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in a Series of Salmon Fisheries
 

Harold J. Geiger 

ABSTRACT: Bayesian methods provide an under-appreciated way of analyzing tag or mark data for hatchery salmon 
stock identification. For example, the otolith bones can now be marked in captive juvenile salmon, these marks 
remaining visible in the returning adults. Fishery managers can summarize what is known and unknown about the 
underlying proportion of hatchery fish in these fisheries using Bayesian methods and the beta probability distribu­
tion. Close examination of Bayesian probability theory exposes a philosophy in close agreement with common 
sense and a form of inference that is direct and agrees with the way people use the notion of probability in everyday, 
colloquial speech. This theory also provides a straightforward means to allocate sampling resources, in a staged 
manner, based on information obtained from initial sampling. 

INTRODUCTION 

Bayesian statistics, although gaining acceptance 
(e.g., G.G. Thompson 1992; Walters and Ludwig 1993; 
Hilborn et al. 1993) is largely unused and misunder­
stood in the field of fisheries. The key features of this 
form of statistical analysis are (1) that unknown 
parameters are treated as random variables, (2) only 
the data that is actually observed is used in the 
analysis, and (3) the Bayesian algorithm is centered 
around the idea of using data to update the state of 
knowledge about the parameters. 

Traditional statistical inference is based on the idea 
of a probability distribution for the data and fixed 
unknown parameters; both data that was and was not 
observed is important in this analysis. Tools such as 
confidence intervals from traditional, or sampling-
based, analysis are based on the idea of sets of data 
that you are expected to observe if you repeat the 
experiment or study over and over again (Lindgren 
1993; S.K. Thompson 1992; Seber 1982). Effron 
(1986) and Berger and Berry (1988) provided discus­
sions of the merits of the underlying theory behind 
Bayesian and non-Bayesian inference. 

Here, I will examine Bayesian methods for fish­
eries managers interested in a stock identification 
system for hatchery-produced pink Oncorhynchus 
gorbuscha and sockeye O. nerka salmon, when all of 
the hatchery population has been marked. This kind 
of mass-mark can now be applied to juvenile hatchery 
salmon by manipulation of water temperature in such 

a way as to create unique mark on the otolith bones 
(Volk et al. 1990; Brothers 1990). 

Bayes’ Theorem (e.g., Lindgren 1993) states that, 
if A is some event that can occur only if one of the 
mutually exclusive events, B1 , ... , Bn, occurs, then 
the probability (Pr) of the eventBi, given that the event 
A occurred, can be described as follows (the vertical 
bar “|” denotes a that the latter event is “a given”): 

Pr{A B  } ⋅ Pr{ }i Bi
Pr B A} = .{ i APr{ }  

For example, the probability that a fisherman 
is Norwegian is proportional to the proportion of 
Norwegians that are fishermen, times the proportion 
of Norwegians in the world. Dividing these two 
factors by the proportion of the world’s population that 
are fishermen would give the probability that a fisher­
man is Norwegian. His being a fisherman corresponds 
to event A, and the nationality corresponds to 
B1 , ... , Bn . 

Bayesian analysis of a series of independent 
success-failure trials, such as the presence or absence 
of a tag, dates back to Bayes’ original work in the 18th 
century (Press 1989). Stroud (1994) discusses Baye­
sian analysis in the context of binary survey data, such 
as the recovery of a tag or other mark. Bayesian infer­
ence is unaffected by the rules that govern how the 
total sample size was generated in success-failure 
trials, as noted in almost every essay on the virtues of 
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Bayesian methods (e.g., Box and Tiao 1973, 
Berger and Wolpert 1988). New features in computer 
spreadsheets have made Bayesian statistics much more 
workable for tag or mark data. In particular, the beta 
probability distribution, which is now in computer 
spreadsheets, can play a central role in this kind of 
Bayesian analysis. 

In mixed-stock salmon fisheries containing hatch­
ery stocks, the goal is to estimate the fraction of 
hatchery fish present. Coded wire tags have been used 
for such a purpose (Peltz and Miller 1990) in hatchery 
salmon, but these tags are now being phased out for 
pink salmon in Alaska. In this species coded wire tags 
are expensive and leave lingering questions about un­
detected tag loss and tag-related mortality (Geiger and 
Sharr 1990). Each individual fish must be anesthetized, 
have a tag injected into its nasal cartilage, and then be 
marked with a visible fin-clip. Because of the expense 
and labor involved, only a small fraction of some hatch­
ery releases can be marked. In Prince William Sound, 
approximately 1 in 600 hatchery fish have been tagged. 
Sampling for coded wire tags consists of examining 
the harvest for fin clips, indicating a tag may be present. 
Fish with visible fin-clip marks are saved for later 
decoding. In contrast, the otolith bones of the entire 
production of a salmon hatchery can be microscopi­
cally marked by exposing either the embryo or 
emergent fry to water temperature changes (Volk et 
al. 1990; Brothers 1990). The cost of otolith marking 
is low, following initial capital costs for heating equip­
ment. Because all fish are marked the statistical 
models are much simpler. 

If the cost of decoding the marks is small, then a 
sensible rule might be to take a large sample in each 
fishery. S.K. Thompson (1987) explains this approach 
for two or more mark types, with advice on sample 
size selection. If the cost of mark decoding is very 
high, or there are a limited number of marks that can 
be decoded, managers might want to decode some 
marks and use this information to decide how to pro­
ceed with the rest of our sampling resources — that is, 
dynamically allocate the sampling resources based on 
sample results. 

THE METHOD 

Simple Example of Two Fisheries and Two 
Mark Types 

For simplicity, consider only two fisheries and two 
mark types, although the generalization to more fish­
eries and multiple marks or tags is straightforward. 

Some of the details about these generalization are pro­
vided in Appendix A. For concreteness, call the first 
mark type hatchery otoliths and assume all hatchery 
fish are marked. The second mark type could repre­
sent the absence of a hatchery mark. Let N denote the 
number of fish caught in the first fishery and M the 
number caught in the second fishery. We assume they 
are known quantities calculated from some kind of 
harvest reporting system. Let x denote the number of 
marks of hatchery otoliths in a random sample of size 
n in the first fishery, and y the number hatchery otoliths 
in a random sample of size m in the second fishery. 
Assume that n is much smaller than N and m is much 
smaller than M to avoid worry about sampling with or 
without replacement. Finally, let π denote the true 
proportion of hatchery fish in the first fishery, and let 
λ denote the true proportion of hatchery fish in the 
second fishery. The sampling distributions of the 
number of hatchery otoliths in the sample are then 
given by the binomial distribution, 

n⎞ x n xf x( π ⎜
⎛ ( − π − , x =12  ,) =
⎝ x ⎟⎠

π 1 ) , ,...n and 

⎛m m y
f y  ) =

⎝ y⎠
⎞λy ( − λ − 

, y = 12,...m.λ ⎜ ⎟ 1 ) ,( 

In the Bayesian setting the parameters are treated 
as random variables, and probability is used as 
a measure of the certainty at particular parameter 
values. In the binomial sampling situation, the beta 
distribution is often used to model the probability dis­
tribution of the parameters (Lee 1989), for reasons that 
will soon be clear. This distribution, developed prior 
to observing any data, is called the prior distribution. 

Suppose we begin by just assuming that π and λ 
follow beta distributions with parameters c1 ... d2: 

c −1 c2 −1f ( ) = 1 π ( , and π 1 − π )
c cΒ( 1, ) 

1 

2 

1 d1 −1 d2 −1
f ( )  ( − λ .λ = λ 1 )

Β(d d2 ),1 

B(c
1
, c

2
) denotes a function called the beta func­

tion (which is now in most computer spreadsheets). 
Note the similarities between the binomial distribu­
tion of the number of hatchery otoliths in a sample 
and the beta distribution of the proportion of hatchery 
otoliths in the population. Looking at the distribution 
of π from any statistical theory text (e.g., Lindgren 



  

  

  

 
 

  

  

 

  

 

 

 

68 Articles 

1993), the mean, denoted E(π), and variance, denoted 
V(π), is given by 

c
E( )π = 1 , (1)

c c  +1 2 

π = c c
V( ) 1 2  .2 (2)(c c  ) c c  + )+ +  1 (1 2 1 2 

By using Bayes’ Theorem, we obtain the prob­
ability distribution for the unknown fraction of 
hatchery fish in a fishery after observing some data. 
A new probability distribution is formed by what is 
called in probability, conditioning on the data that was 
actually observed. We call the new distribution the 
posterior distribution — that is, the distribution of 
the parameters after, or posterior to, observing the data. 
More importantly this posterior distribution is also a 
beta distribution (Lee 1989). This distribution will be 
proportional to the sampling distribution of the 
number of marked fish in a sample from the fishery 
(i.e., f (x|p)) and the prior distribution for π (i.e., f (π); 
Lee 1989). Recalling that x was the number of hatch­
ery fish in a sample of  n fish from the fishery, define 
c'= x + c  and c' = n - x + c , (and so forth with m and

1 1 2 2
y for d'1 and d'2). This emphasizes the recursive nature 
of the process by which the probability distribution 
that describes what we know, or don’t know, is up­
dated in the Bayesian setting. In mathematical form 
— which is not really needed to make this work in 
a computer spreadsheet — the posterior distribution 
is given by 

1  − +  −  1x c+ −1 n x c  1 2f (π x) = ( π ( )  1− π 
x c+ , − +  )Β 1 n x c  2 

1 c' −1 c' −11 2= π (1− π ) , and (c c' )Β ' ,1 2 

+ −  − + −  11 y d 1 m y d  21f λ y = λ 1− λ( ) ( ( )  
y d m y d  , − +  )Β + 1 2 

1
1d' −1 d' 2 −1 = λ ( )  1 − λ .

Β d d'' ,( 1 2 ) 

When data have been collected, c'1 = x + c1 and 
c'

2
 = n - x + c

2
 (and d'

1
, and d'

2
) become constant, fixed 

numbers. These numbers are placed in a spreadsheet 
function to get useful descriptions about the 

unknown fraction of hatchery fish from the probabil­
ity distributions. Specifically, the best single estimate 
of the unknown parameter is the mean of the posterior 
distribution (e.g., Lee 1989 describes why the mean 
of the posterior distribution is the best estimate by the 
squared-error loss criterion). 

Using equations (1) and (2) find the posterior mean 
and variance of π. The mean is given by 

x c+ 1E(π x) = , 
n c  c  + +1 2 

which will be near the usual estimate of x/n when the 
sample size is large. The posterior variance the 
proportion of hatchery fish is given by 

x c n x c  )( + )( −  +  
V(π x) = 1 2

2
 
n c  c  1 1 )
( + +  +  2 )(n c  c  + +  21 

E(π x)E(1− π x)
= ,(n c  c  )+ + +  11 2 

which will be near the usual sample variance for the 
binomial distribution, (x/n)[(n-x)/n]/n, with a large n 
and relatively small c’s. The mean and variance of λ 
are found by similar applications of equations (1) and 
(2). Notice, by using beta prior distributions, the 
parameters of the posterior distribution are found by 
combinations of the c'

1
, c'

2
, d '

1
, and d'

2
 constants. 

At each stage of the analysis the latest values of the 
constants c'

1
, c'

2
, d'

1
, and d'

2
 are all that needs to be sup­

plied to the computer spreadsheet for a complete 
inventory of what we know about the fishery. 

In the Bayesian setting, by conditioning on what 
we know at the moment, today’s prior distribution will 
simply be yesterday’s old posterior distribution. The 
values c'1, c'2, d'1, and d'2 are updated by adding the cur­
rent data into the appropriate place (i.e., the new c'1 
will be the oldc' plus the new x). Notice also that with

1
increasing data, the original constants c1, c2, d1, and d2 
have increasingly less influence. 

To look at a sensible interval for the unknown 
parameter, have your computer spreadsheet look up 
the α/2 (100%) and (1-α/2)(100%) percentiles of the 
beta distributions with parameters c'1 and c'2 ( or d'1, 
and d'

2
). In Bayesian inference these intervals are called 

credible intervals. Unlike confidence intervals, with 
credible intervals you can correctly make the direct 
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statement that the probability is (1-α/2) that the true 
value is in this interval. For an interval with 95% prob­
ability, using either Excel™ or Quattro™ spreadsheets, 
these limits are found with the statements 
“@BETAINV(0.025, c'1, c'2)” for the lower limit 
and “@BETAINV(0.975, c'1, c'2)” for the upper limit, 
with c'1 and c'2 denoting the cells with the current beta 
parameters. 

Dynamic Sample Sizes Between Two Fisheries 

Suppose that the real source of our interest is the 
overall proportion of marked fish in both fisheries 
combined, which we will denote ρ. Then recalling that 
N and M are the total number of fish in the harvest of 
each fishery 

N Mρ = π + λ . 
N M+ +N M  

Then, 

N M
E(ρ data) = E(π x) + E( )λ y , (3)

N M+ N M+

and 

⎛ N ⎞ 2 ⎛ M ⎞
2 

V(ρ data) = ⎜ ⎟ V(π x + V λ y) ⎜ ⎟ ( )⎝ N M+ ⎠ ⎝ N M+ ⎠

NM+2 2 Cov( ,π λ x y) (4) 
, . 

+(N M) 

Now to achieve a good distribution of sampling 
resources, we may decide that we want the standard 
deviation of ρ to be as small as possible. Assume for 
the moment that π and λ are independent; I will 
return to this subject below. Recall samples 
of size n  and m have already been taken, but 
suppose one or both of these is to be increased by some 
amount. If N  [π(1-π)]1/2/n >> M  [λ(1-λ)]1/2/m, then 
additional samples should come from Fishery 1 
because increasing n will cause the fastest decline in 
the standard deviation of ρ (Appendix B). Similarly, 

)]1/2/n ≈ M [λif N [π(1-π (1-λ)]1/2/m, then additional 
samples should come from both fisheries, and if 
N [π(1-π)]1/2/n << M [λ(1-λ)]1/2/m, then additional 
samples should come from Fishery 2.This rule is sim­
ply telling us to devote more sampling resources where 
there is more variability or where the catch is larger. 

Choosing parameters for an initial prior 
distribution 

Because the Bayesian algorithm is based on a flow 
of learning, the prior is needed to prime the inference 
pump. The prior distribution is the most misunderstood 
component of Bayesian analysis and is sometimes 
thought of as a way to subvert what the data are trying 
to say.A poorly thought out prior distribution can lead 
to poor inference, just as unreasonable α and β error 
rates can in a classical statistical hypothesis test. 
Berger (1985) provides a complete, but highly math­
ematical, discussion of how to choose prior distribu­
tions. As n gets bigger and bigger, x and n-x will 
increase too, x and n-x being the number of hatchery 
and non-hatchery marks in the sample. Eventually, at 
very large sample sizes, c

1
 and c

2
 will be insignificant 

compared with x and n-x. So, the first consideration 
might be a prior probability that will result in the sum 
of c1 and c2 being relatively small as a reasonable 
amount of data are accumulated . 

By restricting the sum of c
1
 andc

2
 to a small value, 

say even less than one, the prior probability can model 
a wide range of reasonable and realistic representa­
tions of the state of knowledge for the manager. One 
alternative is to let c1 and c2 equal 1. This, in effect, 
lets all values between 0 and 1 be equally likely be­
fore looking at any data. Figure 1 shows an example 
of prior and posterior distributions with the sum of c

1 
and c2 restricted to 0.75, a sample size of 100, and 
outcomes of x = 10 and x = 90. In this example the 
final inference is almost completely controlled by the 
data and virtually unaffected by the choice of prior 
probability. 

In the end, the choice of c1 and c2 has the same 
basis in judgement that the choice of α and β error 
rates in a statistical hypothesis testing. After experi­
menting with various values of c1 and c2, I recom­
mend letting c  = 0.25 and c  = 0.5, although another

1 2
analyst may have some reason for increasing these 
initial values. The most obvious reason is that data 
from fisheries adjacent in time or space is providing 
information that can somehow be incorporated. 

Inseason analysis of serially ordered fisheries, 
and dependence between πππππ and λλλλλ 

Earlier we simplified by assuming that π and λ 
are independent. But in fisheries separated by only a 
couple of days, most managers will think that what 
happens in one period will be similar to what happens 
in the next. Adjacent fishing districts will also tend to 
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have similar proportions of hatchery fish. In statisti­
cal terms, π and λ are dependent. 

In traditional statistical sampling, the sampling 
events are independent in the two fisheries so that the 
estimates of the parameters are independent. In the 
Bayesian setting we are developing a probability 
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Figure 1. The top figure shows the prior distribution of the 
proportion of hatchery fish a fishery before examining any 
otoliths. This distribution is a beta distribution with 
parameters c1 = 0.25 and c2 = 0.5. The middle distribution 
shows the posterior distribution after decoding 100 otoliths 
and observing 10 of the hatchery type.  The bottom figure 
shows the posterior distribution after decoding 100 otoliths 
and observing 90 of the hatchery type. 

distribution for the parameters themselves, and so the 
parameters are not completely independent. 

Suppose Fishery 1 takes place first. The results 
from Fishery 1 should influence the prior distribution 
for Fishery 2, and this is how a dependence between π 
andλ is expressed. The question of how to set the prior 
probabilities for Fishery 2 has no automatic answer. 
One straightforward way to model dependence from 
one fishery to the next is to introduce the quantity h, 
which gives a proportional relationship between the 
posterior information from the earlier fishery and the 
prior probabilities in the latter fishery; i.e., either 
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Figure 2. Prior and posterior distributions for the proportion 
of hatchery fish in two 1994 Southeast Alaskan pink salmon 
fisheries occurring in series.  The prior distribution for the 
first fishery is a beta distribution with parameters c1 = 0.25 
and c2 = 0.5, shown with a dashed line in the top graph. 
After observing x = 6 hatchery fish out of a sample size of 
100, the posterior distribution is given by the solid line on 
the same graph.  Based on the results of the first fishery, 
the prior distribution of the second fishery is a beta 
distribution with parameters d1 = 5 (6/100) and d2 = 5 (94/ 
100), with mean 0.056, shown as the dotted line on the 
bottom graph.  After observing y = 20 hatchery fish in a 
sample of 103 from the second fishery, the posterior 
distribution, with mean 0.158, shown with the solid line 
on the bottom graph. 
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Table 1.  Parameters of the posterior distribution of proportions of hatchery fish in two fisheries.  These propor­
tions are denoted π and λ and are dependent through the prior distribution of the second fishery. The second 
fishery’s prior is based on observed hatchery otoliths in the first fishery. The beta prior distribution in the 
first fishery is given by parameters c1 = 0.5 and c2 = 1.0. With n and m, the sample sizes in each of the two 
fisheries (fixed at 100), x and y, are the respective detected hatchery otoliths.  The beta parameters in the 
second fishery are d1 = 5 (x/n) and d2 = 5 [(n - x)/n]. 

Level of Level of Mean of Posterior Variance of Covariance 
x y λ π λ of π and λ 

10 10 0.098 7.7 10-4 7.1 · 10-4 6.2 · 10-6 

10 50 0.480 7.7 10-4 0.002 1.1 · 10-6 

10 90 0.853 7.7 10-4 0.002 2.1 · 10-5 

50 10 0.116 0.002 9.7 · 10-4 2.8 · 10-6 

50 50 0.499 0.002 0.002 1.4 · 10-6 

50 90 0.855 0.002 0.002 3.0 · 10-5 

90 10 0.137 0.002 0.001 1.9 · 10-5 

90 50 0.518 0.002 0.002 6.6 · 10-6 

90 90 0.886 0.002 0.001 3.3 · 10-4 

d  = h c' and d  = h c', or perhaps d  = h x and d  = h
1 1 2 1 1 2

(n-x) . 
Based on trial and error, I suggest scaling the 

sum of d  and d  to be 5, and letting h = 5/n ; i.e.,
1 2

d  = 5 (x/n) and d  = 5 [(n-x)/n]. This seems to do 
1 2

a reasonable job of expressing prior beliefs about a 
fishery that has not yet happened and still results in 
the data dominating the posterior distribution when 
the sample sizes approach large values (e.g., near 100). 
Figure 2 shows an example of two fisheries with 
dependent parameters modeled using this rule. 

The analyst is usually concerned inseason about 
the fraction of hatchery fish, fishery by fishery. 
Inseason, the analyst is not concerned about an over­
all estimate of hatchery fish in the two fisheries 
combined. 

Postseason analysis and the posterior distribu­
tion of the overall estimate 

For the postseason analysis, the covariance 
between parameters can safely be ignored if n and m 
exceed 100 and the rule of scaling the sum of d

1
 and 

d
2
 to 5 is followed. Table 1 shows calculated param­

eters of the posterior distributions of π and λ for high 
medium and low values of  x and y. The covariance of 
π and λ is always less than two orders of magnitude 
less than the minimum of the variances with x and y 
between 10 and 90 and sample sizes of 100. 

For the postseason analysis, the manager will want 
the posterior distribution of ρ. By the time hundreds 
of otoliths have been examined, unless virtually all of 
them were of one type, the posterior distribution of ρ 
is very near the normal distribution, with the mean 

and variance given by equations (3) and (4). The cred­
ible intervals for ρ can safely be constructed with the 
posterior mean, plus or minus posterior standard 
deviation times the desired factor from the standard 
normal distribution (e.g., 1.96 for a 95% credible 
interval). 

Sample Size Determination 

In planning for the postseason analysis, most 
managers will usually be familiar with requesting 
resources sufficient to reduce the standard error of an 
estimate of the proportion of hatchery fish in all fish­
eries. Gauging the size of the request can be done by 
looking at previous years and guessing at the total catch 
in each fishery,  N  , N  , ... ,  then assuming 

1 2
that proportion of hatchery fish is close to 0.5 
(the worst case for the variance) for all fisheries. The 
standard error of the estimate of overall hatchery 
contribution to all fisheries is controlled by sample 
size. This standard error is reduced by increasing n. 
To reach precision objectives, solve the following for 
n: 

/
⎧ ⎡ 2 2 ⎤⎫

1 2  

⎪ ⎛ Ni 
⎞ (0 5.  ) ⎪ρ ≤ ⎜ ⎬SE( ) ⎨∑ ⎢ ⎟ ⎥ ,

⎢⎜⎝ ∑ Nj 
⎟⎠ 

× 
n ⎥⎪ ⎪⎩ ⎣ ⎦⎭

with the left side replaced by the desired standard 
error of the estimate. Assuming we take good guesses 
at  N1 , N2 , ..., then with the ni’s dynamically 
allocated, as explained above in the section Dynamic 
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Sample Sizes Between Two Fisheries, the precision will 
be generally better than planned. 

Usually the manager does not have a definite idea 
about precision and is looking for guidance. Figure 3 
shows a graph of 1/√n , the rate at which 
the standard error decreases for a fixed-population 
standard deviation. Notice this flattens out consider­
ably by 30, and very little gain in precision is 
achieved past a sample size of 100. For this reason, 
a starting sample size of 100 makes sense for all 
fisheries, with increases to come in the dynamic 
allocation step in the postseason analysis. 

In a complex, multifishery setting the sampling 
should proceed in a series of steps. First, 
a starting sample size is determined for each fishery 
based on the minimum needed for inseason analysis. 
Second, large numbers of fish are sampled from 
the fishery and inventoried. Third, the fixed number 
of marks are decoded from each fishery. Fourth, 
the preliminary information is fed into the decision 
rules laid out above in the section Dynamic Sample 
Sizes Between Two Fisheries. Fisheries where addi­
tional samples will cause the fastest decline in the 
standard deviation in the posterior distribution of the 
overall mark rate are noted. Fifth, another increment 
of marks are decoded based on the newest informa­
tion. 

The size of the increment will be determined 
by production considerations in the processing 
laboratory. For small batch sizes, I suggest first 
running 100 otoliths from each fishery. Next, 
take an additional batch from the fishery that will 
cause the largest increase in precision,  based 
on the rule in the section Dynamic Sample Size 

1.00 

0.75 

0.50 

0.25 

0.00 
0 	 100 200 300 400 

Sample Size 

Figure 3. The rate at which the standard error declines as 
a function of sample size for a given population standard 
deviation. The rate is simply the function 1/√n , where n 
denotes sample size. 
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Between Two Fisheries. Repeat the process of 
sampling and reevaluating until the sampling resources 
are exhausted. 

Also see Fuchs et al. (1993) for a discussion of 
sample size for the kind of yes-no data fish marks 
present in the Bayesian setting, using prior informa­
tion. 

CONCLUSIONS 

These methods provide a rational, staged 
means of estimating the contribution of hatchery fish 
in a series of fisheries. The use of stages makes 
the best possible use of sampling resources. 
The analyst proceeds logically from a point of 
relative ignorance to a point of relative certainty, 
with a cogent summary of the state of knowledge 
at each stage. The way the relative certainty is 
summarized — in the posterior distribution of the 
proportion of hatchery fish in the catch — 
is intuitive and easy to present and understand using 
graphs. 

The original prior probabilities are to prime 
the inference pump. By starting with prior 
probabilities that reflect the fact that not much 
is known before collecting the data, the prior 
probabilities have little affect on the final inference. 
By using information to shape prior probabilities, when 
the information exists, the posterior distribution 
realistically reflects what the analyst knows at the end 
of the study. 

Turning to the issue of how the results are used, 
in the Bayesian setting confidence intervals are 
not used because these are based on some idea of 
repeated sampling. Instead, a credible interval 
makes the direct statement people want from 
a confidence interval. If 95% is the desired level, 
we use the posterior probability distribution to 
directly state that the probability is 95% that 
the parameter is in the interval from a to b.  Notice the 
difference between this simple statement and 
the complex, convoluted logic of the confidence 
interval. 

The data user can think of a 95% credible interval 
as a 95% confidence interval with no real harm. 
The mean of the posterior distribution is so near 
to the classical point estimates as to be virtually 
indistinguishable when sample sizes are large. 
But the open-minded user gets the entire posterior 
distribution, which offers a richer, more sensible, 
and more direct summary of the available evidence. 
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— Appendix A. — 
Appendix A. Generalization to multiple tag codes and fisheries. 

Two tag codes and two fisheries generalize in a straightforward way, although simultaneous analysis of 
more than one tag type is not possible in a computer spreadsheet at this time. Letξi(g) denote the true proportion 
of fish with tag-code g in fishery i, with g and i extending over all codes and fisheries. If xi(g) represents the 
number of g-type codes found in a sequence of n  random tag decodings in fishery i, and c  are the smalli i,j
constants that define the prior distribution, then 

x j  +ci  j  −1( ) i ( )  ,ξ i j
f ,ξ C ... A x Β C ... j ]!(ξ ( )  ( )  ( )  A ,ξ Β x ( ), ( )  ( )  , x ) = [∑ x ( ) ∏ .i i i i i i i 

j x j( )!i 

This distribution is called the Dirichlet distribution, and full descriptions can be found in appropriate statis­
tical text books (e.g., Berger 1980). The constants that define the prior distribution are developed in the same 
way as in the two-tag, two-fishery example by using judgement and experience, just as with error rates in a 
hypothesis test. The initial constants should be very small and similar to express relative ignorance. After the 
first fishery, the constants should be small, but slightly larger and be in proportion to the sample results in 
adjacent fisheries. 

Define ρ(g) as the overall proportion of fish with the mark type g in all fisheries. Let Ni  be the total catch of 
fish in fishery i. Then, for example, a straightforward way to summarize the best guess at the overall proportion 
of the g-type mark is the weighted average over all fisheries, just as before: 

NiE(ρ( )g data ) = ∑ E(ξ ( )g data ) . 
i ∑ 

j
Nj 

i 

The variance is found as before with covariances of proportions in each fishery found as 

(ξ ( )  ( )  ,ξ gCov i g j data ) = 
1 1 

data )][ξ j ( ) − E(ξ ( )g ( )  data )] (ξ i ( )g data ) f (ξ j ( )g ξ ( )g ,data )dξ ( )g d  ξ ( )g ,∫∫ [ξ i ( )g − E(ξ i ( )  g g j ξ g , fi i i j 
0 0 

where fishery i comes before fishery j and the prior of fishery j is assumed to be based on the outcome in 
fishery i. The notation f(ξ

j
(g)⏐ξ

i
(g) , data) denotes the posterior distribution for ξ

j
(g) after using information 

from fishery i. 
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— Appendix B. — 
Appendix B. Dynamic sample size justification. 

To find the combination of sample sizes that will cause the fastest decline in the standard deviation of ρ, 
consider the partial derivatives of [V(ρ⏐data)]1/2 with respect to n and m. The most negative of these is the 
direction with the fastest decreases in the standard deviation. Assume that the covariance between π and λ is 
negligible, as discussed above. Because x increases randomly in response to an increase in n, we cannot take the 
derivative of E(π⏐x) and E(λ⏐y) with respect to n or m. So, assume that the constants c1, c2, d1, and d2 are 
negligible, and let π and λ stand in place of E(π⏐x) and E(λ⏐y), which are functions of n and m, for the purposes 
of differentiating. Then the partial derivatives of the standard deviation of ρ are approximated as follows: 

/V( )ρ 1 2  ⎧⎪⎡⎛ N ⎞ 2 ⎤⎛ 1 ⎞ ⎪⎫ −1 2/
⎨⎢ ⎥ 2 [π 1 ]⎬ / ( ) ,∂ ≈ − ⎜  ⎟ ⎜  ⎟ ( − π ) ×1 2  V ρ

∂n ⎪ ⎝ N M+ ⎠ ⎝ n ⎠ ⎪⎩⎣ ⎦ ⎭

1 2  ⎧ 2
( )ρ ⎪⎡⎛ M ⎤⎡ 1 ⎫⎪ − /V / 

⎞ ⎤ 1 2∂ ≈ −  λ − λ × / V ρ⎨⎢⎜ ⎟ ⎥ 2 ⎥[ (1 )]⎬ 1 2  ( )  .⎢∂m ⎪ ⎝ N M+ ⎠ ⎣m ⎦ ⎪⎩⎣ ⎦ ⎭

Setting these equal and solving for either n or m gives the desired result. 

Alternatively, the problem can be approached by minimizing the variance, subject to constraints.  Define 
the Lagrange multiplier, γ, for the constraint n + m = r, where r is the total of the fixed resources. Now define 

Q V= [ ( )ρ ] +γ ( + − )n m r  . 

These partial derivatives are 

Q ⎡⎛ N ⎞ 2⎤⎛ 1 ⎞∂ ≈ −⎢⎜  ⎟  ⎥⎜  2 ⎟[π (1− π )] + γ ,
∂n ⎝ N M+ ⎠ ⎝ n ⎠⎣ ⎦ 

⎡ 2⎤Q ⎛ M ⎞ ⎛ 1 ⎞∂ ≈ −⎢⎜  ⎟  ⎥⎜  ⎟[λ(1− λ)] + γ ,
∂m ⎝ N M+ ⎠ ⎝ m 2 ⎠⎣ ⎦ 
Q∂ = +n m r− .
∂γ 

Q Q
Setting them all equal to zero we get ∂ = ∂ , subject to n + m = r. So∂n ∂M 

π(1− π )N2 
2 = 2n m  .

λ(1− λ)M 2 

Replacing n2 in the left side with (m - r)2 reduces the problem to one variable that can be solved using the 
quadratic equation. 

Using a spreadsheet, for more than two fisheries, the practical thing to do is use the resources one batch at 
a time until the resources are exhausted. Just recompute the approximate derivatives after each batch is 
processed and take the samples for the next batch from the fishery with the most negative derivative. 
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