Effort, Catch, and Harvest Statistics for the Chinook Salmon Sport Fishery in the Middle Mulchatna River, Alaska, During 1990

by
Dan O. Dunaway,
Allen E. Bingham, and
R. E. Minard

FISHERY DATA SERIES NO. 91-40
 EFFORT, CATCH, AND HARVEST STATISTICS FOR THE CHINOOK SALMON SPORT FISHERY
 IN THE MIDDLE MULCHATNA RIVER, ALASKA, DURING 1990^{1}

By
Dan 0. Dunaway, Allen E. Bingham, and R. E. Minard

Alaska Department of Fish and Game Division of Sport Fish Anchorage, Alaska

September 1991

1 This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-6, Job No. S-2-2.

The Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication distribution centers, libraries and individuals and, on request, to other libraries, agencies, and individuals. This publication has undergone editorial and peer review.

The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, religion, color, national origin, age, sex, or handicap. Because the department receives federal funding, any person who believes he or she has been discriminated against should write to:
O.E.O.
U.S. Department of the Interior

Washington, D.C. 20240

TABLE OF CONTENTS

Page
LIST OF TABLES ii
LIST OF FIGURES iv
LIST OF APPENDICES v
ABSTRACT 1
INTRODUCTION 2
METHODS 6
Effort Catch and Harvest Surveys 6
Sublocation 001: 6
Sublocation 002: 8
Combined Estimates: 15
Size, Sex, and Age Sampling 15
RESULTS 16
Creel Statistics 16
Sublocation 001 : 16
Sublocation 002 : 16
Combined Estimates: 22
Size, Sex, and Age Compositions 22
Sublocation 001 22
Sublocation 002 22
DISCUSSION 22
ACKNOWLEDGEMENTS 30
LITERATURE CITED 30
APPENDIX A 33
APPENDIX B 54
APPENDIX C 56
APPENDIX D 63

Table

Page

1. Commercial harvest, subsistence harvest, sport harvest, and escapement estimate for Nushagak Bay drainage chinook salmon 1966-19905
2. Sublocation 001 summary of daily angler counts and hours fished in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990 17
3. Sublocation 001 summary of daily catch and harvest of chinook, sockeye, and chum salmon in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990 18
4. Sublocation 001 summary of daily catch and harvest of rainbow trout, Arctic grayling, and northern pike in the sport fishery on the middle Mulchatna River, 30 June to 25 July 199019
5. Sublocation 001 estimate of effort (angler-hours) for the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.20
6. Sublocation 001 estimates of catch and harvest of chinook salmon, sockeye salmon, chum salmon, rainbow trout, Arctic grayling, and northern pike in the sport fishery on the middle Mulchatna river, 30 June to 25 July 199021
7. Sublocation 002 estimate of effort (angler-hours), by stratum for the sport fishery on the middle Mulchatna River, 30 June to 25 July 199023
8. Sublocation 002 estimates of catch and harvest by species and stratum for the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990....24
9. Combined estimates of effort (angler-hours) for sublocation 001 and 002 of the sport fishery on the middle Mulchatna River, 30 June to $25 \mathrm{July} 1990 \ldots 25$
10. Combined estimates of catch and harvest by species for sublocations 001 and 002 of the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.... 26
```
LIST OF TABLES (Continued)
```


Table

11. Mean lengths (millimeters) and weights (kilograms)
of chinook salmon, by sex and age group, from
samples collected from the sport fishery at
sublocation 001 of the middle Mulchatna River,
30 June to 25 July 1990 27
12. Mean lengths (millimeters) and weights (kilograms) of chinook salmon, by sex and age group, from samples collected from the sport fishery at sublocation 002 of the middle Mulchatna River, 30 June to 25 July 1990

LIST OF FIGURES

Figure Page

1. Nushagak Bay and Nushagak River drainages showing the middle Mulchatna River study site. 3
2. Estimates and means of effort (angler-days) and harvests of chinook salmon (1977-1989) by the sport fishery in the Mulchatna River. 4

LIST OF APPENDICES

Appendix

Page
A. Sublocation 001, direct expansion survey, completed trip angler interview data from the sport fishery on the middle Mulchatna River, 30 June to 25 July 199034

B. Angler counts from the sport fishery at
sublocation 002 on the middle Mulchatna River,
30 June to 25 July 1990 55

C1. Sublocation 002, roving survey; summary of daily
angler effort (angler-hours), catch rates (CPUE,
fish per angler-hour), and harvest rates (HPUE,
fish kept per angler-hour) for chinook salmon in
the sport fishery in the middle Mulchatna River, 1990.. 57

C2. Sublocation 002, roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for sockeye salmon in the sport fishery in the middle Mulchatna River, 1990..58

C3. Sublocation 002 , roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for chum salmon in the sport fishery in the middle Mulchatna River, 199059

C4. Sublocation 002 , roving survey; summary of daily
angler effort (angler-hours), catch rates (CPUE,
fish per angler-hour), and harvest rates (HPUE,
fish kept per angler-hour) for rainbow trout in
the sport fishery in the middle Mulchatna River, 1990..

C5. Sublocation 002, roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for Arctic grayling from the sport fishery on the middle Mulchatna River, 1990..

C6. Sublocation 002 , roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for northern pike from the sport fishery on the middle Mulchatna River, 1990.. 62
D. Data files used to produce this report.................. 64

Abstract

An estimated 8,344 hours of effort (standard error $=1,061$) were expended by recreational anglers fishing the middle Mulchatna River (from the mouth of the Koktuli River to the mouth of the Stuyahok River) during the period from 30 June through 25 July 1990. Anglers caught (landed) and harvested (kept) an estimated 6,069 (standard error $=1,414$) and 1,409 (standard error $=267$) (23\% harvested) chinook salmon Oncorhynchus tshawytscha; 110 and 54 (49\% harvested) sockeye salmon Oncorhynchus nerka; 312 and 37 (12% harvested) chum salmon Oncorhynchus keta; 727 and 77 (11\% harvested) rainbow trout Oncorhynchus mykiss. Anglers also retained 4\% of the estimated catch of 272 Arctic grayling Thymallus arcticus, and they retained 6% of the estimated catch of 117 northern pike Esox lucius. Nearly equal percentages of age-1.2, age-1.3, and age-1.4 chinook salmon comprised over 90% of the sport harvest. Over two-thirds of the sport harvest of chinook salmon were male fish.

KEY WORDS: chinook salmon, Oncorhynchus tshawytscha, sockeye salmon, Oncorhynchus nerka, chum salmon, Oncorhynchus keta, rainbow trout, Oncorhynchus mykiss, Arctic grayling, Thymallus arcticus, northern pike, Esox lucius, sport harvest, sport effort, creel survey, escapement, Mulchatna River, Stuyahok River, Koktuli River, Bristol Bay.

INTRODUCTION

The Mulchatna River flows to the southwest before joining the Nushagak River approximately 104 km (65 miles) northeast of Dillingham, Alaska (Figure 1). Most of the land along the mainstem Mulchatna is owned by the state of Alaska. Other land owners include the National Park Service, which controls the headwaters of the Mulchatna, and Alaska natives who own some land along the mainstem. The creel survey study area, referred to here as the middle Mulchatna River, included the section of the Mulchatna River from the mouth of the Koktuli River downstream to the mouth of the Stuyahok River, a distance of approximately 20 km (Figure 1). The 1990 study area, though relatively small, may be the most heavily used portion of the river.

The sport fishery on the Mulchatna River commences about the third week of June with the arrival of chinook salmon Oncorhynchus tshawytscha, the first of the five species of Pacific salmon that spawn in Mulchatna River. The sport fishery continues until early October when the coho salmon O. kisutch run has nearly ended and the river begins to freeze. In addition to salmon, anglers catch good numbers of rainbow trout 0 . mykiss, Arctic grayling Thymallus arcticus, and northern pike Esox lucius. Airplanes are the most common means of transportation into the area, though some anglers use boats from communities along the Nushagak River.

Harvest data for the Mulchatna River sport fishery are limited to results of the Alaska Department of Fish and Game (ADFG) Statewide Harvest Survey (Mills 1979-1990) and one on-site creel survey conducted in 1986 (Lipchak 1986). The statewide survey provides estimates of harvest and effort but does not furnish information on characteristics of the sport fishery. The 1986 onsite survey was of limited scope and occurred before the bag limits on chinook salmon were reduced in 1987, and before the 25 July chinook salmon season closure was enacted in 1990 to protect fish on the spawning beds.

From 1977 to 1982, sport effort on the entire ${ }^{1}$ Mulchatna River quite consistently averaged 1,274 angler-days per year (Figure 2, Mills 1979-1983). Since 1983, effort has been more variable, and has ranged from 1,974 anglerdays in 1989 to 4,711 angler-days in 1988 (no estimate is yet available for 1990) (Mills 1984-1990). The recent 7-year average of 2,922 angler-days per year indicates increased sport angling effort since the 1977-1982 period. In a similar fashion, sport harvests of chinook salmon on the entire Mulchatna River averaged 326 fish per year from 1977 to 1982, while the annual harvests since 1982 have averaged 1,145 fish.

Chinook of Mulchatna drainage origin are also harvested along with other Nushagak stocks in commercial and subsistence fisheries. Peak commercial harvests of Nushagak Bay drainage chinook salmon stocks were achieved from 1976 through 1986. The commercial harvest of chinook salmon has since dropped below the historical average and shows a declining trend since 1987 (Table 1; ADFG 1990a, 1990b). The subsistence harvest of chinook salmon in the Nushagak Bay drainage has increased, averaging 5,400 fish per year from 1963 through 1977, and averaging 10,400 fish per year since 1978 (Table 1;

1 The Statewide Survey only provides harvest data for the whole length of the Mulchatna River.

Figure 1. Nushagak Bay and Nushagak River drainages showing the middle Mulchatna River study site.

Figure 2. Estimates and means of effort (angler-days) and harvests of chinook salmon (1977-1989) by the sport fishery in the Mulchatna River.

Table 1. Commercial harvest, subsistence harvest, sport harvest, and escapement estimate for Nushagak Bay drainage chinook salmon 1966-1990.

Year	Harvest				Escapement Estimate ${ }^{d}$	Total Rune	Total Rate of Harvest ${ }^{f}$	Harvest Rate by Anglers8	Mulchatna R. Sport Harvest ${ }^{h}$
	Comm. ${ }^{\text {a }}$	Sub. ${ }^{\text {b }}$	Sport ${ }^{\text {c }}$	Total					
1966	58,184	3,700		61,884	40,000	101,884	61\%		
1967	96,240	3,700		99,940	65,000	164,940	61\%		
1968	78,201	6,600		84,801	70,000	154,801	55\%		
1969	80,803	7,100		87,903	35,000	122,903	72\%		
1970	87,547	6,900		94,447	50,000	144,447	65\%		
1971	82,769	4,400		87,169	40,000	87,169	100\%		
1972	46,045	4,000		50,045	25,000	75,045	67\%		
1973	30,470	6,600		37,070	35,000	72,070	51\%		
1974	32,053	7,900		39,953	70,000	109,953	36\%		
1975	21,454	7,100		28,554	70,000	98,554	29\%		
1976	60,684	6,900		67,584	100,000	167,584	40\%		
1977	85,074	5,200	923	91,197	65,000	156,197	58\%	0.59\%	521
1978	118,548	6,600	442	125,590	130,000	255,590	49\%	0.17%	291
1979	157,321	8,900	654	166,875	95,000	261,875	64\%	0.25\%	342
1980	64,958	11,800	757	77,515	141,000	218,515	35\%	0.35\%	146
1981	193,461	11,500	1,220	206,181	150,000	356,181	58\%	0.34%	291
1982	195,287	12,100	1,845	209,232	147,000	356,232	59\%	0.52%	367
1983	137,123	11,800	2,548	151,471	161,730	313,201	48\%	0.81%	388
1984	61,378	9,800	2,394	73,572	80,940	154,512	48\%	1.55\%	786
1985	67,783	7,900	1,852	77,535	115,720	193,255	40\%	0.96%	292
1986	65,783	12,600	5,664	84,047	43,434	127,481	66\%	4.44\%	3,534
1987	45,983	12,200	3,449	61,632	84,309	145,941	42\%	2.36%	1,860
1988	16,501 ${ }^{1}$	10,100	3,436	30,037	56,905	86,942	35\%	3.95\%	403
1989	17,887 ${ }^{\text {i }}$	8,100	4,315	30,302	78,302	108,604	28\%	3.97\%	754
Historical Average:									
$1990{ }^{\text {j }}$	14,092	11,932	4,500 ${ }^{\text {k }}$	30,324	63,955	94,279	68\%	4.6\%	1,409k

a Commercial harvest. Some harvests were impacted by price disputes.
b Subsistence harvest. Estimates are latest available.
c Sport harvests estimates from Statewide Harvest Survey for rivers in the Nushagak Bay drainage except 1986, 1987 which include on-site survey harvest estimates for lower Nushagak River.
d Escapement estimates: 1966 expanded from Nushagak River tower counts; 1967 is a combination of tower counts and aerial surveys; 1971 estimated from mean exploitation rates observed 1960-1970 and 1972-1976; 1972-1985 from aerial counts of index streams; 1986-1990 from sonar counts.
e Total run $=$ sum of all harvests + escapement. Considered to be a minimum number.
f Total rate of harvest $=$ (Total harvest/Total run)* 100 .
g (Sport Harvest/Total Run)* 100.
h From statewide harvest survey.
i Commercial harvests for 1988, 1989 are preliminary.
j All figures for 1990 are preliminary except escapement.
k 1990 statewide harvest estimate not available, preliminary estimate.

ADFG 1990a, 1990b). Increased subsistence harvests may reflect an increased number of local inhabitants as well as improved reporting methods. Escapement of Nushagak River chinook salmon onto the spawning grounds averaged 55,400 fish per year from 1966 through 1977, rose to an average 137,400 fish per year from 1978 through 1983, then dropped to an average 74,400 fish per year since the establishment in 1984 of a provisional escapement goal of $75,000 \mathrm{fish}$ (ADFG 1990a).

Changes in the users, the stocks, and the sport regulations all indicated a need for more up-to-date information on the Mulchatna River sport fisheries. Growth in other nearby sport fisheries has shown that prudent management required information about the sport fisheries beyond that provided by the Statewide Harvest Survey (Dunaway 1990). Of particular importance is obtaining estimates of effort directed at target species; total catch; and age, sex, and size composition. Therefore, specific objectives of the study were:

1. To estimate angling effort (in angler-hours), catch (fish kept plus released), harvest (fish kept only), for the chinook salmon sport fishery on the middle Mulchatna River during the period 30 June to 25 July 1990.
2. To estimate the age, sex, and length composition of chinook salmon harvested by the sport fishery on the middle Mulchatna River during the period 30 June to 25 July 1990.
3. To estimate catch (fish kept plus released), and harvest (fish kept only) of other species of fish frequently encountered on the middle Mulchatna River during the period 30 June to 25 July 1990.

In 1990, anglers on the middle Mulchatna River were allowed a daily bag and possession limit of three chinook salmon per day, only two of which could be over 71 cm (28 inches) (ADFG 1990c). The daily bag and possession limits of salmon other than chinook salmon (including sockeye 0 . nerka, chum O. keta, pink 0 . gorbuscha, and coho 0 . kisutch) were five fish per day in combination. The bag and possession limit on rainbow trout during the survey period was two fish per day, one of which could exceed 51 cm (20 inches) in length. Anglers were limited to a bag and possession limit of five Arctic grayling and 10 northern pike per day (ADFG 1990c).

METHODS

Effort Catch and Harvest Surveys

The middle Mulchatna River creel survey project was divided into two parts corresponding to two distinctive portions of the area's sport fisheries (Figure 1).

Sublocation 001 :
The fishery occurring within sublocation 001 takes place along the banks and beaches where the Stuyahok River empties into the Mulchatna River (Figure 1). Large sand bars in the area are used by overnight campers, while other
anglers may fly or boat in for day trips. Sublocation 001 also serves as the termination and pickup point for anglers making raft trips down the Mulchatna, Koktuli, and Stuyahok Rivers. The limited area of the fishery and the easy accessibility to the anglers allowed the survey crew to interview anglers as they left the fishery, and to sample the sport harvest.

Effort, catch, and harvest in sublocation 001 were estimated by the direct expansion method. Twelve of the 26 days in the study period were randomly selected without replacement for sampling at sublocation 001 . The angling day, for the purpose of the survey, began at 0000 and ended at 2359 hours (24 hours). On each of the selected days, anglers were counted and interviewed as they left the fishery. The number of hours fished, the species and numbers of fish kept, the number and species of fish released, gear types used, and a variety of demographic information were recorded on standard ADFG mark-sense angler interview forms. Harvested fish were sampled for age, sex, and length at sublocation 001 whenever there was an opportunity, regardless of the interview sampling schedule.

Angler effort, catch, harvest, and their associated variances were estimated for the sublocation 001 portion of the creel survey using the following procedures.

For each sample day, individual effort (hours fished) was summed to produce a daily total effort. Similarly, a daily total of each species caught (fish kept plus fish released), and a daily total of fish harvested (fish kept) were calculated.

The estimates of angler effort for the survey were obtained by the following procedures:

E $\quad=$ estimated angler effort for the entire survey, obtained as follows;
$=D \bar{E}$
where:
$D \quad=$ the number of days available for sampling (26 in this instance);
$\overline{\mathrm{E}} \quad=\quad$ mean daily total angler effort over days sampled;

$$
=\frac{\sum_{i=1}^{d} E_{i}}{d} ;
$$

E_{i} equals the total angler effort observed over all anglers interviewed during the sampled day i; and d equals the number of days sampled (equal to 12 in this instance).

The variance of the angler effort estimate was obtained by the standard single stage formula (see Cochran 1977):

$$
\begin{equation*}
\hat{\hat{V}[E]}=\left(1-\mathrm{f}_{1}\right) \frac{\mathrm{S}_{1}^{2}}{\mathrm{~d}} \tag{3}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathbf{f}_{1} \\
&=\text { the sampling fraction for days sampled }\left(i . e ., f_{1}=d / D\right) ; \text { and } \\
& S_{1}^{2} \\
&=\text { the among day variance; } \\
&=\frac{\sum_{i=1}^{d}\left(E_{i}-\bar{E}\right)^{2}}{d-1} \tag{4}
\end{align*}
$$

Estimates of catch and harvest and their variances were obtained similarly, by substituting the appropriate catch or harvest statistics into equations 1-4, above. Standard errors were obtained by taking the square root of the variance estimates.

The assumption necessary for unbiased point and variance estimates of angler effort, catch, and harvest obtained by the procedures outlined above is that interviewed anglers accurately reported their hours of fishing effort and the number of fish by species released.

Sublocation 002:
Sublocation 002 included anglers fishing in the approximately 24 km (15 miles) of the Mulchatna River from the mouth of the Koktuli River to the mouth of the Stuyahok River (Figure 1). Anglers fishing in sublocation 002 were fewer in number and much more scattered requiring the use of a more complex survey design to obtain the desired estimates.

A stratified three-stage random sampling design was used on sublocation 002 of the middle Mulchatna River to estimate effort (in angler-hours) and catch and harvest. A roving creel survey (Neuhold and Lu 1957) was conducted to count and interview anglers as well as sample the sport harvest. Angler counts were considered instantaneous and represent angler effort for the stratum in which the count was conducted. Angler interviews were used to estimate the catch and harvest rates. Estimates of catch and harvest are the product of the estimated effort and the catch or harvest rates.

The study period in sublocation 002 began 30 June and continued through 25 July 1990. The angling day, for the purpose of the survey, began at 0600 and ended at 2059 (15 hours). Each angling day was split into two time-ofday strata, peak and non-peak. The nonpeak stratum was composed of two, 3 -hour periods: period A 0600 to 0859 and period E 1800 to 2059. The peak stratum contained three, 3 -hour periods: period B 0900 to 1159 , period C

1200 to 1459 , and period D 1500 to 1759 . These periods were selected such that the combination count interview samples, which take approximately 3 hours to conduct, would "fit" into each time-of-day stratum in equal increments. Surveys of other Bristol Bay area sport fisheries have indicated that angler effort (hence catch and harvest) are limited during the early and late hours of the day (Dunaway 1990). The numerous access points to the fishery (particularly with airplanes), the mobility of the anglers (again, via boats and airplanes), and the general nature of a roving type survey make it difficult to gather adequate numbers of completed trip interviews. Therefore, estimates necessarily included data from anglers interviewed before the completion of their fishing trip.

From the 14 days remaining after selection of the 12 sampling days for sublocation 001, 7 days were selected without replacement for sampling the peak time-of-day stratum. Four days were selected at random from the remaining days in the week for sampling the non-peak stratum. This restricted sampling of days may have introduced bias(es) in the resulting estimates. The magnitude of the bias(es) is unknown.

For each day selected for sampling during the peak stratum, two of the three possible 3 -hour sampling periods (i.e., $0900-1159$ and 1500-1859) were sampled. Similarly, for the non-peak stratum, both the early and late 3-hour periods were sampled (censused).

Angler effort, catch, and harvest, their associated variances, and standard errors were estimated for the creel survey using the following procedures. A random estimator was used to estimate angler effort on a sample by sample basis. Catch and harvest estimates for each sample were obtained by a ratio estimator which was computed by combining the estimated effort (for the sample) with estimates of catch per unit effort (CPUE) and harvest per unit effort (HPUE) obtained from the angler interviews. The CPUE and HPUE estimates were obtained by the jackknife estimation approach (Efron 1982). The jackknife approach for estimating CPUE and HPUE was used since most other estimators are known to be biased (for use as ratio estimators, i.e., for expansion), and the jackknife estimate has been shown to be less biased and procedures exist for correcting some of this bias (as noted below) (see Cochran 1977, section 6.15, pages 174-177; and Smith 1980).

The CPUE and HPUE estimates presented here are only appropriate for expansion purposes (i.e., as used in a ratio estimation procedure).

The individual sample estimates of effort, catch, and harvest were then used in a stratified three-stage estimation approach to obtain total estimates, both within strata and across strata, as noted below.

The first step involved obtaining the jackknife estimated sample mean of CPUE (or HPUE) as follows:

[^0]$$
=\frac{\sum_{\substack{\sum_{h i j} \\ o=1}}^{m_{h i j o}}}{\substack{m_{h i j} \\ o=1 \\ o=k}} e_{h i j o}
$$
where:

$m_{h i j}$	$=$ the number of anglers interviewed within sampled period during			
	each sampled day;	\quad	$c_{h i j o}=$	the catch in hours of each angler interviewed, and
---:	:---			
$e_{h i j o}=$	the angling effort in hours of each angler interviewed.			

The jackknife mean CPUE for sample j within day i and stratum h was then obtained as:

$$
\begin{equation*}
\overline{\operatorname{CPUE}}_{\mathrm{hij}}^{\star}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{m}_{\mathrm{hij}}} \mathrm{CPUE}_{\mathrm{hijk}}^{\star}}{\mathrm{m}_{\mathrm{hij}}} \tag{6}
\end{equation*}
$$

Then the bias correction (adapted from Efron 1982 , equation 2.8 , page 6) was performed:

$$
\begin{equation*}
\overline{\operatorname{CPUE}}_{\mathrm{hij}}^{\star \dagger}=\left[\mathrm{m}_{\mathrm{hij}}\left(\overline{\mathrm{CPUE}}_{\mathrm{hij}}-\overline{\mathrm{CPUE}}_{\mathrm{hij}}\right)\right]+\left[\overline{\mathrm{CPUE}}_{\mathrm{hij}}\right] ; \tag{7}
\end{equation*}
$$

where:

$$
\overline{\operatorname{CPUE}}_{\mathrm{hij}}=\frac{\sum_{o=1}^{m_{h i j}} c_{h i j o}}{\sum_{o=1}^{m_{h i j}} e_{h i j o}}
$$

The bias-corrected jackknife mean was then expanded by the estimated angler effort for the sample to obtain the estimated catch for each sample period within each sampled day:

[^1]\[

$$
\begin{equation*}
\hat{\mathrm{C}}_{\mathrm{hij}}=\hat{E}_{\mathrm{hij}}{\overline{\operatorname{CPUE}_{h i j}}}^{\star \dagger} \tag{9}
\end{equation*}
$$

\]

where:
\wedge
$E_{h i j} \quad=\quad$ estimated angler effort (in hours) for each sample period;
$=H_{h i j} X_{h i j}$;
where:
$H_{h i j} \quad=$ number of hours in sampling period j within day i and stratum h; and
$X_{h i j} \quad=\quad$ the number of anglers counted fishing during each sample.
The harvest for the sample was estimated similarly by substituting the appropriate harvest statistics into equations 5 to 9 , above.

Estimates of angler effort, catch, and harvest for each day sampled were obtained as follows:
$\bar{\wedge}$
$Y_{h i} \quad=$ mean of the sample estimates for each sampled day; in which Y represents E, C, or H for effort, catch, and harvest, respectively;

$$
=\frac{\sum_{j=1}^{\mathrm{p}_{h i}} \hat{\mathrm{Y}}_{\mathrm{hij}}}{\mathrm{P}_{\mathrm{hi}}}
$$

where:
\wedge
$Y_{\text {hij }}=$ the estimated sample value for effort (E, as obtained from equation 7 , above), catch or harvest (C or H, as obtained from equation 6, above); and

Phi $\quad=$ number of periods sampled within each sampled day.
The estimated daily effort, catch, and harvest was obtained by expanding by the number of sampling periods in the day:

$$
\hat{\mathrm{Y}}_{\mathrm{hi}} \quad=\mathrm{P}_{\mathrm{hi}} \overline{\mathrm{Y}}_{\mathrm{hi}}
$$

where:
$P_{h i} \quad=\quad$ the number of possible sampling periods within each day.

Similarly, we obtained daily mean estimates for each sampling stratum as follows:

$$
\overline{\mathrm{Y}_{\mathrm{h}}} \quad=\frac{\sum_{\mathrm{i}=1}^{\mathrm{d}_{\mathrm{h}} \hat{\mathrm{Y}}_{\mathrm{hi}}}}{\mathrm{~d}_{\mathrm{h}}} ;
$$

where:
$d_{h} \quad=$ the number of days sampled within each stratum.
The estimated stratum effort, catch, and harvest was obtained by expanding by the number of days in each stratum:

$$
\hat{\mathrm{Y}}_{\mathrm{h}} \quad=\mathrm{D}_{\mathrm{h}} \overline{\hat{Y}}_{\mathrm{h}} ;
$$

where:
$D_{h} \quad=$ the number of days within each stratum.
The variance of the estimated catch for stratum h was obtained by the threestage variance equation (following the approach outlined by Cochran 1977), omitting the finite population correction factor (FPC) for the third stage units:

$$
\begin{align*}
& \hat{\hat{V}\left[\mathrm{C}_{\mathrm{h}}\right]}=\left\{\left(1-\mathrm{f}_{1 \mathrm{~h}}\right) \mathrm{D}_{\mathrm{h}}^{2} \frac{\mathrm{~S}_{1 \mathrm{~h}}^{2}}{\mathrm{~d}_{\mathrm{h}}}\right] \\
& +\left\{f_{1 h} \frac{D_{h}^{2}}{d_{h}^{2}} \sum_{i=1}^{d_{h}}\left(1-f_{2 h i}\right) P_{h i}^{2} \frac{S_{2 h i}^{2}}{p_{h i}}\right\} \tag{15}
\end{align*}
$$

where:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ih}}=\quad=\text { the sampling fraction for days (i.e., } \mathrm{d}_{\mathrm{h}} / \mathrm{D}_{\mathrm{h}} \text {); } \\
& \mathrm{f}_{2 \mathrm{hi}}=\text { the sampling fraction for periods within each day (i.e., } \\
& \text { Phi / } \mathrm{P}_{\mathrm{hi}} \text {); } \\
& S_{1 h}^{2} \quad=\text { the among day variance for the total angler catch estimate }
\end{aligned}
$$

$$
\begin{align*}
& \left.\sum_{i=1}^{d_{h}} \hat{(\hat{C}}_{h i}-\hat{त}_{h}\right)^{2} \\
& =-\frac{d_{h}-1}{} \text {; } \tag{16}\\
& \mathrm{S}_{2 \mathrm{hi}}^{2}=\text { the among period variance for sampled day; } \\
& p_{h i} \wedge \quad \bar{\wedge} \\
& \sum_{j=1}\left(C_{h i j}-C_{h i}\right)^{2} \\
& =\frac{P_{h i}-1}{} \text {; } \tag{17}\\
& \text { Variance estimates for the estimated harvest were obtained by replacing the } \\
& \text { appropriate harvest statistics (h's and H's) for the catch statistics (c's } \\
& \text { and C's) in equations } 15 \text { through } 19 . \\
& \text { Stratum estimates of the variance of the angler effort were obtained in a } \\
& \text { similar manner to those for catch and harvest. The primary difference } \\
& \text { occurred in the absence of the third major term in equation } 14 \text {, since we } \\
& \text { could not estimate the within period component of variance for angler effort, } \\
& \text { and accordingly our variance estimate was only approximate and assumed to be } \\
& \text { negatively biased: }
\end{align*}
$$

[^2]\[

$$
\begin{align*}
\hat{V}\left[\mathrm{E}_{\mathrm{h}}\right]
\end{aligned} \quad\left\{\begin{aligned}
&\left.\left(1-f_{1 h}\right) D_{h}^{2} \frac{S_{1 h}^{2}}{d_{h}}\right] \\
&+\left[f_{1 h} \frac{D_{h}^{2}}{d_{h}^{2}} \sum_{i=1}^{\sum_{h}}\left(1-f_{2 h i}\right) P_{h i}^{2} \frac{S_{2 h i}^{2}}{P_{h i}}\right. \tag{20}
\end{align*}
$$\right] .
\]

The values for the terms in equation 19 were obtained by replacing the catch statistics (C's) by the appropriate effort statistics (E's), in equations 16 and 17.

Total angler effort, catch, or harvest across all strata and the associated variances were calculated by summing statistics across strata.

Since our estimates of angler effort, catch, and harvest are estimates of totals, then standard errors (SE's) were obtained by taking the square root of the associated variances.

The assumptions necessary for unbiased point and variance estimates of angler effort, catch, and harvest obtained by the procedures outlined above are:

1. incomplete-trip angler CPUE and HPUE represent accurate estimates of completed-trip angler CPUE and HPUE;
2. interviewed anglers accurately reported their hours of fishing effort and the number of fish by species released;
3. interviewed anglers were representative of the total angler population;
4. no significant fishing effort occurred during the hours not included in the fishing day;
5. no significant fishing effort occurred in areas not covered by the survey;
6. catch rate and duration of fishing trip are independent (DiCostanzo 1956); and
7. angler effort, catch, and harvest did not vary substantially among days (this assumption necessary due to the constrained sampling of days outlined above).

Incomplete-trip angler CPUE, although probably biased, is assumed to provide a reasonable estimate of completed-trip angler CPUE. Therefore our catch estimates are assumed to be reasonably unbiased. Incomplete-trip angler HPUE is probably biased, and therefore our estimates of angler harvest are biased to an undetermined extent.

Combined Estimates:

To obtain estimates of total effort, catch, and harvest within the study area, the estimates for each sublocation were added together. Similarly, the estimates of variance associated with each sublocation's estimate of effort, catch, and harvest were summed to produce an overall variance.

Size, Sex, and Age Sampling

Sport harvested chinook salmon encountered during the angler interview portion of the creel survey were measured to the nearest millimeter for mideye to fork-of-tail length, weighed to the nearest 10 grams, and sexed based on external characteristics. In addition, three scales were removed from the preferred location on each fish ${ }^{4}$. Upon removal, the scales were mounted on adhesive-coated cards which were later thermohydraulically pressed against acetate cards. The resulting scale impressions were displayed on a microfiche projector for age determination ${ }^{5}$.

Estimates of mean length by age group of chinook salmon subsampled from harvest were calculated. The procedures outlined by Sokal and Rohlf (1981, Boxes 4.2 and 7.1 , pages 56 and 139) were used to obtain the estimates of each mean and its standard error.

Estimates of age composition (proportion) by sex for the subsampled chinook salmon were calculated. Each proportion was calculated according to the following equations:
\wedge
Pu $\quad=$ estimated proportion of the sampled chinook salmon harvested that are age u;

$$
\begin{equation*}
=\xrightarrow{\mathrm{n}_{\mathrm{u}}} \tag{21}
\end{equation*}
$$

n
where:
$n_{u} \quad=$ number of the sampled chinook salmon harvested that are age u; and
$n \quad=$ the number of chinook salmon harvested that were subsampled for scales.

[^3]The variance of the estimate of pu was obtained approximately by the standard equation for the variance of a binomial proportion omitting the finite population correction factor (Cochran 1977, equation 3.8, page 52):

$$
\begin{equation*}
\hat{\hat{V}\left[p_{u}\right]} \quad \approx \frac{\hat{p}_{u}\left(1-\hat{p_{u}}\right)}{n-1} . \tag{22}
\end{equation*}
$$

The survey crew's camp was located in the midst of sublocation 001, giving the crew the opportunity to intensively sample the harvest there. The 513 samples gathered at sublocation 001 were nearly a census of the entire chinook salmon harvest during the survey period.

Although the harvest in sublocation 002 was sampled by a stratified multistage approach, we treated our samples of fish lengths and ages as if collected by a simple random sampling program. We assumed that length at age and age composition did not vary substantially from the peak stratum to the non-peak stratum, or from sampling stage to stage.

RESULTS

Creel Statistics

The middle Mulchatna River creel survey project, conducted from 30 June to 25 July 1990, covered two geographic areas (Figure 1), each with a unique fishery that required two different methods of data collection and analysis.

Sublocation 001:
For the fishery at the mouth of the Stuyahok River (sublocation 001), data from 511 completed trip interviews were used to estimate effort, catch, and harvest (Tables 2, 3, and 4; Appendix A). Seven anglers were not interviewed during the survey and adjustments to the estimates were considered unnecessary. Effort in sublocation 001 was estimated to be 5,558 angler-hours
 $(S E=441)$ were caught (landed), of which $667(S E=105)$, or 24% were harvested (Table 6, Appendix A). Catches of other species at sublocation 001 were estimated to be: 65 sockeye salmon, 297 chum salmon, 310 rainbow trout, 128 Arctic grayling, and 93 northern pike. Estimated retention was highest for sockeye salmon (46%) followed by chinook salmon (24%). Retention rates for the other species ranged from 15% of the rainbow trout to 8% of the northern pike (Table 6).

Sublocation 002:
In sublocation 002 (the Mulchatna River from the mouth of the Koktuli River to the mouth of the Stuyahok River), the 27 completed trip interviews collected were insufficient to produce useful estimates of effort, catch and harvest. Therefore the estimates for sublocation 002 also used, and are biased by, the data collected from 141 incomplete-trip interviews (Appendices B, C1 to C6). Effort in sublocation 002 was estimated to be

Table 2. Sublocation 001 summary of daily angler counts and hours fished in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Date	Anglers Counted	Hours Fished
$6 / 30 / 90$	38	191
$7 / 03 / 90$	34	171
$7 / 04 / 90$	35	197
$7 / 08 / 90$	56	222
$7 / 190$	46	216
$7 / 11 / 90$	43	262
$7 / 12 / 90$	76	414
$7 / 14 / 90$	55	328
$7 / 15 / 90$	66	366
$7 / 19 / 90$	27	152
$7 / 22 / 90$	11	42
$7 / 23 / 90$	2	2
Total	489	2,565
Mean	41	214
Variance	455	14,465

Table 3. Sublocation 001 summary of daily catch and harvest of chinook, sockeye, and chum salmon in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Date	Chinook Salmon		Sockeye Salmon		Chum Salmon	
	$\mathrm{Catch}^{\text {a }}$	Harvest	Catch ${ }^{\text {a }}$	Harvest	Catch ${ }^{\text {a }}$	Harvest
6/30/90	17	4	2	0	7	1
7/03/90	158	25	0	0	6	1
7/04/90	236	18	0	0	15	0
7/08/90	151	43	0	0	8	1
7/09/90	94	30	1	1	17	3
7/11/90	117	35	0	0	15	3
7/12/90	193	55	5	4	27	1
7/14/90	145	43	10	7	15	1
7/15/90	158	45	5	2	15	6
7/19/90	25	10	7	0	4	0
7/22/90	1	0	0	0	8	0
7/23/90	0	0	0	0	0	0
Total	1,295	308	30	14	137	17
Mean	108	26	2	1	11	1
Variance	6,399	367	12	5	53	3

a Catch $=$ total fish kept + total fish released.

Table 4. Sublocation 001 summary of daily catch and harvest of rainbow trout, Arctic grayling, and northern pike in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Date	Rainbow Trout		Arctic Grayling		Northern Pike	
	Catch ${ }^{\text {a }}$	Harvest	Catch ${ }^{\text {a }}$	Harvest	Catch ${ }^{\text {a }}$	Harvest
6/30/90	2	0	3	0	32	0
7/03/90	11	0	13	0	0	0
7/04/90	14	1	0	0	0	0
7/08/90	24	4	2	0	0	0
7/09/90		1	0	0	0	0
7/11/90		0	2	0	0	0
7/12/90	30	4	0	0	0	0
7/14/90	10	3	2	0	0	0
7/15/90	10	5	9	2	0	0
7/19/90	19	0	16	0	8	0
7/22/90	10	3	12	3	3	3
7/23/90	0	0	0	0	0	0
Total	143	21	59	5	43	3
Mean	12	2	5	0.5	4	0.2
Variance	76	4	35	1	86	1

a Catch $=$ total fish kept + total fish released.

Table 5. Sublocation 001 estimate of effort (angler-hours) for the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Estimated Angler-hours	Standard Error	95\% Confidence Intervala			
					Relative
		Lower		Upper	Precision ${ }^{\text {b }}$
5,558	662	4,260	-	6,857	23\%

a $95 \% \mathrm{CI}=($ Point Estimate $)+/-(1.96 * \mathrm{SE})$
b Relative precision $=((1.96 * S E) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

Table 6. Sublocation 001 estimates of catch and harvest of chinook salmon, sockeye salmon, chum salmon, rainbow trout, Arctic grayling, and northern pike in the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Chinook Salmon

Sockeye Salmon

65	19	28	101	57%	30	12	6	-	54	79%	46%

Chum Salmon

297	40	218	-	375	26%	37	10	17	-	56	52%

Rainbow Trout

| 310 | 48 | 215 | - | 404 | 30% | 46 | 11 | 24 | - | 66 | 45% | 15% |
| :--- |

Arctic Grayling

Northern Pike

93	51	0	-	193	107%	7	5	0	-	15	144%	8%

[^4]2,786 angler-hours $(S E=830)$ (Table 7; Appendix $B, C 1)$. Anglers were estimated to have caught 3,263 chinook salmon ($\mathrm{SE}=1,344$) and kept 741 ($\mathrm{SE}=245$) for essentially the same rate of retention observed in sublocation 001 (Table 6 and 8; Appendix C1). The catches of sockeye salmon (45), rainbow trout (417), Arctic grayling (144), and northern pike (23) in sublocation 002 were similar to the sublocation 001 estimates but distinctly fewer chum salmon (15) were caught in sublocation 002 (Tables 6 and 8). Sublocation 002 retention rates for all species other than chum salmon were basically similar to those observed in 001 (Tables 6 and 8).

Combined Estimates:
Total estimated effort for the entire survey area during the study period was 8,344 angler-hours ($\mathrm{SE}=1,062$) (Table 9). The combined estimate of chinook salmon caught in both locations was 6,069 fish ($S E=1,414$), of which 1,409 ($\mathrm{SE}=276$) were kept (Table 10). For sockeye salmon, the overall catch was estimated to be 110 fish ($\mathrm{SE}=37$), with $54(\mathrm{SE}=19)$ fish retained. A total catch of 312 ($\mathrm{SE}=41$) and harvest of 37 ($\mathrm{SE}=10$) chum salmon were estimated during the entire study. Overall, 727 ($S E=144$) rainbow trout were estimated to have been caught, with an 11% retention rate. Anglers caught an estimated 272 Arctic grayling and 117 northern pike during the study; and retention rates for both species were 4% and 6% respectively (Table 10). The study was primarily designed to investigate the sport fishery for chinook salmon, and may not have included some of the more favorable periods for taking other species such as rainbow trout or northern pike; hence the estimates for species other than chinook salmon must be considered incomplete.

Size, Sex, and Age Compositions

Sublocation 001:
Over 76% of the 513 chinook salmon sampled from the sport harvest were males (Table 11). The harvest sample was composed of nearly equal percentages of age-1.2 (31.5\%), age-1.3 (35.1\%), and age-1.4 (26.6\%) fish (Table 11). The mean length of chinook salmon taken in 001 was 742 mm ($\mathrm{SE}=6.34 \mathrm{n}=512$) and a mean weight of 7.68 kg ($\mathrm{SE}=0.19, \mathrm{n}=416$). The largest chinook salmon sampled was $1,040 \mathrm{~mm}$ (41 inches) long and weighed 20.3 kg (45 lbs).

Sublocation 002:
Ninety-nine fish were sampled from the sport harvest of chinook salmon in sublocation 002. Male fish comprised 84% of the sample (Table 12). Nearly $38 \% ~(S E=5.19)$ of the samples were age-1.2 fish, $29.5 \% ~(S E=4.89)$ were age1.3 fish, and 23.9% (SE= 4.57) of the fish were age 1.4 (Table 12). The largest chinook salmon sampled was $1,005 \mathrm{~mm}$ (40 inches) long and weighed 19 kg (42 lbs).

DISCUSSION

The 1990 Nushagak River escapement of 63,955 chinook salmon (fish past the ADFG Commercial Fisheries sonar facility at Portage Creek) was below the

Table 7. Sublocation 002 estimate of effort (angler-hours), by stratum for the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Stratum ${ }^{\text {a }}$	$\begin{aligned} & \text { Days } \\ & \text { Sampled } \end{aligned}$	Estimated AnglerHours	SE	95\% Confidence Interval			Relative Precision ${ }^{\text {b }}$
				Lower		Upper	
Nonpeak	4	546	502	0	-	1,530	180\%
Peak	7	2,240	660	945	-	3,534	58\%
Total	11	2,786	830	1,160	-	4,412	58\%

a Nonpeak stratum; period A (0600-0859) and period E (1800-2059). Peak stratum; period B (0900-1159) and period C (1200-1449) and period D (1500-1759).
b Relative Precision $=((1.96 *$ SE $) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

Table 8. Sublocation 002 estimates of catch and harvest by species and stratum for the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Stratumb	Catch ${ }^{\text {a }}$						Harvest						
	Estimated Number	SE	95\% Confidence Interval			RP ${ }^{\text {c }}$	Estimated Number	SE	95\% Confidence Interval			RP ${ }^{\text {c }}$	Percent of Catch Harvested
			Lower		Upper				Lower		Upper		
Chinook Salmon													
N	933	859	0		2,617	181\%	148	139	0	-	419	184\%	16\%
P	2,330	1,033	305		4,356	87\%	594	202	197	-	991	67\%	25\%
Total	3,263	1,344	629	-	5,897	81\%	741	245	261	-	1,222	65\%	23\%

Sockeye Salmon

\mathbf{N}	0	0	0	-	0	0	0	0	-	0	0	0
\mathbf{P}	45	31	0	-	106	139%	24	15	0	-	54	125%
Total	45	31	0	-	106	139%	24	15	0	-	54	125%

Chum Salmon

\mathbf{N}	0	0	0	-	0		0	0	0	-	0	0
\mathbf{P}	15	9	0	-	33	121%	0	0	0	-	0	0%
Total	15	9	0	-	33	121%	0	0	0	-	0	0%

Rainbow Trout

\mathbf{N}	28	28	0	-	83	196%	0	0	0	-	0	0
\mathbf{P}	389	133	129	-	649	67%	32	18	0	-	67	109%

Arctic Grayling

\mathbf{N}	0	0	0	-	0		0	0	0	-	0	0
\mathbf{P}	144	74	0	-	289	100%	0	0	0	-	0	0%
Total	144	74	0	-	289	100%	0	0	0	-	0	0%

Northern Pike

N	0	0	0	-	0		0	0	0	-	0	
P	23	23	0	-	69	0\%	0	0	0	-	0	0\%
Total	23	23	0	-	69	192.13\%	0	0.00	0	-	0	0\%

a Catch $=$ total fish kept + total fish released.
b $N=$ Nonpeak stratum; period $A(0600-0859)$ and period $E(1800-2059)$. P = Peak stratum; period B ($0900-1159$) and period C (1200-1449) and period $D(1500-1759)$.
c Relative Precision $=((1.96 *$ SE $) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

Table 9. Combined estimates of effort (angler-hours) for sublocation 001 and 002 of the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Sublocation	Survey Type	Days Sampled	stimated AngerHours	SE	95\% Confidence Interval			Relative Precision ${ }^{\text {a }}$
					Lower		Upper	
001	Direct	12	5,558	662	4,260	-	6,857	23\%
002	Roving	11	2,786	830	1,160	-	4,412	58\%
Combined Estimates								
		23	8,344	1,062	6,263	-	10,425	25\%

a Relative precision $=((1.96 *$ SE $) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

Table 10. Combined estimates of catch and harvest by species for sublocations 001 and 002 of the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Catch ${ }^{\text {a }}$						Harvest					
95\% Confidence						95\% Conf idence Interval Percent					
tion ${ }^{\text {b }}$	Number	SE	Lower	Upper	RP^{C}	Number	SE	Lower	Upper	$\mathrm{RP}^{\mathrm{C}} \mathrm{H}$	rvested
Chinook Salmon											
001	2,806	441	1,942 -	3,669	31\%	667	105	461 -	- 874	31\%	248
002	3,263 1	1,344	629 -	5,897	81\%	741	245	261 -	1,222	65\%	23\%
Total	6,069 1	1,414	3,297 -	8,841	46\%	1,409	267	885 -	1,932	37\%	23\%
Sockeye Salmon											
$\begin{aligned} & 001 \\ & 002 \end{aligned}$	65	$\begin{aligned} & 19 \\ & 31 \end{aligned}$	$28-$	$\begin{aligned} & 102 \\ & 106 \end{aligned}$	57% 139%	30 24	12 15	$6-$ $0-$	$\begin{array}{r}54 \\ -\quad 54 \\ \hline\end{array}$	79% 125%	47% 54%
Total	110	37		181	66\%	54	19	16 -	92	70\%	49\%
Chum Salmon											
001	297	40	218 -	- 375	26\%	37	10	18 -	- 56	52\%	12\%
002	15	9	0 -	33	12\%	0	0	0 -	0		0%
Total	312	41	231 -	392	26\%	37	10	18 -	56	52\%	12\%
Rainbow Trout											
001	310	48	216 -	- 404	30\%	46	11	$25-$	- 66	45\%	15\%
002	417	136	151 -	-683	64\%	32	18	0 -	- 67	109\%	8\%
Total	727	144	445 -	1,009	39\%	77	21	37 -	118	52\%	11\%
Arctic Grayling											
$\begin{aligned} & 001 \\ & 002 \end{aligned}$	$\begin{aligned} & 128 \\ & 144 \end{aligned}$	$\begin{aligned} & 32 \\ & 74 \end{aligned}$	64 -	$\begin{aligned} & 191 \\ & -\quad 289 \end{aligned}$	$\begin{array}{r} 50 \% \\ 100 \% \end{array}$	11	5 0	$0-$	- 22	99\%	8\%
Total	272	81	114 -	430	58\%	11	5	0 -	- 22	99\%	4\%
Northern Pike											
$\begin{aligned} & 001 \\ & 002 \end{aligned}$	$\begin{aligned} & 93 \\ & 23 \end{aligned}$	$\begin{aligned} & 51 \\ & 23 \end{aligned}$	$0-$ $0-$	$\begin{array}{r} 193 \\ -\quad 69 \end{array}$	$\begin{aligned} & 107 \% \\ & 192 \% \end{aligned}$	7 0	5 0	$0-$	- 16	143\%	7% 0%
Total	117	56	7	226	94\%	7	5	$3 \cdots$	16	144\%	6\%

a Catch $=$ total fish kept + total fish released.
b Sublocation 001 = direct expansion survey; 002 = roving survey
c Relative precision $=((1.96 *$ SE $) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

Table 11. Mean lengths (millimeters) and weights (kilograms) of chinook salmon, by sex and age group, from samples collected from the sport fishery at sublocation 001 of the middle Mulchatna River, 30 June to 25 July 1990.

	Age Group						TOTAL
	UNKNOWN	1.1	1.2	1.3	1.4	1.5	
UNKNOWN SEX							
n (Known Age)				1	2		3
Percent				0.2	0.4		0.6
SE				0.2	0.2		0.3
Mean Length					815		815
SE					50		50
Sample Size				0	2		2
Mean Weight					8.7		8.7
SE					1.8		1.8
Sample Size				0	2		2
FEMALES							
n (Known Age)			1	25	72	14	112
Percent			0.2	5.2	14.9	2.9	23.2
SE			0.2	1.0	1.6	0.8	1.9
Mean Length	841		625	816	873	900	860
SE	9.6			11.0	5.5	14.2	5.4
Sample Size	7		1	25	72	14	119
Mean Weight	9.9		3.8	8.6	10.7	12.6	10.4
SE	39.1			0.2	0.2	0.9	0.2
Sample Size	6		1	21	58	12	98
MALES							
n (Known Age)		11	151	143	54	8	367
Percent		2.3	31.3	29.7	11.2	1.7	76.1
SE		0.7	2.1	2.1	1.4	0.6	1.9
Mean Length	746	429	600	744	896	962	705
SE	22.7	25.0	6.5	7.0	11.0	15.2	7.2
Sample Size	24	11	151	143	54	8	391
Mean Weight	7.4	1.5	4.1	7.3	12.2	15.0	6.8
SE	0.7	0.3	0.2	0.2	0.5	0.8	0.2
Sample Size	18	8	119	118	46	7	316

[^5]Table 11. (Page 2 of 2).

	Age Group						
	UNKNOWN	1.1	1.2	1.3	1.4	1.5	TOTAL
ALL SAMPLES							
n (Known Age)		11	152	169	128	22	482
Percent		2.3	31.5	35.1	26.6	4.6	100.0
SE		0.7	2.1	2.2	2.0	0.9	
Mean Length	768	429	600	755	881	923	742
SE	19.0	24.9	6.4	6.4	5.7	12.2	6.3
Sample Size	31	11	152	168	128	22	512
Mean Weight	8.0	1.4	4.0	7.5	11.3	13.5	7.6
SE	0.5	0.3	0.1	0.2	0.2	0.6	0.1
Sample Size	24	8	120	139	106	19	416

Table 12. Mean lengths (millimeters) and weights (kilograms) of chinook salmon, by sex and age group, from samples collected from the sport fishery at sublocation 002 of the middle Mulchatna River, 30 June to 25 July 1990.

	Age Group						TOTAL
	UNKNOWN	1.1	1.2	1.3	1.4	1.5	
FEMALES							
n (Known Age)				2	12		14
Percent				2.3	13.6		15.9
SE				1.6	3.6		3.9
Mean Length				847	854		853
SE				47.5	16.1		14.6
Sample Size				2	12		14
Mean Weight				10.1	9.6		9.7
SE				2.1	0.5		0.5
Sample Size				2	7		9
MALES							
n (Known Age)		7	33	24	9	1	74
Percent		8.0	37.5	27.3	10.2	1.1	84.1
SE		2.9	5.1	4.7	3.2	1.1	3.9
Mean Length	630	386	598	728	900	1005	658
SE	22.3	27.5	12.7	14.1	18.6		15.9
Sample Size	11	7	33	24	9	1	85
Mean Weight	4.2	1.1	3.5	6.7	12.4	19.0	5.4
SE	0.4	0.1	0.2	0.3	1.0		0.4
Sample Size	11	7	29	21	8	1	77
ALL SAMPLES							
n (Known Age)		7	33	26	21	1	88
Percent		8.0	37.5	29.5	23.9	1.1	100.0
SE		2.9	5.1	4.8	4.5	1.1	
Mean Length	630	386	598	737	874	1005	686
SE	22.3	27.5	12.7	14.7	12.9		15.3
Sample Size	11	7	33	26	21	1	99
Mean Weight	4.2	1.1	3.5	7.0	11.1	19.0	5.8
SE	0.4	0.1	0.2	0.4	0.7		0.4
Sample Size	11	7	29	23	15	1	86

provisional escapement goal of 75,000 fish. Further, the escapement was 10,000 fish less than the recent 7 -year average of 74,700 fish (ADFG 1990b). The commercial harvest ${ }^{6}$ in 1990 was 14,092 chinook salmon, and the 1990 preliminary subsistence harvest is estimated to be 11,277 chinook salmon for the whole Nushagak Bay drainage (ADFG 1990b).

The 1990 middle Mulchatna River sport harvest estimate of 1,409 chinook salmon represents a portion of the sport take in the Nushagak Bay drainage. It is not clear whether the estimate indicates a significant change in the sport fishery. However, in light of the declining trend of recent escapements, and the apparent general growth of sport and subsistence fisheries in the area, frequent monitoring of the middle Mulchatna River sport fishery may be prudent.

A point to consider in future surveys of the area: the 1990 survey crew occasionally observed anglers fishing around the clock. The assumption that little effort occurs between the hours of 2100 of one day and 0600 of the next may not be as valid for the middle Mulchatna as it appears to be for other fisheries. All-night fishing was observed in sublocation 001 and the sampling crew was still able to collect total effort, catch, and harvest data from the angler(s).

ACKNOWLEDGEMENTS

Crew leader Jim Magee (ADFG Fisheries Technician II) deserves credit for managing the camp and collecting the data used in this report. We also wish to thank volunteers Beth Sullivan and Nick Wolf for their assistance with data collection. Keith Webster and Sandy Sonnichsen of the ADFG regional biometric staff were helpful with the data analysis. Finally, thanks to the anonymous outboard mechanic who sacrificed nearly a day of his fishing vacation to fix a reluctant ADFG outboard.

LITERATURE CITED

ADFG (Alaska Department of Fish and Game). 1988. 1988 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau.
\qquad . 1990a. Commercial fisheries annual management report, 1989. Alaska Department of Fish and Game, Commercial Fisheries Division, Juneau.
. 1990b. Preliminary 1990 Bristol Bay season summary. Alaska Department of Fish and Game, Commercial Fisheries Division, Dillingham, Alaska.

- 1990c. 1990 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau.

[^6]
LITERATURE CITED (Continued)

Clutter, R. I. and L. E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bulletin IX of the International Pacific Salmon Fisheries Commission, New Westminster, British Columbia, Canada.

Cochran, W. G. 1977. Sampling techniques, third edition. John Wiley and Sons, New York.

DiCostanzo, C. J. 1956. Creel census techniques and harvest of fishes in Clear Lake, Iowa. Ph. D. dissertation, Iowa State College, Ames, Iowa.

Dunaway, D. O. 1990. Creel and escapement statistics for the Naknek River, Alaska, during 1989. Alaska Department of Fish and Game, Fishery Data Series No. 90-27, Anchorage.

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, CBMS-NSF Monograph 38, Philadelphia, Pennsylvania.

Kish, L. 1965. Survey sampling. John Wiley and Sons, New York.
Lipchak, R. Unpublished. Middle Mulchatna River creel and public use surveys, 1986. Alaska Department of Fish and Game, Division of Sport Fish files, Dillingham, Alaska. Information from this study may be available from the Bristol Bay Coastal Resource Service Area office in Dillingham, Alaska.

Mills, M. J. 1979. Alaska statewide sport fish harvest studies. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1978-1979, Project F-9-11, 20 (SW-I-A), Juneau.

- 1980. Alaska statewide sport fish harvest studies. Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1979-1980, Project F-9-12, 21 (SW-I-A), Juneau.
\qquad . 1981a. Alaska statewide sport fish harvest studies (1979). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1980-1981, Project F-9-13, 22 (SW-I-A), Juneau.
. 1981b. Alaska statewide sport fish harvest studies (1980). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1980-1981, Project F-9-13, 22 (SW-I-A), Juneau.
. 1982. Alaska statewide sport fish harvest studies (1981). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1981-1982, Project F-9-14, 23 (SW-I-A), Juneau.
. 1983. Alaska statewide sport fish harvest studies (1982). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1982-1983, Project F-9-15, 24 (SW-I-A), Juneau.
\qquad . 1984. Alaska statewide sport fish harvest studies (1983). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1983-1984, Project F-9-16, 25 (SW-I-A), Juneau.
. 1985. Alaska statewide sport fish harvest studies (1984). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1984-1985, Project F-9-17, 26 (SW-I-A), Juneau.
\qquad . 1986. Alaska statewide sport fish harvest studies (1985). Alaska Department of Fish and Game, Federal Aid in Fish Restoration, Annual Report of Progress, 1985-1986, Project F-9-18, 27 (RT-2), Juneau.
. 1987. Alaska statewide sport fisheries harvest report (1986). Alaska Department of Fish and Game, Fishery Data Series Report No. 2, Juneau.
. 1988. Alaska statewide sport fisheries harvest report (1987). Alaska Department of Fish and Game, Fishery Data Series Report No. 52, Juneau.
\qquad . 1989. Alaska statewide sport fisheries harvest report (1988). Alaska Department of Fish and Game, Fishery Data Series Report No. 122, Juneau.
_ 1990. Harvest and participation in Alaska sport fisheries during 1989. Alaska Department of Fish and Game, Division of Sport Fish, Fishery Data Series No. 90-44, Anchorage.

Minard, R. E. 1990. Bristol Bay and Lower Kuskokwim management area, report to the Board of Fisheries. February 1990. Alaska Department of Fish and Game, Division of Sport Fish.

Neuhold, J. M. and K. H. Lu. 1957. Creel census method. Utah State Department of Fish and Game Publication 8, Salt Lake City, Utah.

Smith, S. J. 1980. Comparison of two methods of estimating the variance of the estimate of catch per unit effort. Canadian Journal of Fisheries and Aquatic Sciences 37:2346-2351.

Sokal, R. R. and F. J. Rohlf. 1989. Biometry, second edition. W. H. Freeman and Company, New York.

APPENDIX A

Appendix A. Sublocation 001, direct expansion survey, completed trip angler interview data from the sport fishery on the middle Mulchatna River, 30 June to 25 July 1990.

Date	$\begin{aligned} & \text { We } \\ & \text { Wd } d^{\text {a }} \end{aligned}$	Data Form		Angler and Equipment Characteristics ${ }^{b}$		Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line	Fished	UFYNNMT Type		$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathrm{e}}$	H^{c}	$C^{\text {d }} \mathrm{T}^{\mathrm{e}}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathrm{e}}$	H^{C}	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$
900630	1	0001112901	5.42	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112902	5.42	UMANNS 1 raft	3	0	0	0	0	0	0	0	0	0	0	0	0
900630	1	0001112903	5.42	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112904	5.42	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112905	5.42	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112906	5.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	1 Y
900630	1	0001112907	5.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	5 Y
900630	1	0001112908	5.50	UMANNSitraft	3	0	0 Y	0	0	0	0	0	0	0	0	0	$2 Y$
900630	1	0001112909	5.50	U M ANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	$4 Y$
900630	1	0001112910	5.50	UMANNSitraft	3	0	0 Y	0	0	0	0	0	0	0	0	0	$2 \boldsymbol{Y}$
900630	1	0001113101	6.50	UMANNS 1 raft	3	0	$2 Y$	0	1	0	0	0	0	0	0	0	0
900630	1	0001113102	6.50	UMANNS 1 raft	3	0	0 Y	0	0	0	1	0	0	0	0	0	0
900630	1	0001113103	6.50	UMANNS 1 raft	3	0	3 Y	0	0	0	0	0	0	0	2	0	0
900630	1	0001113104	4.50	UMANNS 1 raft	3	1	2 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113105	4.50	UMANNS 1 raft	3	0	0	0	0	0	0	0	0	0	0	0	7 Y
900630	1	0001113106	4.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	7 Y
900630	1	0001113107	4.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	
900630	1	0001113108	9.50	UMANNS 1 raft	3	0	0 Y	0	0	0	1	0	0	0	0	0	0
900630	1	0001113109	4.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113110	4.50	UMANNS 1 raft		0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113111	4.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113001	4.50	UMANNS 1 raft	3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113002	4.50	UMANNS 1 raft	3	0	0 Y	0	0		0	0	0	0	0	0	0
900630	1	0001113003	110.50	UFANNS 1 raft	3	0	0 Y	0	0		1	0	0	0	0	0	0

-Continued-

Appendix A. (Page 2 of 20).

Date ${ }^{\mathrm{We}} \mathrm{Wd}^{\text {a }}$		Data Form		Angler and Equipment Characteristics ${ }^{b}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number I ine	Hours Fished	G M A R L S G Boat H UFYNNMT Type P	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$
900630	1	0001113004	4.50	UMANNS 1 raft 3	2	2 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113005	4.50	UMANNS 1 raft 3	1	1 Y	0	0	1	1	0	0	0	0	0	0
900630	1	0001113006	4.50	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113007	4.50	UMANNS 1 raft	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113008	6.00	UMANNS 1 raft 3	0	$2 Y$	0	0	0	1	0	0	0	0	0	0
900630	1	0001113009	5.00	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113010	5.50	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001113011	4.00	UMANNS 1 raft 3	0	3 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112801	4.00	UMANNS 1 raft 3	0	$2 Y$	0	0	0	1	0	0	0	1	0	0
900630	1	0001112803	4.00	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	2	0	0	0	0
900630	1	0001112804	1.00	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112805	1.50	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112806	1.50	UMANNS 1 raft 3	0	0 Y	0	0	0	0	0	0	0	0	0	0
900630	1	0001112807	6.00	UMANNS 1 raft 3	0	0 Y	0	1	0	1	0	0	0	0	0	0
900703	2	0001913101	3.50	UMANNS 1 raft 3	0	2 Y	0	0	0	0	0	1	0	0	0	0
900703	2	0001913102	3.50	UFANNS 1 raft 3	2	2 Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913103	3.50	UMANNS 1 raft 3	3	3 Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913104	6.00	UMANNS 1 raft 3	1	5 Y	0	0	0	1	0	0	0	0	0	0
900703	2	0001913106	6.00	UMANNS1 raft 3	0	15 Y	0	0	0	0	0	1	0	0	0	0
900703	2	0001913107	6.00	UMANNS 1 raft 3	1	27 Y	0	0	0	1	0	0	0	0	0	0
900703	2	0001913109	4.50	UMANNSI raft 3	2	4 Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913110	4.50	UMANNS 1 raft	0	6 Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913111	3.00	UMANNS 5 raft 3	0	10 Y	0	0	0	2	0	0	0	0	0	0
900703	2	0001913201	3.00	UMANNS 1 raft 3	0	${ }^{1} \mathrm{Y}$	0	0	0	0	0	0	0	8	0	0
900703	2	0001913203	3.00	UMANNS 1 raft 3	0	3 Y	0	0	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 3 of 20).

Date	We$W d^{\mathbf{a}}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon			Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number Line	Fished	UFYNNMT Type \mathbf{P}	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }}$		H^{C}	$\mathrm{C}^{\mathbf{d}} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$
900703	2	0001913204	4.50	UMANNS 1 raft 3	1	3	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913205	111.50	UMANNS 1 raft 3	1	6	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913206	2.75	UMANNS1 raft 3	1	1	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913207	8.00	UMANNS1 raft 3	1	3	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913208	111.50	UMANNS 1 raft 3	1	6	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913209	3.00	UMANNS 1 raft 3	0	1	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913210	3.00	UMANNS 1 raft 3	0	0	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913211	3.00	UMANNS 1 raft 3	0	0	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913301	6.00	UMANNS 1 raft 3	1	2	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913302	6.00	UMANNS 1 raft 3	0	9	\boldsymbol{Y}	0	0	0	0	0	0	0	0	0	0
900703	2	0001913303	6.00	UMANNS 1 raft 3	0	4	\mathbf{Y}	0	0	0	0	0	0	0	0	0	0
900703	2	0001913304	7.00	GMANNS 1	2	2	Y	0	0	1	1	0	0	0	0	0	0
900703	2	0001913306	7.00	GMANNS 1	3	4	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913307	7.00	GMANNS1	3	3	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001913308	7.50	GMANNS1	1	5	Y	0	0	0	0	0	1	0	0	0	0
900703	2	0001913310	6.00	UMANNS 1	0	16	Y	0	0	0	0	0	3	0	3	0	0
900703	2	0001112501	5.00	UMANNS 1	1	8	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001112502	5.00	UMANNS 1	0	4	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001112503	1.00	UMANNS 1	0	0	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001112504	1.00	UMANNS 1	0	0	Y	0	0	0	0	0	0	0	0	0	0
900703	2	0001112505	6.00	UMANNS 1 raft	0	1	Y	0	0	0	0	0	5	0	1	0	0
900703	2	0001112508	6.00	UMANNS 1 raft	0	2	Y	0	0	0	1	0	0	0	1	0	0
900703	2	0001112510	1.00	UMANNS1 raft	0	0		0	0	0	0	0	0	0	0	0	0
900704	2	0003953901	0.50	UMARNS 1	1	1	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0003953902	6.42	GMANNS 1	2	3	Y	0	0	0	0	0	0	0	0	0	0

Appendix A. (Page 4 of 20).

Appendix A. (Page 5 of 20).

Date	We $W^{2}{ }^{\text {a }}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$ \qquad GMARLSGBoat H UFYNNMTType P	Chinook Salmon			Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line			$\mathrm{H}^{\text {c }}$			$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$c^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$c^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }}{ }^{\text {e }}$
900704	2	0001913501	7.00	UMANNS 1 raft 3	1	5	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913502	7.00	UMANNS 1 raft 3	0	2	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913503	7.00	UMANNS 1 raft 3	0	9	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913504	110.00	UMANNS 1	0	20	Y	0	0	0	4	1	7	0	0	0	0
900704	2	0001913508	7.00	UMANesit	0	12	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913509	1.50	UMANNS 1	0	0	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913510	2.00	UMANNS 1	0	2	Y	0	0	0	0	0	0	0	0	0	0
900704	2	0001913511	2.00	UMANNS1	0	4	Y	0	0	0	0	0	1	0	0	0	0
900709	1	0001102201	6.50	GMANNS 1	0	1	Y	0	0	0	1	0	0	0	0	0	0
900709	1	0001102203	2.50	GMANNSI	1	1	Y	0	0	0	0	0	0	0	0	0	0
900709	1	0001102204	2.50	GMANNS1	1	1	Y	0	0	0	0	0	0	0	0	0	0
900709	1	0001102205	2.50	GMANNS1	1	1	Y	0	0	0	0	0	0	0	0	0	0
900709	1	0001102206	6.00	UMANNS 1 raft 2	0	2	Y	0	0	0	0	0	0	0	0	0	0
900709	1	0001102207	6.00	GMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0
900709	1	0001102208	6.50	GMANNS 1	2	5	Y	0	0	0	0	1	3	0	0	0	0
900709	1	0001102210	6.50	GMANNS 1	3	6	Y	0	0	0	0	0	2	0	0	0	0
900708	1	0001104001	5.00	UMANNS 1 raft 2	0	1	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104002	5.00	UMANNS 1 raft 2	0	3	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104003	5.00	UMANNS 1 raft 2	3	7	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104004	3.00	UMANNS 5 raft 2	0	1	Y	0	0	0	2	0	0	0	0	0	0
900708	1	0001104006	1.50	UMANNS 1 raft 2	0	2	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104007	1.50	UMANNS 1 raft 2	1	3	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104008	2.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104009	4.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001104010	4.00	UMANNS1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 6 of 20).

Date	We $W^{a}{ }^{a}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line	Hours Fished	GMARLS G Boat H U F Y N N M T Type P	H^{C}	$\mathrm{C}^{\mathrm{d}} \mathrm{~T}^{\mathrm{e}}$		$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\mathbf{C}}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathbf{d}} \mathrm{T}^{\mathbf{e}}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$
900708	1	0001104011	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103901	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103902	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	1	1	0	0	0	0
900708	1	0001103903	6.50	GMANNS 1	2	$4 Y$	0	0	0	0	0	3	0	0	0	0
900708	1	0001103905	6.50	GMANNS 1	0	1 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103907	6.50	GMANNS 1	0	6 Y	0	0	0	0	0	3	0	1	0	0
900708	1	0001103909	6.50	GMANNS 1	0	1 Y	0	0	0	0	0	1	0	0	0	0
900708	1	0001103911	2.00	UMANNS 1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103801	6.00	GMANNS 1	0	$6 Y$	0	0	0	0	0	4	0	0	0	0
900708	1	0001103803	5.50	UMANNS 1	3	7 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103804	5.00	UMANNS 1	0	3 Y	0	0	0	0	1	1	0	1	0	0
900708	1	0001103806	2.00	UMANNS 1	0	$6 Y$	0	0	0	1	0	0	0	0	0	0
900708	1	0001103808	4.00	UMANNSI	1	5 Y	0	0	0	0	0	4	0	0	0	0
900708	1	0001103810	5.00	GMANNS1	3	3 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103811	5.00	GMANNS 1	3	7 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103701	5.00	GFANNS 1	3	4 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103703	5.00	GMANNS 1	1	10 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103704	5.00	GMANNS 1	3	4 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001103705	5.00	GMANNS 1	3	3 Y	0	0	0	1	0	0	0	0	0	0
900708	1	0001103706	5.00	GMYNNS 1	2	$2 Y$	0	0	0	0	0	0	0	0	0	0
900708	1	0001103707	5.00	GMANNS 1	3	$6 Y$	0	0	1	1	1	1	0	0	0	0
900708	1	0001103709	4.00	UMANNS 1 raft 2	0	7 Y	0	0	0	0	0	1	0	0	0	0
900708	1	0001103711	4.00	UMANNS 1 raft 2	1	9 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112201	4.00	UMANNS1 raft 2	2	$3 Y$	0	0	0	1	0	0	0	0	0	0
900708	1	0001112203	4.00	UMANNS 1 raft 2	1	4 Y	0	0		0	0	0	0	0	0	0

Appendix A. (Page 7 of 20).

Date	He$w_{d}{ }^{\mathbf{a}}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line		UFYNNMTTyPe P	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$
900708	1	0001112204	4.00	UMANNS 1 raft 2	0	2 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112205	4.00	UMANNST	0	10 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112206	4.00	UMANNS 1 raft 2	2	10 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112207	4.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112208	4.00	UFANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112209	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112210	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001112211	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001913001	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001913002	1.50	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001913003	1.50	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001913004	1.50	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001913005	1.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001102301	2.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	1	1	0	0	0	0
900708	1	0001102302	2.00	UMANNS 1 raft 2	0	0 Y	0	0	0	1	0	0	0	0	0	0
900708	1	0001102303	2.00	UMANNS 1 raft 2	2	2 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001102304	2.00	UMANNS 1 raft 2	2	2 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001102305	1.00	UMARNS 1 jet 3	0	0 Y	0	0	0	1	0	0	0	0	0	0
900708	1	0001102306	6.50	GMANNS 1 jet 3	0	2 Y	0	0	0	0	0	3	0	0	0	0
900708	1	0001102308	6.50	GMANNS1 jet 3	0	2 Y	0	0	0	0	0	1	0	0	0	0
900708	1	0001102310	6.50	GMannsi	0	0 Y	0	0	0	0	0	0	0	0	0	0
900708	1	0001102311	2.50	GMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102101	6.50	gmannsi	3	5 Y	0	0	0	0	0	1	0	0	0	0
900709	2	0001102103	0.50	UMARNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102104	6.50	UMANNS 1 raft 2	1	5 Y	0	0	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 8 of 20).

	Date	$\begin{aligned} & \text { We } \\ & \mathbf{W d}^{\mathbf{a}} \end{aligned}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
			Number Line	Hours Fished	G M A R L S G Boat H UFYNNMT Type P		$\overline{c \quad C^{d} T^{e}}$		$\mathrm{C}^{\mathrm{d}} \mathrm{~T}^{\mathrm{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$
	900709	2	0001102105	5.00	UMANNS 1 raft 2	2	4 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102106	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	3	0	0	0	0	0	0
	900709	2	0001102107	4.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102108	3.00	UMANNS 1 raft 2	0	0 Y	0	0	0	3	0	0	0	0	0	0
	900709	2	0001102109	3.00	UMANNS1	0	0 Y	1	1	0	1	0	0	0	0	0	0
	900709	2	0001102111	111.00	UMANNS 1 raft 2	1	$6 Y$	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102801	111.00	UMANNS 1 raft 2	1	5 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102802	111.00	UMANNS 1 raft 2	2	$5 Y$	0	0	0	0	0	1	0	0	0	0
1	900709	2	0001102804	1.50	UMANNS 1 raft 2	1	1 Y	0	0	0	1	0	0	0	0	0	0
$\stackrel{f}{\oplus}$	900709	2	0001102805	3.00	UFANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
1	900709	2	0001102806	8.00	UFANNS 1 raft 2	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102807	8.00	UMANNS 1 raft 2	1	7 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102808	8.00	UMANNS 1 raft 2	0	5 Y	0	0	0	1	0	0	0	0	0	0
	900709	2	0001102810	8.00	UMANNS 1 raft 2	0	14 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102811	1.00	UMANNS 1	0	0 Y	0	0	0	1	0	0	0	0	0	0
	900709	2	0001102701	5.00	GMANNS1	0	0 Y	0	0	3	3	0	0	0	0	0	0
	900709	2	0001102702	7.00	GMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102703	7.00	GMANNS1	1	1 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102704	7.00	GMANNSI	1	1 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102705	7.00	GMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102706	4.00	UMANNS 1 raft	2	$5 Y$	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102707	4.00	UMANNS 1 raft	1	1 Y	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102708	4.00	UMANNS 1 raft	1	$2 Y$	0	0	0	0	0	0	0	0	0	0
	900709	2	0001102709	4.50	UFANNS 1	0	0 Y	0	0	0	1	0	0	0	0	0	0
	900709	2	0001102710	4.50	UMANNS 1	0	0 Y		0	0	0	0	0	0	0	0	0

Appendix A. (Page 9 of 20).

	Wd ${ }^{\text {a }}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
Date		Number Line	Fished	UFYNNMT Type \mathbf{P}	$\overline{H^{c}}$	$\mathrm{c}^{\text {d }} \mathrm{r}^{\text {e }}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$
900709	2	0001102711	2.00	UMANNS 1 raft2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102601	2.00	UMANNS 1 raft2	0	$0 \quad \mathbf{Y}$	0	0	0	0	0	0	0	0	0	0
900709	2	0001102602	2.00	UMANNS 1 raft2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102603	2.00	UMANNS 1 raft2	0	1 Y	0	0	0	1	0	0	0	0	0	0
900709	2	0001102605	2.00	UMANNS 1 raft2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102606	2.00	UMANNS 1 raft2	0	0 Y	0	0	0	1 Y	0	0	0	0	0	0
900709	2	0001102607	2.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102608	2.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102609	2.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900709	2	0001102610	2.00	UMANNS1 raft2	0	$0 \quad Y$	0	0	0	0	0	0	0	0	0	0
900711	2	0001104401	3.00	UMANNS1 raft2	0	3 Y	0	0	0	0	0	1	0	0	0	0
900711	2	0001104403	3.00	UMANNS 1 raft2	0	3 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104404	3.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104405	3.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104406	3.00	UMANNS 1 raft2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104407	1.50	UMANNS 5 raft	0	0 Y	0	0	0	6	0	0	0	0	0	0
900711	2	0001104408	1.50	UMANNS 5 raft	0	0 Y	0	0	0	1	0	0	0	0	0	0
900711	2	0001104409	1.50	UMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104410	1.50	UMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104411	0.33	UMANNS 1	0	0 Y	0	0	0	1	0	0	0	0	0	0
900711	2	0001104301	0.33	UMANNS 1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104302	0.33	UMANNS1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104303	110.00	UMANNS 1 raft 2	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900711	2	0001104304	110.00	UMANNS 1 raft 2	0	7 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104305	110.00	UMANNS 1 raft 2	1	2 Y	0	0	0	0		0	0	0	0	0

-Continued-

Appendix A. (Page 10 of 20).

Appendix A. (Page 11 of 20).

Date	We $W_{d}{ }^{\mathbf{a}}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line		UFYNNMTTyPE P	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$
900711	2	0001104708	111.00	UMANNS 1 raft 2	0	0 Y	0	0	1	1	0	0	0	0	0	0
900711	2	0001104709	111.00	UMANNS1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900711	2	0001104710	7.00	UMANNS1 raft 2	1	2 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104601	4.00	GMANNS 1	0	2 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104602	7.00	gmanns 1	1	3 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104603	7.00	GMANNS 1	0	5 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104604	7.00	GMANNS 1	0	2 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104605	7.00	GMANNS 1	1	2 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104606	4.50	GMANNS 1	0	1 Y	0	0	0	1	0	0	0	0	0	0
900712	2	0001104608	7.00	gmannsi	1	2 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104609	7.00	GMANNS 1	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104610	7.00	GMANNSI	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104611	3.00	Ufannsi	0	0 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104501	3.00	UMANNSI	0	1 Y	0	0	0	1	0	0	0	0	0	0
900712	2	0001104503	7.00	GMANNS 1	0	$4 Y$	0	0	0	0	0	1	0	0	0	0
900712	2	0001104505	7.00	GMANNS 1	0	8 Y	0	0	0	0	1	1	0	0	0	0
900712	2	0001104506	7.00	GMANNS1	0	3 Y	0	0	0	0	0	1	0	0	0	0
900712	2	0001104508	7.00	GMANNS1	1	$4 Y$	0	0	0	0	0	1	0	0	0	0
900712	2	0001104510	6.00	GMANNS1	3	5 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001104511	6.00	GMANNS 1	3	3 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001103601	6.00	GMANNS 1	3	3 Y	0	0	0	1	0	0	0	0	0	0
900712	2	0001103602	9.00	UMANNS 1 raft 2	2	6 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001103603	9.00	UMANNS 1 raft 2	2	$4 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001103604	9.00	UMANNS 1 raft 2	3	7 Y	0	0		0	0	0	0	0	0	0
900712	2	0001103605	9.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 12 of 20).

Date	We$w d^{a}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number Line	Fished	UFYNNMTType P		$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathrm{e}}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$
900712	2	0001103606	9.00	UMANNS 1 raft 2	2	4 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001103607	9.00	UMANNS 1 raft 2	2	4 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001103608	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	5	0	0	0	0	0	0
900712	2	0001103610	5.00	UMANNS 1 raft 2	0	3 Y	0	0	0	6	0	0	0	0	0	0
900712	2	0001105701	2.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105702	2.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105703	2.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105704	2.00	UMANNS 1 raft 2	1	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105705	2.00	UMANNS 1 raft 2	1	$1 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105706	2.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105707	2.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105708	2.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105709	2.00	UMANNS 1 raft 2	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105710	2.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105711	2.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105601	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105602	5.00	UMANNS 1 raft 2	0	3 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105603	5.00	UMANNS 1 raft 2	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105604	5.00	UMANNS 1 raft 2	0	$3 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105605	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105606	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105607	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105608	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105609	5.00	UMANNS 1 raft 2	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105610	5.00	UMANNS 1 raft 2	0	$0 \mathbf{Y}$	0	1	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 13 of 20).

	We$W d^{\text {a }}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
Date		Number Line	Hours Fished	GMARLSGBoat H UFYNNMT Type \mathbf{P}		$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$		$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$	H^{C}	$\mathrm{C}^{\mathbf{d}} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {C }}$	$\mathrm{C}^{\mathbf{d}} \mathrm{T}^{\mathbf{e}}$
900712	2	0001105611	4.00	UMANNS 1 raft 2	2	6 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105501	5.00	UMANNS 1 raft 2	0	3 Y	0	0	0	1	0	0	0	0	0	0
900712	2	0001105503	5.00	UMANNS 1 raft 2	0	7 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105504	4.00	UMANNS 1 raft 2	0	4 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105505	7.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105506	7.00	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105507	7.00	UMANNS 1	1	9 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105508	2.50	UMANNS1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105509	2.00	UMANNS 1	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105510	1.00	UMANNS1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105511	110.00	UMANNS1	0	7 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105401	110.00	UMANNS 1	0	$3 Y$	0	0	1	1	0	0	0	0	0	0
900712	2	0001105402	110.00	UMANNS1	2	$2 Y$	0	0	0	0	2	2	0	0	0	0
900712	2	0001105403	110.00	UMANNS1	0	$4 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105404	110.00	UMANNS 1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105405	110.00	UMANNS1	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105406	1.00	UMANNS1	0	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105407	2.00	UMANNSI	1	$6 Y$	3	3	0	0	0	0	0	0	0	0
900712	2	0001105409	0.17	UMANNS 1	0	1 Y	0	0	0	0	0	0	0	0	0	0
900712	2	0001105410	6.00	GMYRNS 1	3	3 Y	0	0	0	0	1	1	0	0	0	0
900712	2	0001105411	6.00	GMANNS1	3	$3 Y$	0	0	0	1	0	0	0	0	0	0
900712	2	0001105301	7.00	GMARNS 1	3	3 Y	1	1	0	0	0	0	0	0	0	0
900712	2	0001105302	6.00	GMANNS1	3	$4 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105303	7.00	GFARNS1	2	$2 Y$	0	0	0	0	0	0	0	0	0	0
900712	2	0001105304	7.00	GMANNS 1	3	3 Y	0	0	0	0	0	0	0	0	0	0

Appendix A. (Page 14 of 20).

-Continued-

Appendix A. (Page 15 of 20).

Date	$\begin{aligned} & \text { We } \\ & \text { Wdab } \end{aligned}$	Data Form		Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number Line	Fished	UFYNNMTType P	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$c^{\text {d }} \mathrm{T}^{\mathrm{e}}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{\mathrm{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\mathrm{d}} \mathrm{T}^{e}$
900714	1	0001106307	8.00	UMANNS 1 raft 2	0	5 Y	0	0	0	0	1	1	0	0	0	0
900714	1	0001106308	8.00	UMANNS 1 raft 2	2	$5 Y$	0	0	0	0	0	0	0	0	0	0
900714	1	0001106309	8.00	UMANNS 1 raft 2	3	$6 Y$	0	0	0	0	0	0	0	0	0	0
900714	1	0001106310	8.00	UMANNS 1 raft 2	0	0 Y	0	0	0	1	0	0	0	0	0	0
900714	1	0001106311	8.00	UMANNS 1 raft 2	0	0 Y	0	0	0	1	0	0	0	0	0	0
900714	1	0001106201	8.50	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106202	8.50	UMANNS 1 raft 2	0	5 Y	0	0	0	0	0	1	0	0	0	0
900714	1	0001106204	8.50	UMANNS 1 raft 2	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106205	8.50	UMANNS 1 raft 2	1	$2 Y$	0	0	0	0	0	0	0	0	0	0
900714	1	0001106206	5.00	UMANNS 1	0	$4 Y$	0	2	0	2	0	0	0	0	0	0
900714	1	0001106208	6.00	UMANNS 1	3	3 Y	0	1	0	0	0	0	0	0	0	0
900714	1	0001106209	4.00	UMANNS1	2	$2 Y$	0	0	0	0	0	0	0	0	0	0
900714	1	0001106210	7.00	UMANNS 1	0	$1 Y$	0	0	0	1	0	0	0	0	0	0
900714	1	0001106107	4.50	UMANNS 1 raft	0	$2 Y$	0	0	0	1	1	1	0	0	0	0
900714	1	0001106109	4.50	UMANNS 1 raft	0	0 Y	0	0	1	1	0	0	0	0	0	0
900714	1	0001106110	4.00	UMANNS 1 raft	0	$0 \quad Y$	0	0	0	0	0	0	0	0	0	0
900714	1	0001106001	5.00	UMANNS 1 raft	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106002	8.00	UMANNS 1 raft	0	1 Y	0	0	0	2	0	0	0	0	0	0
900714	1	0001106004	2.00	UMANNS 1 raft	1	1 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106005	5.00	UFANNS 1 raft	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106006	8.50	UMANNS1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106007	8.50	UMANNS 1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106008	7.50	UMANNS 1	0	0 Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001106010	5.00	UMANNS 1	0	3 Y	0	0	0	2	0	0	0	0	0	0
900714	1	0001105901	6.00	UMANNS 1	0	$2 Y$	2	2	0	0	0	0	0	0	0	0

-Continued-

Appendix A. (Page 16 of 20).

Date	We $W_{d}{ }^{\text {a }}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon			Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number Line		UFYNNMTType P	$\mathrm{H}^{\text {c }}$			$\mathrm{H}^{\text {c }}$	$C^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$c^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$
900714	1	0001105902	2.00	UMANNS 1	0	1	Y	1	1	0	0	0	0	0	0	0	0
900714	1	0001105903	2.00	UMANNS1	0	3	Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001105904	4.00	UMANNS 1	4	4	Y	0	0	0	2	0	0	0	0	0	0
900714	1	0001105905	2.00	UMANNS 1	0	0	Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001105906	1.00	UMANNSI	0	0	Y	3	3 Y	0	0	0	0	0	0	0	0
900714	1	0001105910	110.00	UMANNS1	2	5	Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001105911	2.00	UMANNSI	1	1	Y	0	0	0	0	0	0	0	0	0	0
900714	1	0001912201	112.00	UMANNS1	1	16	Y	0	0	0	0	0	1	0	0	0	0
900714	1	0001912203	110.00	UMANNS 1	0	2		0	0	0	0	0	0	0	0	0	0
900715	1	0001912001	1.00	UMANNS 1 raft	0	0	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001912002	3.00	UMANNS 1 raft	0	0	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001912003	7.00	UMANNS 1 raft	1	1	Y		0	0	0		0	0	0	0	0
900715	1	0001912004	4.00	UMANNS 1 raft	1	1	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001912005	4.00	UMANNS1 raft	0	0	Y	1	1	0	0	0	0	0	0	0	0
900715	1	0001912006	8.00	UMANNS 1 raft	0	0	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001912007	6.00	GMANNS 1	3	,	Y	0	0	0	1	0	0	0	0	0	0
900715	1	0001912009	6.00	GMANNS 1	2	2	Y	0	0	2	4	0	0	0	0	0	0
900715	1	0001912011	6.00	GMANNS1	2	2	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111801	6.00	GMANNS 1	1	1	Y	0	0	1	1	2	2	0	0	0	0
900715	1	0001111803	6.00	GMANNS1	1	1	Y	0	0	1	1	0	0	0	0	0	0
900715	1	0001111804	6.00	GMANNSI	0	0	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111805	6.00	GMANNS 1	0	0	Y	0	0	1	1	0	0	0	0	0	0
900715	1	0001111806	6.00	GFANNS 1	1	1	Y	0	0	1	1	2	2	0	0	0	0
900715	1	0001111808	3.00	UMARNS 1 raft	1	4	Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111809	3.00	UMARNS 1 raft	0	2	Y	0	0	0	0	0	0	0	0	0	0

Appendix A. (page 17 of 20).

Date	We $W d^{a}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon		Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike	
		Number Line		GMARLSGBoat H UFYNNMT Type P		$\overline{\mathrm{C}^{\mathrm{d}} \mathrm{~T}^{\mathrm{e}}}$	$\mathrm{H}^{\text {c }}$	$\overline{C^{d} T^{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$		$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$
900715	1	0001111810	3.00	UMARNS 1 raft	0	2 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111701	6.00	GMANNS1	1	9 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111702	6.00	GMANNS 1	0	$6 Y$	0	0	0	0	0	0	0	0	0	0
900715	1	0001111703	6.00	GMANNS 1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111704	6.00	GMannsi	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111705	6.00	GMANNS 1	1	$4 Y$	0	0	0	0	0	0	0	0	0	0
900715	1	0001111706	6.00	GMANNS 1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111707	6.00	GMANNS 1	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111708	6.00	GMANNS 1 jet 2	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111709	6.00	GMANNS 1 jet 2	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111710	6.00	GMANNS 1 jet 2	0	3 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111601	7.00	UMANNS 1 raft 2	2	10 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111602	5.00	UMANNS 1 raft 2	2	2 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111603	7.00	UMANNS 1 raft 2	2	7 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111604	7.00	UMANNS 1 raft 2	2	$5 Y$	0	0	0	0	0	1	0	0	0	0
900715	1	0001111606	7.00	UMANNS 1 raft 2	2	$4 Y$	0	0	0	0	0	1	0	0	0	0
900715	1	0001111608	7.00	UMANNS 1 raft 2	2	12 Y	0	0	0	0	0	1	0	0	0	0
900715	1	0001111610	7.00	UMANNS 1 raft 2	2	13 Y	0	0	0	0	0	1	0	0	0	0
900715	1	0001111501	7.00	UMANNS 1 raft 2	2	9 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111502	8.00	UMANNS 1 raft 2	1	2 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111503	8.00	UMANNS 1 raft 2	1	2 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111504	8.00	UMANNS 1 raft 2	1	2 Y	0	0	0	0	0	0	0	0	0	0
900715	1	0001111505	8.00	UMANNS 1 raft 2	1	$2 Y$	0	0	0	0	0	0	0	0	0	0
900715	1	0001111506	8.00	UMANNS 1 raft 2	1	$2 Y$	0	0	0	0	0	0	0	1	0	0
900715	1	0001111508	8.00	UMANNS 1 raft 2	3	3 Y	0	0	0	0	0	0	0	0	0	0

Appendix A. (Page 18 of 20).

[^7]Appendix A. (Page 19 of 20).

Date $\begin{gathered}\mathrm{We} \\ \mathrm{Wd}\end{gathered}$		Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon			Sockeye Salmon		Chum Salmon		Rainbow Trout		Arctic Grayling		Nor thern Pike		
		GMARLSGBoat H UFYNNMTType \mathbf{P}					$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\mathrm{d}} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\mathbf{e}}$		$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$		
900719	2		0001911701	3.00	UMANNS 1	0	1	Y	0	0	0	1	0	0	0	0	0	0
900719	2	0001911703	1.00	UMANNSI	0	2	Y	0	2	0	0	0	0	0	0	0	0	
900719	2	0001911705	2.00	UMANNS 1	0	0	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911706	3.00	UMANNS1	0	0	Y	0	3	0	0	0	1	0	0	0	0	
900719	2	0001911708	3.00	U	0	0	Y	0	0	0	0	0	1	0	0	0	0	
900719	2	0001911709	1.00	UMANNS 1	0	1	Y	0	2	0	0	0	4	0	5	0	0	
900719	2	0001911801	5.00	UMARNS 5 raft	0	0		0	0	0	0	0	0	0	10 Y	0	0	
900719	2	0001911802	5.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	6	
900719	2	0001911803	5.00	UMANNS 1 raft 2	1	1	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911804	5.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	2	
900719	2	0001911805	5.00	UMANNS 1 raft 2	2	4	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911806	5.00	UMANNS 1 raft 2	0	2	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911807	5.00	UMANNS 1 raft 2	1	2	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911808	5.50	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	5	0	0	0	0	
900719	2	0001911809	5.50	UMANNS 1 raft 2	0	0	Y	0	0	0	3 Y	0	1	0	0	0	0	
900719	2	0001911811	5.50	UMANNS 1 raft 2	0	2	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911901	8.00	UMANNS 1 raft 2	1	1	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911902	8.00	UMANNS 1 raft 2	1	1	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911903	8.00	UMANNS 1 raft 2	1	1	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911904	8.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911905	8.00	UMANNS 1 raft 2	1	2	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911906	8.00	UMANNS 1 raft 2	1	2	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911907	8.00	UMANNS 1 raft 2	1	2	Y	0	0	0	0	0	2	0	0	0	0	
900719	2	0001911909	8.00	UMANNS 1 raft 2	0	1	Y	0	0	0	0	0	0	0	0	0	0	
900719	2	0001911910	8.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	5	0	0	0	0	
900719	2	0001911911	8.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0	

Appendix A. (Page 20 of 20).

Date	We $W_{d}{ }^{a}$	Data Form	Hours Fished	Angler and Equipment Characteristics ${ }^{\text {b }}$	Chinook Salmon			Sockeye Salmon		Chum Salmon		Ra inbow Trout		Arctic Grayl ing		Nor thern Pike	
		Number Line		GMARLS G Boat H UFYNNMTType P				$\mathrm{H}^{\text {c }}$	$\overline{\mathrm{C}^{\mathrm{d}} \mathrm{~T}^{\mathrm{e}}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	H^{C}	$\mathrm{C}^{\text {d }} \mathrm{T}^{\text {e }}$	$\mathrm{H}^{\text {C }}$	$c^{\text {d }} \mathrm{T}^{\mathbf{e}}$	$\mathrm{H}^{\text {c }}$	$\mathrm{c}^{\text {d }} \mathrm{T}^{\text {e }}$
900719	2	0001107801	8.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	1	0	0
900722	1	0001103201	3.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	2	2 Y
900722	1	0001103202	3.00	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	1	1 Y
900722	1	0001103203	4.00	UMANNS 1 raft	0	0	Y	0	0	0	5	0	1	1	2	0	0
900722	1	0001103206	5.00	UMANNS 5 raft	0	0	Y	0	0	0	0	0	1	0	0	0	0
900722	1	0001103207	4.00	UMANNS 1 raft	0	1	Y	0	0	0	1	1	2	0	3	0	0
900722	1	0001103210	2.00	UMANNS 5 raft	0	0	Y	0	0	0	0	0	2	0	0	0	0
900722	1	0001105801	2.00	UMANNS 5 raft	0	0	Y	0	0	0	1	0	0	0	1	0	0
900722	1	0001105803	6.50	UMANNS 5 raft	0	0	Y	0	0	0	0	0	1	0	0	0	0
900722	1	0001105805	5.00	UMANNS 5 raft	0	0	Y	0	0	0	0	1	1	0	0	0	0
900722	1	0001105808	5.00	UMANNS 5 raft	0	0	Y	0	0	0	0	1	2	2	6	0	0
900722	1	0001103301	3.00	UMANNS 5 raft	0	0	Y	0	0	0	1	0	0	0	0	0	0
900723	2	0001107901	2.00	UMANNS 1 raft	0	0	Y	0	0		0	0	0	0	0	0	0
900723	2	0001107902	0.50	UMANNS 1 raft 2	0	0	Y	0	0	0	0	0	0	0	0	0	0

a $\mathrm{We}=$ weekend or holiday, $\mathrm{Wd}=$ weekday.
b Angler and equipment characteristics:

```
    G/U G guided angler; U unguided angler.
    M/F M male; F female.
    A/Y A adult; Y youth.
    R/N R Alaska resident, N nonresident.
    L/N L local resident, N nonlocal.
    S/M S single gear type used, M multiple gear types used.
    GT gear type: 1 spin; 5 fly.
    HP horsepower class: 2 (1 to 20 hp); 3 (21 to 40 hp).
c H number of fish harvested (kept).
d C number of fish caught (fish released + fish kept).
e T was the angler targeting on the species? Y (yes).
```

APPENDIX B

Appendix B.	ler coun location June to 2	$\begin{aligned} & \text { on } \\ & \text { uly } \end{aligned}$			$\begin{gathered} \text { fishery } \\ \text { chatna Ri } \end{gathered}$
	Non-peak		Per	ds ${ }^{\text {b }}$	Non-peak
Date	A	B	C	D	E
30 June					
01 July	0				0
02 July		0	0		
03 July					
04 July					
05 July		3		NC	
06 July					
07 July	24				4
08 July					
09 July					
10 July		17	29		
11 July					
12 July					
13 July	0				0
14 July					
15 July					
16 July					
17 July					
18 July		19	10		
19 July					
20 July		20	2		
21 July		0	9		
22 July					
23 July					
24 July	0				0
25 July					

a Nonpeak stratum period A 0600-0859.
b Peak stratum Period B 0900-1159; C 1200-1459;
D 1500-1759.
c Nonpeak stratum period E 1800-2059.
d No count made at this selected time.

APPENDIX C

Appendix C1. Sublocation 002, roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for chinook salmon in the sport fishery in the middle Mulchatna River, 1990.

Stratum ${ }^{\text {a }}$	Date	$\text { Per iod }{ }^{b}$	Hours in Period	Anglers Counted	Estimate Effort in Period	Anglers Inter- viewed	Estimates by Period							
							CPUE		Catch		HPUE		Harvest	
							Mean	Variance	Estimate	Variance	Mean	Variance	Estimate	Variance
0	900701	A	3	0	0	2	0.00000	0.00000	0.000	0.000	0.00000	0.000000	0.0000	0.000
0	900701	E	3	0	0				0.000	0.000			0.0000	0.000
0	900707	A	3	24	72	19	1.97275	0.05403	142.038	280.077	0.29484	0.022802	21.2287	118.208
0	900707	E	3	4	12	5	0.12206	0.01538	1.465	2.214	0.12206	0.015376	1.4647	2.214
0	900713	A	3	0	0	16	2.04865	0.16064	0.000	0.000	0.19457	0.017841	0.0000	0.000
0	900713	E	3	0	0	2	0.00000	0.00000	0.000	0.000	0.00000	0.000000	0.0000	0.000
0	900724	A	3	0	0				0.000	0.000			0.0000	0.000
0	900724	E	3	0	0	8	0.80314	0.24167	0.000	0.000	0.12093	0.006344	0.0000	0.000
1	900702	B	3	0	0				0.000	0.000			0.0000	0.000
1	900702	C	3	0	0				0.000	0.000			0.0000	0.000
1	900705	B	3	14	42	10	1.27448	0.07690	53.528	135.655	0.35142	0.010444	14.7596	18.424
1	900710	C	3	17	51	19	1.36770	0.01894	69.753	49.275	0.31063	0.000631	15.8421	1.640
1	900710	D	3	29	87	18	1.72962	0.04480	150.477	339.127	0.25767	0.002020	22.4177	15.288
1	900718	B	3	19	57	16	0.52613	0.01027	29.989	33.378	0.27212	0.006002	15.5109	19.502
1	900718	C	3	10	30	13	0.35453	0.02083	10.636	18.751	0.20133	0.006907	6.0399	6.217
1	900720	B	3	20	60	19	0.75611	0.01459	45.366	52.526	0.27446	0.005120	16.4674	18.431
1	900720	C	3	2	6	12	0.45866	0.00416	2.752	0.150	0.13406	0.003626	0.8044	0.131
1	900721	B	3	0	0				0.000	0.000			0.0000	0.000
1	900721	C	3	9	27	8	0.08081	0.00992	2.182	7.235	0.00000	0.000000	0.0000	0.000
1	900726	C	3	0	0				0.000	0.000			0.0000	0.000
1	900726	D	3	0	0				0.000	0.000			0.0000	0.000

a Stratum $0=$ Nonpeak; periods A and E. Stratum 1 = Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

Appendix C2. Sublocation 002 , roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for sockeye salmon in the sport fishery in the middle Mulchatna River, 1990.

Stratum ${ }^{\text {a }}$	Date	$\text { Period }{ }^{\text {b }}$	Hours in Period	Anglers Counted	Estimate Effort in Period	Anglers Inter- viewed	Estimates by Period							
							CPUE		Catch		HPUE		Harvest	
							Mean	Variance	Estimate	Variance	Mean	Variance	Estimate	Variance
0	900701	A	3	0	0	2	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
0	900701	E	3	0	0				0.00000	0.00000			0.00000	0.00000
0	900707	A	3	24	72	19	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
0	900707	E	3	4	12	5	0.00000	0.000000	0.00000	0.00000	0.000000	0000000	0.00000	0.00000
0	900713	A	3	0	0	16	0.00000	0.000000	0.00000	0.00000	0.000000	.0000000	0.00000	0.00000
0	900713	E	3	0	0	2	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
0	900724	A	3	0	0				0.00000	0.00000			0.00000	0.00000
0	900724	E	3	0	0	8	0.11643	0.013923	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900702	B	3	0	0				0.00000	0.00000			0.00000	0.00000
1	900702	c	3	0	0				0.00000	0.00000			0.00000	0.00000
1	900705	B	3	14	42	10	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900710	c	3	17	51	19	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900710	D	3	29	87	18	0.02428	0.000350	2.11231	2.64899	0.024279	. 0003500	2.11231	2.64899
1	900718	B	3	19	57	16	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900718	c	3	10	30	13	0.19606	0.007299	5.88166	6.56952	0.072202	. 0017056	2.16606	1.53503
1	900720	B	3	20	60	19	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900720	C	3	2	6	12	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900721	B	3	0	0				0.00000	0.00000			0.00000	0.00000
1	900721	C	3	9	27	8	0.00000	0.000000	0.00000	0.00000	0.000000	. 0000000	0.00000	0.00000
1	900726	c	3	0	0				0.00000	0.00000			0.00000	0.00000
1	900726	D	3	0	0				0.00000	0.00000			0.00000	0.00000

a Stratum $0=$ Nonpeak; periods A and E. Stratum $1=$ Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

Appendix C3. Sublocation 002, roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for chum salmon in the sport fishery in the middle Mulchatna River, 1990.

Stratum ${ }^{\text {a }}$	Date	Period ${ }^{\text {b }}$	Hours in Period	Anglers Counted	Estimate Effort in Period	Anglers Inter- viewed	Estimates by Period							
							CPUE		Catch		HPUE		Harvest	
							Mean	Variance	Estimate	Variance	Mean	Variance	Estimate	Variance
0	900701	A	3	0	0	2	0.00000	0.000000	0.00000	0.00000	0	0	0	0
0	900701	E	3	0	0				0.00000	0.00000			0	0
0	900707	A	3	24	72	19	0.00000	0.000000	0.00000	0.00000	0	0	0	0
0	900707	E	3	4	12	5	0.00000	0.000000	0.00000	0.00000	0	0	0	0
0	900713	A	3	0	0	16	0.18308	0.038895	0.00000	0.00000	0	0	0	0
0	900713	E	3	0	0	2	0.00000	0.000000	0.00000	0.00000	0	0	0	0
0	900724	A	3	0	0				0.00000	0.00000			0	0
0	900724	E	3	0	0	8	0.07762	0.006183	0.00000	0.00000	0	0	0	0
1	900702	B	3	0	0				0.00000	0.00000			0	0
1	900702	C	3	0	0				0.00000	0.00000			0	0
1	900705	B	3	14	42	10	0.00000	0.000000	0.00000	0.00000	0	0	0	0
1	900710	C	3	17	51	19	0.01112	0.000124	0.56723	0.32277	0	0	0	0
1	900710	D	3	29	87	18	0.01316	0.000168	1.14524	1.27103	0	0	0	0
1	900718	B	3	19	57	16	0.00000	0.000000	0.00000	0.00000	0	0	0	0
1	900718	C	3	10	30	13	0.02583	0.000617	0.77477	0.55507	0	0	0	0
1	900720	B	3	20	60	19	0.00000	0.000000	0.00000	0.00000	0	0	0	0
1	900720	C	3	2	6	12	0.02791	0.000728	0.16745	0.02620	0	0	0	0
1	900721	B	3	0	0				0.00000	0.00000			0	0
1	900721	C	3	9	27	8	0.00000	0.000000	0.00000	0.00000	0	0	0	0
1	900726	C	3	0	0				0.00000	0.00000			0	0
1	900726	D	3	0	0				0.00000	0.00000			0	0

a Stratum $0=$ Nonpeak; periods A and E. Stratum $1=$ Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

Appendix C4. Sublocation 002 , roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for rainbow trout in the sport fishery in the middle Mulchatna River, 1990.

				Hours		Estimate Effort	Anglers				Estim	ates by P	eriod		
				n	Anglers	in	Inter-		PUE	Cat			Pue	Harv	est
	Stratum ${ }^{\text {a }}$	Date	Period ${ }^{\text {b }}$	Period	Counted	Period	viewed	Mean	Variance	Estimate	Variance	Mean	Variance	Estimate	Variance
	0	900701	A	3	0	0	2	0.00000	0.00000	0.0000	0.0000	0.00000	. 0000000	0.00000	0.00000
	0	900701	E	3	0	0				0.0000	0.0000			0.00000	0.00000
	0	900707	A	3	24	72	19	0.05959	0.00357	4.2905	18.5297	0.00000	. 0000000	0.00000	0.00000
	0	900707	E	3	4	12	5	0.00000	0.00000	0.0000	0.0000	0.00000	. 0000000	0.00000	0.00000
	0	900713	A	3	0	0	16	0.00000	0.00000	0.0000	0.0000	0.00000	. 0000000	0.00000	0.00000
	0	900713	E	3	0	0	2	0.00000	0.00000	0.0000	0.0000	0.00000	. 0000000	0.00000	0.00000
	0	900724	A	3	0	0				0.0000	0.0000			0.00000	0.00000
ag	0	900724	E	3	0	0	8	0.35552	0.04214	0.0000	0.0000	0.00000	. 0000000	0.00000	0.00000
	1	900702	B	3	0	0				0.0000	0.0000			0.00000	0.00000
	1	900702	C	3	0	0				0.0000	0.0000			0.00000	0.00000
	1	900705	B	3	14	42	10	0.15912	0.00713	6.6831	12.5801	0.00000	. 0000000	0.00000	0.00000
	1	900710	C	3	17	51	19	0.14408	0.00297	7.3483	7.7130	0.01055	. 0001246	0.53815	0.32418
	1	900710	D	3	29	87	18	0.07880	0.00106	6.8553	8.0445	0.00000	. 0000000	0.00000	0.00000
	1	900718	B	3	19	57	16	0.38108	0.01390	21.7216	45.1680	0.03617	. 0006255	2.06155	2.03235
	1	900718	c	3	10	30	13	0.19957	0.01331	5.9872	11.9792	0.00000	. 0000000	0.00000	0.00000
	1	900720	B	3	20	60	19	0.12614	0.00289	7.5687	10.4134	0.04150	. 0008662	2.49008	3.11833
	1	900720	c	3	2	6	12	0.72787	0.22311	4.3672	8.0320	0.10415	. 0056272	0.62487	0.20258
	1	900721	B	3	0	0				0.0000	0.0000			0.00000	0.00000
	1	900721	C	3	9	27	8	0.09775	0.00952	2.6392	6.9409	0.00000	. 0000000	0.00000	0.00000
	1	900726	c	3	0	0				0.0000	0.0000			0.00000	0.00000
	1	900726	D	3	0	0				0.0000	0.0000			0.00000	0.00000

a Stratum $0=$ Nonpeak; periods A and E. Stratum $1=$ Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

Appendix C5. Sublocation 002 , roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for Arctic grayling from the sport fishery on the middle Mulchatna River, 1990.

a Stratum $0=$ Nonpeak; periods A and $E . S t r a t u m 1=$ Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

Appendix C6. Sublocation 002, roving survey; summary of daily angler effort (angler-hours), catch rates (CPUE, fish per angler-hour), and harvest rates (HPUE, fish kept per angler-hour) for northern pike from the sport fishery on the middle Mulchatna River, 1990.

Stratum ${ }^{\text {a }}$	Date	Period ${ }^{\text {b }}$	Hours in Period	Anglers Counted	Estimate Effort in Period	Anglers Inter- viewed	Estimates by Period							
							CPUE		Catch		HPUE		Harvest	
							Mean	Variance	Estimate	Variance	Mean	Variance	Estimate	Variance
0	900701	A	3	0	0	2	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
0	900701	E	3	0	0				0.00000	0.0000			0	0
0	900707	A	3	24	72	19	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
0	900707	E	3	4	12	5	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
0	900713	A	3	0	0	16	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
0	900713	E	3	0	0	2	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
0	900724	A	3	0	0				0.00000	0.0000			0	0
0	900724	E	3	0	0	8	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900702	B	3	0	0				0.00000	0.0000			0	0
1	900702	C	3	0	0				0.00000	0.0000			0	0
1	900705	B	3	14	42	10	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900710	C	3	17	51	19	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900710	D	3	29	87	18	0.048394	. 0014091	4.21030	10.6651	0	0	0	0
1	900718	B	3	19	57	16	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900718	C	3	10	30	13	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900720	B	3	20	60	19	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900720	C	3	2	6	12	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900721	B	3	0	0				0.00000	0.0000			0	0
1	900721	C	3	9	27	8	0.000000	. 0000000	0.00000	0.0000	0	0	0	0
1	900726	C	3	0	0				0.00000	0.0000			0	0
1	900726	D	3	0	0				0.00000	0.0000			0	0

a Stratum 0 = Nonpeak; periods A and E. Stratum 1 = Peak; periods B, C, D.
b Daily periods: A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2059).

\square

\qquad
\qquad
\qquad

APPENDIX D

Appendix D. Data files used to produce this report.

	Data Files
T007AIA0.DTA	Mulchatna R. sublocation 001 (direct expansion survey) angler interviews 30 June to 25 July 1990.
T007BIA0.DTA	Mulchatna R. sublocation 002 (roving survey) angler interviews 30 June to 25 July 1990.
T007BCA0. DTA	Mulchatna R. sublocation 002 (roving survey) angler count data 30 June to 25 July 1990.
T007ABA0.DTA	Mulchatna R. chinook salmon biological data (age, weight, length),
	Analysis Programs
DOINT90. BAT	Batch file which sorts interview data to create a file with one record per angler with kept and released fish and target species sorted by species. Output may be imported into spreadsheet or word processing packages for use.
INTMRG90.EXE	File supports the operation of DOINT90.BAT.
INTMRG90.PRM	File supports operation of DOINT90.BAT.
MUL90NEW.SAS	Mulchatna R. sublocation 002 (roving survey) effort, catch, harvest estimate program 1990.
BBXPEXE	A series of programs that uses biological data files to produce tables of mean lengths and weights by sex and age group for a species. The program also produces a data set which may be used in Lotus 1-2-3 (tm) to create graphs.

The data files are all archived with the Alaska Department of Fish and Game, Sport Fish Division, Research and Technical Services Unit, 333 Raspberry Road, Anchorage, Alaska 99518-1599. Contact Gail Heineman or Donna Buchholz (907-267-2369) for copies of the files and descriptions of the file formats.

[^0]: CPUE $_{\text {hijk }}^{*}=$ the jackknifed CPUE for angler k in sample j within day i and stratum h;

[^1]: 2 Note that if the bias correction, equation 7 , resulted in a negative value, then the uncorrected version, equation 6 , was used in all following equations.

[^2]: 3 Since only one angler count was conducted within each sampled period.

[^3]: 4 The left side of the fish approximately two rows above the lateral line and on the diagonal row downward from the posterior insertion of the dorsal fin as used on sockeye salmon by Clutter and Whitesel (1956).
 5 For salmon, the numeral preceding the decimal is the number of freshwater annuli, whereas the numeral following the decimal is the number of marine annuli (European method). Total age from brood year is the sum of the two numerals plus one.

[^4]: a Catch $=$ total fish kept + total fish released.
 b $95 \% \mathrm{CI}=$ (Point Estimate) $+/-(1.96 * \mathrm{SE})$; where d is 12 days.
 c Relative precision $=((1.96 *$ SE $) /$ POINT ESTIMATE $) * 100$ where $\alpha=0.05$.

[^5]: - Continued -

[^6]: 6 There was no directed commercial effort on chinook salmon in the Nushagak area in 1990. The harvest occurred incidentally to the commercial sockeye salmon fishery.

[^7]: -Continued-

