FISHERY DATA SERIES NO. 90

EFFORT, CATCH, AND HARVEST STATISTICS FOR THE SPORT FISHERIES ON THE AGULUKPAK AND AGULOWAK RIVERS, WOOD RIVER LAKE SYSTEM, ALASKA, 1986-1988 ${ }^{1}$

By

R. Eric Minard

Alaska Department of Fish and Game Division of Sport Fish Juneau, Alaska 99802

```
April }198
```

1 This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-4, Job No. T-5-1.

The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, religion, color, national origin, age, sex, or handicap. Because the department receives federal funding, any person who believes he or she has been discriminated against should write to:
O.E.O.
U.S. Department of the Interior Washington, D.C. 20240

TABLE OF CONTENTS

Page
LIST OF TABLES ii
LIST OF FIGURES iv
LIST OF APPENDIX TABLES v
ABSTRACT 1
INTRODUCTION 2
METHODS 2
Creel Survey 2
Agulukpak River 4
Agulowak River 6
Age, Sex, Weight, and Length Sampling 10
RESULTS 10
Creel Statistics 10
Age, Sex, Weight, and Length Statistics 26
DISCUSSION 26
LITERATURE CITED 37
APPENDIX 38
Table Page

1. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulukpak River, 1986-1988 11
2. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulowak River, 1986-1988 13
3. Estimated catch and harvest rates (fish per angler-hour), by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986 14
4. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulukpak River, 1987 15
5. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulukpak River, 1988 16
6. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1986 17
7. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1987 18
8. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1988 19
9. Estimated catch and harvest, by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986 20
10. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1987 21
11. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1988 22

Table

Page

12. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 198623
13. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 198724
14. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 198825
15. Catch and harvest of rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-198827
16. Summary of biological sampling of rainbow trout from the Agulukpak and Agulowak Rivers, 1986-1988.29
17. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulukpak River, 1986-198830
18. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulowak River, 198832

LIST OF FIGURES

Figure Page

1. Location of the Agulukpak and Agulowak Rivers, Wood River Lake system, Alaska 3
2. Demographic information collected from anglers participating in the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-198828
3. Length frequency distributions for rainbow troutsampled from the sport fishery in the AgulukpakRiver, 1986-198831
4. Length frequency distribution of rainbow troutsampled from the sport fishery in the AgulowakRiver, 198833
5. Mean length and 95% confidence intervals for rainbow trout, by age group, sampled from the Agulukpak and Agulowak Rivers34
6. Percent, by age group, of rainbow trout sampled from the Agulukpak and Agulowak Rivers, 1988.................. 36
7. Angler counts for the sport fishery in the Agulukpak River, 198639
8. Angler counts for the sport fishery in the Agulowak River, 1986 40
9. Angler counts for the sport fishery in the Agulowak River, 1987 41
10. Angler counts for the sport fishery in the Agulowak River, 1988 42
11. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986 43
12. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986 44
13. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987 45
14. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987 47
15. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988. 49
16. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988 51

LIST OF APPENDIX TABLES (Continued)

AppendixTablePage
11. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986 53
12. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986 54
13. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987 55
14. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987 56
15. Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988 57
16. Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988 58

ABSTRACT

Creel surveys were conducted during the summers of 1986,1987 , and 1988 on the Agulukpak and Agulowak Rivers to estimate sport fishing effort, catch (fish kept plus fish released), and harvest (fish kept only). Rainbow trout Oncorhynchus mykiss, Arctic char Salvelinus alpinus, and Arctic grayling Thymallus arcticus are the primary species targeted in both fisheries with the Agulukpak River being managed as a catch and release fishery. Data collected during these surveys indicated that effort was slightly greater on the Agulowak River (3-year average $=4,570$ angler-hours) than on the Agulukpak River (3-year average $=3,260$ angler-hours). Catches of rainbow trout on the Agulukpak River ranged from 1,322 to 3,692 fish per year. Catches and harvests of rainbow trout from the Agulowak River over the same period averaged 2,345 and 161 fish, respectively. Age and size data were collected from 417 rainbow trout from the Agulukpak and 233 rainbow trout from the Agulowak River during the 3 -year study using hook and line gear. Mean length of age 3 and 4 rainbow trout sampled from the Agulawak River were larger than those sampled from the Agulukpak River. Age frequency distributions for the Agulukpak River were normally distributed while the Agulowak River sample was skewed to younger age groups.

KEY WORDS: Agulukpak River, Agulowak River, Wood River Lakes, Bristol Bay, rainbow trout, Oncorhynchus mykiss, Arctic char, Salvelinus alpinus, Arctic grayling, Thymallus arcticus, creel survey, effort, harvest, catch, age, size.

INTRODUCTION

The Wood River lake system, located within the Wood-Tikchik State Park, consists of a series of five lakes connected by short swift rivers (Figure 1). The waters of this system support recreational fisheries for rainbow trout Oncorhynchus mykiss, Arctic char Salvelinus alpinus, and Arctic grayling Thymallus arcticus. The sport fisheries targeting rainbow trout occur primarily in the Agulukpak and Agulowak Rivers.

Information concerning the sport fisheries in the Agulukpak and Agulowak Rivers has been limited to creel survey data collected on the Agulukpak River during 1976 and 1977 and the Agulowak River during 1975, 1976, and 1977 (Minard 1986). Results of these informal investigations suggested that sport fishing effort and catches and harvests of rainbow trout on both rivers were increasing.

In response to these increases, the Alaska Department of Fish and Game (ADF\&G), Division of Sport Fish, together with the Alaska Department of Natural Resources (ADNR), Division of Parks, initiated formal creel surveys on both the Agulowak and Agulukpak Rivers during 1986. These surveys were designed to estimate sport fishing effort, catch (fish landed), and harvest (fish retained), and to collect age and size composition data for rainbow trout stocks within the Agulukpak and Agulowak Rivers. The ADF\&G was responsible for sample design, data analysis, and reporting of the creel survey and biological data and provided financial support to ADNR to help defray operational expenses associated with the creel survey. Volunteer staff working for the ADNR acted as field technicians and were responsible for the collection of creel survey and biological data.

During the 3 -year study period (1986-1988), the Agulukpak and Agulowak Rivers were open to sport fishing all year and anglers were allowed to harvest up to five grayling, ten Arctic char, and five salmon per day. The upper 2 miles of Agulukpak River is managed as a catch and release fishery for rainbow trout and is therefore closed to the harvest of rainbow trout. In the Agulowak and the lower Agulukpak Rivers, anglers were allowed two rainbow trout per day during the period from 8 June through 31 October, of which only one could be greater than 20 inches in length. During the balance of the year, anglers were allowed a daily bag limit of five rainbow trout per day of which only one could be greater than 20 inches in length (ADF\&G 1986, 1987, 1988).

METHODS

Creel Survey

Creel surveys were conducted on the Agulukpak and Agulowak Rivers during the years 1986, 1987, and 1988.

Figure 1. Location of the Agulukpak and Agulowak Rivers, Wood River Lake system, Alaska.

Agulukpak River:

The study area on the Agulukpak River extended from Lake Nerka upstream to Lake Beverley (Figure 1). A direct expansion creel survey formed the basis of the sampling design. The fishing day was considered to be 24 hours long, from 0600 hours through 2100 hours. Within each day, the fishing day further stratified into five 3 -hour periods: A (0600-0859), B (900-1159), C (12001459), D (1500-1759), and E (1800-2059).

Most anglers enter and exit the fishery at the head of the Agulukpak River where it drains Lake Beverley. Technicians, stationed at this access site, attempted to interview every angler exiting the fishery and had completed fishing for the day. For each angler contacted, the creel survey technician recorded the number of hours fished, the number of fish in the angler's possession by species, the number of fish released by species, whether the angler was guided or not guided, the residency of the angler, and the type of gear used (spin, fly, or bait). All interviews were of individual anglers and not party or group interviews. Occasionally, anglers who had completed fishing exited the fishery without being interviewed. In those instances, the number of anglers not interviewed was tallied.

The estimation of angler effort by a direct expansion creel survey can be considered as a problem in estimating a rate. Effort was estimated in units of angler-hours. The rate estimated is the mean effort in angler-hours per hour of sampling. The product of this rate and the total number of possible fishing hours (length of the angler-day) is the estimate of angler effort which was expressed as:

$$
\begin{equation*}
\hat{E}=\sum_{j=1}^{p} H_{j}\left(\bar{e}_{j} / \bar{h}_{j}\right) \tag{1}
\end{equation*}
$$

where;
\wedge
$\mathrm{E}=$ the estimate of effort in angler-hours,
$H_{j}=$ the number of hours possible fishing time, in period j,
$e_{j}=$ the mean number of angler-hours leaving a census site during period j, and
$h_{j}=$ the mean number of hours censused during period j on all days sampled.

The survey on the Agulukpak River is the simplest case of a direct expansion survey since sampling occurred continuously over the entire length of the angling day which was considered to be 24 hours long.

The variance of effort was estimated as:

$$
\begin{equation*}
\hat{V}(E)=\sum_{j=1}^{p} H_{j}^{2} V\left(\bar{e}_{j} / \bar{h}_{j}\right) \tag{2}
\end{equation*}
$$

The variance of the rate, $\bar{e}_{j} / \bar{h}_{j}$, was approximated by the variance for the quotient of two random variables (Jessen 1978):

$$
\begin{equation*}
V\left(\bar{e}_{j} / \bar{h}_{j}\right) \approx\left(\bar{e}_{j} / \bar{h}_{j}\right)^{2}\left(1 / d_{j}\right)\left(s / e_{j}^{2}+s_{h}^{2} / \bar{h}_{j}^{2}-2 r s_{c} s_{h} / \bar{e}_{j} \bar{h}_{j}\right)\left(1-h_{j} / H_{j}\right) \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
r & =\text { correlation between } e \text { and } h, \\
d_{j}= & \text { the number of days censused, } \\
s_{e}^{2}= & \text { the sample variance for the mean number of angler-hours leaving a } \\
& \text { census site, and } \\
s_{h}^{2}= & \text { the sample variance for the mean number of hours censused on a } \\
& \text { sample day. }
\end{aligned}
$$

In most of the fisheries surveyed, the time spent surveying on period j (h_{j}) was relatively constant on each sampling occasion. In some instances, i.e. on days when no interviews were conducted, h_{j} varied considerably during the fishery and the h_{j} were considered random variables. This variation is represented by the variance of the sample unit length in Equation 13 ($s_{h}{ }^{2}$). The coefficient of variation was used to determine if the h_{j} were treated as random variables. If the coefficient of variation exceeded 20%, the h_{j} were treated as random variables, otherwise the h_{j} were treated as constant.

For h_{j} constant, $s_{h}{ }^{2}$ equals zero and the variance of the estimate of the variance of the estimated angler effort simplifies to:

$$
\begin{equation*}
V(\hat{E})=\sum_{v=1}^{p} d_{j}\left(H_{j} / h_{j}\right)^{2} s_{e}^{2}\left(1-h_{j} / H_{j}\right) \tag{4}
\end{equation*}
$$

When it was not possible to interview all anglers leaving the access site, the effort by the anglers who were not interviewed was estimated. In contrast to the previous situation, where the effort leaving the fishery during period $j\left(e_{j}\right)$ was considered to be

$$
\begin{equation*}
\hat{e}_{j}=M_{j} \bar{f}_{j} \tag{5}
\end{equation*}
$$

and the associated variance as:

$$
\begin{equation*}
\hat{s}_{e j}^{2}=M_{j}^{2}\left(s_{f j}^{2} / m_{j}\right)\left(1-m_{j} / M_{j}\right) \tag{6}
\end{equation*}
$$

Effort for period j was estimated by:

$$
\begin{equation*}
\hat{E}_{j}=H_{j}\left(\hat{e}_{j} / h_{j}\right) \tag{7}
\end{equation*}
$$

The variance of \hat{E}_{j} was estimated using equations 12 and 13 with the exception that the variance of the mean number of angler-hours of effort by completed-trip anglers censused during each sampling event now has two components, the within-day variance due to missed anglers and the between-day variance. Letting $\hat{\mathbf{s}}_{2}$ estimate the variance of \hat{e}_{j} :

$$
\begin{equation*}
\left.\hat{s}_{e}=s_{B e}^{2}+h_{j} /\left[d_{j}\left(H_{j}-h_{j}\right)\right] \underset{i=1}{D \wedge_{2}} \hat{s}_{i j}\right) \tag{8}
\end{equation*}
$$

with the between-day variance $\left(s_{\mathrm{Be}}{ }^{2}\right)$ estimated as:

$$
\begin{equation*}
s_{B e}^{2}=\left[\sum_{i=1}^{D}\left(e_{i j}-\bar{e}_{j}\right)^{2}\right] /\left(d_{j}-1\right) \tag{9}
\end{equation*}
$$

the variance of \hat{E}_{j} was estimated by substituting $\hat{s}_{\mathbf{e}}$ for $\mathbf{s}_{\mathbf{e}}$ in equation 13 (Sukhatme et al. 1984).

By replacing \mathbf{s}_{e}^{2} with $\hat{\wedge}_{2}$, the variance of the angler effort estimate simplifies to equation 14 when the h_{j} are constant.

The catch and harvest of a species, and their variances, were estimated with the same procedures used to estimate effort by simply substituting the corresponding quantities for catch or harvest in place of effort.

Assumptions necessary for the direct expansion creel survey design are:

1. no significant fishing effort occurs during the hours not included in the fishing day;
2. all anglers participating in a particular fishery exit the fishery through the surveyed access site; and,
3. all anglers who are not interviewed are counted and all noninterviewed anglers are completed-trip anglers.

Agulowak River:
The study area on the Agulowak River was from its head at Lake Nerka to the mouth at Aleknagik Lake (Figure 1). A roving creel survey (Neuhold and Lu 1957) using a stratified, random sampling design was employed to count anglers and conduct angler interviews. Counts of anglers were used to
estimate effort in units of angler-hours and interviews of anglers provided estimates of catch rates (fish per angler-hour) by species. The product of the estimated effort and the species specific catch and harvest rates was the estimate of catch and harvest for a given species.

Effort levels, thought to reflect seasonal availability of rainbow trout, formed the basis for stratification of the study periods. The study period in 1986 (19 June through 23 August) was stratified into three temporal components: Component 1 (16 June to 12 July); Component 2 (13 July to 11 August) ; and, Component 3 (12 August to 23 August). For the purpose of the creel survey, the fishing day in 1986 was defined as 15 hours in duration (0600-2100 hrs) with each day being divided into five time strata: Period A (0600-0859 hrs) ; Period B ($0900-1159 \mathrm{hrs}$); Period C ($1200-1459 \mathrm{hrs}$); Period D (1500-1759 hrs) ; and, Period E (1800-2100 hrs).

Based on information collected during the 1986 surveys, the creel survey was restratified during 1987. In 1987 , the study period (6 June through 7 September) was stratified into three different temporal components: Component 1 (6 June to 23 June); Component 2 (24 June to 1 August); and, Component 3 (2 August to 7 September). From 6 June through 15 August, the fishing day was defined as 16 hours in duration (0800-2400) with each day being divided into four time strata: Period A (0800-1159 hrs); Period B (1200-1559 hrs); Period C (1600-1959 hrs) ; and, Period D (2000-2400 hrs). From 16 August on, the fishing day was shortened to 12 hours in duration and divided into three time periods with Periods A, B, and C remaining the same as above and Period D being eliminated.

Based on information collected during the 1986 and 1987 surveys, the creel survey was again restratified during 1988. In 1988 , two temporal components were defined as Component 1 (6 June to 31 July), and Component 2 (1 August to 6 September). The stratification of the angling day was the same as was described for the 1987 survey.

The sampling level in 1986 was 11 angler count and interview trips per week. Time strata to be sampled were randomly chosen subject to the constraint that a maximum of two sample units could be designated in any one day. This random selection process was done independently for each period. In 1987 and 1988, the sampling level was increased to ten angler count/interview sessions and five angler counts per week with all time strata being sampled with equal intensity.

A survey trip started at the upstream or downstream boundary of the survey area. A coin was tossed to determine if a count or interview session was to be conducted first. For a count, the technician drove a skiff through the fishery area at a near constant speed and counted all anglers actively fishing. The count was completed within 40 to 60 minutes of the start and was considered an instantaneous count (Neuhold and Lu 1957).

All interviews were of individual anglers and were not party interviews. The technician attempted to keep the number of anglers interviewed proportional to the angler effort expended during the sampled time (Neuhold and Lu 1957, DiConstanzo 1956). Anglers were randomly selected throughout the fishing
area. For each angler contacted, the technician recorded the number of hours fished, the number of fish in the angler's possession by species, the number of fish released by the angler by species, whether the angler was guided or not guided, the residency of the angler, and the gear used (spin, fly, or bait). Most angler interviews were uncompleted-trip interviews. Completedtrip information was collected on an opportunistic basis as often as possible, and entered on the angler interview form as previously described.

Effort was estimated for each temporal component of the fishery using a stratified random sampling approach by period. Within each temporal component, effort (E_{c}) was estimated as follows:

$$
\begin{equation*}
\hat{E}_{c}=\sum_{i=1}^{p} H_{i} \bar{x}_{i} \tag{10}
\end{equation*}
$$

where:
$H_{i}=$ the total number of hours of possible fishing time in period i, and
$\bar{x}_{i}=$ the mean angler count for period i over all periods.
The variance of \hat{E}_{c} was estimated as follows:

$$
\begin{equation*}
\mathrm{V}\left(\hat{\mathrm{E}}_{\mathrm{c}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{p}} \mathrm{H}_{\mathrm{i}}^{2}\left(\mathrm{~s}^{2} / \mathrm{m}_{\mathrm{i}}\right) \tag{11}
\end{equation*}
$$

where:

$$
\begin{equation*}
s^{2}=\left[\sum_{t=1}^{w} \sum_{i=1}^{p}\left(y_{i k}-\bar{Y}_{i}\right)^{2}\right] /\left(m_{i}-1\right) \tag{12}
\end{equation*}
$$

and:
$y_{i k}=a$ count of anglers made during day k and period i,
$\bar{Y}_{i}=$ the mean count of anglers for period i, and
$m_{i}=$ the number of counts of anglers conducted during period i.
The total number of angler-hours of effort for the season was estimated by summing the estimates of effort for each of the temporal components. Because these are independent estimates, the variance for the total number of anglerhours of effort is the sum of the individual variances for each temporal component estimate.

Mean catch per unit effort (catch per angler-hour) was estimated for each temporal component as:

$$
\begin{equation*}
\overline{\mathrm{CPUE}}_{c}=\sum_{\mathrm{h}=1}^{\mathrm{m}_{j}} c_{c h} / \sum_{\mathrm{h}=1}^{\mathrm{m}_{j}} \mathrm{e}_{\mathrm{ch}} \tag{13}
\end{equation*}
$$

where:
$\mathrm{m}_{\mathrm{j}}=$ the number of anglers interviewed during component c ,
$c_{c h}=$ the catch by ang1er h interviewed during component c, and
$e_{c h}=$ the effort (number of hours) expended by angler h at the time of the interview.

Omitting the finite population correction factor, the variance of mean CPUE $_{j}$ was approximated as (Jessen 1978):

$$
\begin{equation*}
V\left(\overline{\operatorname{CPUE}}_{j}\right)=\left(\overline{\mathrm{C}}_{\mathrm{c}} / \overline{\mathrm{E}}_{\mathrm{c}}\right)^{2}\left[s_{c}^{2} / \overline{\mathrm{C}}_{c}^{2}+s_{e}^{2} / \bar{E}_{c}^{2}-\left(2 \mathrm{r}_{c} s_{c} s_{e} / \overline{\mathrm{C}}_{c} \overline{\mathrm{E}}_{\mathrm{c}}\right)\right] \tag{14}
\end{equation*}
$$

where:
$\overline{\mathrm{C}}_{c}=$ the mean catch of a particular species by anglers in component c,
$\overline{\mathrm{E}}_{\mathrm{c}}=$ the mean effort by anglers in component c ,
$s_{c}{ }^{2}=$ the two-stage variance estimate for of \bar{C}_{c},
$s_{e}{ }^{2}=$ the two-stage variance estimate for \bar{E}_{c}, and
$r_{j}=$ the correlation coefficient for $c_{c h}$ and e_{k}.
The catch of species k during component c was estimated by:

$$
\begin{equation*}
\hat{\mathrm{C}}_{\mathrm{kc}}=\hat{\mathrm{E}}_{\mathrm{c}}\left(\overline{\mathrm{CPUE}}_{\mathrm{c}}\right) \tag{15}
\end{equation*}
$$

The variance of the estimated catch of species k was estimated using the product of two independent random variables as described in Goodman (1960).

Harvest rates and total harvest of species k was estimated for each temporal component by substituting appropriate harvests for catches in equations 13 , 14 , and 15.

Total catch and harvest of a species k for the season was estimated by summing the estimates of catch and harvest for each of the temporal components. Because these are independent estimates, the variances of the total catch and harvest estimates are the sums of the individual variances for each temporal component.

The assumptions necessary for these analyses are:

1. incomplete-trip angler CPUE provide an unbiased estimate of completed-trip angler CPUE;
2. interviewed anglers were representative of the total angler population and anglers were interviewed in proportion to their abundance on the day of the interview;
3. no significant fishing effort occurred outside the selected fishing day during each year at the survey;
4. catch and effort by individual anglers are normally distributed random variables; and,
5. catch rate and duration of fishing trip are independent (DiConstanzo 1956).

Age, Sex, Weight, and Length Sampling
Rainbow trout were captured using hook and line and measured for fork length to the nearest millimeter, weighed to the nearest 10 grams, and sexed when possible. Scales were collected on the left side of the fish approximately two rows above the lateral line and on the diagonal row downward from the posterior insertion of the dorsal fin as described in Clutter and Whitesel (1956). Scales were mounted on adhesive-coated cards and impressions were made in cellulose acetate. Age determinations were made by examination of scales using a microfiche reader. Each fish was tagged at the base of the dorsal fin on the left side with a numbered Floy anchor tag. All biological data were recorded on Division of Sport Fish biological mark-sense forms.

The age composition of the rainbow trout sport catch sample was calculated from all legible scales collected during each year. Letting p_{h} equal the estimated proportion of age group h in the sample, the variance of p_{h} was estimated using the normal approximation to the binomial (Schaeffer et al. 1979):

$$
\begin{equation*}
V\left(\hat{\mathrm{p}}_{\mathrm{h}}\right)=\hat{\mathrm{p}}_{\mathrm{h}}\left(1-\hat{\mathrm{p}}_{\mathrm{h}}\right) /\left(\mathrm{n}_{\mathrm{T}}-1\right) \tag{16}
\end{equation*}
$$

where n_{T} is the total number of legible scales collected from rainbow trout during the fishery. Mean length by age group and its variance were estimated using standard normal procedures.

The age composition proportions of the sampled trout from each river was tested for differences using a contingency table analysis (MINITAB 1988). A student's t-test was used to test for differences between mean lengths-at-age of the sampled trout from each river (MINITAB 1988).

RESULTS

Creel Statistics

Sport fishing effort during the survey periods on the Agulukpak River was estimated to be 1,826 angler-hours in $1986,4,265$ angler-hours in 1987 , and 3,685 angler-hours in 1988 (Table 1). Sport fishing effort on the Agulowak

Table 1. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulukpak River, 1986-1988.

Year	Component (Dates)		```Number of Interviews```	D^{1}	d^{2}	Estimated Effort			
			Ang-Hrs			SE ${ }^{3}$	RP^{4}		
1986	A11	$1(6 / 29-8 / 22)$		331	53	33	1,826	208.8	22.4\%
1987	1	(6/17-7/11)) 111	25	19	665	57.5	16.9\%	
		(7/12-8/22)	408	44	44	2,303	0.0	0.0\%	
		(8/23-9/16)) 198	19	19	1,297	0.0	0.0\%	
		Season	717	88	82	4,265	58	2.68	
1988	1	(6/14-7/08)	96	25	25	475	17.94	7.48	
		(7/09-8/02)) 214	25	25	1,183	27.29	4.5\%	
		(8/3-8/27)	215	25	25	997	2.82	0.6%	
		(8/28-9/16)) 197	20	20	1,030	32.06	6.1%	
		eason	722	95	95	3,685	45.86	2.48	

1 Number of days possible.
2 Number of days surveyed.
3 Standard error.
4 Relative precision ($\alpha=0.05$).

River was estimated to be 3,732 angler-hours in 1986, 6,397 angler-hours in 1987, and 3,582 angler-hours in 1988 (Table 2).

Catches and harvests per hour, by species and temporal component, are listed for the Agulukpak River in Tables 3, 4, and 5. Catch rates for rainbow trout greater than 0.5 fish per angler hour occurred in all 3 years and exceeded one fish per hour in 1987 and 1988. These data also suggest that Arctic char and Arctic grayling play an important role in the sport fishery of the Agulukpak River. Harvest rates for all species were low.

Catches and harvests per hour, by species and temporal component, are listed for the Agulowak River, by year, in Tables 6, 7, and 8. These data indicate that rainbow trout, Arctic char, and Arctic grayling are caught frequently in this fishery. Rainbow trout catch per hour exceeded one fish in 1988 while catch rates for Arctic char exceeded one fish per hour during each of the 3 years of the study. Harvest rates appear moderate for all species.

The rainbow trout catch in the Agulukpak River totaled 1,322 during the 1986 season, with none harvested (Table 9). A total of 659 Arctic char were caught of which 59 (9\%) were harvested. Additionally, 1,291 Arctic grayling were caught of which 15 (18) were harvested. The 1987 rainbow trout catch rose to 3,692 fish, of which 2 were harvested (Table 10). Peak catches in 1987 occurred in temporal components two and three. Arctic char catch and harvest peaked in temporal component two, and totaled 1,892 and 152 (8\%), respectively. Arctic grayling also peaked in temporal component 2. A total of 2,649 Arctic grayling were caught, of which 26 (18) were harvested.

The catch and harvest of rainbow trout in 1988 from the Agulukpak River was 2,884 and 0 fish, respectively (Table 11). Catches of Arctic char and grayling totaled 2,312 , and 2,051 fish respectively. Harvests for all species were negligible.

In 1986, the rainbow trout catch in the Agulowak River totaled 1,783, of which 84 (5\%) were harvested (Table 12). Peak rainbow trout catch and harvest occurred during temporal component two. Arctic char peak catch and harvest occurred during temporal component one, and seasonal totals were 5,151 and 1,217 (128), respectively. In 1987, the rainbow trout catch and harvest increased to 2,584 and 328 (13\%), respectively (Table 13). Catch peaked in temporal component three, and harvest peaked in temporal component two. Arctic char seasonal catch and harvest was 3,716 and 660 (18\%), respectively, and both peaked in temporal component two. Of 616 Arctic grayling caught, only 15 (2\%) were harvested. However, the percent of sockeye O. nerka and coho O. kisutch salmon harvested was 52% and 100% from catches of 60 and 15 , respectively.

Catches and harvests for the 1988 season are listed by species for the Agulowak River in Table 14 . Of the 2,666 rainbow trout landed, 72 , or 2.7% were harvested. Char catches totaled 4,176 fish of which 551 (13.28) were harvested. Arctic grayling catch and harvest was estimated to be 1,308 and 22 (1.7\%) fish, respectively.

Table 2. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulowak River, 1986-1988.

Year	Component (Dates)		$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Interviews } \end{gathered}$	D^{1}	d^{2}	Estimated Effort			
			Ang-Hrs			SE ${ }^{3}$	RP4		
1986	1	(6/16-7/12)) 55	24	9	1,373	340.5	48.6\%
	2	(7/13-8/11)) 140	30	16	1,816	319.9	34.5\%	
	3	(8/12-8/23)) 56	12	8	543	257.3	92.9\%	
		Season	251	66	33	3,732	533.3	28.0\%	
1987	1	(6/06-6/23)) 33	18	7	591	116.1	38.5\%	
	2	(6/24-8/01)) 136	39	19	3,572	336.0	18.48	
	3	(8/02-9/07)) 96	37	16	2,234	353.2	31.0%	
		Season	265	94	42	6,397	501.1	15.48	
1988	1	(6/06-7/31)) 188	56	22	2,488	207.1	23.3\%	
	2	(8/01-9/06)) 160	37	24	1,094	295.6	37.1%	
		Season	348	93	46	3,582	360.9	19.7\%	

1 Number of days possible.
2 Number of days surveyed.
3 Standard error.
4 Relative precision ($\alpha=0.05$).

Table 3. Estimated catch and harvest rates (fish per angler-hour), by species, for sport fishery (6/29-8/22) in the Agulukpak River, 1986.

	Catch			Harvest	
	Fish/Hr	SE^{1}		Fish/Hr	SE^{1}
Rainbow Trout	0.7243	0.0039		0.0000	0.0000
Arctic Char	0.3609	0.0058		0.0321	0.0006
Arctic Grayling	0.7074	0.0043		0.0080	0.0003
Sockeye Salmon	0.0786	0.0010		0.0056	0.0001
Coho Salmon	0.0024	0.0001		0.0000	0.0000

1 Standard error.

Table 4. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulukpak River, 1987.

		Catch			Harvest	
	Temporal Component	Fish/Hr	SE^{2}		Fish/Hr	SE^{2}
Rainbow	1	0.2512	0.0347	0.0020	0.0012	
Trout	2	0.6931	0.0410	0.0004	0.0004	
	3	1.4869	0.0809	0.0000	0.0000	
Arctic	1	0.8405	0.1250	0.0949	0.0171	
Char	2	0.4773	0.0472	0.0356	0.0050	
	3	0.1804	0.0203	0.0054	0.0032	
Arctic	1	0.6724	0.0107	0.0198	0.0086	
Grayling	2	0.6905	0.0520	0.0017	0.0011	
	3	0.4717	0.0554	0.0069	0.0035	
Sockeye	1	0.0040	0.0033	0.0040	0.0033	
Salmon	2	0.0973	0.0139	0.0104	0.0027	
	3	0.1927	0.0330	0.0000	0.0000	
Northern	1	0.1009	0.0457	0.0020	0.0010	
Pike	2	0.0000	0.0000	0.0000	0.0000	
	3	0.0039	0.0024	0.0000	0.0000	

1 Component 1: 6/17-7/11; Component 2: 7/12-8/28; and, Component 3: 8/29-9/16.
2 Standard error.

Table 5. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulukpak River, 1988.

		Catch			Harvest	
	Tempora1 Component	Fish/Hr	SE^{2}		Fish/Hr	SE^{2}
Rainbow	1	0.2941	0.0363	0.0000	0.0000	
Trout	2	0.7888	0.0550	0.0000	0.0000	
	3	1.2998	0.0903	0.0000	0.0000	
	4	0.5563	0.0593	0.0000	0.0000	
Arctic	1	0.6453	0.0769	0.0439	0.0147	
Char	2	0.0325	0.0078	0.0057	0.0028	
	3	0.0724	0.0240	0.0021	0.0009	
	4	1.8926	0.1352	0.0164	0.0076	
			0.6409	0.1455	0.0154	0.0060
Arctic	1	0.7180	0.0577	0.0029	0.0030	
Grayling	2	0.5501	0.0480	0.0052	0.0098	
	3	0.3556	0.1053	0.0000	0.0000	
	4					
Sockeye	1	0.0000	0.0000	0.0000	0.0000	
Salmon	2	0.1264	0.0272	0.0220	0.0055	
	3	0.1975	0.0449	0.0062	0.0077	
	4	0.4614	0.0689	0.0000	0.0000	

1 Component 1: 6/14-7/8; Component 2: 7/9-8/2;
Component 3: 8/3-8/27; Component 4: 8/28-9/16.
2 Standard error.

Table 6. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulowak River, 1986.

	Temporal Component ${ }^{1}$	Catch		Harvest	
		Fish/Hr	SE^{2}	Fish/Hr	$S E^{2}$
Rainbow	1	0.1647	0.0096	0.0000	0.0000
Trout	2	0.7657	0.0201	0.0463	0.0017
	3	0.3076	0.0161	0.0000	0.0000
Arctic	1	2.7862	0.1238	0.5902	0.0201
Char	2	0.6321	0.0130	0.1953	0.0060
	3	0.3268	0.0145	0.0961	0.0054
Arctic	1	0.0549	0.0045	0.0000	0.0000
Grayling	2	0.3649	0.0132	0.0154	0.0023
	3	0.0577	0.0073	0.0000	0.0000
Sockeye	1	0.0000	0.0000	0.0000	0.0000
Salmon	2	0.0154	0.0016	0.0103	0.0013
	3	0.4806	0.0236	0.1922	0.0188

1
Component 1: 6/19-7/12; Component 2: 7/13-8/11; and, Component 3: 8/12-8/23.
2 Standard error.

Table 7. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulowak River, 1987.

	Temporal Component ${ }^{1}$	Catch		Harvest	
		Fish/Hr	SE ${ }^{2}$	Fish/Hr	SE ${ }^{2}$
Rainbow	1	0.1260	0.1291	0.0315	0.0215
Trout	2	0.2399	0.0738	0.0600	0.0238
	3	0.7379	0.2146	0.0427	0.0313
Arctic	1	1.2132	0.2926	0.2994	0.1047
Char	2	0.7026	0.1544	0.1200	0.0352
	3	0.2195	0.0549	0.0244	0.0118
Arctic	1	0.0000	0.0000	0.0000	0.0000
Grayling	2	0.1114	0.0607	0.0043	0.0026
	3	0.0976	0.0398	0.0000	0.0000
Sockeye	1	0.0000	0.0000	0.0000	0.0000
Salmon	2	0.0129	0.0157	0.0086	0.0155
	3	0.0061	0.0185	0.0000	0.0000
Coho	1	0.0000	0.0000	0.0000	0.0000
Salmon	2	0.0043	0.0026	0.0043	0.0026
	3	0.0000	0.0000	0.0000	0.0000

1 Component 1: 6/6-6/23; Component 2: 6/24-8/1; and, Component 3: 8/2-9/7.
2 Standard error.

Table 8. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulowak River, 1988.

	Temporal Component ${ }^{1}$	Catch		Harvest	
		Fish/Hr	SE^{2}	Fish/Hr	SE^{2}
Rainbow	1	0.5655	0.2087	0.0241	0.0118
Trout	2	1.1507	0.1654	0.0114	0.0074
Arctic	1	1.4981	0.3497	0.2166	0.0575
Char	2	0.4102	0.2419	0.0114	0.0129
Arctic	1	0.2677	0.1235	0.0090	0.0054
Grayling	2	0.5867	0.1026	0.0000	0.0000
Sockeye	1	0.0000	0.0000	0.0000	0.0000
Salmon	2	0.0598	0.0239	0.0114	0.0057

${ }_{2}$ Component 1: $6 / 6$ to $7 / 31$; Component $2: 8 / 1$ to $9 / 6$.
2 Standard error.

Table 9. Estimated catch and harvest, by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986.

Species	Catch			Harvest			Percent Harvested
	Number	SE^{1}	RP ${ }^{2}$	Number	SE^{1}	RP^{2}	
Rainbow Trout	1,322	151	22.4\%	0	0		0.0\%
Arctic Char	659	76	22.6%	59	7	22.5\%	9.0\%
Arctic Grayling	1,291	148	22.5\%	15	2	22.6\%	1.2\%
Sockeye Salmon	143	16	22.6%	10	1	19.6\%	0.0\%
Coho Salmon	4	0	0.0%	0	0		0.0%
1 Standard error 2 Relative preci	ision ($=0$					

Table 10. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1987.

Species	Temporal Component	Catch			Harvest		Percent Harvested
		Number	SE ${ }^{1}$	RP ${ }^{2}$	Number	$\mathrm{SE}^{1} \mathrm{RP}^{2}$	
Rainbow Trout	1	167	25	29.2\%	1	0 0.0\%	0.6\%
	2	1,596	0	0.0%	1	0 0.0\%	0.1%
	3	1,929	0	0.0\%	0	0	0.0\%
	Total	3,692	25	1.3\%	2	0 0.0\%	0.18
Arctic Char	1	559	116	40.8\%	63	926.6%	11.3\%
	2	1,099	0	0.0\%	82	0 0.0\%	7.58
	3	234	0	0.0%	7	0 0.0\%	3.0\%
	Total	1,892	116	12.18	152	911.0%	8.0\%
Arctic Grayling	1	447	66	28.8%	13	342.5%	2.98
	2	1,590	0	0.0\%	4	0 0.0\%	0.3\%
	3	612	0	0.0%	9	0 0.0\%	1.5\%
	Total	2,649	66	4.9\%	26	321.3%	1.0\%
Sockeye Salmon	1	3	1	65.3%	3	165.3%	0.0\%
	2	224	0	0.0\%	24	0 0.0\%	10.7\%
	3	250	8	6.0%	0	0	0.0\%
	Total	477	1	0.48	27	17.3%	5.7\%
Northern Pike	1	67	16	46.4\%	1	0 0.0\%	1. 5%
	2	0	0		0	0	
	3	5	0	0.0\%	0	0	0.0\%
	Total	72	16	43.2\%	1	0 0.0\%	1.4\%

1
Component 1: 6/17-7/11; Component 2: 7/12-8/28; and, Component 3: 8/29-9/16.
2
Standard error.
${ }^{3}$ Relative precision ($\alpha=0.05$).

Table 11. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1988.

1
Component 1: 6/14-7/8; Component 2: 7/9-8/2;
Component 3: 8/3-8/27; Component 4: 8/28-9/16.
2 Standard error.
${ }^{3}$ Relative precision ($\alpha=0.05$).

Table 12. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1986.

Species	Temporal Component		Catch			Harvest			Percent Harvested
			Number	SE ${ }^{1}$	RP ${ }^{2}$	Number	SE	RP ${ }^{2}$	
Rainbow Trout		1	226	58	49.9\%	0	0		0.0\%
		2	1,390	248	34.9\%	84	15	35.3\%	6.0\%
		3	167	80	93.3\%	0	0		0.0\%
	Total		1,783	266	29.3\%	84	15	35.3\%	4.7\%
Arctic Char		1	3,826	963	49.3\%	810	203	49.18	21.2%
		2	1,148	204	34.7\%	355	63	35.0\%	30.9\%
		3	177	84	93.4\%	52	25	93.6\%	29.4\%
	Total		5,151	988	37.68	1,217	214	34.4\%	23.6%
Arctic Grayling		1	75	20	51.3\%	0	0		0.0%
		2	663	119	35.2\%	28	6	44.8\%	4.2\%
		3	31	15	96.3\%	0	0		0.0\%
	Total		769	122	31.0\%	28	6	44.8\%	3.6%
Sockeye Salmon		1	0	0		0	0		0.0\%
		2	28	6	40.2\%	19	4	42.5\%	67.98
		3	261	124	93.28	104	50	94.7\%	39.8\%
	Total		289	124	84.3\%	123	50	80.3\%	42.68

1 Component 1: 6/19-7/12; Component 2: 7/13-8/11; and, Component 3: 8/12-8/23.
2 Standard error.
${ }^{3}$ Relative precision ($\alpha=0.05$).

Table 13. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1987.

${ }^{1}$ Component 1: 6/6-6/23; Component 2: 6/24-8/1; and,
Component 3: 8/2-9/7.
2 Standard error.
${ }^{3}$ Relative precision ($\alpha=0.05$).

Table 14. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1988.

Species		Temporal Component	Catch			Harvest			Percent Harvested
			Number	SE^{1}	RP ${ }^{2}$	Number	SE ${ }^{1}$	RP ${ }^{2}$	
Rainbow Trout		1	1,407	542	75.5\%	60	30	97.6%	4.3\%
		2	1,259	297	46.3%	12	8	135.6\%	1.0\%
	Total		2,666	618	45.48	72	31	84.4%	2.7%
Arctic Char		1	3,727	971	51.18	539	156	56.6%	14.58
		2	449	273	119.3\%	12	14	229.8\%	2.78
	Total		4,176	1,009	47.3%	551	156	55.6\%	13.2\%
Arctic Grayling		1	666	315	92.7\%	22	13	20.2\%	3.3\%
		2	642	164	50.1\%	0	0		0.0%
	Total		1,308	355	53.2%	22	13	20.2\%	1.7%
Sockeye Salmon		1	0	0		0	0		0.0\%
		2	65	28	85.6\%	12	7	07.1\%	18.5\%
	Total		65	28	85.6\%	12	7	07.1\%	18.5\%

$\frac{1}{2}$ Component 1: 6/6-7/31 and Component 2: 8/1-9/6.
2 Standard error.
3 Relative precision ($\alpha=0.05$).

Creel survey results for the Agulukpak and Agulowak Rivers for the three years (1986, 1987, and 1988) are summarized in Table 15.

The demographics differ dramatically between the sport fisheries of the Agulukpak and Agulowak Rivers as shown in Figure 2. Most of the anglers interviewed fishing the Agulukpak River were guided (85.7\%) while on the Agulowak River most were nonguided (63.7\%) anglers. Residency also differed dramatically, with over 90% of the anglers fishing the Agulukpak River being nonresidents, and resident and nonresident anglers fishing Agulowak River being about evenly split. Gear preference differed between the two fisheries as well. Nearly 83% of the anglers interviewed used flies on the Agulukpak River. Flies were used by approximately one-third of the interviewed fishermen on the Agulowak River. Spin gear was the preference of most of the fishermen on the Agulowak River, but accounted for only 16% on the Agulukpak River. Bait was the least frequently used gear type being the preference of less than 1% of the anglers sampled on either river.

Age, Sex, Weight, and Length Statistics

A total of 417 rainbow trout were sampled from the Agulukpak River during 1986, 1987, and 1988. Of these, 154 were aged and 330 were marked with numbered Floy anchor tags (Table 16). A total of 233 rainbow trout were captured using hook and line from the Agulowak River during 1988, of which 40 were tagged and 77 were aged (Table 16). Insufficient samples were collected in 1986 and 1987 to warrant detailed analysis.

The mean length of rainbow trout caught in the Agulukpak River was 418 mm $(\mathrm{n}=173, \mathrm{SE}=5.81)$ in $1986,421 \mathrm{~mm}(\mathrm{n}=184 \mathrm{~mm}, \mathrm{SE}=6.23)$ in 1987 , and 396 mm ($\mathrm{n}=60$, $\mathrm{SE}=11.94$) in 1988 (Table 17). Age 5 fish were most abundant in all 3 years, accounting for 34% to 57% of fish aged. Age 4 and 6 fish were near equally represented, accounting for 11% to 20% of the fish aged. Size frequency distributions for the 3 years are presented in Figure 3.

Four and 5 year old fish were the most common age group in the samples collected from the Agulowak River in 1988 (Table 18). Mean length was estimated to be $361 \mathrm{~mm}(\mathrm{n}=233, \mathrm{SE}=3.81)$ and mean weight was 511 g ($\mathrm{n}=48$, $\mathrm{SE}=26.44$). Size frequency distribution for samples collected in 1988 from the Agulowak River is presented in Figure 4.

The age compositions and mean length-at-age of the sampled trout from each river was similar. There was no significant differences ($\alpha=0.05$) in the numbers of fish by age group in any of the years between the rivers with the exception of the age 4 fish during $1988\left(G^{2}=12.55, \mathrm{df}=4, \mathrm{p}=0.014\right.$). There was also no significant difference ($\alpha=0.05$) in the mean length-at-age of the sampled trout from the two rivers (Figure 5) with the exception of the age 3 $(\Delta=82 \mathrm{~mm}, \mathrm{t}=12.46, \mathrm{df}=18)$ and age $4(\Delta=97 \mathrm{~mm}, \mathrm{t}=2.93, \mathrm{df}=300)$.

DISCUSSION

The sport fishery in the Agulowak River is considerably more consumptive than that of the Agulukpak River. Although a relatively small proportion of the

Table 15. Catch and harvest of rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-1988.

Location Date	Effort	Rainbow Trout		Arctic Char		Arctic	Grayling	Sockeye	Salmon
	(Ang-Hrs)	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest

Agulukpak River

$19866 / 29-8 / 22$	1,825	1,322	0	659	59	1,291	15	143	10
$19876 / 17-9 / 16$	4,265	3,692	2	1,892	152	2,649	26	477	27
$19886 / 14-9 / 16$	3,685	2,884	0	2,312	49	2,051	19	843	39

Agulowak River

| $19866 / 19-8 / 23$ | 3,732 | 1,784 | 84 | 5,151 | 1,217 | 769 | 28 | 289 | 123 |
| :--- | :--- | :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $19876 / 6-9 / 7$ | 6,397 | 2,584 | 328 | 3,717 | 660 | 616 | 15 | 60 | 31 |
| $19886 / 6-9 / 6$ | 3,582 | 2,666 | 72 | 4,176 | 551 | 1,308 | 22 | 65 | 12 |

Figure 2. Demographic information collected from anglers participating in the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-1988.

Table 16. Summary of biological sampling of rainbow trout from the Agulukpak and Agulowak Rivers, 1986-1988.

		Number		
Location	Year	Sampled	Tagged	Aged
Agulukpak	1986	173	94	7
	1987	184	178	111
	1988	60	58	36
	Total	417	330	154
	1988	233	40	77

Table 17. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulukpak River, 1986-1988.

Age Group

Age Group									
UNKNOWN	1	2	3	4	5	6	7	8	TOTAL

1986

Percent		14.3	28.6	57.1	100.0
Mean Length	422	206	327	330	418
SE ${ }^{1}$	5.72		47.50	24.49	5.81
Sample Size	166	1	2	4	173
Mean Weight	836		200	475	808
SE	44.18			85.39	43.24
Sample Size	71		1	4	76

1987

Percent		1.8	7.2	11.7	21.6	34.2	20.7	2.7	100.0
Mean Length	453	183	237	343	404	430	444	462	421
$\mathrm{SE}{ }^{1}$	9.74	3.00	11.95	20.29	12.46	5.96	8.18	6.23	6.23
Sample Size	73	2	8	13	24	38	23	3	184
Mean Weight	1126			602	655	923	1018	1190	991
SE ${ }^{1}$	35.07			88.85	94.41	33.99	83.81	65.06	29.73
Sample Size	35			5	7	19	11	3	80

1988

Percent		16.7	11.1	41.7	19.4	8.3	2.8	100.0
Mean Length	435	208	303	412	417	442	410	396
SE ${ }^{2}$	14.79	18.89	13.38	16.41	16.38	33.46		11.94
Sample Size	24	6	4	15	7	3	1	60
Mean Weight	708	181	292	653	707	800	630	617
SE ${ }^{1}$	46.97	20.80	36.54	59.18	67.22	177.25		34.85
Sample Size	24	6	4	15	7	3	1	60

[^0]

Figure 3. Length frequency distributions for rainbow trout sampled from the sport fishery in the Agulukpak River, 1986-1988.

Table 18. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulowak River, 1988.

	Age Group						
	UNKNOWN	3	4	5	6	7	TOTAL
Percent		18.2	36.4	35.0	7.8	2.6	100.0
Mean Length	365	290	350	372	392	431	361
SE ${ }^{1}$	4.84	13.19	8.57	6.07	17.95	1.50	3.81
Sample Size	156	14	28	27	6	2	233
Mean Weight	511						511
$\mathrm{SE} E^{1}$	26.44						26.44
Sample Size	48	0	0	0	0	0	48

1

Standard error.

Figure 4. Length frequency distribution of rainbow trout sampled from the sport fishery in the Agulowak River, 1988.

Figure 5. Mean length and 95% confidence intervals for rainbow trout, by age group, sampled from the Agulukpak and Agulowak Rivers.
fishes caught in either river were retained, anglers fishing the Agulowak River had a greater tendency to keep fish for eating than did anglers fishing the Agulukpak River.

Rainbow trout first recruit into the fishery (are large enough to be captured using sport fishing gear) in considerable numbers at age 3 (Figure 6), when they average approximately 300 mm in length. In the Agulukpak River, rainbow trout are fully recruited to the fishery at age 5 . However, age 4 and age 5 fish contributed equally to the samples of the catchable population from the Agulowak River suggesting either a weak 1983 brood year (age 5 fish) or, more likely, given the consumptive nature of the Agulowak fishery, is indicative of overharvest of the larger older age fish in the Agulowak River.

Figure 6. Percent, by age group, of rainbow trout sampled from the Agulukpak and Agulowak Rivers, 1988.

LITERATURE CITED

ADF\&G. 1986. 1986 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 32 pp.
\qquad . 1987. 1987 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 32 pp.
__ 1988. 1988 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 56 pp.

Clutter, R. I. and L. E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bull. Int. Pac. Salmon Fish. Comm., No. 9. 159 pp.

DiConstanzo, C. J. 1956. Creel census techniques and harvest of fishes in Clear Lake, Iowa. Ph.D. dissertation, Iowa State College, Ames, Iowa. 130 pp.

Goodman, L. A. 1960. On the exact variance of products. J. Am. Stat. Ass. 55:708-713.

Jessen, R. J. 1978. Statistical survey techniques. John Wiley and Sons, New York, New York. 520 pp.

Neuhold, J. M. and K. H. Lu. 1957. Creel census method. Utah State Department Fish Game Publ. 8, Salt Lake City, Utah. 36 pp.

Schaeffer, R. L., W. Mendenhall, and L. Ott. 1979. Elementary survey sampling. Duxbury Press, North Scituate, Mass. 278 pp.

APPENDIX

Appendix Table 1. Angler counts for the sport fishery in the Agulukpak River, 1986.

1/ Wd = Weekday; We = Weekend or holiday.
2/ Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759);
E (1800-2100).

Appendix Table 2. Anglex counts for the sport fishery in the Agulowak River, 1986.

Period 21								Period 21					
Date Wd/We 1		A	B	c	D	E	Date	$1 /$	A	B	c	D	E
06/19	Wd	0					07/24	Wd					
06/20	We						07125	We			1	0	
06/21	We	0	0				07/26	We		0	3	18	
06/22	Wd				0		$07 / 27$	Wd		2	16		
06/23	Wd		2	5			07/28	Wd		3	3	1	
06/24	Wd		2		16		07/29	Wd					
06/25	Wd						07/30	Wd			8		3
06/26	Wd						07/31		0	3			
06/27	We						08/01	We					
06/28	We			5	8		08/02	We					3
06/29	Wd		0				08/03	Wd		0	3		
06/30	Wd						08/04	Wd		2		5	
07/01	Wd						08/05	Wd		7	6		
07/02	Wd						08/06	Wd					
07/03	Wd		1	0			08/07	Wd					
07104	We		4	4			08/08	We			2	3	
07105	We		4		6		08/09	We		0	2		
07106	Wd		2		2		08/10	Wd		5		9 5	
07107	Wd	1	0				08/11	Wd		1		5	
07108	Wd			4			08/12	Wd					
07109	Wd						08/13	Wd	0			0	
07/10	Wd		2	6			08/14	Wd					
07/11	We		0		9		08/15	We					
07/12	We	0	0				08/16	We	3	0			
07/13	Wd				15		08/17	Wd	0		0		
07/14	Wd						08/18	Wd	9			1	
07/15	Wd						08/19	Wd					
07/16	Wd			0	0		08/20	Wd	3			0	
07/17	Wd		0	6			08/21	Wd	0	3			
07/18	We						08/22	We	6	6			
07/19	We	1				9	08/23	We	0		13		
07/20	Wd		20	14									
07/21	Wd												
07/22	Wd			0	0								
07/23	Wd												

1/ Wd = Weekday; We = Weekend or holiday
2/ From 6/19 - 7/12: Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-2059).
From 7/13-8/11: Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2100).
From 8/13-8/23: Period A (0600-1159); B (1200-1459); C (1500-1759); D (1800-2100).

Appendix Table 3. Angler counts for the sport fishery in the Agulowak River, 1987.

Period 21								Period 21			
Date	Wd/We $1 /$	A	B	c	D	Date	Wd/We $1 /$	A	B	C	D
06/06	We				6	07/25	We			8	10
06/07	We	3	5			07/26	We	6	16		
06/08	Wd					07/27	Wd				
06109	Wd	2		2		07/28	Wd	6			5
06/10	Wd		0		3	07/29	Wd				
06/11	Wd	1		1		07/30	Wd				
06/12	Wd		0		6	07/31	Wd		6	3	
06/13	We	1	3			08/01	W.		9		11
06/14	We		1		3	08/02	We	0	4		
06/15	Wd			0	0	08/03	Wd				
06/16	Wd					08/04	Wd	2		2	
06/17	Wd		3		1	08/05	Wd		0		
06/18	Wd	2		0		08/06	Wd	7		4	
06/19	Wd		2	7		08/07	Wd		2		0
06/20	We	0		0		08/08	We	7	4		
06/21	We			4	0	08/09	We				
06/22	Wd					08/10	Wd				
06/23	Wd					08/11	Wd				
06/24	Wd		5	5		08/12	Wd			2	1
06/25	Wd			6	13	08/13	Wd	5		0	
06/26	Wd					08/14	Wd		11		3
06/27	We			5	15	08/15	We		5		
06/28	We			0	4	08/16	We	3	4		
06/29	Wd					08/17	Wd	0	6		
06/30	Wd					08/18	Wd				
07/01	Wd					08/19	Wd	8		8	
07/02	Wd					08/20	Wd		13		
07/03	Wd		4	4		08/21	Wd	8			
07104										18	
07105	We		6	8		08/23	We	6			
07106	Wd					08/24	Wd	3		0	
07107	Wd	5		1		08/25	Wd			0	
07/08	Wd		6		10	08/26	Wd				
07/09	Wd	3				$08 / 27$	Wd		1		
07/10	Wd		8			08/28	Wd	6			
07/11	We	6	8			08/29	We		20	3	
07/12	We	10		11		08/30	We	5		4	
07/13	Wd			0	6	08/31	Wd			0	
07/14	Wd					09/01	Wd				
07/15	Wd		12		5	09102	Wd				
07/16	Wd	1		5		09103	Wd		7	0	
07/17	Wd		5	5		09/04	Wd				
$\begin{aligned} & 07118 \\ & 07 / 19 \end{aligned}$	We We	5		0 6	2	$09 / 05$ $09 / 06$	We We			1	
07/20	Wd					09/07	Wd	4			
07/21	Wd										
07/22	Wd		0	0							
07/23	Wd			9	2						
07/24	Wd										

1/ Wd = Weekday; We Weekend or holiday.
2/ Period A (0800-1159); Period B (1200-1559); Period C (1600-1959); Period D (2000-2400).

Appendix Table 4. Angler counts for the sport fishery in the Agulowak River, 1988.

(Wd - Weekdayi We - Weekend or holiday.
21 Period A (0900-1059); Period E (1100-1259): Parlod C (1200-1459);

Appendix Table 5. Sumary of dally angler effort (angler-hours) and catch ratas (cpue, fish per angler-hour) for ralnbow trout, Arctic char, Arctic arayling, and sockeje

	Wdihe	Sample	Effort		Rainbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon			Coho Salmon		
Date	11	Slze	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Man	Std Err	cpue	Hean	Std Err	cPuE
7101	Wd	3	7.500	0.000	4.670	1.764	0.622	18.670	1.856	2.489	4.670	2.906	0.622	0.000	0.000	0.000	0.000	0.000	0.000
7103	He	7	2.400	0.010	0.000	0.000	0.000	8.000	4.914	3.290	0.570	0.571	0.235	0.000	0.000	0.000	0.000	0.000	0.000
7104	He	11	1.700	0.510	0.000	0.000	0.000	1.180	0.352	0.684	0.270	0.195	0.158	0.000	0.000	0.000	0.000	0.000	0.000
7106	Wd	12	2.300	0.610	0.170	0.112	0.073	2.000	0.590	0.873	0.920	0.452	0.400	0.000	0.000	0.000	0.000	0.000	0.000
7108	Hd	4	2.000	0.000	0.000	0.000	0.000	0.250	0.250	0.125	0.500	0.500	0.250	0.000	0.000	0.000	0.000	0.000	0.000
7110	Wd	${ }^{6}$	2.500	0.340	0.170	0.167	0.067	1.500	0.764	0.600	0.000	0.000	0.000	0.170	0.167	0.067	0.000	0.000	0.000
7111	He	10	2.700	0.680	0.700	0.423	0.259	1.000	0.422	0.370	1.400	0.702	0.519	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 13$	Hd	2	5.500	0.000	9. 500	0.500	1.727	1.500	1.500	0.273	7.000	4.000	1.273	0.000	0.000	0.000	0.000	0.000	0.000
7116	Wd	9	1.400	0.310	1. 330	0.577	0.960	0.560	0.176	0.400	1.360	0.709	1.120	0.000	0.000	0.000	0.000	0.000	0.000
7117	Hd	14	2.100	0.360	0.500	0.203	0.237	0.290	0.163	0.136	0.640	0. 308	0.305	0.070	0.071	0.034	0.000	0.000	0.000
7120 $7 / 22$	Hd Hd	8	1.900 3.600	0.080	0.630 1.830	0.698 0.601	O. 0.315	0.130	0.125	0.065	0.130	0.125	0.065	0.000	0.000	0.000	0.000	0.000	0.000
7/25	We	12	3.600 $\mathbf{5 . 8 0 0}$	0.740 0.650	1.830 1.420	0.601 0.417	0.315 0.243	0.170 0.330	0.167 0.188	0.047 0.057	0.000 7.250	0.000 2.346	0.000 1.243	1.500 0.000	1.084	0.422 0.000	0.000	0.000	0.000
7127	Wd	8	1.400	0.260	0.130	0.125	0.091	0.130	0.125	0.091	0.000	2.346 0.000	1.243 0.000	0.130	0.125	0.091	0.000 0.000	0.000 0.000	0.000 0.000
7128	wd	16	4.700	0.650	4.880	1.796	1.037	0.000	0.000	0.000	7.750	1.870	1.648	0.060	0.063	0.013	0.000	0.000	0.000
7129	Wd	8	6.100	0.320	6. 380	0.844	1.037	0.000	0.000	0.000	4.000	1.000	0.651	0.250	0.164	0.041	0.000	0.000	0.000
$1 / 30$	Wd	9	4. 400	0.580	4.220	1. 362	0.958	0.330	0.236	0.076	4.890	2.098	1.109	0.000	0.000	0.000	0.000	0.000	0.000
7131	Wd	17	3.900	0.660	4.590	1. 709	1.182	0.590	0.243	0.152	4.240	1.684	1.091	0.350	0.191	0.091	0.000	0.000	0.000
8/02	We	19	5.600	0.360	3. 890	1. 291	0.697	0.370	0.191	0.066	7.000	1.929	1.253	0.110	0.072	0.019	0.000	0.000	0.000
8/03	Wd	11	1. 900	0.280	1.090	0.285	0.571	0.000	0.000	0.000	2.270	1.071	1.190	0.000	0.000	0.000	0.000	0.000	0.000
8104	Wd	4	3. 200	0.000	4.750	1.031	0.919	0.500	0.500	0.097	7.250	3.198	1.402	0.000	0.000	0.000	0.000	0.000	0.000
8108	We	19	3.600 4.200	0.610	3.050	0.807	0.851	0.740	0.263	0.205	4.370	1.447	1.218	0.000	0.000	0.000	0.160	0.115	0.044
$8 / 09$	We	6	1.400	0.140	0. 330	0.333	0.230	1.120	O.410	0.269 0.576	3.290 0.000	1.017 0.000	0.792 0.000	0.240	0.161	0.057	0.000	0.000	0.000
8/10	Wd	10	5.400	0.450	4.400	1.536	0.815	2.000	0.856	0.370	1.200	0.611	0.222	0.800	0.467	0.922	0.000 0.000	0.000 0.000	0.000 0.000
8/11	Wd	10	5.800	0.250	1.000	0.394	0.174	0.500	0.307	0.087	2.900	1.386	0.504	1.8000	0.632	0.148	0.000	0.000 0.000	0.000 0.000
$8 / 13$	wd	6	8.300	0.070	5.830	3.544	0.705	1.170	0.601	0.141	2.670	1.202	0.322	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 14$	Hd	12	3.400	0.850	7.920	1.769	2.356	6.170	1.930	1.835	1.920	0.783	0.370	0.500	0.417	0.149	0.000	0.000	0.000
$8 / 17$	Hd	21	4.300 4500	0.560	3.430 3.500	0.555	0.791	2.380	0.537	0.349	0.900	0.337	0.209	0.190	0.112	0.044	0.000	0.000	0.000
$8 / 18$ $8 / 20$	Wd	8	4.500	1.040	3.500	1.225	0.718	0.750	0.250	0.167	0.750	0.412	0.167	0.750	0.412	0.167	0.000	0.000	0.000
$8 / 20$ $8 / 21$	Wd	8	4.000	2.120	4.380	1.880	1.083	3.500	1.336	0.866	0.130	0.125	0.031	0.880	0.398	0.217	0.000	0.000	0.000
$8 / 22$	We		2.500	1.170 0.000	1.750	0.802 0.479	0.337 0.300	1.250 0.250	0.840 0.250	0.448 0.100	0.630 0.000	0.324 0.000	0.224 0.000	1.500 0.250	0.719 0.250	0.537 0.100	0.000 0.000	0.000 0.000	0.000

1) Wd - Weekday; We - Weekend or holldey
```
Appendix Table 6. Sumary of dally angler offort (angler-hourg) and harvaat ratea (upuE, flah per anglar-hour) for ralnbow trout, Arctic char, Arctic trayling, and sockeye
and coho saleon from angiler intervievs in the Asulukpak aiver aport fishery. 1986
```

			Effort		Ralnbow Trout			Axctic Chax			Arctic Graylins			Sockeye salmon			Coho Salcon		
Date	$\begin{aligned} & \mathrm{Wd} / \mathrm{We} \\ & \text { I/ } \end{aligned}$	Sample Size	Mean	Std Ext	Mean	Std Err	hpus	Mean	std Ext	hpue	Kean	std Ext	apus	Mean	Ed $\mathbf{E x}$	HPUE	Mean	8td Erx	ypue
$7 / 01$	Wd	3	7.500	0.000	0.000	0.000	0.000	1.330	0.667	0.178	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7103	We	7	2.400	0.010	0.000	0.000	0.000	0.660	0.404	0.353	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7104	We	11	1.700	0.510	0.000	0.000	0.000	0.180	0.122	0.105	0.090	0.091	0.053	0.000	0.000	0.000	0.000	0.000	0.000
7106	Wd	12	2.300	0.610	0.000	0.000	0.000	0.580	0.193	0.255	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3108	Wd	4	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7110	Wd	6	2.500	0.340	0.000	0.000	0.000	0.170	0.167	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$1 / 11$	We	10	2.700	0.680	0.000	0.000	0.000	0.400	0.221	$0.14{ }^{4}$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/13	Wd	2	5.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.500	0.091	0.000	0.000	0.000	0.000	0.000	0.000
7/16	$\underline{ }$	-	1.400	0.310	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7117	ud	14	2.100	0.360	0.000	0.000	0.000	0.070	0.071	0.034	0.140	0.097	0.068	0.070	0.071	0.034	0.000	0.000	0.000
$1 / 20$	${ }^{4}$	8	1.900	0.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/22	Md	12	3.600	0.740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7125	He	12	5.800	0.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7127	Wd	8	1.400	0.260	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.130 0.060	0.125 0.063	0.091	0.000	0.000 0.000	0.000 0.000
$7 / 29$ $1 / 30$	${ }_{\text {Wd }}$	9	4.600	0.380	0.000	0.000	0.000	0.110	0.111	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1/31	Wd	17	3.900	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.240	0.161	0.061	0.000	0.000	0.000
8102	We	19	5.600	0.360	0.000	0.000	0.000	0.110	0.105	0.019	0.160	0.158	0.028	0.000	0.000	0.000	0.000	0.000	0.000
8103	Hd	11	1.900	0.280	0.000	0.000	0.000	0.000	0.000	0.000	0.270	0.273	0.143	0.000	0.000	0.000	0.000	0.000	0.000
8104	Hd	4	3.200	0.000	0.000	0.000	0.000	0.300	0.500	0.097	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8105	Wd	19	3.600	0.610	0.000	0.000	0.000	0.210	0.123	0.059	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8108	He	17	4.200	0.530	0.000	0.000	0.000	0.160	0.128	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8109	He	6	1.400	0.140	0.000	0.000	0.000	0.170	0.167	0.115	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 10$	Hd	10	3. 400	0.450	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 11$	Wd	10	5. 000	0.250	0.000	0.000	0.000	0.100	0.100	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8113	${ }_{4 d}$	12	e. 300 3.400	0.070 0.850	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
8114	Hd	12	3.400	0.850 0.560	0.000 0.000	0.000 0.000	0.000	-0.050	0.048	0.011					0.000	0.000	0.000	0.000	0.000 0.000
8117	Wd	21	4.300 4.500	0.560 1.040	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000
\%/120	ud	-	4.000	1.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8121	wd	s	2.800	1.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8122	We	4	2.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 0.000	0.000	0.000	0.000	0.000	0.000

He = Heekend or holldey

Appendix Table 7. Sumary of daily angler offort (angler-hours) and catch rates (Cpug, fieh per angler-hour) for ralinbow crout, Arctic char, Arctic siayling, sockeye saleon,
and Morthern pike from angler interviewa in the Agulukpak River aport fishery, 19e7.

			Effort		Ralnbow Trout			Aretic Char			Arctic Grayling			Sockeye Salmon			Morthern Pike		
Date	Wd/we	$\begin{aligned} & \text { Sasple } \\ & \text { size } \end{aligned}$	Mean	Std Err	Mean	Std Err	CPUE	Mean	std Err	crut	Moas	Std Erz	cpus	Mean	Std $\mathbf{I t r}$	cpus	Mean	fud Ert	cpus
$6 / 17$	Wd	2	4. 300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.500	3.500	1.294	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 19$	Wd	4	3.500	0.000	0.250	0.250	0.071	1.500	0.957	0.429	0.000	0.000	0.000						
$6 / 21$	We	2	1.300	0.000	0.500	0.500	0.400	0.000	0.000	0.000	2.000	2.000	1.600	0.000	0.000	0.000	0.000	0.000	0.000 0.000
$6 / 22$	Wd	7	5.000	0.650	0.430	0.202	0.086	5.710	2.697	1.143	4.140 11.330	1.779	0.629 1.619	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
$6 / 24$	Wd	3	7.000	0.000	2.000	0.377	0.286	0.670	0.133	0.093	11.150 2.000	1.225	0.500	0.000	0.000	0.000	0.750	0.750	0.120
$6 / 25$	${ }^{\boldsymbol{M}}$	4	4.000	0.000	0.000	0.000	0.000	6.750 2.800	3.530	0.824	2.000 0.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 26$	Hd	5	3.400 5.100	0.460 0.070	0.400 0.000	0.245 0.000	0.000	0.250	0.250	0.049	3.250	1.601	0.634	0.000	0.000	0.000	0.000	0.000	0.000
71101	Wd	7	4.100	0.550	0.140	0.143	0.036	0.140	0.143	0.034	1.430	0.751	0.345	0.140	0.143	0.034	0.000	0.000	0.000
7102	ud	3	3.800	0.000	2.330	1.453	0.622	7.000	2.517	1.367	1.000	0.577	0.267	0.000	0.000	0.00	0.000	0.000	0.000
7103	We	10	5.800	0.640	2.200	0.696	0.363	3.100	1.847	0.539	. 0000	2.256	1.391	0.000	0.000	0.000	. 000	. 0.000	0.122
7104	He	4	1.700	0.170	1.000	1.000	0.600	0.250	0.250	0.150	0. 3190	2.000	1.000	0.000	0.000	0.000	1.330	0.569	0.000
7105	He	12	6.300	0.810	1.170	0.461	0.184	2.750	1.115	0.276	6.350 2.250	2.539 0.906	0.581	0.000	0.000	0.000	0.500	0.359	0.129
7107	Wd	12	3.900	0.360	0.250	0.131	0.065	2.330 1.000	O. 408	0.602 0.143	2.250	2.000	0.371	0.250	0.250	0.036	0.000	0.000	0.000
7108	Wd	7	7.000	0.380 0.720	1.500 3.710	0.957 0.286	0.214 0.839	2.710	1.700	1.290	1.430	0.841	0.323	0.000	0.000	0.000	0.000	0.000	0.000
7109	Md	13	4.400 4.600	0.720 0.490	2.080	0.525	0.650	14.000	4.692	3.033	0.850	0.436	0.183	0.000	0.000	0.000	0.000	0.000	0.000
7111	We	4	0.800	0.120	0.250	0.250	0.308	0.500	0.500	0.615	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 12$	We	3	4.500	1.000	0.330	0.333	0.074	4.670	2.667	1.037	0.000	0.000	0.000	2.330 0.050	1.856	0.519 0.010	0.000	0.000	O. 0000
7113	Wd	0	4.000	0.400	1.400	0.396	0.289	7.900	2.458 0.250	1.629	1. 250	O. 500	0.167	0.000	0.000	0.000	0.000	0.000	0.000
7114	Wd	4	3.000	0.000	10.000	2.708	0.333 0.211	$\begin{array}{r}\text { 20.000 } \\ \\ \hline 8.250\end{array}$	9. 462	5.895	0.670	0.494	0.140	0.170	0.167	0.035	0.000	0.000	0.000
7115	Hd	5	4.800	0.440 0.360	1.000 0.530	0.816 0.274	0.211	28.000 0.600	9.362	0.310	0.200	0.200	0.106	0.000	0.000	0.000	0.000	0.000	0.000
7116	Wd	15	1.900 2.700	0.390	0.430	0.173	0.158	0.570	0.251	0.211	0.290	0.125	0.105	0.500	0.272	0.118	0.000	0.000	0.000
7118	We	5	2.900	0.900	0.600	0.600	0.207	0.600	0.800	0.276	0.200	0.200	0.069	0.000	0.000	0.000	0.000	0.000	0.000
7119	He	*	4.600	0.560	1.000	0.732	0.216	1.380 0.560	1.017	0.297	10.000 6.780	4.456 3.519	2.162 1.794	0.130 0.110	0.125	0.027 0.029	0.000 0.000	0.000 0.000	0.000
7120	${ }_{\text {Hd }}$?	3.000 4.400	0.940 0.180	0.460 3.440	0.242 1.355	0.1175	1.360 1.220	0.294	0.275	4.670	3.225	1.050	0.110	0.111	0.025	0.000	0.000	0.000
7121	Md	9	4.400 4.900	O.440	3.225	1.358 0.620	0.256	4.500	0.655	0.923	1.000	0.661	0.205	0.180	0.295	0.178	0.000	0.000	0.000
7/22	Wd	${ }^{3}$	6.900 6.000	0.320	1.560	0.398	0.260	B. 300	2.208	1.417	1.250	2.069	1.208	0.310	0.176	0.052	0.000	0.000	0.000
7124	Ud	11	5.700	0.330	3.550	1.423	0.619	0.000	0.000	0.000	\$.640	3.581	1.508	0.640	0.754	0.111	0.000	0.000	0.000
7125	W。	4	5.000	0.000	0.000	0.000	0.000	0.250	0.250	0.050	0.250	0.250	0.050	1.750	0.750	0. 350	0.000	0.000	0.000
7126	He	8	6.000	0.000	4.750	2.284	0.792	7.500	3.059	1.250 0.000	6.000 6.500	2.171 0.500	0.697 0.929	0.030	0.000 0.654	0.119	0.000	0.000	0.000 0.000
7127	Wd	6	7.000	0. 0.900	6. 6.220	2. 2807	1.068	1.000	0.601	0.205	6.440	3.805	1.318	0.110	0.111	0.023	0.000	0.000	0.000
7128 $7 / 29$	md	9	4.900 6.500	0.900 0.660	11.830	4.377	1.821	0.000	0.000	0.000	7.330	4.232	1.128	0.000	0.000	0.000	0.000	0.000	0.000
7129 $7 / 30$	${ }_{\text {ud }}$	6	4.000	0.970	5.500	3.964	1.375	0.000	0.000	0.000	5.170	3.371	1.292	0.000	0.000	0.000	0.000	0.000	0.000
7131	Wd	11	6.600	0.150	5.180	1.548	0.781	0.000	0.000	0.000	5.910	1.890	0.990	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 01$	We	6	4.500	0.670	0.330	0.333	0.074	0.500	0.342	0.111	0.000	0.000	0.000	0.000	. 0.000	0.000	. 000	. 000	0.000
$8 / 02$	We	12	6.900	0.190	4.670		0.675	3.250	1.548	0.478	2.670 1.500	${ }_{0} .1619$	0.320	0.000 0.000	0.000			0.000	0.000 0.000
$8 / 03$	Wd	6	6.800	0.170	2.830	0.872	0.415	1.670	1.174	0.244	1.500 2.640	1.073	0.220 0.460	0.090	0.091	0.016	0.000	0.000	0.000
$8 / 04$	Ud	11	5.600	0.340	4.640	1.718	0.123	0.730	0.333	0.128									

Appendix Table 7. Sumary of dally angler effort (angler-houra) and catch rates (Cpue, fish per angler-hour) for rainbov trout, Arctic char, Arctic erayling, sockeye salmon,

			Effort		Ralnbov Trout			Areric Char			Arctic Grajling			Sockeye salmon			Morthern Pike		
Data	1/We	$\begin{aligned} & \text { Sample } \\ & \text { Sise } \end{aligned}$	Maen	Std Err	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Ex	CPUE	Mean	std Ers	CPUE
$8 / 05$	Wd	5	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	0.735	1.267	0.000	0.000	0.000	0.000	0.000	0.000
8106	Wd	9	7.300	0.410	1.670	0.408	0.227	0.220	0.222	0.030	9.000	2.186	1.227	0.560	0.377	0.076	0.000	0.000	0.000
8107	wd	,	7.000	0.000	11.500	0.500	1.643	0.000	0.000	0.000	12.000	6.819	1.114	0.000	0.000	0.000	0.000	0.000	0.000
8108	We	2	7.000	0.000	12.500	2.500	1.786	0.000	0.000	0.000	1.000	1.000	0.143	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 09$	We	14	6.700	0.300	4.290	0.848	0.638	0.140	0.143	0.021	5.290	1.360	0.787	0.570	0.291	0.085	0.000	0.000	0.000
8110	Wd	6	7.000	0.630	4.000	1.291	0.571	0.330	0.333	0.048	7.500	2.837	1.071	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 11$	Wd	7	7.600	0.570	1.290	0.565	0.173	2.290	0.808	0.308	1.710	1.107	0.231	0.430	0.429	0.058	0.000	0.000	0.000
$8 / 12$	Nd	12	7.100	0.310	4.580	1.076	0.647	1.500	0.435	0.212	4.330	1.378	0.612	0.420	0.260	0.059	0.000	0.000	0.000
$8 / 13$	Hd	7	5.000	0.850	4.860	1.580	0.971	2.290	0.918	0.457	5.430	1.631	1.086	1.000	0.845	0.200	0.000	0.000	0.000
8/14	Wd	19	6. 400	0.300	7.260	1.757	1.131	2.210	0.920	0.344	6.580	2.081	1.025	0.680	0.276	0.107	0.000	0.000	0.000
$8 / 15$	He	9	6.100	0.260	6.220	3.282	1.018	2.220	1.498	0.364	3.890	1.060	0.636	1.560	0.377	0.255	0.000	0.000	0.000
$8 / 16$	We	8	7.500	0.190	7.500	1.000	1.000	4.000	1.018	0.533	2.750	0.590	0.367	2.000	0.500	0.267	0.000	0.000	0.000
$8 / 17$	wd	9	7.000	0.000	6.560	0.915	0.937	4.560	1.564	0.651	2.560	1.069	0.365	0.440	0.294	0.063	0.000	0.000	0.000
8118	Wd	14	6.200	0.260	2.290	0.910	0.368	3.360	0.843	0.540	3.360	0.692	0.540	0.500	0.228	0.080	0.000	0.000	0.000
8/19	Wd	7	4.900	0.550	3.860	0.595	0.794	0.860	0.261	0.176	2.570	1.110	0.529	0.000	0.000	0.000	0.000	0.000	0.000
9/20	Wd	10	1.100	0.310	6.200	1.436	0.873	4.900	0.823	0.690	3.900	1.472	0.549	0.400	0.267	0.056	0.000	0.000	0.000
$8 / 21$	Wd	13	7.300	0.150	6.230	1.014	0.849	1.460	0.447	0.199	4.000	1.006	0.545	1.380	0.394	0.189	0.000	0.000	0.000
$8 / 22$	He	9	6.000	0.500	2.330	0.943	0.389	3.000	0.898	0.500	0.110	0.111	0.019	3.440	0.930	0.574	0.000	0.000	0.000
$8 / 23$	He	9	5.100	0.770	4.330	1.908	0.848	2.890	1.306	0.565	2.110	1.306	0.413	1.220	0.662	0.239	0.000	0.000	0.000
8/24	wd	7	6.400	0.980	10.000	1.496	1.573	1.430	0.685	0.225	8.570	2.983	1.348	0.290	0.184	0.045	0.000	0.000	0.000
8126	wd	6	6.800	0.970	5.500	2.277	0.805	0.830	0.477	0.122	1.670	0.615	0.244	1.000	0.516	0.146	0.000	0.000	0.000
$8 / 27$	Hd	5	5.000	1.220	5.400	3.341	1.080	2.200	1.356	0.440	1.200	0.970	0.240	2.400	1.749	0.480	0.000	0.000	0.000
8128	wd	6	6.300	0.670	4.170	1.797	0.658	3.330	1.498	0.526	0.330	0.211	0.053	1.170	1.167	0.184	0.000	0.000	0.000
$8 / 29$	We	7	5.700	0.890	6.860	2.165	1.200	0.710	0.474	0.125	2.140	0.937	0.375	1.710	0.714	0.300	0.000	0.000	0.000
$8 / 30$	We	3	7.000	0.000	18.670	4.096	2.667	2.670	0.333	0.381	3.330	1.856	0.476	3.670	2.333	0.524	0.000	0.000	0.000
$8 / 31$	Wd	22	6.600	0.300	7.140	1.315	1.075	0.230	0.113	0.034	1.860	1.035	0.281	1.320	0.357	0.199	0.000	0.000	0.000
9101	wd	12	7.200	0.210	9.080	1.379	1.267	0.170	0.112	0.023	1.580	0.679	0.221	1.170	0.458	0.163	0.000	0.000	0.000
9102	wd	3	5.000	0.000	10.330	2.333	2.067	0.670	0.667	0.133	1.000	0.000	0.200	6.000	2.082	1.200	0.000	0.000	0.000
9103	Wd	11	7.200	0.120	11.640	2.337	1.620	2.730	0.727	0.380	3.640	1.162	0.506	2.820	1.025	0.392	0.000	0.000	0.000
$9 / 04$	wd	11	6.700	1.380	7.090	1.988	1.054	2.180	0.932	0.324	3.360	1.370	0.500	0.270	0.141	0.041	0.270	0.195	0.041
9105	We	12	5.200	0.630	10.330	2.054	1.984	0.580	0.260	0.112	2.170	1.278	0.416	0.420	0.260	0.080	0.000	0.000	0.000
9106	We	6	4.000	1.340	5.500	2.262	1.375	1.670	0.760	0.417	0.830	0.401	0.208	3.170	1.641	0.792	0.000	0.000	0.000
9107	We	20	6.800	0.360	9.250	2.191	1.367	1.850	0.483	0.273	4.650	1.757	0.687	0.650	0.221	0.096	0.000	0.000	0.000
9108	Wd	10	7.000	0.000	13.500	1.772	1.929	2.300	0.775	0.329	4.400	1.166	0.629	1.400	0.521	0. 200	0.000	0.000	0.000
$9 / 09$	wd	+	7.000	0.000	7.250	2.150	1.036	2.000	1.080	0.286	0.000	0.000	0.000	1.750	0.479	0.250	0.000	0.000	0.000
9110	Wd	9	6.100	0.420	13.330	2.789	2.182	1.890	0.611	0.309	1.110	0.873	0.182	0.560	0.336	0.091	0.220	0.222	0.036
$9 / 11$	Wd	20	6.400	0.370	11.100	1.934	1.741	1.100	0.307	0.173	4.450	2.411	0.698	1.200	0.536	0.188	0.000	0.000	0.000
$9 / 12$	He	15	7.500	0.130	6.470	1.059	0.858	1.530	0.568	0.204	2.130	0.631	0.283	0.530	0.307	0.071	0.000	0.000	0.000
9/13	He	8	7.000	0.000	17.500	2.338	2.500	0.250	0.250	0.036	3.880	1.076	0.554	0.750	0.366	0.107	0.000	0.000	0.000
$9 / 14$	Hd	10	6.400	0.600	4.400	0.748	0.688	0.300	0.300	0.047	1.000	0.471	0.156	1.800	0.646	0.281	0.000	0.000	0.000
$9 / 15$	${ }^{4}$	4	5.500	0.870	6.750	3.198	1.227	1.500	0.866	0.273	7.500	4.787	1.364	0.750	0.750	0.136	0.000	0.000	0.000
9116	${ }^{6}$	12	7.200	0.110	14.250	3.953	1.988	0.170	0.112	0.023	6.420	1.401	0.395	1.000	0.492	0.140	0.000	0.000	0.000

 Summary Northern pike froe angler intervlews in the Asulukpak River aport fishery, 1987.

			Effort		Ralnbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon			Morthern Pike		
Date	$\begin{gathered} \mathrm{Wd} / \mathrm{We} \\ 1 / \end{gathered}$	$\begin{gathered} \text { Smpple } \\ \text { S12e } \end{gathered}$	Mean	Std Err	Man	Std Erx	EPUE	Maan	Std Er	HPUE	Mean	Std Err	HPUB	Mean	drr	HPUE	Mean	Std Erx	HPUE
$6 / 17$	Hd	2	4.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 19$	Wd	4	3.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						
6/21	We	2	1. 300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/22	ud	7	5.000	0.650	0.000	0.000	0.000	0.860	0.340	0.171 0.095	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	O.000	0.000 0.000	0.000	0.000	0.000
$6 / 24$	Wd	3	7.000	0.000	0.000	0.000	0.000	0.670	O. 333	0.095 0.313	0.750	0.479	0.188	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 25$	wd	5	4.000	0.000 0.460	0.000 0.000	0.000 0.000	0.000 0.000	1.250 1.000	0.479 0.632	0. 0.294	0.7000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 26$	Wd	5	3.400 5.100	0.460 0.070	0.000 0.000	0.000 0.000	0.000	1.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0. 000	0.000
6128	We	4	5.100 5.300	0.070 0.000	0.000 0.000	0.000 0.000	0.000	0.250	0.250	0.045	0.250	0.250	0.045	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 30$ $7 / 101$	Wd	4	3. 300 4.100	O. 350	0.000	0.000	0.000	0.000	0.000	0.000	0.430	0.429	0.103	0.140	0.143	0.034	0.000	0.000	0.000
7102	wd	3	3.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$1 / 03$	We	10	5.800	0.640	0.100	0.100	0.017	0.800	0.800	0.139	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000 0.000
1104	He	4	1.700	0.870	0.000	0.000	0.000	O. 0.330	0.225	0.053	0.170	0.167	0.026	0.000	0.000	0.000	0.000	0.000	0.000
7105	He	12	6.300	0.810	0.000	0.000	0.000	0.330 0.580	0.225 0.260	0.053	0.000	0.000	0.000	0.000	0.000	0.000	0.080	0.083	0.022
7107	Hd	12	3.900	0. 360	0.000	0.000	0.000	0.580 0.000	0.260 0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.036	0.000	0.000	0.000
7108	Wd	,	7.000	0.580	0.000	0. 0000		0.000	0.000 0.286	0.065	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7109	Wd	7	4. 400	0.720	0.000 0.000	0.000 0.000	0.000 0.000	0.290 0.620	0.286 0.266	0.133	0.080	0.077	0.017	0.000	0.000	0.000	0.000	0.000	0.000
1/10	Wd	13	4.600	0.490	0.000	0.000	0.000	0.620	0.266 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 11$	We	3	0.800 4.500	0.120 1.000	0.000 0.000	0.000 0.000	0.000	0.330	0.333	0.074	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 13$	Wd	20	4.800	0.400	0.000	0.000	0.000	0.500	0.295	0.103	0.000	0.000	0.000	0.050	0.050	0.010	0.000	0.000	0.000
$7 / 14$	wd	4	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 15$	wd	6	4.800	0.440	0.000	0.000	0.000	0.500	0.500	0.105	0.000	0.000	0.000	0.000	0.000	0.000	-. 000	0.000	0.000
7/16	Wd	15	1.900	0.380	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	O. 0000	0.000	0.000	0.000	0.000 0.000	0.000	0.000 0.000
7117	Wd	14	2.700	0.590	0.000	0.000	0.000	0.430	0.173	0.158 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 18$	We	5	2. 900	0.900	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.250	0.250	0.054	0.130	0.125	0.027	0.000	0.000	0.000
$7 / 19$	We	8	4.600	0.360	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.111	0.029	0.000	0.000	0.000
7120	d	9	3.800	0.940	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.220	0.147	0.050	0.000	0.000	0.000	0.000	0.000	0.000
7/21	Wd	9	4.400	0.180	0.000 0.000	0.000	0.000	0.130	0.125	0.026	0.000	0.000	0.000	0.130	0.125	0.026	0.000	0.000	0.000
$7 / 22$	ud	${ }^{8}$	4.900	0.480	0.000 0.000	0.000	0.000	2.060	0.528	0.344	0.000	0.000	0.000	0.190	0.136	0.031	0.000	0.000	0.000
7/23	wd	16	6.000	0.320 0.330	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.640	0.544	0.111	0.000	0.000	0.000
7124	Wd	11	5.700	0.330	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.750	0.250	0.150	0.000	0.000	0.000
7125	He	4	5.000 6.000	0.000 0.000	0.000 0.000	0.000	0.000	1.500	0.824	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$7 / 27$	Wd	6	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7128	Wd	9	4.900	0.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.111	0.023	0.000	0.000	0.000 0.000
7129	wd	6	6.500	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000
7/30	Wd	6	4.000	0.970	0.000	0. 000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7131	Wd	11	6. 600	0.130 0.670	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 02$ $8 / 03$	Wd	12	6.800	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8104	ud	11	5.600	0.340	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00

-Cont Inued

Appendix Table 8. Sumary of dally angler offort (angler-hours) and harveat rates (iplof, fish per angler-hour) for
and Northern pike froo angler interviews in the Asulukpak River sport fishery, 1987 (continued).

			Effort		Rainbov Trout			Arctic Char			Aretic Grayling			Sockeye Salmon			Narthern Pike		
Dete	$\begin{gathered} \mathrm{Wd} / \mathrm{We} \\ 1 / \end{gathered}$	$\begin{gathered} \text { Sanple le } \\ \text { Sixe } \end{gathered}$	Mean	Std Err	Mean	Std Err	HPUE	Mean	Sed Err	HPUE	Mean	Std Err	hPus	Mean	td Err	HPUE	Mean	Std Err	PPUE
											0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 05$ $8 / 06$	Wd	5	3.000 7.300	0.000 0.410	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8107	Wd	4	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8108	We	2	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8109	We	14	6.700	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000
$8 / 10$	wd	6	7.000	0.630	0. 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 11$	$\boldsymbol{w d}$	7	7.400	0.570	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000
$8 / 12$	wd	12	7.100	0.310	0.000	0.000	0.000	0.730	0.218	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/13	wd	7	5.000	0.850	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000
$8 / 14$	Wd	19	6.400	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
$8 / 15$	We	9	6.100	0.260	0.110	0.111	0.018	0.220	0.222	0.036	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8116	He	8	7.500	0.190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	O. 0000	0.000	0.000	0.000	0.000
$8 / 17$	Wd	9	3.000	0. 200	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 18$	Wd	14	6.200	0.260 0.550	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 19$ $8 / 20$	Wd	${ }_{10}^{7}$	4.900 7.100	0.350	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 21$	wd	13	7.300	0.150	0.000	0.000	0.000	0.380	0.241	0.052	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8122	We	9	6.000	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 000	0.000	0.000
$8 / 23$	We	9	5.100	0.770	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000
8/24	Hd	7	6.400	0.980	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000
8/26	Wd	6	6.800	0.970	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 27$	Wd	5	5.000	1.220	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 28$	Wd	${ }^{6}$	6.300	0.670	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 29$	We	7	5.700	0.890	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 30$	He	3	7.000	0. 000	0.000	0.000	0.000		0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 31$	Hd	22	6.600	0.300	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$9 / 01$	Hd	12	7.200	0.210	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9102	wd	3	5.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9103	Wd	11	7.200	0.120	0.000	0.000		0.000 0.270	0.000 0.273	${ }_{0} .041$	0.820	0.444	0.122	0.000	0.000	0.000	0.000	0.000	0.000
9104	Wd	11	6.700	1.380	0.000	0.000	0.000 0.000	0.270 0.000	0.273 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9105	He	12	5.200	0.630	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9106	We	${ }^{6}$	4.000	1.340 0.360	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$9 / 07$ $9 / 08$	Hed	20 10	6.800 7.000	0.360 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9109	wd	4	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$9 / 10$	Wd	9	6.100	0.420	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	${ }^{0.000}$	0.000	0.000	0.000
$9 / 11$	Wd	20	6.400	0.370	0.000	0.000	0.000	0.100	0.100	0.016 0.000	0.000 0.000	O.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9112	He	15	7.500	0.130	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$9 / 13$	${ }^{\text {He }}$	$1{ }^{8}$	7.000 6.400	0.000 0.600	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9/15	Wd	4	5.500	0.870	0.000	0.000	0.000	0.250	0.250	0.045	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$9 / 16$	Hd	12	7.200	0.110	0.000	0.000	0.000	0.080	0.083	0.012	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Appendix Table 9. Sumary of dally angler effort (angler-hours) and catch rates (CPUE, flah per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye asimon, and Northern pike from angler Intervievs in the Agulukpak River sport fishery, 1988

			Effort		Rainbow Trout			Arctic Char			Arctic Graylins			Sockeye Salmon		
Date	$1 /$	Slze	Mean	Std Err	Mean	Std Err	CPUE									
614	Wd	4	7.000	0.000	0.750	0.250	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
619	We	9	6.700	0.130	0.560	0.242	0.083	0.000	0.000	0.000	0.330	0.167	0.050	0.000	0.000 0.000	0.000
620	Hd	7	6.200	0.370	1.290	0.360	0.207	0.000	0.000	0.000	1.000	0.577	0.161	0.000	0.000	0.000
621	Wd	7	4.600	0.200	1.000	0.309	0.219	0.000	0.000	0.000	0.290	0.184	0.063	0.000	0.000	0.000
622	Wd	4	5.200	0.000	1.500	0.289	0.290	0.000	0.000	0.000	2.000	1.414	0.387	0.000	0.000	0.000
623	Wd	5	5.000	0.000	1. 400	1.166	0.280	0.000	0.000	0.000	8.000	3.391	1.600	0.000	0.000	0.000
624	Hd	10	4.800	0.480	2.000	0.537	0.417	0.000	0.000	0.000	1.300	0.473	0.271	0.000	0.000	0.000
626	He	4	4.000	0.000	2.250	0.479	0.563	0.000	0.000	0.000	3.000	1.080	0.750	0.000	0.000	0.000
627	Wd	9	5.200	0.260	1.440	0.412	0.277	0.000	0.000	0.000	5.330	1.404	1.021	0.000	0.000	0.000
628	Hd	4	2.500	0.000	1.250	0.750	0.500	0.000	0.000	0.000	0.500	0.500	0.200	0.000	0.000	0.000
629	Hd	9	1.400	0.140	0.330	0.167	0.240	0.000	0.000	0.000	0.560	0.294	0.400	0.000	0.000	0.000
630	Wd	5	4.200	0.800	2.200	0.374	0.524	0.000	0.000	0.000	2.000	2.000	0.476	0.000	0.000	0.000
703	We	8	4.500	0.630	2.750	0.750	0.611	0.000	0.000	0.000	7.750	2.644	1.722	0.000	0.000	0.000
704	He	5	4.000	0.000	1.000	0.447	0.250	0.000	0.000	0.000	2.000	0.837	0.500	0.000	0.000	0.000
705	Wd	4	4.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	15.250	2.839	3.389	0.000	0.000	0.000
706	Wd	4	5.000	0.000	2. 500	1.190	0.500	0.000	0.000	0.000	4.750	0.479	0.950	0.000	0.000	0.000
710	He	11	4.700	0.660	5.820	1.151	1.227	0.000	0.000	0.000	3.450	0.824	0.728	0.000	0.000	0.000
711	Wd	8	5.600	0.680	3.630	0.754	0.648	0.000	0.000	0.000	5.880	1.246	1.050	0.000	0.000	0.000
712	Wd	9	5.700	0.600	3.560	0.729	0.627	0.000	0.000	0.000	2.780	0.619	0.490	0.000	0.000	0.000
713	Wd	15	4. 300	0.340	2.530	0.616	0.582	0.000	0.000	0.000	2.870	0.742	0.659	0.000	0.000	0.000
714	Wd	9	5. 200	0.280	5.000	0.943	0.957	0.000	0.000	0.000	4.110	1.099	0.787	0.000	0.000	0.000
715	Hd	4	6.000	0.000	15.750	2.810	2.625	0.000	0.000	0.000	7.000	1.080	1.167	0.000	0.000	0.000
716	He	2	4.000	0.000	5.500	0.500	1.375	0.000	0.000	0.000	0.500	0.500	0.125	0.000	0.000	0.000
717	He	8	6.900	0.140	5.500	1.464	0.801	0.000	0.000	0.000	6.630	3.207	0.965	0.250	0.250	0.036
718	Hd	11	4.700	0.560	4.450	1.310	0.938	0.000	0.000	0.000	4.090	0.719	0.861	0.270	0.273	0.057
719	Wd	16	4.200	0.580	2.750	0.452	0.658	0.000	0.000	0.000	1.940	0.413	0.464	0.250	0.144	0.060
720	Wd	9	6.000	0.110	4.110	0.539	0.691	0.000	0.000	0.000	5.780	1.024	0.971	0.000	0.000	0.000
721	Wd	6	6.500	0.120	5.330	1.085	0.824	0.000	0.000	0.000	7.330	1.585	1.133	0.000	0.000	0.000
722	ud	9	5.200	0.030	5.330	1.633	1.031	0.000	0.000	0.000	2.670	0.707	0.515	0.000	0.000	0.000
723	He	2	3.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.500	0.500	1.536	0.000	0.000	0.000
725	Wd	14	4.100	0.790	4.140	1.460	1.001	0.000	0.000	0.000	6.930	2.410	1.675	0.430	0.228	0.104
726	Wd	18	4.100	0.770	2.610	1.064	0.644	0.000	0.000	0.000	2.560	1.169	0.630	0.330	0.198	0.082
727	Wd	10	4.500	0.860	3.900	1.149	0.875	0.000	0.000	0.000	6.900	3.071	1.548	1.400	1.400	0.314
728	Hd	9	5.600	1.060	5.110	1.925	0.911	0.000	0.000	0.000	3.000	1.258	0.535	1.560	0.818	0.271
729	Wd	4	5.400	1.650	1.000	0.577	0.184	0.000	0.000	0.000	2.500	1.658	0.460	3.000	1.291	0.552
730	He	13	5.200	0.560	1.000	0.376	0.192	0.000	0.000	0.000	0.620	0.331	0.118	0.920	0.265	0.178
731	We	6	4.900	0.880	5.330	1.542	1.079	0.000	0.000	0.000	1.670	0.843	0.337	0.000	0.000	0.000
801	Wd	18	4.700	0.550	2.330	0.560	0.495	0.220	0.129	0.047	0.330	0.198	0.071	3.280	1.970	0.696
802	Wd	5	1.000	0.180	2.000	1.265	1.938	0.400	0.245	0.388	0.000	0.000	0.000	0.000	0.000	0.000
803	Wd	5	4.900	0.780	3.400	0.980	0.694	0.000	0.000	0.000	7.800	3.323	1.592	3.800	2.107	0.776
805	Hd	20	2.600	0.270	2.600	0.832	0.990	0.000	0.000	0.000	0.800	0.381	0.305	0.700	0.282	0.267
807	We	10	6.300	0.680	5.500	1.662	0.870	0.000	0.000	0.000	6.100	1.441	0.964	1.300	0.597	0.206
808	${ }^{W}$	3	3.300	1.330	5.000	3.000	1.500	0.000	0.000	0.000	0.670	0.667	0.200	0.000	0.000	0.000
809	${ }^{\text {Hd }}$	20	4.700	0.590	10.550	2.402	2.245	0.000	0.000	0.000	3.900	0.894	0.830	0.100	0.100	0.021
810	Hd	19	4.900	0.450	5.160	1.366	1.058	0.000	0.000	0.000	1.680	0.588	0.345	0.470	0.221	0.097
811	${ }_{4 d}$	${ }_{6}^{6}$	6.300	1.010	3.000	0.516	0.480	0.000	0.000	0.000	1.170	0.980	0.187	0.670	0.333	0.107
812	Wd	19	4.900	0.530	8.470	1.802	1.728	0.000	0.000	0.000	2.680	0.895	0.547	0.110	0.072	0.021
813	He	20	5.300	0.310	11.200	2.829	2.113	0.000	0.000	0.000	4.450	0.896	0.840	0.450	0.256	0.085
814	We	9	3.900	0.980	4.000	2.186	1.029	0.000	0.000	0.000	1.780	0.547	0.457	0.110	0.111	0.029

Appendix Table 9. Sumary of dally angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockey salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988 (continued)

			Effort		Ralnbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon		
Date	11	SLze	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Ert	cpus
815	Hd	12	6.500	0.180	8.000	1.838	1.239	0.000	0.000	0.000	2.580	0.570	0.400	0.420	0.229	0.065
816	Wd	12	4.000	0.620	5.000	1.610	1.235	0.000	0.000	0.000	2.500	1.209	0.618	0.000	0.000	0.000
817	Wd	3	6.200	0.000	1.000	0.577	0.162	0.000	0.000	0.000	2.000	0.577	0.324	0.670	0.667	0.104
818	Wd	4	6.000	0.000	5.750	3.326	0.958	0.000	0.000	0.000	3.250	1.493	0.542	0.750	0.750	0.125
819	Wd	5	3.300	0.700	8.400	4.082	2.545	0.000	0.000	0.000	1.600	0.927	0.485	0.000	0.000	0.000
820	He	3	6.000	0.000	10.670	2.963	1.778	0.000	0.000	0.000	0.330	0.333	0.056	2.670	2.667	0.444
821	He	2	7.600	0.380	7.000	3.000	0.918	0.000	0.000	0.000	6.500	0.500	0.852	1.000	1.000	0.131
823	Wd	14	4.400	0.880	4.140	1.305	0.932	0.000	0.000	0.000	1.790	0.395	0.402	2.860	0.983	0.643
824	Wd	3	3.600	0.950	1.670	1.667	0.462	0.000	0.000	0.000	0.330	0.333	0.092	2.670	2.186	0.739
825	Wd	10	3.900	0.800	1.700	0.955	0.432	0.000	0.000	0.000	1.000	0.667	0.254	2.400	0.819	0.610
827	We	14	1.700	0.380	0.360	0.225	0.215	0.000	0.000	0.000	0.000	0.000	0.000	1.500	0.863	0.903
828	We	5	5.400	0.910	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.400	2.379	1.741
829	Wd	15	3.600	0.260	0.330	0.159	0.093	0.000	0.000	0.000	0.470	0.274	0.131	1.530	0.524	0.430
831	Wd	11	5.200	0.590	2.820	1.306	0.542	0.000	0.000	0.000	0.450	0.366	0.087	2.270	1.054	0.437
901	wd	14	4.400	0.730	1.640	0.580	0.370	0.000	0.000	0.000	0.290	0.221	0.064	2.570	1.440	0.580
902	Wd	9	4.600	0.920	1.000	0.289	0.218	0.000	0.000	0.000	1.670	0.782	0.364	5.110	1.720	1.115
903	He	4	1.300	0.140	0.500	0.289	0.400	0.000	0.000	0.000	0.000	0.000	0.000	3.000	1.225	2.400
904	We	15	4.700	0.700	1.400	0.496	0.296	0.000	0.000	0.000	4.070	2.661	0.861	3.270	2.053	0.692
905	We	15	2.900	0.400	0.530	0.165	0.183	0.000	0.000	0.000	0.000	0.000	0.000	0.870	0.456	0.298
906	Wd	11	5.200	0.760	1.910	0.595	0.370	0.000	0.000	0.000	6.270	3.611	1.216	3.730	2.374	0.722
907	Wd	4	5.000	0.000	2.250	1.109	0.450	0.000	0.000	0.000	20.500	4.291	4.100	1.250	0.629	0.250
908	Wd	12	4.600	0.890	2.080	0.883	0.450	0.000	0.000	0.000	0.750	0.411	0.162	1.250	0.494	0.270
910	He	8	2.700	0.380	0.500	0.378	0.182	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.125	0.046
911	He	11	5.800	0.570	3.090	1.156	0.536	0.000	0.000	0.000	1.270	0.384	0.221	1.360	0.789	0.237
912	Wd	11	7.000	0.180	5.820	0.630	0.833	0.000	0.000	0.000	3.000	1.152	0.429	0.270	0.273	0.039
913	Wd	14	6.000	0.560	11.930	3.026	1.978	0.000	0.000	0.000	1.290	0.928	0.213	3.000	1.313	0.498
915	Wd	25	5.100	0.140	2.040	0.418	0.400	0.000	0.000	0.000	0.200	0.100	0.039	1.880	0.681	0.368
916	Wd	12	3.900	0.350	2.750	0.719	0.707	0.000	0.000	0.000	0.330	0.142	0.086	0.000	0.000	0.000

1/ Wd - Weekday; We = Weekend or holiday

Appendix Table 10. Sumary of dally angler effort (angler-hours) and harvest rates (BPUE, fish per angler hour) for rainbow trout, Arctic char,
Arctic grayling, sockeye salmon, and Northern pike from angler intervievs in the Asulukpak River aport fishery,

			Effort		Rainbow Trout			Arctic Char			Arctic Graylins			Sockeye Salmon		
Date	$\begin{aligned} & \mathrm{Hd} / \mathrm{We} \\ & \text { 1/ } \end{aligned}$	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Hean	Std Err	Man	Std Err	HPUE	Mean	Std Erx	BPUE	Mean	Std Err	HPUE	Mann	ed Err	HPUE
614	Hd	4	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
619	We	9	6.700	0.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
620	Wd	7	6.200	0.370	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	Wd	7	4.600	0.200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
622	Wd	4	5.200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.048	0.000	0.000	0.000
623	Wd	5	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
624	Wd	10	4.800	0.480	0.000	0.000	0.000	0.000	0.000	0.000	0.100 0.000	0.100 0.000	0.021 0.000	0.000 0.000	0.000	0.000
626	He	4	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.560	0.1000 0.242	0.006	0.000	0.000	0.000
627	Wd	9	5.200	0.260	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.560 0.000	0.242 0.000	0.106 0.000	0.000	0.000	0.000
628	Wd	4	2.500	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000
629	Wd	9	1.400	0.140	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
630	Wd	5	4.200 4.500	0.800 0.630	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
703 704	We	8 5	4.500 4.000	0.630 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
705	Wd	4	4.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
706	Wd	4	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	He	11	4.700	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
711	Wd	8	5.600	0.680	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
712	Wd	9	5.700	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
713	Wd	15	4.300	0.340	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
714	Wd	9	5.200	0.280	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000
715	Hd	4	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
716	We	2	4.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000
717	We	${ }^{8}$	6.900 4.700	0.140 0.560	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.090	0.091	0.019
718 719	Wd	116	4.700 4.200	0.580	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
720	Wd	9	6.000	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
721	Wd	6	6.500	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
122	Wd	9	5.200	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
723	He	2	3.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0017
725	Wd	14	4.100	0.790	0.000	0.000	0.000	0.000	0.000	0.000	0.070	0.071	0.017 0.000	0.060	0.056	0.014
726	Wd	18	4.100	0.770	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
727 728	Wd	10	4.500 5.600	0.860 1.060	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.330	0.236	0.059
728 729	Wd	9	5.6000	1.060 1.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.408	0.184
130	We	13	5.200	0.560	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.380	0.140	0.074
731	We	6	4.900	0.880	0.000	0.000	0.000	0.000	0.000	0.000	0.330	0.333	0.067	0.000	0.000	0.000
801	Wd	18	4.700	0.550	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.440	0.232	0.094
802	Wd	5	1.000	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
803	Wd	5	4.900	0.780	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.775	0.204
805	Wd	20	2.600	0.270	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
807	We	10	6.300	0.680	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
808	Wd	3	3.300	1.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
809	Wd	20	4.700	0.590	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.0000	0.000	0.000 0.000
810	Wd	19	4.900	0.450	0.000	0.000	0.000	0.000	0.000 0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000
811	Wd	6	6.300	1.010	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
812	Wd	19	4.900	0.530	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
813	We	20	5.300	0.310	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
814	We	9	3.900	0.980												

-Continued-

Appendix Table 10. Sumary of dally angler effort (angler-hours) and harvest rates (HPUE, fish per angler hour) for ralnbow trout, Arctic char, Sumary of daily angler effort (angler-hours) and harvast rates (apue, fish per angler hour) for rainbow trout, arctic char,
Arctic grayling, sockere salmon, and Northern plike from angler interviews in the Agulukpak River aport fishery, iges (continued).

			Effort		Rainbow Trout			Areric Char			Areric Grayling			Sockeye Salmon		
Date	$1 /$	$\begin{aligned} & \text { Sample } \\ & \text { Size } \end{aligned}$	Mean	Std Err	Mean	Std Err	HPUE	Maan	Std Err	HPUE	Mean	Std Err	EPUE	Mean	td Eri	hPUE
815	Wd	12	6.500	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.170	0.167	0.026	0.000	0.000	0.000
816	Wd	12	4.000	0.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
817	Wd	3	6.200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.162	0.000	0.000	0.000
818	Wd	4	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
819	Wd	5	3. 300	0.700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
820	We	3	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
821	We	2	7.600	0.380	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
823	Wd	14	4.400	0.880	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
824	Wd	3	3.600	0.950	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
825	Wd	10	3.900	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
827	We	14	1.700	0.380	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
828	We	5	5.400	0.910	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
829	Wd	15	3.600	0.260	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
831	Wd	11	5.200	0.590	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
901	Wd	14	4.400	0.730	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
902	Hd	9	4.600	0.920	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
903	He	4	1.300	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
904	We	15	4.700	0.700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
905	We	15	2.900	0.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
906	Wd	11	5.200	0.760	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
907	Wd	4	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
908	Wd	12	4.600	0.890	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
910	We	8	2.700	0.380	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
911	We	11	5.800	0.570	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
912	Wd	11	7.000	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
913	Wd	14	6.000	0.560	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
915	Wd	25	5.100	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
916	Wd	12	3.900	0.350	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

$1 / \mathrm{Wd}$ - Weekday; We = Weekend or holiday.

Appendix Table 11. Sumary of dally angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Sumary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow
Arctic grayling, and sockege salmon from angler Interviews in the Agulowak River sport fishery, 1986.

			Effort		Rainbow Trout			Arctic Char			Arctic Graylins			Sockeye Salmon		
Date	11	Slze	Mean	Std Eri	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Etr	CPUE	Mean	Std Err	CPUE
6/23	Wd	3	0.800	0.360	0.000	0.000	0.000	1.330	0.882	1.717	0.000	0.000	0.000	0.000	0.000	0.000
6124	Wd	13	1.500	0.230	0.230	0.231	0.159	11.920	5.314	8.197	0.080	0.077	0.053	0.000	0.000	0.000
6/28	He	7	3.000	0.920	0.570	0.297	0.193	2.000	0.951	0.675	0.430	0.297	0.145	0.000	0.000	0.000
7104	We	9	1.700	0.510	0.220	0.147	0.128	0.890	0.455	0.513	0.000	0.000	0.000	0.000	0.000	0.000
7105	He	3	1.600	0.920	0.000	0.000	0.000	0.330	0.333	0.210	0.000	0.000	0.000	0.000	0.000	0.000
7106	Wd	3	0.200	0.030	1.000	0.000	4.478	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7108	Wd	4	0.800	0.000	0.000	0.000	0.000	2.250	0.250	3.000	0.000	0.000	0.000	0.000	0.000	0.000
7110	Wd	7	0.300	0.060	0.000	0.000	0.000	0.140	0.143	0.541	0.000	0.000	0.000	0.000	0.000	0.000
7111	We	6	0.800	0.050	0.000	0.000	0.000	1.830	0.477	2.200	0.000	0.000	0.000	0.000	0.000	0.000
7113	Wd	19	0.700	0.110	0.370	0.205	0.558	0.420	0.207	0.637	0.000	0.000	0.000	0.000	0.000	0.000
7117	Wd	4	0.800	0.170	0.250	0.250	0.315	0.500	0.500	0.631	0.000	0.000	0.000	0.250	0.250	0.315
7119	We	10	1.400	0.360	0.500	0.500	0.353	3.000	0.715	2.117	0.000	0.000	0.000	0.000	0.000	0.000
7120	Wd	26	1.900	0.400	0.850	0.307	0.434	0.850	0.410	0.434	0.770	0.542	0.395	0.000	0.000	0.000
7126	We	17	1.000	0.160	1.290	1.175	1.346	0.710	0.239	0.734	0.290	0.294	0.306	0.000	0.000	0.000
7127	Wd	8	0.700	0.140	0.000	0.000	0.000	1.630	0.680	2.293	0.000	0.000	0.000	0.000	0.000	0.000
7128	Wd	8	1.900	0.520	1.880	0.718	0.968	0.500	0.327	0.258	0.750	0.620	0.387	0.000	0.000	0.000
7130	Wd	12	0.600	0.090	0.250	0.131	0.677	0.000	0.000	0.000	0.080	0.083	0.226	0.000	0.000	0.000
7131	Wd	3	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.000	2.000	2.000	0.000	0.000	0.000
8/03	Wd	6	2.200	0.250	0.330	0.333	0.154	3.500	1.628	1.615	0.500	0.342	0.231	0.000	0.000	0.000
$8 / 04$	Wd	4	0.600	0.240	2.000	2.000	3.419	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.427
$8 / 05$	Wd	5	1.500	0.590	4.600	2.561	3.003	0.000	0.000	0.000	1.400	0.872	0.914	0.000	0.000	0.000
8108	He	6	2.100	0.440	4.000	2.221	1.920	0.000	0.000	0.000	3.170	1.424	1.520	0.000	0.000	0.000
8109	He	2	1.500	0.000	3.000	2.000	2.000	0.500	0.500	0.333	2.000	1.000	1.333	0.000	0.000	0.000
$8 / 10$	Hd	6	3.600	0.580	1.830	0.601	0.512	0.670	0.667	0.186	0.000	0.000	0.000	0.000	0.000	0.000
8/11	Wd	4	2.300	0.730	0.000	0.000	0.000	1.500	0.866	0.661	0.000	0.000	0.000	0.250	0.250	0.110
8/14	Wd	9	1.300	0.190	1.000	0.553	0.800	0.220	0.222	0.178	0.110	0.111	0.089	0.000	0.000	0.000
8/16	We	5	1.700	0.120	0.800	0.374	0.471	0.600	0.600	0.353	0.400	0.400	0.235	0.200	0.200	0.118
$8 / 17$	Hd	4	0.600	0.000	0.250	0.250	0.431	0.250	0.250	0.431	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 18$	Wd	10	0.500	0.020	0.000	0.000	0.000	0.300	0.213	0.644	0.000	0.000	0.000	1.000	1.000	2.146
8120	Wd	3	0.500	0.000	0.000	0.000	0.000	0.330	0.333	0.667	0.000	0.000	0.000	0.330	0.333	0.667
$8 / 21$	Hd	6	2.100	0.170	0.000	0.000	0.000	0.670	0.333	0.314	0.000	0.000	0.000	0.670	0.667	0.314
$8 / 22$	We	9	0. 900	0.320	0.220	0.222	0.244	0.110	0.111	0.122	0.000	0.000	0.000	0.780	0.278	0.855
$8 / 23$	We	10	0.300	0.050	0.000	0.000	0.000	0.300	0.153	1.053	0.000	0.000	0.000	0.200	0.200	0.702

$1 /$ Hd = Weekday; We = Weekend or holiday

Appendix Table 12. Sumary of dally angler effort (ansler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviewa in the Agulowak River aport fishery, 1986

			Effort		Ralnbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon		
Date	$\begin{aligned} & \text { Wd/We } \\ & \text { 1/ } \end{aligned}$	$\begin{aligned} & \text { Sample } \\ & \text { SIze } \end{aligned}$	Mean	Std Err	Mean	Std Err	HPUE	Mean	Std Err	EPUE	Man	Std Err	HPUE	Haan	Std Err	HPUE
$6 / 23$	Wd	3	0.800	0.360	0.000	0.000	0.000	1.000	0.577	1.288	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 24$	Wd	13	1.500	0.230	0.000	0.000	0.000	1.540	0.595	1.058	0.000	0.000	0.000	0.000	0.000	0.000
6128	We	7	3.000	0.920	0.000	0.000	0.000	0.570	0.297	0.193	0.000	0.000	0.000	0.000	0.000	0.000
7104	We	9	1.700	0.510	0.000	0.000	0.000	0.890	0.455	0.513	0.000	0.000	0.000	0.000	0.000	0.000
7105	He	3	1.600	0.920	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7106	Wd	3	0.200	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7108	Wd	4	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/10	Wd	7	0.300	0.060	0.000	0.000	0.000	0.140	0.143	0.541	0.000	0.000	0.000	0.000	0.000	0.000
7111	We	6	0.800	0.050	0.000	0.000	0.000	1.170	0.477	1.400	0.000	0.000	0.000	0.000	0.000	0.000
7113	Wd	19	0.700	0.110	0.160	0.086	0.239	0.110	0.105	0.159	0.000	0.000	0.000	0.000	0.000	0.000
7117	Wd	4	0.800	0.170	0.000	0.000	0.000	0.500	0.500 0.650	0.631 1.411	0.000 0.000	0.000 0.000	0.000 0.000	0.250 0.000	0.250 0.000	0.315 0.000
7120	Wd	26	1.900	0.400 0.160	0.040 0.000	0.038 0.000	0.020 0.000	0.080 0.290	0.053 0.166	0.039	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000 0.000
7126	We	17	1.000 0.700	0.160 0.140	0.000 0.000	0.000 0.000	0.000 0.000	0.290 0.130	0.166 0.125	0.306 0.176	0.000 0.000	0.000	0.000	0.000	0.000	0.000
7127	Wd	8	0.700 1.900	0.140 0.520	0.000 0.500	0.000 0.327	0.000 0.258	0.130 0.130	0.125	0.065	0.000	0.000	0.000	0.000	0.000	0.000
7128 7130	Wd	8 12	1.900 0.400	0.520 0.090	0.500 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7131	Wd	3	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8103	Wd	6	2.200	0.250	0.000	0.000	0.000	0.330	0.211	0.154	0.330	0.333	0.154	0.000	0.000	0.000
8104	Wd	4	0.600	0.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.427
8105	Wd	5	1.500	0.590	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/08	We	6	2.100	0.440	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 09$	We	2	1.500	0.000	0.000	0.000	0.000	0.500	0.500	0.333	0.500	0.500	0.333	0.000	0.000	0.000
8/10	Wd	6	3.600	0.580	0.170	0.167	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000
8/11	Wd	4	2.300	0.730	0.000	0.000	0.000	0.500	0.289	0.220	0.000	0.000 0.000	0.0000	0.000 0.000	0.000 0.000	0.000 0.000
8/14	Wd	9	1.300	0.190	0.000	0.000	0.000	0.220	0.222			0.000 0.000	0.000	0.000	0.000	0.000
$8 / 16$	We	5	1.700	0.120	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000
8118 8120	Wd	10	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/21	Wd	6	2.100	0.170	0.000	0.000	0.000	0.170	0.167	0.078	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 22$	We	9	0.900	0.320	0.000	0.000	0.000	0.110	0.111	0.122	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 23$	We	10	0.300	0.050	0.000	0.000	0.000	0.100	0.100	0.351	0.000	0.000	0.000	0.000	0.000	0.000

	$\begin{gathered} \mathrm{Hd} / \mathrm{We} \\ 1 / \end{gathered}$	$\begin{aligned} & \text { Semplele } \\ & \text { SIIe } \end{aligned}$	Effort		Rainbow Trout			arctic Char			Arctic Grayling			Sockeye Salmon			Coho Salmon		
			Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	ed Err	CPUE	Mean	Std Err	CPUE
Date																			
											0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6106	We	1	2.000	0.620 0.450	0.170 0.000	0.167 0.000	0.082 0.000	2.000 2.180	0.856 1.205	0.987	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6107	We	11	2.000	0.450		0.000 0.000	0.000 0.000	2.180 1.330	1.288 0.882	0.707	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 11$	Hd	3	1.900	1.560	0.000	0.000 0.289	0.000 0.300	1.000	0.707	0.615	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/12	Hd	4	1.600	0.520	0.500	O. 289 0.000	0.300 0.000	0.500	0.500	0.571	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 17$	Hd	2	0.900	0.630	0.000	1.000	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 19$	wd	2	0.500	0.000	2.000	1.200	. 0.071	6.400	2.749	2.286	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$6 / 21$	We	5	2.800	0.690	0.200 2.750	1.601	0.846	5.000	2.887	1.538	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6124	Wd	4	3. 300	0.600	2.750	1.601		0.630	0.625	0.125	0.380	0.263	0.075	0.000	0.000	0.000	0.000	0.000	0.000
6125	Wd	8	5.000	0.330	1.750 0.000	0.901 0.000	0. 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	. 000	0.000
$6 / 27$	We	19	0. 200	0.020	0.000	0.000	0.000	1.750	1.181	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7103	He	4	1.800	0.430 0.000	0.000	0.000	0.000	1.000	1.000	0.667	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7105	We	${ }_{8}$	1.500 0.900	0.250	0.000	0.000	0.000	0.500	0.327	0.571	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000 0.000
7107	Wd	5	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.316	0.000	0.000	0.000	0.000	0.000	0.000
7108	Hd	8	2.400	0.410	1.250	0.491	0.526	2.000	0.463	0.842 0.545	0.500	0.289	0.364	0.000	0.000	0.000	0.000	0.000	0.000
7109	Wd	4	1.400	0.380	0.250	0. 250	0.182	1.000	1. 2000	0.222	1.000	1.000	0.222	0.500	0.500	0.111	0.000	0.000	0.000
7110	H	2	4.500	0.000	0.500	0.500 0.256	0.111	1.920	3.645	0.985	0.000	0.000	0.000	0.080	0.083	0.043	0.080	0.083	. 043
7111	We	12	1.900	0.350	0.330	0.256	0.17	2.000	0.888	1.333	0.330	0.142	0.222	0.080	0.083	0.056	0.000	. 000	0.000
7112	We	12	1.500	0.150	0.330	0.256	0.222	2.000 1.670	0.888 0.882	1.111	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1115	Wd	3	1.500	0.000	0.000	0.000		1.600	0.000		2.330	0.333	0.778	0.000	0.000	0.000	0.000	0.000	0.000
$1 / 16$	Wd	3	3.000	0.000	0.670	0. 333	0.222	3.000	0.000	3.000	2.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$1 / 18$	We	2	1.000	0.000	0.000	0.000		1.0070	0.450	0.923	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1125	we	14	1.200	0.230	0.140	0.143	0.123 0.000	$\underline{2.170}$	0.703	1.083	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7126	We	6	2.000	0.670	0.000	0.000	0.000	2.880	0. 0.934	0.682	0.130	0.125	0.045	0.000	0.000	0.000	0.000	0.000	0.000
7128	Hd	8	2.800	0. 460	0.630	0.263	0.227 0.113	1.880 0.330	0.934	0.226	0.080	0.083	0.057	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 01$	We	12	1.500	0.290	0.170	0.112	0.113	- 0.5300	0.250	0.125	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8104	Wd	2	4.000	0.000	6.000	0.000	${ }_{0}^{1.300}$	O. 250	0.250	0.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 06$	Wd	4	0.800	0.000	0.250	0.238	1.353 0.628	0.070	0.071	0.105	0.070	0.071	0.105	0.000	0.000	0.000	0.000	0.000	0.000
8107	wd	14	- 0.700	0.120	6. 6000	3.215	1.059	0.000	0.000	0.000	0.330	0.333	0.059	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 12$	d	3	3.000			0.374	0.267	1.000	0.447	0.333	0.200	0.200	0.067	0.000	0.000	0.000	0.000	0.000	
$8 / 13$	Wd	5	3.000 2.700	0. 0.550	2.600	1.046	0.972	0.700	0.367	0.262	0.100	0.100	0.037	0.000	0.000	0.000	0.000	0.000	0. 000
$8 / 14$	u	10				0.342	0.240	0.500	0.224	0.240	1.000	1.000	0.480	0.000	0.000	0.000	0.000	0.000	
$8 / 15$	We	6	2.100 1.800	1.250	2.500	2.500	1.429	0.500	0.500	0.286	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 17$	Wd	${ }_{8}^{2}$	1.800 1.200	1.250		0.250	0.205	0.250	0.164	0.205	0.130	0.125	0.103	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 19$	ud	8	1.200 1.000	O. 280 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 20$	Hd	4	1.000 0.800	0.000 0.250		0.000	0.000	0.670	0.494	0.889	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 21$	Hd	6	1.800 2.000	O.290	0.130	0.125	0.062	0.500	0.378	0.249	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 22$	W*	8	2.000 2.000		6.000		3.000	0.500	0.500	0.250	0.000	0.000	0.000	0.500	0.500	0.250	0.000	0.000	0.000
8124	Wd	2	2.000 1.700	0.000 0.340	6.000 1.620	0.931	0.955	0.310	0.175	0.182	0.230	0.231	0.136	0.000	0.000	0.000	0.000	0.000	0.000
$8 / 29$	No	13	1.700 0.900	0.540	1.200	0.583	1.386	0.200	0.200	0.231	0.200	0.200	0.231	0.000	0.000	0.000	0.000	-0.000	
8/30	He	4	1.000	0.000	1.000	0.577	1.000	0.250	0.250	0.250	0.000	0.000	0.000	0.000					

			Effort		Ralnbow Trout			Arctic Char			Arctic Graylins			Sockeye Salmon			Coho Salmon		
Date	$\mathrm{Wd} / \mathrm{We}$	Sample	Hean	Std Erx	Moan	Std Err	HPUE	Mean	Std Err	hpus	Mean	Std Err	hPUE	Man	Std Err	HPUE	Heas	std Er	EP
$6 / 06$	We	6	2.000	0.620	0.170	0.167	0.082	0.500	0.342	0.247	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
6107	We	11	2.000	0.450	0.000	0.000	0.000	0.360	0.244	0.179	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 11$	wd	3	1.900	1.560	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 12$	Hd	4	1.600	0.320	0.250	0.250	0.154	0.500	0.500	0.308	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 17$	Wd	2	0.900	0.630	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 19$	Wd	2	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 21$	We	5	2.800	0.490	0.000	0.000	0.000	2.000	0.447	0.714	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 24$	Wd	4	3.300	0.600	0.000	0.000	0.000	0.750	0.479	0.231	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 25$	wd	8	5.000	0.330	0.380	0.263	0.075	0.500	0.500	0.100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$6 / 27$	We	19	0.200	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
1103	We	4	1.800	0.630	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
1104	We	2	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7105	We	8	0.900	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
1107	Hd	5	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7108	wd	8	2.400	0.410	2.000	0.327	0.421	1.000	0.567	0.421	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
1109	wd	+	1.400	0.380	0.000	0.000	0.000	0.250	0.250	0.182	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7110	Wd	2	4.500	0.000	0.000	0.000	0.000	0.500	0.500	0.111	0.000	0.000	0.000	0.500	0.500	0.111	0.000	0.000	0.0
$7 / 11$	We	12	1.900	0.350	0.000	0.000	0.000	0.330	0.142	0.171	0.000	0.000	0.000	0.080	0.083	0.043	0.080	0.083	0.0
$1 / 12$	We	12	1.500	0.150	0.080	0.083	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7115	Wd	3	1.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
1116	wd	3	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7118	W.	2	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7125	We	14	1.200	0.230	0.000	0.000	0.000	0.140	0.097	0.123	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
7126	We	6	2.000	0.670	0.000	0.000	0.000	0.170	0.167	0.083	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.0
7128	Wd	8	2.800	0.440	0.130	0.125	0.045	0.380	0.263	0.136	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8101	We	12	1.500	0.290	0.080	0.083	0.057	0.080	0.083	0.057	0.080	0.083	0.057	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 04$	Wd	2	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 06$	wd	4	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 07$	wd	14	0.700	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 12$	Wd	3	\$. 700	2.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 13$	Wd	5	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8114	wd	10	2.700	0.550	0.000	0.000	0.000	0.300	0.213	0.112	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.0
$8 / 15$	We	6	2.100	0.860	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8117	wd	2	1.800	1.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
$8 / 19$	Wd	8	1.200	0.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8120	Wd	,	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8121	Wd	6	0.800	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8122	He	8	2.000	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8124	Wd	2	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
8129	We	13	1.700	0.340	0.150	0.154	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0
130	We	5	0.900	0.540	1.000	0.447	1.155	0.200	0.200	0.231	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0. 0.000	0.0
9107	We	4	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0

1/ w = Weakday; We - Weekend or holiday

Appendix Table 15. Sumary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988

			Effort		Ralnbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon		
Date	$1 /$	Slae	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Eri	CPUE	Mean	Std Err	CPUE	Mean	Std Eri	CPUE
612	We	8	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
613	Wd	3	1.500	0.000	0.670	0.333	0.444	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
614	Wd	4	1.300	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	Wd	7	2.500	0.530	0.140	0.143	0.057	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
624	Wd	5	2.200	0.780	0.400	0.245	0.179	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
625	We	8	1.800	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.125	0.068	0.000	0.000	0.000
626	We	,	1.700	1.420	1.000	0.707	0.572	0.000	0.000	0.000	0.250	0.250	0.143	0.000	0.000	0.000
628	Wd	6	2.700	0.740	1.330	0.989	0.503	0.000	0.000	0.000	2.670	2.472	1.006	0.000	0.000	0.000
702	We	7	1.200	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
103	We	11	0.600	0.260	0.180	0.122	0.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
704	He	7	1.600	0.350	0.140	0.143	0.089	0.000	0.000	0.000	2.570	2.571	1.600	0.000	0.000	0.000
707	Wd	7	3.000	0.940	0.000	0.000	0.000	0.000	0.000	0.000	0.140	0.143	0.047	0.000	0.000	0.000
708	Wd	11	2.700	0.470	2.180	0.952	0.804	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
709	We	23	1.800	0.320	0.390	0.265	0.221	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	We	19	1.300	0.130	0.050	0.053	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
712	Hd	7	1.800	0.550	0.000	0.000	0.000	0.000	0.000	0.000	0.140	0.143	0.077	0.000	0.000	0.000
714	Wd	11	1.100	0.310	0.550	0.312	0.511	0.000	0.000	0.000	0.180	0.122	0.170	0.000	0.000	0.000
715	Wd	3	1. 600	0.620	0.670	0.333	0.429	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
716	We	16	1. 200	0.310	0.380	0.202	0.323	0.000	0.000	0.000	0.130	0.125	0.108	0.000	0.000	0.000
718	Hd	9	4. 200	0.740	10.330	2.186	2.464	0.000	0.000	0.000	2.670	0.667	0.636	0.000	0.000	0.000
730	He	6	2.200	0.110	4.500	2.754	2.077	0.000	0.000	0.000	3.830	1.493	1.769	0.000	0.000	0.000
731	He	6	0.800	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
802	Wd	4	1.300	0.430	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
803	Wd	4	3.100	0.060	0. 500	0.289	0.163	0.000	0.000	0.000	0.250	0.250	0.082	0.000	0.000	0.000
804 805	Hd	4	6.000	0.000	8.750	3.146	1.458	0.000	0.000	0.000	5.250	1.109	0.875	0.000	0.000	0.000
805 807	Wd	9	2. 900	0.400	3.670	0.645	1.245	0.000	0.000	0.000	1. 780	0.547	0.604	0.000	0.000	0.000
807	We	${ }^{8}$	2.200	0.800	3.880	1.856	1.753	0.000	0.000	0.000	3.250	1.934	1.471	0.500	0.500	0.226
808 809	Hd	10	1.800	0.150	2.500	1.293	1.429	0.000	0.000	0.000	2.700	1.469	1.543	0.000	0.000	0.000
809	Wd	11	3. 200	0.930	5.000	2.067	1.556	0.000	0.000	0.000	2.910	1.194	0.905	0.270	0.273	0.085
810	Hd	2	3.000	1.000	6.000	0.000	2.000	0.000	0.000	0.000	3.000	1.000	1.000	0.000	0.000	0.000
812	Wd	6	4.300	0.670	13.170	2.613	3.038	0.000	0.000	0.000	3.670	0.843	0.846	0.000	0.000	0.000
814	He	+	2.800	0.250	5.500	2.217	2.000	0.000	0.000	0.000	2.250	1.315	0.818	0.000	0.000	0.000
815	Wd	2	2.000	0.000	2. 500	1.500	1.250	0.000	0.000	0.000	5.500	2.500	2.750	0.000	0.000	0.000
819	Wd	3	0.800	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
820	He	4	2.500	0.000	4.000	1.225	1.600	0.000	0.000	0.000	1.750	0.479	0.700	0.000	0.000	0.000
821	We	14	0.900	0.110	0.640	0.248	0.701	0.000	0.000	0.000	0.000	0.000	0.000	0.140	0.097	0.156
826	Wd	15	1.600	0.160	0.130	0.091	0.083	0.000	0.000	0.000	0.200	0.107	0.125	0.070	0.067	0.042
827	We	4	0.600	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
828	We	6	1.300	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.500	0.400
829	Wd	2	3.300	0.250	4.000	0.000	1.231	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	0.308
901	Wd	3	1.300	0.620	0.670	0.667	0.533	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
902	Wd	16	2.800	0.400	2.060	0.528	0.731	0.000	0.000	0.000	1.130	0.315	0.399	0.130	0.085	0.044
903	We	10	2.700	0.150	2.700	1.446	1.000	0.000	0.000	0.000	0.200	0.200	0.074	0.400	0.221	0.148
904	He	7	1.700	0.420	0.710	0.474	0.414	0.000	0.000	0.000	0.570	0.429	0.331	0.000	0.000	0.000
905	We	10	0.800	0.110	0.100	0.100	0.121	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
906	Wd	2	2.000	0.000	1.000	1.000	0.500	0.000	0.000	0.000	0.500	0.500	0.250	0.000	0.000	0.000

1/ wd = Weekday; we = Weekend or holiday

Appendin Table 16. Sumary of dally angler effort (angler-houra) and harveat rates (APUE, fish par angler-hour) for rainbow trout, Arctic char,

		Effort			Rainbov Trout			Arctic Char			Arctic Grayling			Sockere Salmon		
Date	Wd/He	$\begin{gathered} \text { Sample } \\ \text { Slze } \end{gathered}$	Mean	Std Err	Mean	Std Err	HPUE	Han	Std Err	HPUE	Man	Std Err	EPUE	Mean	Std Err	HPUE
											0.000	0.000	0.000	0.000	0.000	0.000
612	He	8	1.500	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000
613	${ }^{\mathbf{N d}}$	3	1.500	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
614	${ }_{H d}$	4	1.300	0.050 0.530	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	Wd	7	2.500	0.530 0.780	0.000 0.200	0.000	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
624	Wd	8	2.200 1.800	0.780 0.050	0.200	0.2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
625	We	8	1.800 1.700	0.050 1.420	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
628	Wd	6	2.700	0.740	0.330	0.333	0.126	0.000	0.000	0.000	0.170	0.167	0.063	0.000	0.000	0.000 0.000
702	He	7	1.200	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
703	We	11	0.600	0.260	0.000	0.000	0.000	0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
704	He	7	1.600	0.350	0.140	0.143	0.089	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
707	Wd	7	3.000	0.940	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
708	Wd	11	2.700	0.470	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
709	We	23	1.800	0.320 0.130	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	We	19	1.300 1.800	0.130 0.550	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
712	${ }^{\mathbf{H}}$	1	1.800 1.100	0.550 0.310	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
714	Hd	11	1.100 1.600	0.310 0.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
716	We	16	1.200	0.310	0.250	0.171	0.215	0.000	0.000	0.000	0.130	0.125	0.108	0.000	0.000	0.000 0.000
118	Wd	9	4.200	0.740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
730	He	6	2.200	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
731	We	6	0.800	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
802	Wd	4	1.300	0.430	0.000	0.250	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
803	Wd	4	3.100	0.060 0.000	0.250 0.000	0.250 0.000	0.082 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
804	Wd	$\stackrel{\square}{6}$	6.000	0.000 0.400	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
805	Wd	9	2.900 2.200	0.400 0.800	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
807	We	${ }^{8}$	2.200 1.800	0.800 0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
808	Wd	110	1.800 3.200	0.150 0.930	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8810	Wd	1	3.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000	0.000 0.000
812	Wd	6	4.300	0.670	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000
814	We	4	2.800	0.250	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
815	Wd		2.000	0.000	0.000	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
819	Wd	3	0.800	0.140	0.000 0.000	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
820	We	4	2.500	0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
821	We	14	0.900 1.600	0.110 0.160	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
826	Wd	15	1.600 0.600	0.160 0.040	0.000 0.000	0.000 0.000	0.000 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
827	He	4	0.600 1.300	0.040 0.170	0.000 0.000	0.000 0.000	0.0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
828	We	6	1.300 3.300	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
829		3	1.300 1.300	0.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
901	Wd	16	1.300 2.800	0.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000 0.148
903	We	10	2.700	0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.400	0.220	0.148 0.000
904	He	7	1.700	0.420	0.290	0.286	0.166	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
905	He	10	0.800	0.110	0.100	0.100	0.121	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
906	Hd	2	2.000	0.000	0.000	0.000	0.000	0.000	0.000							

$1 /$ Wd = Weekday; We = Weekend or holiday.

[^0]: 1 Standard error.

