# EFFORT AND CATCH STATISTICS FOR THE CHINOOK SALMON (Oncorhynchus tshawytscha) SPORT FISHERY IN THE LOWER NUSHAGAK RIVER, 1986 

By: R. Eric Minard

STATE OF ALASKA
Steve Cowper, Governor
ALASKA DEPARTMENT OF FISH AND GAME
Don W. Collinsworth, Commissioner
DIVISION OF SPORT FISH
Norval Netsch, Director

# EFFORT AND CATCH STATISTICS FOR THE CHINOOK SALMON (Oncorhynchus tshawytscha) SPORT FISHERY IN THE LOWER NUSHAGAK RIVER, 1986 

By R. Eric Minard

## October 1987

ALASKA DEPARTMENT OF FISH AND GAME<br>Division of Sport Fish Juneau, Alaska 99802

## TABLE OF CONTENTS

Page
LIST OF TABLES ..... ii
LIST OF FIGURES ..... iii
LIST OF APPENDICES ..... iv
ABSTRACT. ..... 1
INTRODUCTION. ..... 1
METHODS ..... 3
Study Design ..... 3
Data Collection ..... 3
Data Analyses ..... 4
RESULTS ..... 7
Effort ..... 7
Catch Rates ..... 9
Catch and Harvest. ..... 9
Size, Sex, and Age Sampling. ..... 9
DISCUSSION. ..... 9
LITERATURE CITED ..... 17
APPENDIX. ..... 19

```
LIST OF TABLES
```TablePage
1. Estimated effort (angler-hours) by period for the lower Nushagak River sport fishery, 1986. . . . . . . . . . ..... 8
2. Catch per angler-hour for total catch (number landed) andharvest by species and time period for the lower NushagakRiver sport fishery, 1986 . . . . . . . . . . . . . . . . . 10
3. Estimated total catch (number landed) and harvest ofchinook salmon, chum salmon, and northern pike for thelower Nushagak River sport fishery, 1986. . . . . . . . . .11
4. Comparative catch and harvest rates (fish per angler-hour)of chinook salmon by guided and unguided anglers, lowerNushagak River, 1986. . . . . . . . . . . . . . . . . . . . 12
5. Sex, age, length (mm), and weight (kg) compositions forchinook salmon sampled from the lower Nushagak River sportharvest, 1986 . . . . . . . . . . . . . . . . . . . . . . . 13
6. Harvest and escapement of chinook salmon returns to the Nushagak/Mulchatna River drainage, 1977-1986 ..... 14

\section*{LIST OF FIGURES}
Figure Page
1. Lower Nushagak River, Bristol Bay, Alaska ..... 22. Sport fishing effort and sport harvest of chinook salmonfor the Nushagak/Mulchatna River drainage, 1977-1986.Data for 1977-1985 are from ADF\&G statewide harvestsurvey. Data for 1986 are from creel survey. . . . . . . . 15
3. Total run of Nushagak River chinook salmon by major fishing components, 1986. . . . . . . . . . . . . . . . . . ..... 16

\section*{LIST OF APPENDICES}
Appendix Page
Table1. Angler counts for the lower Nushagak River sport
fishery, 1987 ..... 20
2. Summary of daily harvest (HPUE) and catch rates (CPUE) for chinook salmon from angler interviews in the lower Nushagak River sport fishery, 1986. . . . . . . . . . . . .21

\begin{abstract}
A roving creel survey was conducted on the lower Nushagak River from 16 June through 14 July to estimate sport fishing effort and harvest of chinook salmon (Oncorhynchus tshawytscha Walbaum). Over 120 anglers were interviewed during the 29 -day sample period to estimate angling effort in hours and catch and harvest rate in fish per hour. An estimated 9,410 angler hours were expended on the lower Nushagak River which resulted in 2,505 chinook salmon landed of which 1,780 ( 71 percent) were harvested. Seasonal catch rates between guided ( 0.31 fish per hour) and unguided anglers ( 0.10 fish per hour) were significantly different ( \(p=0.05\) ). Age 1.3 chinook salmon dominated the harvest ( 71 percent). Mean length and weight of the harvest was 778 millimeters and 8.4 kilograms, respectively. At present, levels of sport fishing effort and harvest constitute the smallest utilization of all user groups (less than 2 percent).

KEY WORDS: chinook salmon, Oncorhynchus tshawylscha, sport harvest, sport effort, creel survey, Nushagak River
\end{abstract}

\section*{INTRODUCTION}

The Nushagak River, located on the western side of Bristol Bay (Figure 1), is the largest producer of all Pacific salmon (Oncorhynchus spp.) species except sockeye salmon ( 0 . nerka Walbaum) in Bristol Bay. A sport fishery that targets primarily on chinook salmon ( 0 . tshawytscha Walbaum) occurs mainly in the lower reach of the river between Black Point and the village of Portage Creek. This stretch of the river is 19.3 km long, about 300 m wide, moderately silty, and influenced by tides. Access to the area is primarily by boat from Dillingham or by float-equipped aircraft. Anglers may also use wheel-equipped aircraft to land on gravel bars or at a public airstrip servicing the village of Portage Creek and then walk to the river.

During the period 1977-1986, the Nushagak River chinook salmon run averaged 238,000 fish (Nelson 1987). Although the fish are not exceptionally large (average weight of commercially-caught fish is approximately 9.5 kg ), discovery of this abundant resource and easy access have resulted in the rapid growth of the lower Nushagak River sport fishery. From 1982 through 1985, a voluntary questionnaire was distributed to the guides operating on the Nushagak River. These results indicate a growing interest in the lower Nushagak River chinook salmon sport fishery (Minard and Morstad 1985; and Brandt and Minard 1985).

In 1986, the Sport Fish Division of the Alaska Department of Fish and Game (ADF\&G) began a creel survey of this sport fishery. Results from the survey will be used to increase our understanding of the chinook salmon sport fishery developing on the lower Nushagak River and to evaluate current management strategies and policies. The objective of this report is to present baseline statistics for the lower Nushagak River sport fishery in 1986, including estimates of: fishing effort, catch (fish landed), harvest (fish retained), and age, sex, size compositions. These data, in conjunction with other information from the commercial and subsistence fisheries and spawning escapement (Nelson 1987), provide


Figure 1. Lower Nushagak River, Bristol Bay, Alaska.
estimates for the total return of chinook salmon to the Nushagak River. Historical brood-year relationships and forecasts of return have been estimated by Minard and Meacham (1985).

\section*{METHODS}

Anglers were permitted a daily harvest of five chinook salmon, of which two could be greater than 71 cm (28 inches) in 1986 (ADF\&G 1986). No further regulatory restrictions were imposed during 1986.

Study Design
The study area consisted of the mainstem of the Nushagak River between Black Point and the village of Portage Creek (Figure 1). A roving creel survey (Neuhold and Lu 1957) using a stratified, random sampling design was used to count anglers, conduct angler interviews, and sample the sport harvest. Angler counts were used to estimate fishing effort in units of angler-hours. Angler interviews provided estimates of catch rates (fish per angler-hour).

Guided fishing accounts for the majority of the effort on the Nushagak River and typically occurs between the hours of 1000 to 1800. For the creel survey, the fishing day was considered 14 hours long (0700-2100). Each day was divided into four strata: (A) 0700-0959 hours; (B) 10001359 hours; (C) 1400-1759 hours; and (D) 1800-2100 hours.

Chinook salmon first enter the Nushagak River during mid- to late June and the majority of the run typically migrates through the lower section of river during a 2 week period. The run was temporally stratified into peak and non-peak periods for purposes of estimation. Non-peak periods were subjectively defined when chinook salmon were less abundant and anglereffort sparse. Peak periods were subjectively defined when the chinook salmon were abundant in the river. Angler-effort and harvest statistics were compiled separately for peak and non-peak periods.

\section*{Data Collection}

Sampling effort was designed to fully utilize one creel survey technician working 37.5 hours each week. Approximately two-thirds of the sampling effort was allocated to daily strata \(B\) and \(C\) and the rest to strata \(A\) and D. Daily strata were randomly selected without replacement subject to the constraint that a maximum of two strata (A, B, C, or D) could be designated on a single day.

Each survey trip started at the upstream boundary of the survey area. A coin was tossed to determine if angler counts or angler interviews were to be conducted first. For an angler count, the technician drove a skiff through the fishery area at a near constant speed and counted all anglers actively fishing. The angler count was completed within 40 to 60 minutes of the start and was considered an instantaneous count (Neuhold and Lu 1957). It was not possible to differentiate between guided and non-guided anglers during the count.

Two hours were allocated for conducting angler interviews during strata \(A\) and \(D\) and 3 hours were allocated for angler interviews during strata \(B\) and \(C\). All interviews were of individual anglers and were not party interviews. The creel survey technician attempted to contact about \(25 \%\) of the available anglers so that the number of anglers interviewed was proportional to the angler effort during the sampled time (Neuhold and Lu 1957; DiConstanzo 1956). Anglers were randomly selected throughout the fishing area. For each angler contacted, the creel survey technician recorded the number of hours fished, the number of fish in the angler's possession by species, the number of fish released by species, and whether the angler was guided or not guided.

Completed-trip information was collected from voluntary report forms given to interviewed anglers. The voluntary report form requested the time fishing started and ended, the catch by species, and the number of fish retained. Anglers were asked to mail the postage paid forms to the Dillingham ADF\&G office.

Harvested chinook salmon encountered during the creel survey were measured for mid-eye to fork-of-tail length to the nearest millimeter and the sex recorded. Three scales were removed from the preferred area and mounted on a gummed card.

Data Analyses
The mean number of anglers per count was calculated for each peak and non-peak period by:
\[
\bar{X}=(1 / N) \sum_{i=1}^{4} N_{i} \bar{x}_{i}
\]
where;
\[
\begin{aligned}
\mathrm{x}_{\mathrm{x}} & =\text { the mean number of anglers per count for a period, } \\
\overline{\mathrm{x}}_{\mathrm{i}} & =\text { the mean number of anglers per count for stratum } i, \\
\mathrm{~N} & =\text { the total number of hours in a period, and } \\
\mathrm{N}_{i} & =\text { the total number of hours in stratum } i .
\end{aligned}
\]

The variance of the mean number of anglers per count was calculated as follows (Jessen 1978):
\[
\hat{V}(\overline{\mathrm{X}})=\left(1 / \mathrm{N}^{2}\right) \sum_{i=1}^{4} N_{i}^{2}\left[s_{i}^{2} / n_{i}\right]
\]

1 The left side of the fish approximately two rows above the lateral line and on the diagonal row downward from the posterior insertion of the dorsal fin (Clutter and Whitesel 1956).
where;
\(N\) and \(N_{i}\) are defined as above, and
\(n_{i}=\) the total number of angler counts in stratum \(i\), and
\(s_{i}{ }^{2}=\) the sample variance of \(\bar{x}_{i}\) for stratum \(i\).

The total number of angler-hours \(\left(\mathrm{E}_{\mathrm{T}}\right)\) in each period was estimated as follows:
\[
\hat{E}_{T}=N \bar{X}=\sum_{i=1}^{4} N_{i} \bar{x}_{i}
\]

The variance for the estimate of total angler-hours was calculated as follows:
\[
\hat{V}\left(E_{T}\right)=N^{2} \hat{V}(\bar{X})
\]

The total number of angler-hours for the season was estimated by summing the estimates of total angler-hours for the peak and non-peak periods. Because these are independent estimates, the total variance is the sum of the individual variances.

Catch per unit effort (CPUE) for species i during a period (peak or non-peak) was estimated by:
\[
\text { CPUE }_{i}=\sum_{j=1}^{m} c_{i j} / \sum_{j=1}^{m} f_{j}
\]
where:
\[
\begin{aligned}
m= & \text { the number of anglers interviewed during the period, } \\
c_{i j}= & \text { the catch (either number harvested or total number caught) of } \\
& \text { species } i \text { by angler } j \text {, and } \\
f_{j}= & \text { the effort (number of hours) expended by angler } j .
\end{aligned}
\]

The variance of mean effort per angler was estimated using a two-stage sample design with days representing the first-stage sample units and anglers the second-stage sample units (Von Geldern and Tomlinson 1973). On a given sample day, the number of second-stage units available was unknown. The variance of mean effort was estimated as follows (Sukhatme et al. 1984):
\[
\left.V(\overline{\mathrm{~F}})=[1-(\mathrm{d} / \mathrm{D})] \mathrm{s}_{\mathrm{B}}^{2} / \mathrm{d}+\underset{\mathrm{k}=1}{\mathrm{D}} \mathrm{~s}_{\mathrm{Wk}}^{2} / \mathrm{m}\right) / \mathrm{dD},
\]
where;
\(d=\) the number of days sampled during the period,
\(D=\) the number of days in the period,
\[
\begin{aligned}
s_{W k}^{2} & =\text { the sample variance of effort for anglers interviewed during day } \\
& k, \text { and } \\
s_{B}^{2} & =\text { the between-day variance of angler effort. }
\end{aligned}
\]

The between-day variance, \(s_{B}^{2}\), was estimated as follows:
\[
s_{B}^{2}=\left[\sum_{k=1}^{D}\left(\bar{f}_{k}-\bar{f}\right)^{2}\right] /(\mathrm{d}-1),
\]
where \(\overline{\mathrm{f}}_{\mathrm{k}}=\) the mean effort by anglers interviewed during day \(k\).

The mean harvest and variances for or catch of a species were estimated identically to effort by substituting the corresponding harvest or catch quantities for effort (f).

The variance of CPUE was calculated using the approximation for the variance of the quotient of two random variables (Jessen 1978):
\[
\hat{V}\left(\operatorname{CPUE}_{i}\right)=\left(\bar{c}_{i} / \bar{f}_{i}\right)^{2}\left(s_{c}^{2} / \bar{c}^{2}+s_{f}^{2} / \bar{f}^{2}-2 r s_{c} s_{f} / \overline{c f}\right)
\]
where;
\[
\left.\begin{array}{rl}
\bar{c}_{i} & =\begin{array}{l}
\text { the mean catch of species } i \\
\\
\text { period, }
\end{array} \\
\bar{f}_{i}= & \text { the mean number of hours fished by anglers interviewed during a } \\
\text { period, }
\end{array}\right] \begin{aligned}
& s_{c}^{2}=\text { the two-stage variance estimate for of } \bar{c}_{i}, \\
& s_{f}^{2}=\text { the two-stage variance estimate for } \bar{e}_{i}, \text { and } \\
& r
\end{aligned}
\]

The catch (or harvest) of species \(i\) was estimated by:
\[
C_{i}=E_{T} C P U E_{i}
\]

The variance of the catch was estimated using Goodman's (1960) formula for the variance of the product of two independent random variables, which is:
\[
V\left(\hat{C}_{i}\right)=\left[\hat{E}_{T}^{2} V\left(\operatorname{CPUE}_{i}\right)\right]+\left[\operatorname{CPUE}_{i}^{2} V\left(\hat{E}_{T}\right)\right]-\left[V\left(\hat{E}_{T}\right) V\left(\operatorname{CPUE}_{i}\right)\right]
\]

Total catch and its variance were estimated for the peak and non-peak periods and summed to estimate the total season catch. The same procedures were followed in estimating total harvest of each species.

The assumptions necessary for these analyses were:
1. Incomplete-trip angler interviews provided an unbiased estimate of completed-trip angler CPUE.
2. Interviewed anglers were representative of the total angler population and anglers were interviewed in proportion to their abundance.
3. No significant fishing effort occurred between 2100 hours and 0700 hours.
4. The catch and effort are normally distributed random variables.
5. Catch rate and duration of fishing trip are independent (DiConstanzo 1956).

The age composition of chinook salmon harvested by the sport fishery was calculated from all legible scales collected during the creel survey. The proportional age composition of the chinook salmon harvest was estimated. Letting \(p_{h}\) equal the estimated proportion of age group \(h\), the variance of \(p_{h}\) was estimated using the normal approximation to the binomial (Schaeffer et al. 1979):
\[
\left.V\left(\hat{p}_{h}\right)=\hat{p}_{h}\left(1-\hat{p}_{h}\right) / n_{T}-1\right)
\]
where \(n_{T}\) is the number of chinook salmon scales read.

Mean length at age by sex and its variance were estimated using standard normal procedures. Mean length (mm) and weight (kg) were calculated by age group for all chinook salmon sampled.

\section*{RESULTS}

The creel survey on the lower Nushagak River was conducted during the period 16 June to 14 July. The peak period was defined from 23 June to 6 July (period two). Two non-peak periods were identified, one from 16 to 22 June (period one) and one from 7 to 14 July (period three).

\section*{Effort}

Mean angler counts were 9.1, 39.3, and 6.8 for periods one, two, and three, respectively (Appendix Table 1 and Table 1). Total effort was

Table 1. Estimated effort (angler-hours) by period for the lower Nushagak river sport fishery, 1986.

estimated to be 9,410 angler-hours. Most of the fishing effort (7,754 angler-hours or \(82 \%\) ) occurred during period two. Interviewed anglers who had completed their fishing trip \((N=33)\) averaged 6.4 hours per trip. Variability in this estimate is high (standard error \(=2.3\) ).

Catch Rate
Catch rates for chinook salmon varied substantially over the course of the fishery (Appendix Table 2 and Table 2). Peak daily harvest rate of chinook salmon was 0.51 fish per hour on 24 June and peak catch rate was 0.54 chinook salmon per hour on 25 June (Appendix Table 2). Although catch rates showed substantial variation, chinook salmon harvest rates were similar for all three periods (Table 2). The only other species with significant harvest rates were chum salmon ( \(O\). keta) and northern pike (Esox Zucius).

Catch and Harvest
An estimated 2,505 chinook salmon were caught (landed) of which 1,780 ( \(71 \%\) ) were harvested (Table 3). The largest catch \((2,184)\) and harvest \((1,478)\) of chinook salmon occurred during period two (23 June - 7 July). Most of the catch and release fishing occurred during the peak period when chinook salmon were most abundant. The estimated catch and harvest of chum salmon were 450 and 354 , respectively.

Although guided and unguided effort and catch could not be estimated separately, estimates of catch and harvest rates were possible (Table 4). Daily catch rates of guided and unguided anglers were compared with a sign test (Conover 1980). Guided anglers caught fish at a significantly greater rate ( \(p=0.05\) ) than did unguided anglers. Harvest rates, however, were not significantly different.

Size, Sex, and Age Sampling
Fifty-six percent of the sampled chinook salmon ( \(\mathrm{n}=41\) ) were males (Table 5). The sample was dominated by age 1.3 ( \(71 \%\) ) and age 1.4 ( \(15 \%\) ) fish. Lengths and weight by age and sex are also presented in Table 5.

\section*{DISCUSSION}

Since 1982, the annual sport harvest of Nushagak River chinook salmon appears to have stabilized at approximately 2,000 fish (Table 6). This relatively stable harvest followed a period of increase which started in 1977 and continued through 1982. The trends in harvest are similar to trends in sport fishing effort (Figure 2). Rapid increases in sport fishing effort and harvest alarmed many local residents and resource managers who voiced concern about the potential impact of this relatively new fishery. Results of this and past years' studies indicate that at present sport fishing effort and harvest levels, the impact of the sport fishery on the lower Nushagak River is minor. Sport fishermen in 1986 harvested less than \(2 \%\) of the total run and constitute the smallest utilization of all user groups (Figure 3). At current sport fishing effort and harvest levels, present management strategies, regulations, and bag limits appear satisfactory from a biological perspective.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multirow[b]{3}{*}{\begin{tabular}{l}
Period \\
Date
\end{tabular}} & \multicolumn{2}{|c|}{Catch} & \multicolumn{2}{|c|}{Harvest} \\
\hline & & & & & \\
\hline & & Catch/Hr & Std Err & Harvest/Hr & Std Err \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Chinook \\
Salmon
\end{tabular}} & Period 1 & & & & \\
\hline & 6/16-6/22 & 0.1905 & 0.0127 & 0.1693 & 0.0118 \\
\hline & \multicolumn{5}{|l|}{Period 2} \\
\hline & 6/23-7/6 & 0.2817 & 0.0036 & 0.1906 & 0.00295 \\
\hline & \multicolumn{5}{|l|}{Period 3} \\
\hline & 7/7-7/14 & 0.1948 & 0.0442 & 0.1984 & 0.0494 \\
\hline Chum & Period 1 & & & & \\
\hline \multirow[t]{5}{*}{Salmon} & 6/16-6/22 & 0.0000 & 0.0006 & 0.0000 & 0.0000 \\
\hline & \multicolumn{5}{|l|}{Period 2} \\
\hline & 6/23-7/6 & 0.0580 & 0.0016 & 0.0456 & 0.0013 \\
\hline & \multicolumn{5}{|l|}{Period 3} \\
\hline & 7/7-7/14 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline Northern & Period 1 & 0.0212 & 0.0037 & 0.0212 & 0.0037 \\
\hline \multirow[t]{5}{*}{Pike} & \multicolumn{3}{|l|}{6/16-6/22} & & \\
\hline & \multicolumn{5}{|l|}{Period 2} \\
\hline & 6/23-7/6 & 0.0041 & 0.0002 & 0.0041 & 0.0002 \\
\hline & \multicolumn{5}{|l|}{Period 3} \\
\hline & 7/7-7/14 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}

Table 3. Estimated total catch (number landed) and harvest of chinook salmon, chum salmon, and northern pike for the lower Nushagak River sport fishery, 1986.


Table 4. Comparative catch and harvest rates (fish per angler-hour) of chinook salmon by guided and unguided anglers, lower Nushagak River, 1986.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Period} & \multicolumn{2}{|l|}{No. Interviews} & \multicolumn{2}{|r|}{Catch} & \multicolumn{2}{|r|}{Harvest} \\
\hline & & ------ & & & & \\
\hline Date & Guided & Unguided & Guided & Unguided & Guided & Unguided \\
\hline \multicolumn{7}{|l|}{Period 1} \\
\hline 6/16-6/22 & 23 & 7 & 0.1747 & 0.2793 & 0.1747 & 0.1397 \\
\hline \multicolumn{7}{|l|}{Period 2} \\
\hline 6/23-7/6 & 71 & 18 & 0.3439 & 0.0797 & 0.2178 & 0.0797 \\
\hline \multicolumn{7}{|l|}{Period 3} \\
\hline 7/7-7/14 & 7 & 0 & 0.2000 & 1 & 0.2000 & 1 \\
\hline Total & 91 & 25 & 0.3073 & \(0.1046^{2}\) & 0.2093 & 0.0872 \\
\hline
\end{tabular}

1
Insufficient data

2
Seasonal catch rates between guided and unguided anglers were significantly different ( \(P \leq 0.05\) )

Table 5. Sex, age, length (mm), and weight ( kg ) compositions for chinook salmon sampled from the lower Nushagak River sport harvest, 1986.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Age Class} \\
\hline & 1.2 & 1.3 & 2.2 & 1.4 & 1.5 & Total \\
\hline MALE & & 738 & 87 & 87 & 87 & 999 \\
\hline Percent & & 41.5\% & 4.9\% & 4.9\% & 4.9\% & 56.1\% \\
\hline Av Length & & 726 & 480 & 870 & 940 & 768 \\
\hline Std Error & & 20.1 & 0.0 & 0.0 & 0.0 & 18.6 \\
\hline Sample Size & & 17 & 2 & 2 & 2 & 23 \\
\hline Av Weight & & 6.9 & & 11.0 & 14.0 & 8.7 \\
\hline Std Error & & 0.6 & & 0 & 0 & 0.6 \\
\hline Sample Size & & 17 & & 2 & 2 & 21 \\
\hline FEMALE & 87 & 521 & & 174 & & 781 \\
\hline Percent & 4.9\% & 29.3\% & & 9.8\% & & 43.9\% \\
\hline Av Length & 560 & 682 & & 885 & & 791 \\
\hline Std Error & 0.0 & 15.9 & & 37.5 & & 18.7 \\
\hline Sample Size & 2 & 12 & & 4 & & 18 \\
\hline Av Weight & 3.0 & 5.2 & & 11.5 & & 8.1 \\
\hline Std Error & 0 & 0.3 & & 1.2 & & 0.6 \\
\hline Sample Size & 2 & 12 & & 4 & & 18 \\
\hline BOTH SEXES & 87 & 1,259 & 87 & 260 & 87 & 1,780 \\
\hline Percent & 4.9\% & 70.7\% & 4.9\% & 14.6\% & 4.9\% & 100.0\% \\
\hline Av Length & 560 & 708 & 480 & 880 & 940 & 778 \\
\hline Std Error & 0.0 & 14.2 & 0.0 & 25.2 & 0.0 & 13.3 \\
\hline Sample Size & 2 & 29 & 2 & 6 & 2 & 41 \\
\hline Av Weight & 3.0 & 6.3 & & 11.3 & 14.0 & 8.4 \\
\hline Std Error & 0 & 0.4 & & 0.8 & 0.0 & 0.4 \\
\hline Sample Size & 2 & 29 & & 6 & 2 & 39 \\
\hline
\end{tabular}

Table 6. Harvest and escapement of chinook salmon returns to the Nushagak/ Mulchatna River drainage, 1977-1986.

\section*{Harvest}




Figure 2. Sport fishing effort and sport harvest of chinook salmon for the Nushagak/Mulchatna River drainage, 1977-1986. Data for 1977-1985 are from ADF\&G statewide harvest surveys (Mills 1985). Data for 1986 are from creel survey.

\section*{NUSHAGAK RIVER CHINOOK SALMON, 1986}

\section*{COMMERICAL 57.5\%}

SUBSISTENCE 11.3\%

\section*{ESCAPEMENT 29.5\%}

Figure 3. Total run of Nushagak River chinook salmon by major fishing components, 1986.

\section*{LITERATURE CITED}

Alaska Department of Fish and Game. 1986. 1986 Alaska sport fishing regulations summary. Alaska Department of Fish and Game, Juneau, Alaska. 31 pp .

Brandt, J. and R. E. Minard 1985. Nushagak River chinook salmon (O. tshawytscha) sport fish monitoring program, 1985. Bristol Bay Data Report 85-16. Alaska Department of Fish and Game. Dec., 1985. 17 pp .

Clutter, R. I. and L. E. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Bull. Int. Pac. Salmon Fish. Comm., No. 9, 159 pp.

Conover, W. J. 1980. Practical nonparametric statistics. John Wiley and Sons, New York. 493 pp.

DiConstanzo, C. J. 1956. Creel census techniques and harvest of fishes in Clear Lake, Iowa. Ph.D. dissertation, Iowa State College, Ames, Iowa. 130 pp .

Goodman, L. A. 1960. On the exact variance of products. J. Am. Stat. Ass. 66:708-713.

Jessen, R. J. 1978. Statistical survey techniques. John Wiley and Sons, New York. 520 pp.

Mills, M. J. 1985. Alaska statewide sport fish harvest studies (1984). Alaska Department of Fish and Game. Federal Aid in Fish Restoration Annual Performance Report, 1982-1983, Project F-9-17, 24 (SW-I-A).

Minard, R. E. and C. P. Meacham. 1985. Forecasting Nushagak District chinook salmon (Oncorhynchus tshawytscha) returns using spawner recruit and sibling return models. Bristol Bay Data Report No. 85-1. Alaska Department of Fish and Game. 15 pp.

Minard, R. E. and S. P. Morstad, 1985. Nushagak River chinook salmon (O. tshowytscha) sport fish monitoring program, 1982 and 1984. Bristol Bay Data Report No. 85-7. Alaska Department of Fish and Game. April 1985. 15 pp.

Nelson, M. L. 1987. History and management of the Nushagak chinook salmon fishery. Bristol Bay Data Report No. 87-1. Alaska Department of Fish and Game. 137 pp .

Neuhold, J. M. and K. H. Lu. 1957. Creel census method. Utah State Department Fish Game Publ. 8. 36 pp.

Schaeffer, R. L., W. Mendenhall, and L. Ott. 1979. Elementary survey sampling. Duxbury Press, North Scituate, Mass. 278 pp.

Sukhatme, P. U., B. V. Sukhatme, S. Sukhatme, and C. Asok. 1984. Sampling theory of surveys with applications. Iowa State University Press, Ames Iowa. 526 pp .

Von Geldern, C. E. and P. K. Tomlinson. 1973. On the analysis of angler catch rate data from warmwater reservoirs. California Fish and Game. 59(4):281-292.

APPENDIX


Appendix Table 2. Summary of daily harvest (HPUE) and catch (CPUE) rates for chinook salmon from angler interviews in the lower Nushagak River sport fishery, 1986.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Date} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\text { WD } /^{1}
\]}} & \multicolumn{2}{|r|}{Effort} & \multicolumn{3}{|c|}{Harvest} & \multicolumn{3}{|c|}{Catch} \\
\hline & & & & & & & & & & \\
\hline & WE & N & Mean & Std Err & Mean & Std Err & HPUE & Mean & Std Err & crue \\
\hline 616 & Wd & 2 & 0.500 & 0.00000 & 0.000 & 0.00000 & 0.000 & 0.000 & 0.00000 & 0.000 \\
\hline 619 & Wd & 5 & 4.300 & 1.33791 & 0.600 & 0.24495 & 0.140 & 0.600 & 0.24495 & 0.140 \\
\hline 520 & Wd & 7 & 1.607 & 0.23053 & 0.143 & 0.14286 & 0.089 & 0.286 & 0.18443 & 0.178 \\
\hline 621 & We & 6 & 2.248 & 1.22191 & 0.667 & 0.33333 & 0.297 & 0.667 & 0.33333 & 0.297 \\
\hline 623 & Wd & 4 & 1.063 & 0.35904 & 0.000 & 0.00000 & 0.000 & 0.000 & 0.00000 & 0.000 \\
\hline 624 & Wd & 5 & 1.182 & 0.51864 & 0.600 & 0.40000 & 0.508 & 0.600 & 0.40000 & 0.508 \\
\hline 625 & wd & 8 & 4.375 & 0.41993 & 1.750 & 0.36596 & 0.400 & 2.375 & 0.56497 & 0.543 \\
\hline 626 & Wd & 10 & 4.475 & 0.79096 & 1.000 & 0.36515 & 0.223 & 1.300 & 0.49554 & 0.291 \\
\hline 627 & Wd & 18 & 2.349 & 0.54895 & 0.278 & 0.10863 & 0.118 & 0.778 & 0.34825 & 0.331 \\
\hline 628 & We & 13 & 3.250 & 0.68172 & 0.385 & 0.24122 & 0.118 & 0.462 & 0.24325 & 0.142 \\
\hline 629 & We & 8 & 1.531 & 0.41306 & 0.375 & 0.18298 & 0.245 & 0.625 & 0.26305 & 0.408 \\
\hline 630 & Wd & 8 & 1.906 & 0.26700 & 0.375 & 0.26305 & 0.197 & 0.500 & 0.32733 & 0.262 \\
\hline 701 & Wd & 3 & 0.557 & 0.24127 & 0.000 & 0.00000 & 0.000 & 0.000 & 0.00000 & 0.000 \\
\hline 702 & Wd & 4 & 1.500 & 0.35355 & 0.000 & 0.00000 & 0.000 & 0.000 & 0.00000 & 0.000 \\
\hline 704 & We & 6 & 2.083 & 0.37454 & 0.167 & 0.16667 & 0.080 & 0.167 & 0.16667 & 0.080 \\
\hline 705 & We & 8 & 2.406 & 0.67800 & 0.250 & 0.25000 & 0.104 & 0.375 & 0.26305 & 0.156 \\
\hline 710 & wd & 4 & 1.270 & 0.46141 & 0.250 & 0.25000 & 0.197 & 0.250 & 0.25000 & 0.197 \\
\hline 711 & Wd & 2 & 1.000 & 0.00000 & 0.500 & 0.50000 & 0.500 & 0.500 & 0.50000 & 0.500 \\
\hline 714 & wd & 2 & 1.500 & 0.50000 & 0.000 & 0.00000 & 0.000 & 0.000 & 0.00000 & 0.000 \\
\hline
\end{tabular}

1
WD \(=\) Monday through Friday
WE \(=\) Saturday through Sunday```

