Yukon River Chinook Salmon Aging Consistency

by Larry DuBois and Zachary W. Liller

June 2010

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye to fork	MEF
gram	g	all commonly accepted		mideye to tail fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted		e	
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	a)	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
		east	E	alternate hypothesis	H _A
Weights and measures (English)		north	N	base of natural logarithm	е
cubic feet per second	ft ³ /s	south	S	catch per unit effort	CPUE
foot	ft	west	W	coefficient of variation	CV
gallon	gal	copyright	©	common test statistics	(F, t, χ^2 , etc.)
inch	in	corporate suffixes:		confidence interval	CI
mile	mi	Company	Co.	correlation coefficient	
nautical mile	nmi	Corporation	Corp.	(multiple)	R
ounce	OZ	Incorporated	Inc.	correlation coefficient	
pound	lb	Limited	Ltd.	(simple)	r
quart	qt	District of Columbia	D.C.	covariance	cov
yard	yd	et alii (and others)	et al.	degree (angular)	0
2	5	et cetera (and so forth)	etc.	degrees of freedom	df
Time and temperature		exempli gratia		expected value	Ε
day	d	(for example)	e.g.	greater than	>
degrees Celsius	°C	Federal Information		greater than or equal to	≥
degrees Fahrenheit	°F	Code	FIC	harvest per unit effort	HPUE
degrees kelvin	Κ	id est (that is)	i.e.	less than	<
hour	h	latitude or longitude	lat. or long.	less than or equal to	\leq
minute	min	monetary symbols		logarithm (natural)	ln
second	S	(U.S.)	\$, ¢	logarithm (base 10)	log
		months (tables and		logarithm (specify base)	\log_{2} etc.
Physics and chemistry		figures): first three		minute (angular)	,
all atomic symbols		letters	Jan,,Dec	not significant	NS
alternating current	AC	registered trademark	®	null hypothesis	Ho
ampere	А	trademark	тм	percent	%
calorie	cal	United States		probability	Р
direct current	DC	(adjective)	U.S.	probability of a type I error	
hertz	Hz	United States of		(rejection of the null	
horsepower	hp	America (noun)	USA	hypothesis when true)	α
hydrogen ion activity (negative log of)	рН	U.S.C.	United States Code	probability of a type II error (acceptance of the null	
parts per million	ppm	U.S. state	use two-letter	hypothesis when false)	β
parts per thousand	ppt,		abbreviations	second (angular)	"
	‰		(e.g., AK, WA)	standard deviation	SD
volts	V			standard error	SE
watts	W			variance	
				population	Var
				sample	var

FISHERY DATA SERIES NO. 10-45

YUKON RIVER CHINOOK SALMON AGING CONSISTENCY

by Larry DuBois and Zachary W. Liller Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1565

> > June 2010

This study was partly funded by the Yukon River Restoration and Enhancement Fund Project No. URE-10N-07.

ADF&G Fishery Data Series was established in 1987 for the publication of Division of Sport Fish technically oriented results for a single project or group of closely related projects, and in 2004 became a joint divisional series with the Division of Commercial Fisheries. Fishery Data Series reports are intended for fishery and other technical professionals and are available through the Alaska State Library and on the Internet: http://www.sf.adfg.state.ak.us/statewide/divreports/html/intersearch.cfm This publication has undergone editorial and peer review.

Larry DuBois (<u>larry.dubois@alaska.gov</u>) and

Zachary W. Liller <u>(zachary.liller@alaska.gov</u>) Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage AK 99518, USA

This document should be cited as:

DuBois, L. and Z. W. Liller. 2010. Yukon River Chinook salmon aging consistency. Alaska Department of Fish and Game, Fishery Data Series No. 10-45, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage AK 99518 (907)267-2375.

TABLE OF CONTENTS

Page

LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	
ABSTRACT	
INTRODUCTION	
Objective	
METHODS	
ADF&G Scale Collection, Processing, and Age Notation	
Study Design	3
Scale Selection	4
Independent Scale Readers	5
Data Analysis	6
Age Composition	
Percent Agreement Age-Difference Plots	
-	
RESULTS	
Age Estimation	
Age Composition	
Percent Agreement	
Age-Difference Plots	
Age Frequency	
DISCUSSION	9
Age Estimation	9
Age Composition	9
Percent Agreement	
Age-Difference Plots	11
Historical Older-Aged Fish	
Conclusions	
Recommendations	
ACKNOWLEDGEMENTS	
REFERENCES CITED	

LIST OF TABLES

Table		Page
1.	Numbers of older-aged fish, sample objective, acetates, records, and aged fish by year.	16
2.	Number and percent of Chinook salmon freshwater age (Age_{fw}), saltwater age (Age_{sw}), and total age (Age_t) by reader and stratum.	17
3.	Number and percent of paired Chinook salmon freshwater age (Age _{fw}), saltwater age (Age _{sw}), and tota age (Age _t) by reader and stratum.	ıl
4.	Freshwater age (Agefw) percent agreement of Chinook salmon for ADF&G and reader, by stratum	19
5.	Saltwater age (Age _{sw}) percent agreement of Chinook salmon for ADF&G and reader, by stratum	20
6.	Total age (Aget) percent agreement of Chinook salmon for ADF&G and reader, by stratum.	21

LIST OF FIGURES

Figure

Page

1.	Lower Yukon River sampling area from where Chinook salmon scales were selected for study	
2.	Chinook salmon saltwater age composition among ADF&G and readers, by stratum.	23
	Chinook salmon total age composition among ADF&G and readers, by stratum	
	Freshwater age-difference plots of Chinook salmon between ADF&G and reader, by stratum.	
5.	Saltwater age-difference plots of Chinook salmon between ADF&G and reader, by stratum	
6.	Total age-difference plots of Chinook salmon between ADF&G and reader, by stratum	

LIST OF APPENDICES

Appendix

Appen	ıdix	Page
Ā1.	Criteria for determining freshwater age of Chinook salmon.	
A2.	Chinook salmon saltwater age (Age _{sw}) composition by reader and stratum	
A3.	Chinook salmon total age (Age _t) composition by reader and stratum.	
A4.	Chinook salmon paired age frequency for ADF&G and Reader-1 by stratum	
A5.	Chinook salmon paired age frequency for ADF&G and Reader-2 by stratum	
A6.	Chinook salmon paired age frequency for ADF&G and Reader-3 by stratum	

ABSTRACT

Accurate and consistent age estimation is an inherent assumption of historical age trend analysis. During the years that the Alaska Department of Fish and Game (ADF&G) has collected scales from Yukon River Chinook salmon Oncorhynchus tshawytscha many different readers have interpreted scale growth patterns and assigned ages. Age validation studies for wild Yukon Chinook salmon are not available; therefore the accuracy of these ages cannot be addressed. Recent studies have suggested a decline in older-aged fish, but these studies are predicated on the assumption that aging has been precise and consistent. This study assessed the percent agreement and temporal consistency by ADF&G in estimating Chinook salmon ages from scales. A subset of aged scale impressions were selected over a 43-year span (1964–2006). These scale impressions were aged by 3 independent scale readers. Age estimates by ADF&G were compared to the readers' estimates for consistency in age composition, systematic differences, and agreement. Results from these analyses suggest that ADF&G has consistently aged Chinook salmon over the past 43 years as no significant differences were found in the estimates of age composition among ADF&G and the independent readers. In general, agreement was high between ADF&G and each independent reader. More importantly, age-specific differences and the levels of agreement were temporally consistent. Differences were identified in age-2 freshwater and age-5 saltwater estimates where ADF&G tended to assign more of these ages than the other readers. In Yukon River Chinook salmon, these ages comprise older-aged fish. Differences in estimating these ages allow us to put the estimated proportions of older-aged fish in Yukon River Chinook salmon populations into context.

Key Words: Yukon River, Chinook salmon, age estimation, aging consistency, scale aging

INTRODUCTION

The Alaska Department of Fish and Game (ADF&G) is responsible for managing Pacific salmon *Oncorhynchus* spp. for long-term sustainability and maximum sustained yield in Alaskan waters. Towards this end, age-structured information ranks among the most influential biological variables in fisheries management, as it forms the basis for measures of population dynamics and productivity (Quinn and Deriso 1999; Campana 2001). The collection of high quality unbiased (i.e. accurate and precise) age-structured information is at the core of the State of Alaska's salmon research and management programs. For example, stock-specific age-structured information is routinely used to reconstruct salmon runs, forecast future runs, establish harvest management guidelines, and evaluate escapement goals.

Age, sex, and length (ASL) trends in Yukon River Chinook salmon *O. tshawytscha* have most recently come to the forefront in fishery-related meetings as research, anecdotal information, and local and traditional knowledge suggest the proportion of older and larger Chinook salmon has declined (Yukon River Joint Technical Committee [JTC] 2006). Hyer and Schleusner (2005) demonstrated a declining trend in the proportion of large Yukon River Chinook salmon but observed no trends in sex composition, length, or length-at-age. One possible factor that may be affecting the observed change in salmon age composition is statistical bias, where inconsistent age estimates are manifested as changes in age composition over time. Appropriate age estimation is an inherent assumption of historical ASL trend analysis. Age trend study results depend on unbiased consistent historical age data; however, this is rarely examined.

Estimating an age for salmon from scales, either freshwater or saltwater can be subjective. Age is estimated by viewing the magnified scale impression and interpreting the circuli and their patterns of growth. Circuli are concentric ridges on the outer surface of the scale separated by valleys. A year's growth typically has a zone of widely spaced circuli, the summer growth, and a zone of closely spaced circuli, the winter growth (Mosher 1968). Scale readers must be able to recognize a check, a zone of slower growth characterized by a set of circuli being more closely spaced than the adjacent circuli. These checks can vary in appearance from easily recognizable,

clear-cut zones to diffuse zones that are not much different from the adjacent zones (Mosher 1968). Furthermore, the reader must interpret each check as either a false or true annulus based upon their experience and familiarity (Bilton 1972). Scale readers often classify annuli as true or false in a subjective manner and that leads to age disagreements. A true annulus is that set of closely spaced circuli formed during the slower growth in the winter. Other checks, or false annuli, may form during any time of year, and these are often attributed to an abrupt change in physical or environmental conditions. The reader's experience with a particular stock or aggregate of stocks will affect their ability to recognize and interpret patterns that may be unique to a particular stock.

ADF&G has collected ASL information annually from Chinook salmon in commercial, sport, subsistence, and test fisheries as well as from escapement monitoring and other salmon research projects throughout the Yukon River since 1960. During these years, many different readers have interpreted scale growth patterns and assigned ages. Methods used to address age data quality were not well documented. Based on anecdotal information, it is assumed that aging techniques were passed along from reader to reader. In general, the supervisor or another experienced reader would train the new reader and check their ages until an acceptable agreement level was reached. Good percent agreement, that minimized between-reader differences, is likely lacking from some years.

The need to verify that ADF&G has estimated Chinook salmon ages consistently was identified by the JTC Salmon Size Subcommittee (JTC 2006). The work presented here addresses the Yukon River Panel priority 3: *determine the quality of stock escapement, wherever possible continue to document age, sex, and length of fish harvested*; because any documentation of age requires consistent assignment of ages (Yukon River Panel 2006¹).

OBJECTIVE

The objective of this study was to assess the level of temporal consistency exhibited by ADF&G when estimating Yukon River Chinook salmon ages from scales.

METHODS

ADF&G SCALE COLLECTION, PROCESSING, AND AGE NOTATION

Chinook salmon scales were collected from the preferred area of the fish as described by Mosher (1963) and mounted onto gum cards. Up to 40 scales could be mounted onto a single gum card. From 1964 to 1981 one scale was collected from each fish. Consequently, a single gum card could represent ages for up to 40 (generally 30) individual fish. Aging the freshwater portion of Chinook salmon scales can be difficult or impossible if the scale has been damaged or regenerated. To reduce uncertainties, primarily in the freshwater growth area, sampling protocol changed beginning in 1982, requiring 3 scales to be collected from each fish, hence; a single gum card could represent ages for up to 10 individual fish (3 scales per fish; 30 scales per card). The additional scales increased the chance of collecting a scale with a complete freshwater growth pattern and provided readers with more information to determine the appropriate age estimate.

¹ Yukon River Panel. 2006 (Unpublished). Budget Priorities Framework. Budget Priorities Subcommittee, Restoration and Enhancement Committee.

The scales, mounted on gum cards, were impressed in clear cellulose acetate using methods described by Clutter and Whitesel (1956). Scale impressions were magnified and examined using a Microfiche reader or projected from a microscope. Error codes were used to identify various reasons that a scale, or portions of a scale, could not be read, such as: presence of debris, damage, regenerated freshwater growth, or absorbed saltwater annuli.

ADF&G had only reported an age estimate when the total age was estimated, including both freshwater and saltwater ages. Most Yukon River Chinook salmon are stream-type, spending one or more years in freshwater, and 1 to 6 years in the ocean. Total age from the parent brood year can range from 3 to 8 years old. Ages were recorded using European notation, the freshwater age separated by a decimal from the saltwater age (Koo 1962). Total age from the brood year is the sum of freshwater and saltwater age plus one to account for time spent in the gravel before hatching and growth before scale formation. For the purpose of this report, subscripts were used to refer to 3 age types: freshwater (age_{fw}), saltwater (age_{sw}) and total (age_t). The authors contend the notation recommended by Koo, where freshwater or saltwater ages are denoted by the placement of the period, such as ages 1., 2., .1, .2, .3, .4, .6; may confuse the reader.

The original gum cards and acetate impressions were archived by ADF&G. Age information for each fish was archived along with corresponding metadata and additional biological data, such as sex and length. These historical data, in various formats, were compiled into a database (Brannian et al. 2007).

STUDY DESIGN

The study was designed to evaluate aging consistency from the entire range of Chinook salmon ages. The emphasis focused on scale impressions representing age_t-7 or -8 fish because the suggested decline in older-aged fish is a concern among researchers, managers, and fishermen. Acetate cards that had at least one scale impression from an older-aged fish were selected from the ADF&G Yukon River Chinook salmon archives. Selecting acetate cards with older-aged fish ensured a sufficient sample size of these target ages because of their relative low abundance during some years. These scale impressions were sent to 3 independent scale readers for aging. Age estimates by ADF&G were compared to estimates from the independent readers.

Chinook salmon scale impressions in the ADF&G archives where at least one fish was estimated to be age_t -7 or -8 were identified from the database. Age records were selected from fish sampled from large-mesh (\geq 8-inch) gear in lower river commercial harvests in District 1 and 2, and test fisheries at Flat Island, Big Eddy, and Middle Mouth (Figure 1). Using lower river fisheries data for this study was appropriate because: 1) these fisheries represent the most abundant, continuous dataset since 1964 (a 43-year span), and 2) salmon scales collected nearer the ocean exhibit minimal absorption, where the outer scale margin is increasingly absorbed as freshwater spawning migration progresses. A total of 9,013 older-aged fish were available for inclusion in this study (Table 1).

ADF&G staff were able to identify the approximate years worked by individual readers of Yukon River Chinook salmon since 1982. The older-aged fish were pooled spatially and divided into 5 temporal strata that reflected changes in ADF&G scale readers, collection methods, and the number of older-aged fish available in each stratum and year. The 18 years where individual readers could not be identified were divided equally into 9-year segments: 1964–1972 was stratum 1 and 1973–1981 was stratum 2 (Table 1). Stratum 3 was assigned to years 1982–1990 when at least 2 readers aged scales and 1 of the readers began about 1982. More than one-third

of the older-aged fish available were in this stratum. A change in readers occurred in 1990–1991 and stratum 4 was assigned to years 1991–1996 where at least 3 readers aged scales. The last stratum was assigned to 1997–2006 when 3 readers aged scales; a change in readers occurred in 1996–1997.

The minimum sample size objective of 120 older-aged fish per stratum was set to ensure adequate numbers would be available for statistical analysis. The annual sample objective for these fish in each year was proportional to the total number of older-age fish in each corresponding stratum. Therefore, each stratum objective was 120 samples and the objective for each year within the stratum was determined by the number of older-aged fish by year (Table 1).

SCALE SELECTION

All older-aged fish that were available for inclusion in the study were compiled into a chronological list (List 1) that related an age record with specific acetate card information. The stratum objective (120) was divided into the total number of older-aged fish available by stratum to systematically select every nth record available. For example, in the first stratum, $1,108/120\approx9$; therefore the first and every 9th record thereafter in stratum 1 was selected for inspection and possible inclusion in the study. Following similar methods, every 6th, 26th, 17th, and 16th record was selected for further inspection in stratum 2, 3, 4, and 5; respectively. This resulted in weighting each year, within a stratum, by the number of older-aged fish available.

A second list was compiled (List 2) that contained all the ages for each acetate card that was included in List 1 as well as specific acetate card information, such as; date, location, mesh size, fishery type, ages, fish number, and card number. During the inspection process, every effort was made to select high quality readable acetates and those where age records corresponded with the database. Acetates and the two lists were examined for:

- 1) Completeness;
- 2) Acetate label matches information in List 2;
- 3) Information from List 1 and List 2 match;
- 4) Records in List 2 and fish number matches between acetate and List 2;
- 5) Acetate is not overly damaged or scratched;
- 6) Scales are in correct orientation;
- 7) Pressing is uniform across acetate; and
- 8) Unreadable scale impressions are minimal.

When an older-age record was judged unacceptable, the records and corresponding acetate cards above and below the unacceptable record (from List 1) were examined until an acceptable record was found. The selection process of examining every n^{th} record continued until the sample objective was reached for each year.

The selection process was modified for acetates with more than 20 fish (1 scale/fish) such that an acceptable older-aged record from an acetate card before 1982 may be counted more towards the annual sample objective. Where an older-age record (from List 1) was present on an acetate card that contained records from 21 to 30 fish, that record would count as 2, and from an acetate card

with 31 to 40 fish, that record would count as 3 towards the sample objective. This was done assuming that additional older-aged acceptable records would be present on the selected acetate.

Although older-aged fish were preferentially included in this study, all scale impressions on the selected acetates were to be aged, yielding a variety of freshwater, saltwater, and total age estimates. All age records and associated information from the selected acetates were compiled into a third chronological list (List 3). Each acetate card was assigned and labeled with a unique study number (1-491). Each fish record in List 3 was assigned a unique number (1-7301). List 3 became the source for the aging study.

The scale selection process resulted in archived age data from 5 temporal strata over 43 years, which consisted of 491 acetates impressed with 14,681 scales from 7,301 individual Chinook salmon (Tables 1 and 2). Of these, 1,149 (15.7%) fish were estimated by ADF&G to be $age_t \ge 7$ (Table 1). A total of 6,393 (87.6%) of the Chinook salmon represented on the selected acetates were successfully aged by ADF&G (Tables 1 and 2).

INDEPENDENT SCALE READERS

Three independent aging laboratories were recommended by senior ADF&G staff for participation in this study: Canadian Department of Fisheries and Oceans (DFO), the Washington Department of Fish and Wildlife (WDFW), and the ADF&G Age Laboratory in Juneau (*note*: the ADF&G Age Laboratory in Juneau is independent from the ADF&G staff responsible for estimating Yukon River Chinook salmon ages). Each reader was highly experienced in aging Chinook salmon scales.

The same set of selected acetates was sent to each reader along with a data entry file that was created from List 3 in which to record age estimates and error codes. No additional information was provided about the selected acetates or expected ages to avoid biased estimates. Readers were not aware that older-aged fish were preferentially selected for inclusion in the study. Independent readers estimated freshwater age only, saltwater age only, both fresh and saltwater ages, or neither. An error code was assigned when one or both ages were not estimated. Other than the age reporting method, the readers used their own established criteria, methods, and equipment to estimate ages. Once each reader had completed their aging, their estimates were added to List 3 such that each fish record had estimates from ADF&G paired with each reader.

One reader used the method described by Rowse et al. (1990) to determine freshwater age. This method standardized some of the criteria presented by Yole (1989) by scoring 3 parameters: the presence of a freshwater annulus, comparing 2 caliper measurements, and circuli spacing (Appendix A1). This method may be more germane to the Pacific Northwest, where age_{fw} -0 Chinook salmon frequently occur, than to Yukon River stocks that are predominately age_{fw} -1.

Two of the readers estimated ages independently and operated solely on their own using a Microfiche reader to magnify and view the scale images. The other reader which was actually 2 participants, estimated the ages with a more rigorous procedure employed by the respective aging laboratory. Each participant aged one-half of the scale impressions and randomly checked 20% of the other participant's scales. Of those that were checked, any disagreements in ages or error codes were discussed between the 2 and resolved. Equipment used at the 2 participants' aging laboratory was a Neo-Promar microscope, with multiple objectives, which projected the image onto a large flat surface. The microscope provides a superior image quality compared with

the Microfiche reader likely helping better determine age estimates, especially in the freshwater zone.

DATA ANALYSIS

Two types of datasets were compiled from ADF&G's and the readers' ages and analyzed separately, unpaired and paired. Unpaired datasets were robust as they incorporated all successful age estimates of a given type (i.e., if the reader assigned an age it was included in the dataset). Paired datasets allowed for direct comparison of age estimates between ADF&G and the readers. Paired datasets included only successful age estimations of a given type common to ADF&G and reader-1, ADF&G and reader-2, and ADF&G and reader-3. These paired datasets were investigated for agreement, age frequency, and age-difference plots for freshwater, saltwater, and total age estimates. Comparisons were not made among or between the independent readers. Analytical approaches do not address aging accuracy because the true age of each fish was not known.

Age Composition

Unpaired datasets were used to represent estimates of age composition between ADF&G and the readers. Chi-square goodness-of-fit analyses (α =0.05) were used to detect differences between estimates of saltwater and total age composition generated by ADF&G and the readers for each temporal stratum (Chilton and Bilton 1986; Copeland et al. 2007). These analyses tested the null hypothesis that the relative frequency distribution of saltwater and total age classes did not differ between ADF&G and the readers. Chi-square was not used to compare freshwater age compositions because of the limited range of the freshwater ages and small sample sizes for all but age_{fw} -1 fish.

Percent Agreement

Percent agreement was used to describe the repeatability of age estimates between ADF&G and the readers. Paired datasets were used to evaluate percent agreement (Godfrey et al. 1968; Chilton and Bilton 1986) by reader, age type, and temporal stratum. In this study, agreement was evaluated when an age estimate was available from both readers. Error codes, describing why an age estimate was not made for a particular scale, were not available from the database for some years and were therefore excluded from agreement calculations.

Age-Difference Plots

Age-difference plots, a variation of the age-bias plot recommended by Campana (et al. 1995), were used to provide a robust visual detection of any systematic age differences between ADF&G and each reader by age type and stratum. Age-difference plots compare age estimates between ADF&G and each reader through reference to an equivalence line (i.e. age estimate by ADF&G equals age estimate by reader). In this representation, age estimates by each reader and stratum are presented as the mean age and 95% confidence intervals (CI) corresponding to each age category reported by ADF&G. The intent of the CI is not to assign statistical significance to the mean age, but to allow informed interpretation of any difference between the reader's mean age and the equivalence line. The age-difference plots are useful for detecting systematic differences across strata, temporal patterns by reader, and recognizing any patterns among the 3 readers. Visual examinations of the relative variation in the directions and magnitudes of any detected differences across strata were used to infer aging consistency by ADF&G. The strength

of the difference was inferred by the magnitude of the difference between the readers' mean age and the ADF&G assigned age. The scales of the y-axes were set to facilitate comparisons across ages and maximize detection of temporal patterns. The y-axes scales are not necessarily biologically relevant.

The use of age-bias plots may be superior to more traditional parametric analysis when diagnosing systematic differences between 2 sets of age estimates (Campana et al. 1995). This is because many standard tests are unable to detect non-systematic (e.g., under aging at one end and over aging at the other end of the age continuum) biases. In addition, parametric tests often yield significant differences that are meaningless in a biological context (e.g., a mean difference of 0.05 years). This is especially true when sample sizes are large and the number of age classes available is small, as in this study.

RESULTS

AGE ESTIMATION

The percentage of completely and partially readable scales varied among readers. Overall, the readers successfully aged a majority of the selected scale impressions. Readers-1, -2 and -3 estimated 80.5%, 65.1%, and 84.9% of both freshwater and total ages, and 92.4%, 95.1%, and 96.5% of saltwater ages, respectively (Table 2). The percentage of successfully estimated freshwater ages was less than that of saltwater ages across all readers and strata. This trend was most pronounced in the first 2 strata where readers estimated from 50.4% to 77.2% of the freshwater ages and from 87.9% to 94.6% of the saltwater ages (Table 2). Consequently, the readers' ability to estimate total age was largely limited by their ability to estimate freshwater age. Relative to age estimates by ADF&G, all readers estimated fewer freshwater ages in the first 2 strata. The readers estimated more saltwater ages than ADF&G in all strata which is an artifact of ADF&G not aging the saltwater age without a freshwater age.

The number of paired age estimates between ADF&G and any reader ranged from 4,658 to 6,372 by age type (Table 3). Averaged among all strata, 88.2%, 72.9%, and 93.3% of ADF&G's estimates were paired with age estimates by Reader-1, -2 and -3, respectively (Table 3). The percentage of paired freshwater age estimates were lower in the first 2 strata compared to the later strata for all readers. Nearly all (\geq 99.4%) of the age estimates by ADF&G also had a saltwater age assigned by each reader (Table 3). The number of paired total age estimates between ADF&G and each reader was identical to or slightly less than that for freshwater age in each stratum.

AGE COMPOSITION

The saltwater age compositions among ADF&G and the 3 readers were similar in each stratum (Figure 2 and Appendix A2). No statistical differences in saltwater age compositions were present in any stratum (χ^2 =3.13, *p*=0.96; χ^2 =6.78, *p*=0.66; χ^2 =7.96, *p*=0.54; χ^2 =2.47, *p*=0.98; χ^2 =8.15, *p*=0.52; *df*=9; stratum 1–5; respectively; Figure 2).

The total age compositions among ADF&G and the 3 readers were similar in each stratum (Figure 3 and Appendix A3). No statistical differences in total age compositions were present in any stratum (χ^2 =11.23, p=0.26; χ^2 =9.70, p=0.38; χ^2 =10.83, p=0.29; χ^2 =2.32, p=0.99; χ^2 =9.70, p=0.38; df=9; stratum 1–5; respectively; Figure 3).

PERCENT AGREEMENT

Overall, the percent agreement was high and temporally consistent across readers and strata. Percent agreement was highest in estimating freshwater age, followed closely by saltwater age and total age, respectively.

The average percent agreement of freshwater ages was 97.3% (Table 4). This high level of agreement was because age_{fw} -1 was the predominant freshwater age and where ADF&G had assigned an age_{fw} -1, readers, on average, determined that same age for 99.2% of the fish (Table 4). Conversely, percent agreement was low (average 12.1%) between ADF&G and each reader in all strata where ADF&G had determined an age_{fw} -2 (Table 4).

The average percent agreement of saltwater ages was 92.4% (Table 5). Age_{sw}-2 had the highest percent agreement (93.8%), followed closely by age_{sw} -4 (93.4%), -3 (91.6%) and -5 (90.1%). Percent agreement of age_{sw} -1 and -6 fish was 100% and 50.0%, respectively (Table 5). Although, inference is limited for these 2 ages as sample sizes were very low to absent in all strata.

The average percent agreement of total ages was 90.0% (Table 6). Age_t-4 had the highest percent agreement (93.1%), followed closely by age_t-6 (92.0%), -5 (91.2%) and -7 (83.2%). Percent agreement of age_t -1 and -6 fish was 100% and 8.6%, respectively; although, inference was limited as sample sizes were very low to absent in most strata (Table 6).

AGE-DIFFERENCE PLOTS

The age-difference plots showed temporally consistent differences in estimating freshwater, saltwater, and total age. Overall, the directions and magnitudes of the differences were consistent across all strata. In addition, the observed patterns of differences were similar across each combination of ADF&G and reader. With few exceptions, the magnitudes of these differences were very small and likely not biologically meaningful.

Where ADF&G assigned an age_{fw} -2, the mean age of all readers was considerably lower in all strata (range 1.00-1.23, Figure 4). Conversely, where ADF&G assigned an age_{fw} -1, the readers' mean ages were slightly greater in most strata; however, the maximum difference was very small, 0.02 (Figure 4). In stratum 2 there were not any age_{fw} -2 estimates available from ADF&G for comparing with the readers.

In general, when ADF&G assigned an age_{sw} -2 or -3, the readers' mean ages were greater, although not consistently across strata. Age-difference plots of age_{sw} -4 showed considerable variability across strata and readers; however, the maximum mean age difference was 0.03 (Figure 5), and the level of inconsistency inferred by this variability was negligible and does not support a meaningful age_{sw} -4 difference. The pattern of age_{sw} -5 difference was the most pronounced and consistent for any saltwater age. Age-difference plots of age_{sw} -5 showed the readers' mean age occurring in stratum 2 (Figure 5). Age-difference plots for age_{sw} -6, which included 2 fish, showed the readers agreed with one estimate and disagreed with the other.

The directions and magnitudes of differences associated with total age estimates varied by age, and the temporal patterns were consistent among the 3 readers. In general, the readers' mean ages were greater for age_t-4 and -5, similar for age_t-6 , and less for age_t-7 and -8. The age-difference plots for age_t-7 show the readers' mean ages ranged from 6.71 to 6.93 (Figure 6). The overall mean age among readers was 6.84 (±0.01), however strata 1 and 3 had a lower mean age

6.77 (± 0.02) than strata 2, 4, and 5, with a mean age of 6.84 (± 0.01 , Figure 6). The difference plots for age_t-8 show the readers' mean ages ranged from 6.9 to 7.3, the largest difference of any mean age (Figure 6). This is not surprising given most of the age_t-8 estimates by ADF&G had an age_{fw}-2 component.

AGE FREQUENCY

Age frequency tables show the age assigned by each reader when ADF&G assigned a specific age (Appendices A4, A5, and A6). Age frequency tables alone are not well suited for detection of aging bias between readers (Campana et al. 1995). However, they do provide a convenient and acceptable approach to presenting paired datasets and summarizing paired age estimates.

DISCUSSION

The results of this study suggest that ADF&G has consistently aged lower Yukon River Chinook salmon from scales over the past 43 years. This conclusion is supported by 1) an age composition that did not differ among ADF&G and the independent readers in any temporal stratum, 2) the directions and magnitudes of the age differences between ADF&G and the readers were consistent and very small and 3) the percent agreement between ADF&G and the readers was high and consistent across strata.

AGE ESTIMATION

The high percentages of successfully aged fish resulted in large sample sizes for both unpaired and paired age comparisons, which contributed to the robustness of this study. The difference in each reader's ability to estimate age in the first 2 strata compared to the later strata was due, in part, to the number of scale impressions available for each fish. Additional scales, that were available from 1981 to present, effectively increased the number of successfully aged fish and reduced aging differences between ADF&G and the readers. When a scale is lost during a salmon's life, a new scale will be quickly grown to replace the missing scale and freshwater circuli may not be present; however, the saltwater age can often be estimated. Consequently, the effects of collecting 3 scales per fish were greater for freshwater age estimation.

The numbers of successful age estimates were variable by age type. The readers estimated fewer freshwater ages and more saltwater ages than ADF&G. In general, readers estimated fewer ages than ADF&G when assigning a freshwater age from a single scale. However, with 3 scales per fish in the later strata the percentage of freshwater age estimates was similar among readers. The readers' higher percentage of saltwater age estimate relative to ADF&G was an artifact of the study design. The readers were directed to estimate incomplete ages when possible, whereas the ADF&G aging method did not assign incomplete ages. The freshwater age was less likely to be estimated than the saltwater age in all strata; therefore, freshwater age was the limiting factor in estimating total age.

AGE COMPOSITION

The chi-square test results had no significant differences in saltwater and total age composition among ADF&G and the readers in any of the 5 strata, which suggest that ADF&G has consistently estimated Lower Yukon River Chinook salmon age composition over the past 43 years. The small stratum-specific differences in the age composition between ADF&G and the readers followed no clear pattern across strata. Saltwater and total age composition patterns were

similar among readers and strata because the total age compositions were mostly influenced by the frequency of saltwater ages. The total age compositions were more variable among readers than the saltwater age compositions because the differences are primarily due to freshwater ages.

PERCENT AGREEMENT

Percent agreement was high for all age types in all strata. Percent agreement by age was variable but generally high and consistent across readers and strata except for age_{fw} -2. The percent agreement for total age was largely due to the saltwater age component, while the difference between these age types was a function of the freshwater age agreement. Comparisons of percent agreement across age types must be considered with some latitude because the probability of assigning the same age is unequal.

Beamish and Fournier (1981) illustrated that the utility of percent agreement was limited in that precision is not evaluated equally for all species or growth phases, making comparisons difficult. For example, Yukon River Chinook salmon freshwater age can range between 0-3 years and the saltwater age can range between 1-6 years; consequently, a 95% agreement has different implications with respect to the 2 age types. Percent agreement has lost favor in the literature in recent years (Campana et al. 1995 and Campana 2001).

A considerable difference was found between the readers and ADF&G in age_{fw} -2 estimates. When ADF&G recorded an age_{fw} -2 fish, readers disagreed most of the time and estimated the fish to be an age_{fw} -1, suggesting a consistent systematic difference. For all practical purposes, freshwater age was either 1 or 2 years, because few age_{fw} -0 and no age_{fw} -3 fish were represented on the acetates. Estimating an age_{fw} -1 was, by chance alone, almost always correct. This was reflected in the high agreement associated with this age. Conversely, estimating an age_{fw} -2 requires a reader to have the criteria and ability to identify this less common age. In stratum 2 there were not any age_{fw} -2 estimates available from ADF&G for comparing with the readers. This infers inconsistency in age_{fw} -2 estimates by ADF&G in stratum 2 given that other readers did estimate some age_{fw} -2.

In estimating freshwater age, the potential for considerable disagreement exists among readers interpreting the freshwater plus growth, transitional growth, and presence of a migration check. New growth may occur in freshwater after the formation of the last freshwater annulus. This growth, termed freshwater plus, can be substantial and quite variable because of physical and environmental factors, seaward migration distance from the over-wintering location, and timing of migration. After the fish arrives in the estuary and before starting its recognizable marine growth, transitional growth may occur, consisting of a variable number of circuli that are intermediate in appearance between fresh and marine growth (Mosher 1968). During this transitional growth a migration check, or false annulus, can occur that may be mistaken for a freshwater annulus. Mosher (1968) categorizes 3 types of freshwater to saltwater transition zones in salmon as abrupt, gradual, and diffuse. Each of these transition zone types can have variable amounts of freshwater plus growth as well as transitional growth. An abrupt transition zone coupled with extensive freshwater plus growth has the greatest potential to be misidentified as another freshwater annulus (Mosher 1968). This study includes many scales from salmon with a long seaward migration distance (Canadian stocks) and substantial freshwater growth. Along with various appearances of a migration check, can lead to disagreements in assigning a second freshwater annulus

AGE-DIFFERENCE PLOTS

The age-difference plots for age_t -7 showed the readers' mean ages were lower in strata 1 and 3. Because this pattern was not observed in the age_{sw} -5 plots, the decreased age_t -7 mean age can only be attributed to the age_{fw} -2 component in the age_t -7. The readers' tendency to assign a younger age for age_{sw} -5 and age_{fw} -2 were additive with respect to age_t -7 estimates. Therefore, the readers' mean ages in the age_t -7 plots were less in all strata because of their age_{sw} -5 estimates, and were even less in strata 1 and 3 because of their decreased age_{fw} -2 estimates.

The magnitudes of the saltwater age-specific differences were small, a function of the high percent agreement in estimating these ages. The largest difference was associated with age_{sw} -5 fish. The magnitudes of the total age-specific differences were also small, yet slightly larger than that of saltwater. The percent agreement and consistency in estimating total age was largely a function of the saltwater component because most of the total age estimates included an age_{fw} -1 estimate. However, those ages with a substantial age_{fw} -2 component had the greatest age-specific differences.

HISTORICAL OLDER-AGED FISH

This study targeted older-aged fish because recent studies have suggested a decline in this age group and to determine if inconsistent aging was a contributing factor. Collectively, percent agreement and age-difference plots support the conclusion that ADF&G has consistently estimated Lower Yukon River Chinook salmon over the past 43 years. ADF&G and the independent readers were generally in high agreement and most observed differences were not biologically meaningful. Specific values associated with the observed levels of difference and percent agreement were not the focus of this study; it was the temporal patterns of these values that were used to infer aging consistency.

Of interest is how the results of this study may affect our perception of the estimated historical age composition of Yukon River Chinook salmon, and specifically, inferences upon the older-aged fish. These older-aged fish historically represent only a small percentage of the Yukon River age composition and it has been suggested their numbers have declined further over the past 20-plus years (JTC 2006). Although most age estimates were consistent, a substantial difference was found in the readers' mean ages when ADF&G assigned an age_{fw}-2 and a small difference when ADF&G assigned an age_{sw}-5. Age_{fw}-2 fish were not abundant in the selected acetates chosen for this study and the difference associated with age_{sw}-5 fish was small. A concern is that these represent older aget-7 and -8 fish. Consequently, a small difference in the contribution of these older aged-fish may be biologically meaningful.

The older ages include 4 age classes, in age notation recommended by Koo (1962): age_t-7 composed of age-1.5 and -2.4 and age_t-8 composed of age-1.6 and -2.5. Estimates by age class were not specifically addressed in the study. However, results for $age_{sw}-5$ may be considered analogous with age-1.5. Even though all readers' mean ages were lower for $age_{sw}-5$ estimates and agreement was 90%, ADF&G's estimates for age-1.5 were likely acceptable for the purpose of estimating overall age composition. The age-1.5 component makes up the majority of age_t-7 ; however percentages of age-2.4 fish have varied over the years. The low agreement found for $age_{fw}-2$ fish suggests historical estimates for age_t-7 Chinook salmon, in years with relatively abundant estimates for age-2.4 fish, lack precision. It is unclear whether this interpretation for age-2.4 would translate into meaningful changes in the historical age_t-7 composition. The

majority of the age_t-8 fish are age-2.5. Consequently, the low agreement in $age_{fw}-2$ estimates coupled with the small difference identified in $age_{sw}-5$ estimates may have considerable implications with respect to the historical estimates for age-8 Chinook salmon.

CONCLUSIONS

ADF&G has consistently estimated Lower Yukon River Chinook salmon ages from scales over the past 43 years. No statistical difference in age composition was found among ADF&G and the independent readers in any temporal stratum. Differences in freshwater, saltwater, and total age estimates were generally small and temporally consistent. Percent agreement in estimating saltwater and total age was high and temporally consistent. Percent agreement in estimating age_{fw}-1 was high and temporally consistent. Percent agreement in estimating age_{fw}-2 was low and temporally consistent. Differences in age_{fw}-2 and age_{sw}-5 estimates between the readers and ADF&G may have considerable implications in the estimated number of older-aged fish.

RECOMMENDATIONS

A standardized method should be clearly identified to estimate Yukon River Chinook salmon ages from scales, especially with respect to freshwater age. Collaboration with other aging laboratories experienced with aging Chinook salmon scales, and further review of age validation studies may help define criteria. A reasonable assumption is that because scale readers employed by ADF&G age thousands of Yukon River Chinook salmon scales annually, their estimates are most appropriate. However, aging differences between ADF&G and each reader were evident in each stratum and should not be ignored. Further studies may be initiated to address the differences in estimating older-aged Yukon River Chinook salmon with emphasis on age_{fw} -2 and age_{sw} -5 fish. Understanding how the observed differences in aging scales could affect historical estimates of age_{t} -7 and -8 fish is critical to understanding the dynamics of these age classes in the Yukon River through time.

ACKNOWLEDGEMENTS

Funding for this study was provided by the Yukon River Restoration and Enhancement Fund. We thank Canadian Department of Fisheries and Oceans, the Washington Department of Fish and Wildlife, and the Alaska Department of Fish and Game Aging Laboratory in Douglas for aging of the scales. Maureen Horne-Brine assisted in the selection and organization of the acetates from the historical archives for inclusion in this study. Hamachan Hamazaki provided statistical support and review. Dani Evenson provided technical guidance and review.

REFERENCES CITED

- Beamish, R. J. and D. A. Fournier. 1981. A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Science 38:982-983.
- Bilton, H. T. 1972. Factors influencing the formation of scale characters. International North Pacific Fisheries Commission Bulletin 32:102-108.
- Brannian, L. K., K. R. Kamletz, H. A. Krenz, C. Lawn and E. Smith. 2007. The Arctic-Yukon-Kuskokwim salmon database management system. Alaska Department of Fish and Game, Special Publication No. 07-13, Anchorage. <u>http://www.sf.adfg.state.ak.us/FedAidPDFs/sp07-13.pdf</u>
- Campana, S. E. 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59:197-242.
- Campana, S. E., M. C. Annand, and J. I. McMillan. 1995. Graphical and statistical method for determining the consistency of age determination. Transactions of the American Fisheries Society 124:131-138.
- Chilton, D. E., and H. T. Bilton. 1986. New method for aging Chinook salmon (*Onchorhyncus tshawytscha*) using dorsal fin rays, and evidence of its validity. Canadian Journal of Fisheries and Aquatic Sciences 43:1588-1594.
- Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Commission, Bulletin 9. Westminster, British Columbia, Canada.
- Copeland, T., M. W. Hyatt, and J. Johnson. 2007. Comparison of methods used to age spring-summer Chinook salmon in Idaho: validation and simulated effects on estimated age composition. North American Journal of Fisheries Management 27:1393-1401.
- Godfrey, H., D. D. Worlund, and H. T. Bilton. 1968. Tests on the accuracy of aging Chinook salmon (Oncorhynchus tshawytscha) from their scales. Journal of Fisheries Research Board of Canada 25(9):1971-1982.
- Hyer, K. E., and C. J. Schleusner. 2005. Chinook salmon age, sex, and length analysis from selected escapement projects on the Yukon River. U. S. Fish and Wildlife Service, Office of Subsistence Management, Alaska Fisheries Technical Report No. 87, Anchorage.
- JTC (Joint Technical Committee of the Yukon River US/Canada Panel). 2006. Potential causes of size trends in Yukon River Chinook salmon populations. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A06-07, Anchorage.
- Koo, Ted S.Y. 1962. Age designation in salmon. In Ted S.Y. Koo (editor) Studies of Alaska red salmon. pp 37-48. University of Washington Press, Seattle.
- Mosher, K. H. 1963. Racial analysis of red salmon by means of scales. International North Pacific Fisheries Commission, Bull. 11: 31-56. Vancouver, British Columbia.
- Mosher, K. H. 1968. Photographic atlas of sockeye salmon scales. U.S. Bureau Fisheries Bulletin 67. Vol. 2:243-280.
- Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New York, New York.
- Yole, F. Y. E. 1989. Criteria for identifying freshwater age from scales of Chinook salmon (Oncorhynchus tshawytscha) captured in mixed-stock fisheries of British Columbia. Canadian Technical Report of Fisheries and Aquatic Sciences 1628:viii.

TABLES AND FIGURES

	Ages Available		Age Records in Study						
	Age		• • •	D 1					
Year	Number	Sample Obj.	Acetates	Records	Aged Fish	Aget 27			
1964	97	11	6	164	130	23			
1965	132	14	9	204	179	42			
1966	131	14	7	202	173	24			
1967	156	17	9	251	181	27			
1968	294	32	17	475	404	92			
1969	170	18	10	278	260	36			
1970	28	3	3	42	38	4			
1971	17	2	2	50	43	2			
1972	83	9	5	122	104	11			
1973	111	18	10	261	223	20			
1974	117	19	10	300	239	27			
1975	151	24	13	361	298	52			
1976	47	8	4	120	105	6			
1977	37	6	4	92	82	6			
1978	73	12	6	170	151	11			
1979	153	25	13	372	327	58			
1980	27	4	2	60	52	5			
1981	31	5	3	87	76	6			
1982	384	15	10	180	122	22			
1983	251	10	8	110	89	20			
1984	266	10	10	100	84	19			
1985	180	7	7	70	55	16			
1986	570	22	22	220	193	52			
1987	398	15	15	150	133	30			
1988	663	26	26	260	234	100			
1989	258	10	10	100	90	100			
1989	133	5	5	50	90 47	7			
1990	196	11	11	110	102	20			
1992	98	6	6	60 170	51	7			
1993	302	17	17	170	143	24			
1994	336	19	19	190	165	24			
1995	155	9	9	90	81	12			
1996	992	57	52	520	491	133			
1997	58	4	4	40	39	5			
1998	266	16	16	160	149	23			
1999	92	6	6	60	58	6			
2000	182	11	11	110	100	16			
2001	179	11	11	110	101	20			
2002	506	31	31	310	296	62			
2003	318	19	19	190	183	24			
2004	180	11	11	110	106	11			
2005	124	8	18	180	177	23			
2006	71	4	4	40	39	4			
1964–1972	1,108	120	68	1,788	1,512	261			
1973-1981	747	120	65	1,823	1,553	191			
1982-1990	3,103	120	113	1,240	1,047	283			
1991–1996	2,079	120	114	1,140	1,033	220			
1997-2006	1,976	120	131	1,310	1,248	194			
Total	9,013	600	491	7,301	6,393	1,149			

Table 1.-Numbers of older-aged fish, sample objective, acetates, records, and aged fish by year.

						Nun	nber and Perc	ent Aged				
			ADF&G ^a		Reader-1			Reader-2			Reader-3	
Stratum	Years	Number of Fish	Age _t	Age _{fw}	Age _{sw}	Age _t	Age _{fw}	Age _{sw}	Age _t	Age _{fw}	Age _{sw}	Age _t
1	1964–1972	1,788	1,512	1,117	1,586	1,116	902	1,648	901	1,380	1,692	1,380
			84.6%	62.5%	88.7%	62.4%	50.4%	92.2%	50.4%	77.2%	94.6%	77.2%
2	1973–1981	1,823	1,553	1,305	1,603	1,305	930	1,670	929	1,402	1,706	1,402
			85.2%	71.6%	87.9%	71.6%	51.0%	91.6%	51.0%	76.9%	93.6%	76.9%
3	19821990	1,240	1,047	1,135	1,192	1,135	937	1,219	937	1,124	1,220	1,124
			84.4%	91.5%	96.1%	91.5%	75.6%	98.3%	75.6%	90.6%	98.4%	90.6%
4	1991–1996	1,140	1,033	1,050	1,084	1,050	912	1,115	912	1,043	1,127	1,043
			90.6%	92.1%	95.1%	92.1%	80.0%	97.8%	80.0%	91.5%	98.9%	91.5%
5	1997-2006	1,310	1,248	1,266	1,279	1,266	1,073	1,286	1,070	1,246	1,299	1,246
			95.3%	96.6%	97.6%	96.6%	81.9%	98.2%	81.7%	95.1%	99.2%	95.1%
	Total	7,301	6,393	5,876	6,748	5,875	4,757	6,942	4,752	6,198	7,048	6,198
			87.6%	80.5%	92.4%	80.5%	65.1%	95.1%	65.1%	84.9%	96.5%	84.9%

Table 2.-Number and percent of Chinook salmon freshwater age (Age_{fw}), saltwater age (Age_{sw}), and total age (Age_t) by reader and stratum.

^a ADF&G estimates were only reported when both age_{fw} and age_{sw} were determined. ADF&G's number and percent aged were identical for age_{fw}, age_{sw}, and age_t).

		_	Number and Percent of Paired Age Estimates								
		_	ADF&G vs Reader-1		r-1	ADF&	kG vs Reade	r-2	ADF&G vs Reader-3		
	V	No. Aged by									
Stratum	Years	ADF&G	Age _{fw}	Age _{sw}	Age _t	Age_{fw}	Age _{sw}	Age _t	Age_{fw}	Age _{sw}	Age
1	1964–1972	1,512	1,067	1,492	1,066	856	1,500	856	1,319	1,501	1,319
			70.6%	98.7%	70.5%	56.6%	99.2%	56.6%	87.2%	99.3%	87.2%
2	1973-1981	1,553	1,277	1,539	1,277	911	1,544	911	1,363	1,544	1,36
			82.2%	99.1%	82.2%	58.7%	99.4%	58.7%	87.8%	99.4%	87.8%
3	1982-1990	1,047	1,032	1,045	1,032	925	1,044	925	1,037	1,045	1,03
			98.6%	99.8%	98.6%	88.3%	99.7%	88.3%	99.0%	99.8%	99.0%
4	1991–1996	1,033	1,016	1,032	1,016	903	1,031	903	1,016	1,031	1,01
			98.4%	99.9%	98.4%	87.4%	99.8%	87.4%	98.4%	99.8%	98.4%
5	1997-2006	1,248	1,240	1,245	1,240	1,063	1,240	1,060	1,224	1,247	1,22
			99.4%	99.8%	99.4%	85.2%	99.4%	84.9%	98.1%	99.9%	98.1%
	Total	6,393	5,635	6,357	5,634	4,661	6,363	4,658	5,963	6,372	5,96
			88.2%	99.4%	88.1%	72.9%	99.5%	72.9%	93.3%	99.7%	93.39

Table 3.–Number and percent of paired Chinook salmon freshwater age (Age_{fw}), saltwater age (Age_{sw}), and total age (Age_t) by reader and stratum.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Perce	ent Agreement	t		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Age _{fw}	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Stratum	Years	Reader	1	2	Total ^a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1964–1972				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	98.2	22.7	95.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				99.0	9.8	94.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	99.9	5.7	96.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1973-1981				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	99.8		99.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1982-1990				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					17.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				98.2	22.2	94.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	99.7	4.3	95.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1991–1996				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	99.1	5.9	97.5
			2	98.5	18.8	97.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3	100	0.0	98.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1997-2006				
3 100 0.0 99.3 Average (reader) ^b 1 99.1 17.1 97.4 2 98.6 16.2 96.6 3 99.9 4.0 97.9 Average ^c 98.6 16.2 96.6			1	99.7	11.1	99.0
Average (reader)b199.117.197.4298.616.296.6399.94.097.9Average ^c			2	97.9	11.1	97.2
2 98.6 16.2 96.6 3 99.9 4.0 97.9 Average ^c			3	100	0.0	99.3
2 98.6 16.2 96.6 3 99.9 4.0 97.9 Average ^c		h				
3 99.9 4.0 97.9 Average ^c	Averag	ge (reader) ^b				
Average ^c						
-		_	3	99.9	4.0	97.9
99.2 12.1 97.3	Av	verage ^c				
				99.2	12.1	97.3

Table 4.–Freshwater age (Age $_{\rm fw}$) percent agreement of Chinook salmon for ADF&G and reader, by stratum.

^a Total is the weighted average percent agreement across all age classes.

^b Average (reader) is the weighted average percent agreement across all strata by reader.

^c Average is the weighted average percent agreement across all strata and readers.

		Pe	ercent Agi	reement					
			Age _{sw}						
Stratum	Years	Reader	1	2	3	4	5	6	Total
1	1964–1972								
		1		100.0	96.0	96.4	90.3		95.5
		2		100.0	93.6	95.7	89.5		94.:
		3		100.0	94.8	95.9	87.2		94.:
2	1973-1981								
		1		97.2	89.1	92.3	87.4		91.
		2		95.8	89.5	92.8	83.8		91.0
		3		97.2	88.6	93.3	89.5		91.
3	1982-1990								
		1		100	95.8	94.5	90.7	0.0	93.
		2		84.6	95.8	91.8	87.4	0.0	91.
		3		92.3	94.6	93.9	92.7	0.0	93.
4	1991–1996								
		1	100.0	76.5	93.3	89.8	92.3	100.0	91.
		2	100.0	82.4	93.0	89.8	89.9	100.0	90.
		3	100.0	82.4	91.2	90.1	93.8	100.0	91.
5	1997-2006								
		1		86.7	90.4	93.2	93.6		92.4
		2		86.7	91.3	92.6	89.3		91.
		3		86.7	86.3	91.8	94.7		90.3
Averag	ge (reader) ^b	1	100.0	94.3	92.2	93.7	90.8	50.0	92.
		2	100.0	92.9	92.1	93.0	88.0	50.0	92.
		3	100.0	94.3	90.4	93.4	91.5	50.0	92.4
Av	rerage ^c								
			100.0	93.8	91.6	93.4	90.1	50.0	92.4

Table 5.-Saltwater age (Agesw) percent agreement of Chinook salmon for ADF&G and reader, by stratum.

^a Total is the weighted average percent agreement across all age classes.
 ^b Average (reader) is the weighted average percent agreement across all strata by reader.
 ^c Average is the weighted average percent agreement across all strata and readers.

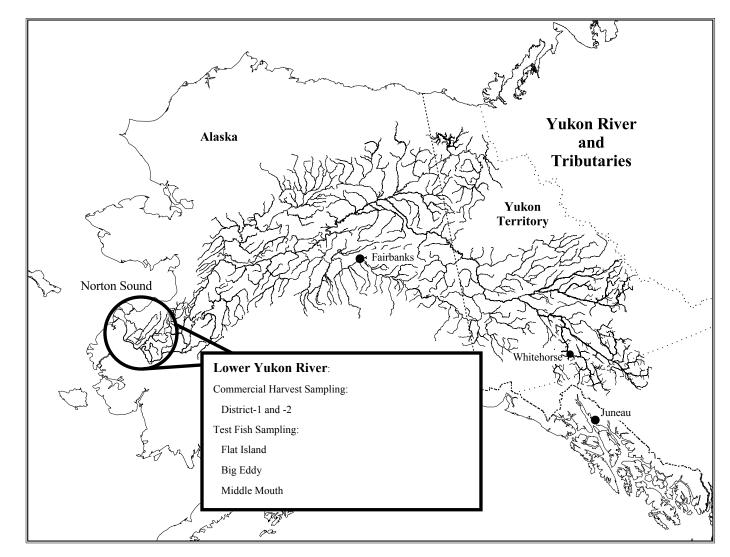
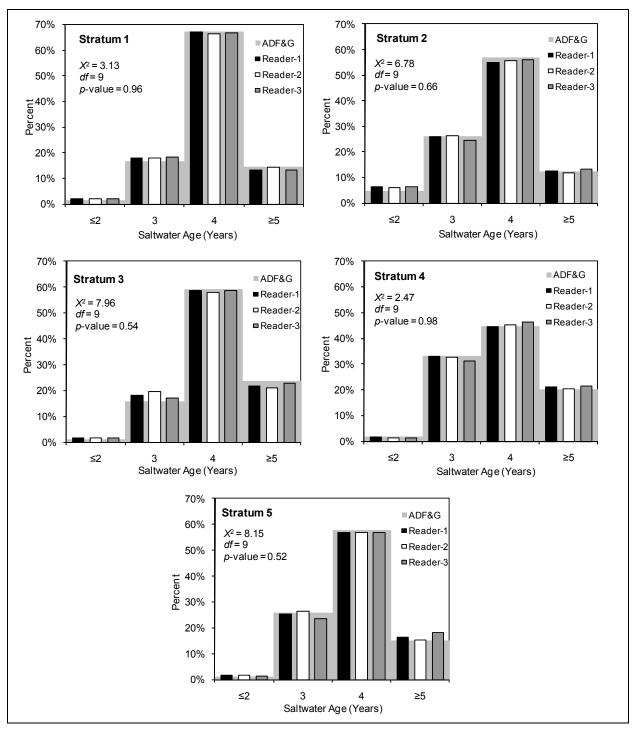
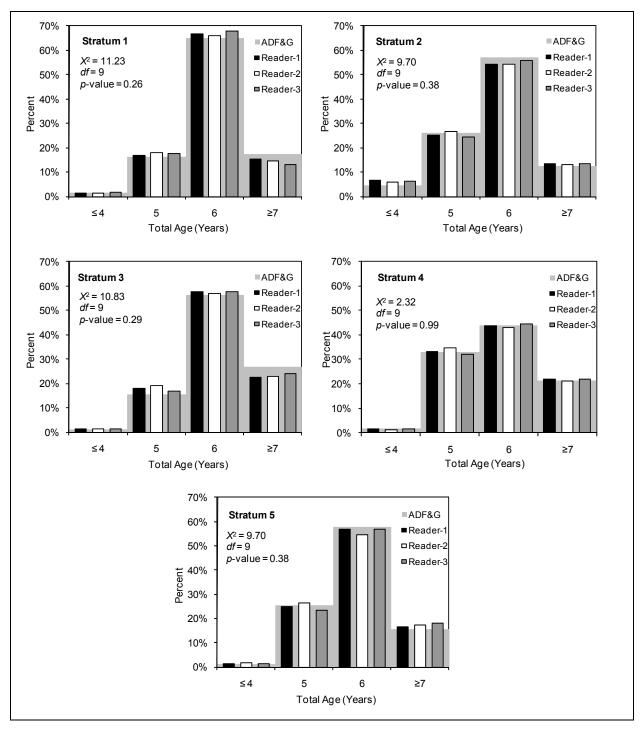
		Per	rcent Agre	eement					
						Age _t			
Stratum	Years	Reader	3	4	5	6	7	8	Total ^a
1	1964–1972								
		1		100.0	93.3	94.1	77.7	0.0	90.8
		2		100.0	94.2	93.8	70.5	0.0	89.4
		3		100.0	94.2	95.1	72.1	0.0	90.7
2	1973-1981								
		1		96.8	87.8	91.1	87.8		90.1
		2		97.6	89.7	92.1	84.2		90.7
		3		98.4	88.3	93.1	88.8		91.6
3	1982-1990								
		1		100.0	95.6	93.0	81.0	0.0	89.9
		2		80.0	95.1	89.9	78.9	0.0	87.4
		3		91.7	93.7	92.5	81.7	0.0	89.4
4	1991–1996								
		1	100.0	76.5	92.6	88.1	87.7	25.0	89.1
		2		78.6	92.9	88.8	81.9	33.3	88.4
		3	100.0	82.4	91.6	89.4	88.8	25.0	89.7
5	1997-2006								
		1		86.7	90.5	92.7	90.7		91.8
		2		85.7	90.9	89.5	87.1		89.4
		3		86.7	86.5	91.5	92.6		90.4
Averag	ge (reader) ^b	1	100.0	93.3	91.4	92.0	84.6	8.3	90.4
		2		91.0	92.2	90.9	80.4	10.0	89.0
		3	100.0	94.4	90.2	92.7	84.1	7.7	90.4
Av	verage ^c								
			100.0	93.1	91.2	92.0	83.2	8.6	90.0

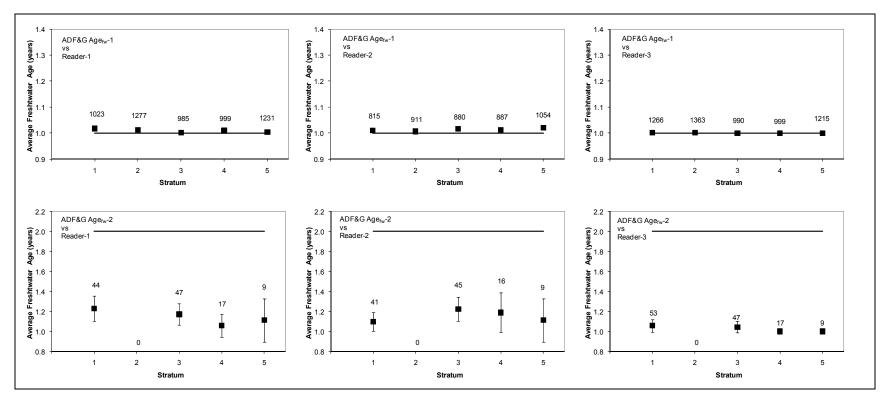
Table 6.–Total age (Age_t) percent agreement of Chinook salmon for ADF&G and reader, by stratum.

^a Total is the weighted average percent agreement across all age classes.

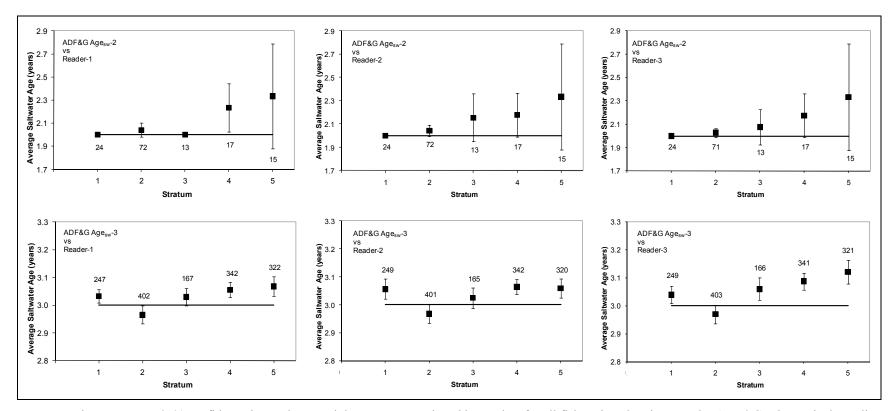
^b Average (reader) is the weighted average percent agreement across all strata by reader.

^c Average is the weighted average percent agreement across all strata and readers by stratum.


Figure 1.-Lower Yukon River sampling area from where Chinook salmon scales were selected for study.

Note: Chi-square goodness of fit statistics are shown, α =0.05. The saltwater age compositions were from unpaired datasets. Figure 2.–Chinook salmon saltwater age composition among ADF&G and readers, by stratum.



Note: Chi-square goodness of fit statistics are shown, α =0.05. The saltwater age compositions were from unpaired datasets. Figure 3.–Chinook salmon total age composition among ADF&G and readers, by stratum.

Note: Error bars represent 95% confidence intervals around the mean age assigned by readers for all fish assigned a given age by ADF&G. The equivalence line (solid line) is shown.

Figure 4.-Freshwater age-difference plots of Chinook salmon between ADF&G and reader, by stratum.

Note: Error bars represent 95% confidence intervals around the mean age assigned by readers for all fish assigned a given age by ADF&G. The equivalence line (solid line) is shown.

Figure 5.-Saltwater age-difference plots of Chinook salmon between ADF&G and reader, by stratum.

-continued-

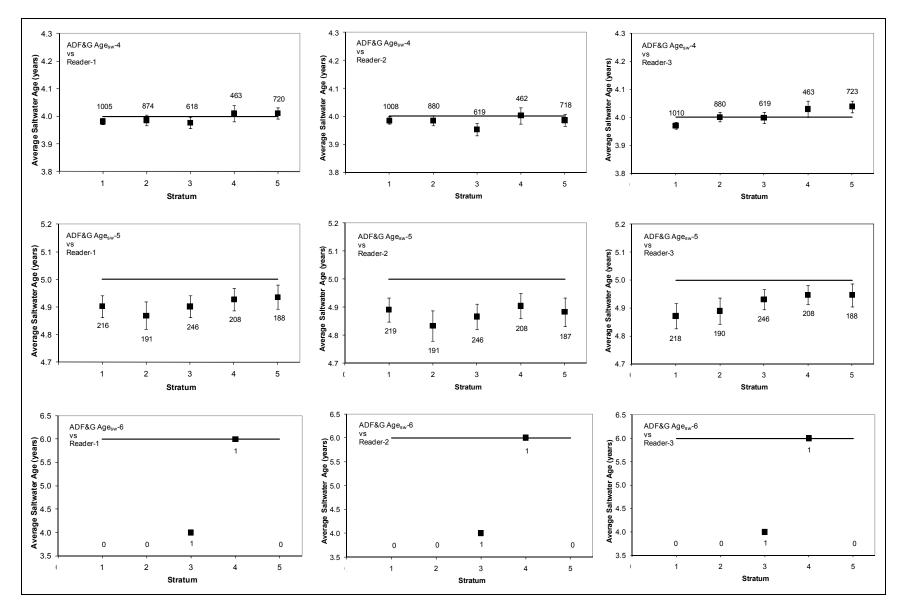
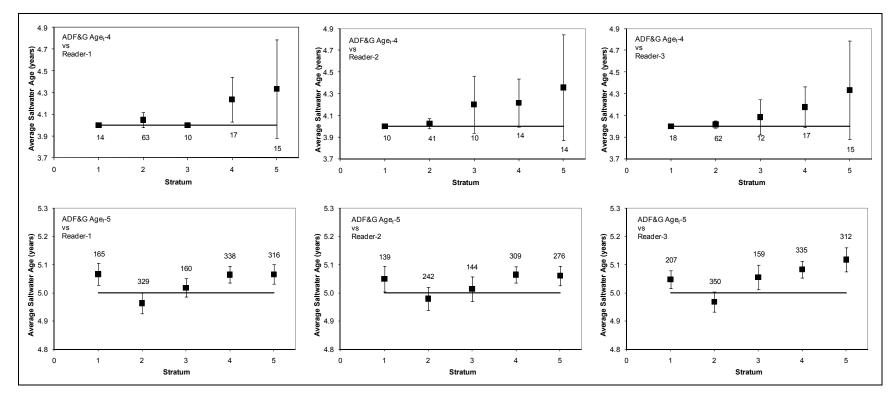



Figure 5.–Page 2 of 2.

27

Note: Error bars represent 95% confidence intervals around the mean age assigned by readers for all fish assigned a given age by ADF&G. The equivalence line (solid line) is shown.

Figure 6.-Total age-difference plots of Chinook salmon between ADF&G and reader, by stratum.

-continued-

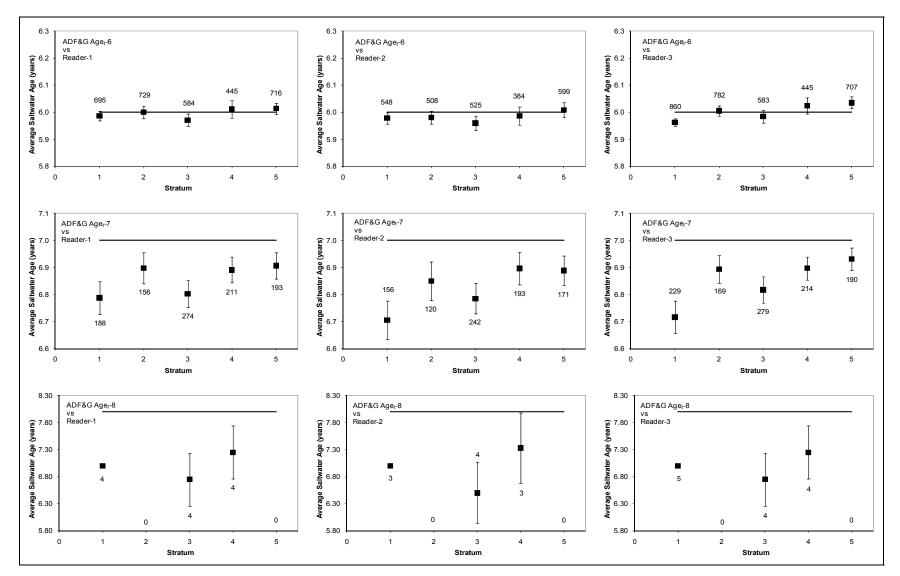


Figure 6.–Page 2 of 2.

29

APPENDIX A

	Age 0.	Inconclusive	Age 1.		
-2	-1	0	+1	+2	
-No freshwater annulus visible inside of transition zone -Freshwater circuli evenly spaced	-Slight irregularities in circuli width and spacing without the obvious narrowing, pinching, and brading typical of a clear freshwater annulus	-Several checks in the fresh- water zone, none strong enough to indicate an annulus	-One or more moderately strong checks in the freshwater zone -Possible FW annulus confused w/ tran- sition check.	-Distinct FW annulus as evidenced by narrowing, pinching, and braiding circuli distinct from circuli in the transition zone	
			-FW circuli are dif- ferent (finer and den- ser) than circuli of marine growth	-FW circuli are dis- tinctly different than marine growth circuli, this is exemplified in a "cut out" pattern	
-Measurement falls on or beyond focus on all radii measured	-Measurement falls less than half the distance from the focus to the last FW circuli		-Measurement falls over half way between focus and the strongest FW check	-Measurement falls on or near strong FW check	
	-Measurement may fall on or beyond the focus on some radii				
-Circuli on the inside of the 1st marine summer are distinctly closer and narrower than those in the 2nd marine summer	-Circuli on either side of the 1st marine an- nulus are different but not as distinct as in the -2 category		-Circuli are generally equal/uniform between the 1st and 2nd marine summers	-Circuli are equal between the 1st and 2nd marine annular zones	
-Indistinct 1st marine annulus which circuli resembles those in 1st marine summer -Often two or more	-Non-uniform growth through 1st marine year, occasionally growth differs between dorsal and ventral		-Moderately distinct 1st marine annulus	-Distinct 1st marine annulus	
	 -2 No freshwater annulus visible inside of transition zone Freshwater circuli evenly spaced -Measurement falls on or beyond focus on all radii measured -Circuli on the inside of the 1st marine summer are distinctly closer and narrower than those in the 2nd marine summer -Indistinct 1st marine annulus which circuli resembles those in 1st marine summer 	-2-1-No freshwater annulus visible inside of transition zone-Slight irregularities in circuli width and spacing without the obvious narrowing, pinching, and brading typical of a clear freshwater annulus-Heasurement falls on or beyond focus on all radii measured-Measurement falls less than half the distance from the focus to the last FW circuli-Measurement falls on or beyond focus on all radii measured-Measurement falls less than half the distance from the focus to the last FW circuli-Circuli on the inside of the 1st marine summer are distinctly closer and narrower than those in the 2nd marine summer-Circuli on either side of the 1st marine sin the -2 category-Indistinct 1st marine annulus which circuli resembles those in 1st marine summer-Non-uniform growth through 1st marine year, occasionally growth differs between dorsal and ventral sides of the scale	-2 -1 0 -No freshwater annulus visible inside of transition zone -Slight irregularities in circuli width and spacing without the spacing without the obvious narrowing, inclicate an typical of a clear freshwater annulus -Several checks in the fresh- water zone, none strong enough to indicate an annulus -Freshwater circuli evenly spaced -Measurement falls typical of a clear freshwater annulus -Measurement falls less than half the distance from the focus to the last FW circuli -Measurement may fall on or beyond focus on all radii measured -Measurement may fall on or beyond the focus on some radii -Circuli on the inside of the 1st marine summer are distinctly closer and narrower than those in the 2nd marine summer -Circuli on either side of the 1st marine annulus which circuli resembles those in 1st marine summer -Non-uniform growth through 1st marine year, occasionally growth differs between dorsal and ventral sides of the scale	-2 -1 0 +1 -No freshwater annulus visible inside of transition zone -Slight irregularities in circuli width and spacing without the obvious narrowing, pichcing, and brading typical of a clear freshwater annulus -Several checks in the fresh- water zone, none strong enough to indicate an annulus -One or more moderately strong checks in the freshwater zone -Freshwater circuli evenly spaced pichcing, and brading typical of a clear freshwater annulus -Measure freshwater annulus -Poesible FW annulus confused w/ tran- sition check. -Measurement falls on or beyond focus on all radii measured -Measurement falls less than half the distance from the focus to the last FW circuli -Measurement falls over half way between focus and the strongest FW check -Circuli on the inside of the 1st marine summer are distinctly closer and narrower than those in but not as distinct as in the -2 category -Circuli are generally equal/uniform between the 1st marine annulus which circuli resembles those in 1st marine summer -Non-uniform growth through 1st marine eyer, occasionally growth differs between dorsal and ventral sides of the seale -Moderately distinct lst marine annulus	

Appendix A1.–Criteria for	1	C 1 /	
Annondiv A I Critoria for	dotormining	trachwatar and (t Chinoolz calmon
	ucici mining	nushwalui agu i	л Слиноок заннон.

-continued-

Appendix A1.–Page 2 of 2.

Definitions of Aging Terms:

Annuli - winter growth as evidenced by a decrease in width and spacing of circuli and pinching and braiding of circuli.

Check - any alteration in curculi spacing including narrowing, pinching, and braiding. Checks include annuli, transition zones, and other growth disturbances resulting from food limitations, injury, changing hatchery rearing conditions, etc.

Cut out pattern - when there are many (>20) freshwater circuli that are distinctly narrower and denser than circuli of the 1st marine summer growth.

FW - freshwater growth zone from the focus to the last circuli in freshwater.

Plus growth zone - the scale growth zone from the end of the last freshwater annulus to the last circuli of freshwater.

Transition zone - the scale zone coinciding with migration from freshwater to marine environments.

Source: Van Alen and McPherson, ADF&G, Division of Commercial Fisheries, Juneau, Alaska, personal communication.

11		\mathcal{O} (\mathcal{O} 511)	1 5		
	S	altwater Age Compositi	ion (Percent)		
	Age _{sw}	ADF&G	Reader-1	Reader-2	Reader-3
Stratum 1	2	1.6	1.8	1.8	1.9
1964–1972	3	16.7	17.8	17.8	18.1
	4	67.2	67.0	66.2	66.8
	5	14.6	13.4	14.2	13.2
Stratum 2	2	4.6	6.4	6.1	6.2
1973–1981	3	26.1	26.1	26.4	25.5
	4	57.0	54.8	55.6	55.7
	5	12.3	12.7	11.9	12.6
Stratum 3	2	1.2	1.8	1.5	1.5
1982-1990	3	16.0	18.0	19.6	17.1
	4	59.2	58.7	58.1	58.8
	5	23.6	21.6	20.8	22.6
Stratum 4	2	1.7	1.5	1.4	1.3
1991–1996	3	33.2	32.8	32.8	31.1
	4	44.8	44.6	45.3	46.3
	5	20.2	21.1	20.4	21.3
Stratum 5	2	1.2	1.5	1.5	1.4
1997–2006	3	25.8	25.3	26.4	23.6
	4	57.9	56.8	57.0	56.8
	5	15.1	16.4	15.2	18.2

Appendix A2.-Chinook salmon saltwater age (Age_{sw}) composition by reader and stratum.

Note: The individual Chinook salmon aged for the saltwater age composition were based on unpaired datasets that incorporated all successful age estimates for each reader. Percentages sum to 100 by stratum and reader.

11			5		
		Total Age Composition	n (Percent)		
	Age _t	ADF&G	Reader-1	Reader-2	Reader-3
Stratum 1	4	1.6	1.3	1.3	1.6
1964–1972	5	16.2	16.8	17.9	17.5
	6	64.9	66.7	66.1	67.8
	7	17.3	15.3	14.7	13.1
Stratum 2	4	4.6	6.7	5.9	6.3
1973–1981	5	26.1	25.2	26.6	24.4
	6	57.0	54.5	54.5	56.0
	7	12.3	13.6	13.0	13.3
Stratum 3	4	1.1	1.4	1.2	1.4
1982-1990	5	15.4	18.1	19.2	17.0
	6	56.4	57.9	56.8	57.7
	7	27.0	22.6	22.8	23.8
Stratum 4	4	1.7	1.5	1.3	1.4
1991–1996	5	32.9	33.1	34.6	31.9
	6	44.0	43.6	43.0	44.6
	7	21.3	21.7	21.1	22.1
Stratum 5	4	1.2	1.5	1.6	1.4
1997-2006	5	25.6	25.0	26.4	23.4
	6	57.7	56.8	54.7	57.0
	7	15.5	16.7	17.4	18.1

Appendix A3.–Chinook salmon total age (Aget) composition by reader and stratum.

Note: The individual Chinook salmon aged for the total age composition were based on unpaired datasets that incorporated all successful age estimates for each reader. Percentages sum to 100 by stratum and reader.

							der-1 Ag	e							
ADF&G		Age _{fw}					ge _{sw}						get		
Age	0	1	2	1	2	3	4	5	6	3	4	5	6	7	8
1 2 3 4 5 6 7 8		1,005 34	18 10		24 1	237 27	9 969 21	9 195			14	154 25	11 654 41	16 146 4	1
1		1.0(0	1.7			S	tratum 2	(1973–1	981)						
1 2 3 4 5 6 7 8		1,262	15		70 29 1	1 358 38 1	1 15 807 23	28 167			61 26 1	1 289 32 1	1 14 664 16	30 137	2 2
-						Str	atum 3 (1982–19	90)						
1 2 3 4 5 6 7 8	1	981 39	3 8		13 1 2	160 21 1	6 584 22 1	11 223			10 2 2	153 26 2	5 543 50 1	13 222 3	
						Str	atum 4 (1991–19	96)						
1 2 3 4 5 6 7 8		990 16	9 1	1	13 2	4 319 21 1	21 416 14	26 192	1 1	1	13 2	4 313 24 1	22 392 23	1 29 185 3	2 1
1		1.005	,			S	tratum 5	(1997–2	2006)						
1 2 3 4 5 6 7 8		1,227 8	4 1		13 5 1	291 19 2	1 25 671 9	1 1 29 176	1		13 5 1	286 20 2	1 24 664 15	1 1 30 175	1 1

Appendix A4.–Chinook salmon paired age frequency for ADF&G and Reader-1 by stratum.

							Reader	-2 Age							
ADF&G		Age _{fw}				А	ge _{sw}					A	get		
Age	0	1	2	1	2	3	4	5	6	3	4	5	6	7	8
						S	tratum 1	(1964–1	972)						
1		807	8												
2 3		37	4		24	• • •									
3					2	233	12	2			10				
4						29 1	965 22	14			10 1	121	6	1	
5 6						1	22	196			1	131 23	6 514	1 11	
0 7												23	46	110	
7 8													40	3	
						Str	atum 2 (1973–19	81)					5	
1		905	6												
2					69	3									
3				1	26	359	15								
2 3 4 5 6						38	817	25			40	1	10		
5						1	30	160			15	217	10	1.7	
6 7												25 1	468 17	15 101	1
8												1	1 /	101	1
0						S	tratum 3	(1982-1	990)						
1	1	864	15			~		(
		35	10		11	2									
3					2	158	4	1							
4						40	568	11			8	2			
5						2	29	215			3	137	3	1	
2 3 4 5 6 7							1					37	472	16	1
8												3	47 2	191 2	1
0						S	tratum 4	(1991-1	996)				2	2	
1	1	874	12	1		2		(1))1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
2		13	3		14	3									
3					1	318	23								
4						23	415	24			11	3			
5 6						1	19	187	1		1	287	21	10	
6									1			24	341	19	0
7 8												1	26	158 2	8 1
0						S	tratum 5	(1997_7	2006)					4	1
1		1,032	22			5	uutuin J	(1777-2							
		8	1		13		1	1							
3					5	292	22	1							
4					1	30	665	22			12		1	1	
2 3 4 5 6						2	18	167			4	251	21		
6											1	28	536	33	1
7												1	19	149	2
8															

Appendix A5.–Chinook salmon paired age frequency for ADF&G and Reader-2 by stratum.

							Reader	-3 Age							
ADF&G		Age _{fw}				А	.ge _{sw}					A	get		
Age	0	1	2	1	2	3	4	5	6	3	4	5	6	7	8
1 2 3 4 5		1,265 50	1 3		24 2	S 236 35	10 10 969 28	(1964–1 1 6 190	1972)		18 1	195	11		
6 7 8											I	37 1	818 63	5 165 5	
1	1	1.200	2			S	tratum 2	(1973–1	981)						
1 2 3 4 5 6 7 8	1	1,360	2		69 29	2 357 29 1	17 821 19	30 170			61 26	1 309 25 1	15 728 17	29 150	1
						S	tratum 3	(1982–1	990)						
1 2 3 4 5 6 7 8	2	987 45	1 2		12 1	1 157 18 1	8 581 16 1	1 19 228	1		11 1 1	1 149 25 2	8 539 48 1	1 18 228 3	1
1		000		1		S	tratum 4	(1991–1	996)						
1 2 3 4 5 6 7 8		999 17		1	14	3 311 16	30 417 12	30 195	1	1	14	3 307 18	28 398 23	29 190 3	1
		1 0 1 5				S	tratum 5	(1997–2	2006)						
1 2 3 4 5 6 7 8		1,215 9			13 4 1	277 14 2	1 37 664 7	1 3 44 178	1		13 4 1	0 270 16 1	1 35 647 12	1 3 43 176	1

Appendix A6.–Chinook salmon	paired age free	mency for ADF&G	and Reader-3 by stratum