AYK Region
Yukon Salmon Escapement
Report No, 29

Historic Data Expansion of Delta River Fall Chum Salmon Escapements and 1985 Population Estimates Based Upon Replicate Aerial and Ground Surveys

by

Louis H. Barton

Alaska Department of Fish and Game Division of Commercial Fisheries Fairbanks

List of Tables. i
List of Figures. ii
List of Appendix Tables. iii
Abstract. iv
Introduction. 1
Description of Study Area. 1
Methods. 5
Results and Discussion. 9
Population Estimates 9
Age, Sex, and Size. 16
Historic Data Expansion. 16
Summary. 31
Conclusions. 32
Recommendations. 32
Literature Cited 32

LIST OF TABLES

Page
Table 1. Fall chum salmon escapement survey counts in the Delta River, 1985. 13
Table 2. Estimated number of fall chum salmon entering the Delta River by survey date in 1985. 15
Table 3. Expansion factors for Delta River fall chum salmon escapements based upon the relationship of aerial and ground survey counts to population estimates made in 1975, 1976, 1977, and 1985. 26
Table 4. Expanded peak survey escapement estimates of fall chum salmon to total population estimates based upon the relationship of aerial and ground survey counts to population estimates made in 1975, 1976, 1977, and 1985. 28
Table 5. Population estimates of annual fall chum salmon escapements to the Delta River, 1972-85. 29
Page
Figure 1. The Delta River drainage 2
Figure 2. Deita River fall chum salmon spawning area October 1985 6
Figure 3. Delta River fall chum salmon spawning area October 30, 1984 and November 1977 7
Figure 4. Delta River fall chum salmon spawning area November 7, 1975 and November 1, 1974. 8
Figure 5. Average stream residence time for Delta River fall chum salmon based upon pooled data from 1973 and 1974. 10
Figure 6. Counts of live fall chum salmon by spawning channel in the Delta River in 1985. 12
Figure 7. Spawner abundance curve for fall chum salmon in the Delta River in 1985 based upon live salmon counts by date. 14
Figure 8. Fall chum salmon run timing based upon the 4 -year average daily and cumulative percentages of new fish entering the Delta River in 1975, 1976, 1977, and 1985. 18
Figure 9. Variance of cumulative proportion of run size as a function of time for Delta River fall chum salmon, 1975, 1976, 1977, and 1985. 20
Figure 10. Absolute errors associated with a 90% and 95% confidence level based upon average cumulative proportion of run size, 1975, 1976, 1977, and 1985. 21
Figure 11. Delta River fall chum salmon stream life in 1985 compared to average run timing. 23
Figure 12. A comparison of average Delta River fall chum salmon stream life (1977, 81, 82, 84, 85) and run timing (1975, $76,77,85)$. 24
Figure 13. Average percentage of live chum salmon in the Delta River as a function of run timing (i.e., entry pattern). 25
Figure 14. Comparative annual escapements of fall chum salmon in the De7ta River 1972-85. 30
Page
Appendix Table 1. Pooled fall chum salmon stream residence time data for the Delta River, 1973 and 1974 35
Appendix Table 2. Age, sex, and size composition of Delta River fall chum salmon, 1985. 36
Appendix Table 3. Fall chum salmon escapement survey counts in the Delta River, 1977. 37
Appendix Table 4. Fall chum salmon escapement survey counts in the Delta River, 1976 38
Appendix Table 5. Fall chum salmon escapement survey counts in the Delta River, 1975 39
Appendix Table 6. Estimated number of fall chum salmon entering the Delta River by survey date in 1977. 40
Appendix Table 7. Estimated number of fall chum salmon entering the Delta River by survey date in 1976. 41
Appendix Table 8. Estimated number of fall chum salmon entering the Delta River by survey date in 1975. 42
Appendix Table 9. Fall chum salmon run timing based upon the 4 -year average cumulative and daily percentages of new salmon entering the Delta River between subsequent surveys in 1975, 1976, 1977, and 1985. 43
Appendix Table 10. Average percent of live fall chum salman inthe Delta River by date based upon observationsmade in 1977, 1981, 1982, 1984, and 1985.44

Abstract

Two methods were used to estimate total spawning escapements of Delta River fall chum salmon in 1975, 1976, 1977, and 1985. The two methods were based upan replicate point estimates (aerial and ground surveys) of escapement and average stream residence time data. A migratory time-density model was then developed for use in expanding peak point estimates of annual escapements in the historic data base to total abundance, thus allowing for more comparable results. It was determined that future point estimates should be made subsequent to November 1 and November 5, but prior to November 20, to maintain a tolerable error of not more than 15% with respective confidence levels of 90% and 95%.

INTRODUCTION

There has been an apparent decijne in fall chum salmon escapements in recent years (since about 1980) to most known major spawning areas throughout the Yukon River drainage (ADF\&G 1985, Buklis and Barton 1984, and Barton 1983). That this is true is most evident in decreased spawning escapements which have been primarily based upon low-level aerial survey estimates from small, single engine, fixed-wing aircraft. It is difficult at best, to quantify the exact decrease in escapements using aerial survey techniques due to the dependency of aerial surveys upon such factors as weather and water conditions, type of aircraft used, experience of pilot and observer, etc. However, BukJis and Barton (1984) estimated decreases in average escapements to approximate 42% and 58% in the Porcupine and Tanana river drainages, respectively, from the four-year period 1976-79 to the four-year period 1980-83. With exception of fall chum salmon spawning areas in the upper Tanana River in 1984 (including the Delta River), escapement estimates in 1982 and 1984 were the lowest ever recorded to major spawning areas throughout these two river drainages (Porcupine and Tanana). Average to above-average escapements were observed in 1985 to most areas.

Since aeriai survey estimates can only be used to reflect trends in the relative abundance of spawners, due to underestimating total population of spawners (Cousens et a1., 1982; Neilison and Geen 1981; Bevan 1961; Gangmark and Fulton 1952), a need has arisen to more precisely document fall chum salmon escapements to major spawning areas in the Yukon River drainage. Due to its accessibility and importance as a fall chum salmon spawning area, the Delta River was selected for studies in 1985. The primary objective was to estimate total spawning population based upon replicate foot surveys conducted throughout the duration of spawning and to develop a model for use in expanding point escapement estimates to total spawning escapement. Ancillary to this was to sample the 1985 fall chum salmon run for age, sex, and size composition.

DESCRIPTION OF STUDY AREA
The Delta River heads at Tangle Lakes near Paxon and flows north approximately 80 miles to the Tanana River at Big Delta (Figure 1). Only the upper 18 to 20 rivermiles are clear water. Downstream of the confluence of Eureka Creek, the Delta River takes the appearance of a typical glacial stream with turbid, silt-laden water and broad, brajded channels. Its glacial nature is derived from numerous small tributary streams heading in the glacial ice fields of the Alaska Range.

A continuous alluvial apron exists in the Delta-Clearwater area by merging alluvial fans of the Delta and Gerstle rivers with those of small streams draining the north slope of the Alaska Range. The entire region is discontinuously underlain by permafrost, below which normally lies the water table of an extensive aquifer system.

Wilcox (1980) investigated and summarized the hydrology of the Delta-Clearwater region.

Figure 1. The Delta River drainage.
"The alluvial aquifer system . . . is composed of thick sediments that overlie bedrock [It] is recharged by losing streams and by infiltration of precipitation Major discharge areas are along the Clearwater Creek [Delta Clearwater River] network, Clearwater Lake, and at springs near the mouth of the Delta River Aquifer discharge near Big Delta is recharged largely by seepage losses from the Delta River and Jarvis Creek. . . . Ground water levels fluctuate in response to seasonal recharge pulses to the aquifer from river and stream channel losses and from precipitation Water levels are lowest in late May or early June. River ice breaks up in April or May, and the recharge pulse begins; the ground-water level rises until it reaches a peak in October. At this time, the rivers freeze and recharge begins again. However, silt may clog the stream bed gravel and reduce permeability during much of the sunmer. Recharge may take place largely during periods of high flow when scouring and shifting of channels occur."

Andersen (1970) points out that glacial streams have a low variability in annual flow and thus large annual variations in ground water recharge are not likely to occur unless climate changes.

The Delta River flows high and turbid throughout the summer months with cold surface water runoff primarily from melting snow and ice. As freeze-up approaches, the flow of surface water gradually diminishes and eventually stops. Sub-permafrost springs which surface in channels of the lower river floodplain are the primary source of water flow between freeze-up and the following spring thaw. It is this concentrated area of upwelling spring water, in approximately the lower one mile of the river, which forms a unique fall chum salmon spawning area.

High-flow summer runoff carrying large amounts of sediments results in scouring and shifting of individual channels in the spawning area, and thus influence the amount of available spawning area from year to year. Although channel changes do occur, spawning in most years can be classified in three major areas: western channels which generally have the fewest number of spawners, mid or majn river channels which generally have the greatest number of spawners, and eastern channels. The greatest degree of channel shifting from year to year occurs in the midriver and eastern channels. The eastern and western channel networks are not connected to the main river channel from approximately October through April, apart from the eastern channel network sharing a common mouth with the main river channel in some years. Most of the spring-fed areas remain relatively ice-free throughout the winter months.

Length of channels filled with spring water varies from a few to several hundred meters (m) while width may vary from less that 1 to 75 m . Maximum water depth ranges up to 1.2 m and surface water temperatures remain at 1° to $6^{\circ} \mathrm{C}$ throughout the winter (Francisco 1976). Skaugstad et al. (in print) found surface water temperatures in the Delta River ranging to a maximum of $5.8^{\circ} \mathrm{C}$ and intragravel water temperatures ranging from 0.5° to $6.6^{\circ} \mathrm{C}$ during winter investigations in 1981, 1983, and 1984. They reported that drops in water level in the spring-fed channels ranged between approximately 10 to 100 mm during the November to March period, with the exception of one year (winter 1983-84) in which water level in the main river channel rose

108 mm . This they attributed to a temporary warm spell which had no apparent effect on side channel water levels; side channel water levels fell 12 and 82 mm for the same period. On the average, water depth in early October declined approximately 100 cm in the main channel and 20-60 cm in the eastern and western channels.

Fall chum salmon begin to arrive in the Delta River in late September and spawning may continue well into December. In general, it can be stated that peak spawning in the Delta River occurs toward the end of October or in early November, although time of peak spawning may differ among channels. Coho salmon have been observed only in very low numbers (25-30) and mostly confined to the western channel network. Their arrival is generally later than that for chum salmon, occurring in late October, and several of these fish may actually spawn in areas farther up the Tanana River.

Fall chum salmon first enter the western channel, which is nearly always the first to become separated from the main river channel and clear from the influx of spring water. This normally begins in late September. Spawning usually occurs next in the eastern channels. The mid or main river channel is not utilized to a major extent until approximately mid-October when the river is nearly frozen to the bottom above the spawning area and most of the flow of cold silty surface water stops. The midriver channel usually accounts for the highest number of spawners annually. The entire flow to all channels during spawning, egg incubation, and fry development stages (late October through approximately April) is supplied by spring water. Wilcox (1980) states that total discharge of several perennial springs at the mouth of the Delta River was measured at about $30 \mathrm{ft}^{3} / \mathrm{sec}$ in March 1975, 1976, and 1977. Discharge estimates made at several locations in the main channel ranged from 0.2 to $5 \mathrm{ft}^{3} / \mathrm{sec}$ and 1.7 to $29.6 \mathrm{ft}^{3} / \mathrm{sec}$ in March 1982 and 1984, respectively (Skaugstad et a1., in print).

Nature of the Delta River floodplain, spring-fed spawning habitat together with time of spawning make this region one of the most unique spawning areas in Interior Alaska. Although redds are abundant in most of the deeper glides between riffle zones or are constructed in deeper pools, many spawners deposit eggs in extremely shallow, quiet water zones or pools where water depth may be only sufficient enough to cover most of the salmon's head and ventral half of the body. Prior to reaching such areas, large numbers of salmon often overcrowd into pools inmediately downstream of extremely shallow riffles which may extend to beyond 10 m in length. Many salmon successfully negotiate riffles where water depth may not exceed $3-5 \mathrm{~cm}$. A few become entrapped or manage to end up stranded among the larger rocks and die unspawned. A few riffles are too shallow to allow any passage.

It is not uncommon for spawning to occur when air temperatures pTunge well below $0^{\circ} \mathrm{F}$ in most years $\left(-25^{\circ}\right.$ to $\left.-35^{\circ} \mathrm{F}\right)$. At such times, where spawning occurs in extremely shallow water, large ice formations often develop around the base of the dorsal fin and upper dorsal lobe of the caudal fin. Even some freezing of body tissue in the region around the dorsal fin has been observed.

1though precise studies on the wash-out rate of carcasses have not been conducted in the Delta River, it is believed that the shallow riffle zones together with other physical and hydrological characteristics of the spawning area tend to reduce dead or moribund salmon from drifting from the spawning grounds. This phenomenon is probably most applicable to those areas where spawning occurs well upstream. However, where spawning occurs in the lower 100 m or so of each channel the wash-out rate of salmon carcasses and moribund fish into the Tanana River may be much greater than suspected. Wash-out rate probably diminishes as the spawning period progresses, due to diminishing water levels and decreased velocity.

METHODS

Maps of the open water spawning channels were prepared for 1974 and 1975 from overhead aerial photographs taken by Trasky (1976) and Francisco (1977). Open water areas in 1977, 1984, and 1985 were prepared by drawing in the approximate location of channels, using the overhead aerial photographs taken by Trasky and Francisco as a base and photographs obtained from various land-based and aerial angles in 1977, 1984, and 1985 (Figures 2 through 4).

Foot surveys of the Delta River spawning area were made weekly beginning in late September and continuing through early December 1985. Both live and dead chum salmon were enumerated in each spawning channel, i.e., eastern, mid or main river, and western channels. Polaroid sunglasses were worn to reduce surface glare. A riverboat was used to gain access to western spawning channels as necessary when the main river channel was too high to allow crossing by foot.

An aerial survey of the Delta River spawning area was flown near peak spawning on October 26 for subsequent comparison with population estimates.

Two methods were employed to develop population estimates using the 1985 survey data. The first method involved plotting counts of live salmon by survey date and estimating the area under the curve (A) by the following equation:

$$
A=\sum_{n=1}^{N-1}\left[\left(\frac{C_{n}+\left(C_{n}+1\right)}{2}\right)\left(D_{n+1}-D_{n}\right)\right]
$$

where: $A=$ total number of salmon days
$C_{n}=$ live salmon count on foot survey conducted on day n
$D^{n}=$ date of survey
$N=$ total number of surveys
The total number of salmon days (A) would give the number of live salmon in the Delta River if stream residence time was one day. Division by residence time yielded an estimate of total population. Residence time was based upon stream life data collected from the Delta River in 1973 and 1974 (Trasky 1974, 1976). Only foot survey observations were included in this analysis.

Figure 2. Delta River fall chum salmon spawning area October 1985.

Figure 3. Delta River fall chum salmon spawning area October 30, 1984 (left) and November 1977 (right).

Figure 4. Delta River fall chum salmon spawning area November 7, 1975 (left) and November 1, 1974 (right).

The second method used to estimate total abundance in 1985 was as follows. The number of live salmon observed on a specified day was the sum of the number of live fish remaining from the previous survey(s) and the number of new fish entering the stream subsequent to the previous survey. The number of fish which had spawned and died between surveys was estimated from Trasky's studies on stream residence time (Appendix Table 1). Total run size was approximated by summing the numbers of new salmon estimated entering in each interval of time and adding this estimate to the number of carcasses counted on the last survey minus the estimated number of carcasses previously counted as live fish. Aerial observations on October 26 were included in this analysis. This second method of estimating total abundance is represented by the following equation:

Total run size to date $D=\left[\begin{array}{l}\text { number of live fish } \\ \text { entering over each } \\ \text { time interval } i\end{array}\right]+\left[\begin{array}{l}\text { number of carcasses } \\ \text { not previously } \\ \text { counted as live fish } \\ \text { (must be positive } \\ \text { or zero) }\end{array}\right]$
or:

$$
\mathrm{D}=\sum_{i=1}^{\mathrm{E}} \mathrm{~B}_{i}+\left(\begin{array}{c}
\mathrm{D}-1 \\
\left.\mathrm{E}_{\mathrm{D}}-\sum_{i=1}\left(1-\mathrm{P}_{i j}\right) \mathrm{B}_{i}\right)
\end{array}\right.
$$

where: $\mathrm{B}_{i}=$ number of new fish entering the stream subsequent to the previous survey and is calculated as:

$$
\begin{aligned}
B_{i}= & C_{i}-\sum_{j=1}^{i-1} B_{j} P_{i j} \quad \text { note } B_{1}=C_{1} \\
C_{i}= & \text { live salmon count on survey } i \\
\mathrm{P}_{i, j}= & \text { proportion of the fish that entered on day } j \text { that are still } \\
& \text { alive on day } i \text { (from stream residence data in Appendix }
\end{aligned}
$$

RESULTS AND DISCUSSION

Population Estimates

Trasky (1974, 1976) found average residence time of Delta River fall chum salmon to be 20.5 and 16.5 days in 1973 and 1974, respectively. In both years, average residence time was similar but slightly longer in the western channels as opposed to eastern channels, while being substantially shorter in the midriver channels. This he attributed to delayed spawning and later entry of chum salmon into the midriver channels. Pooling Trasky's data from each year's study results in the following average stream residence times (Appendix Table 1 and Figure 5).

Figure 5. Average stream residence time for Delta River fall chum salmon based upon pooled data from 1973 and 1974. Data from Trasky (1974, 1976).

> western channels 20.8 days eastern channels 20.0 days midriver channels 15.6 days total all channels 18.2 days

Entry time and spawning in the various channeTs in 1985 were consistent with those identified in previous years; occurring first in the western channels, followed by the eastern and finally midriver channels (Figure 6 and Table 1). However, since channels are subject to annual change due to scouring from high flow spring and summer runoff, the overall average stream residence time from Trasky's pooled data (18.2 days) was used to estimate total population size in 1985. This further seems plausible since emigration among channels occurs. In both 1973 and 1974 Trasky found the western channels had the smallest available spawning area and greatest emigration, while the midriver channels possessed the greatest spawning area and least amount of emigration. Reasons for observed emigration were not clearly identified, but overcrowding was not considered to be the cause.

Total number of salmon days, i.e., area under the curve, was estimated to be 316,789 in 1985 using the first method to generate a total population estimate (Figure 7). Division by the mean residence time of 18.2 days yields a population estimate of 17,406 chum salmon. This estimate can be considered conservative as turbidity problems in portions of some channels early in the season and developing shore ice late in the season hindered live salmon counts.

Table 2 shows the estimated number of new salmon entering the Delta River in 1985 between subsequent surveys. Following the second method, summation of these estimates gives a total population of 17,147 chum salmon. Note that no new fish were observed entering the Delta River between November 1 and November 8. In fact, observations of live fish on November 8 were not of the magnitude to even compensate for those expected to still be alive from previous surveys based on resident time data. At least two possibilities could have occurred to explain this. First, the November 8 survey was made under poor survey conditions and a low estimate of live fish may have occurred, or secondly, inaccuracy associated with stream residence time may exist. November 8 survey results were omitted from this method of estimating total population.

It should also be pointed out that an accurate carcass count could not be made on the December 5 survey. First, many chum salmon carcasses had been removed subsequent to November 20 by subsistence-use permit holders and secondly, thin layers of surface ice in many spawning pools had accumulated, preventing accurate counts from being made. Consequently, the latter part of the equation associated with calculating a population estimate using method 2 was omitted, i.e.; the number of carcasses counted on the last survey (December 2) minus the estimated number of carcasses previously counted as live fish.

The best estimate of total fall chum salmon escapement in the Delta River in 1985 is considered the midpoint between the two population estimates generated, or 17,276. The peak salmon count was made on the November 1 foot survey when 16,158 fish were enumerated (13,898 live; 2,260 dead).

Figure 6. Counts of live fall chum salmon by spawning channel in the Delta River in 1985.

Table 1. Fall chum salmon escapement survey counts in the Delta River, 1985.

DRTE	TYPE SURNEY	ERGTERN LAANELS			MID OR MAIN RIVER Chamele \dagger			IESTER CHPNELS c			total delta river area		
		LIVE	DEAD	TDTAL	LIVE	DEAD	TITPL	live	DEAD	TITAL	LIVE	DEAD	TUTAL
SEP 27	FTOT			Tukbid			tureid	43	0	43	43	0	43
ERT 04	FEGT			TUREID	17	0	17	440	4	444	457	4	461
DCT O9	FSOT	99	0	98	296		297	797	26	823	1,191	27	1,219
OCT 16	FLOT	3,343	3	3,346	188	0	189	1,445	92	1,537	4,976	95	5,071
OCT 24	Fiot	3,545	153	3,698	2,782	60	2,842	826	73	899	7,153	286	7,439
Nov 01	FIOT	6,321	1,509	7,830	E,760	563	7,323	617	188	1,005	13,898	2,260	16,150
NON O8	FOCT d	2,797	2,492	5,289	3,690	1, 295	4,985	176	156	332	6,663	3,943	10,606
NOU 19	FIDT	вов	6,120	6,928	2,463	5, 894	8,357	29	519	548	3,300	12,533	15,833
DEC 05	FOOT	50	-	50	328	-	328	1	--	1	379	0	379
OCT 26	AERIGL										11,614	611	12, 285

[^0]

Figure 7. Spawner abundance curve for fall chum salmon in the Delta River in 1985 based upon live salmon counts by date.

Table 2. Estimated number of fall chum salmon entering the Delta River by survey date in 1985. a

			5EP 27		OCT			OCT 9		CT 16		DCT 24			OCT 26		NOW 1		nov B e			NNO 19		DEC 5	
bay	date	WaL	1 DEAD	LIVE	DEAR	LIVE	!	DERD	LIVE	(DEAD	LIVE	dead	live	!	DEAD	live	- DEAD	LIVE	;	DEAD	LIVE	DEAD	LIVE	(DEAD	LIVE
1	9/25		;	i			,			,		,		;			;		;		,			;	
		2	1	1	,		;			;		;		;			;		;		:			!	
3	9/27		(10)6	43 c			!			1		;		;			;		1		;			;	
		7	; 1	-	--		!			!		;		;			,		$!$;			;	
10	10/4		1	42 :	(${ }^{\text {(})}$	415				;		I		I			;				!			1	
		5	16	:	11			------		1		;		;			;		!		!			;	
15	10/9		1	35		404		(27)	751			!		1					!		!			!	
		7	: 18	;	61		!	26		-		;		,			;		;		;			,	
22	10/16		1	18 :		343	:		726	- 195)	3,689			1			1		1		!			1	
		θ	; 15	,	203		;	199		1 175		-----		:			,		;		!			1	
30	$10 / 24$		I	3 :		140	,		527	!	3,714	(2865	2,769				,		$!$		1			!	
		2	; 3	,	52		!	105		1163							;		!		,			!	
32	10/26		;	0 -		89	:		421		3,551		2,739			4,815			1		!			;	
		6	1	:	71			285		: 1,046		194		!	144		---320)		;		;			;	
30	11/1		!	1		17	;		137	!	2,505		2,645	\|		4,670	(12260)	3,924			;			!	
		7	1		17		!	131		: 1,797		: 703		!	968						:			1	
45	11/日		1	!	-	0	;		6		708		1,941	!		3,702		3,791	1	(3943)	13,485) c :			1	
		11	;	;			;	6		: 708		$; 1,700$					$1,919$;			+---		1	
56	11/19		;	!			;		0	;	0	;	241	;		732	1	1,872	,			(12533)	45		
		86	1				,			;				1			i 1,872		1		,				
72	12/5		1	:			;			-		:	0	:		0		0	!		:		293		86 c
		2	1				!			;		;		;			1		i		;	76		1	-
74	12/7		;	;			1			;		i		;			;		;		1		217	1	65
			43		415			751		3,889		2,769			4,815		3, 924			0		238		1	

a All observations based upon foot surveys unless otherwise noted. Live fish show below rew fish entering the strean are those remining alive on subsequent survers beged upon strean residence time datia frou Trasky (1974, 1976), Dead fish shown below nem fish entering the strean are nuter of salmon which died in that interval of time.

- The number in parenthesest is actual nouber of carcasses observed.
c Mew fish entering the streant
d Aerial survey.
e Survey reciults were not included in the amalysis for this day - plop sunvey

This count was 93.5% of the final population estimate. By comparison, the October 26 aerial survey accounted for 12,225 salmon (11,614 live; 611 dead) and represented only 70.7% of the population estimate.

Age, Sex, and Size
A total of 357 fall chum salmon were sampled for age, sex, and size composition from October 21 to November 11, 1985. One hundred fifty of these fish were further sampled for subsequent protein electrophoretic analysis by the Canadian Department of Fisheries and Oceans. Only 256 (72\%) of the scale samples were ageable. Age 4_{1} fish predominated, representing 76% of the total sample, followed by age 3 , fish (14%) and age 5 , fish (9%). There was only one age 6 fish. The nale-to-female ratio wats $1.00: 1.56$, or 39% males and 61% females. Size-at-age data are shown in Appendix Table 2 for each sex.

HISTORIC DATA EXPANSION

The existing data base on fall chum salmon escapements to the Delta River was examined to determine whether data from other years could be used to generate population estimates by using one or both of the above techniques. Frequency and timing of surveys in only three years were sufficient to allow for population estimates: 1975, 1976, and 1977. Although replicate surveys were also made in 1984, timing of surveys was such that the entry pattern of fall chum salmon into the Delta River could not be precisely identified (Barton 1985, intra-Department memo). Thus, no population estimate could be generated for that year.

Individual survey results for 1975,1976 , and 1977 are given in Appendix TabTes 3 through 5. Population estimates for each of these years, generated from plotting a spawner abundance curve, were based upon foot survey counts of live salmon only and an average stream residence time of 18.2 days. Population estimates were $3,895,6,279$, and 17,388 chum salmon for 1975, 1976, and 1977, respectively.

The estimates for 1975 and 1976 differ slightly from those calculated by Francisco (1976) and Francisco and Dinneford (1977), who used the same method, for two reasons. First, they included aerial survey counts of live salmon in plotting spawner abundance curves. Further, their estimates were in the form of a range for each year since they used the average residency time Trasky calculated in both 1973 and 1974, i.e., 20.5 and 16.5 days, respectively.

A second population estimate was generated for 1975, 1976, and 1977 following the second method, i.e., the summation of the estimated number of new salmon entering the Delta River between surveys based upon average stream residence data obtained by Trasky (Appendix Tables 6 through 8). Population estimates were $3,574,6,346$, and 16,365 chum salmon for 1975 , 1976, and 1977, respectively. Only foot survey counts of live salmon were used to generate these estimates, with the exception of 1975 in which results of live salmon counts during one aerial survey were also included.

The four years in which population estimates were made by each method as well as the difference between each estimate are summarized below.

	Population estimatea Year method 1 method 2		Difference	Best estimate ${ }^{\text {b }}$
1975				
1976	3,895	3,574	321	3,734
1977	6,279	6,346	67	6,312
1985	17,388	16,365	1,023	16,876
		17,147	259	17,276

a Method 1 based upon estimated area under spawner abundance curve. Method 2 based upon summation of estimated new fish entering stream between surveys.
b
The best estimate of chum salmon escapement in each of these four years was taken as the midpoint between the two estimates generated each year.

Average timing of fall chum salmon to the Delta River was examined by analyzing the estimated number of new salmon entering the river between subsequent aerial and ground surveys made each year in 1975, 1976, 1977, and 1985. The four-year average daily and cumulative proportions of new fish entering the Delta River by date are shown in Appendix Table 9 and Figure 8.

Mundy (1982, 1984) developed a time-density model to describe salmon run timing. The pattern of the migration is described by the mean date of passage (a measure of the central tendency) and the standard deviation (a measure of dispersion). The statistics are calculated from the proportion of the total escapement occurring each day.

Adult chum salmon entered the Delta River between September 25 and December 5 when examining the data from 1975-1977 and 1985. On the average, one-half of the run had entered by October 22 with less than 1% entering subsequent to November 14 (Appendix Table 9). The central half of the spawning population ($25 \%-75 \%$) entered the river over an average span of 11 days from October 16 to 26 , while the bulk of the run (2.5% to 97.5%) entered over a much longer time period (an average of 37 days from October 4 to November 9).

The mean dates of run timing to the Delta River were October 18 in 1977; October 22 in 1975 and 1985; and October 23 in 1976. Median dates, the date on which 50% of the run was in the river, coincided with or closely followed mean dates. Median dates were October 19 in 1977; October 23 in 1975 and 1976; and October 25 in 1985.

The daily averages in cumulative proportion of the run entering the Delta River show a linear increase of approximately $3 \%-4 \%$ per day between October 11 and October 29. The variance associated with cumulative

Figure 8. Fall chum saimon run timing based upon the 4 -year average daily (top) and cumulative (bottom) percentages of new fish entering the De1ta River in 1975, 1976, 1977, and 1985.
proportion estimates is greatest on October 24, peaking in the area of the grand mean of run timing (about October 21) (Figure 9). Since the migratory time-density curve is used to predict total run size from survey counts for a given year, the sample variance $\left(s^{2}\right)$ was considered in constructing confidence intervals as opposed to the variance of the mean proportion ($\mathrm{s}^{2} / \mathrm{n}$) of that day. Thus, 95% confidence intervals were constructed as follows:

$$
\bar{x}_{i} \pm t_{(0.025)} \sqrt{s_{i}^{2}}
$$

where: $\quad \bar{x}_{i}=$ mean of cumulative proportion of run on day i $t_{(0.025)}=3.182$ (with 3 degrees of freedom) $s^{2}{ }_{i}=$ sample variance for day i

The absolute error associated with a 95% confidence interval which occurs when predicting total run size from average cumulative proportions observed in the migratory time-density curve is shown in Figure 10. The straight line in Figure 10 portrays the tolerable percent error in a population estimate relative to any point in the run. It represents 15% error in the population estimate at the 90% and 95% confidence levels. Where the absolute error crosses and falls below the tolerable error line represents when acceptable population estimates can be made. For example, with a tolerable error of 15% and a confidence level of 95%, this point corresponds to November 6 on the migratory time-density curve. By that date, 96.62% of the run has entered the river, on the average. Any population estimates made subsequent to November 5 would result in an error of less than 15% at the 95% confidence level.

It should be noted that to maintain a 15% error limit in the estimate of run size, the confidence limits on the percentage of the run on a given date should be less than $1-1 / 1.15$, or 13.04% of the estimated run proportion. For example, by November $6,96.62 \%$ of the run is estimated to have entered the river with a 95% confidence level of $\pm 12.62 \%$. Note that $0.1262 / 0.9662=13.06 \%$. Since the 95% confidence interval approximates the 13.04% criteria, the confidence limits around 96.62% of the run would be $96.62 \% \pm(0.1306)(96.62 \%)$ or 84.00% of 109.24% of the run, respectively. The 109.24% is adjusted downward to 100% since the lower confidence limit can never fall below what was actually observed. Thus, if 5,000 fish were counted on November 6 in a given year, total run size would be estimated as $5,000 / 96.62 \%$ or 5,174 fish. The confidence limits would be $5,000 / 100 \%$ $(5,000$ fish $)$ and $5,000 / 84.00 \%(5,952)$. Now, $(5,952-5,174) / 5,174=15 \%$ of the estimate of 5,174 . Thus, the 15% relative error line in Figure 10 was plotted by multiplying the average daily cumulative proportions in the time-density curve by 13.04%. At a 90% confidence level the 13.04% criteria is met on November 2.

Eggers (1984, unpublished) showed that for situations of rapid salmon run entry and protracted dying (stream life) there was close agreement between peak abundance and cumulative escapement. Conversely, protracted entry and short stream life results in extreme divergence between peak abundance and cumulative escapement.

Figure 9. Variance of cumulative proportion of run size as a function of time for Delta River fall chum salmon, 1975, 1976, 1977, and 1985.

Fioure 10. Absolute errors associated with a 90% (top) and 95% (bottom) confidence level based upon average cumulative proportion of run size, 1975, 1976, 1977, and 1985. Straight lines represent the tolerable (15\%) error in an estimate relative to any point in the run.

Average run timing in the Delta River was compared to stream life observed in 1985. Stream life in this context was examined by plotting the daily percentage of live salmon which occurred in 1985 and thus, here differs from the concept of average stream residence time of individual fish. Results show stream life was protracted beyond the average run entry pattern in 1985 (Figure 11). Since 1985 data are only an estimate of stream life for a single year, the existing data base was examined to estimate average stream life. Limited observations from replicate ground and aerial surveys made in 1977, 1981, 1982, 1984, and 1985 were used (Appendix Table 10). A comparison of average entry (four years of data) versus average stream life (five years of data) for the Delta River is shown in Figures 12 and 13. Note that average stream life is only shown through November 20 in Figure 12 as very few estimates of the number of live salmon were made after that date in any of the 5 years examined. Nonetheless, on the average, rapid entry and protracted stream life of fall chum salmon occurs in the Delta River. For example, Figure 13 illustrates that by the time 99% of the run has entered the river 38% of the fish remain alive (see also Appendix Tables 9 and 10).

The average migratory time-density curve described for Delta River fall chum salmon using 1975, 1976, 1977, and 1985 data was used to expand peak survey counts made in 1973 and 1978-1984. Peak survey counts of live plus dead salmon on a given day was divided by the average cumulative proportion of the run estimated for that date from the migratory time-density curve. Survey counts made subsequent to the end of October but prior to November 20 were used when possible. Resulting population estimates for these years can be considered conservative since carcass washout rates are not taken into account. Estimates for 1972 and 1974 could not be made using the time-density curve as only live salmon were enumerated in those years on aerial surveys.

A second method was used to expand the 1972 and 1974 aerial survey counts. Expansion factors were obtained by using the limited data obtained in 1975, 1976, 1977, and 1985 in which aerial and ground counts made in those years were compared, when possible, to respective population estimates. Unfortunately, no carcass counts were obtained on any of the ground or aerial surveys made in 1975 or 1976, nor were carcasses enumerated on eight of nine foot surveys conducted in 1977 (Appendix Tables 3 through 5).

Four expansion factors are presented in Table 3 and summarized below:
Peak aerial counts (live fish only) expansion factor 1.475
Peak ground counts (live fish only) expansion factor 1.275
Peak aerial counts (live plus dead) expansion factor 1.241
Peak ground counts (live plus dead) expansion factor 1.069
Data are most complete for peak counts of live fish only for both aerial and ground counts. No doubt, excluding observer variability, differences in timing of surveys accounts for part of the difference in expansion factors shown in Table 3. Expansion factors for estimating total abundance from peak aerial counts of live fish were derived from surveys made October 19, October 26, November 4, and November 6. By comparison, expansion factors for peak ground counts of live fish were obtained from surveys conducted on October 28, October 29, November 1, and November 2; a much

Figure 11. Delta River fall chum salmon stream life in 1985 compared to average run timing. Run timing based upon 1975, 1976, 1977, and 1985 data.

Figure 12. A comparison of average Delta River fall chum salmon stream life ($1977,81,82,84,85$) and run timing (1975, $76,77,85)$. Average stream life is only shown through 20 November as very few estimates of the percentage of live fish are available after that date.

Figure 13. Average percentage of Tive chum salmon in the Delta River as a function of average run timing (i.e., entry pattern).

Table 3. Expansion factors for Delta River fall chum salmon escapements based upon the relationship of aerial and ground survey counts to population estimates made in 1975, 1976, 1977, and 1985.

narrower time period. Nonetheless, the average expansion factors for peak live counts onTy (1.475 for peak aerial counts and 1.275 for peak ground counts) are considered fairly reliable.

The expansion factor of peak live and dead fish from aerial survey observations (1.241) is considered the least reliable of the four. Aerial estimates of carcasses on a given survey are likely always proportionally lower than the estimate of live fish because of the tendency of the aerial observer to concentrate more on making accurate live fish counts. Further, many carcasses in the Delta River are often obscured due to snow cover or frost built up on the carcasses during cold weather. Much more accurate counts of dead salmon can be made by ground surveys. It is likely this expansion factor is somewhat low.

Although the expansion factor obtained for live and dead fish from ground surveys (1.069) is based only on 1985 observations, it is considered most reliable. This is based upon the premise that carcass washout rate is relatively low in the Delta River. Although precise studies on carcass washout rates in the Delta River are lacking, results from 1985 surveys suggest washout rate to be low. For example, by the November 19 survey, there should have been 13,760 carcasses present (assuming no carcass washout rate and excluding predation) based upon Trasky's stream residence time data. These were fish which had previously been observed as live fish prior to that date. However, 12,533 carcasses were actually enumerated, a difference of only 1,227 fish. Carcass washout rates could not be examined subsequent to November 20 due to their removal by subsistence-use permit holders. Consequently, the expansion factor of 1.069 should not be applied to foot survey counts of live plus dead fish made subsequent to the opening date (November 20) for removal of carcasses for subsistence use.

Peak survey estimates were expanded for all years in the historic data base using these expansion factors to compare annual escapements in the Delta River (Table 4). In all but one instance (1983) estimates from the migratory time-density curve are lower than estimates made by using peak survey count expansion factors. This may likely be a function of carcass washout. Nonetheless, estimates made using the migratory time-density curve are considered the most reliable and are used when possible to expand the historic data base. Only in 1972 and 1974 were expansion factors from peak survey counts used.

Final "best estimates" of fall chum escapements to the Delta River are shown in Table 5 and Figure 14. Escapements have ranged from 3,734 (1975) to 23,508 (1981) during the past 14 years with an overall average of 9,890 . With the exception of 1980 and 1982, two of the three lowest years on record, annual escapements during the past nine years have exceeded 7,700 fish, being greater than any year prior to 1977, except 1973. An apparent high abundance, four-year cycle is manifest for the years 1973, 1977, 1981, and 1985. It is of interest to point out that the 1973 and 1974 population estimates presented in this report (10,469 and 5,915, respectively) are very similar to the Peterson population estimates made in those years by Trasky (1974, 1976): 10,014 in 1973 and 5,718 in 1974.

Table 4. Expanded peak survey escapement estimates of fall chum salmon to total popuration estimates based upon the relationship of aerial and ground survey counts to population estimates made in 1975, 1976, 1977, and 1985.

YEAR	$\begin{aligned} & \text { SURNEY } \\ & \text { IATE } \end{aligned}$	$\begin{aligned} & \text { Sunvey } \\ & \text { TYPE a } \end{aligned}$	$\begin{aligned} & \text { PE\&N } \\ & \text { CMNT b } \end{aligned}$	Examsion FRCTOA c	SEREDN ESTIMATE	RENCKS	FIMAL EST EXP FACTOMS
1972	31-0ct	A	3,650	1.475	5,384	ND CARCASS CIUNT M MS MDE.	$5,3 B 4$
1973	26-4et	A	7,821	1.475	11,536		$11,536 \mathrm{~h}$
1974	31-1et	A	4,010	1.475	5,915	W CRACPAS COMNT MES MODE.	5,915 i
1976		p	3,734	0	3,734		3,734
1976		p	6,312	0	$6_{1} 312$		6,312
1977		P	16,876	0	16,876		16, 876
1970	30-0ct	A	9,549	1.475	14,005	TOTAL COMNT (LIVE DVO DEPD) Mas $10,051(x 1.241)=12,473$ PRP EST.	14,005
1979	08-Hoy	A	4,875	1.475	7,191	TOTAL CONS (LIVE AND DEAD) Wha $0,125(x 1.241)=10,083$ PIP EST.	10,003
1980	10-Noy	A	3,856	1.475	5,658	- 5,754 POP EST.	5754
1981	03- ${ }^{\text {Nov }}$	F	17,900	1.275	22,823	TUTA CONNT ILIVE PMO DEAO) MAS $28,375(\times 1.069)=23,918$. PEPK RERJIL CT ON OR-MDN (LIVE AND DERDI HES 10,664 in $1.2411=13,234$ POP EST. f	23,918
1999	27-0xt	F	2,721	1.275	3,469		3.669
1983	27-bet	A	E, 684	1.475	9, 859	(LIJE AND DEAN) WRS $7,230(x 1,241)=8,972$ POP EST.	9,859
1984	26-0ct	F	5,509	1.275	7,024	TOTAL CONT (LIVE MO PERD) WM $7,1 \%$ (1.069) $=7,692$ PDP EST. 	13,177
1985	31-0ct	p	17,276	0	17,276		17,276

a Gerial inden counts (A), foot index counte (F), population estimate (P).
b Live fish counts only.
c Enpansion factors baced upen comprison of peak aerial and foot counts of salmon veruus population estimates made in 1975, 1976, 1977 and $1905:$
Pack arrial counts (live fich only) expansion factor 1.475
Peah ground counts (live fish only) expamion factor 1.275
Deak arial counts (live plus dead) expansion factor 1.241 (This is considered the least accurate conversion factor as carcass counts are probably lowl. fent around counta (live plus deal) expansion factor 1.069 This is considered the most accurate comversion factor prior to Movember 20).
d The expansion of live plus dead fish mas used since the population estimate fromexpanding live fish counts only was less than the total nuber of fish actually observed (live plus dad).
e Repults of the arrial survey on 30 -Dct mere used as opposed to the aerial survey counts on 10-Nov even though it was on this latter date the peak live count was observed. It mas considered the fo-Noy survey mas too late.
f Expanaion of live RLIS deed ground counts mas urad as opposed to expansion of live ground counts only.
y. Ground count on $15-\mathrm{Hov}$ mere used for the population estimate because the population estimate eade froct ground counts on 31-0ct was less than the actual mumber of salcon observed on the (5-Mov survey.
h Foterson population extiante 10,014 (Trasky 1974).
i Peterson population estimate 5,718 (Trasky 1976),

Table 5. Population estimates of annual fall chum salmon escapements to the Delta River, 1972-85.

YEAR	SURVEY DATE	SURVEY TYPE 2	SURVEY CDINT b	EXPAMGIDN FACTOR	PDPLATIIN Emilmate c	RHNEE AT 93\% COMFIDENCE LEVEI	Sowbe ft 90x COMFIDENE LEVEL
1972	31-Det	A		1.475	5,384 d	-	-
1973	$26-10 t$	A	7,971	0.7614 e	10,469 f	7,971-17,242 (RELATIVE ERROR 64.6x)	7,971-14,752 (RELATIVE ERRDA 40.98)
1974	31-Det	A		1.475	5,915 d, 9	-	-
1975				0	3,734 h	3,57-3, 895	3,574-3,899
1976				0	6,312 h	6,279-6,346	6,279-6,346
1977				0	16, 876 h	16, 365-17, 388	16, 365-17, 388
1978	30-0.t	A	10,051	0.9026	11,136	10,05I-J5,49\% (PELATIVE ERROR 39.1\%)	10,051-14,061 (PELATIVE ERROR 26.2x)
1979	O6-Hoy	A	8, 125	$0.9725{ }^{\text {e }}$	B, 355	B, 125-9,328 (RELATIVE ERROP 11.6 x)	8,125-9, 053 (RELATIVE ERROR B.3x)
1980	30-0ct	A	4,637	0.9026 e	5,137	4,637-7,149 (RELATIVE ERROR 39, 14)	
1961	03-Nov	F	22,375	0.9518 e	23,508	22,375-28,052 (WELATIVE ERROP 19.37)	22,375-26, 706 (RELATIVE ERAOR 13.6x)
1982	27-fict	F	3,433	0.8105 e	4,235	3,433-6, 640 (RELATIVE ERARIR 56.7x)	3,433-5,784 (RELATIVE ERROR 36.5x)
1983	01 Hov	A	7,230	0.9383 e	7,705	7,230-9,791 (RELATIVE ERROR 27.0\%)	7,230-9, 146 (RELATIVE ERRIR 10.7x)
1984	15-Mov	F	12,327	0.9932 e	12,411	12,327-12,630 (RELATIVE ERPRR 1.76\%)	12,327-12,572 [RELATIVE ERKOR 1.271
1985				0	17,276 h	17, 147-17,406	17,147-17, 406

a Peak aerial index count (A), peak foot index count (F).
b Actual survey count of live and dead fish.
c Population estimate based on Delta River migratory time-density curve.
d Population esticate based on Delta River aerial and ground survey expansion factors.
Eumulative proportion of escapement estimated on survey date from nigratory time-density curve.
Peterson population estimate 10,014 (Trasky 1974).
Petercon population estimate 5,710 (Trasky 1976).
h Population estimate made from spawner abundance curve, numbers of new fich entering the streas, and strean residence time data,

Figure 14. Comparative annual escapements of fall chum salmon in the Delta River 1972-85.

1. Two methods were used to estimate total fall chum salmon spawning escapement to the Delta River in 1985. The first method involved plotting a spawner abundance curve and dividing the area under the curve by average stream residence time. The second method was a summation of estimated numbers of new fish entering the stream over time. Both methods were predicated upon replicate survey counts of live chum salmon made from late September through early December 1985 and average stream residence data collected in the Delta River in 1973 and 1974. The best estimate of total spawning escapement in 1985 was taken as the midpoint between the two population estimates, or 17,276 fall chum salmon.
2. Data in the historic data base on fall chum salmon escapements to the Delta River were sufficient to allow application of the methods used in 1985 to only three other years: 1975, 1976, and 1977. Resulting total escapement estimates in those years were 3,734, 6,312, and 16,876, respectively.
3. A migratory time-density curve was developed for Delta River fall chum salmon based upon the average daily cumulative proportions of run size using 1975, 1976, 1977, and 1985 data. The central half of the spawning population ($25 \%-75 \%$) entered the river over an average span of 11 days from October 16 to 26 . The grand mean of run timing was October 21.
4. Results of the migratory time-density curve show that population estimates made from survey counts subsequent to November 1 and November 5 (but prior to November 20) result in absolute errors at the 90% and 95% confidence levels, respectively, which are less than a maximum tolerable error of 15%.
5. Delta River fall chum salmon exhibit a rapid run entry pattern and protracted stream life.
6. Expansion factors were derived using the limited data obtained in 1975, 1976, 1977, and 1985 in which peak aerial and ground survey counts made in those years were compared to respective population estimates. Expansion factors were used to estimate total spawning escapements in 1972 and 1974 only. Data in all other years, excluding. 1975, 1976, 1977, and 1978, were expanded by using the migratory time-density curve.
7. Final estimates of annual falt chum salmon escapements to the Delta River show a range of 3,734 (1975) to 23,508 (1981) during the past 14 years with an overall average of 9,890 . Escapements in 1980 and 1982 were two of the three lowest years on record.
8. The chum salmon sex ratio was $1.00: 1.56$ (39% males; 61% females) based upon carcass samples collected from October 21 to November 11, 1985. Age composition was 14% age $3_{1}, 76 \%$ age $4_{1}, 9 \%$ age 5_{1}, and less than 1% age 6_{1} fish.
9. One hundred fifty chum salmon were sampled and forwarded to the Canadian Department of Fisheries and Oceans for subsequent electrophoretic analysis.

CONCLUSIONS

The migratory time-density curve developed for fall chum salmon spawners is a reasonable approach to estimating total escapements from point estimates (i.e., peak aerial or foot survey counts of live and dead salmon) in the historic data base as well as in the future. However, it should be applied to point estimates made subsequent to November 1 and November 5, but prior to November 20, to maintain a tolerable error of not more than 15% with respective confidence levels of 90% and 95%. Nonetheless, realizing a greater percent error may be acceptable for inseason management purposes, population estimates can be generated prior to November.

Population estimates generated from the migratory time-density model should be considered conservative as carcass washout rates, although believed to be relatively small, have not been accurately determined.

Population estimates generated from peak aerial or ground count expansion factors presented in this report are considered less reliable than using the migratory time-density model as they do not take into account timing of surveys with respect to peak spawning. Many peak counts may not necessarily have coincided with peak spawning in some years.

RECOMMENDATIONS

It is recommended that intensive replicate foot and aerial surveys be continued annually for at least one complete four-year cycle of Delta River fall chum salmon. Additional data will not only help define the variance associated with annual mean run timing, but will also allow for possible development of more than one time-density curve to address early, average, and late spawning runs, Studies should also be designed to determine average carcass washout rates for inclusion in the time-density model.

LITERATURE CITED

Alaska Department of Fish and Game. 1985 Yukon Area Salmon Report to the Board of Fisheries, November 1985. 34pp.

Andersen, G. S. 1970. Hydrologic reconnaissance of the Tanana Basin, Central Alaska. Hydrologic Investigations, Atlas HA-319, Dept. of Interior, U.S. Geological Survey, Washington, D.C.

Barton, L. H. 1983. Enumeration of fall chum salmon by side-scanning sonar in the Sheenjek River in 1982. AYK Region, Yukon Salmon Escapement Rep. No. 19. Ak. Dept. Fish and Game, Fairbanks. 29pp.

- 1984. A catalog of Yukon River salmon spawning escapement surveys. Ak. Dept. Fish and Game Technical Data Report No. 121. Juneau, AK. July. 472pp.
—. 1985. 1984 fall chum salmon scale versus otolith age determinations and Delta River salmon surveys. Unpublished memorandum dated April 23. Ak. Dept. Fish and Game, Commercial Fisheries Division, Fairbanks, AK. 5pp.

Bevan, D. E. 1961. Variability in aerial counts of spawning salmon. Journal Fisheries Research Board of Canada 18:337-348.

Buklis, L. S. and L. H. Barton. 1984. Yukon River fall chum salmon biology and stock status. Informational Leaflet No. 239. Ak. Dept. Fish and Game, Juneau. 67pp.

Cousens, N. B. F., G. A. Thomas, C. G. Swann, and M. C. Healey, 1982. A review of saimon escapement estimation techniques. Canadian Technical Report Fisheries Aquatic Science No. 1108. Dept. Fisheries and Oceans, Pacific Biological Station, Nanaimo, B.C., Canada. 121pp.

Dinneford, W. B. 1978. Final report of the commercial fish-technical evaluation study: Tanana and Delta rivers. Joint State-Federal Fish and Wildlife Advisory Team, Spec. Rep. No. 20. Ak. Dept. Fish and Game, Juneau, 52pp.

Eggers, D. M. 1984 unpublished. Stream life of spawning pink salmon and the method of escapement enumeration by aerial survey. Ak. Dept. Fish and Game, Juneau, AK. 16pp.

Francisco, K. 1976. First interim report of the commercial fish technical evaluation study. Special Report No. 4, Joint State-Federal Fish and Wildife Advisory Team, Ak. Dept. Fish and Game, Anchorage, AK. 85pp.

Francisco, K. 1977. Second interim report of the commercial fish technical evaluation study. Special Report No. 9, Joint State-Federal Fish and Wildlife Advisory Team, Ak. Dept. Fish and Game, Anchorage, AK. 46 pp .

Francisco, K. and W. B. Dinneford. 1977. Fourth interim report of the commercial fish-technical evaluation study: Tanana and Delta rivers. Special Report No. 19, Joint State-Federal Fish and Wildlife Advisory Team. Ak. Dept. Fish and Game, Anchorage, AK. 50pp.

Gangmark, H. A. and L. A. Fulton. 1952. Status of Columbia River blueback salmon run, 1951. U.S. Fish and Wildlife Service Special Scientific Report Fisheries. Washington, D.C. 74pp.

Mundy, P. R. 1982. Computation of migratory timing statistics for adult chinook salmon in the Yukon River, Alaska, and their relevance to fisheries management. North American Journal of Fisheries Management 4:359-370.

- 1984. Migratory timing of salmon in Alaska with an annotated bibliography on migratory behavior of relevance to fisheries research. Ak. Dept. Fish and Game. Informational Leaflet No. 234, Juneau. 51pp.

Neilson, J. D. and G. H. Geen. 1981. Enumeration of spawning salmon from spawner residence time and aerial counts. Transactions American Fisheries Society 110:554-556.

Skaugstad, C., R. McLean, and J. Raymond. In prep. Water depths, temperatures, and flows in the Delta River chum salmon spawning grounds in winter. Ak. Dept. Fish and Game, F.R.E.D. Division, Juneau, AK. 9pp.

Trasky, L. T. 1974. Yukon River anadromous fish investigations. Anadromous Fish Conservation Act, Completion Report for period July 1, 1973 to June 30, 1974. Ak. Dept. Fish and Game, Commercial Fisheries Division, Juneau, AK. 111pp.

- 1976. Yukon River king and chum salmon escapement studies. Anadromous Fish Conservation Act, Technical Report for period July 1, 1974 to June 30, 1975. Ak. Dept. Fish and Game, Commercial Fisheries Division, Juneau, AK. 78pp.

Wilcox, D. E. 1980. Geohydrology of the Delta-Clearwater area, Alaska. U.S. Geological Survey Water-Resources Investigations 80-92. Prepared in cooperation with ADNR, Division of Forest, Land, and Water Management. Anchorage, AK. 26pp.
pendix Table 1. Pooled fall chum salmon streal. sidence time data for the Delta River, 1973 ana 1974. ${ }^{\text {a,b }}$

STREAM RESIDCRE TIPE (Cays)	ERSIEPM CAPmis		mid-river chames b		USSTEM CAMNES		al Omers craikd				
	$\begin{aligned} & \text { maner } \\ & \text { spunan } \end{aligned}$	$\begin{gathered} \text { SRLINN } \\ \text { DRYG } \end{gathered}$	$\begin{aligned} & \text { MNEER } \\ & \text { CAMRNN } \end{aligned}$	$\underset{\text { dars }}{\text { Sqump }}$	$\begin{aligned} & \text { MUREER } \\ & \text { BRAMON } \end{aligned}$	saumin parg	TUTR SALIN	suinn ands	Cum	an x DERD	$\begin{aligned} & \text { OM } x \\ & \text { LIVE } \end{aligned}$
1	0	0	0	0	0	0	0	0	0	0.05	100.0x
2	0	0	1	2	2	4	3	6	3	1.18	98, 98
3	0	0	0	0	0	0	0	0	3	1.18	989\%
4	0	0	2	©	0	0	2	8	5	1.9\%	98. 12
5	2	10	0	0	0	0	2	10	7	2.78	97.35
6	0	0	1	6	0	0	1	6	8	3.0x	97.08
7	0	0	1	7	0	0	1	7	9	3.4x	98.6x
8	0	0	2	15	1	4	3	24	12	4.54	95.5x
9	1	9	0	0	1	9	2	18	14	5.38	9.78
10	2	20	5	50	2	20	9	90	23	6.78	91.38
11	0	0	12	132	1	11	13	143	36	13.65	\%6.4.
12	2	24	7	4	1	12	10	120	45	17.48	82.68
13	4	52	10	130	1	13	15	15	6	23.14	76.98
14	2	2 ${ }^{\text {b }}$	3	4	0	0	5	70	65	25.0%	75.08
15	1	15	11	165	1	15	13	195	79	29.9\%	70.18
16	5	60	${ }^{1}$	128	2	32	15	240	94	35.64	64.45
17	6	102	9	153	7	119	22	374	116	43.98	56. 14
10	7	126	15	270	0	0	8	336	136	52,38	47.73
19	1	19	11	209	5	95	17	323	155	58.74	41.34
20	11	220	6	160	1	20	20	400	175	65.34	33.78
2	10	210	6	126	3	63	19	399	19	73.58	26.58
${ }^{2}$	\square	176	4	86	2	4	14	309	209	78.6	21.2\%
23	3	69	1	23	4	9	6	104	216	61.8x	10.23
2	4	\%	2	41	2	46	8	198	23	A.6x	15.24
2	4	100	0	0	2	50	6	150	230	87.18	12.98
25	7	182	1	8	3	78	11	236	241	91.3\%	8. 71
27	3	${ }^{4}$	0	0	4	108	1	189	248	93.98	6.18
28	3	4	0	0	2	56	5	140	253	95.6x	4.23
29	2	5	0	0	5	145	7	203	250	90.5\%	1.58
30	0	0	0	0	2	60	2	60	262	99.3	0.85
3	0	0	0	0	1	31	1	31	263	99.68	0.47
33	0	0	0	0	0	0	0	0	263	99.6x	0.4*
33	0	0	0	0	1	33	1	33	264	100.0x	0.07
DTAL	88		120		56		34		23		
QUERPEE	20.0		15.6		20.8		18.2				

[^1]Appendix Table 2. Age, sex, and size composition of Delta River fall chum salmon, 1985.

	AEE 0.2				AGE 0.3				AFE 0.4				AFE 0.5			
	$\begin{gathered} \text { SAMPIE } \\ \text { SIIE } \end{gathered}$	PERCENT	MERN STANDARDLEMGTH DEYIATION		STMILE SIIE	PERCEN	WEAN STPNDARD LENGTH DEVIATIICN		SAMPLE SIIE	PERCENT	MEAW STAMDARD Length deviation		SAMPLE SIIZE	PERCENT	vean standard LENGTH DEVIATIDOK	
Mries	13	5.08\%	610	29.2	7	29.30\%	609	29.7	11	4.30\%	634	18.9	1	0.39\%	590	-
FEMLES	24	9.389.	566	35.4	120	46. 8 B8	582	27.0	12	4.69\%	587	30,1	0	0.00x	--	-
TOTAL	37	14.45\%	583	38.5	195	76.17x	592	31.0	23	8.98\%	610	35.4	1	0.39\%	-	-

a Length masured mid-eye to fork-of-tail in eillimeters. Ages expressed in European notation.

Appendix Table 3. Fall chum salmon escapement survey counts in the Delta River, 1977.

date	TYPE SURNEY	EASTERN CHMNELS a			mid or main river chanels b			HESTEAN CHANELS			total delta aiver area		
		LIVE	DEAD	tital	LIVE	DEAD	TITAL	LIVE	DEAD	total.	LIVE	DEAD	TOTPL
act 04	FOOT			Turbid	400		400	345		345	745	0	745
DCT 10	Fgat			TLABID	699		699	1,184		1,184	1,803	0	1,883
OCT 20	FIOT	4,968		4,968	3,420		3,420	793		793	9,181	0	9, 181
OCT 24	FOUT	7,324		7,224	4,201		4,201	794		794	12,219	0	12,219
OCT 28	FOOT	8,372		8,372	5,137		5,137	986		996	14,495	0	14,495
NOVO1	Fall	5,544		5,644	4,894		4, 894	870		870	11,40日	0	11,409
NISV 07	Fout	3,870	3,000	6,870	2,087	2,183	4,270	564	564	1,128	6,521	5,747	12,268
NOV 17	foor	763		763	966		966	143		143	1,872	0	1,872
NON 25	FIOT	213		213	117		117	29		29	359	0	359
OCT 21	fertal	B, 750	0	8, 750	7,755	495	B, 250	875	50	925	17,380	545	17,925
MOV 04	AERIPL										9,471	6,314	15,785

a Includes chamel I.
b Inciudes channels II and II $1 / 2$.
c. Intlutes chatnel III.

Appendix Table 4. Fall chum salmon escapement survey counts in the Delta River, 1976.

DATE	TYPE SILIVEY	ERSTERN CHMNELS			mid or main river chanels b			IESTERN CHMNES c			TOTA Deita rlyer area		
		LIVE	DEAD	Total	LIVE	dead	TOTAL	LIVE	DEAD	total	LIVE	DEAD	TDTAL
act 07	Foot	58		58	3		3	3		3	64	0	64
OCF 14	FDOT	599		599	667		667	10		10	1,276	0	1,276
aCT 21	FIOT	1,210		1,210	1,357		1,357	65		65	2,632	0	2,632
ACT 27	FOOT	1,968		1,968	2,219		2,219	47		47	4,234	0	4,234
NOV 02	FIDOT	1,953		1,953	2,250		2,250	40		40	4,253	0	4,253
NOY 16	Fgot	611		611	764		764	35		35	1,410	0	1,410
NOV 24	Fagt	243		243	284		284	2		2	529	0	529
DEC 03	FDOT	3		3	2		2	2		2	7	0	7
OCT 19	herial	2,751			2,028			0			4,779		4,799
OCT 28	AERIAL	2,969			1, 428			91			4,468		4,468
NOV 04	gerial	1,748			1,895			69			3,712		3,712

a Includes channel 1.
b Includes channels il and II $1 / 2$.
c Includes channel III.

Appendix Table 5. Fall chum salmon escapement survey counts in the Delta River, 1975.

DATE	TYPE SURVEY	EASTEPN CHANNELS a			MID OR MAIN RIVER CHMNELS b WESTERN CHANELS C						TOTAL DEITA RIVER AREA		
		LIVE	DERD	TOTR	LIVE	DEAD	TUTA	LIVE	DEAD	TUTAL	LIVE	TEAD	TITAL
OET 08	FOET	0	0	0	0	0	0	0	0	0	0	0	0
CCT 09	FOOT	200	0	200	0	0	0	0	0	0	200	0	200
OCT 15	FDOT										328		328
OCT 22	FIET										1,686		1,686
OCT 29	FIDT										3,089		3,089
Mav 12	FIDT										1,949		1,949
NOV 19	FIOT										547		547
NDN 24	FIOT										3		22
1040	Reride	475		475	2,050		2,050	335		325	2,850		2,050

a Includes chamel I.
b Ircludes channels II and II $1 / 2$.
c Includes chamel III,

Appendix Table 6. Estimated number of fall chum salmon entering the Delta River by survey date in 1977.a

[^2]c New fish entering the strang

Appendix Table 7. Estimated number of fall chum salmon entering the Delta River by survey date in 1976 . $^{\text {a }}$

a All observations band upon foot curveys unless othwwise noted. Live fich shom below new figh entering tha struan are thore reaining alive on subsequent surveys bard

b Aerial survey; these data were excludud.
c. Hen fish entering the stream.

Appendix Table 8. Estimated number of fall chum salmon entering the Delta River by survey date in 1975. ${ }^{\text {a }}$

day		$\begin{aligned} & \text { NNER- } \\ & \text { VHR } \end{aligned}$	OCT 1		ACT 9		OCP 15		OCT 22		OCT 29		Mov 68		now 12		Hov 19		MOV 24	
	date		- DEAD	LIVE	DESO	LIVE	DEFD	LIVE :	defo	LIVE	dead	LIVE	(DEAD	LIVE	DEAD	LIVE	DEPD	live	dEAD	LIVE
1	10/6		,	!		'		,		'		'				!				
		2	;	1		;		;		:		!	,			:				
	10/6		;	0 c		;		;		1		1				;				
		1	'			;		!		'		:	:			'				
4	1019		,	!		200 c		;		!		;				'				
		5	!	1	6		-----	1		!		'				;				
6	$10 / 15$,	!		194 :		134 c:		'		1				'				
		7	!	!	40	1			-	!		!				'				
13	10/22		!	!		154		129		$1,403 \mathrm{ci}$		1				!				
		7	1	!	85	:	29	1	48							;				
20	10/29		1	:		67 :		101		1,355		1,566 ct				'				
		7	1	;	55	'	65	!	303	!						!				
	11/6	b	:	;		12 :		36		1,052		1,513 :		2318		!				
27		6	,	!	12	!	27	1	579	:	309	;	7		-	;				
	11/12		;	;		0 1		θ		473		1,204 :		230		34 cl				
33		7		!		;	8	;	387	!	67	!	48		1					
40	11/19		:	;		!		0 ;		86 :		528		113		32 :		(281)		
		5	I	!		;			80	1	336	!	- 69		5	1				
45	11/24		!	1		:				61		202 :		113		28 :				132710
		2	:	;		'		I	6	:	106	!	-33		3	;				
47	11/2		1	!		'		!		0 1		96		B0		25				
			I	;		;		;		I		1				;				
			!	1		!		!		'						'				
			0		200		134		1,403		1,472		157		-		0		0	

a All observations baged upon foot surveys unless otherwise noted. Live figh show below new fish entering the strean are those reugining alive on subsequent surveys based

of Rerial eurvey.
c New fich entering the strean

Appendix Table 9．Fall chum salmon run timing based upon the 4 －year average cumulative and daily percentages of new salmon entering the Delta River between subsequent surveys in 1975，1976， 1977，and 1985.

滑		$\begin{aligned} & {[58} \\ & 08 \end{aligned}$	$\begin{aligned} & \text { sis } \\ & \text { ax } \end{aligned}$	19	19		an	min	（1） vanimis it	$\begin{aligned} & 1978 \\ & \text { mation } \end{aligned}$	$\begin{gathered} 19 \% \\ \text { nonly } \end{gathered}$		$\begin{aligned} & \text { 19] } \\ & \text { Mमу } \end{aligned}$	safly	4apax Mally
1	20－87	0.085	0．0es	0.008	0008；	0．005：	0.008	0	$0.800000:$	acous	2，00005	0.00000	0，0000）：	0.00003	0
2	26－9	0.378	Q， 0 \％	Q 4 W	4．13：	0.301	0.008	0．408	0.0800011	Q 374	0.07 c	0.480	212041	0．277	0．00008
，	د5000	0，78	Q． 168	4．955	0.208	0.525	0.163	0.951	d．090014：$: 1$	0． 31318	0.075	a 4 48\％	Q．12041	0.2318	cmoven
4	21－89	1．188	a，${ }^{3}$	1.371	0．605：	0．83：	0.231	1.38	conover ：	0.3734	0，0rsis	0.48	$0.30 / 3 / 8$	0.318	a，acoue
3	29－5］	1．45	4.348	1．${ }^{\text {ex }}$	0．540	E．148：	a，315	1.83	a． 0000 a ： 1	0.37312	conts	0.4585	0.345785	0.3124	a．0000
6	375	1.278	0．3515	229	1－23s ：	8．435 ：	0.3	223	acocous ：1	0.31318	0.075	0.458	Q 3687\％：	0，3123）	cmex
7	$01-2+1$	2．843	0.478	273	1．637	1．75：	Q，4\％	ers	asoune ：	0.35358	0．07rs	0.40	0．3657 ；	0，31291	2，00000
6	cerat	2．66x	0，545	3．1901	1．\％；	205：	0．54	3，138	acturit ：		a，erras	0.4008	0．3475：	0.312 m	0，0000te
9	03－14	2．85	0.63	2，64	2， 3 年：	2385：	a， 68	3．Evit	a．cones 11	0.37351	0.875	atand	0，3458！	0． 3128	0．0000］
10	Onat	3，385	0.08	45	267\％	290：	0.708	45	a．cexas ：	a．3738	20ms	0.9103	a 3＊T：	24063 1	0，000012
11		3.78	a， 7	5．73：	3．851	343：	ata	Stin	0，comens：	0，37318	0．073	1．180	a mran：	aters	
12	dent	4.108	0.808	6.98	4．48：	4．078：	0.68	E．901	Q．00ccis 11	a， 37318	0.07 cas	1．140	a．crets ！	a， 6 \％ors	a 0 000e
13	37－6t	4．408	1.018	8，100	5.3018	475：	1．014	C101	0，000ere if	0．37338	0． 480	t．104	arret	Qerete	2．000es
14	06－2ct	4.8	3748	9， 3 戌	6， 178 ：	6 6015：	3148	9．3000	2000］ 51	0，37313	2，7308	t．1944	a．mber	4．280\％	2000104
15	0）－${ }^{\text {cet }}$	5.609	8.45	10．454	7．003：	7，402：	5．60\％	10，405	0.000473	0.7618	$2 r^{\text {ase }}$	1．20itic	arrem	1．33015	a，
16	10－6t	6.29	9．268	11.644	10.295	9，304：	6.38	12，64	2，000E31：	4．타N．	2 2tax	t． 1 124 ${ }^{\text {a }}$	32405：	1．940	a，cemes
17	\＆1－6t	6.818	11.848	16， 313	13．53！ 1	12．169	tutat	1635	0．001se it	2．8302m	2，resa	4685%	122015：	2 atam	a，¢000
14	12－Rat	7.478	14，67i	20．884	S6， 77	14．573：	7.478	20．se	0.00385011	0， 6245	27359	4.6697%	2300151	2 d	0，000
19	13－6t	2． 105	17，41x		20.0181	17．780：	8108	为碞	0．006］${ }^{\text {a }}$ ：	a， 6 203	2.753	406 EFP	323018 ：	t．atctis	000
21	14－0．at	4.78	30.14	30．85	23．253：	2n． 613 ：	a． 78	30．30	6，000088 ：	a．cien	2，73es	4.645	124015	2alere：	a rexem
3	Pay		23， $3^{\text {che }}$	34．95	26．45\％：	23，54：	9.5	34．5\％	0，01130：1	athen	3．1784	4.8595	121015 ！	292me：	0，00408
28	16－4ct	14．90\％	24．49\％	39，65\％	20．73x：	21．71\％；	14．5010	3， 4	0，01093 ：	$5 \mathrm{~S}_{5}$	3．176	4.0 chats	22401s：	4．trex	a，00013
23	17－14t	20.394	20．6M	438	31．73：	31．3n：	20．5m	44.38	acusim ：！	5．600，	317m	4．E897	2010：		a， 0 00
＊	15－0，	A．17x	꽀4	4．00s	33．73： 1	5．40］	8，IM	49．00\％	0．00959 ：	3．cceer		4.68	coras：	3 H	000
z	5－10t	31．75：	Ines	538\％	35．739：	32．312 ：	33．7n	93187	a，00－3a ：	5.6009	1.17618	4，4695	2.015		
3	20－at	37．394	37．20\％	51．36	37．019：	43148：	37．3m	59034	a，atore：	5．600\％	3.17848	4，cram	20ass：		
27	2：－dx	429	1237x		30a3：	47，285：	3 nc 昭	52.84	0．01809 ：1	3 cmoen	3．1764	5.50018	20nce：	40760 ：	$0.00{ }^{\text {a }}$
通	2e－st	4． 608	47.81	65．341	41．840：	51．739：	41，841	积3414	0.014000 ：1	5， 60×9	3－0163	5.50118	201agi	4，5］per	Oma
＊	23－165	54．090		74．945	43．日大s：	56402	43．85\％	74， 0 ＋1	0，01715：	6等	5.0153	5.5018	2013：	4．69038	9 0 Hex
30	3b－act	64．18	5.48	B0． 3 hd	45．8sis：	6L．tin：	46．ent	80，348	6.028514 ：	5.	5－01633	5．50118	20103：	4．65］m	apods
32	2－04	67．35	62.48	84， 3 er	929ea ：	csasit	57．93\％	84．83	0.01275	6．emios	5.0163	4．57\％9	14，0464：	7．47409 ：	90．0．90
38	z－ict	73．646	67．453	坹508	73．361	78．14is	57．43：		0．000ene ：	6 6，${ }^{\text {chem }}$	5． 1163	4.5759	Heders ：	7．4746：	0．0019 ${ }^{\text {a }}$
33	27－9x＋	73．90	T．474	9\％．048	7．73：	8t， 0 at	72.47	94，${ }^{\text {a }}$	2006astit ：	6，mina	5．0163	4.5189	3－81415 ：	4．51746：	0，00040，
3	abrict	86.164	74．8\％	ghtets	61． 531	85339	74．98\％	鱼酸	$0.0300{ }^{\text {a }}$ ： 1	5．20］s	24504%	4．57\％	3． 14151	4.20	2004＊2
35	2－nt	9208	7．37	9．7is	樶浪：		713m	59．714	0.001634	$5{ }_{5}$	2.45044	0．0．76	284418	2，＋4．25：	0，000674
35	30－04t	93004	2hes	92．75	88.231	90．253：	79，	5a．7ss	4，0063近：	0.818	2.45041	0，0473	3 ltaxs	1．7638：	0，00nes
37	3t－nt	\＄4．008	823I	号 818	cens：	geas ；	82\％	54．41	0，004En ：		2.6045	0． 0478	3.81418 ；	1．745x	10．0mests
${ }^{3}$	O－401	94．901	94．724	chem	96．ens ；	93．83：	6．738	5．9\％	$0.003317: 1$	Qumes	245041	0．6473	3 31415：	1．7403\％	a，maves
3	02－40\％	验碚	17．17\％	53．958	2．98；	9． 708 ；	67．1\％	59．930	Q，00er：711	arems	2 aspay	0.0478	$0.1474 \times$	0．0．ters	cocores
40	23－mon	\％． 51	國石	5	97．148；	号维；	607	50， 58	0.002345	d．	0.0853	0．0n7m	0．14745：	0.4000 x	0.030015
41	$0{ }^{3}$	97．398	6e97	97.008	97．28）；	理䂒：	86．97	98000	a，moease ：	0.0	Q，\％993	0， 047	0，1474：	0．tame ：	2008029
42	J5－40y	30．38	58．47	93.048	7．743 ${ }^{\text {a }}$ ：	56．848	19．953	99.048	$0.001791:$	$0.80{ }^{\text {d }}$	Q．4．93t	0.0478	0.14741	0.40085	a，00019
43	O－Now	99．083	sh．7x	93．093	97．5x ：	95633：	20．73	9．09\％	6，001520：	0.62053	0．405：	0．0．47		0．4nesi ：	0．ament
4	67－409	98.218	\％6\％	93.144	97．73 ：	96．54：	91.678	99.218	0.004279	0.150	a酎昜	0．0nt	a．14743：		10.000015
45	\％－30	97．372	¢ 5 5\％		97．80	97．23\％：	92574	97．5\％	0．0010ta ：	0.35098	0.8895	0．047	214745：	0.31351	0．000985
4	0－100\％	73，508	尔， 471	98．24t	94．03）	97.558	974）	99．53	0.000731	0.15 ESx	0.89985	0.047 TH	Q 1774	0.3138	0.000015
47	10－409	99，609	9，375	99， $8 \pm$	思： 7 ：	97． Bras $_{\text {！}}$	94．3 ${ }^{\text {3 }}$	99.658	0． 20063	0．15099	0．9n－5	$0.047{ }^{\text {a }}$	0.14741	0.31331	0．0000L5
46	！－${ }^{\text {bow }}$	99， 84	58．27\％	99．339	94， 38 ：	96 t9x ；	920］	9985	0.00040 il	0.15068	0．69\％3	0．047a	0． 14748 ；	4．31331：	0．006015
49	12－H00	100.00	96．178	98．35	90478：	90．59：	\％${ }^{\text {a }}$ ， 75	S00 ${ }^{\text {ara }}$	0．00005e：	0． 1585		0．0470	2．1474：	0.31335	0，006ins
50	$13-400$	100.008	97，074	99．435	號 618 ！	94．730	77.075	100，000	0.000162 ：	0．0000	0．dp93s	0.047 S	Q． 1474 ：	0．2735	0.00017
54	$14+$ How	100．008	97．54	9847	94．735：	94．043：	\＄7．8\％	100.004	0．00007：	2．0006	0.90923	0．0473	0.14746	0 emsel	0．000077
5	！ 5 －4by	100，000	ges	93．585	20．738：	93．3as：	9．Es	100．005	0．0000e It	0.00000	0．6\％85	$0.047{ }^{\text {c }}$	0．1474	$0.27{ }^{\text {a }}$ ：	0.000017
5	15－bu	100．004	\％ 8 \％	空家	97005：	53．60\％ 1	93．065	100.508	$0.000018:$	0.00008	a． 0 gesa	0.0047 m	a，14741	Q，2785：	0.000017
5	$17-\mathrm{How}$	100． 008	53．78	9 cm	$97.20{ }^{\text {c }} 1$	93．645	98．2m	500.008	0．000011：	0.00003	$0.00{ }^{\text {a }}$	0．047 ${ }^{\text {a }}$	0.1474 ：	Cocces ：	0，000000
5	18 Hov	tacos	98．83	92．67\％	99，389：	90，751	92．354	100．008	$0.060081:$	0．0000	a，eress	0，0473	0.14741	20043：	0.08000
5	［9－10\％	100，00\％	9ner	97.713	99．50：	99， 7×1	98．50\％	109．000	0．000008：	0.00008	0.02385	0．0077	Q． $1774 \times$	0．0063：	0，009050
5	20－now	cosom	9．40	\％．7\％	\＄4．533：	59，${ }^{\text {a }}$ ！	93．538	100．003	$0.000004: 1$	0.00008	0.0650	0．0476	Q，03135	0.0051	10．000000
51	2 CH	100．008	99\％ 917	998．813	99，58 ：	\％201	99．58	100．00s	0.000004 ：1	0.06008	0，Cefer	0.0476	0.03138	Q．027es：	0.000000
5	25－400	10aces	98480	99．85	53．730	Yg．	9 STR	100，003	0,000003 it	0，0000\％	0．1285x	0．047	0.01138	aceres ：	0，000000
60	23－40	100.005	98.78	\＄9\％	49．123 ；		97． 68	100.008	$0.090003:$	0.00008	0.10285	0．0．37	0.01335	0．cerse：	10.000000
61	24－00\％	100000	L0atan	53，\％01	93．654：	\％n．90：	92865	100．005	0.800003 ：	0.00003	0． 8 ens	0．0475	0.07331	0.08 2te ：	： 0.000000
62	2－by	100.005	2090008	100.09	99．694 ：	nestif	99．691	100，006	0．cocose If	0.00000	0．0000	6．047	$0.03135:$	0．015	10，000009
63	ab－Her	100.008	100.605	100．008	97．78：	9f．98］	99．785	100001	0，00000：：	a，00002	0.00091	0.0005	0.0313×1	0．007	10．000000
5	27 －tor	100．006	100.003	100．03\％	93， 51	58941	92．740	1000.004	0，0000te ：	a． 00008	a．0000\％	0.00008	0.03135	$0.007{ }^{\text {a }}$ ：	0，000000
63	28－60	100．008	100.008	100．005	星故：	99，\％	98．783	toa 0 dr	0.00000111	a，00003	0.00008	0.00008	0． 0313 ：	0．0074	10.090000
6	25－40\％	100， 008	100．00\％	：00，008	99．8171	97，931	99．818	100．008	0.00000111	0.00001	0.00097	0.00058	0.08135	0，007	20．00000
67	$30-\mathrm{mor}$	100.005	100．008	100．008	99．相：	99390；	93．469	100．003	0，000001：1	0.00008	0，00068	0.000078	Q．0313：	a．007 ：	0，000000
6	Othe	100，008	．00，00x	100，00x	98．875：	93．988 ：	98.874	100.008	． 00000011	0.00005	0.00008	0．0000	a．al13：	0．007\％：	； 0.010000
5	02－ha	tol 0 cs	100．00\％	100．00s	\＄4．95：	走易：	9\％985	100， 0108	． 000000 I	a．0000	a． 00008	0． 0 000	a 0 aliz：	0．covers ：	0．000000
70	03－95e	100．008	100．008	\＄00．008	99．945；	90．585	98．948	300.008	．000009 ： 1	0.00005	0.06001	0.00088	0．0313：	0.0076	1 0．openove
7	O－9	100，000	$100.00{ }^{\text {che }}$	100．003	9\％．97x	59，58\％	\％9\％	100， 005	． 000000 II	0．000es	0．0000	0.00005	0.03158	2． 0075	： 0.0000000
72	國家	800．003	100．00\％	100.008	100．305 ！	200．030：	100．008	100.008	a．000000：	0.00008	0.0000%	d， 600008	0.031381	0．0074	： 0.0000000
HEm		3	2	24	28										
walime		51.1	92.1	58.3	71.5										
stamat	TATID	7.15	9.6	7.5	80										
Mmin mix		3	2	景	3										

$$
\begin{aligned}
& \text { Appendix Table 10. Average percent of live fall chum } \\
& \text { salmon in the Delta River by date } \\
& \text { based upon observations made in } \\
& 1977,1981,1982,1984 \text {, and } 1985 \text {. }
\end{aligned}
$$

State of Alaska

date: March 18, 1987

FILE NO:

TELEPHONE NO:
456-4286
FROM:
Louis H. Barton

14
Upper Yukon Research Project Leader Division of Commercial Fisheries Department of Fish and Game Fairbanks

A total of one aerial and nine ground surveys was made of spawning fall chum salmon in the Delta River in 1986 (Table 1). Two methods were used to generate population estimates using the 1986 data as described in last year's Delta River report (AYK Yukon Salmon Escapement Report No. 29). The first method involved plotting counts of live salmon by survey date and estimating the area under the curve (i.e., number of salmon days). The result was 129,504 salmon days assuming the first fish entered subsequent to September 25 and that no fish remained alive subsequent to December 6. Division by residence time (18.2 days) yielded a population estimate of 7,116 fish. Only foot survey observations were included in this analysis since many carcass counts were included in the live salmon counts during the aerial survey.

The second method employed to estimate total abundance was as follows. The number of live salmon observed on a specified day was the sum of the number of live fish remaining from the previous survey(s) and the number of new fish entering the stream subsequent to the previous survey. The number of fish which had spawned and died between surveys was estimated from average stream residence time. Total run size was approximated by summing the numbers of new salmon estimated entering in each interval of time (Table 2). The population estimate was 6,290.

Both of the above population estimates can be considered conservative due to difficulty in obtaining precise salmon counts early in the season from turbidity problems and late in the season from the presence of ice in portions of the spawning area. Nonetheless, the best estimate of total fall chum salmon escapement in the Delta River in 1986 is considered the midpoint between the two estimates generated, or 6,703.
Distribution -2-
March 18, 1987The salmon count (live plus dead) on each survey was employed in theDelta River time-density model to estimate, at the time of the survey,the total spawning population in 1986. Resulting population estimatesare shown in Table 3 along with 95% and 90% confidence intervals (seealso Figure 1).
Attachments
Distribution: AndersenArveyBergstromBrannian
Buklis
Cannon
Merritt
Randall
Whitmore
Wilcock

Table d. Delta River fall thum salwon escapement surveys, 1986

LATE	TYPE SURVEY	ERSTERN CHPANELS 3			MID OR MaIN RIVER CHMANELS D			WESTEEN CHMNHELS			TOTAL DELTR RIVER AREA			
		LIVE	dead	TOTAL	LIVE	DEAD	TDTAL	LIVE	DEAD	TOTAL	LIVE	DEAD	TDTAL	
30-Sep	FOAT d			TURBID			TURBID	271	30	301	271	30		poor
\%-0ct	FDET d			TURBID	147	0	147	527	66	593	674	66	740	poor
14-0ct	FDOT ${ }^{\text {d }}$			TUPGID	21	4	25	399	62	45.	420	66		very poor - high turbid mater
21-0ct	FOET			TUMAID	99	23	122	1,332	323	1,655	1,431	346	1,77	ch3 good
28-Det	FIOT	215	7	228	2,454	126	2,580	1,346	293	1,631	4,017	416	4,433	
04-Nov	FODT	392	60	452	2,635	364	2,999	1,172	627	1,799	4,199	1,051	5,250	
12-Nov	FOET d	237	116	35.3	2,720	1,350	4,070	802	560	1,362	3,759	2,026	5,785	
19-Nov	FIDOT d, e	105	84	189	1,679	75	2,436	284	226	510	2,068	1,067	3,135	ice and show cover
$26-\mathrm{Noy}$	FGOT f	32	-	32	740	-	740	100	--	100	872	--	-	
30-Det	AEAIAL	251	13	264	3,957	50	4,007	1,671	25	1,696	5,879	${ }^{8 B}$	5,967	live ct includes scme carcasses

a Includes chamnel I.
b Inciudes chameis 11 and II $1 / 2$.
E includes charmel III.
d Poor survey
e Carcass count is very lom. Live court fair to poor due to ice cover.
f No carcass count was made.

FILE－NEIFSHB6 17－Mar－87
Table 2．In lita River fall chin salmon popuiation eatimate based upon the suamation of new saluon entering the river during each interval of time hetween gurveys．

	SEP 30		OCT 6		OCT 14		OCT 21		OCT 2 P		OCT 30 区，f			NON 4		NOV 12		NOV 19		NON 26	
DAY DATE UFL	DEAP	LIVE	（ DEA	LIVE	1 DER	LIVE	DEAD	LIVE	（ DEAR	live	DER	LIVE	；	DEAP	live	dead	LIVE	DEAD	LIVE	DERD	LIVE
$125-5 \mathrm{p}$	；		1		！				；		！		；					；		，	
5			1		1				；		，		＇					，			
$630-5 e p$	（ 3 （30） b	271 c！	！		1				；		；		：					，		，	
6	1 8 －		－－－um		1				1				1					；			
$1206-0 \mathrm{ct}$	1	263	：（165）	411					；		！		；					；		，	
	160		1 19－						I		，		！		Pcpulation	estinate	e．， 5	mation			
$20.14-10 \mathrm{ct}$	！	203	！	393	I（66）	（308）			；		，		：		On new fis	entering	trean）	$=6,290$			
7	1 133		－ 104		1				；		；		＇					；			
27 21－net	；	72	！	288	1		（346）	1，071 c			，		！					：		，	
7	－ 60		－ 201		；		36		－－－－－－		；		：					I		，	
$3428-0 \mathrm{ct}$	；	11	1	87	！			1，035	（ ${ }^{\text {（4161 }}$	2，884			I					！		，	
	1 9		125		；		20			号	－m－n－m		：								
$3530-0 \mathrm{ct} \mathrm{d}_{1} \mathrm{e}$	：	2	！	62	1			1，014		2，852	（88） f	1，966						；		，	
5	12		156		；		211		－ 66		，			－－－3－－				；			
4104 －hov	＇	0 ：	：	6	1			803		2，786	，			10511	604			！		，	
B			16		1		576		764		，		：	27	－－－3－3－	－－－－－－－		；			
49 12－Noy 7	1		；	0	；			227	－	2，022	：		；		577	（2026）	934			，	
			：		：		211		1，410		，		；	153		32	－－－－	－－－－－－			
5619 How 7			；		！			16		611	，		！		423		902	（1067）	115		
			；		；		16		156日		，		；	295		202		1			
63 26－Nov 11			，		；			0		43	，		！		129		700	，	（11）	（ 9	（11H） $\mathrm{c}_{\text {e }}$
			｜		！				143		，		＇	128		580		56			
7407 －${ }^{\text {dec }}$	1	，i	i		1				1	0	，		1		0		120		5		
	271		41		0		1，071		2，884					604		782		60			

a All observations based upon foot surveys unless otherwise noted．Live fish shown below new fish entering the streas are those remaining alive on subsequent surveys based

b The number in parentheses is actual number of carcasses observer．
c New fish entering the strean．
d Alerial survey．
e Survey results were not included in the analysis for this day．
f Live counts include a large percentage of carcasgen thus survey results mere not included in analysis．

Table 3. Population estimates of fall chum salmon escapements to the Delta River in 1986 based upon observations of live and dasd salmon by survey date and the Delta River time-density model.

SuRVEY DATE	SURMEY TYPE a	EXPPNSIIN FACTOR b	$\begin{aligned} & \text { SURVEY } \\ & \text { CORAT C } \end{aligned}$	POPLLATION ESTIMTE	RANE AT 95\% CDNFIDEMLE LEVEL	fange at 90\% CDAFIDENCE LEVEL
30-5ep	F	0.0145	301 p	20,696	--	--
05-Det	F	0.0407	740 p	18, 165	--	-
14-Bet	F	0.2051	486 p	2,358	--	-
21-Det	F	0.4725	1,777	3,760	2,149-15,044 (relative error 300.076)	2,419-8,443 (relative error 124.53\%)
$28-\mathrm{ct}$	F	0.8533	4,433	5,195	4,433-8,290 (relative extor 59,58x)	4, 433-7, 176 (relative error 36.14\%)
30-act	A	0.9086	5,967	6,611	5,967-9,200 (relative error 39,16\%)	5,967-8,348 (relative error 26, 28x)
$04-\mathrm{Nov}$	F	0,9566	5,250	5,488	5,250-6,46i (relative error 17.73x)	5, 250-6, 176 (relative error 12.53x)
12-Hov	F	0.9850	5,785	5,873	5,785-6,210 (relative error 5.74\%)	5,785-6, 118 (relative error 4,186)
19-Nov	F	0.9977	3,135 p	3,142	3,135-3,164 (relative error 0.69\%)	3, 135-3,158 (relative error 0.51x)
2b-Hov	F	0.9993	B72 p	-		-

a Foot (F), Aerial (A),
b Cumulative proportion of escapement estimated on survey date from aigratory time-density model.
c Includes live and dead fish.
p Poor sumvey conditions.

DELTA RIVER 1986 PREDICTED SPAWNING ESCAPEMENTS

Figure 1.

[^0]: a Includes charnel I.
 b Includes chanmels II and II $1 / 2$.
 c Includes channel III.
 d Poor survey

[^1]: a Data from Trasky 1974, 1976.
 b Mid-river chamels inclute chansels If and II $1 / 2$.

[^2]: a All observations based upom foot surviry uniess othervise noted.
 b Gerial surver.

