FISHERY DATA SERIES NO. 90

EFFORT, CATCH, AND HARVEST STATISTICS FOR THE SPORT FISHERIES ON THE AGULUKPAK AND AGULOWAK RIVERS, WOOD RIVER LAKE SYSTEM, ALASKA, 1986-1988¹

By

R. Eric Minard

Alaska Department of Fish and Game Division of Sport Fish Juneau, Alaska 99802

April 1989

¹ This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) under Project F-10-4, Job No. T-5-1.

The Alaska Department of Fish and Game operates all of its public programs and activities free from discrimination on the basis of race, religion, color, national origin, age, sex, or handicap. Because the department receives federal funding, any person who believes he or she has been discriminated against should write to:

> O.E.O. U.S. Department of the Interior Washington, D.C. 20240

TABLE OF CONTENTS

	<u>Page</u>
LIST OF TABLES	ii
LIST OF FIGURES	iv
LIST OF APPENDIX TABLES	v
ABSTRACT	1
INTRODUCTION	2
METHODS	2
Creel Survey	2
Agulukpak River Agulowak River	4 6
Age, Sex, Weight, and Length Sampling	10
RESULTS	10
Creel Statistics	10
Age, Sex, Weight, and Length Statistics	26
DISCUSSION	26
LITERATURE CITED	37
APPENDIX	38

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1.	Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulukpak River, 1986-1988	11
2.	Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulowak River, 1986-1988	13
3.	Estimated catch and harvest rates (fish per angler-hour), by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986	14
4.	Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulukpak River, 1987	15
5.	Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulukpak River, 1988	16
6.	Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1986	17
7.	Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1987	18
8.	Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1988	19
9.	Estimated catch and harvest, by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986	20
10.	Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1987	21
11.	Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1988	22

LIST OF TABLES (Continued)

<u>Table</u>		<u>Page</u>
12.	Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1986	23
13.	Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1987	24
14.	Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1988	25
15.	Catch and harvest of rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-1988	27
16.	Summary of biological sampling of rainbow trout from the Agulukpak and Agulowak Rivers, 1986-1988	29
17.	Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulukpak River, 1986-1988	30
18.	Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulowak River, 1988	32

LIST OF FIGURES

Figure	<u>Page</u>
 Location of the Agulukpak and Agulowak Rivers, Wood River Lake system, Alaska 	3
 Demographic information collected from anglers participating in the sport fisheries in the Agulukpa and Agulowak Rivers, 1986-1988 	k 28
 Length frequency distributions for rainbow trout sampled from the sport fishery in the Agulukpak River, 1986-1988 	31
4. Length frequency distribution of rainbow trout sampled from the sport fishery in the Agulowak River, 1988	33
5. Mean length and 95% confidence intervals for rainbow trout, by age group, sampled from the Agulukpak and Agulowak Rivers	34
6. Percent, by age group, of rainbow trout sampled from the Agulukpak and Agulowak Rivers, 1988	36

LIST OF APPENDIX TABLES

Appen <u>Tabl</u>	dix <u>e</u>	<u>Page</u>
1.	Angler counts for the sport fishery in the Agulukpak River, 1986	39
2.	Angler counts for the sport fishery in the Agulowak River, 1986	40
3.	Angler counts for the sport fishery in the Agulowak River, 1987	41
4.	Angler counts for the sport fishery in the Agulowak River, 1988	42
5.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986	43
б.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986	44
7.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987	45
8.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987	47
9.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988	49
10.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988	51

LIST OF APPENDIX TABLES (Continued)

Appen <u>Tabl</u>	dix <u>e</u>	<u>Page</u>
11.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986	53
12.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986	54
13.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987	55
14.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987	56
15.	Summary of daily effort (angler-hours) and catch rates (CPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988	57
16.	Summary of daily effort (angler-hours) and harvest rates (HPUE, fish per angler-hour)) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988	58

ABSTRACT

Creel surveys were conducted during the summers of 1986, 1987, and 1988 on the Agulukpak and Agulowak Rivers to estimate sport fishing effort, catch (fish kept plus fish released), and harvest (fish kept only). Rainbow trout Oncorhynchus mykiss, Arctic char Salvelinus alpinus, and Arctic grayling Thymallus arcticus are the primary species targeted in both fisheries with the Agulukpak River being managed as a catch and release fishery. Data collected during these surveys indicated that effort was slightly greater on the Agulowak River (3-year average = 4,570 angler-hours) than on the Agulukpak River (3-year average = 3,260 angler-hours). Catches of rainbow trout on the Agulukpak River ranged from 1,322 to 3,692 fish per year. Catches and harvests of rainbow trout from the Agulowak River over the same period averaged 2,345 and 161 fish, respectively. Age and size data were collected from 417 rainbow trout from the Agulukpak and 233 rainbow trout from the Agulowak River during the 3-year study using hook and line gear. Mean length of age 3 and 4 rainbow trout sampled from the Agulawak River were larger than those sampled from the Agulukpak River. Age frequency distributions for the Agulukpak River were normally distributed while the Agulowak River sample was skewed to younger age groups.

KEY WORDS: Agulukpak River, Agulowak River, Wood River Lakes, Bristol Bay, rainbow trout, Oncorhynchus mykiss, Arctic char, Salvelinus alpinus, Arctic grayling, Thymallus arcticus, creel survey, effort, harvest, catch, age, size.

INTRODUCTION

The Wood River lake system, located within the Wood-Tikchik State Park, consists of a series of five lakes connected by short swift rivers (Figure 1). The waters of this system support recreational fisheries for rainbow trout Oncorhynchus mykiss, Arctic char Salvelinus alpinus, and Arctic grayling Thymallus arcticus. The sport fisheries targeting rainbow trout occur primarily in the Agulukpak and Agulowak Rivers.

Information concerning the sport fisheries in the Agulukpak and Agulowak Rivers has been limited to creel survey data collected on the Agulukpak River during 1976 and 1977 and the Agulowak River during 1975, 1976, and 1977 (Minard 1986). Results of these informal investigations suggested that sport fishing effort and catches and harvests of rainbow trout on both rivers were increasing.

In response to these increases, the Alaska Department of Fish and Game (ADF&G), Division of Sport Fish, together with the Alaska Department of Natural Resources (ADNR), Division of Parks, initiated formal creel surveys on both the Agulowak and Agulukpak Rivers during 1986. These surveys were designed to estimate sport fishing effort, catch (fish landed), and harvest (fish retained), and to collect age and size composition data for rainbow trout stocks within the Agulukpak and Agulowak Rivers. The ADF&G was responsible for sample design, data analysis, and reporting of the creel survey and biological data and provided financial support to ADNR to help defray operational expenses associated with the creel survey. Volunteer staff working for the ADNR acted as field technicians and were responsible for the collection of creel survey and biological data.

During the 3-year study period (1986-1988), the Agulukpak and Agulowak Rivers were open to sport fishing all year and anglers were allowed to harvest up to five grayling, ten Arctic char, and five salmon per day. The upper 2 miles of Agulukpak River is managed as a catch and release fishery for rainbow trout and is therefore closed to the harvest of rainbow trout. In the Agulowak and the lower Agulukpak Rivers, anglers were allowed two rainbow trout per day during the period from 8 June through 31 October, of which only one could be greater than 20 inches in length. During the balance of the year, anglers were allowed a daily bag limit of five rainbow trout per day of which only one could be greater than 20 inches in length (ADF&G 1986, 1987, 1988).

METHODS

Creel Survey

Creel surveys were conducted on the Agulukpak and Agulowak Rivers during the years 1986, 1987, and 1988.

Figure 1. Location of the Agulukpak and Agulowak Rivers, Wood River Lake system, Alaska.

Agulukpak River:

The study area on the Agulukpak River extended from Lake Nerka upstream to Lake Beverley (Figure 1). A direct expansion creel survey formed the basis of the sampling design. The fishing day was considered to be 24 hours long, from 0600 hours through 2100 hours. Within each day, the fishing day further stratified into five 3-hour periods: A (0600-0859), B (900-1159), C (1200-1459), D (1500-1759), and E (1800-2059).

Most anglers enter and exit the fishery at the head of the Agulukpak River where it drains Lake Beverley. Technicians, stationed at this access site, attempted to interview every angler exiting the fishery and had completed fishing for the day. For each angler contacted, the creel survey technician recorded the number of hours fished, the number of fish in the angler's possession by species, the number of fish released by species, whether the angler was guided or not guided, the residency of the angler, and the type of gear used (spin, fly, or bait). All interviews were of individual anglers and not party or group interviews. Occasionally, anglers who had completed fishing exited the fishery without being interviewed. In those instances, the number of anglers not interviewed was tallied.

The estimation of angler effort by a direct expansion creel survey can be considered as a problem in estimating a rate. Effort was estimated in units of angler-hours. The rate estimated is the mean effort in angler-hours per hour of sampling. The product of this rate and the total number of possible fishing hours (length of the angler-day) is the estimate of angler effort which was expressed as:

$$\hat{E} = \overset{P}{\underset{j=1}{\Sigma}} H_{j}(\overline{e}_{j}/\overline{h}_{j})$$
 [1]

where;

- E = the estimate of effort in angler-hours,
- H_i = the number of hours possible fishing time, in period j,
- h_j = the mean number of hours censused during period j on all days sampled.

The survey on the Agulukpak River is the simplest case of a direct expansion survey since sampling occurred continuously over the entire length of the angling day which was considered to be 24 hours long.

The variance of effort was estimated as:

$$\begin{array}{c} & & p & 2 \\ V(E) &= & \Sigma & H_j \\ & & j=1 \end{array} \end{array}$$
 [2]

The variance of the rate, e_j/h_j , was approximated by the variance for the quotient of two random variables (Jessen 1978):

$$V(\bar{e}_{j}/\bar{h}_{j}) \approx (\bar{e}_{j}/\bar{h}_{j})^{2}(1/d_{j})(s/\bar{e}_{j}^{2-2} + s_{h}^{2}/\bar{h}_{j}^{2} - 2rs_{c}s_{h}/\bar{e}_{j}\bar{h}_{j}) (1 - h_{j}/H_{j})$$
 [3]

where:

- r = correlation between e and h,
- d_i = the number of days censused,
- s_e^2 = the sample variance for the mean number of angler-hours leaving a census site, and
- s_h^2 = the sample variance for the mean number of hours censused on a sample day.

In most of the fisheries surveyed, the time spent surveying on period j (h_j) was relatively constant on each sampling occasion. In some instances, i.e. on days when no interviews were conducted, h_j varied considerably during the fishery and the h_j were considered random variables. This variation is represented by the variance of the sample unit length in Equation 13 (s_h^2) . The coefficient of variation was used to determine if the h_j were treated as random variables. If the coefficient of variation exceeded 20%, the h_j were treated as constant.

For h_j constant, s_h^2 equals zero and the variance of the estimate of the variance of the estimated angler effort simplifies to:

$$V(\hat{E}) = \sum_{v=1}^{p} d_{j} (H_{j}/h_{j})^{2} s_{e}^{2} (1 - h_{j}/H_{j})$$
[4]

When it was not possible to interview all anglers leaving the access site, the effort by the anglers who were not interviewed was estimated. In contrast to the previous situation, where the effort leaving the fishery during period j (e_j) was considered to be

$$\hat{e}_{j} = M_{j} \overline{f}_{j}$$
[5]

and the associated variance as:

$$\hat{s}_{ej}^{2} = M_{j}^{2} (s_{fj}^{2}/m_{j}) (1 - m_{j}/M_{j})$$
[6]

Effort for period j was estimated by:

$$\hat{\mathbf{E}}_{j} = \mathbf{H}_{j} \left(\hat{\mathbf{e}}_{j} / \mathbf{h}_{j} \right)$$
[7]

The variance of $\stackrel{\Lambda}{E_j}$ was estimated using equations 12 and 13 with the exception that the variance of the mean number of angler-hours of effort by completed-trip anglers censused during each sampling event now has two components, the within-day variance due to missed anglers and the between-day $\stackrel{\Lambda}{}_2$ variance. Letting $\stackrel{\Lambda}{}_e$ estimate the variance of e_j :

with the between-day variance (s_{Be}^2) estimated as:

$$s_{Be}^{2} = \left[\sum_{i=1}^{D} \left(e_{ij} - \overline{e_{j}}\right)^{2}\right] / (d_{j} - 1), \qquad [9]$$

the variance of E, was estimated by substituting $s_e^{A_2}$ for s_e^2 in equation 13 (Sukhatme et al. 1984).

By replacing s_e^2 with s_e^2 , the variance of the angler effort estimate simplifies to equation 14 when the h_j are constant.

The catch and harvest of a species, and their variances, were estimated with the same procedures used to estimate effort by simply substituting the corresponding quantities for catch or harvest in place of effort.

Assumptions necessary for the direct expansion creel survey design are:

- 1. no significant fishing effort occurs during the hours not included in the fishing day;
- 2. all anglers participating in a particular fishery exit the fishery through the surveyed access site; and,
- 3. all anglers who are not interviewed are counted and all noninterviewed anglers are completed-trip anglers.

Agulowak River:

The study area on the Agulowak River was from its head at Lake Nerka to the mouth at Aleknagik Lake (Figure 1). A roving creel survey (Neuhold and Lu 1957) using a stratified, random sampling design was employed to count anglers and conduct angler interviews. Counts of anglers were used to

estimate effort in units of angler-hours and interviews of anglers provided estimates of catch rates (fish per angler-hour) by species. The product of the estimated effort and the species specific catch and harvest rates was the estimate of catch and harvest for a given species.

Effort levels, thought to reflect seasonal availability of rainbow trout, formed the basis for stratification of the study periods. The study period in 1986 (19 June through 23 August) was stratified into three temporal components: Component 1 (16 June to 12 July); Component 2 (13 July to 11 August); and, Component 3 (12 August to 23 August). For the purpose of the creel survey, the fishing day in 1986 was defined as 15 hours in duration (0600-2100 hrs) with each day being divided into five time strata: Period A (0600-0859 hrs); Period B (0900-1159 hrs); Period C (1200-1459 hrs); Period D (1500-1759 hrs); and, Period E (1800-2100 hrs).

Based on information collected during the 1986 surveys, the creel survey was restratified during 1987. In 1987, the study period (6 June through 7 September) was stratified into three different temporal components: Component 1 (6 June to 23 June); Component 2 (24 June to 1 August); and, Component 3 (2 August to 7 September). From 6 June through 15 August, the fishing day was defined as 16 hours in duration (0800-2400) with each day being divided into four time strata: Period A (0800-1159 hrs); Period B (1200-1559 hrs); Period C (1600-1959 hrs); and, Period D (2000-2400 hrs). From 16 August on, the fishing day was shortened to 12 hours in duration and divided into three time periods with Periods A, B, and C remaining the same as above and Period D being eliminated.

Based on information collected during the 1986 and 1987 surveys, the creel survey was again restratified during 1988. In 1988, two temporal components were defined as Component 1 (6 June to 31 July), and Component 2 (1 August to 6 September). The stratification of the angling day was the same as was described for the 1987 survey.

The sampling level in 1986 was 11 angler count and interview trips per week. Time strata to be sampled were randomly chosen subject to the constraint that a maximum of two sample units could be designated in any one day. This random selection process was done independently for each period. In 1987 and 1988, the sampling level was increased to ten angler count/interview sessions and five angler counts per week with all time strata being sampled with equal intensity.

A survey trip started at the upstream or downstream boundary of the survey area. A coin was tossed to determine if a count or interview session was to be conducted first. For a count, the technician drove a skiff through the fishery area at a near constant speed and counted all anglers actively fishing. The count was completed within 40 to 60 minutes of the start and was considered an instantaneous count (Neuhold and Lu 1957).

All interviews were of individual anglers and were not party interviews. The technician attempted to keep the number of anglers interviewed proportional to the angler effort expended during the sampled time (Neuhold and Lu 1957, DiConstanzo 1956). Anglers were randomly selected throughout the fishing

area. For each angler contacted, the technician recorded the number of hours fished, the number of fish in the angler's possession by species, the number of fish released by the angler by species, whether the angler was guided or not guided, the residency of the angler, and the gear used (spin, fly, or bait). Most angler interviews were uncompleted-trip interviews. Completedtrip information was collected on an opportunistic basis as often as possible, and entered on the angler interview form as previously described.

Effort was estimated for each temporal component of the fishery using a stratified random sampling approach by period. Within each temporal component, effort (E_c) was estimated as follows:

$$\hat{E}_{c} = \sum_{i=1}^{p} H_{i} \quad \bar{x}_{i}; \qquad [10]$$

where:

H_i = the total number of hours of possible fishing time in period i, and

 \bar{x}_i = the mean angler count for period i over all periods. The variance of \hat{E}_c was estimated as follows:

$$V(\hat{E}_{c}) = \sum_{i=1}^{p} H_{i}^{2} (s^{2}/m_{i}); \qquad [11]$$

where:

$$s^{2} = \left[\sum_{t=1}^{w} \sum_{i=1}^{p} (y_{ik} - \overline{Y}_{i})^{2}\right] / (m_{i} - 1); \qquad [12]$$

and:

 y_{ik} = a count of anglers made during day k and period i, \overline{Y}_i = the mean count of anglers for period i, and m_i = the number of counts of anglers conducted during period i.

The total number of angler-hours of effort for the season was estimated by summing the estimates of effort for each of the temporal components. Because these are independent estimates, the variance for the total number of anglerhours of effort is the sum of the individual variances for each temporal component estimate. Mean catch per unit effort (catch per angler-hour) was estimated for each temporal component as:

$$\overline{CPUE}_{c} = \sum_{h=1}^{m_{j}} c_{ch} / \sum_{h=1}^{m_{j}} e_{ch}; \qquad [13]$$

where:

 m_i = the number of anglers interviewed during component c,

 c_{ch} = the catch by angler h interviewed during component c, and

e_{ch} = the effort (number of hours) expended by angler h at the time of the interview.

Omitting the finite population correction factor, the variance of mean CPUE was approximated as (Jessen 1978):

$$\mathbb{V}(\overline{\text{CPUE}}_{j}) = (\overline{C}_{c}/\overline{E}_{c})^{2} [s_{c}^{2}/\overline{C}_{c}^{2} + s_{e}^{2}/\overline{E}_{c}^{2} - (2r_{c}s_{c}s_{e}/\overline{C}_{c}\overline{E}_{c})]; \qquad [14]$$

where:

 \overline{C}_{c} = the mean catch of a particular species by anglers in component c, \overline{E}_{c} = the mean effort by anglers in component c, s_{c}^{2} = the two-stage variance estimate for of \overline{C}_{c} , s_{e}^{2} = the two-stage variance estimate for \overline{E}_{c} , and r_{j} = the correlation coefficient for c_{ch} and e_{k} .

The catch of species k during component c was estimated by:

$$\hat{C}_{kc} = \hat{E}_{c}(\overline{CPUE}_{c}). \qquad [15]$$

The variance of the estimated catch of species k was estimated using the product of two independent random variables as described in Goodman (1960).

Harvest rates and total harvest of species k was estimated for each temporal component by substituting appropriate harvests for catches in equations 13, 14, and 15.

Total catch and harvest of a species k for the season was estimated by summing the estimates of catch and harvest for each of the temporal components. Because these are independent estimates, the variances of the total catch and harvest estimates are the sums of the individual variances for each temporal component. The assumptions necessary for these analyses are:

- incomplete-trip angler CPUE provide an unbiased estimate of completed-trip angler CPUE;
- 2. interviewed anglers were representative of the total angler population and anglers were interviewed in proportion to their abundance on the day of the interview;
- no significant fishing effort occurred outside the selected fishing day during each year at the survey;
- 4. catch and effort by individual anglers are normally distributed random variables; and,
- 5. catch rate and duration of fishing trip are independent (DiConstanzo 1956).

Age, Sex, Weight, and Length Sampling

Rainbow trout were captured using hook and line and measured for fork length to the nearest millimeter, weighed to the nearest 10 grams, and sexed when possible. Scales were collected on the left side of the fish approximately two rows above the lateral line and on the diagonal row downward from the posterior insertion of the dorsal fin as described in Clutter and Whitesel (1956). Scales were mounted on adhesive-coated cards and impressions were made in cellulose acetate. Age determinations were made by examination of scales using a microfiche reader. Each fish was tagged at the base of the dorsal fin on the left side with a numbered Floy anchor tag. All biological data were recorded on Division of Sport Fish biological mark-sense forms.

The age composition of the rainbow trout sport catch sample was calculated from all legible scales collected during each year. Letting p_h equal the estimated proportion of age group h in the sample, the variance of p_h was estimated using the normal approximation to the binomial (Schaeffer et al. 1979):

$$V(\dot{p}_{h}) = \dot{p}_{h}(1-\dot{p}_{h})/(n_{T}-1),$$
 [16]

where \mathbf{n}_T is the total number of legible scales collected from rainbow trout during the fishery. Mean length by age group and its variance were estimated using standard normal procedures.

The age composition proportions of the sampled trout from each river was tested for differences using a contingency table analysis (MINITAB 1988). A student's t-test was used to test for differences between mean lengths-at-age of the sampled trout from each river (MINITAB 1988).

RESULTS

Creel Statistics

Sport fishing effort during the survey periods on the Agulukpak River was estimated to be 1,826 angler-hours in 1986, 4,265 angler-hours in 1987, and 3,685 angler-hours in 1988 (Table 1). Sport fishing effort on the Agulowak

	0		Number			Es	timated E	ffort
Year	C	(Dates)	of Interviews	D ¹	d ²	Ang-Hrs	se ³	rp ⁴
1986	A11	(6/29-8/22	2) 331	53	33	1,826	208.8	22.4%
1987	1	(6/17-7/11	1) 111	25	19	665	57.5	16.9%
	2	(//12-8/22 (8/23-9/16	2) 408 5) 198	44 19	44 19	2,303 1,297	0.0	0.0%
		Season	717	88	82	4,265	58	2.6%
1988	1	(6/14-7/08	3) 96	25	25	475	17.94	7.4%
	2	(7/09-8/02	2) 214	25	25	1,183	27.29	4.5%
	3	(8/3-8/27)	215	25	25	997	2.82	0.6%
	4	(8/28-9/16	5) 197	20	20	1,030	32.06	6.1%
	Sea	ason	722	95	95	3,685	45.86	2.4%

Table 1. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulukpak River, 1986-1988.

¹ Number of days possible. ² Number of days surveyed. ³ Standard error. ⁴ Relative precision ($\alpha = 0.05$).

River was estimated to be 3,732 angler-hours in 1986, 6,397 angler-hours in 1987, and 3,582 angler-hours in 1988 (Table 2).

Catches and harvests per hour, by species and temporal component, are listed for the Agulukpak River in Tables 3, 4, and 5. Catch rates for rainbow trout greater than 0.5 fish per angler hour occurred in all 3 years and exceeded one fish per hour in 1987 and 1988. These data also suggest that Arctic char and Arctic grayling play an important role in the sport fishery of the Agulukpak River. Harvest rates for all species were low.

Catches and harvests per hour, by species and temporal component, are listed for the Agulowak River, by year, in Tables 6, 7, and 8. These data indicate that rainbow trout, Arctic char, and Arctic grayling are caught frequently in this fishery. Rainbow trout catch per hour exceeded one fish in 1988 while catch rates for Arctic char exceeded one fish per hour during each of the 3 years of the study. Harvest rates appear moderate for all species.

The rainbow trout catch in the Agulukpak River totaled 1,322 during the 1986 season, with none harvested (Table 9). A total of 659 Arctic char were caught of which 59 (9%) were harvested. Additionally, 1,291 Arctic grayling were caught of which 15 (1%) were harvested. The 1987 rainbow trout catch rose to 3,692 fish, of which 2 were harvested (Table 10). Peak catches in 1987 occurred in temporal components two and three. Arctic char catch and harvest peaked in temporal component two, and totaled 1,892 and 152 (8%), respectively. Arctic grayling also peaked in temporal component 2. A total of 2,649 Arctic grayling were caught, of which 26 (1%) were harvested.

The catch and harvest of rainbow trout in 1988 from the Agulukpak River was 2,884 and 0 fish, respectively (Table 11). Catches of Arctic char and grayling totaled 2,312, and 2,051 fish respectively. Harvests for all species were negligible.

In 1986, the rainbow trout catch in the Agulowak River totaled 1,783, of which 84 (5%) were harvested (Table 12). Peak rainbow trout catch and harvest occurred during temporal component two. Arctic char peak catch and harvest occurred during temporal component one, and seasonal totals were 5,151 and 1,217 (12%), respectively. In 1987, the rainbow trout catch and harvest increased to 2,584 and 328 (13%), respectively (Table 13). Catch peaked in temporal component three, and harvest peaked in temporal component two. Arctic char seasonal catch and harvest was 3,716 and 660 (18%), respectively, and both peaked in temporal component two. Of 616 Arctic grayling caught, only 15 (2%) were harvested. However, the percent of sockeye 0. nerka and coho 0. kisutch salmon harvested was 52% and 100% from catches of 60 and 15, respectively.

Catches and harvests for the 1988 season are listed by species for the Agulowak River in Table 14. Of the 2,666 rainbow trout landed, 72, or 2.7% were harvested. Char catches totaled 4,176 fish of which 551 (13.2%) were harvested. Arctic grayling catch and harvest was estimated to be 1,308 and 22 (1.7%) fish, respectively.

			Number			Est	timated E	ffort
Year	С	omponent (Dates)	of Interviews	D^1	d ²	Ang-Hrs	se ³	RP ⁴
1000	1			01	<u>^</u>	1 070	0/0 F	10.6
1986	T	(6/16-//12	2) 55	24	9	1,3/3	340.5	48.6%
	2	(//13-8/1)	L) 140	30	16	1,816	319.9	34.5%
	3	(8/12-8/23	3) 56	12	8	543	257.3	92.9%
		Seasor	n 251	66	33	3,732	533.3	28.0%
1987	1	(6/06-6/23	3) 33	18	7	591	116.1	38.5%
	2	(6/24-8/01	L) 136	39	19	3.572	336.0	18.4%
	3	(8/02-9/07	7) 96	37	16	2,234	353.2	31.0%
		Seasor	n 265	94	42	6,397	501.1	15.4%
1988	1	(6/06-7/31	L) 188	56	22	2.488	207.1	23.3%
	2	(8/01-9/06	5) 160	37	24	1,094	295.6	37.1%
		Season	n 348	93	46	3,582	360.9	19.7%

Table 2. Estimated effort (angler-hours), by temporal component, for the sport fishery in the Agulowak River, 1986-1988.

1 Number of days possible. 2 Number of days surveyed. 3 Standard error. 4 Relative precision ($\alpha = 0.05$).

Table 3. Estimated catch and harvest rates (fish per angler-hour), by species, for sport fishery (6/29-8/22) in the Agulukpak River, 1986.

	Car	tch	Hat	rvest
	Fish/Hr	se ¹	Fish/Hr	se ¹
Rainbow Trout	0.7243	0.0039	0.0000	0.0000
Arctic Char	0.3609	0.0058	0.0321	0.0006
Arctic Grayling	0.7074	0.0043	0.0080	0.0003
Sockeye Salmon	0.0786	0.0010	0.0056	0.0001
Coho Salmon	0.0024	0.0001	0.0000	0.0000

¹ Standard error.

		Cate	ch	Harv	vest
	Temporal Component ¹	Fish/Hr	se ²	Fish/Hr	se ²
Rainbow	1	0.2512	0.0347	0.0020	0.0012
Trout	2	0.6931	0.0410	0.0004	0.0004
	3	1.4869	0.0809	0.0000	0.0000
Arctic	1	0.8405	0.1250	0.0949	0.0171
Char	2	0.4773	0.0472	0.0356	0.0050
	3	0.1804	0.0203	0.0054	0.0032
Arctic	1	0.6724	0.0107	0.0198	0.0086
Gravling	2	0.6905	0.0520	0.0017	0 0011
8	3	0.4717	0.0554	0.0069	0.0035
Sockeve	1	0 0040	0 0033	0 0040	0 0033
Salmon	2	0 0973	0 0139	0.0040	0.0033
Durmon	2	0 1027	0.0130	0.0104	0.0027
	J	0.1927	0.0330	0.0000	0.0000
Northern	1	0.1009	0.0457	0.0020	0.0010
Pike	2	0.0000	0.0000	0.0000	0.0000
	3	0.0039	0.0024	0.0000	0.0000

Table 4. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulukpak River, 1987.

1 Component 1: 6/17-7/11; Component 2: 7/12-8/28; and, 2 Component 3: 8/29-9/16. 2 Standard error.

	m 1	Cate	ch	Harv	vest
	Component ¹	Fish/Hr	se ²	Fish/Hr	se ²
Rainbow	1	0.2941	0.0363	0.0000	0.0000
Trout	2	0.7888	0.0550	0.0000	0.0000
	3	1.2998	0.0903	0.0000	0.0000
	4	0.5563	0.0593	0.0000	0.0000
Arctic	1	0.6453	0.0769	0.0439	0.0147
Char	2	0.0325	0.0078	0.0057	0.0028
	3	0.0724	0.0240	0.0021	0.0009
	4	1.8926	0.1352	0.0164	0.0076
Arctic	1	0.6409	0.1455	0.0154	0 0060
Gravling	2	0.7180	0.0577	0.0029	0.0030
B	3	0.5501	0.0480	0.0052	0 0098
	4	0.3556	0.1053	0.0000	0.0000
Sockeve	1	0 0000	0 0000	0 0000	0 0000
Salmon	2	0 1264	0.0272	0.0220	0.0000
Carmon	3	0 1975	0 0449	0.0062	0 0077
	4	0.4614	0.0689	0.0002	0.0000

Table 5. Estimated catch and harvest rates (fish per anglerhour), by species and temporal component, for the sport fishery in the Agulukpak River, 1988.

1 Component 1: 6/14-7/8; Component 2: 7/9-8/2; 2 Component 3: 8/3-8/27; Component 4: 8/28-9/16. 3 Standard error.

	Temporal Component ¹	Cate	ch	Harvest		
		Fish/Hr	se ²	Fish/Hr	se ²	
1						
Rainbow	1	0.1647	0.0096	0.0000	0.0000	
Trout	2	0.7657	0.0201	0.0463	0.0017	
	3	0.3076	0.0161	0.0000	0.0000	
Arctic	1	2.7862	0.1238	0.5902	0.0201	
Char	2	0.6321	0.0130	0.1953	0.0060	
	3	0.3268	0.0145	0.0961	0.0054	
Arctic	1	0.0549	0.0045	0.0000	0.0000	
Gravling	2	0.3649	0.0132	0.0154	0 0023	
JB	3	0.0577	0.0073	0.0000	0.0000	
Sockeye	1	0.0000	0.0000	0.0000	0.0000	
Salmon	2	0.0154	0.0016	0 0103	0 0013	
	3	0.4806	0.0236	0.1922	0.0188	

Table 6. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1986.

1 Component 1: 6/19-7/12; Component 2: 7/13-8/11; and, 2 Component 3: 8/12-8/23. 2 Standard error.

		Cato	ch	Harv	vest
	Temporal Component ¹	Fish/Hr	se ²	Fish/Hr	se ²
Rainbow	1	0.1260	0.1291	0.0315	0.0215
Trout	2	0.2399	0.0738	0.0600	0.0238
	3	0.7379	0.2146	0.0427	0.0313
Arctic	1	1.2132	0.2926	0.2994	0.1047
Char	2	0.7026	0.1544	0.1200	0.0352
	3	0.2195	0.0549	0.0244	0.0118
Arctic	1	0.0000	0.000	0.0000	0.0000
Gravling	2	0.1114	0 0607	0 0043	0 0026
	3	0.0976	0.0398	0.0000	0.0000
Sockeve	1	0 0000	0 0000	0 0000	0 0000
Salmon	2	0 0129	0.0157	0.0086	0.0155
buzmon	3	0.0061	0.0185	0.0000	0.0000
	3	0.0001	0.0105	0.0000	0.0000
Coho	1	0.0000	0.0000	0.0000	0.0000
Salmon	2	0.0043	0.0026	0.0043	0.0026
	3	0.0000	0.0000	0.0000	0.0000

Table 7. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1987.

1 Component 1: 6/6-6/23; Component 2: 6/24-8/1; and, 2 Component 3: 8/2-9/7. 3 Standard error.

		Cato	ch	Harvest			
	Temporal Component ¹	Fish/Hr	se ²	Fish/Hr	se ²		
Rainbow	1	0.5655	0.2087	0.0241	0.0118		
Trout	2	1.1507	0.1654	0.0114	0.0074		
Arctic	1	1.4981	0.3497	0.2166	0.0575		
Char	2	0.4102	0.2419	0.0114	0.0129		
Arctic	1	0.2677	0.1235	0.0090	0.0054		
Grayling	2	0.5867	0.1026	0.0000	0.0000		
Sockeve	1	0.0000	0.0000	0.0000	0.0000		
Salmon	2	0.0598	0.0239	0.0114	0.0057		

Table 8. Estimated catch and harvest rates (fish per angler-hour), by species and temporal component, for the sport fishery in the Agulowak River, 1988.

 $\stackrel{1}{_{2}}$ Component 1: 6/6 to 7/31; Component 2: 8/1 to 9/6. Standard error.

	С	atch		На	rvest	5	Percent	
Species	Number	se ¹	RP ²	Number	se ¹	rp ²	Percent Harvested	
Rainbow Trout	1,322	151	22.4%	0	0		0.0%	
Arctic Char	659	76	22.6%	59	7	22.5%	9.0%	
Arctic Grayling	1,291	148	22.5%	15	2	22.6%	1.2%	
Sockeye Salmon	143	16	22.6%	10	1	19.6%	0.0%	
Coho Salmon	4	0	0.0%	0	0		0.0%	

Table 9. Estimated catch and harvest, by species, for the sport fishery (6/29-8/22) in the Agulukpak River, 1986.

¹ Standard error. ² Relative precision ($\alpha = 0.05$).

	m 1	(Catch		Ha	irve	est	- Percent
Species	Temporal Component	Number	se ¹	rp ²	Number	S	e ¹ RP ²	Percent Harvested
Rainbow	1	167	25	29.28	1	0	0.0%	0.6%
Trout	2	1,596	0	0.0%	-	0	0.0%	0.1%
	3	1,929	0	0.0%	0	0		0.0%
	Total	3,692	25	1.3%	2	0	0.0%	0.1%
Arctic	1	559	116	40.8%	63	9	26.6%	11.3%
Char	2	1,099	0	0.0%	82	0	0.0%	7.5%
	3	234	0	0.0%	7	0	0.0%	3.0%
	Total	1,892	116	12.1%	152	9	11.0%	8.0%
Arctic	1	447	66	28.8%	13	3	42.5%	2.9%
Grayling	2	1,590	0	0.0%	4	0	0.0%	0.3%
	3	612	0	0.0%	9	0	0.0%	1.5%
	Total	2,649	66	4.9%	26	3	21.3%	1.0%
Sockeye	1	3	1	65.3%	3	1	65.3%	0.0%
Salmon	2	224	0	0.0%	24	0	0.0%	10.7%
	3	250	8	6.0%	0	0		0.0%
	Total	477	1	0.4%	27	1	7.3%	5.7%
Northern	1	67	16	46.4%	1	0	0.0%	1.5%
Pike	2	0	0		0	0		
	3	5	0	0.0%	0	0		0.0%
	Total	72	16	43.28	1	0	0.0%	1.4%

Table 10. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1987.

¹ Component 1: 6/17-7/11; Component 2: 7/12-8/28; and, Component 3: 8/29-9/16. Standard error. Relative precision ($\alpha = 0.05$).

		(Catch		Ha	rves	t	- Percent
Species	Temporal Component	Number	se ¹	RP ²	Number	se ¹	RP ²	Percent Harvested
Rainbow	1	140	6	8.7%	0	0		0.0%
Trout	2	927	26	5.5%	0	Ō		0.0%
	3	1,262	3	0.5%	Ō	0		0.0%
	4	555	40	14.0%	0	0		0.0%
	Total	2,884	48	3.2%	0	0		0.0%
Arctic	1	306	15	9.3%	21	21	6.2%	6.9%
Char	2	47	13	52.5%	9	36	8.8%	19.1%
	3	71	2	4.8%	2	0	0.0%	2.8%
	4	1,888	111	11.5%	17	33	0.4%	0.9%
	Total	2,312	113	9.5%	49	41	7.98	2.1%
Arctic	1	304	20	12.8%	7	12	8.0%	2.3%
Grayling	2	849	37	8.6%	3	0	0.0%	0.4%
	3	540	3	1.18	9	51	5.2%	1.7%
	4	358	34	18.6%	0	0		0.0%
	Total	2,051	54	5.2%	19	55	5.5%	0.9%
Sockeye	1	0	0		0	0		0.0%
Salmon	2	141	13	17.8%	24	2 1	8.38	17.0%
	3	199	7	7.0%	15	56	9.1%	7.5%
	4	503	31	12.1%	0	0		0.0%
	Total	843	34	8.0%	39	62	8.9%	4.6%

Table 11. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulukpak River, 1988.

ł

¹ Component 1: 6/14-7/8; Component 2: 7/9-8/2; Component 3: 8/3-8/27; Component 4: 8/28-9/16. Standard error. Relative precision ($\alpha = 0.05$).

		(Catch		F	larve	st	Percent
Species	Component	Number	se1	rp ²	Number	SE	¹ RP ²	Percent Harvested
Rainbow	1	226	58	49.9%	0	0		0.0%
Trout	2	1,390	248	34.9%	84	15	35.3%	6.0%
	3	167	80	93.3%	0	0		0.0%
	Total	1,783	266	29.3%	84	15	35.3%	4.78
Arctic	1	3,826	963	49.3%	810	203	49.1%	21.2%
Char	2	1,148	204	34.7%	355	63	35.0%	30.9%
onar	3	177	84	93.4%	52	25	93.6%	29.4%
	Total	5,151	988	37.6%	1,217	214	34.4%	23.6%
Arctic	1	75	20	51.3%	0	0		0.0%
Grayling	2	663	119	35.2%	28	6	44.8%	4.2%
	3	31	15	96.3%	0	0		0.0%
	Total	769	122	31.0%	28	6	44.8%	3.6%
Sockeye	1	0	0		0	0		0.0%
Salmon	2	28	6	40.2%	19	4	42.5%	67.9%
	3	261	124	93.2%	104	50	94.7%	39.8%
	Total	289	124	84.3%	123	50	80.3%	42.6%

Table 12. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1986.

¹ Component 1: 6/19-7/12; Component 2: 7/13-8/11; and, Component 3: 8/12-8/23. Standard error. Relative precision ($\alpha = 0.05$).

			(Catcl	ı	ł	larve	est		- Percent
Species		Temporal Component	Number	SE	L _{RP} 2	Number	s SI	e ¹ R	. _P 2	Percent Harvested
Rainbow		1	75	76	199.3%	19	13	134.	1%	25.3%
Trout		2	857	274	62.8%	214	87	79.	88	25.0%
		3	1,652	541	64.1%	95	71	145.	88	5.8%
	 Total	L	2,584	611	46.3%	328	113	67.	5%	12.7%
Arctic		1	717	220	60.3%	177	70	77.	4%	24.7%
Char		2	2,509	597	46.7%	429	131	60.	60	17.1%
		3	490	144	57.5%	54	27	99.	3&	11.0%
	Total	L	3,716	653	34.4%	660	151	45.	08	17.8%
Arctic		1	0	0		0	0			
Grayling		2	398	219	108.0%	15	9	123.	28	3.8%
		3	218	94	84.8%	0	0			0.0%
	Total	,,,,	616	239	75.9%	15	9	123.	28	2.4%
Sockeye		1	0	0		0	0			0.0%
Salmon		2	46	56	237.8%	31	55	349.	6%	67.4%
		3	14	41	570.6%	0	0			0.0%
	Total	L	60	69	225.7%	31	55	349.	68	51.7%
Coho		1	0	0		0	0			0.0%
Salmon		2	15	9	124.0%	15	9	124.	60	100.0%
		3	0	0		0	0			0.0%
	Tota	L	15	9	124.0%	15	9	124.	08	100.0%

Table 13. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1987.

¹ Component 1: 6/6-6/23; Component 2: 6/24-8/1; and, Component 3: 8/2-9/7. ² Standard error. ³ Relative precision ($\alpha = 0.05$).

		<i>m</i>	(Catch		На	rves	t	Percent	
Species		Component	Number	se1	rp ²	Number	se ¹	RP ²	Percent Harvested	
Doinhau		1	1 / 07	5/0	75 50	(0)	20	07.60	())	
Trout		2	1,407	542 297	/5.5* 46.3*	60 12	30 8	97.6% 135.6%	4.3% 1.0%	
	Total		2,666	618	45.4%	72	31	84.4%	2.7%	
Arctic Char		1 2	3,727 449	971 273	51.1% 119.3%	539	156 14	56.6% 229.8%	14.5% 2.7%	
	 Total		4,176	1,009	47.3%	551	156	55.6%	13.2%	
Arctic Grayling		1 2	666 642	315 164	92.7% 50.1%	22 0	13 0	20.2%	3.3% 0.0%	
	 Total	-	1,308	355	53.2%	22	13	20.2%	1.7%	
Sockeye Salmon		1 2	0 65	0 28	85.6%	0 12	0 7	07.1%	0.0% 18.5%	
	 Total	_	65	28	85.6%	12	7	07.1%	18.5%	

Table 14. Estimated catch and harvest, by species and temporal component, for the sport fishery in the Agulowak River, 1988.

¹ Component 1: 6/6-7/31 and Component 2: 8/1-9/6. ² Standard error. ³ Relative precision ($\alpha = 0.05$).

•

Creel survey results for the Agulukpak and Agulowak Rivers for the three years (1986, 1987, and 1988) are summarized in Table 15.

The demographics differ dramatically between the sport fisheries of the Agulukpak and Agulowak Rivers as shown in Figure 2. Most of the anglers interviewed fishing the Agulukpak River were guided (85.7%) while on the Agulowak River most were nonguided (63.7%) anglers. Residency also differed dramatically, with over 90% of the anglers fishing the Agulukpak River being nonresidents, and resident and nonresident anglers fishing Agulowak River being about evenly split. Gear preference differed between the two fisheries as well. Nearly 83% of the anglers interviewed used flies on the Agulukpak River. Flies were used by approximately one-third of the interviewed fishermen on the Agulowak River. Spin gear was the preference of most of the fishermen on the Agulowak River, but accounted for only 16% on the Agulukpak River. Bait was the least frequently used gear type being the preference of less than 1% of the anglers sampled on either river.

Age, Sex, Weight, and Length Statistics

A total of 417 rainbow trout were sampled from the Agulukpak River during 1986, 1987, and 1988. Of these, 154 were aged and 330 were marked with numbered Floy anchor tags (Table 16). A total of 233 rainbow trout were captured using hook and line from the Agulowak River during 1988, of which 40 were tagged and 77 were aged (Table 16). Insufficient samples were collected in 1986 and 1987 to warrant detailed analysis.

The mean length of rainbow trout caught in the Agulukpak River was 418 mm (n=173, SE=5.81) in 1986, 421 mm (n=184 mm, SE=6.23) in 1987, and 396 mm (n=60, SE=11.94) in 1988 (Table 17). Age 5 fish were most abundant in all 3 years, accounting for 34% to 57% of fish aged. Age 4 and 6 fish were near equally represented, accounting for 11% to 20% of the fish aged. Size frequency distributions for the 3 years are presented in Figure 3.

Four and 5 year old fish were the most common age group in the samples collected from the Agulowak River in 1988 (Table 18). Mean length was estimated to be 361 mm (n=233, SE=3.81) and mean weight was 511 g (n=48, SE=26.44). Size frequency distribution for samples collected in 1988 from the Agulowak River is presented in Figure 4.

The age compositions and mean length-at-age of the sampled trout from each river was similar. There was no significant differences (α =0.05) in the numbers of fish by age group in any of the years between the rivers with the exception of the age 4 fish during 1988 (G²=12.55, df=4, p=0.014). There was also no significant difference (α =0.05) in the mean length-at-age of the sampled trout from the two rivers (Figure 5) with the exception of the age 3 (Δ =82 mm, t=12.46, df=18) and age 4 (Δ =97 mm, t=2.93, df=300).

DISCUSSION

The sport fishery in the Agulowak River is considerably more consumptive than that of the Agulukpak River. Although a relatively small proportion of the

		Raint	ow Trout	Arct	ic Char	Arctic	Crayling	Sockey	e Salmon
Date (Ang-H)	Effort (Ang-Hrs)	Catch	Harvest	Catch	Harvest	Catch	Harvest	Catch	Harvest
Agulukpak River	:								
1986 6/29-8/22	1,825	1,322	0	659	59	1,291	15	143	10
1987 6/17-9/16	4,265	3,692	2	1,892	152	2,649	26	477	27
1988 6/14 -9/16	3,685	2,884	0	2,312	49	2,051	19	843	39
Agulowak River									
1986 6/19-8/23	3,732	1,784	84	5,151	1,217	769	28	289	123
1987 6/6-9/7	6,397	2,584	328	3,717	660	616	15	60	31
1988 6/6-9/6	3,582	2,666	72	4,176	551	1,308	22	65	12

Table 15. Catch and harvest of rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-1988.

Figure 2. Demographic information collected from anglers participating in the sport fisheries in the Agulukpak and Agulowak Rivers, 1986-1988.

			Number	
Location	Year	Sampled	Tagged	Aged
Agulukpak	1986 1987 1988	173 184 60	94 178 58	7 111 36
	Total	417	330	154
Agulowak	1988	233	40	77

Table 16. Summary of biological sampling of rainbow trout from the Agulukpak and Agulowak Rivers, 1986-1988.

					Age Gro	up				
	UNKNOWN	1	2	3	4	5	6	7	8	TOTAL
<u>1986</u>										
Percent			14.3		28.6	57.1				100.0
Mean Length	422		206		327	330				418
SE	5.72				47.50	24.49				5.81
Sample Size	166		1		2	4				173
Mean Weight	836				200	475				808
SE	44.18					85.39				43.24
Sample Size	71				1	4				76
<u>1987</u>										
Percent		1.8	7.2	11.7	21.6	34.2	20.7	2.7		100.0
Mean Length	453	183	237	343	404	430	444	462		421
SE	9.74	3.00	11.95	20.29	12.46	5.96	8.18	6.23		6.23
Sample Size	73	2	8	13	24	38	23	3		184
Mean Weight	1126			602	655	923	1018	1190		991
SE	35.07			88.85	94.41	33.99	83.81	65.06		29.73
Sample Size	35			5	7	19	11	3		80
<u>1988</u>										
Percent				16.7	11.1	41.7	19.4	8.3	2.8	100.0
Mean Length	435			208	303	412	417	442	410	396
SE ¹	14.79			18.89	13.38	16.41	16.38	33.46		11.94
Sample Size	24			6	4	15	7	3	1	60
Mean Weight	708			181	292	653	707	800	630	617
SE	46.97			20.80	36.54	59.ļ8	67.22	177.25		34.85
Sample Size	24			6	4	15	7	3	1	60

Table 17. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulukpak River, 1986-1988.

 1 Standard error.

Figure 3. Length frequency distributions for rainbow trout sampled from the sport fishery in the Agulukpak River, 1986-1988.

			Age	Group			
	UNKNOWN	3	4	5	6	7	TOTAL
Percent		18.2	36.4	35.0	7.8	2.6	100.0
Mean Length SE ¹ Sample Size	365 4.84 156	290 13.19 14	350 8.57 28	372 6.07 27	392 17.95 6	431 1.50 2	361 3.81 233
Mean Weight SE ^l Sample Size	511 26.44 48	0	0	0	0	0	511 26.44 48

Table 18. Mean lengths (millimeters) and weights (grams) of rainbow trout, by age group, sampled using hook and line gear from the Agulowak River, 1988.

¹ Standard error.

Figure 4. Length frequency distribution of rainbow trout sampled from the sport fishery in the Agulowak River, 1988.

 $\overset{\omega}{\mathbf{\omega}}$

Figure 5. Mean length and 95% confidence intervals for rainbow trout, by age group, sampled from the Agulukpak and Agulowak Rivers.

fishes caught in either river were retained, anglers fishing the Agulowak River had a greater tendency to keep fish for eating than did anglers fishing the Agulukpak River.

Rainbow trout first recruit into the fishery (are large enough to be captured using sport fishing gear) in considerable numbers at age 3 (Figure 6), when they average approximately 300 mm in length. In the Agulukpak River, rainbow trout are fully recruited to the fishery at age 5. However, age 4 and age 5 fish contributed equally to the samples of the catchable population from the Agulowak River suggesting either a weak 1983 brood year (age 5 fish) or, more likely, given the consumptive nature of the Agulowak fishery, is indicative of overharvest of the larger older age fish in the Agulowak River.

Figure 6. Percent, by age group, of rainbow trout sampled from the Agulukpak and Agulowak Rivers, 1988.

LITERATURE CITED

- ADF&C. 1986. 1986 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 32 pp.
- _____. 1987. 1987 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 32 pp.
- _____. 1988. 1988 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 56 pp.
- Clutter, R. I. and L. E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bull. Int. Pac. Salmon Fish. Comm., No. 9. 159 pp.
- DiConstanzo, C. J. 1956. Creel census techniques and harvest of fishes in Clear Lake, Iowa. Ph.D. dissertation, Iowa State College, Ames, Iowa. 130 pp.
- Goodman, L. A. 1960. On the exact variance of products. J. Am. Stat. Ass. 55:708-713.
- Jessen, R. J. 1978. Statistical survey techniques. John Wiley and Sons, New York, New York. 520 pp.
- Neuhold, J. M. and K. H. Lu. 1957. Creel census method. Utah State Department Fish Game Publ. 8, Salt Lake City, Utah. 36 pp.
- Schaeffer, R. L., W. Mendenhall, and L. Ott. 1979. Elementary survey sampling. Duxbury Press, North Scituate, Mass. 278 pp.

-

APPENDIX

				Period	2/						Period	2/	
Date	Wd/We 1/	A	В	С	D	E	Date	wa/we 1/	A	В	C	D	E
						0	7/07			F	F		
6/29	Wd		U			U	7/27	Wa		2	2	,	
6/30	Wd	~				•	7/28	WC		/		4	•
7/01	Wa	U				U	7729	WC			•	4	
7/02	Wd			1.0			7/30	WCL	0	0	3		U
7/03	Wa		0	12			//31	Wa	0	8			
7/04	We		12	2	•		8/01	we			•		
7/05	We		0		0		8/02	We			3	U	
7/06	Wd		16		3		8/03	Wd		4	7		
7/07	u.a	0	0		-		8/04	Wd	0	-		4	
7/08	W.A	•	ő	4			8/05	Wd	•	1	10		
7/00	요.		Ū	-			8/06	W.A		-			
7/10	M4		3	0			8/07	W.4					
7/11	Wa.		5	v			8/08	We			5	6	
7/12	We	0	õ				8/09	We		0	õ	U U	
7/13	Wd		0		4		8/10	Wa		8		7	
7/14	Wd						8/11	Wd	0			7	
7/15	Wd						8/12	Wd					
7/16	Wd			1			8/13	Wd	0				0
7/17	Wd		0	0			8/14	Wd		4	4		
7/18	We						8/15	We					
7/19	We	0				0	8/16	We		0	1		
7/20	ча		6	4			8/17	uд		7		7	
7/21	н <u>и</u> .		v	-			8/18	ц.,		í.		'n	
7/21			4				8/10	ш.а.		-		5	
7/22	wa		4	-			8/20	#u		4		0	
7123	WC						0/20	we.		-	. 7	U	
7124	wa			4			0/21	wa.		0			
//25	We		•	4	4		8/22	we		2	4		
//26	We		U		U		8/23	We		U			

Appendix Table 1. Angler counts for the sport fishery in the Agulukpak River, 1986.

1/ Wd = Weekday; We = Weekend or holiday.

2/ Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2100).

			Per	riod 2/						Pe	riod 2/		
Date W	Id/We 1/	A	В	с	D	E	Date	Wd/We 1/	A	В	С	D	E
06/19	Wd	0					07/24	Wa			•	•	
06/20	We						07/25	We		•	1	10	
06/21	We	0	0				07/26	We		U	3	18	
06/22	Wd				0		07/27	Wd		2	16	_	
06/23	Wd		2	5			07/28	Wd		3	3	1	
06/24	Wd		2		16		07/29	Wd					_
06/25	Wd						07/30	Wd			8		3
06/26	Wd						07/31	Wd	0	3			
06/27	We						08/01	We					
06/28	We			5	8		08/02	We					3
06/29	50		0				08/03	Wd		0	3		
06/30	W.d.		•				08/04	Wd		2		5	
07/01	ud .						08/05	Wd		7	6		
07/02	Wd						08/06	Wd					
07/02			1	0			08/07	WA					
07/03	wa		± 2				08/08	We			7	3	
07/04	we		2	4	٤		08/09	We		0	2	-	
07/05	we		4		2		08/10	шd		5	-	9	
07/06	Wd	•	2		2		08/10	W4.		ĭ		ś	
07/07	Wd	1	0	,			08/11	W.C.		-		5	
07/08	Wd		U	4			08/12	wa	0			٥	
07/09	Wd						08/13	WC	U			v	
07/10	Wd		2	6			08/14	Wd					
07/11	We		0		9		08/15	We					
07/12	We	0	0				08/16	We	3	0			
07/13	Wd	-	6		15		08/17	Wd	0		0		
07/14	Wd						08/18	Wd	9			1	
07/15	W.d						08/19	Wd					
07/16	Wď			0	0		08/20	Wd	3			0	
07/17	uл		0	6			08/21	wa	0	3			
07/19			v	v			08/22	We	6	6			
07/18	we	1				٩	08/23	We	õ	-	13		
07/19	we	1	20	14		7	00723	46	•				
07/20	Wa		20	14									
07/21	Wd			•	•								
07/22	Wd			U	U								
07/23	Wd												

Appendix Table 2. Angler counts for the sport fishery in the Agulowak River, 1986.

1/ Wd = Weekday; We = Weekend or holiday.

2/ From 6/19 - 7/12: Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-2059). From 7/13 - 8/11: Period A (0600-0859); B (0900-1159); C (1200-1459); D (1500-1759); E (1800-2100). From 8/13 - 8/23: Period A (0600-1159); B (1200-1459); C (1500-1759); D (1800-2100).

				P	eriod 2/					Pei	iod 2/	
Date	Wd/We	1/	A	B	C	D	Date	Wd/We 1/	A	B	С	D
							07/05				_	
06/06	We		•	-		6	07/25	We			8	10
06/07	We		3	5			07/26	We	0	10		
06/08	Wd		-		•		07/27	Wd				-
06/09	Wd		2	-	2		07/28	Wd	6			5
06/10	Wd		-	0		3	07/29	Wd				
06/11	Wd		1	•	1		07/30	Wd			•	
06/12	Wd			0		6	07/31	Wd		0	3	
06/13	We		1	3			08/01	We		9		11
06/14	We			1		3	08/02	We	0	4		
06/15	Wd				0	0	08/03	Wd				
06/16	Wd						08/04	Wd	2		2	
06/17	Wd			3		1	08/05	Wd		0		
06/18	Wd		2		0		08/06	Wd	7		4	
06/19	Wd			2	7		08/07	Wd		2		0
06/20	We		0		σ		08/08	We	7	4		
06/21	We				4	0	08/09	We				
06/22	Wd						08/10	Wa				
06/23	Wd						08/11	Wd				
06/24	Wd			5	5		08/12	Wd			2	1
06/25	Wd				6	13	08/13	Wd	5		0	
06/26	Wd						08/14	Wd		11		3
06/27	We				5	15	08/15	We		5		
06/28	We				0	4	08/16	We	3	4		
06/29	Wd						08/17	Wd	0	6		
06/30	Wd						08/18	Wd				
07/01	Wd						08/19	Wd	8		8	
07/02	Wd						08/20	Wd		13		
07/03	Wd			4	4		08/21	Wd	8			
07/04	We			0			08/22	We			18	
07/05	We			6	8		08/23	We	6			
07/06	Wd						08/24	Wd	3		0	
07/07	Wd		5		1		08/25	Wd			0	
07/08	Wd			6		10	08/26	Wd				
07/09	Wd		3				08/27	Wd		1		
07/10	Wd			8			08/28	Wd	6			
07/11	We		6	8			08/29	We		20	3	
07/12	We	1	.0		11		08/30	We	5		4	
07/13	Wd				0	6	08/31	Wd			0	
07/14	bW.						09/01	Wd				
07/15	Wd			12		5	09/02	Wd				
07/16	6W		1		5		09/03	Wd		7	0	
07/17	Wd			5	5		09/04	Wd				
07/18	We		5		0	_	09/05	We			1	
07/19	We				6	2	09/06	We				
07/20	Wd						09/07	Wd	4			
07/21	Wd											
07/22	Wd			0	0							
07/23	Wd				9	2						
07/24	Wd											

Appendix Table 3. Angler counts for the sport fishery in the Agulowak River, 1987.

1/ Wd = Weekday; We = Weekend or holiday.

2/ Period A (0800-1159); Period B (1200-1559); Period C (1600-1959); Period D (2000-2400).

			Per	iod 2/							Per	iod 2/			
Date	Wd/We 1/	Α	B	C	D	E	F	Date	Wd/We 1/	A	B	с	D	E	
					•			07/25	Wd						
6/06	Wd	-	0		1			07/26	Wd						
6/07	Wd	0	0	•	3			07/27	44						
6/08	Wd	1		3	o		٥	07/28	14						
6/09	Wd	0		•			v	07/20	14						
6/10	Wd	0		O			•	07/20	U.						
6/11	We			-	13		~	07/30	He	2				4	
6/12	We	15		0			•	07731	~~	-					
113	Wd	0			3	0		08/01	Wd		•	0	0		
6/14	Wd		0		4		4	08/02	Wd	-	2	4			
6/15	ud.		3				1	08/03	Wd	0			2		
6/16	44	0			0	0		08/04	Wd			•			
6/17	44	•						08/05	Wd		-	U.	U O		
6/19	5							08/06	We		0		U		
5/19	We	0		1				08/07	Wa	4					
			•			2	0	08/08	wa				7		
6/20	Wd	-	U	•	•	*	•	08/09	Wd		2		4		
6/21	Wd	3		2	2			08/10	Wd		ō				
6/22	Wd	2						08/11	Wd	3					
6/23	Wd							08/12	44	•			0	0	
6/24	Wd					3	1	08/12	W.a					0	
6/25	We		_	13	-			08/14	He .			0			
6/26	We		6		8			00/14	~			-			
6127	٧d				0		0	08/15	Mg			0	•		
6/28	WA.			5	5			08/16	Wd		_	-	U		
6/20	14	0			0	0		08/17	Wd		0	0			
6127	114	•					3	08/18	Wd		0				
7/01	WG.		0	0				08/19	₩d			3	-		
7/01	NG NG	n	•	-	8		4	08/20	We				0		
7/03	We	•		2	12			08/21	We				10	10	
		_				<i>e</i>	•	08/22	ыa				1	0	
7/04	Wd	7				•	v	08/22	u.i	0	0		0		
7/05	Wd		-			•		08/24	14	-	ō		1	3	
7/06	Wd		0		•	1		00/24		2	2	14			
7/07	Wd		7		,			00/25		ō	2	14			
7/08	Mq			11			3	00/20	Lie I	•	-	-		7	
7/09	We				11	15		08/27	Ne.				6	6	
7/10	We		11	14		,		00/20	~~				- •	-	
7/11	ы			1			1	08/29	Wd	0			2		
7/12	ų,	1		1		6		08/30	PM	0	ō				
7/15	ų,	-		-		0	0	08/31	Wd		0	-			
7/14	44	9		4			3	09/01	Wd	1	2	2			
7/14	Nu Nu			-		0	3	09/02	Wd	6	6		10		
7/14	W.		6	10				09/03	We		6		10	-	
7/17	We	14	-					09/04	We				y	2	
		-		-	-			09/05	للم	3	7				
7/18	Wd	4		y	2			09/06	Wd	-	Ó	2			
7/19	Mg							09/07	Hd		-				
7/20	bW							07,07							
7/21	PM														
7/22	Wd														
7/23	We														
7/24	Ve														

.

Appendix Table 4. Angler counts for the sport fishery in the Agulowak River, 1988.

1/ Wd = Weekday; We = Weekend or holiday.

2/ Period A (0900-1059); Period B (1100-1259); Period C (1200-1459); Period D (1500-1659); Period E (1700-1859); Period F (1900-2100).

	Hd / He	Sampla	Ef	fort	R	ainbow Trou	IT	Az	ctic Char		Arc	ctic Grayli	Ing	Soc	keye Salm	on	Co	oho Salmon	
Date	1/	Size	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Hean	Std Err	CPUE
7/01	Wd	3	7.500	0.000	4.670	1.764	0.622	18.670	1.856	2.489	4.670	2.906	0.622	0.000	0.000	0.000	0 000	0 000	0 000
7/03	We	7	2.400	0.010	0.000	0.000	0.000	8.000	4.914	3.290	0.570	0.571	0.235	0.000	0.000	0.000	0 000	0.000	0.000
7/04	We	11	1.700	0.510	0.000	0.000	0.000	1.180	0.352	0.684	0.270	0.195	0.158	0.000	0.000	0 000	0 000	0.000	0.000
7/06	Wd	12	2.300	0.610	0.170	0.112	0.073	2.000	0.590	0.873	0.920	0.452	0.400	0.000	0.000	0 000	0.000	0 000	0.000
7/08	₩d	4	2.000	0.000	0.000	0.000	0.000	0.250	0.250	0.125	0.500	0.500	0.250	0.000	0.000	0 000	0 000	0.000	0.000
7/10	Wd	6	2.500	0.340	0.170	0.167	0.067	1.500	0.764	0.600	0.000	0.000	0.000	0.170	0 167	0 067	0.000	0.000	0.000
7/11	We	10	2.700	0.680	0.700	0.423	0.259	1.000	0.422	0.370	1.400	0.702	0 519	0 000	0 000	0 000	0.000	0.000	0.000
7/13	Wd	2	5.500	0.000	9.500	0.500	1.727	1.500	1.500	0.273	7.000	4.000	1.273	0 000	0.000	0.000	0.000	0.000	0.000
7/16	Wd	9	1.400	0.310	1.330	0.577	0.960	0.560	0.176	0.400	1.560	0.709	1,120	0.000	0.000	0.000	0.000	0.000	0.000
7/17	Wd	14	2.100	0.360	0.500	0.203	0.237	0.290	0.163	0.136	0.640	0.308	0.305	0 070	0 071	0 034	0.000	0.000	0.000
7/20	Wd	8	1.900	0.080	0.630	0.498	0.324	0.130	0.125	0.065	0.130	0.125	0.065	0 000	0 000	0.000	0.000	0.000	0.000
7/22	Wd	12	3.600	0.740	1.830	0.601	0.515	0.170	0.167	0.047	0.000	0 000	0 000	1 500	1 084	0 422	0.000	0.000	0.000
7/25	We	12	5.800	0.650	1.420	0.417	0.243	0.330	0.188	0.057	7.250	2 346	1 243	0.000	0.000	0.000	0.000	0.000	0.000
7/27	Wd	8	1.400	0.260	0.130	0.125	0.091	0.130	0.125	0.091	0.000	0 000	0 000	0 130	0 125	0.000	0.000	0.000	0.000
7/28	₩d	16	4.700	0.650	4.880	1.796	1.037	0.000	0.000	0.000	7.750	1 870	1 648	0.060	0 063	0.071	0.000	0.000	0.000
7/29	₩d	8	6.100	0.320	6.380	0.844	1.037	0.000	0.000	0.000	4.000	1 000	0 651	0.250	0 164	0.013	0.000	0.000	0.000
7/30	MG	9	4.400	0.580	4.220	1.362	0.958	0.330	0.236	0.076	4.890	2.098	1 109	0.000	0.000	0.041	0.000	0.000	0.000
7/31	₩d	17	3.900	0.660	4.590	1.709	1.182	0.590	0.243	0.152	4.240	1.684	1 091	0 350	0 191	0.000	0.000	0.000	0.000
8/02	We	19	5.600	0.360	3.890	1.291	0.697	0.370	0.191	0.066	7.000	1.929	1 253	0 110	0 072	0.019	0.000	0.000	0.000
8/03	₩d	11	1.900	0.280	1.090	0.285	0.571	0.000	0.000	0.000	2.270	1.071	1 190	0 000	0.000	0.019	0.000	0.000	0.000
8/04	Wd	4	5.200	0.000	4.750	1.031	0.919	0.500	0.500	0.097	7 250	3 198	1 402	0.000	0.000	0.000	0.000	0.000	0.000
8/05	₩d	19	3.600	0.610	3.050	0.807	0.851	0.740	0.263	0.205	4.370	1 447	1 218	0.000	0.000	0.000	0.000	0.000	0.000
8/08	We	17	4.200	0.530	3.060	0.720	0.735	1.120	0.410	0.269	3 290	1 017	0 792	0.240	0 161	0.057	0.100	0.113	0.044
8/09	We	6	1.400	0.140	0.330	0.333	0.230	0.830	0.543	0.576	0.000	0 000	0 000	1 330	0 715	0.037	0.000	0.000	0.000
8/10	Wd	10	5.400	0.450	4.400	1.536	0.815	2.000	0.856	0.370	1,200	0 611	0 222	0 800	0 467	0.322	0.000	0.000	0.000
8/11	Wd	10	5.800	0.250	1.000	0.394	0.174	0.500	0.307	0.087	2.900	1 386	0 504	1 000	0 612	0 174	0.000	0.000	0.000
8/13	Wd	6	8.300	0.070	5.830	3.544	0.705	1.170	0 601	0 141	2 670	1 202	0 322	0.000	0.000	0.174	0.000	0.000	0.000
8/14	Wd	12	3.400	0.850	7.920	1.769	2.356	6.170	1.930	1.835	1 920	0 783	0 570	0.500	0 417	0.140	0.000	0.000	0.000
8/17	₩d	21	4.300	0.560	3.430	0.555	0.791	2.380	0.537	0 549	0 900	0 337	0 209	0 190	0.417	0.044	0.000	0.000	0.000
8/18	₩d	8	4.500	1.040	3.500	1.225	0.778	0.750	0.250	0.167	0.750	0 412	0 167	0.250	0 412	0.147	0.000	0.000	0.000
8/20	Wd	8	4.000	1.120	4.380	1.880	1.083	3.500	1.336	0 866	0 130	0 125	0 031	0.980	0.412	0.107	0.000	0.000	0.000
8/21	Wa	8	2.800	1.170	1.500	0.802	0.537	1.250	0.840	0 448	0 630	0 324	0 224	1 500	0.370	0.217	0.000	0.000	0.000
8/22	We	4	2.500	0.000	0.750	0.479	0.300	0.250	0.250	0.100	0.000	0.000	0.000	0.250	0.250	0.100	0.000	0.000	0.000

Appendix Table 5. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986.

•

1/ Wd = Weekday; We = Weekend or holiday.

			Ef	fort	Ra	inbow Trou	it		rctic Char		Ar	ctic Grayl	ing	500	skeye Sal	Lmon		Coho Salmo	an An
Date	Wd/We 1/	Sample Size	Hean	Std Err	Kean	Std Err	HPUE	Hean	Std Err	APUE	Kean	Std Err	HPUE	Nean I	Std Err	HPUE	Nean	Std Brr	HPUE
7/01	Wd	3	7.500	0.000	0.000	0.000	0.000	1.330	0.667	0.178	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/03	We	ž	2.400	0.010	0.000	0.000	0.000	0.860	0.404	0.353	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/04	Wa	11	1.700	0.510	0.000	0.000	0.000	0.180	0.122	0.105	0.090	0.091	0.053	0.000	0.000	0.000	0.000	0.000	0.000
7/06	Wd	12	2.300	0.610	0.000	0.000	0.000	0.580	0.193	0.255	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/08	Wd	4	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/10	Wd	6	2.500	0.340	0.000	0.000	0.000	0.170	0.167	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/11	We	10	2.700	0.680	0.000	0.000	0.000	0.400	0.221	0.148	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/13	Wd	2	5.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.500	0.091	0.000	0.000	0.000	0.000	0.000	0.000
7/16	Wd	9	1.400	0.310	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/17	Wd	14	2.100	0.360	0.000	0.000	0.000	0.070	0.071	0.034	0.140	0.097	0.068	0.070	0.071	0.034	0.000	0.000	0.000
7/20	Wd	8	1.900	0.080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.000	0.000	0.000	0.000
7/22	ыd	12	3.600	0.740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/25	We	12	5.800	0.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/27	Wd	8	1.400	0.260	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.125	0.091	0.000	0.000	6.000
7/28	Wd	16	4.700	0.650	0.000	0.000	0.000	0.000	0.000	6.000	0.000	0.000	0.000	0.060	0.063	0.013	0.000	0.000	0.000
7/29	Wd	8	6.100	0.320	0.000	0.000	0.000	8.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/30	Wd.	9	4.400	0.580	0.000	0.000	0.000	0.110	0.111	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/31	Wd	17	3.900	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.240	0.161	0.061	0.000	0.000	0.000
8/02	Wa	19	5.600	0.360	0.000	0.000	0.000	0.110	0.105	0.019	0.160	0.158	0.028	0.000	0.000	0.000	0.000	0.000	0.000
8/03	Wd	11	1.900	0.280	0.000	0.000	0.000	0.000	0.000	0.000	0.270	0.273	0.143	0.000	0.000	0.000	0.000	0.000	0.000
8/04	Wd	4	5.200	0.000	0.000	0.000	0.000	0.500	0.500	0.097	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/05	Wd	19	3.600	0.610	0.000	0.000	0.000	0.210	0.123	0.059	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/08	We	17	4.200	0.530	0.000	0.000	0.000	0.180	0.128	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/09	We	6	1.400	0.140	0.000	0.000	0.000	0.170	0.167	0.115	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/10	Wd	10	5.400	0.450	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/11	Wd	10	5.800	0.250	0.000	0.000	0.000	0.100	0.100	0.017	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/13	₩d	6	8.300	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/14	Wd	12	3.400	0.850	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/17	Wd	21	4.300	0.560	0.000	0.000	0.000	0.050	0.048	0.011	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/18	Wd		4.500	1.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/20	Wd		4.000	1.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/21	Wd		2.800	1.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
₿/22	We	4	2.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Appendix Table 6. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulukpak River sport fishery, 1986.

.

1/ Wd = Weekday; We = Weekend or holiday.

			EI	fort	R	inbow Trou	t	A	CTIC Char		Arc	ELC GRAVII		800	Keye saimo	a 			
Date	Wd/We 1/	Sample Size	Nean	Std Err	Hean	Std Err	CPUE	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Hean	Std Brr	CPUX	Mean	Std Err	CPUE
4/17		2	A. 300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5.500	3.500	1.294	0.000	0.000	0.000	0.000	0.000	0.000
6/19	H.	-	3.500	0.000	0.250	0.250	0,071	1.500	0.957	0.429	0.000	0.000	0.000	0.000	0.000	0.000	4.750	3.473	1.357
6/21	U.	2	1.300	0.000	0.500	0.500	0.400	0.000	0.000	0.000	2.000	2.000	1.600	0.000	0.000	0.000	0.000	0.000	0.000
6/22	Wd.	7	5.000	0.650	0.430	0.202	0.086	5.710	2.697	1.143	4.140	1.779	0.829	0.000	0.000	0.000	0.000	0.000	0.000
6/24	Wd	3	7.000	0.000	2.000	0.577	0.286	0.670	0.333	0.095	11.330	6.360	1.619	0.000	0.000	0.000	0.000	0.000	0.000
6/25	Wd	4	4.000	0.000	0.000	0.000	0.000	6.750	3.497	1.688	2.000	1.225	0.500	0.000	0.000	0.000	0.750	0.730	0.100
6/26	Wd	5	3.400	0.460	0.400	0.245	0.118	2.800	1.530	0.824	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/28	We	4	5.100	0.070	0.000	0.000	0.000	0.250	0.250	0.049	3.250	1.601	0.634	8.000	9.000	0.000	0.000	0.000	0.000
6/30	Wd	4	5.500	0.000	0.750	0.479	0.136	1.000	1.000	0.182	2.000	0.707	0.304	0.000	0.000	0.000	0.000	0.000	A 000
7/01	Wd	7	4.100	0.550	0.140	0.143	0.034	0.140	0.143	0.034	1.430	0.731	0.343	0.140	0.143	0.034	0.000	0.000	0.000
7/02	Wd	3	3.800	0.000	2.330	1.453	0.622	7.000	2.517	1.80/	1.000	0.3//	0.207	0.000	0.000	0.000	0.000	0 167	0 122
7/03	We	10	5.800	0.640	2.200	0.696	0.383	3.100	1.84/	0.339	8.000	4.430	1.391	0.000	0.000	0.000	0 000	0.000	0.000
7/04	We -	4	1.700	0.870	1.000	1.000	0.600	0.250	0.200	0.130	6 330	2 519	1 000	0.000	0.000	0.000	1.330	0.569	0.211
7/05	We	12	6.300	0.810	1.170	0.441	0.184	1.730	1.113	0.270	2 250	0 904	0 581	0 000	0.000	0.000	0.500	0.359	0.129
7/07	Wd	12	3.900	0.360	0.250	0.131	0.065	2.330	0.030	0.143	4 000	2 000	0.571	0.250	0.250	0.036	0.000	0.000	0.000
7/08	Wd	4	7.000	0.580	1.500	0.93/	0.219	5 710	1 700	1 290	1 430	0.841	0.323	0.000	0.000	0.000	0.000	0.000	0.000
7/09	Wd		4.400	0.720	3.710	U.269	0.037	3.710	4 492	3 033	0 850	0 436	0.183	0.000	0.000	0.000	0.000	0.000	0.000
7/10	Wd	13	4.600	0.490	2.000	0.323	0.430	0 500	0.500	0.615	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/11	We		0.800	0.120	0.230	0.250	0.300	A 670	2 467	1.017	0.000	0.000	0.000	2.330	1.856	0.519	0.000	0.000	0.000
7/12	We	3	4.500	1.000	1 400	0.555	0 289	7.900	2.478	1.629	1.050	0.489	0.216	0.050	0.050	0.010	0.000	0.000	0.000
7/13	Wd	20	4.000	0.400	10 000	2 708	3.333	0.250	0.250	0.083	0.500	0.500	0.167	0.000	0.000	0.000	0.000	0.000	0.000
//14	Wa	2	3.000	0.000	1 000	0 816	0.211	28.000	9.462	5.895	0.670	0.494	0.140	0.170	0.167	0.035	0.000	0.000	0.000
//15	Wa	15	1 900	0 380	0 530	0.274	0.282	0.600	0.335	0.318	0.200	0.200	0.106	0.000	0.000	0.000	0.000	0.000	0.000
//10	LL.A	13	2 700	0.590	0.430	0.173	0.158	0.570	0.251	0.211	0.290	0.125	0.105	0.500	0.272	0.184	0.000	0.000	0.000
1/10	WG.		2 900	0.900	0.600	0.600	0.207	0.800	0.800	0.276	0.200	0.200	0.069	0.000	0.000	0.000	0.000	0.000	0.000
7/10		Ĩ	A 600	0.560	1.000	0.732	0.216	1.380	1.017	0.297	10.000	4.456	2.162	0.130	0.125	0.027	0.000	0.000	0.000
7/20			3.800	0.940	0.440	0.242	0.118	0.560	0.294	0.147	6.780	3.519	1.794	0.110	0.111	0.029	0.000	0.000	0.000
7/20	u.	é	4.400	0.180	3.440	1.355	0.775	1.220	0.641	0.275	4.670	1.225	1.050	0.110	0.111	0.025	0.000	0.000	0.000
7122	Nd	i	4.900	0.480	1.225	0.620	0.256	4.500	0.655	0.923	1.000	0.681	0.205	0.880	0.295	0.179	0.000	0.000	0.000
7/23	Nd	16	6.000	0.320	1.560	0.398	0.260	8.500	2.208	1.417	7.250	2.069	1.208	0.310	0.176	0.052	0.000	0.000	0.000
7/24	Wď	iī	5.700	0.330	3.550	1.423	0.619	0.000	0.000	0.000	8.640	3.581	1.508	0.640	0.544	0.111	0.000	0.000	0.000
7/25	We	4	5.000	0.000	0.000	0.000	0.000	0.250	0.250	0.050	0.250	0.250	0.050	1.750	0.750	0.350	0.000	0.000	0.000
7/26	We	8	6.000	0.000	4.750	2.284	0.792	7.500	3.059	1.250	4.000	2.171	0.667	0.000	0.000	0.000	0.000	0.000	0.000
7/27	Wd	6	7.000	0.000	6.170	0.980	0.881	0.000	0.000	0.000	6.500	0.500	0.929	0.830	0.634	0.119	0.000	0.000	0.000
7/28	Wd	9	4.900	0.900	5.220	2.107	1.068	1.000	0.601	0.205	6.440	3.805	1.318	0.110	0.111	0.023	0.000	0.000	0.000
7/29	₩d	6	6.500	0.660	11.830	4.377	1.821	0.000	0.000	0.000	7.330	4.232	1.128	0.000	0.000	0.000	0.000	0.000	0.000
7/30	Wd	6	4.000	0.970	5.500	3.964	1.375	0.000	0.000	0.000	5.170	3.3/1	1.292	0.000	0.000	0.000	0.000	0.000	0.000
7/31	Wd	11	6.600	0.150	5.180	1.548	0.781	0.000	0.000	0.000	5.910	1.890	0.870	0.000	0.000	0.000	0.000	0.000	0.000
8/01	Wa	6	4.500	0.670	0.330	0.333	0.074	0.500	0.342	0.111	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/02	We	12	6.900	0.190	4.670	0.772	0.675	3.250	1.348	0.4/0	2.0/0	1.103	0.300	0.000	0.000	0.000	0.000	0.000	0.000
8/03	Mg	6	6.800	0.170	2.830	0.8/2	0.415	1.870	1.1/4	0.244	1.300	1 075	0.444	0.000	0.000	0.014	0.000	0.000	0.000
8/04	Wd	11	5.600	0.340	4.640	1.718	0.823	U.730	ų.333	0.129	4.040	1.0/3	v. 406	0.090				0.000	

Appendix Table 7. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987.

-Continued-

45

			Ef	fort	Ra	inbow Trou	it	Ar	ctic Char		Arc	tic Grayli	ng	Soc	keye Salmo	n 	Nor	thern Pike	
Date	Wd/We 1/	Sample Size	Mean	Std Err	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE
8/05	Wd	5	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3.800	0.735	1.267	0.000	0.000	0.000	0.000	0.000	0.000
8/06	Wd	9	7.300	0.410	1.670	0.408	0.227	0.220	0.222	0.030	9.000	2.186	1.227	0.560	0.377	0.076	0.000	0.000	0.000
8/07	Wd	4	7.000	0.000	11.500	0.500	1.643	0.000	0.000	0.000	12.000	6.819	1.714	0.000	0.000	0.000	0.000	0.000	0.000
8/08	We	2	7.000	0.000	12.500	2.500	1.786	0.000	0.000	0.000	1.000	1.000	0.143	0.000	0.000	0.000	0.000	0.000	0.000
8/09	We	14	6.700	0.300	4.290	0.848	0.638	0.140	0.143	0.021	5.290	1.360	0.787	0.570	0.291	0.085	0.000	0.000	0.000
8/10	Wa	6	7.000	0.630	4.000	1.291	0.571	0.330	0.333	0.048	7.500	2.837	1.071	0.000	0.000	0.000	0.000	0.000	0.000
8/11	Mg.	, ,	7.400	0.570	1.290	0.565	0.173	2.290	0.808	0.308	1./10	1.10/	0.231	0.430	0.429	0.058	0.000	0.000	0.000
8/12	Wd	12	7.100	0.310	4.580	1.076	0.647	1.500	0.435	0.212	4.330	1.3/8	0.612	0.420	0.260	0.059	0.000	0.000	0.000
8/13	Wd	.,	5.000	0.850	4.860	1.580	0.9/1	2.290	0.918	0.457	5.430	1.031	1.080	1.000	0.845	0.200	0.000	0.000	0.000
8/14	Wd	19	6.400	0.300	7.260	1.757	1.131	2.210	0.920	0.344	0.380	2.081	1.025	0.680	0.270	0.107	0.000	0.000	0.000
8/15	W¢	9	5.100	0.200	0.220	3.282	1.018	2.220	1.498	0.304	3.690	1.000	0.030	2 000	0.377	0.233	0.000	0.000	0.000
8/10	We	8	7.500	0.190	7.500	1.000	1.000	4.000	1.010	0.555	2.750	1 069	0.365	2.000	0.300	0.207	0.000	0.000	0.000
8/1/	DW LLA	14	6 200	0.000	2 200	0.913	0.937	3 360	1.304	0.651	3 360	0 692	0.540	0.500	0 228	0.080	0.000	0.000	0.000
0/10	WQ.	1	0.200	0.200	3 960	0.510	0.306	0 860	0 261	0.176	2 570	1 110	0.529	0.000	0.000	0.000	0.000	0.000	0.000
8/20	80	10	7 100	0.330	6 200	1 436	0 873	A 900	0 823	0 690	3 900	1 472	0.549	0.400	0 267	0.056	0.000	0.000	0 000
8/20	14	13	7 300	0 150	6 230	1 014	0.849	1 460	0 447	0 199	A 000	1 006	0 545	1 380	0 594	0.189	0.000	0.000	0 000
8/22	No.	19	6 000	0 500	2. 130	0.943	0.389	3.000	0.898	0.500	0.110	0.111	0.019	3.440	0.930	0.574	0.000	0.000	0.000
8/23		á	5 100	0 770	A 330	1 908	0.848	2.890	1.306	0.565	2,110	1.306	0.413	1.220	0.662	0.239	0.000	0.000	0.000
8/24	Wd	÷	6.400	0.980	10.000	1.496	1.573	1.430	0.685	0.225	8.570	2.983	1.348	0.290	0.184	0.045	0.000	0.000	0.000
8/26	üd.	6	6.800	0.970	5.500	2.277	0.805	0.830	0.477	0.122	1.670	0.615	0.244	1.000	0.516	0.146	0.000	0.000	0.000
8/27	Ŵď	5	5.000	1.220	5.400	3.341	1.080	2.200	1.356	0.440	1.200	0.970	0.240	2.400	1.749	0.480	0.000	0.000	0.000
8/28	Wd	6	6.300	0.670	4.170	1.797	0.658	3.330	1.498	0.526	0.330	0.211	0.053	1.170	1.167	0.184	0.000	0.000	0.000
8/29	We	7	5.700	0.890	6.860	2.165	1.200	0.710	0.474	0.125	2.140	0.937	0.375	1.710	0.714	0.300	0.000	0.000	0.000
8/30	We	3	7.000	0.000	18.670	4.096	2.667	2.670	0.333	0.381	3.330	1.856	0.476	3.670	2.333	0.524	0.000	0.000	0.000
8/31	Wd	22	6.600	0.300	7.140	1.315	1.075	0.230	0.113	0.034	1.860	1.035	0.281	1.320	0.357	0.199	0.000	0.000	0.000
9/01	Wd	12	7.200	0.210	9.080	1.579	1.267	0.170	0.112	0.023	1.580	0.679	0.221	1.170	0.458	0.163	0.000	0.000	0.000
9/02	₩d	3	5.000	0.000	10.330	2.333	2.067	0.670	0.667	0.133	1.000	0.000	0.200	6.000	2.082	1.200	0.000	0.000	0.000
9/03	Wd	11	7.200	0.120	11.640	2.337	1.620	2.730	0.727	0.380	3.640	1.162	0.506	2.820	1.025	0.392	0.000	0.000	0.000
9/04	MG.	11	6.700	1.380	7.090	1.988	1.054	2.180	0.932	0.324	3.360	1.370	0.500	0.270	0.141	0.041	0.270	0.195	0.041
9/05	We	12	5.200	0.630	10.330	2.054	1.984	0.580	0.260	0.112	2.170	1.278	0.416	0.420	0.260	0.080	0.000	0.000	0.000
9/06	We	6	4.000	1.340	5.500	2.262	1.375	1.670	0.760	0.417	0.830	0.401	0.208	3.170	1.641	0.792	0.000	0.000	0.000
9/07	We	20	6.800	0.360	9.250	2.191	1.367	1.850	0.483	0.273	4.650	1.757	0.687	0.650	0.221	0.096	0.000	0.000	0.000
9/08	Wd	10	7.000	0.000	13.500	1.772	1.929	2.300	0.775	0.329	4.400	1.166	0.629	1.400	0.521	0.200	0.000	0.000	0.000
9/09	Wd	4	7.000	0.000	7.250	2.750	1.036	2.000	1.080	0.286	0.000	0.000	0.000	1.750	0.479	0.250	0.000	0.000	0.000
9/10	Wd	9	6.100	0.420	13.330	2.789	2.182	1.890	0.611	0.309	1.110	0.873	0.182	0.560	0.336	0.091	0.220	0.222	0.036
9/11	Wd	20	6.400	0.370	11.100	1.934	1.741	1.100	0.307	0.173	4.450	Z.411	U.698	1.200	0.536	0.188	0.000	0.000	0.000
9/12	We	15	7.500	0.130	6.470	1.059	0.858	1.530	0.568	0.204	2.130	0.631	0.283	0.530	0.307	0.071	0.000	0.000	0.000
9/13	We	8	7.000	0.000	17.500	2.338	2.500	0.250	0.250	0.036	3.880	1.076	0.554	U.750	U.366	0.107	0.000	U.000	0.000
9/14	Wd	10	6.400	0.600	4.400	U.748	0.688	0.300	0.300	0.04/	1.000	0.4/1	0.136	1.800	0.040	0.281	0.000	0.000	0.000
9/15	Wd		5.500	0.8/0	0./30	3.149	1.22/	1.500	0.800	0.2/3	7.500	4./8/	1.304	0.750	0.750	0.130	0.000	0.000	0.000
A \16	WC	12	7.200	0.110	14.250	3.933	1.768	0.170	0.112	0.023	0.420	1.401	0.893	1.000	U.492	0.140	0.000	0.000	0.000

Appendix Table 7. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Horthern pike from angler interviews in the Agulukpak River sport fishery, 1987 (continued).

1/ Wd = Weekday; We = Weekend or holiday.

.

			Ef	fort	Ra	inbow Trou	t		rctic Char		Ar	ctic Grayl	ing	Soc	ckeye Sal	.mon		lorthern Pi	.ke
Date	Wd/We 1/	Sample Size	Mean	Std Err	Mean	Std Err	RPUE	Mean	Std Err	HPUE	Mean	Std Brr	HPUB	Mean 1	Std Brr	HPUE	Mean	Std Err	EPUR
		2	4 300	0 000	0 000	0 000	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/1/	Mg.	4	3 500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/21	He	2	1 300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/21	14	2	5 000	0.650	0.000	0.000	0.000	0.860	0.340	0.171	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/24		á	7.000	0.000	0.000	0.000	0.000	0.670	0.333	0.095	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/25	Wď	Ă	4.000	0.000	0.000	0.000	0.000	1.250	0.479	0.313	0.750	0.479	0.188	0.000	0.000	0.000	0.000	0.000	0.000
6/26	Wd	5	3.400	0.460	0.000	0.000	0.000	1.000	0.632	0.294	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/28	We	4	5.100	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6/30	ыd	4	5.500	0.000	0.000	0.000	0.000	0.250	0.250	0.045	0.250	0.250	0.045	0.000	0.000	0.000	0.000	0.000	0.000
7/01	₩d	7	4.100	0.550	0.000	0.000	0.000	0.000	0.000	0.000	0.430	0.429	0.103	0.140	0.143	0.034	0.000	0.000	0.000
7/02	₩d	3	3.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/03	We	10	5.800	0.640	0.100	0.100	0.017	0.800	0.800	0.139	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/04	We	4	1.700	0.870	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000
7/05	We	12	6.300	0.810	0.000	0.000	0.000	0.330	0.225	0.053	0.170	0.107	0.020	0.000	0.000	0.000	0.080	0.083	0.022
7/07	Wd	12	3.900	0.360	0.000	0.000	0.000	0.380	0.200	0.151	0.000	0.000	0.000	0 250	0.250	0.036	0.000	0.000	0.000
7/08	Wd	4	7.000	0.580	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/09	Wd	7	4.400	0.720	0.000	0.000	0.000	0.290	0.200	0 133	0.000	0 077	0.017	0.000	0.000	0.000	0.000	0.000	0.000
7/10	Wd	13	4.600	0.490	0.000	0.000	0.000	0.020	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/11	We	1	0.800	0.120	0.000	0.000	0.000	0 330	0 333	0.074	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/12	We	3	4.500	1.000	0.000	0.000	0.000	0 500	0.295	0.103	0.000	0.000	0.000	0.050	0.050	0.010	0.000	0.000	0.000
7/13	Wd	20	1.800	0.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/14	wa.	-	5.000	0.440	0.000	0,000	0.000	0.500	0.500	0.105	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/15	DW LLJ	15	1 900	0 380	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/10	64	14	2 700	0.590	0.000	0.000	0.000	0.430	0.173	0.158	0.000	0.000	0.000	0.430	0.228	0.158	0.000	0.000	0.000
7/18	He		2.900	0.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/10		ŝ	4.600	0.560	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.054	0.130	0.125	0.027	0.000	0.000	0.000
7/20		ě	3.800	0.940	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.000	0.110	0.111	0.029	0.000	0.000	0.000
7/21	W.A	é	4.400	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.220	0.147	0.050	0.000	0.000	0.000	0.000	0.000	0.000
7/22	Wd	8	4.900	0.480	0.000	0.000	0.000	0.130	0.125	0.026	0.000	0.000	0.000	0.130	0.125	0.026	0.000	0.000	0.000
7/23	Wd	16	6.000	0.320	0.000	0.000	0.000	2.060	0.528	0.344	0.000	0.000	0.000	0.190	0.136	0.031	0.000	0.000	0.000
7/24	Wd	11	5.700	0.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.640	0.344	0.111	0.000	0.000	0.000
7/25	We	4	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.750	0.250	0.150	0.000	0.000	0.000
7/26	We	8	6.000	0.000	0.000	0.000	0.000	1.500	0.824	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/27	Wd	6	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/28	Wd	9	4.900	0.900	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.110	0.111	0.023	0.000	0.000	0.000
7/29	Wd	6	6.500	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/30	Wd	6	4.000	0.970	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7/31	₩d	11	6.600	0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000
8/01	We	6	4.500	0.670	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000
8/02	We	12	6.900	0.190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/03	Wd	6	6.800	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8/04	Wd	11	5.600	0.340	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000						

Appendix Table 8. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987.

.

-Continued-

47

, ______ Northern Pike Sockeye Salmon Rainbow Trout Arctic Char Arctic Grayling Effort -----------------------Wd/We Sample Mean Std Err Mean Std Err HPUE Mean Std Err HPUE Mean Std Err HPUE Mean Std Err HPUE SPUE Mean Std Err Size Date 1/ _____ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.000 3 000 8/05 Wd - 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.410 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8/06 ₩đ 9 7.300 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.000 0.000 0.000 0.000 0.000 0.000 8/07 ₩đ 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.000 0.000 We 0.000 0.000 0.000 0.000 8/08 7.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.300 0.000 0.000 0.000 0 000 0.000 We 6.700 8/09 14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Wd 7.000 0.630 0.000 0.000 0.000 0.000 0 000 0.000 6 8/10 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.570 0.000 0.000 0.000 0.000 0.000 0.000 8/11 Wd 7 7.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.218 0.106 0.310 0.000 ₩đ 8/12 12 7.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Wd 0 850 8/13 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ыď 19 6.400 0.300 0.000 8/14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.222 0.036 0.111 0.018 0.220 We 6.100 0.260 0.110 8/15 9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.190 0.000 0.000 0.000 7.500 8/16 We 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Wd 7.000 0.000 0.000 0.000 0.000 0.000 0.000 8/17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.260 0.000 8/18 Wd 14 6.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Wd 0.550 0.000 0.000 0.000 0.000 0.000 0 000 4.900 8/19 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.310 0.000 0.000 0.000 0.000 0.000 0.000 ₩d 10 7.100 8/20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.380 0.241 0.052 0.000 0.000 0.000 0.000 0.000 8/21 ыd 13 7 300 0.150 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500 8/22 We . 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.100 0.770 8/23 We 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8/24 Wd 7 6.400 0.980 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.970 0.000 0.000 0.000 Wd 6.800 8/26 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Wđ 1.220 0.000 0.000 0.000 0 000 0.000 0.000 5 5.000 8/27 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 ₩đ 6.300 0.670 0.000 0.000 0.000 0.000 0 000 8/28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.890 0.000 0.000 0.000 0.000 0.000 0.000 W.e 5.700 R/29 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.000 8/30 We 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ٧d 0.300 0.000 0.000 0.000 8/31 22 6.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.210 0.000 0.000 9/01 Wd 12 7.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 0.000 5.000 0.000 0.000 0.000 ₩d 0.000 9/02 3 0 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 Wd 11 7.200 0.120 0.000 0.000 0.000 0.000 9/03 0.000 0.000 0.000 0.000 0.273 0.041 0.820 0.444 0.122 0.000 0.000 0.000 0.270 1.380 0.000 0.000 9/04 ₩đ 11 6.700 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 000 We 12 5.200 0.630 0.000 0.000 0.000 0.000 9/05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.340 0.000 0.000 0.000 0.000 0.000 0.000 U.e. 4.000 9/06 - 6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 U. 20 6.800 0.360 0.000 9/07 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ₩d 10 9/08 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 ₩đ 7 000 9/09 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9/10 Wđ 6.100 0.420 0.000 0.000 0.000 9 0.000 0 000 0.000 0.000 0.000 0.100 0.016 0.000 0.000 0.000 0.000 0.100 Wd 6.400 0.370 0.000 0.000 0.000 9/11 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 We 15 7.500 0.130 0.000 0.000 0 000 0.000 9/12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.000 0.000 0.000 0.000 0.000 0.000 0 000 9/13 1Ve 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.600 0.000 0.000 0.000 0.000 0.000 Md 10 6.400 9/14 0.000 0.000 0.000 0 000 0.000 0.000 0.000 0.000 0.000 0.250 0.250 0.045 0.870 0.000 0.000 0.000 Wd 5.500 9/15 . 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.080 0.083 0.012 0.000 0.000 0.000 0.110 ua 12 7.200 9/16

Appendix Table 8. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1987 (continued).

1/ Wd - Weekday; We - Weekend or holiday.

.

Date 1/ Size Hean Std Err CPUE Hean Std E			Sample	Ef	fort	Ra	inbow Trou	1t		Arctic Cha			rctic Gray	ling	So	ckeye Sa	lmon
614 Hd 4 7.000 0.000 0.750 0.200 0.000 <th>Date</th> <th>1/</th> <th>Size</th> <th>Mean</th> <th>Std Err</th> <th>Mean</th> <th>Std Err</th> <th>CPUE</th> <th>Mean</th> <th>Std Err</th> <th>CPUE</th> <th>Mean</th> <th>Std Err</th> <th>CPUE</th> <th>Mean 1</th> <th>td Err</th> <th>CPUE</th>	Date	1/	Size	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean 1	td Err	CPUE
619 He 9 6.700 0.130 0.130 0.130 0.130 0.167 0.050 0.000 620 Hd 7 6.200 0.370 1.290 0.360 0.200 0.000 0.000 0.000 0.000 0.577 0.161 0. 621 Hd 7 4.600 0.200 1.600 0.280 0.000	614	ЪW	4	7.000	0.000	0.750	0.250	0.107	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
620 Md 7 6.200 0.370 0.200 0.000 0.000 0.000 0.577 0.161 0. 621 Md 4 5.200 0.000 1.500 0.299 0.290 0.000 0.000 0.000 2.000 1.414 0.387 0. 622 Md 4 5.200 0.000 1.600 0.000 0.000 0.000 3.000 1.414 0.387 0. 623 Md 10 4.800 0.400 1.640 1.660 0.000 0.000 0.000 3.000 1.414 0.3877 0.563 626 Me 4 2.000 0.250 0.570 0.500 0.000 0.000 3.000 1.404 1.021 0. 626 Me 4 2.000 0.250 0.530 0.000	619	We	9	6.700	0.130	0.560	0.242	0.083	0.000	0.000	0.000	0.330	0.167	0.050	0.000	0.000	0.000
621 Md 7 4.600 0.200 1.000 0.200 0.000 0.000 0.200 0.200 0.184 0.063 0. 622 Md 5 5.000 0.000 1.166 0.280 0.000 0.000 0.000 1.001 0.301 0.473 0.211 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0	620	Mg	7	6.200	0.370	1.290	0.360	0.207	0.000	0.000	0.000	1.000	0.577	0.161	0.000	0.000	0.000
622 Md 4 5.200 0.000 1.400 1.406 0.280 0.000 0.000 0.000 1.414 0.387 0. 623 Md 1 600 0.000 0.000 0.000 0.000 0.000 1.300 0.473 0.271 0. 624 Md 10 4.600 0.400 0.417 0.000 0.000 0.000 1.300 0.437 0.271 0. 625 Md 9 5.200 0.260 1.440 0.412 0.270 0.000 0.000 0.000 5.300 1.404 1.021 0. 629 Md 9 5.200 0.200 0.00	621	Wd	7	4.600	0.200	1.000	0.309	0.219	0.000	0.000	0.000	0.290	0.184	0.063	0.000	0.000	0.000
623 Md 3 5.000 0.000 1.460 0.180 0.000 <td>622</td> <td>Wd</td> <td><u> </u></td> <td>5.200</td> <td>0.000</td> <td>1.500</td> <td>0.289</td> <td>0.290</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>2.000</td> <td>1.414</td> <td>0.387</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	622	Wd	<u> </u>	5.200	0.000	1.500	0.289	0.290	0.000	0.000	0.000	2.000	1.414	0.387	0.000	0.000	0.000
bc2 bc3 bc3 bc417 bc30 bc30 bc473 bc271 bc30 bc26 bc4 4 bc00 bc30 bc30 <thc30< th=""> <thc30< th=""> <thc30< th=""></thc30<></thc30<></thc30<>	623	Wd	5	5.000	0.000	1.400	1.166	0.280	0.000	0.000	0.000	8.000	3.391	1.600	0.000	0.000	0.000
ecc He 4 4.000 0.000 2.230 0.479 0.563 0.000 0.000 3.000 1.086 0.750 0. 627 Hd 4 2.500 0.000 1.230 0.750 0.500 0.000 0.000 0.500 0.000 0	024	Wd	10	4.800	0.480	2.000	0.537	0.417	0.000	0.000	0.000	1.300	0.473	0.271	0.000	0.000	0.000
b22 Wd 9 5.200 0.280 1.440 0.412 0.270 0.000 0.000 5.300 1.404 1.021 0. b28 Wd 9 1.400 0.1200 0.750 0.000 0.000 0.000 0.500 0.200 0. b30 Wd 5 4.200 0.800 0.200 0.000 0.000 0.500 0.200 0.476 0. b40 5 4.000 0.600 0.000 0.000 0.000 2.000 0.476 0. b40 4 5.000 0.000	020	We		4.000	0.000	2.250	0.479	0.563	0.000	0.000	0.000	3.000	1.080	0.750	0.000	0.000	0.000
bcs bcs <thcs< th=""> <thcs< th=""> <thcs< th=""></thcs<></thcs<></thcs<>	627	WC	y	5.200	0.260	1.440	0.412	0.277	0.000	0.000	0.000	5.330	1.404	1.021	0.000	0.000	0.000
bc. bc. <td>620</td> <td>WC</td> <td></td> <td>2.500</td> <td>0.000</td> <td>1.250</td> <td>0.750</td> <td>0.500</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.500</td> <td>0.500</td> <td>0.200</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	620	WC		2.500	0.000	1.250	0.750	0.500	0.000	0.000	0.000	0.500	0.500	0.200	0.000	0.000	0.000
030 MC 5 4.200 0.200 2.200 0.200 2.000 2.000 2.000 0.476 0 703 We 8 4.500 0.631 0.000 0.000 0.000 2.000 0.837 0.500 0.700 704 We 5 4.000 0.000 0.000 0.000 0.000 0.000 2.000 0.837 0.500 0.700 705 Wd 4 4.500 0.000 2.000 0.000 0.000 0.000 0.000 1.19 0.500 0.000 0.000 0.000 4.750 0.479 0.950 0. 710 We 1 4.700 0.660 3.630 0.774 0.647 0.000 0.000 2.760 0.619 0.950 0. 711 Wd 8 5.600 0.680 3.630 0.774 0.627 0.000 0.000 2.760 0.742 0.590 0.712 714 Wd <th< td=""><td>629</td><td>DW LLL</td><td>y 5</td><td>1.400</td><td>0.140</td><td>0.330</td><td>0.16/</td><td>0.240</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.560</td><td>0.294</td><td>0.400</td><td>0.000</td><td>0.000</td><td>0.000</td></th<>	629	DW LLL	y 5	1.400	0.140	0.330	0.16/	0.240	0.000	0.000	0.000	0.560	0.294	0.400	0.000	0.000	0.000
724 We 5 4.000 0.030 1.000 0.000 0.000 7.750 2.644 1.722 0. 703 Wd 4 4.500 0.000 0.000 0.000 0.000 0.000 0.000 1.520 2.839 3.389 0. 706 Wd 4 5.000 0.660 3.820 1.151 1.227 0.000 0.000 0.000 3.450 0.824 0.728 0.711 711 Wd 8 5.600 0.660 3.630 0.754 0.648 0.000 0.000 2.000 2.780 0.619 0.446 0.712 0.639 0.712 0.649 0.712 0.649 0.712 0.619 0.726 0.639 0.712 0.619 0.726 0.639 0.712 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 0.619 0.726 </td <td>703</td> <td>WG</td> <td>5</td> <td>4.200</td> <td>0.800</td> <td>2.200</td> <td>0.3/4</td> <td>0.524</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>2.000</td> <td>2.000</td> <td>0.476</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	703	WG	5	4.200	0.800	2.200	0.3/4	0.524	0.000	0.000	0.000	2.000	2.000	0.476	0.000	0.000	0.000
725 Wd 4 5.000 0.000 <td>705</td> <td>We No</td> <td>0</td> <td>4.300</td> <td>0.630</td> <td>2.750</td> <td>0.750</td> <td>0.611</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>7.750</td> <td>2.644</td> <td>1.722</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	705	We No	0	4.300	0.630	2.750	0.750	0.611	0.000	0.000	0.000	7.750	2.644	1.722	0.000	0.000	0.000
726 Wd 4 5.000 0.000 2.000 0.000 0.000 0.000 1.250 2.839 3.389 0. 710 We 11 4.700 0.660 5.820 1.151 1.227 0.000 0.000 0.000 3.450 0.8479 0.950 0. 711 Wd 9 5.700 0.660 3.560 0.729 0.627 0.000 0.000 2.000 2.870 0.742 0.659 0. 713 Wd 9 5.200 0.280 5.000 0.943 0.957 0.000 0.000 2.870 0.742 0.659 0. 714 Wd 9 5.200 0.280 5.000 1.957 0.000 0.000 0.000 7.000 1.880 1.167 0.1 715 Wd 4 6.000 0.140 5.500 1.464 0.801 0.000 0.000 5.000 1.637 0.217 0.801 0.719 8.61	705		, j	4.000	0.000	1.000	0.44/	0.250	0.000	0.000	0.000	2.000	0.837	0.500	0.000	0.000	0.000
He 1 4.700 0.600 2.500 1.190 0.500 0.000 0.000 4.750 0.479 0.950 0. 710 He 1 4.700 0.660 5.820 1.151 1.227 0.000 0.000 0.000 5.880 1.246 1.050 0. 711 Hd 8 5.600 0.660 3.650 0.729 0.627 0.000 0.000 2.870 0.742 0.659 0. 713 Hd 15 4.300 0.340 2.530 0.616 0.582 0.000 0.000 2.870 0.742 0.659 0. 714 Hd 9 5.200 0.280 5.000 0.943 0.957 0.000 0.000 7.00 1.159 0.166 0.822 0.000 0.000 0.500 1.286 0.125 0.178 715 Hd 1 4.700 0.560 4.450 1.310 0.938 0.000 0.000 0.000	706	u.,	7	\$ 000	0.000	0.000	1 100	0.000	0.000	0.000	0.000	15.250	2.839	3.389	0.000	0.000	0.000
T11 Hd 8 5.600 0.500 1.131 1.122 0.000 0.000 0.000 3.450 0.824 0.728 0.713 T11 Hd 8 5.600 0.660 3.560 0.729 0.627 0.000 0.000 2.780 0.619 0.490 0.1 T13 Hd 9 5.200 0.280 5.000 0.943 0.957 0.000 0.000 0.000 4.801 1.044 0.999 0.787 0.7 T15 Hd 4 6.000 0.000 5.500 0.500 1.375 0.000 0.000 0.000 7.000 1.080 1.167 0.7 T16 He 2 4.000 0.000 5.500 0.500 1.375 0.000 0.000 0.000 6.500 0.1167 0.7 T18 Hd 1 4.700 0.560 4.450 1.310 0.938 0.000 0.000 0.000 5.500 0.500 0.228 0.000 0.000 0.000 1.940 0.413 0.464 0.79 0.600 <td>710</td> <td></td> <td>17</td> <td>4 700</td> <td>0.000</td> <td>2.300</td> <td>1.190</td> <td>0.500</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>4.750</td> <td>0.479</td> <td>0.950</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	710		17	4 700	0.000	2.300	1.190	0.500	0.000	0.000	0.000	4.750	0.479	0.950	0.000	0.000	0.000
712 Hd 9 5.700 0.600 3.600 0.000 0.000 5.800 1.246 1.050 0.172 7113 Hd 15 4.300 0.340 2.530 0.616 0.582 0.000 0.000 2.870 0.742 0.659 0.172 714 Hd 9 5.200 0.280 5.000 0.977 0.000 0.000 0.000 4.110 1.099 0.787 0.176 715 Hd 4 6.000 0.000 5.500 0.500 1.375 0.000 0.000 0.000 7.000 1.080 1.167 0.171 He 2 4.000 0.000 5.500 1.344 0.801 0.000 0.000 0.500 0.500 1.246 0.510 1.167 0.171 He 8 6.900 0.140 5.500 1.444 0.801 0.000 0.000 0.000 0.000 1.020 0.510 1.167 0.171 He 8 6.900 0.110 4.110 0.532 0.653 0.000 0.0	711	44	R	5 600	0.680	3 620	0 754	1.22/	0.000	0.000	0.000	3.450	0.824	0.728	0.000	0.000	0.000
713 Wd 15 4.300 0.340 2.300 0.616 0.822 0.000 0.000 2.780 0.742 0.659 0.742 0.661 0.719 0.742 0.661 1.750 0.750 1.750 0.750 1.750 0.000 0.000 0.000 0.000 0.000 0.000 0.719 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.710 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.719 0.661 0.770 0.661 0.777 0.742 </td <td>712</td> <td>H.d.</td> <td>ğ</td> <td>5 700</td> <td>0.600</td> <td>3 560</td> <td>0.734</td> <td>0.040</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>5.880</td> <td>1.246</td> <td>1.050</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	712	H.d.	ğ	5 700	0.600	3 560	0.734	0.040	0.000	0.000	0.000	5.880	1.246	1.050	0.000	0.000	0.000
714 Hd 9 5.200 0.280 5.000 0.943 0.957 0.000 0.000 2.870 0.742 0.859 0.7 714 Hd 4 6.000 0.000 1.107 0.000 1.107 0.1167 0.1 715 Hd 4 6.000 0.000 1.575 2.810 2.625 0.000 0.000 0.000 7.001 1.080 1.167 0.1 716 He 8 6.900 0.140 5.500 1.464 0.801 0.000 0.000 0.000 4.000 0.000 1.167 0.1 718 Hd 11 4.700 0.560 4.450 1.310 0.938 0.000 0.000 0.000 4.090 0.719 0.861 0.7 719 Hd 16 4.200 0.580 2.750 0.452 0.688 0.000 0.000 0.000 5.300 1.313 0.641 0.779 0.651 0.77 720 Hd 9 5.200 0.330 1.633 1.031 0.000 <t< td=""><td>713</td><td>84</td><td>15</td><td>A 300</td><td>0 340</td><td>2 5 3 0</td><td>0.729</td><td>0.027</td><td>0.000</td><td>0.000</td><td>0.000</td><td>2.780</td><td>0.619</td><td>0.490</td><td>0.000</td><td>0.000</td><td>0.000</td></t<>	713	84	15	A 300	0 340	2 5 3 0	0.729	0.027	0.000	0.000	0.000	2.780	0.619	0.490	0.000	0.000	0.000
715 Wd 4 6.000 0.000 5.750 0.737 0.000 0.000 4.110 1.099 0.187 0.1 715 Wd 4 6.000 0.000 5.750 0.2625 0.000 0.000 0.000 7.000 1.089 0.187 0.1 716 We 2 4.000 0.000 5.500 0.500 1.375 0.000 0.000 0.000 0.500 0.500 0.125 0.1 717 We 8 6.900 0.140 5.500 1.464 0.801 0.000 0.000 0.000 4.090 0.719 0.861 0.1 718 Wd 16 4.200 0.560 4.450 1.310 0.938 0.000 0.000 1.090 0.413 0.464 0.7 0.661 0.1 720 Wd 6 6.500 0.122 5.330 1.085 0.824 0.000 0.000 7.330 1.585 1.133 0.0 721 Wd 6 6.500 0.000 0.000 0.000 0.	714	NG.	Ĩ	5.200	0 280	5 000	0.010	0.362	0.000	0.000	0.000	2.8/0	0.742	0.659	0.000	0.000	0.000
716 We 2 4.000 0.000 5.500 0.500 0.000 0.000 7.000 1.000 1.007 0.1 717 We 8 6.900 0.140 5.500 1.464 0.801 0.000 0.000 0.500	715	₩d.	í.	6 000	0.000	15 750	2 810	2 625	0.000	0.000	0.000	4.110	1.099	0.787	0.000	0.000	0.000
717 We 8 6.900 0.140 5.500 1.464 0.801 0.000 0.000 0.000 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.910 0.900 0.900 0.910 0.910 0.910 0.900 0.900 0.910 0.910 0.900 0.900 0.910 0.910 0.900 0.900 0.910 0.910 0.910 0.900 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.900 <td>716</td> <td>We</td> <td>ż</td> <td>4.000</td> <td>0.000</td> <td>5.500</td> <td>0.500</td> <td>1 375</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>7.000</td> <td>1.080</td> <td>1.10/</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	716	We	ż	4.000	0.000	5.500	0.500	1 375	0.000	0.000	0.000	7.000	1.080	1.10/	0.000	0.000	0.000
718 Hd 11 4.700 0.560 4.850 1.310 0.932 0.000 0.000 4.000 4.090 0.719 0.861 0 719 Hd 16 4.200 0.580 2.750 0.452 0.658 0.000 0.000 1.940 0.413 0.464 0 720 Hd 6 6.000 0.110 4.110 0.539 0.691 0.000 0.000 1.940 0.413 0.464 0 721 Hd 6 6.500 0.120 5.330 1.085 0.824 0.000 0.000 7.301 1.585 1.133 0.(722 Hd 9 5.200 0.030 5.330 1.633 1.031 0.000 0.000 0.000 2.670 0.707 0.515 0.(723 He 2 3.600 0.000 0.000 0.000 0.000 0.000 0.000 2.670 0.707 0.515 0.(717	Wa	8	6.900	0.140	5 500	1 464	0 801	0.000	0.000	0.000	6 6 20	0.300	0.125	0.000	0.000	0.000
719 Hd 16 4.200 0.580 2.750 0.452 0.658 0.000 0.000 0.000 1.940 0.413 0.464 0.720 Hd 9 6.000 0.110 4.110 0.539 0.691 0.000 0.000 0.000 5.780 1.024 0.971 0.6 721 Hd 6 6.500 0.120 5.330 1.685 0.824 0.000 0.000 7.330 1.585 1.133 0.6 722 Hd 9 5.200 0.030 5.330 1.683 1.031 0.000 0.000 7.330 1.585 1.133 0.6 722 Hd 9 5.200 0.030 5.330 1.633 1.031 0.000 0.000 2.670 0.707 0.515 0.6 723 He 2 3.600 0.000 0.000 0.000 0.000 0.000 2.670 0.707 0.515 0.6 725 Hd 18 4.100 0.770 2.610 1.064 0.644 0.000 0.000	718	Wd	11	4.700	0.560	4.450	1 310	0 938	0.000	0.000	0.000	6.030	3.207	0.903	0.250	0.250	0.036
720 Wd 9 6.000 0.110 4.110 0.539 0.691 0.000 0.000 0.000 5.780 1.024 0.971 0.4 721 Wd 6 6.500 0.120 5.330 1.685 0.824 0.000 0.000 7.330 1.585 1.133 0.4 722 Wd 9 5.200 0.030 5.330 1.633 1.031 0.000 0.000 2.670 0.707 0.515 0.6 723 We 2 3.600 0.000 0.000 0.000 0.000 0.000 5.500 0.500 1.585 1.133 0.6 725 Wd 14 4.100 0.790 4.140 1.460 1.001 0.000	719	Wd	16	4.200	0.580	2.750	0.452	0.658	0 000	0.000	0.000	1 940	0./19	0.801	0.270	0.2/3	0.057
721 Wd 6 6.500 0.120 5.330 1.085 0.824 0.000 0.000 7.300 1.585 1.133 0.4 722 Wd 9 5.200 0.030 5.330 1.683 1.031 0.000 0.000 7.300 1.585 1.133 0.4 723 We 2 3.600 0.000 0.000 0.000 0.000 0.000 5.500 0.500 1.585 1.133 0.4 723 We 2 3.600 0.000 0.000 0.000 0.000 0.000 5.500 0.500 1.536 0.1 725 Wd 14 4.100 0.790 4.140 1.460 1.001 0.000 0.000 5.500 0.500 1.536 0.1 726 Wd 18 4.100 0.770 2.610 1.064 0.644 0.000 0.000 2.560 1.169 0.630 0.5 727 Wd 10 4.500 0.860 3.900 1.149 0.875 0.000 0.000 0.000 <td< td=""><td>720</td><td>Wd</td><td>9</td><td>6.000</td><td>0.110</td><td>4.110</td><td>0.539</td><td>0.691</td><td>0.000</td><td>0 000</td><td>0.000</td><td>5 780</td><td>1 024</td><td>0.404</td><td>0.230</td><td>0.144</td><td>0.060</td></td<>	720	Wd	9	6.000	0.110	4.110	0.539	0.691	0.000	0 000	0.000	5 780	1 024	0.404	0.230	0.144	0.060
722 Hd 9 5.200 0.030 5.330 1.633 1.031 0.000 0.000 0.000 2.670 0.707 0.1353 0.1 723 He 2 3.600 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.500 0.500 1.536 0.0 723 He 2 3.600 0.000 0.000 0.000 0.000 0.000 0.000 5.500 0.500 1.536 0.0 725 Hd 14 4.100 0.790 4.140 1.460 1.001 0.000 0.000 0.000 2.600 1.675 0.4 726 Hd 10 4.500 0.860 3.900 1.149 0.875 0.000 0.000 0.000 2.600 3.071 1.548 1.4 727 Hd 10 4.500 1.650 1.000 0.577 0.184 0.000 0.000 3.000 1.258 0.535 1.5 728 Hd 9 5.600 1.060 5.110 1.925 <t< td=""><td>721</td><td>₩d</td><td>6</td><td>6.500</td><td>0.120</td><td>5.330</td><td>1.085</td><td>0.824</td><td>0 000</td><td>0 000</td><td>0 000</td><td>7 330</td><td>1 595</td><td>1 1 2 2</td><td>0.000</td><td>0.000</td><td>0.000</td></t<>	721	₩d	6	6.500	0.120	5.330	1.085	0.824	0 000	0 000	0 000	7 330	1 595	1 1 2 2	0.000	0.000	0.000
723 We 2 3.600 0.000 <td>722</td> <td>Wd</td> <td>9</td> <td>5.200</td> <td>0.030</td> <td>5.330</td> <td>1.633</td> <td>1.031</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>2 670</td> <td>0 207</td> <td>1.133</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	722	Wd	9	5.200	0.030	5.330	1.633	1.031	0.000	0.000	0.000	2 670	0 207	1.133	0.000	0.000	0.000
725 Wd 14 4.100 0.790 4.140 1.460 1.001 0.000 0.000 0.000 6.930 2.410 1.675 0.4 726 Wd 18 4.100 0.770 2.610 1.064 0.644 0.000 0.000 0.000 2.560 1.169 0.630 0.1 727 Wd 10 4.500 0.860 3.900 1.149 0.875 0.000 0.000 0.000 3.001 1.588 0.535 1.5 728 Wd 9 5.600 1.060 5.110 1.925 0.911 0.000 0.000 0.000 3.001 1.258 0.535 1.5 729 Wd 4 5.400 1.650 1.000 0.577 0.184 0.000 0.000 0.000 2.500 1.658 0.460 3.0 731 We 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.620 0.331 0.18 0.377 0.68 801 Hd 18 4.700 <	723	We	2	3.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	5 500	0 500	1 536	0.000	0.000	0.000
726 Hd 18 4.100 0.770 2.610 1.064 0.644 0.000 0.000 2.560 1.169 0.630 0.777 727 Hd 10 4.500 0.860 3.900 1.149 0.875 0.000 0.000 0.000 6.900 3.071 1.548 1.4 728 Hd 9 5.600 1.0650 5.110 1.925 0.911 0.000 0.000 0.000 3.000 1.258 0.535 1.5 729 Hd 4 5.400 1.650 1.000 0.577 0.184 0.000 0.000 0.000 2.500 1.658 0.460 3.0 730 He 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.000 1.670 0.843 0.337 0.5 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.880	725	Wd	14	4.100	0.790	4.140	1.460	1.001	0.000	0.000	0.000	6.930	2.410	1 675	0.000	0.000	0.000
727 Hd 10 4.500 0.860 3.900 1.149 0.875 0.000 0.000 6.900 3.071 1.548 1.47 728 Hd 9 5.600 1.060 5.110 1.925 0.911 0.000 0.000 3.000 1.258 0.535 1.57 729 Hd 4 5.400 1.650 1.000 0.577 0.184 0.000 0.000 2.500 1.658 0.535 1.57 730 He 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.000 2.500 1.658 0.460 3.67 731 He 6 4.900 0.880 5.330 1.542 1.079 0.000 0.000 0.000 1.670 0.843 0.317 0.18 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.180 2.000 1.265	726	Wd	18	4.100	0.770	2.610	1.064	0.644	0.000	0.000	0.000	2.560	1 169	0 630	0 330	0.108	0.104
728 Hd 9 5.600 1.060 5.110 1.925 0.911 0.000 0.000 3.000 1.258 0.535 1.1 729 Hd 4 5.400 1.650 1.000 0.577 0.184 0.000 0.000 2.500 1.658 0.460 3.0 730 He 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.620 0.331 0.118 0.5 731 He 6 4.900 0.880 5.330 1.542 1.079 0.000 0.000 1.658 0.460 3.0 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.180 2.000 1.265 1.938 0.400 0.245 0.388 0.000 0.000 0.000 0.000 0.000 0.000	727	₩d	10	4.500	0.860	3.900	1.149	0.875	0.000	0.000	0.000	6.900	3.071	1.548	1 400	1 400	0.002
729 Hd 4 5.400 1.650 1.000 0.577 0.184 0.000 0.000 2.500 1.658 0.460 3.0 730 He 13 5.200 0.560 1.000 0.376 0.182 0.000 0.000 0.000 2.500 1.658 0.460 3.0 731 He 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.620 0.331 0.118 0.5 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.180 2.000 1.265 1.938 0.400 0.245 0.386 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	728	Wd	9	5.600	1.060	5.110	1.925	0.911	0.000	0.000	0.000	3.000	1.258	0.535	1 560	0 818	0 277
730 He 13 5.200 0.560 1.000 0.376 0.192 0.000 0.000 0.620 0.331 0.118 0.5 731 He 6 4.900 0.880 5.330 1.542 1.079 0.000 0.000 0.620 0.331 0.118 0.13 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.000	729	Wd	4	5.400	1.650	1.000	0.577	0.184	0.000	0.000	0.000	2.500	1.658	0.460	3.000	1.291	0.552
731 He 6 4.900 0.880 5.330 1.542 1.079 0.000 0.000 0.000 1.670 0.843 0.337 0.0 801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.180 2.000 1.265 1.938 0.400 0.245 0.388 0.000	730	We	13	5.200	0.560	1.000	0.376	0.192	0.000	0.000	0.000	0.620	0.331	0.118	0.920	0 265	0 178
801 Hd 18 4.700 0.550 2.330 0.560 0.495 0.220 0.129 0.047 0.330 0.198 0.071 3.2 802 Hd 5 1.000 0.180 2.000 1.265 1.938 0.400 0.245 0.388 0.000 <td< td=""><td>731</td><td>We</td><td>6</td><td>4.900</td><td>0.880</td><td>5.330</td><td>1.542</td><td>1.079</td><td>0.000</td><td>0.000</td><td>0.000</td><td>1.670</td><td>0.843</td><td>0.337</td><td>0.000</td><td>0.000</td><td>0.000</td></td<>	731	We	6	4.900	0.880	5.330	1.542	1.079	0.000	0.000	0.000	1.670	0.843	0.337	0.000	0.000	0.000
802 Hd 5 1.000 0.180 2.000 1.265 1.938 0.400 0.245 0.388 0.000 <td>801</td> <td>Wd</td> <td>18</td> <td>4.700</td> <td>0.550</td> <td>2.330</td> <td>0.560</td> <td>0.495</td> <td>0.220</td> <td>0.129</td> <td>0.047</td> <td>0.330</td> <td>0.198</td> <td>0.071</td> <td>3.280</td> <td>1.970</td> <td>0 696</td>	801	Wd	18	4.700	0.550	2.330	0.560	0.495	0.220	0.129	0.047	0.330	0.198	0.071	3.280	1.970	0 696
803 Hd 5 4.900 0.780 3.400 0.980 0.694 0.000 0.000 0.000 7.800 3.323 1.592 3.8 805 Hd 20 2.600 0.270 2.600 0.832 0.990 0.000 0.000 0.000 0.800 0.381 0.305 0.7 807 He 10 6.300 0.680 5.500 1.662 0.870 0.000 0.000 0.000 6.100 1.441 0.964 1.3 808 Hd 3 3.300 1.530 5.000 3.000 1.500 0.000 0.000 0.600 0.667 0.200 0.00 809 Hd 20 4.700 0.590 10.550 2.402 2.245 0.000 0.000 3.900 3.894 0.830 0.1	802	Wd	5	1.000	0.180	2.000	1.265	1.938	0.400	0.245	0.388	0.000	0.000	0.000	0.000	0.000	0.000
805 Hd 20 2.600 0.270 2.600 0.832 0.990 0.000 0.000 0.000 0.300 0.381 0.305 0.7 807 We 10 6.300 0.680 5.500 1.662 0.870 0.000 0.000 6.100 1.441 0.964 1.3 808 Hd 3 3.300 1.330 5.000 3.000 1.500 0.000 0.000 0.600 0.670 0.667 0.200 0.00 809 Hd 20 4.700 0.590 10.550 2.402 2.245 0.000 0.000 3.900 3.894 0.830 0.130	803	Wd	5	4.900	0.780	3.400	0.980	0.694	0.000	0.000	0.000	7.800	3.323	1.592	3.800	2.107	0 776
807 Me 10 6.300 0.680 5.500 1.662 0.870 0.000 0.000 6.100 1.441 0.964 1.3 808 Md 3 3.300 1.330 5.000 3.000 1.500 0.000 0.000 0.670 0.667 0.200 0.0 809 Md 20 4.700 0.590 10.550 2.402 2.245 0.000 0.000 3.900 0.894 0.830 0.1	805	Mg	20	2.600	0.270	2.600	0.832	0.990	0.000	0.000	0.000	0.800	0.381	0.305	0.700	0.282	0.267
808 Wd 3 3.300 1.330 5.000 3.000 1.500 0.000 0.000 0.000 0.670 0.667 0.200 0.0 809 Wd 20 4.700 0.590 10.550 2.402 2.245 0.000 0.000 0.000 3.900 0.894 0.830 0.1	807	We	10	6.300	0.680	5.500	1.662	0.870	0.000	0.000	0.000	6.100	1.441	0.964	1.300	0.597	0.206
809 Wd 20 4.700 0.590 10.550 2.402 2.245 0.000 0.000 0.000 3.900 0.894 0.830 0.1	808	Wd	3	3.300	1.330	5.000	3.000	1.500	0.000	0.000	0.000	0.670	0.667	0.200	0.000	0.000	0.000
	809	Wd	20	4.700	0.590	10.550	2.402	2.245	0.000	0.000	0.000	3.900	0.894	0.830	0.100	0.100	0.021
810 Wd 19 4,900 0.450 5.160 1.366 1.058 0.000 0.000 0.000 1.680 0.588 0.345 0.4	810	Wd	19	4.900	0.450	5.160	1.366	1.058	0.000	0.000	0.000	1.680	0.588	0.345	0.470	0.221	0.097
811 Wd 6 6.300 1.010 3.000 0.516 0.480 0.000 0.000 0.000 1.170 0.980 0.187 0.6	811	Wd	6	6.300	1.010	3.000	0.516	0.480	0.000	0.000	0.000	1.170	0.980	0.187	0.670	0.333	0.107
812 Wd 19 4.900 0.530 8.470 1.802 1.728 0.000 0.000 0.000 2.680 0.895 0.547 0.1	812	Wd	19	4.900	0.530	8.470	1.802	1.728	0.000	0.000	0.000	2.680	0.895	0.547	0.110	0.072	0.021
813 We 20 5.300 0.310 11.200 2.829 2.113 0.000 0.000 0.000 4.450 0.896 0.840 0.4	813	We	20	5.300	0.310	11.200	2.829	2.113	0.000	0.000	0.000	4.450	0.896	0.840	0.450	0.256	0.085
814 Me 9 3.900 0.980 4.000 2.186 1.029 0.000 0.000 0.000 1.780 0.547 0.457 0.1	814	We	9	3.900	0.980	4.000	2.186	1.029	0.000	0.000	0.000	1.780	0.547	0.457	0.110	0.111	0.029

Appendix Table 9. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988.

-Continued-

49

	니서/니스	Sample	Ef	fort	Ra	inbow Trou	t		Arctic Cha	r		rctic Gray	ling	S	ockeye Sa	lmon
Date	1/	Size	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Mean	Std Err	CPUE
815		12	6.500	0.180	8.000	1.838	1.239	0.000	0.000	0.000	2.580	0.570	0.400	0.420	0.229	0.065
816	Wd	12	4.000	0.620	5.000	1.610	1.235	0.000	0.000	0.000	2.500	1.209	0.618	0.000	0.000	0.000
817	₩d	3	6.200	0.000	1.000	0.577	0.162	0.000	0.000	0.000	2.000	0.577	0.324	0.670	0.667	0.108
818	Wd	4	6.000	0.000	5.750	3.326	0.958	0.000	0.000	0.000	3.250	1.493	0.542	0.750	0.750	0.125
819	Wd	5	3.300	0.700	8.400	4.082	2.545	0.000	0.000	0.000	1.600	0.927	0.485	0.000	0.000	0.000
820	We	3	6.000	0.000	10.670	2.963	1.778	0.000	0.000	0.000	0.330	0.333	0.056	2.670	2.667	0.444
821	We	2	7.600	0.380	7.000	3.000	0.918	0.000	0.000	0.000	6.500	0.500	0.852	1.000	1.000	0.131
823	Wd	14	4.400	0.880	4.140	1.305	0.932	0.000	0.000	0.000	1.790	0.395	0.402	2.860	0.983	0.643
824	Wd	3	3.600	0.950	1.670	1.667	0.462	0.000	0.000	0.000	0.330	0.333	0.092	2.670	2.186	0.739
825	₩d	10	3.900	0.800	1.700	0.955	0.432	0.000	0.000	0.000	1.000	0.667	0.254	2.400	0.819	0.610
827	We	14	1.700	0.380	0.360	0.225	0.215	0.000	0.000	0.000	0.000	0.000	0.000	1.500	0.863	0.903
828	We	5	5.400	0.910	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	9.400	2.379	1.741
829	Wd	15	3.600	0.260	0.330	0.159	0.093	0.000	0.000	0.000	0.470	0.274	0.131	1.530	0.524	0.430
831	Wd	11	5.200	0.590	2.820	1.306	0.542	0.000	0.000	0.000	0.450	0.366	0.087	2.270	1.054	0.437
901	Wd	14	4.400	0.730	1.640	0.580	0.370	0.000	0.000	0.000	0.290	0.221	0.064	2.570	1.440	0.580
902	Wd	9	4.600	0.920	1.000	0.289	0.218	0.000	0.000	0.000	1.670	0.782	0.364	5.110	1.720	1.115
903	We	Á.	1.300	0.140	0.500	0.289	0.400	0.000	0.000	0.000	0.000	0.000	0.000	3.000	1.225	2.400
904	We	15	4.700	0.700	1.400	0.496	0.296	0.000	0.000	0.000	4.070	2.661	0.861	3.270	2.053	0.692
905	We	15	2.900	0.400	0.530	0.165	0.183	0.000	0.000	0.000	0.000	0.000	0.000	0.870	0.456	0.298
906	Wd	11	5.200	0.760	1.910	0.595	0.370	0.000	0.000	0.000	6.270	3.611	1.216	3.730	2.374	0.722
907	Wd	-4	5.000	0.000	2.250	1.109	0.450	0.000	0.000	0.000	20.500	4.291	4.100	1.250	0.629	0.250
908	Wd	12	4.600	0.890	2.080	0.883	0.450	0.000	0.000	0.000	0.750	0.411	0.162	1.250	0.494	0.270
910	We	8	2.700	0.380	0.500	0.378	0.182	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.125	0.046
911	We	11	5.800	0.570	3.090	1.156	0.536	0.000	0.000	0.000	1.270	0.384	0.221	1.360	0.789	0.237
912	Wd	īī	7.000	0.180	5.820	0.630	0.833	0.000	0.000	0.000	3.000	1.152	0.429	0.270	0.273	0.039
913	Wd	14	6.000	0.560	11.930	3.026	1.978	0.000	0.000	0.000	1.290	0.928	0.213	3.000	1.313	0.498
915	Wd	25	5.100	0.140	2.040	0.418	0.400	0.000	0.000	0.000	0.200	0.100	0.039	1.880	0.681	0.368
916	Nd	12	3 900	0.350	2 750	0.719	0.707	0 000	0 000	0 000	0 330	0 142	0 086	0 000	0 000	0.000

Appendix Table 9. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988 (continued).

1/ Wd = Weekday; We = Weekend or holiday.

		·	E	ffort	Ra	inbow Trou	 It		Arctic Cha	r		rctic Gray	ling	\$00	ckeye Sa	lmon
Date	Wd/We 1/	Sample Size	Mean	Std Err	Mean	Std Err	HPUE	Mean	Std Err	HPUE	Mean	Std Err	EPUE	Mean S	td Err	HPUR
614	 Wd	4	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
619	We	9	6.700	0.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
620	Wd	7	6.200	0.370	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	Wd	7	4.600	0.200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
622	Wd	4	5.200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.048	0.000	0.000	0.000
623	Wd	5	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
624	Wd	10	4.800	0.480	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.100	0.021	0.000	0.000	0.000
626	We	4	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
627	Wd	9	5.200	0.260	0.000	0.000	0.000	0.000	0.000	0.000	0.560	0.242	0.100	0.000	0.000	0.000
628	Wd	4	2.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
629	Mq	9	1.400	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
630	Wd	5	4.200	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
703	We	8	4.500	0.630	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
704	We	5	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000
705	Wd	4	4.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0 000	0.000
706	Wd	4	5.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	We	11	4.700	0.660	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
711	Wd	8	5.600	0.680	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000
712	Wd	9	5.700	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000
713	Wd	15	4.300	0.340	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
714	Wd	9	5.200	0.280	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
715	Wd	4	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
716	We	2	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
717	We	8	6.900	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.090	0.091	0.019
718	Wd	11	4.700	0.560	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
719	Wd	16	4.200	0.580	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000
720	Wd	9	6.000	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
721	Wd		6.500	0.120	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000
722	Wd	y	5.200	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
723	We	, <u>z</u>	3.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.070	0.071	0.017	0.070	0.071	0.017
725	Wd	14	4.100	0.790	0.000	0.000	0.000	0 000	0 000	0.000	0.000	0.000	0.000	0.060	0.056	0.014
726	Wd	18	4.100	0.770	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
727	Wd	10	4.500	1 060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.330	0.236	0.059
728	Wd	y	5.600	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.408	0.184
729	wa		5.400	0.560	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.380	0.140	0.074
730	We	13	5.200	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.330	0.333	0.067	0.000	0.000	0.000
/31	We	10	4.700	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.440	0.232	0.094
801	WC	10	1 000	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
802	DW.	5	1.000	0.180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	0.775	0.204
803	WCL	20	9.900	0.700	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
803	WG.	20	£ 300	0.680	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
807	WE	10	1 100	1 330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
808	DW LU	20	3.300	0.590	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
809	10W 11J	20	4.700	0 450	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
811		17	6 300	1.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
812		10	4 900	0.530	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
812	We lie	20	5 300	0.310	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
914	ile.	20	3.900	0.980	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
014		7														

Appendix Table 10. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988.

-Continued-

.

Effort Rainbow Trout Arctic Char Arctic Grayling Sockeye Salmon bate 1/ Size Mean Std Err Heve Mean Std Err BPUE Mean Std Err BPUE <th colsp<="" th=""><th></th></th>	<th></th>	
Date 1/ Size Hean Std Err HPUE Hean Std Err HE Hean Std Err Hean Std Err HE Hean Std Err HE Hean Std Err Hean Std Err Hean Std Err Hean Std Err Hean Std E		
815 Hd 12 6.500 0.180 0.000 </th <th>PUE</th>	PUE	
816 Hd 12 4,000 0.620 0.000 </td <td>000</td>	000	
B17 Hd 3 6.200 0.000 <td>)00</td>)00	
Bit Wd 4 6.000 0.000 <td>)00</td>)00	
Big Hd 5 3.300 0.700 0.000 <td>000</td>	000	
B20 We 3 6.000 0.000 <td>000</td>	000	
B21 We 2 7,600 0.380 0.000 <td>200</td>	200	
823 Wd 14 4.400 0.880 0.000 </td <td>200</td>	200	
824 Wd 3 3.600 0.950 0.000 <td>200</td>	200	
825 Wd 10 3.900 0.800 0.000 </td <td>200</td>	200	
B27 We 14 1.700 0.380 0.000 </td <td>000</td>	000	
B28 We 5 5.400 0.910 0.000 <td>200</td>	200	
829 Wd 15 3.600 0.260 0.000 </td <td>200</td>	200	
831 Wd 11 5.200 0.590 0.000 </td <td>000</td>	000	
901 Wd 14 4.400 0.730 0.000 </td <td>000</td>	000	
902 Wd 9 4.600 0.920 0.000 <td>200</td>	200	
903 He 4 1.300 0.140 0.000 <td>200</td>	200	
904 We 15 4.700 0.700 0.000 0.	200	
905 We 15 2.900 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	200	
	000	
יוסט שער דר ס.עטע ע.עעע ע.עעע ע.עעע ע.עעע ע.עעע ע.עעע ע.עעע ט.עעע ט.עעע ע.עעע ע.עעע ע.עעע ע.עעע ע.עעע ע.עעע ע.עע	200	
907 Wd 4 5,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00	000	
908 Wd 12 4.600 0.890 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	200	
910 He 8 2,700 0.380 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	200	
911 No. 11 5.800 0.570 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000	
912 Wd 11 7,000 0,180 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	000	
913 Wd 14 6,000 0.560 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	000	
915 Wd 25 5,100 0,140 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	000	
916 Hd 12 3.900 0.350 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	100	

Appendix Table 10. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler hour) for rainbow trout, Arctic char, Arctic grayling, sockeye salmon, and Northern pike from angler interviews in the Agulukpak River sport fishery, 1988 (continued).

.

1/ Wd = Weekday; We = Weekend or holiday.

52

)

	U.J./U.	Come l -	Ef	fort	Ra	inbow Trou	it		Arctic Cha	r	A	rctic Gray	ling	Sockeye Salmon				
Date	wa/we 1/	Size	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE		
6/23	Wd	3	0.800	0.360	0.000	0.000	0.000	1.330	0.882	1.717	0.000	0.000	0.000	0.000	0.000	0.000		
6/24	Wd	13	1.500	0.230	0.230	0.231	0.159	11.920	5.314	8.197	0.080	0.077	0.053	0.000	0.000	0.000		
6/28	We	7	3.000	0.920	0.570	0.297	0.193	2.000	0.951	0.675	0.430	0.297	0.145	0.000	0.000	0.000		
7/04	We	9	1.700	0.510	0.220	0.147	0.128	0.890	0.455	0.513	0.000	0.000	0.000	0.000	0.000	0.000		
7/05	We	3	1.600	0.920	0.000	0.000	0.000	0.330	0.333	0.210	0.000	0.000	0.000	0.000	0.000	0.000		
7/06	Wd	3	0.200	0.030	1.000	0.000	4.478	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
7/08	Wd	4	0.800	0.000	0.000	0.000	0.000	2.250	0.250	3.000	0.000	0.000	0.000	0.000	0.000	0.000		
7/10	Wd	7	0.300	0.060	0.000	0.000	0.000	0.140	0.143	0.541	0.000	0.000	0.000	0.000	0.000	0.000		
7/11	We	6	0.800	0.050	0.000	0.000	0.000	1.830	0.477	2.200	0.000	0.000	0.000	0.000	0.000	0.000		
7/13	Wd	19	0.700	0.110	0.370	0.205	0.558	0.420	0.207	0.637	0.000	0.000	0.000	0.000	0.000	0.000		
7/17	Wd	4	0.800	0.170	0.250	0.250	0.315	0.500	0.500	0.631	0.000	0.000	0.000	0.250	0.250	0.315		
7/19	We	10	1.400	0.360	0.500	0.500	0.353	3.000	0.715	2.117	0.000	0.000	0.000	0.000	0.000	0.000		
7/20	Wd	26	1.900	0.400	0.850	0.307	0.434	0.850	0.410	0.434	0.770	0.542	0.395	0.000	0.000	0.000		
7/26	We	17	1.000	0.160	1.290	1.175	1.346	0.710	0.239	0.734	0.290	0.294	0.306	0.000	0.000	0.000		
7/27	₩d	8	0.700	0.140	0.000	0.000	0.000	1.630	0.680	2.293	0.000	0.000	0.000	0.000	0.000	0.000		
7/28	₩d	8	1.900	0.520	1.880	0.718	0.968	0.500	0.327	0.258	0.750	0.620	0.387	0.000	0.000	0.000		
7/30	₩d	12	0.400	0.090	0.250	0.131	0.677	0.000	0.000	0.000	0.080	0.083	0.226	0.000	0.000	0.000		
7/31	Wd	3	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.000	2.000	2.000	0.000	0.000	0.000		
8/03	Mg	6	2.200	0.250	0.330	0.333	0.154	3.500	1.628	1.615	0.500	0.342	0.231	0.000	0.000	0.000		
8/04	Wd	4	0.600	0.240	2.000	2.000	3.419	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.427		
8/05	₩d	5	1.500	0.590	4.600	2.561	3.003	0.000	0.000	0.000	1.400	0.872	0.914	0.000	0.000	0.000		
8/08	We	6	2.100	0.440	4.000	2.221	1.920	0.000	0.000	0.000	3.170	1.424	1.520	0.000	0.000	0.000		
8/09	We	2	1.500	0.000	3.000	2.000	2.000	0.500	0.500	0.333	2.000	1.000	1.333	0.000	0.000	0.000		
8/10	Wd	6	3.600	0.580	1.830	0.601	0.512	0.670	0.667	0.186	0.000	0.000	0.000	0.000	0.000	0.000		
8/11	Wd	4	2.300	0.730	0.000	0.000	0.000	1.500	0.866	0.661	0.000	0.000	0.000	0.250	0.250	0.110		
8/14	Wd	9	1.300	0.190	1.000	0.553	0.800	0.220	0.222	0.178	0.110	0.111	0.089	0.000	0.000	0.000		
8/16	We	5	1.700	0.120	0.800	0.374	0.471	0.600	0.600	0.353	0.400	0.400	0.235	0.200	0.200	0.118		
8/17	Wd	4	0.600	0.000	0.250	0.250	0.431	0.250	0.250	0.431	0.000	0.000	0.000	0.000	0.000	0.000		
8/18	Wd	10	0.500	0.020	0.000	0.000	0.000	0.300	0.213	0.644	0.000	0.000	0.000	1.000	1.000	2.146		
8/20	Wd	3	0.500	0.000	0.000	0.000	0.000	0.330	0.333	0.667	0.000	0.000	0.000	0.330	0.333	0.667		
8/21	Wd	6	2.100	0.170	0.000	0.000	0.000	0.670	0.333	0.314	0.000	0.000	0.000	0.670	0.667	0.314		
8/22	We	9	0.900	0.320	0.220	0.222	0.244	0.110	0.111	0.122	0.000	0.000	0.000	0.780	0.278	0.855		
8/23	We	10	0.300	0.050	0.000	0.000	0.000	0.300	0.153	1.053	0.000	0.000	0.000	0.200	0.200	0.702		

Appendix Table 11. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986.

1/ Wd = Weekday; We = Weekend or holiday.

		Sample	Effort		Rainbow Trout			Arctic Char			Arc	tic Grayli	ng	Sockeye Salmon			
Date	Wd/We 1/	Sample Size	Mean	Std Err	Mean	Std Err	HPUE	Mean	Std Err	HPUE	Mean	Std Err	HPUE	Mean	Std Err	HPUE	
6/23	ыл	1	0.800	0.360	0.000	0.000	0.000	1.000	0.577	1.288	0.000	0.000	0.000	0.000	0.000	0.000	
6/24	Wd	13	1.500	0.230	0.000	0.000	0.000	1.540	0.595	1.058	0.000	0.000	0.000	0.000	0.000	0.000	
6/28	u.		3.000	0.920	0.000	0.000	0.000	0.570	0.297	0.193	0.000	0.000	0.000	0.000	0.000	0.000	
7/04		9	1.700	0.510	0.000	0.000	0.000	0.890	0.455	0.513	0.000	0.000	0.000	0.000	0.000	0.000	
7/05		3	1.600	0.920	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/06	No.	3	0.200	0.030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/08	H.A.	Ă	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/10	Wd	7	0.300	0.060	0.000	0.000	0.000	0.140	0.143	0.541	0.000	0.000	0.000	0.000	0.000	0.000	
7/11	Ve	6	0.800	0.050	0.000	0.000	0.000	1.170	0.477	1.400	0.000	0.000	0.000	0.000	0.000	0.000	
7/13	Wd	19	0.700	0.110	0.160	0.086	0.239	0.110	0.105	0.159	0.000	0.000	0.000	0.000	0.000	0.000	
7/17	Wa		0.800	0.170	0.000	0.000	0.000	0.500	0.500	0.631	0.000	0.000	0.000	0.250	0.250	0.315	
7/19	Ve	10	1.400	0.360	0.000	0.000	0.000	2.000	0.650	1.411	0.000	0.000	0.000	0.000	0.000	0.000	
7/20	Wa	26	1.900	0.400	0.040	0.038	0.020	0.080	0.053	0.039	0.000	0.000	0.000	0.000	0.000	0.000	
7/26	Ve	17	1.000	0.160	0.000	0.000	0.000	0.290	0.166	0.306	0.000	0.000	0.000	0.000	0.000	0.000	
7/27	Wd	8	0.700	0.140	0.000	0.000	0.000	0.130	0.125	0.176	0.000	0.000	0.000	0.000	0.000	0.000	
7/28	Wd	8	1.900	0.520	0.500	0.327	0.258	0.130	0.125	0.065	0.000	0.000	0.000	0.000	0.000	0.000	
7/30	Wd.	12	0.400	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/31	Wd	3	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/03	Wa	6	2.200	0.250	0.000	0.000	0.000	0.330	0.211	0.154	0.330	0.333	0.154	0.000	0.000	0.000	
8/04	Wa.	Ā	0.600	0.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.250	0.250	0.427	
8/05	Wd	Ś	1.500	0.590	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/08	Ve	6	2.100	0.440	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/09	Üe	2	1.500	0.000	0.000	0.000	0.000	0.500	0.500	0.333	0.500	0.500	0.333	0.000	0.000	0.000	
8/10	Wd	6	3.600	0.580	0.170	0.167	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/11	Wd	Ă	2.300	0.730	0.000	0.000	0.000	0.500	0.289	0.220	0.000	0.000	0.000	0.000	0.000	0.000	
8/14	Wd	ģ	1.300	0.190	0.000	0.000	0.000	0.220	0.222	0.178	0.000	0.000	0.000	0.000	0.000	0.000	
8/16		5	1.700	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/17	W.A	Ă	0.600	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/18	Wd	10	0.500	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.000	1.000	2.146	
8/20	Wd	3	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/21	₩d	6	2.100	0.170	0.000	0.000	0.000	0.170	0.167	0.078	0.000	0.000	0.000	0.000	0.000	0.000	
8/22	Ve	9	0.900	0.320	0.000	0.000	0.000	0.110	0.111	0.122	0.000	0.000	0.000	0.000	0.000	0.000	
8/23	Ve	10	0.300	0.050	0.000	0.000	0.000	0.100	0.100	0.351	0.000	0.000	0.000	0.000	0.000	0.000	

Appendix Table 12. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1986.

1/ Wd = Weekday; We = Weekend or holiday.

			Ef	Effort		Rainbow Trout			Arctic Char			Arctic Grayling			Sockeye Salmon			Coho Salmon		
Date	₩d/₩e 1/	Sample Size	Hean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Hean	Std Err	CPUE	Mean S	td Brr	CPUE	Mean	Std Err	CPUE	
										0 087	0 000	0 000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	
6/06	We	6	2.000	0.620	0.170	0.167	0.082	2.000	0.850	0.967	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	
6/07	We	11	2.000	0.450	0.000	0.000	0.000	2.180	1.205	1.0/1	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	
6/11	Wd	3	1.900	1.560	0.000	0.000	0.000	1.330	0.882	0.707	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
6/12	Wd	4	1.600	0.520	0.500	0.289	0.308	1.000	0.707	0.015	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	
6/17	₩d	2	0.900	0.630	0.000	0.000	0.000	0.500	0.500	0.3/1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
6/19	₩d	2	0.500	0.000	2.000	1.000	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	
6/21	We	5	2.800	0.490	0.200	0.200	0.071	6.400	1.749	2.280	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
6/24	Wd	4	3.300	0.600	2.750	1.601	0.846	5.000	2.88/	1.538	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
6/25	₩d	8	5.000	0.330	1.750	0.901	0.350	0.630	0.625	0.125	0.300	0.203	0.075	0.000	0.000	0.000	0.000	0.000	0.000	
6/27	We	19	0.200	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	
7/03	We	4	1.800	0.430	0.000	0.000	0.000	1.750	1.181	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/04	Ve	2	1.500	0.000	0.000	0.000	0.000	1.000	1.000	0.66/	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/05	We	8	0.900	0.250	0.000	0.000	0.000	0.500	0.32/	0.5/1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/07	Wd	5	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/08	₩d	8	2.400	0.410	1.250	0.491	0.526	2.000	0.463	0.842	0.750	0.750	0.310	0.000	0.000	0.000	0.000	0.000	0.000	
7/09	Wd	4	1.400	0.380	0.250	0.250	0.182	0.750	0.250	0.343	0.500	0.207	0.304	0.500	0.500	0 111	0.000	0.000	0.000	
7/10	પ્રત	2	4.500	0.000	0.500	0.500	0.111	1.000	1.000	0.222	1.000	1.000	0.222	0.000	0.083	0.043	0.080	0.083	0.043	
7/11	Wa	12	1.900	0.350	0.330	0.256	0.171	1.920	0.645	0.985	0.000	0.000	0.000	0.080	0.083	0.056	0.000	0.000	0.000	
7/12	Ve	12	1.500	0.150	0.330	0.256	0.222	2.000	0.888	1.333	0.330	0.142	0.222	0.000	0.000	0.000	0.000	0.000	0.000	
7/15	¥d.	3	1.500	0.000	0.000	0.000	0.000	1.670	0.882	1.111	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/16	Ÿd.	3	3.000	0.000	0.670	0.333	0.222	0.000	0.000	0.000	2.330	0.333	0.776	0.000	0.000	0.000	0.000	0.000	0.000	
7/18	Ve	2	1.000	0.000	0.000	0.000	0.000	3.000	0.000	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	0.000	
7/25	N.	14	1.200	0.230	0.140	0.143	0.123	1.070	0.450	0.923	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/26	Ve	6	2.000	0.670	0.000	0.000	0.000	2.170	0.703	1.083	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
7/28	u.d	Ā	2.800	0.440	0.630	0.263	0.227	1.880	0.934	0.682	0.130	0.125	0.045	0.000	0.000	0.000	0.000	0.000	0.000	
8/01	Ne.	12	1.500	0.290	0.170	0.112	0.113	0.330	0.256	0.226	0.080	0.083	0.057	0.000	0.000	0.000	0.000	0.000	0 000	
8/04	54		4.000	0.000	6.000	0.000	1.500	0.500	0.500	0.125	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/04	14		0.800	0.000	0.250	0.250	0.333	0.250	0.250	0.333	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	
8/00	14	14	0.700	0.120	0.430	0.228	0.628	0.070	0.071	0.105	0.070	0.071	0.105	0.000	0.000	0.000	0.000	0.000	0 000	
8/12	44	1	5.700	2.330	6.000	3.215	1.059	0.000	0.000	0.000	0.330	0.333	0.059	0.000	0.000	0.000	0.000	0.000	0.000	
0/12	u.	ŝ	3.000	0.000	0.800	0.374	0.267	1.000	0.447	0.333	0.200	0.200	0.067	0.000	0.000	0.000	0.000	0.000	0.000	
8/14	44	10	2.700	0.550	2.600	1.046	0.972	0.700	0.367	0.262	0.100	0.100	0.037	0.000	0.000	0.000	0.000	0.000	0,000	
8/15	L.	6	2 100	0.860	0.500	0.342	0.240	0.500	0.224	0.240	1.000	1.000	0.480	0.000	0.000	0.000	0.000	0.000	0.000	
8/13	ũ.	2	1.800	1.250	2.500	2.500	1.429	0.500	0.500	0.286	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0/1/	니네	ā	1 200	0.240	0.250	0.250	0.205	0.250	0.164	0.205	0.130	0.125	0.103	0.000	0.000	0.000	0.000	0.000	0.000	
8/19	DW DW		1 000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/20		2	0 800	0.250	0.000	0.000	0.000	0.670	0.494	0.889	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
8/21	WG.	ě	2 000	0 290	0.130	0.125	0.062	0.500	0.378	0.249	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0/22		2	2 000	0.000	6.000	0.000	3.000	0.500	0.500	0.250	0.000	0.000	0.000	0.500	0.500	0.250	0.000	0.000	0.000	
0/24	WG.	12	1 700	0 340	1.620	0.931	0.955	0.310	0.175	0.182	0.230	0.231	0.136	0.000	0.000	0.000	0.000	0.000	0.000	
8/29	W.W.	13	0.000	0 540	1 200	0.583	1.386	0.200	0.200	0.231	0.200	0.200	0.231	0.000	0.000	0.000	0.000	0.000	0.000	
8/30	We	1	1 000	0.000	1.000	0.577	1.000	0.250	0.250	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
9/0 /	we	•	*.000	0.000				-												

Appendix Table 13. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987.

1/ Wd = Weekday; We = Weekend or holiday.

.

			Ef	fort	Ra	inbow Trou	at	Ar	ctic Char		Arctic Grayling			Soc	keye S	5almon	Coho Salmon			
W Date	1/ 1/	Sample Size	Mean	Std Err	Mean	Std Err	HPUE	Hean	Std Err	HPUR	Mean	Std Err	HPUE	Mean	Std I	lrr	HPUE	Mean	Std Brr	E
6/06	Ve	6	2.000	0.620	0.170	0.167	0.082	0.500	0.342	0.247	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.(
6/07	We	11	2.000	0.450	0.000	0.000	0.000	0.360	0.244	0.179	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
6/11	Wd	3	1.900	1.560	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
6/12	₩d	4	1.600	0.520	0.250	0.250	0.154	0.500	0.500	0.308	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
6/17	Wd	2	0.900	0.630	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
6/19	Wd	2	0.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.1
6/21	We	5	2.800	0.490	0.000	0.000	0.000	2.000	0.447	0.714	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.1
6/24	Wd	4	3.300	0.600	0.000	0.000	0.000	0.750	0.479	0.231	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.1
6/25	Wd	8	5.000	0.330	0.380	0.263	0.075	0.500	0.500	0.100	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
6/27	We	19	0.200	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/03	We	4	1.800	0.430	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	>00	0.000	0.000	0.000	0.
7/04	We	2	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/05	We	8	0.900	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	200	0.000	0.000	0.000	0.0
7/07	₩d	5	0.300	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/08	₩d	8	2.400	0.410	1.000	0.327	0.421	1.000	0.567	0.421	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.0
7/09	₩d	4	1.400	0.380	0.000	0.000	0.000	0.250	0.250	0.182	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/10	Wd	2	4.500	0.000	0.000	0.000	0.000	0.500	0.500	0.111	0.000	0.000	0.000	0.500	0.5	500	0.111	0.000	0.000	0.
7/11	We	12	1.900	0.350	0.000	0.000	0.000	0.330	0.142	0.171	0.000	0.000	0.000	0.080	0.0	183	0.043	0.040	0.083	0.1
7/12	We	12	1.500	0.150	0.080	0.083	0.056	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	0.
7/15	Wd	3	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/16	Wd	3	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	U.
7/18	We	2	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	U.
7/25	We	14	1.200	0.230	0.000	0.000	0.000	0.140	0.097	0.123	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/26	We	6	2.000	0.670	0.000	0.000	0.000	0.170	0.167	0.083	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
7/28	Wd	8	2.800	0.440	0.130	0.125	0.045	0.380	0.263	0.136	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.1
8/01	We	12	1.500	0.290	0.080	0.083	0.057	0.080	0.083	0.057	0.080	0.083	0.057	0.000	0.0	000	0.000	0.000	0.000	0.
8/04	Wd	. 2	4.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
8/06	Wd		0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	U.
8/07	MG	14	0.700	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
8/12	Wd	3	5.700	2.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	
8/13	Wd	5	3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	۰. ۵
8/14	Wd	10	2.700	0.550	0.000	0.000	0.000	0.300	0.213	0.112	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	<u>0</u> .
8/15	We	6	2.100	0.860	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		100	0.000	0.000	0.000	<u>,</u>
8/17	Wd	2	1.800	1.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		000	0.000	0.000	0.000	
8/19	Wd	8	1.200	0.240	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	<u>.</u>
8/20	Wd	•	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	0.
8/21	Wd	6	0.800	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	000	0.000	0.000	0.000	0.
8/22	We	8	2.000	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	ŏ.
8/24	Wd	2	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	0.1
8/29	We	13	1.700	0.340	0.150	0.154	0.091	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	0
8/30	We	5	0.900	0.540	1.000	U.44/	1.133	0.200	0.200	0.231	0.000	0.000	0.000	0.000	0.0	100	0.000	0.000	0.000	0.
9/07	We	4	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	ų.ų		0.000	0.000	0.000	v.,

Appendix Table 14. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye and coho salmon from angler interviews in the Agulowak River sport fishery, 1987.

1/ Wd = Weekday: We = Weekend or holiday.

	Wd/We	Sample	E	fort	Ra	inbow Trou	ut		rctic Char		Ar	ctic Gray	ing	So	mon	
Date	1/	Size	Mean	Std Err	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE	Mean	Std Err	CPUE
612	We	8	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
613	Wd	3	1.500	0.000	0.670	0.333	0.444	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
614	Wd	4	1.300	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
621	Wd	1	2.500	0.530	0.140	0.143	0.057	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
624	Wd	5	2.200	0.780	0.400	0.245	0.179	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
625	We	8	1.800	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.130	0.125	0.068	0.000	0.000	0.000
626	We		1.700	1.420	1.000	0.707	0.572	0.000	0.000	0.000	0.250	0.250	0.143	0.000	0.000	0.000
628	Wd	<u>o</u>	2.700	0.740	1.330	0.989	0.503	0.000	0.000	0.000	2.670	2.472	1.006	0.000	0.000	0.000
702	We		1.200	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
703	We	11	0.600	0.260	0.180	0.122	0.330	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
704	We		1.600	0.350	0.140	0.143	0.089	0.000	0.000	0.000	2.570	2.571	1.600	0.000	0.000	0.000
707	Wd		3.000	0.940	0.000	0.000	0.000	0.000	0.000	0.000	0.140	0.143	0.047	0.000	0.000	0.000
708	Wa	11	2.700	0.470	2.180	0.952	0.804	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
709	we U.	23	1.800	0.320	0.390	0.265	0.221	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	we	19	1.300	0.130	0.050	0.053	0.042	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
712	WC.	.,	1.800	0.550	0.000	0.000	0.000	0.000	0.000	0.000	0.140	0.143	0.077	0.000	0.000	0.000
714	WC.	11	1.100	0.310	0.550	0.312	0.511	0.000	0.000	0.000	0.180	0.122	0.170	0.000	0.000	0.000
715	WG.	16	1.000	0.620	0.670	0.333	0.429	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
710	we Lia	10	1.200	0.310	0.300	0.202	0.323	0.000	0.000	0.000	0.130	0.125	0.108	0.000	0.000	0.000
730	Wa.	4	4.200	0.740	10.330	2.180	2.404	0.000	0.000	0.000	2.670	0.667	0.636	0.000	0.000	0.000
731	We No	6	2.200	0.110	4.300	2.734	2.0//	0.000	0.000	0.000	3.830	1.493	1.769	0.000	0.000	0.000
802	44 44		1 300	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
803	90 90		3 100	0.450	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
804	1 4	7	6 000	0.000	8 750	2 144	1 450	0.000	0.000	0.000	0.250	0.250	0.082	0.000	0.000	0.000
805	HA .	ą	2 900	0.000	3 670	0 645	1 245	0.000	0.000	0.000	5.250	1.109	0.875	0.000	0.000	0.000
807	We la	Ŕ	2 200	0.400	3 880	1 856	1 753	0.000	0.000	0.000	1.760	0.347	0.004	0.000	0.000	0.000
808	¥4	10	1 800	0 150	2 500	1 203	1 429	0.000	0.000	0.000	3.230	1.934	1.4/1	0.500	0.500	0.226
809	84	11	3 200	0 930	5 000	2 067	1 556	0.000	0.000	0.000	2.700	1 104	1.343	0.000	0.000	0.000
810	Wd	2	3 000	1 000	6 000	0.000	2 000	0.000	0.000	0.000	2.910	1.194	0.905	0.270	0.2/3	0.085
812	Wd	6	4.300	0.670	13,170	2 613	3 038	0.000	0.000	0.000	3.670	1.000	1.000	0.000	0.000	0.000
814	We	Å	2.800	0.250	5.500	2.217	2.000	0.000	0.000	0.000	2 250	1 215	0.040	0.000	0.000	0.000
815	Wd	2	2.000	0,000	2 500	1 500	1 250	0.000	0.000	0.000	5 500	2 500	2 760	0.000	0.000	0.000
819	Wd	3	0.800	0.140	0.000	0.000	0 000	0.000	0.000	0.000	0.000	2.300	2.750	0.000	0.000	0.000
820	We	4	2.500	0.000	4.000	1.225	1.600	0.000	0 000	0.000	1 750	0.479	0.000	0.000	0.000	0.000
821	We	14	0.900	0.110	0 640	0 248	0 701	0.000	0.000	0.000	0.000	0.479	0.700	0.000	0.000	0.000
826	Wd	15	1.600	0.160	0.130	0.091	0.083	0.000	0 000	0.000	0.000	0.000	0.125	0.140	0.097	0.130
827	We	-4	0.600	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.123	0.070	0.007	0.042
828	We	6	1.300	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0 000	0.000	0.500	0.000
829	Wd	2	3.300	0.250	4.000	0.000	1.231	0.000	0.000	0.000	0 000	0.000	0.000	1 000	1 000	0.400
901	Wd	3	1.300	0.620	0.670	0.667	0.533	0.000	0.000	0.000	0.000	0.000	0.000	0 000	1.000	0.300
902	Wd	16	2.800	0.400	2.060	0.528	0.731	0.000	0.000	0.000	1,130	0 315	0.399	0 130	0.000	0.000
903	We	10	2.700	0.150	2.700	1.446	1.000	0.000	0.000	0.000	0.200	0.200	0.074	0.130	0 221	0.044
904	We	7	1.700	0.420	0.710	0.474	0.414	0.000	0.000	0.000	0.570	0 429	0 331	0.400	0 000	0.140
905	Ve	10	0.800	0.110	0.100	0.100	0.121	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000
906	Wd	2	2.000	0.000	1.000	1.000	0.500	0.000	0.000	0.000	0.500	0.500	0.250	0 000	0.000	0.000
											0.000	0.500	0.230	0.000	0.000	0.000

Appendix Table 15. Summary of daily angler effort (angler-hours) and catch rates (CPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988.

1/ Wd = Weekday; We = Weekend or holiday.

57

			Ef	Effort Rainbow Trout					ctic Char		Arc	tic Grayli	ng	Sockeye Salmon			
Date	Wd/We 1/	Sample Size	Mean	Std Err	Mean	Std Err	HPUE	Hean	Std Err	HPUE	Mean	Std Err	HPUE	Mean	Std Err	HPUE	
 617		R	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
613	84	3	1.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
614	84	Ă	1.300	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
621	Wd	ì	2.500	0.530	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
624	W.d	Ś	2.200	0.780	0.200	0.200	0.090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
625	Ve	8	1.800	0.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
626		Ā	1.700	1.420	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
628	પ્રત	6	2.700	0.740	0.330	0.333	0.126	0.000	0.000	0.000	0.170	0.16/	0.063	0.000	0.000	0.000	
202		ī	1.200	0.290	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
703	Ve	11	0.600	0.260	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
704	We	7	1.600	0.350	0.140	0.143	0.089	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
707	ud	7	3.000	0.940	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
708	Wd	11	2.700	0.470	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
709	Ve	23	1.800	0.320	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
710	We	19	1.300	0.130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
712	Wd	7	1.800	0.550	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
714	Wd	11	1.100	0.310	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
715	Wd	3	1.600	0.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
716	We	16	1.200	0.310	0.250	0.171	0.215	0.000	0.000	0.000	0.130	0.125	0.100	0.000	0.000	0.000	
718	Wd	9	4.200	0.740	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
730	We	6	2.200	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
731	We	6	0.800	0.120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
802	Wd	4	1.300	0.430	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
803	Wd	4	3.100	0.060	0.250	0.250	0.082	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
804	Wd	4	6.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
805	Wd	9	2.900	0.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	
807	Ve	8	2.200	0.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
808	₩d	10	1.800	0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	
809	Wd	11	3.200	0.930	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
810	Wd	2	3.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	
812	Wd	6	4.300	0.670	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	
814	We	4	2.800	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	
815	Wd	2	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	
819	Wd	3	0.800	0.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
820	We	4	2.500	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	
821	We	14	0.900	0.110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
826	Wd	15	1.600	0.160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	
827	We	4	0.600	0.040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	
828	We	6	1.300	0.170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	
829	Wd	2	3.300	0.250	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
901	Wd	3	1.300	0.620	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
902	Wd	16	2.800	0.400	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.400	0.221	0.148	
903	We	10	2.700	0.150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
904	We	7	1.700	0.420	0.290	0.286	0.166	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
905	We	10	0.800	0.110	0.100	0.100	0.121	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
	11.4	2	2.000	0.000	0.000	0.000	0.000	Q. 000	U.UUQ	0.000	0.000	0.000	v. vvJ	0.000	0.000		

Appendix Table 16. Summary of daily angler effort (angler-hours) and harvest rates (HPUE, fish per angler-hour) for rainbow trout, Arctic char, Arctic grayling, and sockeye salmon from angler interviews in the Agulowak River sport fishery, 1988.

1/ Wd = Weekday; We = Weekend or holiday.

58 0

. .