

SEAS Scalable Energy from Aquatic Sources

Marc von Keitz

Program Director, ARPA-E marc.vonkeitz@hq.doe.gov

Presentation to Alaska Mariculture Task Force Juneau, Alaska November 9, 2016

ARPA-E Mission

Catalyze the development of transformational, high-impact energy technologies

Ensure the U.S. maintains a lead in the development and deployment of advanced energy technologies

ARPA-E's History

In 2007, The National Academies recommended Congress establish an Advanced Research Projects Agency within the U.S. Department of Energy*

ARPA-E Programs and OPENs

ELECTRICITY FOCUS ALPHA GENERATION GENSETS SOLAR ADEPT ELECTRICAL GRID NODES GRID DATA & STORAGE **HEATS GRIDS CHARGES EFFICIENCY ENLITENED METALS SWITCHES** SHIELD **BEETIT** REACT **DELTA EMISSIONS ROOTS MONITOR TRANSPORTATION** & STORAGE **TRANSNET NEXTCAR AMPED RANGE ELECTROFUELS** REFUEL **TERRA** 2015 2010 - 2012 2013-2014 2016

OPEN 2009
36 projects
CHANGING WHAT'S POSSIBLE

OPEN 2012 66 projects

OPEN 2015 41 projects If it works...

will it matter?

Measuring ARPA-E's Success

Since 2009 ARPA-E has invested approximately \$1.3 billion across over 500 projects, through 32 focused programs and 3 open funding solicitations.

For all alumni and current projects:

- Follow-on Funding
 - 45 projects have attracted more than \$1.25 billion from the private sector
- Partnerships with other government agencies
 - 60 government projects
- New company formation
 - 36 new companies formed

Biomass critical for reducing GHG emissions

Share of fossil fuels in primary energy is in the 2DS with 45% almost halved by 2050 compared to today (81%), biomass becomes the largest energy source in 2050 in the 2DS.

Source: ETP 2016, IEA

Scalable Energy from Aquatic Sources

Satellite Imaging & Remote Sensing

Advanced
Macroalgae
Cultivation &
Harvest
Systems

Computational Modeling

Mariculture Biomass:

- > No Land
- ➤ No Freshwater
- ➤ No Fertilizer

Breeding & Genetics

FOA to be release in Dec. 2016

Robotics & Automation

Macroalgae (aka seaweed) – the quintessential ocean crop

- Amenable to cultivation & harvest
- Mostly carbohydrate & protein

- Many different species
- Fast growth rate

An existing & growing industry

Key Questions for ARPA-E:

How much is enough?

1 Quad (10¹⁵ BTU) Ethanol (~13 billion gal)

210 million MT of dry seaweed (~2.1 billion MT wet)

100x current world production

18 million acres (~28,000 square miles)

1/2 Size of Iowa

Photo: MBARI

Where should we focus our effort?

Focus on scalable, cost-competitive, and sustainable biomass production

- Production system should be scalable to millions of tons of dry biomass
- Target to be cost competitive with terrestrially produced biomass (at "ocean" farm gate)
- Energy input requirement should not be higher than for cellulosic biomass crops

Key requirements for macroalgae energy farms

- Accessing "free" nutrients predictably and reliably
- Expanding beyond the inter-tidal zone into deeper, off-shore waters
- Energy-efficient harvesting
- High productivity of individual plant and the whole system

Photo: Erik K Veland

Program Structure Overview

Core Program Area

Cultivation & Harvesting System – Design & Demonstration

Tools Program Areas

Modeling

Current & Hydrodynamics
Spatial Planning
Nutrient distribution
Macroalgae growth

Monitoring

Biomass growth/health Biomass composition In situ nutrients

Breeding

Hybridization Technologies
Sequencing
Genetic marker identification

Teaming List – Building the Community

- https://arpa-e-foa.energy.gov (RFI-0000027)
- Opportunity to connect with interested parties in the field
- Tell people what your capabilities and relevant resources are
- Spell out areas of expertise you are looking for, if you are trying to form a team
- Link to enter your profile: https://arpa-e-foa.energy.gov/Applicantprofile.aspx

ARPA-E Macroalgae Workshop

ARPA-E Macroalgae Workshop Agenda February 11-12, 2016 Capital Hilton, 1001 16th St NW, Washington, DC 20036

Webpage

http://arpa-e.energy.gov/?q=workshop/macroalgae-workshop

The path to fuels will likely go through the animal feed market

Proposal Review Process (High-level view)

What Makes an ARPA-E Project?

IMPACT

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

TRANSFORM

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

BRIDGE

- Translates science into breakthrough technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

TEAM

- Comprised of best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

