, ...)$ represents the annual empirical cumulative distribution function (CDF). The mid-point of the migration, or median of the distribution, is reached when p_{ti} is equal to 0.5.

For any day the mean cumulative proportion (\bar{p}_{t}) over all m years was calculated as:

$$\overline{\mathbf{p}}_{t} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_{ti} ;$$
(B2.2)

with variance:

$$\hat{V}[\bar{p}_{t}] = \frac{1}{m} \sum_{i=1}^{m} (p_{ti} - \bar{p}_{t})^{2} .$$
(B2.3)

At any point in a migration, the mean cumulative proportion to date can be used to forecast the total given the number known to have passed to date. Since n_{tj} represents the number passed by day t in year j, then the predicted total for that year is:

$$\widetilde{N}_{j} = \frac{n_{tj}}{\overline{p}_{t}}, \qquad (B2.4)$$

and the variance of \tilde{N}_i by:

$$\hat{\mathbf{V}}[\tilde{\mathbf{N}}_{j}] = \tilde{\mathbf{N}}_{j}^{2} \left[\frac{\hat{\mathbf{V}}[\mathbf{n}_{tj}]}{\mathbf{n}_{tj}^{2}} + \frac{\hat{\mathbf{V}}[\overline{\mathbf{p}}_{t}.]}{\overline{\mathbf{p}}_{t}^{2}} \right].$$
(B2.5)

APPENDIX C. SUPPORTING STATISTICS

				E	Daily cum	ulative p	proportio	ns						95% Co	nfidence		
				ſI	P(t)] by y	ear of in	river retu	ım						Inte	rval		
Date	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	Mean	SE	Low	High	RP ^a	1996
7/01	0.025	0.014	0.012	0.012	0.036	0.016	0.008	0.012	0.011	0.012	0.008	0.015	0.002	0.010	0.021	36.7%	0.00
7/02	0.049	0.070	0.028	0.031	0.072	0.025	0.016	0.022	0.020	0.019	0.017	0.034	0.006	0.020	0.047	41.4%	0.01
7/03	0.080	0.095	0.040	0.063	0.088	0.038	0.026	0.032	0.026	0.031	0.025	0.049	0.008	0.031	0.068	36.6%	0.01
7/04	0.099	0.111	0.040	0.076	0.120	0.050	0.041	0.039	0.034	0.047	0.035	0.063	0.010	0.041	0.085	34.9%	0.02
7/05	0.120	0.116	0.067	0.101	0.158	0.075	0.050	0.046	0.043	0.060	0.050	0.080	0.011	0.055	0.106	31.6%	0.04
7/06	0.138	0.122	0.086	0.117	0.198	0.096	0.057	0.057	0.061	0.080	0.066	0.098	0.013	0.069	0.127	29.7%	0.06
7/07	0.170	0.127	0.104	0.148	0.235	0.117	0.062	0.065	0.092	0.100	0.087	0.119	0.015	0.085	0.153	28.5%	0.07
7/08	0.190	0.131	0.117	0.176	0.267	0.129	0.066	0.071	0.130	0.112	0.096	0.135	0.017	0.096	0.174	28.7%	0.09
7/09	0.206	0.142	0.127	0.210	0.326	0.139	0.077	0.078	0.167	0.126	0.108	0.155	0.022	0.107	0.203	31.0%	0.10
7/10	0.232	0.154	0.139	0.243	0.386	0.150	0.091	0.085	0.184	0.150	0.118	0.176	0.026	0.118	0.233	32.9%	0.12
7/11	0.264	0.166	0.150	0.265	0.435	0.171	0.103	0.090	0.209	0.159	0.126	0.194	0.030	0.128	0.260	34.0%	0 .14
7/12	0.292	0.181	0.163	0.301	0.498	0.188	0.112	0.124	0.222	0.175	0.132	0.217	0.034	0.142	0.292	34.7%	0.15
7/13	0.325	0.219	0.185	0.337	0.531	0.223	0.121	0.144	0.290	0.195	0.145	0.247	0.036	0.167	0.327	32.4%	0.17
7/14	0.376	0.250	0.204	0.362	0.603	0.267	0.138	0.166	0.354	0.220	0.161	0.282	0.041	0.191	0.373	32.3%	0.26
7/15	0.414	0.283	0.220	0.395	0.631	0.301	0.153	0.191	0.399	0.261	0.178	0.312	0.042	0.217	0.406	30.2%	0.32
7/16	0.458	0.333	0.249	0.446	0.662	0.332	0.183	0.214	0.445	0.333	0.222	0.353	0.043	0.257	0.448	27.0%	0.38
7/17	0.485	0.377	0.298	0.474	0.694	0.405	0.241	0.233	0.486	0.421	0.247	0.396	0.042	0.303	0.490	23.6%	0.42
7/18	0.495	0.397	0.328	0.498	0.727	0.469	0.331	0.261	0.515	0.462	0.336	0.438	0.039	0.352	0.524	19.7%	0.48
7/19	0.510	0.421	0.355	0.534	0.743	0.510	0.390	0.298	0.530	0.527	0.442	0.478	0.036	0.399	0.558	16.6%	0.52
7/20	0.523	0.441	0.386	0.555	0.766	0.556	0.433	0.336	0.557	0.571	0.550	0.516	0.035	0.438	0.593	15.0%	0.57
7/21	0.565	0.466	0.429	0.583	0.793	0.580	0.464	0.362	0.577	0.603	0.621	0.549	0.035	0.472	0.627	14.2%	0.63
1/22	0.596	0.490	0.469	0.620	0.811	0.596	0.494	0.383	0.600	0.629	0.699	0.581	0.036	0.501	0.660	13.7%	0.67
7/23	0.627	0.527	0.499	0.649	0.835	0.616	0.571	0.431	0.624	0.648	0.753	0.616	0.034	0.541	0.692	12.3%	0.73
7/24	0.656	0.589	0.533	0.673	0.847	0.650	0.635	0.454	0.651	0.672	0.772	0.648	0.032	0.578	0.719	10.9%	0.79
/25	0.692	0.603	0.578	0.696	0.864	0.675	0.672	0.511	0.696	0.698	0.791	0.680	0.029	0.615	0.744	9.5%	0.85
/26	0.723	0.629	0.616	0.717	0.883	0.695	0.708	0.553	0.724	0.724	0.829	0.709	0.028	0.647	0.771	8.7%	0.90
/27	0.767	0.654	0.648	0.739	0.899	0.718	0.742	0.605	0.764	0.747	0.870	0.741	0.027	0.682	0.801	8.0%	0.93
/28	0.808	0.678	0.686	0.756	0.911	0.737	0.797	0.669	0.802	0.788	0.888	0.775	0.024	0.721	0.828	6.9%	0.95
/29	0.825	0.700	0.711	0.769	0.924	0.754	0.830	0.720	0.830	0.813	0.900	0.798	0.022	0.748	0.848	6.3%	0.96
/30	0.865	0.728	0.751	0.783	0.937	0.766	0.852	0.759	0.862	0.846	0.912	0.824	0.021	0.777	0.871	5.7%	0.97
/31	0.885	0.754	0.801	0.814	0.948	0.776	0.880	0.791	0.880	0.880	0.922	0.848	0.019	0.806	0.891	5.0%	1.00

Appendix C1.-Historical daily cumulative proportions of the inriver return of late-run chinook salmon to the Kenai River, 1985-1996.

Appendix C1.-Page 2 of 2.

				D	aily cum	ulative p	proportio	ns						95% Co	nfidence		
				[F	P(t)] by y	ear of in	river retu	ım						Inte	rval		
Date	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	Mean	SE	Low	High	RP ^a	1996
8/01	0.909	0.77 8	0.841	0.850	0.966	0.788	0.906	0.821	0.895	0.900	0.933	0.871	0.018	0.831	0.912	4.6%	1.000
8/02	0.920	0.799	0.841	0.887	0.973	0.800	0.930	0.855	0.908	0.923	0.941	0.889	0.017	0.850	0.928	4.4%	1.000
8/03	0.929	0.829	0.864	0.917	0.977	0.816	0.941	0.882	0.914	0.943	0.952	0.906	0.016	0.871	0.941	3.8%	1.000
8/04	0.939	0.855	0.891	0.941	0.986	0.838	0.950	0.911	0.924	0.955	0.963	0.923	0.014	0.892	0.954	3.3%	1.000
8/05	0.952	0.874	0.913	0.968	0.986	0.860	0.955	0.939	0.938	0.965	0.972	0.938	0.012	0.911	0.966	2.9%	1.000
8/06	0.962	0.895	0.924	0.987	0.986	0.877	0.965	0.961	0.960	0.985	0.982	0.953	0.011	0.928	0.978	2.7%	1.000
8/07	0.984	0.917	0.945	1.000	1.000	0.893	0.983	0.979	0.973	1.000	0.988	0.969	0.011	0.945	0.993	2.5%	1.000
8/08	0.997	0.935	0.965	1.000	1.000	0.915	1.000	0.986	0.986	1.000	0.994	0.980	0.009	0.960	1.000	2.0%	1.000
8/09	1.000	0.956	0.977	1.000	1.000	0.936	1.000	0.992	0.995	1.000	1.000	0.987	0.007	0.972	1.002	1.5%	1.000
8/10	1.000	0.968	0.989	1.000	1.000	0.957	1.000	1.000	1.000	1.000	1.000	0.992	0.005	0.982	1.002	1.0%	1.000
8/11	1.000	0.975	1.000	1.000	1.000	0.974	1.000	1.000	1.000	1.000	1.000	0.995	0.003	0.988	1.002	0.7%	1.000
8/12	1.000	0.984	1.000	1.000	1.000	0.985	1.000	1.000	1.000	1.000	1.000	0.997	0.002	0.993	1.001	0.4%	1.000
8/13	1.000	0.992	1.000	1.000	1.000	0.992	1.000	1.000	1.000	1.000	1.000	0.999	0.001	0.996	1.001	0.2%	1.000
8/14	1.000	1.000	1.000	1.000	1.000	0.996	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.999	1.000	0.1%	1.000
8/15	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%	1.000

					I	Daily cur	nulative	proporti	ons							95% Co	nfidence	
					[P(t)]	by year	of ungui	ded angl	er effort							Inte	erval	
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP
7/01	0.009	0.005	0.015	0.004	0.018	0.032	0.051	0.000	0.030	0.012	0.014	0.029	0.000	0.017	0.004	0.008	0.026	54.0%
7/02	0.022	0.011	0.026	0.016	0.044	0.070	0.051	0.022	0.052	0.027	0.036	0.073	0.017	0.036	0.006	0.024	0.049	34.4%
7/03	0.040	0.013	0.046	0.053	0.069	0.070	0.091	0.036	0.087	0.056	0.064	0.073	0.027	0.056	0.006	0.042	0.070	24.8%
7/04	0.063	0.024	0.069	0.090	0.069	0.101	0.109	0.059	0.127	0.090	0.064	0.108	0.040	0.078	0.008	0.060	0.096	22.7%
7/05	0.092	0.046	0.112	0.142	0.089	0.129	0.138	0.084	0.155	0.090	0.082	0.125	0.053	0.103	0.009	0.082	0.123	19.9%
7/06	0.108	0.084	0.124	0.142	0.102	0.151	0.169	0.118	0.155	0.112	0.099	0.147	0.073	0.122	0.008	0.104	0.140	14.5%
7/07	0.163	0.102	0.124	0.162	0.123	0.181	0.209	0.141	0.170	0.134	0.125	0.158	0.097	0.145	0.009	0.126	0.165	13.4%
7/08	0.214	0.102	0.151	0.184	0.147	0.228	0.242	0.141	0.196	0.166	0.148	0.189	0.097	0.170	0.012	0.143	0.197	15.9%
7/09	0.214	0.121	0.169	0.211	0.204	0.280	0.242	0.164	0.219	0.188	0.160	0.220	0.120	0.193	0.013	0.165	0.221	14.4%
7/10	0.237	0.148	0.188	0.250	0.252	0.280	0.269	0.188	0.246	0.240	0.175	0.220	0.142	0.218	0.013	0.191	0.245	12.6%
7/11	0.260	0.180	0.209	0.299	0.252	0.323	0.297	0.215	0.282	0.311	0.175	0.254	0.166	0.248	0.015	0.215	0.281	13.2%
7/12	0.280	0.206	0.248	0.336	0.285	0.357	0.331	0.243	0.326	0.311	0.215	0.281	0.191	0.278	0.015	0.245	0.310	11.7%
7/13	0.306	0.278	0.298	0.336	0.314	0.394	0.361	0.300	0.326	0.348	0.245	0.305	0.224	0.311	0.013	0.283	0.338	8.9%
7/14	0.367	0.354	0.298	0.387	0.352	0.425	0.422	0.366	0.383	0.382	0.278	0.338	0.283	0.356	0.013	0.328	0.385	8.0%
7/15	0.431	0.354	0.350	0.418	0.384	0.484	0.490	0.366	0.427	0.425	0.310	0.397	0.283	0.394	0.017	0.357	0.431	9.4%
7/16	0.431	0.413	0.376	0.450	0.445	0.530	0.490	0.403	0.466	0.465	0.355	0.459	0.331	0.432	0.015	0.398	0.465	7.8%
7/17	0.462	0.477	0.426	0.491	0.491	0.530	0.542	0.451	0.504	0.518	0.420	0.459	0.366	0.472	0.014	0.442	0.502	6.3%
/18	0.506	0.503	0.470	0.547	0.491	0.583	0.590	0.483	0.576	0.572	0.420	0.504	0.403	0.511	0.017	0.475	0.548	7.1%
/19	0.556	0.525	0.525	0.595	0.583	0.618	0.645	0.532	0.674	0.572	0.479	0.549	0.450	0.562	0.017	0.524	0.600	6.8%

Appendix C2.-Historical daily cumulative proportions of the effort by unguided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.

-continued-

Appendix C2.-Page 2 of 2.

					Ĩ	Daily cur	nulative	proporti	ons							95% Co	nfidence	
					[P(t)]	by year	of ungui	ded angl	er effort							Inte	erval	
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/20	0.594	0.556	0.590	0.595	0.620	0.638	0.679	0.581	0.674	0.622	0.522	0.601	0.520	0.600	0.014	0.570	0.629	4.9%
7/21	0.649	0.575	0.590	0.633	0.659	0.678	0.766	0.641	0.714	0.672	0.564	0.638	0.607	0.645	0.016	0.611	0.679	5.2%
7/22	0.705	0.575	0.615	0.654	0.689	0.727	0.836	0.641	0.762	0.723	0.602	0.720	0.607	0.681	0.021	0.636	0.726	6.6%
7/23	0.705	0.616	0.649	0.686	0.741	0.761	0.836	0.682	0.827	0.753	0.671	0.788	0.666	0.722	0.019	0.680	0.763	5.8%
7/24	0.741	0.663	0.696	0.727	0.785	0.761	0.881	0.722	0.840	0.789	0.721	0.788	0.705	0.755	0.017	0.719	0.792	4.8%
7/25	0.778	0.717	0.746	0.790	0.785	0.807	0.930	0.759	0.855	0.825	0.756	0.826	0.750	0.794	0.016	0.760	0.828	4.3%
7/26	0.801	0.761	0.812	0.840	0.827	0.838	0.975	0.804	0.873	0.825	0.789	0.874	0.805	0.833	0.015	0.800	0.865	3.9%
7/27	0.842	0.845	0.874	0.840	0.858	0.875	0.986	0.852	0.873	0.860	0.830	0.909	0.860	0.869	0.011	0.845	0.894	2.8%
7/28	0.894	0.903	0.874	0.884	0.892	0.915	0.992	0.967	0.891	0.894	0.874	0.948	0.925	0.912	0.010	0.890	0.934	2.4%
7/29	0.957	0.903	0.923	0.920	0.929	0.960	0.996	0.967	0.902	0.934	0.912	0.963	0.925	0.938	0.008	0.921	0.955	1.8%
7/30	0.957	0.962	0.959	0.959	0.967	1.000	0.996	0.990	0.957	0.967	0.953	0.995	0.982	0.973	0.005	0.962	0.983	1.1%
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%

					1	Daily cur	nulative	proportio	ons							95% Co	nfidence	;
					[P(t)] by	year of	harvest b	y unguio	led angle	ers						Inte	erval	_
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP
7/01	0.002	0.002	0.017	0.002	0.028	0.022	0.071	0.000	0.015	0.019	0.002	0.009	0.000	0.016	0.006	0.003	0.030	83.3%
7/02	0 011	0.002	0.025	0.002	0.037	0.049	0.071	0.024	0.032	0.023	0.013	0.025	0.000	0.026	0.006	0.013	0.040	51.8%
7/03	0.027	0.002	0.037	0.102	0.044	0.049	0.157	0.031	0.041	0.030	0.034	0.025	0.000	0.050	0.013	0.022	0.079	55.8%
7/04	0.044	0.003	0.042	0.119	0.044	0.064	0.168	0.031	0.050	0.051	0.034	0.037	0.000	0.059	0.014	0.029	0.089	50.9%
7/05	0.060	0.003	0.082	0.193	0.056	0.084	0.168	0.033	0.060	0.051	0.063	0.060	0.005	0.078	0.017	0.041	0.114	47.1%
7/06	0.067	0.025	0.088	0.193	0.070	0.125	0.245	0.038	0.060	0.109	0.083	0.070	0.010	0.100	0.020	0.057	0.144	43.3%
7/07	0.083	0.031	0.088	0.213	0.090	0.193	0.253	0.069	0.067	0.124	0.107	0.080	0.040	0.120	0.021	0.074	0.166	38.29
7/08	0.131	0.031	0.108	0.226	0.099	0.193	0.268	0.069	0.077	0.201	0.119	0.098	0.040	0.138	0.022	0.090	0.187	35.1%
7/09	0.131	0.044	0.115	0.250	0.120	0.350	0.268	0.115	0.102	0.238	0.126	0.122	0.059	0.169	0.028	0.108	0.230	36.0%
7/10	0.140	0.070	0.133	0.321	0.158	0.350	0.275	0.130	0.109	0.287	0.139	0.122	0.078	0.192	0.029	0.129	0.256	33.1%
7/11	0.149	0.112	0.174	0.328	0.158	0.460	0.275	0.142	0.124	0.379	0.139	0.141	0.086	0.222	0.036	0.143	0.300	35.3%
7/12	0.157	0.124	0.183	0.367	0.223	0.510	0.303	0.154	0.148	0.379	0.179	0.166	0.090	0.248	0.038	0.166	0.330	33.0%
7/13	0.165	0.165	0.242	0.367	0.284	0.569	0.328	0.154	0.148	0.439	0.202	0.177	0.110	0.279	0.041	0.189	0.368	32.2%
7/14	0.179	0.276	0.242	0.380	0.300	0.574	0.364	0.210	0.254	0.467	0.229	0.208	0.135	0.316	0.036	0.237	0.395	25.0%
7/15	0.225	0.276	0.385	0.419	0.351	0.574	0.487	0.210	0.284	0.511	0.296	0.252	0.135	0.365	0.036	0.286	0.445	21.7%
//16	0.225	0.402	0.420	0.438	0.372	0.584	0.487	0.244	0.324	0.542	0.316	0.310	0.244	0.396	0.035	0.320	0.471	19.0%
/17	0.294	0.459	0.457	0.476	0.394	0.584	0.593	0.356	0.406	0.586	0.390	0.310	0.293	0.454	0.030	0.389	0.519	14.4%
/18	0.345	0.473	0.490	0.499	0.394	0.584	0.650	0.416	0.433	0.632	0.390	0.380	0.330	0.482	0.031	0.416	0.549	13.8%
/19	0.401	0.473	0.516	0.529	0.476	0.663	0.711	0.426	0.466	0.632	0.503	0.434	0.386	0.527	0.030	0.461	0.592	12.5%

Appendix C3.-Historical daily cumulative proportions of the harvest of chinook salmon by unguided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.

Appendix C3.-Page 2 of 2.

					I	Daily cur	nulative	proportio	ons							95% Co	nfidence	;
					[P(t)] by	year of	harvest b	y unguid	led angle	rs						Inte	erval	_
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/20	0.485	0.488	0.543	0.529	0.510	0.663	0.718	0.480	0.466	0.656	0.573	0.496	0.433	0.556	0.026	0.499	0.612	10.2%
7/21	0 595	0.494	0.543	0.565	0.632	0.714	0.730	0.525	0.531	0.685	0.609	0.556	0.557	0.602	0.024	0.549	0.655	8.7%
7/22	0.705	0.494	0.548	0.596	0.731	0.725	0.832	0.525	0.562	0.709	0.632	0.678	0.557	0.642	0.032	0.572	0.711	10.8%
7/23	0.705	0.565	0.574	0.615	0.774	0.751	0.832	0.539	0. 8 06	0.722	0.680	0.786	0.563	0.688	0.031	0.621	0.754	9.7%
7/24	0.771	0.602	0.623	0.670	0.827	0.751	0.932	0.596	0.818	0.744	0.727	0.786	0.627	0.733	0.032	0.664	0.801	9.4%
7/25	0.820	0.674	0.683	0.704	0.827	0.758	0.971	0.596	0.822	0.779	0.748	0.824	0.681	0.762	0.030	0.696	0.828	8.6%
7/26	0.835	0.755	0.731	0.752	0.902	0.784	0.989	0.664	0.822	0.779	0.770	0.847	0.769	0.799	0.026	0.741	0.856	7.2%
7/27	0.860	0.838	0.794	0.752	0.913	0.800	1.000	0.779	0.822	0.839	0.802	0.886	0.797	0.836	0.021	0.791	0.882	5.4%
7/28	0.881	0.935	0.794	0.813	0.915	0.964	1.000	0.954	0.822	0.893	0.833	0.963	0.998	0.891	0.021	0.846	0.937	5.1%
7/29	0.936	0.935	0.875	0.858	0.947	0.981	1.000	0.954	0.822	0.936	0.858	0.972	0.998	0.918	0.017	0.881	0.955	4.0%
7/30	0.936	0.972	0.926	0.903	0.969	1.000	1.000	0.987	0.901	0.970	0.897	0.986	0.998	0.951	0.012	0.925	0.977	2.7%
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%

					I	Daily cur	nulative	proportio	ons							95% Co	nfidence	;
		_			[P(t)] b	y year of	catch by	/ unguide	ed angler	S						Inte	erval	
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/01	0.002	0.002	0.013	0.001	0.021	0.014	0.057	0.000	0.063	0.016	0.008	0.014	0.000	0.018	0.007	0.004	0.032	80.3%
7/02	0.009	0.002	0.017	0.001	0.029	0.044	0.057	0.033	0.076	0.030	0.019	0.032	0.000	0.029	0.007	0.014	0.044	52.5%
7/03	0.023	0.003	0.034	0.077	0.039	0.044	0.115	0.039	0.081	0.037	0.042	0.032	0.000	0.049	0.009	0.028	0.069	41.9%
7/04	0.040	0.003	0.048	0.106	0.039	0.094	0.122	0.046	0.088	0.058	0.042	0.046	0.000	0.062	0.011	0.039	0.086	37.3%
7/05	0.061	0.003	0.080	0.173	0.048	0.133	0.122	0.052	0.094	0.058	0.067	0.079	0.004	0.081	0.014	0.050	0.112	38.0%
7/06	0.072	0.018	0.089	0.173	0.064	0.163	0.200	0.059	0.094	0.109	0.090	0.117	0.012	0.103	0.016	0.067	0.139	35.0%
7/07	0.100	0.024	0.089	0.191	0.090	0.227	0.217	0.084	0.110	0.123	0.115	0.126	0.050	0.125	0.019	0.084	0.165	32.8%
7/08	0.137	0.024	0.122	0.205	0.102	0.227	0.235	0.084	0.116	0.204	0.134	0.138	0.050	0.145	0.020	0.101	0.188	30.0%
7/09	0.137	0.038	0.128	0.230	0.124	0.327	0.235	0.123	0.145	0.250	0.139	0.161	0.065	0.170	0.024	0.117	0.223	31.1%
7/10	0.144	0.066	0.138	0.283	0.178	0.327	0.245	0.136	0.157	0.324	0.149	0.161	0.080	0.195	0.026	0.139	0.252	29.0%
7/11	0.153	0.112	0.174	0.295	0.178	0.420	0.259	0.146	0.177	0.407	0.149	0.191	0.087	0.225	0.032	0.154	0.295	31.3%
7/12	0.160	0.127	0.180	0.344	0.256	0.487	0.313	0.156	0.200	0.407	0.178	0.210	0.090	0.255	0.035	0.178	0.332	30.3%
7/13	0.168	0.159	0.270	0.344	0.336	0.524	0.340	0.156	0.200	0.465	0.198	0.220	0.107	0.287	0.038	0.204	0.370	28.9%
7/14	0.180	0.276	0.270	0.370	0.356	0.529	0.393	0.203	0.281	0.500	0.221	0.246	0.143	0.325	0.035	0.249	0.401	23.4%
7/15	0.218	0.276	0.444	0.402	0.395	0.529	0.475	0.203	0.301	0.554	0.270	0.288	0.143	0.370	0.037	0.289	0.451	21.9%
7/16	0.218	0.414	0.470	0.424	0.415	0.539	0.475	0.294	0.333	0.579	0.296	0.342	0.285	0.405	0.033	0.333	0.478	17.9%
7/17	0.301	0. 484	0.505	0.471	0.433	0.539	0.662	0.388	0.381	0.614	0.368	0.342	0.325	0.468	0.033	0.396	0.539	15.3%
7/18	0.372	0.497	0.528	0.499	0.433	0.672	0.707	0.439	0.422	0.656	0.368	0.416	0.360	0.508	0.036	0.429	0.588	15.6%
7/19	0.430	0.499	0.545	0.530	0.529	0.723	0.748	0.446	0.450	0.656	0.499	0.464	0.426	0.550	0.033	0.478	0.623	13.2%

Appendix C4Historical daily cumulative proportions of the catch of chinook salmon by unguided	
anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.	

-continued-

Appendix C4.-Page 2 of 2.

					Ι	Daily cur	nulative	proportio	ons							95% Co	nfidence	
					[P(t)] b	y year of	catch by	unguide	ed angler	s						Inte	erval	_
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/20	0.509	0.516	0.559	0.530	0.556	0.723	0.763	0.500	0.450	0.675	0.574	0.506	0.464	0.578	0.030	0.512	0.643	11.3%
7/21	0.598	0.522	0.559	0.571	0.669	0.755	0.7 9 0	0.538	0.488	0.699	0.609	0.572	0.597	0.618	0.030	0.554	0.683	10.4%
7/22	0.718	0.522	0.566	0.598	0.754	0.773	0.874	0.538	0.526	0.726	0.638	0.675	0.597	0.658	0.036	0.580	0.735	11.9%
7/23	0.718	0.587	0.586	0.617	0.787	0.795	0.874	0.549	0.675	0.737	0.692	0.781	0.602	0.693	0.031	0.625	0.760	9.7%
7/24	0.77 8	0.625	0.619	0.663	0.834	0.795	0.948	0.614	0.709	0.754	0.733	0.781	0.673	0.734	0.031	0.666	0.802	9.3%
7/25	0.826	0.683	0.679	0.704	0.834	0.799	0.981	0.614	0.747	0.785	0.756	0.828	0.718	0.764	0.030	0.699	0.829	8.5%
7/26	0.846	0.754	0.719	0.757	0.912	0.833	0.992	0.671	0.792	0.785	0.772	0.860	0.788	0.803	0.027	0.744	0.862	7.4%
7/27	0.871	0.833	0.770	0.757	0.923	0.843	1.000	0.768	0.792	0.845	0.801	0.894	0.814	0.837	0.022	0.788	0.885	5.8%
7/28	0.898	0.907	0.770	0.823	0.927	0.973	1.000	0.960	0.829	0.899	0.847	0.954	0.999	0.894	0.021	0.847	0.940	5.2%
7/29	0.946	0.907	0.847	0.867	0.951	0.984	1.000	0.960	0.874	0.945	0.875	0.962	0.999	0.923	0.016	0.889	0.957	3.7%
7/30	0.946	0.975	0.917	0.908	0.974	1.000	1.000	0.989	0.937	0.970	0.911	0.989	0.999	0.957	0.011	0.934	0.980	2.4%
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%

					Ι	Daily cur	nulative	proportio	ons							95% Co	onfidence	!
					[P(t)] by yea	r of guid	ed angle	r effort							Inte	erval	
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/01	0.000	0.023	0.025	0.006	0.025	0.032	0.000	0.000	0.035	0.021	0.025	0.037	0.000	0.017	0.004	0.009	0.026	49.8%
7/02	0.014	0.029	0.039	0.028	0.045	0.032	0.000	0.033	0.059	0.046	0.047	0.037	0.031	0.034	0.005	0.023	0.045	31.9%
7/03	0.027	0.033	0.055	0.055	0.045	0.032	0.045	0.063	0.088	0.068	0.047	0.037	0.061	0.051	0.005	0.039	0.062	23.0%
7/04	0.047	0.044	0.079	0.077	0.045	0.073	0.076	0.092	0.109	0.068	0.047	0.083	0.083	0.069	0.006	0.055	0.083	20.2%
7/05	0.073	0.064	0.103	0.077	0.079	0.104	0.102	0.131	0.109	0.068	0.086	0.123	0.103	0.091	0.006	0.077	0.104	15.1%
7/06	0.123	0.087	0.103	0.077	0.111	0.140	0.134	0.162	0.109	0.107	0.120	0.160	0.126	0.116	0.007	0.100	0.131	13.7%
7/07	0.199	0.087	0.103	0.107	0.138	0.179	0.173	0.162	0.151	0.128	0.163	0.201	0.126	0.145	0.011	0.121	0.168	16.0%
7/08	0.199	0.087	0.152	0.129	0.173	0.213	0.173	0.162	0.188	0.162	0.196	0.247	0.126	0.167	0.011	0.143	0.190	14.0%
7/09	0.199	0.122	0.181	0.172	0.211	0.213	0.173	0.223	0.217	0.189	0.226	0.247	0.174	0.193	0.009	0.173	0.213	10.4%
7/10	0.252	0.169	0.206	0.204	0.211	0.213	0.232	0.263	0.250	0.232	0.226	0.247	0.189	0.223	0.008	0.206	0.241	7.9%
7/11	0.320	0.228	0.242	0.225	0.211	0.276	0.290	0.309	0.291	0.232	0.226	0.299	0.234	0.259	0.012	0.234	0.284	9.8%
7/12	0.360	0.279	0.294	0.225	0.267	0.335	0.349	0.344	0.291	0.232	0.302	0.334	0.293	0.298	0.014	0.268	0.328	10.1%
7/13	0.412	0.322	0.294	0.225	0.319	0.388	0.409	0.388	0.291	0.292	0.356	0.377	0.343	0.336	0.018	0.297	0.375	11.7%
7/14	0.484	0.322	0.294	0.308	0.374	0.444	0.459	0.388	0.349	0.346	0.404	0.411	0.343	0.379	0.019	0.338	0.421	10.9%
7/15	0.484	0.322	0.339	0.384	0.408	0.493	0.459	0.388	0.398	0.397	0.454	0.448	0.343	0.411	0.017	0.375	0.448	8.9%
7/16	0.484	0.416	0.392	0.437	0.461	0.493	0.459	0.444	0.443	0.442	0.510	0.448	0.411	0.453	0.010	0.431	0.475	4.9%
7/17	0.534	0.485	0.455	0.486	0.461	0.493	0.507	0.509	0.475	0.485	0.510	0.448	0.451	0.491	0.007	0.476	0.506	3.1%
7/18	0.609	0.530	0.510	0.538	0.461	0.565	0.628	0.551	0.521	0.485	0.510	0.516	0.514	0.537	0.015	0.504	0.570	6.1%
7/19	0.654	0.577	0.569	0.538	0.527	0.621	0.692	0.604	0.521	0.485	0.564	0.583	0.573	0.577	0.019	0.537	0.618	7.0%

Appendix C5.-Historical daily cumulative proportions of the effort by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.

-continued-

Appendix C5.-Page 2 of 2.

					I	Daily cur	nulative	proportio	ons							95% Co	nfidence	
					[P(t)] by year	r of guid	ed angle	effort							Inte	erval	
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/20	0.723	0.627	0.569	0.538	0.591	0.674	0.736	0.655	0.521	0.555	0.618	0.622	0.642	0.619	0.022	0.571	0.666	7.7%
7/21	0.737	0.627	0.569	0.596	0.650	0.724	0.793	0.655	0.608	0.616	0.660	0.677	0.642	0.658	0.020	0.613	0.702	6.8%
7/22	0.737	0.627	0.617	0.630	0.685	0.774	0.793	0.655	0.669	0.674	0.701	0.751	0.642	0.687	0.018	0.649	0.726	5.6%
7/23	0.737	0.677	0.645	0.679	0.745	0.774	0.793	0.713	0.730	0.709	0.744	0.751	0.698	0.722	0.013	0.694	0.751	4.0%
7/24	0.793	0.731	0.705	0.735	0.745	0.774	0.866	0.767	0.763	0.760	0.744	0.751	0.757	0.762	0.013	0.735	0.790	3.6%
7/25	0.842	0.790	0.770	0.782	0.745	0.837	0.918	0.813	0.785	0.760	0. 78 4	0.807	0.812	0.802	0.015	0.770	0.834	4.0%
7/26	0.874	0.841	0.829	0.782	0.807	0.884	0.962	0.859	0.785	0.760	0.816	0.865	0.877	0.836	0.017	0.799	0.874	4.5%
7/27	0.926	0.918	0.829	0.782	0.864	0.922	0.990	0.912	0.785	0.822	0.866	0.912	0.933	0.874	0.020	0.831	0.917	4.9%
7/28	0.951	0.918	0.829	0.842	0.915	0.961	0.995	0.912	0.825	0.870	0.920	0.959	0.933	0.903	0.017	0.867	0.940	4.1%
7/29	0.951	0.918	0.902	0.894	0.960	1.000	0.995	0.912	0.857	0.923	0.957	0.989	0.933	0.934	0.013	0.905	0.962	3.1%
7/30	0.951	0.960	0.961	0.944	1.000	1.000	0.995	0.960	0.929	0.967	1.000	0.989	0.972	0.970	0.008	0.953	0.986	1.7%
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%

					I	Daily cur	nulative	proportio	ons							95% Co	onfidence	;
					[P(t)] b	y year of	f harvest	by guide	d angler	5						Inte	erval	_
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/01	0.000	0.037	0.013	0.008	0.026	0.013	0.000	0.000	0.045	0.029	0.034	0.028	0.000	0.019	0.005	0.008	0.029	57.5%
7/02	0.008	6.039	0.019	0.041	0.034	0.013	0.000	0.031	0.059	0.047	0.057	0.028	0.012	0.032	0.006	0.019	0.044	40.5%
7/03	0.030	0.041	0.030	0.085	0.034	0.013	0.027	0.068	0.059	0.059	0.057	0.028	0.039	0.046	0.006	0.032	0.060	30.8%
7/04	0.055	0.047	0.049	0.118	0.034	0.060	0.072	0.079	0.066	0.059	0.057	0.056	0.052	0.063	0.007	0.049	0.078	22.8%
7/05	0.080	0.058	0.055	0.118	0.064	0.085	0.107	0.079	0.066	0.059	0.117	0.080	0.054	0.081	0.007	0.065	0.096	19.4%
7/06	0.128	0.079	0.055	0.118	0.111	0.136	0.167	0.129	0.066	0.097	0.153	0.145	0.064	0.113	0.011	0.089	0.136	20.7%
7/07	0.197	0.079	0.055	0.157	0.129	0.220	0.201	0.129	0.088	0.125	0.209	0.196	0.064	0.144	0.017	0.107	0.182	25.9%
7/08	0.197	0.079	0.088	0.179	0.169	0.241	0.201	0.129	0.118	0.187	0.248	0.216	0.064	0.167	0.017	0.129	0.204	22.4%
7/09	0.197	0.109	0.102	0.215	0.193	0.241	0.201	0.129	0.127	0.230	0.290	0.216	0.103	0.185	0.018	0.145	0.225	21.5%
7/10	0.223	0.155	0.109	0.237	0.193	0.241	0.237	0.154	0.155	0.298	0.290	0.216	0.132	0.208	0.018	0.169	0.248	19.1%
7/11	0.249	0.217	0.143	0.244	0.193	0.316	0.262	0.211	0.202	0.298	0.290	0.260	0.181	0.239	0.016	0.205	0.273	14.2%
7/12	0.264	0.248	0.164	0.244	0.271	0.367	0.343	0.234	0.202	0.298	0.348	0.281	0.243	0.271	0.019	0.229	0.313	15.3%
7/13	0.301	0.281	0.164	0.244	0.297	0.469	0.407	0.246	0.202	0.375	0.391	0.302	0.273	0.307	0.028	0.245	0.369	20.1%
7/14	0.332	0.281	0.164	0.297	0.346	0.496	0.442	0.246	0.311	0.440	0.427	0.339	0.273	0.344	0.030	0.279	0.409	18.9%
7/15	0.332	0.281	0.207	0.345	0.392	0.508	0.442	0.246	0.380	0.501	0.482	0.382	0.273	0.374	0.031	0.307	0.442	18.1%
7/16	0.332	0.374	0.283	0.387	0.424	0.508	0.442	0.321	0.418	0.552	0.528	0.382	0.481	0.415	0.026	0.358	0.473	13.9%
7/17	0.384	0.428	0.330	0.442	0.424	0.508	0.528	0.347	0.445	0.591	0.528	0.382	0.525	0.450	0.025	0.397	0.504	11.9%
7/18	0.438	0.444	0.407	0.475	0.424	0.635	0.649	0.422	0.469	0.591	0.528	0.581	0.564	0.498	0.027	0.440	0.557	11.7%
7/19	0.483	0.469	0.446	0.475	0.490	0.709	0.709	0.514	0.469	0.591	0.603	0.629	0.622	0.542	0.029	0.478	0.605	11.7%

Appendix C6.-Historical daily cumulative proportions of the harvest of chinook salmon by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.

50

-continued-

Appendix C6.-Page 2 of 2.

		Daily cumulative proportions														95% Co	nfidence	
		[P(t)] by year of harvest by guided anglers														Interval		
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a
7/20	0.578	0.493	0.446	0.475	0.529	0.720	0.734	0.571	0.469	0.608	0.678	0.663	0.710	0.573	0.031	0.505	0.640	11.7%
7/21	0.606	0.493	0.446	0.513	0.592	0.753	0.821	0.571	0.515	0.665	0.705	0.722	0.710	0.607	0.035	0.530	0.684	12.7%
7/22	0.606	0.493	0.495	0.541	0.680	0.809	0.821	0.571	0.596	0.684	0.738	0.813	0.710	0.640	0.035	0.563	0.716	11.9%
7/23	0.606	0.607	0.509	0.619	0.778	0.809	0.821	0.600	0.628	0.706	0.768	0.813	0.739	0.677	0.031	0.609	0.745	10.1%
7/24	0.688	0.675	0.561	0.682	0.778	0.809	0.882	0.647	0.628	0.737	0.768	0.813	0.762	0.714	0.028	0.654	0.774	8.4%
7/25	0.748	0.743	0.627	0.742	0.778	0.868	0.916	0.696	0.628	0.737	0.794	0.861	0.833	0.752	0.027	0.695	0.810	7.7%
7/26	0.820	0.761	0.664	0.742	0.863	0. 899	0.969	0.754	0.628	0.737	0.819	0.896	0.912	0.787	0.030	0.721	0.853	8.4%
7/27	0.903	0.876	0.664	0.742	0.905	0.943	0.983	0.848	0.628	0.812	0.887	0.924	0.971	0.836	0.034	0.761	0.910	8.9%
7/28	0.924	0.876	0.664	0.794	0.923	1.000	0.985	0.848	0.633	0.882	0.941	0.975	0.971	0.861	0.036	0.782	0.940	9.2%
7/29	0.924	0.876	0.818	0.853	0.956	1.000	0.985	0.848	0.633	0.917	0.965	0.988	0.971	0.889	0.031	0.820	0.957	7.7%
7/30	0.924	0.936	0.924	0.906	1.000	1.000	0.985	0.945	0.843	0.983	1.000	0.988	0.983	0.950	0.015	0.917	0.982	3.4%
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%

		Daily cumulative proportions														95% Co	nfidence	
		[P(t)] by year of catch by guided anglers														Interval		
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP
7/01	0.000	0.031	0.017	0.006	0.019	0.011	0.000	0.000	0.036	0.024	0.031	0.027	0.000	0.016	0.004	0.007	0.025	55.4%
7/02	0.010	0.033	0.027	0.040	0.025	0.011	0.000	0.033	0.045	0.044	0.051	0.027	0.010	0.029	0.005	0.018	0.040	37.2%
7/03	0.026	0.034	0.036	0.080	0.025	0.011	0.030	0.063	0.045	0.062	0.051	0.027	0.034	0.042	0.006	0.029	0.055	31.7%
7/04	0.047	0.038	0.059	0.114	0.025	0.049	0.064	0.072	0.051	0.062	0.051	0.062	0.048	0.058	0.007	0.043	0.073	25.9%
7/05	0.072	0.045	0.069	0.114	0.051	0.080	0.095	0.092	0.051	0.062	0.117	0.093	0.051	0.077	0.008	0.061	0.093	21.2%
7/06	0.117	0.061	0.069	0.114	0.094	0.125	0.148	0.132	0.051	0.098	0.160	0.165	0.069	0.106	0.011	0.083	0.130	21.8%
7/07	0.176	0.061	0.069	0.160	0.112	0.193	0.181	0.132	0.067	0.124	0.212	0.219	0.069	0.135	0.016	0.100	0.171	26.2%
7/08	0.176	0.061	0.114	0.179	0.141	0.217	0.181	0.132	0.088	0.176	0.249	0.241	0.069	0.156	0.017	0.120	0.192	23.3%
7/09	0.176	0.115	0.127	0.217	0.160	0.217	0.181	0.136	0.095	0.217	0.286	0.241	0.136	0.175	0.017	0.138	0.212	21.1%
7/10	0.202	0.181	0.135	0.234	0.160	0.217	0.208	0.165	0.132	0.281	0.286	0.241	0.169	0.200	0.016	0.166	0.235	17.2%
7/11	0.239	0.257	0.163	0.241	0.160	0.320	0.234	0.218	0.166	0.281	0.286	0.294	0.221	0.233	0.016	0.198	0.268	15.0%
7/12	0.256	0.280	0.182	0.241	0.234	0.376	0.315	0.241	0.166	0.281	0.342	0.310	0.279	0.265	0.019	0.223	0.306	15.7%
7/13	0.285	0.315	0.182	0.241	0.260	0.493	0.377	0.251	0.166	0.355	0.380	0.330	0.305	0.300	0.029	0.237	0.364	21.0%
7/14	0.316	0.315	0.182	0.282	0.314	0.516	0.415	0.251	0.259	0.421	0.413	0.362	0.305	0.335	0.029	0.272	0.398	18.9%
7/15	0.316	0.315	0.249	0.335	0.365	0.535	0.415	0.251	0.314	0.490	0.463	0.396	0.305	0.368	0.029	0.305	0.431	17.1%
7/16	0.316	0.443	0.345	0.377	0.391	0.535	0.415	0.363	0.349	0.547	0.505	0.396	0.511	0.417	0.024	0.364	0.470	12.6%
7/17	0.382	0.507	0.409	0.428	0.391	0.535	0.504	0.395	0.374	0.585	0.505	0.396	0.552	0.456	0.022	0.408	0.504	10.5%
7/18	0.452	0.521	0.468	0.454	0.391	0.655	0.676	0.454	0.394	0.585	0.505	0.622	0.587	0.505	0.029	0.442	0.568	12.5%
7/19	0.503	0.538	0.501	0.454	0.451	0.724	0.738	0.533	0.394	0.585	0.599	0.668	0.638	0.547	0.033	0.476	0.618	13.0%

Appendix C7.-Historical daily cumulative proportions of the catch of chinook salmon by guided anglers during the return of late-run chinook salmon to the Kenai River, 1984-1996.

-continued-

Appendix C7.-Page 2 of 2.

		Daily cumulative proportions														95% Confidence				
		[P(t)] by year of catch by guided anglers														Interval				
Date	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Mean	SE	Low	High	RP ^a		
7/20	0.606	0.557	0.501	0.454	0.489	0.733	0.766	0.588	0.394	0.602	0.687	0.697	0.716	0.580	0.035	0.503	0.656	13.2%		
7/21	0.631	0.557	0.501	0.494	0.610	0.763	0.837	0.588	0.427	0.657	0.711	0.762	0.716	0.616	0.037	0.536	0.696	13.1%		
7/22	0.631	0.557	0.534	0.524	0.698	0.809	0.837	0.588	0.499	0.680	0.739	0.838	0.716	0.645	0.035	0.568	0.722	11.9%		
7/23	0.631	0.665	0.545	0.598	0.788	0.809	0.837	0.613	0.523	0.700	0.767	0.838	0.742	0.680	0.033	0.608	0.751	10.5%		
7/24	0.721	0.719	0.583	0.654	0.788	0.809	0.893	0.675	0.553	0.729	0.767	0.838	0.778	0.717	0.030	0.652	0.782	9.1%		
7/25	0.777	0.780	0.641	0.735	0.788	0.860	0.937	0.724	0.576	0.729	0.792	0.883	0.841	0.758	0.029	0.694	0.822	8.4%		
7/26	0.840	0.794	0.681	0.735	0.869	0.905	0.977	0.792	0.576	0.729	0.813	0.913	0.915	0.792	0.033	0.719	0.864	9.1%		
7/27	0.912	0.910	0.681	0.735	0.921	0.945	0.987	0.878	0.576	0.808	0.876	0.940	0.970	0.839	0.038	0.756	0.922	9.9%		
7/28	0.929	0.910	0.681	0.809	0.935	0.995	0.989	0.878	0.638	0.880	0.923	0.979	0.970	0.870	0.035	0.793	0.946	8.8%		
7/29	0.929	0.910	0.826	0.861	0.962	1.000	0.989	0.878	0.659	0.920	0.946	0.991	0.970	0.898	0.029	0.836	0.961	7.0%		
7/30	0.929	0.957	0.927	0.919	1.000	1.000	0.989	0.955	0.855	0.976	1.000	0.991	0.981	0.955	0.014	0.926	0.985	3.1%		
7/31	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.000	1.000	1.000	0.0%		