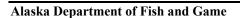
Anadromous Cataloging and Fish Inventory in Select Drainages of the Kobuk River and Upper Koyukuk River 2022-23


by

Nate Cathcart

and

Joe Giefer

May 2023

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)	5410 01 118	General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
		all commonly accepted	AAC	abbreviations	
gram hectare	g ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
		abbleviations	AM, PM, etc.	base of natural logarithm	
kilogram kilometer	kg	all commonly accepted	AIVI, FIVI, CCC.	catch per unit effort	e CPUE
	km L	professional titles	e.g., Dr., Ph.D.,	*	CV
liter		professional titles	R.N., etc.	coefficient of variation common test statistics	$(F, t, \chi^2, \text{etc.})$
meter milliliter	m mL	at	(a)	common test statistics confidence interval	(F, t, χ², etc.) CI
		compass directions:	w		CI
millimeter	mm	east	Е	correlation coefficient	D
W: 14 1 (F 1:1)		north	N N	(multiple)	R
Weights and measures (English)	03/	south	S	correlation coefficient	
cubic feet per second	ft ³ /s	west	W	(simple)	r
foot	ft.			covariance	cov
gallon	gal	copyright	©	degree (angular)	
inch	in	corporate suffixes:	C	degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ.	Incorporated	Inc.	greater than or equal to	≥
pound	lb.	Limited	Ltd.	harvest per unit effort	HPUE
quart	qtr.	District of Columbia	D.C.	less than	<
yard	yd.	et alii (and others)	et al.	less than or equal to	≤
		et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	$log_{2,}$ etc.
degrees Celsius	°C	Federal Information		minute (angular)	,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	A	trademark	TM	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity (negative log of)	pН	U.S.C.	United States Code	population sample	Var var
parts per million	ppm	U.S. state	use two-letter	sumple	7 UL
parts per thousand			abbreviations		
parts per mousand	ppt, ‰		(e.g., AK, WA)		
volts	700 V		= ' '		
	W				
watts	vv				

REGIONAL OPERATIONAL PLAN NO. ROP.SF.4A.2023.03

ANADROMOUS CATALOGING AND FISH INVENTORY IN SELECT DRAINAGES OF THE KOBUK RIVER AND UPPER KOYUKUK RIVER

by
Nate Cathcart
Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, Anchorage

and

Joe Giefer Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, Anchorage

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, AK 99518

> > May 2023

The Regional Operational Plan Series was established in 2012 to archive and provide public access to operational plans for fisheries projects of the Divisions of Commercial Fisheries and Sport Fish, as per joint-divisional Operational Planning Policy. Documents in this series are planning documents that may contain raw data, preliminary data analyses and results, and describe operational aspects of fisheries projects that may not actually be implemented. All documents in this series are subject to a technical review process and receive varying degrees of regional, divisional, and biometric approval, but do not generally receive editorial review. Results from the implementation of the operational plan described in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author if you have any questions regarding the information provided in this plan. Regional Operational Plans are available on the Internet at: http://www.adfg.alaska.gov/sf/publications/.

Product names used in this publication are included for completeness and do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Nate Cathcart

Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage, AK 99518

and

Joe Giefer

Alaska Department of Fish and Game, Division of Sport Fish, Research and Technical Services, 333 Raspberry Road, Anchorage, AK 99518

This document should be cited as follows:

Cathcart, N., and J. Giefer. 2023. Anadromous cataloging and fish inventory in select drainages of the Kobuk River and Upper Koyukuk River. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.4A.2023.03, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2517

Signature Page

Project Title: Anadromous cataloging and fish inventory in select

Drainages of the Kobuk River and Upper Koyukuk River

Project leader(s): Nate Cathcart and Joe Giefer

Division, Region and Area Division of Sport Fish, RTS, Anchorage

Project Nomenclature:

Period Covered July 2022 through June 2024

Field Dates: July 25-August 2, 2022; August 25-September 2, 2022;

August 21-25, 2023.

Plan Type: Category I

Approval

Title	Name	Signature	Date
Project leader	Nate Cathcart		May 3, 2023
Research Coordinator	Kevin Keith		May 24, 2023

TABLE OF CONTENTS

	Page
LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF APPENDICES	iii
ABSTRACT	1
PURPOSE	1
OBJECTIVES	3
STUDY DESIGN	3
STUDY AREA	3
2022-23 STUDY AREA TARGET STREAMS	3
Headwater streams	
METHODS	
WAYPOINTS AND STATIONS	7
FISH COLLECTION REACHES	8
Sampling sufficiency and site selection	
Headwater streams	
FISH COLLECTION METHODS	
Fish collection protocols for headwater streams	
Fish collection protocols for un-wadeable streams	
AQUATIC AND RIPARIAN HABITAT ASSESSMENT	
Habitat transect	
Water quality	18
Channel morphology	
StreamflowRiparian vegetation	
PERMISSION FOR ACCESS TO STUDY SITES	
DATA COLLECTION AND REDUCTION	20
DATA ANALYSIS	
SCHEDULE AND DELIVERABLES	
RESPONSIBILITIES	22
BUDGET	23
REFERENCES CITED	24
APPENDIX A	27
APPENDIX B	39
APPENDIX C	67
APPENDIX D	75
APPENDIX E	77
APPENDIX F	

LIST OF TABLES

Table		Page
1.	List of subbasin's with target sites.	4
2.	List of variables to be collected during fieldwork.	
3.	Schedule of project activities.	
4.	AFFI personnel and duties.	
5.	Budget summary.	
6.	Summary of personnel expenses.	
	LIST OF FIGURES	
Figure	e	Page
1.	AFFI study area map.	5
2.	AFFI target streams.	
Appei	LIST OF APPENDICES	Page
ĀĪ.	Electrofishing protocol for wadeable streams.	28
A2.	Electrofishing protocol for un-wadeable streams.	
A3.	Recommended target voltage for standardized backpack electrofishing (constant power transfer) for	
	predominantly juvenile salmonids in cold waters at various ambient water conductivities	35
A4.	Procedure to process collected fish.	
B1.	Fish life stage classes	40
B2.	Fish threshold fork length values.	41
B3.	Fish-anomaly classes.	42
B4.	Water color, substrate, stream-stage, and embeddednes classes.	
B5.	Fish species codes.	
B6.	Riparian vegetation communities	
B7.	Vegetation disturbance classes.	
C1.	Headwater target stream location information.	
C2.	Cataraft (un-wadeable) target stream location information.	
D1.	Study area land status map.	
E1.	Flight safety	
E2.	Bear safety	
E3.	Electrofishing safety	
E4.	Acknowledgment of electrofishing orientation.	
F1.	Anadromous Waters Catalog nomination form.	94

ABSTRACT

In 2022 and 2023, the Alaska Department of Fish and Game (ADF&G), Division of Sport Fish will base out of the communities of Bettles (July 25-August 2, 2022), Kobuk (August 25-September 2, 2022), and Kiana (August 21-25, 2023) to inventory stream fish assemblages and associated aquatic riparian habitats in a 79,434 km² study area selected around the upper Kobuk and Koyukuk Rivers, along the south slope of the Brooks Range. We identified >200 potential target sites on smaller headwater and slightly larger un-wadeable streams from which we anticipate sampling approximately 72 headwater streams and 4 un-wadeable streams. At each site, prior to conducting electrofishing activities, we will collect data describing location, water quality, stream characteristics, aquatic habitat, and riparian vegetation. Fish will be collected primarily using backpack and raft mounted electrofishing equipment and minnow traps. Anadromous fish assemblage information collected will be used to nominate waters to the State of Alaska's Catalog of Waters Important for the Spawning, Rearing or Migration of Anadromous Fishes, or to update fish life stage information for waters already in the catalog. All sampling data will be available via the ADF&G Fish Resource Monitor - Fish Inventory online mapping service.

Key words: fish inventory; stream survey; anadromous; Catalog of Waters Important for the Spawning, Rearing of Migration of Anadromous Fishes; Anadromous Waters Catalog; salmon; whitefish; electrofishing.

PURPOSE

The State of Alaska is committed to conserving fish and their habitat. Alaska is the only state with a constitutional mandate¹ to maintain sustained yields of fish stocks, and the Alaska Department of Fish and Game (ADF&G) has a statutory responsibility to manage the use of wild fish stocks for sustained yield (Alaska Statute 16.05.730(a)). Along with proper management of harvests, protection of fully functioning and connected aquatic habitats is necessary to sustain fish stocks supporting Alaska's commercial, subsistence, and recreational fishing economies.

The state has multiple administrative tools to protect fish habitat. Alaska Statute (AS) 16.05.871 (the Anadromous Fish Act), along with the Fishway Act (AS 16.05.841, which requires that fish passage be maintained in any stream "frequented by salmon or other fish"), constitute Alaska's strongest and most comprehensive instream fish habitat protection standards. Several other Alaska statutes specifically reference fish habitat, including multiple sections in AS 41.17 (Forest Resources and Practices Act) and AS 46.15 (Water Use Act), both administered by the Department of Natural Resources, and AS 46.03.758 (civil penalties for discharges of oil), administered by the Department of Environmental Conservation.

The Anadromous Fish Act requires ADF&G to "specify the various rivers, lakes and streams or parts of them" of the state that are important to the spawning, rearing or migration of anadromous fish. The Catalog of Waters Important for the Spawning, Rearing or Migration of Anadromous Fishes (Anadromous Waters Catalog, AWC) and its associated atlas are the media used to accomplish this specification, and are adopted as regulation under 5 AAC 95.011. Activities and uses conducted in, or otherwise affecting, any AWC listed water bodies (under the Anadromous Fish Act) or fish passage in any fish bearing waters (under the Fishway Act) statewide, require prior approval from the ADF&G Habitat Section, which is responsible for reviewing project plans and specifications submitted by permit applicants. Permitting biologists work closely with project applicants to ensure that project plans provide for the proper protection of fish habitat. If so, a Fish Habitat Permit is issued authorizing the activity. Permit applications may be denied if impacts to fish habitat cannot be adequately avoided, minimized, or mitigated.

_

The Constitution of the State of Alaska; Article 8, Section 4 - Sustained Yield states "Fish, forests, wildlife, grasslands, and all other replenishable resources belonging to the State shall be utilized, developed, and maintained on the sustained yield principle, subject to preferences among beneficial uses."

Many other federal, state, and local government policies specify additional protections for anadromous fish habitat in Alaska. Like the Anadromous Fish Act, these only apply to those waters where anadromous fish use is explicitly documented, typically by reference to the AWC. For example, the National Marine Fisheries Service (NMFS) identifies Essential Fish Habitat (EFH) for Alaska stocks of Pacific Salmon in freshwater by reference to the AWC. Three of the U.S. Army Corps of Engineers' regional conditions for nationwide permits in Alaska specify additional requirements and restrictions for proposed projects located in or near AWC listed water bodies. Other policies that protect AWC listed water bodies are found in: area plans for state lands; state forest management plans; resource management plans for Bureau of Land Management (BLM) lands; federal and state regulations specifying waters closed to commercial and subsistence fishing; and city and borough ordinances.

Comprehensive fish distribution information is required for effective land use, conservation, and restoration planning to identify sensitive and important habitats. State land management plans, such as the *Susitna Area Plan* and the *Bristol Bay Area Plan*, and more specific plans such as the *Kenai Peninsula Brown Bear Conservation Strategy*, identify management guidelines or specify geographic areas of concern based in large part on the known distribution of fish. Watershed and conservation planning efforts also rely heavily on knowledge of fish distributions and aquatic habitat characteristics and their spatial and temporal relationship to other resources and activities. Planning for habitat restoration programs, such as fish passage enhancement, is also better informed with access to comprehensive fish distribution information.

Resource developments, such as transportation and utility corridors, are most effectively informed if complete fish distribution data is available at project onset. If comprehensive fish distribution information is provided during project scoping, projects can be designed to avoid habitat impacts; alternatively, the absence of comprehensive fish distribution information can lead to unintended fish habitat impacts.

All these fish habitat conservation authorities and planning processes are limited by the extent of current knowledge of fish habitats and their distribution. The Anadromous Fish Act, along with other federal, state, and local government policies that refer to the AWC, provides protection only to those waters identified in the AWC. Listing new water bodies in the AWC requires site specific, direct, and unambiguous observations of anadromous fish followed by a biological and public review process. Habitat modeling, speculation, or professional judgment is insufficient to add water bodies to the AWC.

Previous field inventories have demonstrated significant data gaps in the understanding of Alaskan freshwater fish distribution and habitat characteristics. To address these gaps, the ADF&G Alaska Freshwater Fish Inventory program (AFFI) began focused efforts to identify anadromous waters at a landscape scale in 2002. For example, anadromous cataloging work from 2003 to 2008 resulted in a 75% increase in the sum of the lengths of AWC listed streams, and a 72% increase in the number of cataloged water bodies in the Nushagak River basin. The state has limited authority to protect undocumented fish habitat.

To refine fish habitat management in specific waters, resource agencies also need knowledge of local aquatic and riparian habitat characteristics. Since aquatic and riparian habitats vary in their sensitivity to human activities as well as their utility to fishes, these habitat characteristics should be well understood when planning or permitting general or specific activities. Physical and biological characteristics of riparian and aquatic habitats are important factors in determining

appropriate best management practices and mitigation strategies. Documenting habitat characteristics at fish collection reaches also provides baseline information for comparison with future studies and may contribute to improved understanding of fish habitat associations.

In response to the above needs, in the summer of 2022, project staff will complete a rapid, baseline inventory of fish assemblages and associated aquatic and riparian habitat characteristics in select drainages of the upper Kobuk and upper Koyukuk rivers.

This project enables ADF&G, Division of Sport Fish to accomplish objective 1A, under Goal 4 of the Division's 2022-2027 Strategic Plan. The objectives also support the conservation actions of the Alaska Wildlife Action Plan by addressing recommendations for key habitats in Alaska through data gathering, land and water protection, and habitat work.

OBJECTIVES

The overall goal of the AFFI program is to provide information needed for management of the habitats that support Alaska's freshwater fish.

This project will contribute to that goal by means of the following objectives:

Objective 1: To maximize the spatial increase of mapped anadromous fish habitat depicted in the AWC by completing a baseline inventory of fish (with emphasis on anadromous fish) assemblages in select Kobuk and Koyukuk river drainages.

Objective 2: To record, at each fish collection reach, characteristics of aquatic and riparian habitats such that sufficient information is documented to: (a) identify well-supported and adequate habitat protection stipulations for permitting of local low-level disturbances; or (b) identify further sampling needs necessary to design adequate habitat protection stipulations or mitigation for permitting greater level disturbances.

Objective 3: To make fish distribution information for anadromous and resident fish species and the riparian and aquatic habitat characteristics collected available to Federal and State agencies and the public.

STUDY DESIGN

STUDY AREA

The study area was selected for fish inventory fieldwork based upon expected gaps in AWC coverage, human activities and infrastructure potentially affecting fish habitat, land conservation status, stipulations related to funding source objectives, and practical considerations of helicopter fuel ranges and time needed to conduct sampling.

2022-23 STUDY AREA

For investigation in 2022 and 2023, a 79,434 km² study area was selected around the upper reaches of the Kobuk and Koyukuk rivers (Figure 1). We will stay at a National Park Service (NPS) or Fish & Wildlife Service (FWS) bunkhouse located in Bettles for our base of operations during July 25 to August 2, 2022. Then, AFFI crews will base out of a NPS cabin north of the community of Kobuk on Dahl Creek from August 25 to September 2, 2022. Last, a crew will base out of Kiana from August 21 to 25, 2023. Following the methods outlined in the Target Streams section of this document, a set of target streams (180 headwater and 60 un-wadeable) were identified within the study area.

As was mentioned above, the study area was, for logistical purposes, delineated primarily based upon proximity to the most accommodating field bases identified in the area. A list of seven subbasins was identified to most closely encapsulate the 2022-2023 field bases and the associated target streams (Table 1).

Table 1.-List of subbasins in the study area.

		Area
Subbasin name	HUC	(sq km)
Middle Kobuk River	19050303	12,468
Kanuti River	19090104	8,690
Allakaket-Koyukuk River	19090105	4,464
South Fork Koyukuk River	19090102	5,977
Lower Kobuk River	19050304	8,732
Upper Kobuk River	19050302	12,086
Alatna River	19090103	9,065
Upper Koyukuk River	19090101	17,953
Total		79,434

TARGET STREAMS

Using ArcMap, project staff defined 2 size classes for sampling points based on upstream drainage (catchment) area: headwater streams and un-wadeable streams. Headwater sites drain a 50 km² catchment. Un-wadeable streams drain a 200 km² catchment. From these 2 size stream classes, downstream points are created (referred to hereafter as the 50 and 200 km² pour points), which are used as sample sites and prioritized as described below.

Headwater streams

One crew (Team C) will be supported by a dedicated Robinson R-44 helicopter to access headwater target sites throughout the study area for a total of 18 field days. From previous experience, we anticipate that Team C will have time to sample approximately 6 target streams per day, for an approximate total of at least 120 target streams. Some headwater target sites will likely be deemed unsuitable by the crew leader in the field, either due to lack of a suitable helicopter landing zone, the lack of suitable fish habitat, or the presence of an obvious fish passage barrier downstream.

To maximize the length of previously uncatalogued anadromous fish habitat documented by Team C, each headwater target stream is ranked by the length of stream located between the upstream terminus of AWC coverage, and the point along the stream where the upstream watershed area first reached 50 km² (50 km² pour point). There is not enough understanding of the ecological factors that may limit anadromous fish distribution in the study area to include additional calculable criteria (e.g., valley gradient) in our target stream selection process.

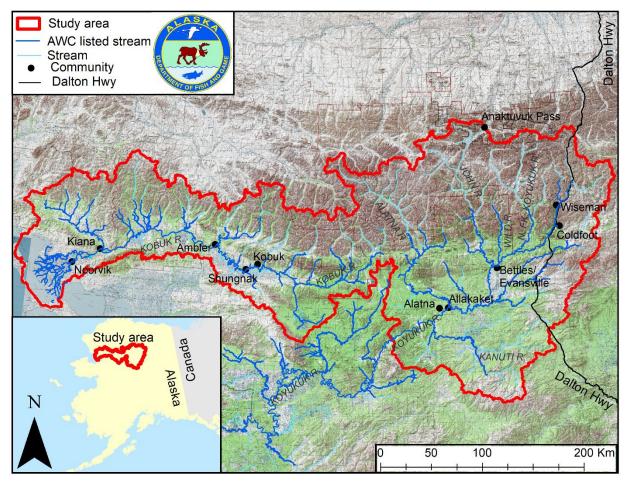


Figure 1.–AFFI study area map.

One hundred and eighty qualifying headwater streams were selected and ranked using a GIS-based protocol as follows:

- 1. All 50 km² pour points within the study area were plotted².
- 2. Any already listed in the AWC were deleted.
- 3. Any that had existing survey or inventory data were deleted.
- 4. Any located upstream of known fish migration barriers were deleted or shifted downstream of the barrier.
- 5. The length of stream from each 50 km² pour point downstream to the upper terminus of AWC coverage, or (in its absence) saltwater, was measured and recorded using an ESRI ArcInfo script. Where more than one 50 km² pour point

_

The source GIS layer for identifying target streams in the study area was the National Elevation Dataset (NED), which is a digital elevation model (DEM) with a 60 meter cell size throughout our study area. We clipped the NED to the extent of our study area. Then we used GIS hydrology tools (bundled with the Spatial Analyst extensions for ESRI ArcGIS 10.0) to generate a flow accumulation grid from the NED. Finally, we created a pour point overlaying each flow-accumulation grid cell where the accumulated number of upstream cells first equaled or exceeded 13,889 and 55,556, which correspond to the 50 sq km and 200 sq km thresholds, respectively, identified for headwater and unwadeable streams. In Step 5 above, stream distances were measured along flow path lines derived from the flow accumulation grid.

draining to the same AWC terminus, it was determined which pour point had the longest flow path downstream to the AWC terminus, and the length of that flow path was recorded. We then recorded the length of the next longest flow path measured only to the confluence with the longest flow path determined in the previous iteration. This step was repeated until a flow path length was recorded for each 50 km² pour point that shared a common downstream AWC upper terminus. This ensures that high ranking pour points are distributed across subbasin and watershed boundaries and not concentrated within subbasins.

6. To rank the 180 pour points, we sorted them in descending order by their recorded flow path length, and sequentially numbered them from 1 to n.

To more fully inventory species presence in areas of elevated environmental concern, additional target sites were also included and prioritized: previously surveyed sites that, based on survey notes and professional judgment, were deemed to have high potential to be anadromous fish habitat; unsubstantiated AWC streams in the study area (meaning AWC-listed streams that lack any supporting evidence of species using the waterbody, such as photos or site visit data); and streams recommended by regional biologists.

Un-wadeable streams

In this document, Team A will be considered the un-wadeable stream team though in reality, this project's small crew size essentially makes Team A and Team C interchangeable. Un-wadeable streams will also be visited through transport of the crew by a R-44 helicopter. Sites are selected to allow for safe raft electrofishing. If necessary, other sampling and transport methods beyond electrofishing in a cataraft will be used, including nets and traps if un-wadeable rivers in lowlands lack landing zone for large aircraft near the site. Packrafts may provide access in certain areas.

Using the same methods described above for identifying headwater streams, we also identified candidate un-wadeable streams. Some of our candidate target reaches will likely be deemed unsuitable for sampling by the crew leader in the field, especially locations that do not appear to be safely accessible due to woody debris in the stream channel, stream channel size, water flow, and when fish migration barriers are identified or there is no suitable helicopter landing zone. Sampling will be performed at the discretion of the crew leader using best available methods (e.g., gillnet stations).

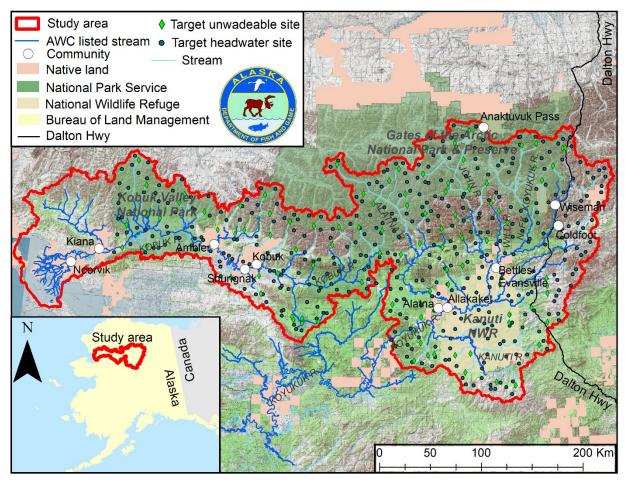


Figure 2.–AFFI target streams.

METHODS

WAYPOINTS AND STATIONS

At each study site, staff will mark a waypoint at the habitat transect using a handheld, consumer grade GPS receiver (Garmin GPSMAP 60CSx or 76S). This point location will be referred to as the station. If fish sampling is attempted, staff will also mark additional GPS waypoints at the upstream and downstream ends of the fish collection reach. If a fish collection reach is established in the absence of a habitat transect (e.g., when crews observe an aggregation of adult fish spread throughout a stream segment from the helicopter), staff will refer to the upstream terminus of the fish collection reach as the station. Staff may also establish a station at sites with no habitat transect and no fish collection reach, such as target streams lacking a suitable landing zone, target streams deemed unlikely to support anadromous or resident fish species, target streams deemed to be inaccessible, un-wadeable or un-raftable, and waterfalls or other definite migratory barriers to fish movement.

Staff will assign a unique 5-character alphanumeric identifier (station ID) to each station. Any observations recorded in the project database must be associated with a station ID. The structure of the station ID will be:

1. The first 2 characters will represent the sequential survey day (e.g., 01, 02...).

- 2. The third character will represent the team making the observation (e.g., A, B,...). For this project, the cataraft team will be designated Team A and the headwater team will be designated as Team C.
- 3. The fourth and fifth characters (e.g., 01, 02...) will represent the sequential station number visited on a given survey day. Note that the station number (4th and 5th characters of the station ID) will begin at 01 at the start of each survey day.

For example, station 04A01 will be the 1st station visited by Team A on the 4th field day.

Data pertaining to this project will be housed in an AFFI programs master database under a unique project code (FSKK22) for all sampling completed during this project. The combination of Project Code and station ID will ensure a universally unique identifier for each station.

See Table 2 for a list of geographic information variables to be recorded at each study site.

FISH COLLECTION REACHES

Sampling sufficiency and site selection

Headwater streams

Since collecting all common species of the local fish assemblage is the primary task, staff will be sampling for fish species richness. According to Temple and Pearsons (2007), when species richness is the primary variable of interest, linear sampling distances should be based on multiples of wetted channel width (CW). Several recent studies have estimated the amount of stream length that should be sampled to capture most (typically 90-95%) of the species present in a given stream reach. Based on studies (i.e., Patton et al. 2000, Reynold et al. 2003, Temple and Pearsons 2007) from regions with similarly low species richness as in Alaska, staff have previously selected a standard minimum reach length of 40 Channel Widths (CW) for headwater target streams. This standard has been in place during AFFI projects since the 2003 field season.

To ensure adequate sampling effort occurs in the smallest headwater target streams, and to avoid spending an excessive amount of time in the largest headwater target streams, 40 CW fish collection reaches in headwater streams will be limited to a length of 150–300 m. This range of reach lengths is consistent with the National Water Quality Assessment Program (NAWQA) protocols for sampling fish communities (Fitzpatrick et al.1998) and with recommendations developed for small Wyoming streams (Patton et al.2000). Thus, in headwater streams having a wetted width < 3.75 m, actual reach length will exceed 40 CW; and in headwater streams having a wetted width > 7.5 m, reach length will be less than 40 CW.

Individual fish collection reaches in headwater streams will be selected in the field by the Team C crew leader during slow, low-level helicopter reconnaissance. Target stream reconnaissance will generally begin at the 50 km² pour point (Appendix C1) and proceed up the mainstem. As the helicopter flies upstream at altitudes and speeds sufficiently low enough to allow adequate visual inspection, the crew leader will evaluate the stream, paying particular attention to water flow, gradient, and barriers to fish passage.

The crew leader will select a fish collection reach meeting the following criteria:

- 1. a reach at or near the apparent upstream limit of anadromous fish distribution;
- 2. a reach where the crew leader anticipates anadromous fish could be present, based on observable characteristics including: fish observed from the air; stream

substrate; velocity; juxtaposition of aquatic habitat types; known seasonal variation in instream flow; and accumulated experience in evaluating the presence of anadromous fish in adjacent and similar water bodies;

- 3. a safe helicopter landing site within a 5-minute walk of the selected reach; and
- 4. where prior approval to access private, native, military, or municipal lands has been provided.

In some cases, the crew leader may judge that the target stream is not likely to provide anadromous fish habitat or significant resident species, and that the objective of maximizing the increase in length of AWC-listed anadromous fish habitats would be better served by devoting effort to another stream. In such cases, the crew leader will take an aerial photograph(s) of the target stream, and then direct the pilot to the next target stream.

If anadromous fish are collected from a reach, and in the absence of migratory barriers upstream, additional upstream sampling may be conducted at the discretion of the crew leader. Likewise, if no anadromous fish were collected from a reach, the crew leader may select another fish collection reach further downstream. These options will be weighed against the need to visit other higher priority target streams.

Un-wadeable streams

Recent analysis of prior (2007-2010) AFFI fish collections indicate that single pass electrofishing in a standard 40 CW reach typically underestimates true species richness in un-wadeable streams of Western and Interior Alaska (Buckwalter et al. 2012). Therefore, to better ensure that all common species of the extant fish assemblage in target streams are detected, staff sample a minimum of 12 (or as many as can be sampled in the time available on site) spatially sequential subreaches. Each subreach will be equivalent in length to 10 CW of the target stream. Additional subreaches will be sampled until no new fish species are recorded from 6 consecutive subreaches.

Prior to landing at an un-wadeable target stream, the cataraft team will generally travel by helicopter to the downstream waypoint associated with each target stream (Appendix C2), and then proceed slowly and at low level upstream from there. As the helicopter travels along the target stream, the crew leader will evaluate the channel's aquatic habitat, paying particular attention to water flow, gradient, barriers to fish passage, and any potential rafting hazards (e.g., rapids, sweepers, falls). The crew leader will select a segment of the target stream for the day's float meeting the following criteria:

- 1. a segment that can be safely floated in a day;
- 2. a segment where the crew leader anticipates anadromous fish may be present, based on observable characteristics including: fish observed from the air; stream substrate; velocity; juxtaposition of aquatic habitat types; known seasonal variation in instream flow; and accumulated experience in evaluating the presence of anadromous fish in adjacent and similar water bodies:
- 3. a safe helicopter landing zone within a 5-minute walk of the stream at both the upstream (put-in) and anticipated downstream (take-out) ends of the segment;
- 4. where prior approval to access private, native, military, or municipal lands has been provided (unless both landing zones and the reach are accessible within the bounds of the ordinary high-water level, in which case no access permission is needed, except for sites located within restricted military land or airspace).

Table 2.–List of variables to be collected during fieldwork.

Variable name	Equipment	Units/Domain	Precision	Comment
Geographic information	on			
Project Code & Station ID	-	text	-	5-digit alphanumeric—see Waypoints and Visits heading in text.
Station location	consumer-grade GPS unit (e.g. Garmin	decimal degrees:	0.00001 degrees	
Upper end of reach	GPSmap 60CSx or 76S)	latitude (DD.DDDDD);		
Lower end of reach		longitude (-DDD.DDDDD)		
Geodetic datum		Text	-	Default is NAD83.
Water-body name	Water-body name from USGS topo map	text	-	
Geographic comments	-	text	-	Describes location of study site in relation to adjacent long-term or permanent geographic features
Observers	-	list of field staff	-	
Date/time	field notebook computer	mm/dd/yyyy hh:mm:ss	1 s	Value input automatically from computer's clock when data entry is begun
Camera counter	-	sequential integers	-	List of photo filenames (last 3 digits only) associated with each station
Visit comments	-	text	-	Physical and biological conditions at the station during the visit—focus on ephemeral conditions, such as weather or stream conditions, or the dynamics of riparian conditions, that may help explain other recorded observations
Wildlife comments	-	text	-	Anecdotal wildlife observations, particularly those that relate to fish.
Water quality				
Water temperature	Hanna pen/Vernier	°C	0.01 °C	Sample thalweg
pH		pH units	0.01 pH units	Sample thalweg
Dissolved oxygen		mg/L	0.01 mg/L	Sample thalweg
Conductivity		μS/cm	1 μS/cm	Ambient conductivity (not temperature corrected). Sample thalweg
Turbidity	Oakton turbidimeter	NTU	1 NTU	Sample thalweg
Water color	-	see Appendix B4	-	

-continued-

Table 2.–Page 2 of 4.

Variable name	Equipment	Units/Domain	Precision	Comment
Channel morphology				
Channel width (wetted	30-m fiberglass tape	m	0.1 m	In wadeable channels < 30 m wide
and BF)	laser range finder (Bushnell Yardage Pro)	m	1 m	In un-wadeable channels, or where width > 30 m
Thalweg depth (wetted and BF)	handheld sonar (HawkEye Digital Sonar) and clinometer (to find the BF level)	m	0.1 m	For un-wadeable channels
	graduated rod	m	0.01 m	All teams—wadeable channels
Stream gradient	clinometer (Sokkia 5x magnifying abney level with clinometer, or Suunto PM-5)	%	0.1%	Water surface angle between consistent channel features near habitat transect.
Substrate composition	-	See Appendix B4	-	3 most dominant substrate classes within scoured portion of streambed in a 5-CW (<100 m) section centered on habitat transect.
Embeddedness category		See Appendix B4	-	Estimated embeddedness of gravel, cobble, and boulder particles in, or as near to as possible, the thalweg in a 5-CW (<100 m) section centered on the habitat transect.
Entrenchment ratio category	Visual estimate or laser range finder (flood prone width), and see channel width (BF)	1.0–1.4=entrenched; 1.41–2.2=moderately-entrenched; >2.2=slightly-entrenched	-	Entrenchment ratio (Rosgen 1994) = flood-prone width ÷ BF width. Flood-prone width is the width of the floodplain measured at a water level of twice the thalweg BF depth.
Channel type	see Channel width, Thalweg depth and Stream gradient	Rosgen (1994) level-II channel types, plus the following: Lake/Pond; Slough; Beaver pond complex; Wetland; or No defined channel	-	To be determined in the office following fieldwork based on BF width and BF depth (width-to-depth ratio), gradient, entrenchment ratio, dominant substrate, and estimated sinuosity values.
Valley type	Visual estimate	Rosgen (1994) level-II valley types.		To be determined in the office following field work based upon site observations, photos and Imagery.
Stream flow				
Stream stage	-	See Appendix B4	-	Water level relative to BF stage.
48-hour precipitation	-	none/trace, moderate, heavy	-	
		-continued-		

-continued-

Table 2.–Page 3 of 4.

Variable name	Equipment	Units/Domain	Precision	Comment
Stream flow (continued	d)			
Thalweg velocity	Transparent velocity-head rod (TVHR)	Head depth (mm)→mean water column velocity (m/s)	1 mm (0.1 m/s)	Wadeable streams, depth <0.9 m
	Whole orange, fiberglass tape, stopwatch	m/s	0.1 m/s	Wadeable streams (alternate). Timed orange float through a 6-m length.
	consumer-grade GPS unit (Garmin GPSmap 60CSx or 76S)	m/s	0.1 m/s	Un-wadeable streams—maximum sustained GPS velocity of boat drifting in thalweg.
Meter type	-	TVHR, orange, or GPS	-	
Riparian vegetation co	mmunities			
Riparian vegetation composition	-	Viereck et al. (1992) vegetation communities	-	Dominant vegetation community recorded in 8 zones (4 zones on each bank): 0-5 m (from OHW); 5-10 m; 10-20 m; 20-30 m
Canopy height	graduated rod (< 1.5 m); clinometer & range finder (> 1.5 m)	m	0.1 m (< 1.5 m); 0.5 m (>1.5 m)	Recorded for each of the 8 zones described above
Disturbance	-	see Appendix B7	-	
Fish-collection events				
Channel	-	main-, side-, or off-channel	-	Channel type of fish-collection event
Fish-collection method	-	backpack electrofisher, boat electrofisher, visual observations (ground, boat, or helicopter), dip net, angling, none	-	
Waveform	electrofisher setting	DC-pulsed; DC-unpulsed	-	
Voltage		V	1 V	(LR-24 or Apex only)
Range		Low or High	-	(GPP 2.5 only)
Percent of range		0–100 %	Continuous	(GPP 2.5 only)
Frequency		pulses per second (pps)	1 pps	
Duty cycle		%	1%	(LR-24 or Apex only)
Current	electrofisher output meter	A	0.01 A (LR-24); 0.1 A (GPP 2.5)	Peak current (LR-24 or Apex); average current (GPP 2.5)
Power	electrofisher output meter	W	1 W	Peak power (LR-24 or Apex only)
Electrofisher on-time	electrofisher timer	s	1 s	
Efficiency	-	excellent, good, fair, poor	-	Perceived electrofishing efficiency, relative to optimal conditions.

-continued-

13

Table 2.–Page 4 of 4.

Variable name	Equipment	Units/Domain	Precision	Comment
Catch				
Reach length	GPS (trip computer mode, or track)	m	1 m	Indicate actual length of fish-collection reach, measured by GPS.
Species	-	list of Alaskan freshwater fish species	-	
Life stage	-	see Appendix B1	-	
Life history	-	anadromous, freshwater-resident, marine, unknown, N/A	-	
Suspect spawning	-	yes, no	-	
Barrier	-	see Appendix B3	-	
Fork length	fish measuring board	mm	1 mm	
Sex	-	male, female, blank (if sex was not determined)	-	
Anomalies	-	see	-	
Retained	-	Checkbox (Y/N)	-	Indicate each individual fish retained.
Tag No.	-	10-digit alphanumeric text	-	For retained specimens, indicate the tag number affixed to each fish.
Vial No.	-	10-digit alphanumeric text	-	If a tissue sample was taken, indicate the vial number.
Photo No.	Digital camera	3-digit positive integer	1	For each fish photographed, indicate the photo number (last 3 digits of the photo filename) for each photo taken. May use comma or hyphen to separate non-sequential photo numbers or indicate a range of photo numbers.
Individual fish comments	ı -	text	-	Comments pertaining to an individual fish (e.g., sampling injuries or mortalities, unusual features or behavior)
Additional counts	-	integerno. of fish	1 fish	
Estimated	-	yes, no	-	Indicates whether the no. of additional fish recorded above was an estimate or a direct count
Species-life-stage comments	-	text	-	Comments pertaining to an entire group of fish of the same species and life stage

FISH COLLECTION METHODS

Our objective is to sample the entire fish assemblage at each target site. While it is usually best to use multiple gear types to get a more representative sample of the fish assemblage, study objectives, time in the field, logistical constraints, and project budgets affect the practical ability to use a variety of gear types. Our main objective is to sample fish assemblages in a large number of remote streams in a short amount of time; therefore, it was decided to rely primarily on a single fish collection gear type. Single pass electrofishing was chosen because 1) electrofishing is considered to be the single most effective (Barbour et al. 1999, Simon and Sanders 1999, Flotemersch and Blocksom 2005) and widely applicable (Hughes et al. 2002) method in streams and rivers, 2) electrofishing typically captures more species with less size selectivity than other gear types (Hendricks et al. 1980), 3) electrofishing is a relatively safe method for biologists and captures fishes with minimal mortality or injury to the fishes (Curry et al. 2009), 4) long reaches can be sampled relatively quickly (Curry et al. 2009), 5) electrofishing equipment is compact and portable, and 6) electrofishing is recommended as a standard fish sampling method for coldwater fishes in streams and rivers (Bonar et al. 2009). AFFI standardized our electrofishing effort by adopting a systematic protocol to identify study site locations, electrofishing reach length as a multiple of wetted channel width, and using standardized electrofisher power outputs (Appendix A1, A2, and A3).

Since electrofishing tends to be size selective, with larger fish being more vulnerable to capture (reviewed by Reynolds [1996]), smaller fish species and life stages are likely to be underrepresented in our catch. Furthermore, large fish are more likely to be seen and counted than small or cryptic species. Small or cryptic fish are only likely to be observed if mobilized toward the anode; however, large fish and their carcasses are typically easier to observe and count, even if they remain beyond the electrical field. Therefore, our results should not be used to infer absolute or relative abundance of fishes.

AFFI staff understand that some fish may be injured or killed as a direct or indirect result of selecting electrofishing power output settings high enough to capture members of the entire fish assemblage. Since our sampling efforts will be restricted to single pass electrofishing in 1-2 fish collection reaches (representing a very small fraction of a given target stream's length) per target stream, this project is not expected to significantly affect fish populations. For example, Kocovsky et al. (1997) found no population level effects in salmonids after 8 years of repeat electrofishing in three Colorado streams.

Single pass electrofishing will be the principal fish collection method, supplemented on a limited basis by other gear types (i.e., angling, dip nets, minnow trapping, or visual observations) if electrofishing is not feasible. To determine where to end each electrofishing reach, crew members will use a handheld, consumer grade GPS unit (Garmin GPS Map 60CSx or 76S) in trip computer mode to measure the distance traveled from the starting point. The GPS unit will be configured to record a track point every 5 seconds and the track log will be saved daily.

Crews will follow standard electrofishing protocols (Appendix A) to minimize stress to fish, for crew safety, and in an attempt to standardize sampling efforts between target streams. Team C will use a Smith-Root model LR-24 or Apex battery powered backpack electrofisher, and Team A will use a Smith-Root model GPP 2.5 gasoline generator powered electrofisher. Staff will carefully choose electrofisher output settings to minimize trauma to fish and will generally cease

electrofishing in the vicinity of any observed large (>300 mm) salmonids, except to collect individuals to confirm species identification.

All collected fish will be identified to species, and fish fork lengths [measured from tip of snout to fork of tail (or to tip of tail, if no fork)] will be measured to the nearest mm. Field reference books (e.g., Pollard et al.1997), or copies of appropriate pages from desk references (e.g., Mecklenburg et al.2002; Morrow 1980) and other materials containing species descriptions, ranges, and identification keys will be available and consulted as necessary. If a species cannot be confidently identified in the field, crews will photograph the specimen, record the observations under a higher taxonomic level (e.g., genus or family name) in the database, and retain a voucher specimen(s) fixed in a 10% formalin solution. Entries for unknown or uncertain species will be annotated in the appropriate comment field with the best guess at identification. At the first opportunity, the voucher specimens and photographs will be examined and identified to species, and the corresponding records in the database updated.

If spawning by a given species is not directly observed, but the crew leader suspects (based on indirect evidence such as external morphological characteristics, behavior, condition, expression of gametes when handled, or presence of newly emerged young) that the species likely spawns within or near the study reach, "suspected spawning" will be recorded in the database for the given species. In addition to recording fish that are collected, staff also will record counts or estimates (by species and life stage) of additional fish detected, but not collected. Staff will document any definite barriers to fish passage (Appendix B3).

Up to 30 fish of each species and life stage will be measured from each reach for Team C, and from each subreach for Team A. Any additional fish captured or seen will be identified and tallied. Where more than 30 fish of a given species and life stage are collected, in order to avoid biased sampling of fish to be measured, staff will measure every *n*th fish removed from the bucket, where the value of n is the estimated number of fish of a given species and life stage collected, divided by 30. For each fish, staff will record species (Appendix B5), life stage (Appendix B1), life history (i.e., anadromous, resident, unknown), and anomalies in fish appearance or condition (Appendix B2; McCormick and Hughes 1998). Where life stage cannot be determined by external features, fork length thresholds identified in Appendix B1 will be used to classify fish into life stage categories. Injuries due to sampling will be noted in the comments field. Bruising (blackening, usually following the myomeres) may result from electrofishing, and may be accompanied by spinal injury that may not be visible externally. Voltage and pulses-per-second will be minimized when electrofishing to avoid unnecessary stress and injury to fish. If fish die due to the effects of sampling or processing, the mortality will be noted in the comments field.

After being identified, measured, and allowed a period of recuperation, all fish (except specimens to be retained for further study) will be released. Specimens to be retained include the following:

- Those needed to confirm species identification.
- On behalf of Andrés López (Curator of Fishes, University of Alaska Museum, Fairbanks), staff will retain (in 10% formalin solution) up to 10 (from the entire study area or each major drainage) voucher specimens (<300 mm long specimens only) representing each fish species collected. Before storing these specimens in formalin, staff will take from each specimen a right-side pectoral fin clip and store it in a uniquely numbered vial with 95% ethanol—one clip per vial. Each whole retained specimen will be labeled with a prenumbered tag attached to the right operculum with a zip tie. Each individual fin clip

retained for this task will be placed in a separate pre-numbered vial. Tag numbers and vial numbers will be recorded on a datasheet for each individual fish. For specimens >200 mm, staff will make an incision through the belly wall before placing in formalin.

See Table 2 for a list of variables associated with fish collection events and fish catch that will be recorded at each study site.

Fish collection protocols for headwater streams

See Appendix A1 for detailed fish collection protocols for headwater streams.

After establishing a habitat transect location (station) and determining the location of the fish collection reach relative to the station (i.e., up stream, downstream, or at the habitat station), Team C will multiply the wetted CW by 40 to calculate the reach length to be sampled. A minimum reach length of 150 m will be sampled in target streams having a wetted CW < 3.75 m, and a maximum reach length of 300 m will be sampled in target streams having a wetted CW > 7.5 m.

The backpack electrofishing system to be used in headwater streams is a Smith-Root LR-24 fitted with a standard Smith-Root rattail cathode (a 10 ft. length of braided, 3/16 in. stainless steel cable with the connected end insulated with a 6 ft. length of neoprene) and a single anode pole having a standard (3/8 in. diameter stock) Smith-Root 28 cm. (11 in.) diameter stainless steel anode ring.

By default, Team C will begin electrofishing with an unpulsed direct current (DC) waveform, but may switch to pulsed DC if necessary to extend battery life or improve electrofishing efficiency. To avoid exposing fish to more harmful higher pulse frequencies, if pulsed DC is used, pulse frequency may not exceed 50 pulses per second (pps). A minimum electrofisher on time of 300 seconds per reach will be required to ensure an adequate minimum level of electrofishing effort.

While collecting fish, the electrofisher operator should move in an upstream direction, zigzagging between the banks, sampling all accessible habitat types, with an emphasis on cover (e.g., large substrate elements, large wood, debris piles, undercut banks, aquatic macrophyte beds, overhanging vegetation). A second crewmember will follow closely, collecting fish with a fiberglass handled dip net. While walking back downstream to the start of the reach, the thalweg and pools will be electofished as described in Appendix A1.

At the end of the reach, fish will be processed according to the protocol detailed in Appendix A4, and electrofisher settings and fish observations will be recorded in the database.

Fish collection protocols for un-wadeable streams

After arriving at the upstream terminus of each fish collection reach, Team A will measure the wetted CW of the channel in a straight, representative glide channel unit and multiply by 10 to calculate the subreach length. The reach will comprise a minimum of 12 consecutive subreaches (with observations recorded separately for each subreach), with additional subreaches added as necessary until no new species are detected in 6 consecutive subreaches (or as many subreaches as can be completed in 1 day).

In un-wadeable streams, Team A will use a cataraft (Outcast model PAC 1200 frame with custom tubes) measuring 13 ft. long and 65 in. wide, with a load capacity of approximately 750 pounds and with a break down aluminum rowing frame equipped with: a Smith-Root GPP 2.5 generator powered electrofisher and control box, an anode system comprised of 2 Smith-Root SAA-6 adjustable spider array electrodes, each having 6 stainless steel dropper cables (38 in. long, 3/16 in. diameter), suspended from 2 booms [Smith-Root light duty fiberglass booms (p/n 06248) or

modified 12 ft. fiberglass pole vault poles] extending out over the bow, and a cathode system consisting of 18 braided stainless steel dropper cables (38 in. long, 3/16 in. diameter) bolted directly to the forward platform. While electrofishing, a rower seated behind the midpoint of the cataraft, will maneuver the cataraft laterally (across the current) with oars, and a second operator will stand on the forward platform and control the electrofisher foot switch while collecting fish with a fiberglass handled dip net.

The Smith-Root GPP 2.5 cannot produce smooth DC, so a pulsed-DC waveform will be selected. By default, Team A will begin electrofishing using a pulse frequency of 30 pps. To avoid exposing fish to more harmful higher pulse frequencies, pulse frequency may not exceed 60 pps. At the end of the reach, fish will be processed according to the protocol detailed in Appendix A4, and electrofisher settings and fish observations will be recorded in the database.

AQUATIC AND RIPARIAN HABITAT ASSESSMENT

At each site where fish collection is attempted, a standard suite of habitat variables will be measured describing water quality, channel morphology, stream flow, and riparian vegetation. See Table 2 for a list of habitat variables, along with information about instruments used, units and domains, and precision of measures.

Habitat transect

A habitat transect will be established perpendicular to the direction of flow across a representative (of the fish collection reach), non-pool channel unit. In selecting the habitat transect location, we will look for:

- 1. A straight section, ideally a glide or run, where streamflow lines are parallel.
- 2. A relatively uniform streambed, free of numerous boulders and heavy aquatic vegetation growth.
- 3. Relatively uniform flow, free of eddies, slack water, and excessive turbulence.

In pool-riffle stream reaches, the habitat transect will typically be located in the transition between a pool and a riffle. Most habitat variables will be assessed at the habitat transect (station); however, some variables (i.e., stream gradient, substrate composition and embeddedness, and riparian vegetation) will be assessed over a short (e.g., 5 CW) stream section spanning the habitat transect.

Site photos

For each station recorded in the database, we will take ground and aerial photographs with a digital camera. After marking the station GPS waypoint, the first photo taken at each station will be of the GPS screen showing the GPS date and time. This will provide the information needed to accurately associate photos with the correct station and also to geotag each photo with GPS data. At least 4 additional photos will be taken at each site, including 2 photos from the streambank at the station, one upstream and one downstream, and at least 2 aerial photos of the drainage with the fish collection reach in the foreground, one upstream and one downstream. Additional photos will be taken of notable habitat features, fish, or other subjects of interest throughout the reach. After returning to the office, photos will be linked with stations, geotagging the photos, and GIS will be used to derive the elevation of each station from the National Elevation Dataset digital elevation model (NED), along with other attributes (legal description of station locations, USGS quad name, HUC) to be reported.

Water quality

At each station, 4 water quality variables (temperature, pH, dissolved oxygen, conductivity) will be measured with a Hanna pen (temperature, pH, conductivity) and a Vernier pen (temperature, dissolved oxygen). The pH, dissolved oxygen, and conductivity sensors will be calibrated³ weekly (or more frequently if readings are suspect). To measure these variables, we will place the probe in flowing water as near to the thalweg⁴ as practical and wait for the readings to stabilize before recording them. Turbidity will be measured with an Oakton turbidimeter, which will be calibrated daily using 0- and 10, 10-, or 100-NTU standards (depending on the estimated turbidity of the sample). We will collect a water sample for turbidity analysis from flowing water as near to the thalweg as practical. We will also visually assess water color (Appendix B4).

Channel morphology

To measure stream gradient, staff will select a relatively straight stream segment in the vicinity of the habitat transect, which spans at least 2 consistent channel features (e.g., top of riffle to top of riffle). A clinometer will be used to measure the water surface angle (%) between consistent channel features. If no single suitable segment is found, multiple gradient measures can be averaged as follows, where y is water surface angle (%) and x is segment length:

$$y = (y1 * x1 + y2 * x2 + \dots yn * xn)/(x1 + x2 + \dots xn)$$
 (1)

To characterize substrate composition, staff will visually (or, in turbid water, by feel under foot, or with a pole) assess the 3 most dominant substrate classes (Appendix B4) within the perimeter of the scoured stream bed in a 5 CW (up to 100 m maximum) stream section centered on the habitat transect. Within the same stream section, staff will also visually estimate substrate embeddedness (Appendix B4) in (or as close as possible to) the thalweg.

In wadeable channels <30 m wide, staff will measure channel width, both at the bankfull (BF) level⁵ and at the wetted edges, using a fiberglass tape stretched horizontally across the stream perpendicular to the direction of flow. Staff will measure thalweg depths as the vertical distance from the stream bed in the thalweg to both the water surface (wetted depth) and the BF level (BF depth). In un-wadeable streams, or where channel width exceeds 30 m, staff will measure channel widths using a laser range finder, and wetted depth with a handheld sonar device. To calculate BF depth in un-wadeable streams, the wetted depth will be added to the estimated distance from the water surface to the BF level. Staff will use a clinometer to aid in estimating the BF level by sighting along the habitat transect to BF indicators on both banks and moving the clinometer up or down to achieve a level sighting. Staff will estimate the entrenchment ratio⁶ category in the vicinity of the habitat transect.

In the office following fieldwork, both a level II Rosgen (1994) channel type code and a level II Rosgen (1994) valley type code will be assigned to each fish collection reach such that general

³ The pH sensor will be calibrated with pH 4, 7, and 10 standards. The dissolved oxygen sensor will be calibrated in water saturated air. The conductivity sensor will be calibrated with a 1 mS/cm conductivity standard.

Path of a stream consistently follows the deepest part of the channel (Armantrout 1998).

BFW is the width of the water surface perpendicular to the direction of flow at bankfull discharge. Bankfull discharge is defined as the flow at which a stream begins to flow onto the floodplain. However, since the floodplain may be narrow or undetectable in entrenched streams, and because down cutting or channelization may result in the channel being disconnected from its former floodplain, observers should always look for additional indicators when identifying bankfull level. Other than the presence of an active floodplain, the principal indicators of bankfull level (Leopold 1994) are: top of point bar, change in vegetation (e.g., bare gravel to herbs, alders above bankfull level), topographic breaks (e.g., vertical stream bank to horizontal floodplain, horizontal bar surface to vertical bank), change in substrate size, and flood deposition debris.

⁶ Entrenchment ratio is defined (Rosgen 1994) as flood prone width divided by bankfull width. Flood prone width is the width of the floodplain measured at a water level (i.e., depth) of twice the maximum (i.e., thalweg) depth at bankfull discharge.

ecological characteristics are described for each sample reach located in a lotic habitat. Staff will use site specific field observations, aerial and ground-based photos, and digital imagery to determine valley type. To determine channel type, staff will use site photos, measured stream gradient, calculated width-to-depth ratio, estimated entrenchment class, dominant substrate, and estimated sinuosity (calculated using GPS tracks, site photos, or National Hydrographic Dataset (NHD)) values collected during fieldwork. For lentic habitats, 5 more channel-type classes have been added: Lake/Pond, Slough, Beaver pond complex, Wetland, and No defined channel.

Streamflow

We will assess stream stage visually (Appendix B4). We will note recent (within approximately the past 48 hours) precipitation (None/Trace, Moderate, Heavy). At sites where the thalweg iswadeable at the habitat transect, and the wetted depth is <0.9 m, all teams will measure thalweg depth using a transparent velocity head rod (TVHR), then convert surface velocity to mean water-column velocity based on depth (Fonstad et al.2005). If use of a TVHR is not feasible, we will estimate thalweg velocity by timing the passage of a whole orange during a 6-meter long float in the thalweg beginning at the habitat transect. In un-wadeable streams where neither a TVHR nor an orange can be used, Team B will estimate thalweg (surface) velocity as the maximum sustained GPS ground speed of the boat drifting in the thalweg with minimal wind effects.

Riparian vegetation

In a reach 5 channel widths long (up to 100 m maximum) centered on the habitat transect, we will visually assess the dominant riparian vegetation community (Viereck et al.1992; Appendix B6) and measure its canopy height and identify any disturbance (Appendix B7) in each of the following 8 zones (4 zones on each bank): 0-5 m (from the bankfull level); 5-10 m; 10-20 m; and 20-30 m. Staff will estimate canopy heights <1.5 m with a graduated rod, and canopy heights >1.5 m with a clinometer and range finder⁷.

PERMISSION FOR ACCESS TO STUDY SITES

ADF&G is responsible for the sustainability of all fish and wildlife throughout Alaska, regardless of land ownership. No prior permission is needed for ADF&G to access study sites located on State of Alaska lands. The AFFI project is partnering with the National Park Service (NPS) to collect sample data within the boundary of Gates of the Arctic National Park & Preserve, and NPS staff is arranging the appropriate permits to access target sample sites within park boundaries, including Kobuk Valley National Park. BLM lands in this area are general BLM lands. A master Memoranda of Understanding (MOUs) between ADF&G and BLM recognized the right of ADF&G to enter onto their lands at any time to conduct routine management activities. Under the MOU, ADF&G informs BLM of the project and estimated dates but does not need formal permission for these activities. However, as a courtesy we have submitted details to the BLM office for this region and received a letter of authorization for the planned sampling effort. Target sites were identified within the Kanuti and Koyukuk National Wildlife Refuges and permits have been obtained from the U.S. Fish & Wildlife Service to conduct sampling activities within the refuges. On lands under other ownership status (e.g., private, native, municipal, or Dept. of Defense), prior permission is needed to access study sites where a helicopter cannot land within

Canopy height can be estimated by 1)multiplying the horizontal distance (d) to a representative tree (measured with a range finder) by the angle (%, measured with a clinometer) from eye level to the top of the tree, 2) multiplying the angle (%) from eye level to the base of the tree by d, 3)taking the sum of the two heights (eye level to tree top + base of tree to eye level).

the boundary of ordinary high water (OHW), which is often the case in small and medium streams. At large streams, staff can typically access and conduct activities within the OHW level. To identify and study sites were prior approval may be needed for access, target stream location were plotted on land status maps in GIS (Appendix D). From inspection of this map it was determined that some 2022 target streams are located on or around lands belonging to the Doyon Limited and NANA Regional Corp. Inc. as well as lands owned by the Villages of Allakaket, Altna, Ambler, Evansville, Hughes, Huslia, Kiana, Kobuk and Shungnak. Prior to visiting these sites, staff will apply for permission to access them. Staff will not access any sites on private land above the OHW level without prior permission from the landowner.

DATA COLLECTION AND REDUCTION

Other than derived values to be computed later, staff will directly enter all measured or observed values in the field into a Microsoft Access relational database (MDB) using a laptop computer. Wherever appropriate, the MDB will use drop down lists or validation rules (e.g., for continuous data within an acceptable range of values, such as pH values restricted to 0–14).

In base camp, at the end of each field day, crew leaders will error check all data recorded that day. Each team's MDB file, GPS unit files (waypoints and tracks), and digital photographs will be backed up each day onto an external hard drive and then transferred to a laptop computer, which will be securely stored and transported separately from the field computers.

After the field season, all the team MDBs will be aggregated and checked for nonsensical values. Using ESRI ArcGIS software and GIS layers, additional station location information (i.e., USGS quadrangle name, HUC, meridian, township, range, section, AWC Region, NED elevation) will be determined for each station. Staff will update fish life stage assignments based on Appendix B1. These values will then be appended into the compiled MDB.

Data from the compiled MDB will then be replicated to the AFFI database (AFFID), a Microsoft SQL Server database, for long term usage. Accessing AFFID data for staff review, editing, and reporting is primarily achieved through a Microsoft Access Data Project (ADP). The SQL Server is also used to provide raw data and web-based reports for the Internet using ESRI ArcIMS, Adobe ColdFusion, and related GIS applications, along with other appropriate and available map layers (e.g., topographic maps, hydrography, and land ownership coverage).

DATA ANALYSIS

For each water body where anadromous fish are observed, staff will prepare and submit a nomination package to the AWC, if that particular species and life-stage is not already documented in the AWC. The nomination package will include all the information required by the AWC program (see Appendix H for an example) and will include a summary of all fish species observed (anadromous or not), from every sampling event on that water body (regardless if anadromous fish were observed during each sampling event).

SCHEDULE AND DELIVERABLES

18 days of field work are planned with a 2-person crew and helicopter support in 2022 and 2023. Teams will be based out of a NPS or FWS bunk house located in Bettles from July 25 to August 2, 2022. Then in Dahl Creek, north of Kobuk, the crew will base out of a NPS cabin from August 25 to September 2. Last, the crew will base out of Kiana and survey fishes from August 21 to 25, 2023. By conducting fieldwork in July, August, and September, it is believed staff will maximize

their chances of observing a variety of anadromous and resident fishes, especially stream rearing species and life stages, at the upstream limits of their range, in order to achieve Objective 1. Depending on budget and time, aerial surveys may be performed in October 2023 but are unlisted since they are to be determined. See Table 3 for schedule listing milestones and deliverables.

Table 3.—Schedule of project activities.

Year	Dates	Activity
2022	May 31	Apply for any land use authorizations, contact local communities.
	June 1	Circulate sample sites to regional & area staff and other agencies for final input on
		sample sites.
	June 15	Draft 2022 Operation Plan
	July 20	Field work preparation. Prepare and ship gear to field base.
	July 25	Field crews being first 2022 field sampling effort out of Bettles.
	August 2	End first field trip, return home.
	August 25	Field crews begin second 2022 field sampling effort out of Dahl Creek.
	September 2	Field crews return home.
	September 10	Begin data reduction and validation.
	September 30	Submit AWC nominations.
	December 15	Complete data review, quality control
2023	February 28	Post all 2022 data to AFFI Fish Resource Monitor online mapping application.
	May 31	Apply for any land use authorizations, contact local communities.
	June 1	Circulate sample sites to regional & area staff and other agencies for final input on sample sites.
	August 20	Field work preparation. Prepare and ship gear to field base.
	August 21-25	Field sampling based out of Kiana.
	September 2	Field crews return home.
	September 10	Begin data reduction and validation.
	September 30	Submit AWC nominations, finish data entry
	December 15	Complete data review, quality control, complete permit and funding obligations
2024	February 28	Post all 2023 data to AFFI Fish Resource Monitor online mapping application.

RESPONSIBILITIES

Table 4.-AFFI personnel and duties.

Name	Duties
Nate Cathcart	Project leader and field crew supervisor. Prepare and manage project budget and funding proposals. Prepare operational plan. During fieldwork, perform daily data quality control and data backups. Complete post season data reduction, review and analysis. Prepare and submit nomination of appropriate waters to the AWC. Author publications and reports.
Ivy Schultz	GIS Analyst support; produced field maps and field team member.
Joe Giefer	Project supervisor.
April Behr	Field team member.
Duncan Green	Project Technician and Field Team leader. Under supervision of project leader, assist with all aspects of project. Coordinate fieldwork logistics. Coordinate field crew trainings. Inventory, procure, maintain, and package field equipment and supplies. Prepare and submit nominations of appropriate waters to the AWC. Conduct specimen dissections and otolith extractions if necessary.
Priscilla Lema	Produced field maps. GIS analyses of target stream locations. Post summarized results to project web site. Maintain and develop online mapper.
Ryan Snow	Design project database. Compile field data files in Anchorage network. Assist data retrieval and database reporting. Provide technical support for software and hardware development operations and maintenance. Develop software tools to integrate GIS and database functions. Develop software tools to display spatial, tabular, and graphic data via the Web.

BUDGET

Table 5.—Budget summary. Line 100 specific to this project is limited to one person but other staff time is provided through participating ADF&G crew members' line 100 covered by other budgets such as State Wildlife Grants.

Cost category	Allocation (\$)
100 Personnel	44,849
200 Travel	4,834
300 Contractual	88,380
400 Supplies	12,562
500 Equipment	0.0
Total	150,625

Table 6.—Summary of personnel expenses. Line 100 specific to this project is limited to one person but other staff time is provided through participating ADF&G crew members' line 100 covered by other budgets such as State Wildlife Grants.

				OT	Haz	Salary & Benefits
Name	PCN	Job class	Months	(hr)	(hr)	(\$)
Nate Cathcart	11-6140	Habitat Biologist II	5	0	0	44,849
Total						44,849

REFERENCES CITED

- Angermeier, P. L., and R. A. Smogor. 1995. Estimating number of species and relative abundances in stream-fish communities: effects of sampling effort and discontinuous spatial distributions. Canadian Journal of Fisheries and Aquatic Sciences 52(5):936–949.
- Armantrout, N. B., compiler. 1998. Glossary of aquatic habitat inventory terminology. American Fisheries Society, Bethesda, Maryland.
- Bain, M. B. 1999. Substrate. Pages 95–103 [In] M. B. Bain and N. J. Stevenson, editors. Aquatic habitat assessment: common methods. American Fisheries Society, Bethesda, Maryland.
- Barbour, M. T., J. Gerritsen, D. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. 2nd edition. U.S. Environmental Protection Agency, Office of Water, EPA Report No.841-B-99-002, Washington, DC.
- Bonar, S. A., W. A. Hubert, and D. W. Willis, editors. 2009. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, Maryland.
- Buckwalter, J. D., J. M. Kirsch, and D. J. Reed. 2012. Fish Inventory and Anadromous Cataloging in the Upper Koyukuk and Chandalar River Drainages, 2010. Alaska Department of Fish and Game, Fishery Data Series No. 12–22, Anchorage.
- Cochran, W. G. 1977. Sampling techniques. Third Edition. John Wiley & Sons, New York.
- Cummins, K. W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. American Midland Naturalist 67(2):477-504.
- Curry, R. A., R. M. Hughes, M. E. McMaster, and D. J. Zafft. 2009. Coldwater fish in rivers. Pages 139–158 [*In*] S. A. Bonar, W. A. Hubert, and D. W. Willis, editors. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, Maryland.
- Dauwalter, D. C., and D. J. Pert. 2003. Electrofishing effort and fish species richness and relative abundance in Ozark Highland streams of Arkansas. North American Journal of Fisheries Management 23(4): 1152–1166.
- Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall, New York.
- Fitzpatrick, F. A., I. R. Waite, P. J. D'Arconte, M. R. Meador, M. A. Maupin, and M. E. Gurtz. 1998. Revised methods for characterizing stream habitat in the National Water-Quality Assessment Program. U.S. Geological Survey, Water-Resources Investigations Report 98-4052, Raleigh, North Carolina.
- Flotemersch, J. E., and K. A. Blocksom. 2005. Electrofishing in boatable rivers: does sampling design affect bioassessment metrics? Environmental Monitoring and Assessment 102(1-3):263-283.
- Fonstad, M. A., J. P. Reichling, and J. W. Van de Grift. 2005. The transparent velocity-head rod for inexpensive and accurate measurement of stream velocities. Journal of Geoscience Education 53(1):44–52.
- Hendricks, M. L., C. H. Hocutt, and J. R. Stauffer, Jr. 1980. Monitoring of fish in lotic habitats. Pages 205–231 [*In*] C. H. Hocutt and J. R. Stauffer, Jr., editors. Biological monitoring of fish. D. C. Heath, Lexington, Massachusetts.
- Hughes, R. M., P. R. Kaufmann, A. T. Herlihy, S. S. Intelmann, S. C. Corbett, M. C. Arbogast, and R. C. Hjort. 2002. Electrofishing distance needed to estimate fish species richness in Medium Oregon rivers. North American Journal of Fisheries Management 22(4): 1229–1240.
- Kocovsky, P. M., C. Gowan, K. D. Fausch, and S. C. Riley. 1997. Spinal injury rates in three wild trout populations in Colorado after eight years of backpack electrofishing. North American Journal of Fisheries Management 17(2):308–313.
- Leopold, L. B. 1994. A view of the river. Harvard University Press, Cambridge, Massachusetts.
- Lyons, J. 1992. The length of stream to sample with a towed electrofishing unit when fish species richness is estimated. North American Journal of Fisheries Management 12(1):198-203.

REFERENCES CITED (Continued)

- Maret, T. R., and D. S. Ott. 2003. An assessment of fish assemblages and minimum sampling effort required to determine biotic integrity of large rivers in southern Idaho, 2002. U.S. Geological Survey, Water Resources Investigations Report 03-4274, Boise, Idaho.
- Martinez, P. J., and A. Lawrence Kolz. 2009. Evaluating the power output of the Smith-Root GPP 5.0 electrofisher to promote electrofishing fleet standardization. North American Journal of Fisheries Management 29(3):570–575.
- McCormick, F. H., and R. M. Hughes. 1998. Aquatic vertebrates. Pages 161–182 [In] Lazorchak, J. M., D. J. Klemm, and D. V. Peck, editors. Environmental Monitoring and Assessment Program—Surface Waters: field operations and methods for measuring the ecological condition of wadeable streams. U.S. Environmental Protection Agency, Cincinnati, Ohio. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=300040EG.txt
- McCormick, F. H., and R. M. Hughes. 2000. Aquatic vertebrates. Pages 10-1–10-14 [*In*] Lazorchak, J. M., B. H. Hill, D. K. Averill, D. V. Peck, and D. J. Klemm, editors. Environmental Monitoring and Assessment Program—Surface Waters: field operations and methods for measuring the ecological condition of non-wadeable rivers and streams. U.S. Environmental Protection Agency, Cincinnati, Ohio. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30003Y7F.txt
- Mecklenburg, C. W., T. A. Mecklenburg, and L. K. Thorsteinson. 2002. Fishes of Alaska. American Fisheries Society, Bethesda, Maryland.
- Morrow, J. E. 1980. The freshwater fishes of Alaska. Alaska Northwest Publishing Company. Anchorage.
- Paller, M. H. 1995. Relationships among number of fish species sampled, reach length surveyed, and sampling effort in South Carolina coastal plain streams. North American Journal of Fisheries Management 15(1): 110–120.
- Patton, T. M., W. A. Hubert, F. J. Rahel, and K. G. Gerow. 2000. Effort needed to estimate species richness in small streams on the Great Plains in Wyoming. North American Journal of Fisheries Management 20(2):394–398.
- Platts, W. S., W. F. Megahan, and G. W. Minshall. 1983. Methods for evaluating stream, riparian, and biotic conditions. U.S. Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-138, Ogden, Utah.
- Pollard, W. R., G. F. Hartman, C. Groot, and P. Edgell. 1997. Field identification of coastal juvenile salmonids. Harbour Publishing, Madeira Park, Canada.
- Reynolds, J. B. 1996. Electrofishing. Pages 221-253 [In] Murphy, B. R., and D. W. Willis, editors. Fisheries techniques. 2nd edition. American Fisheries Society, Bethesda, Maryland.
- Reynolds, L., A. T. Herlihy, P. R. Kaufman, S. V. Gregory, and R. M. Hughes. 2003. Electrofishing effort requirements for assessing species richness and biotic integrity in Western Oregon Streams. North American Journal of Fisheries Management 23(2):450-461.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Simon, T. P., and R. E. Sanders. 1999. Applying an index of biotic integrity based on great river fish communities: considerations in sampling and interpretation. Pages 475–505 [*In*] T. P. Simon, editor. Assessing sustainability and biological integrity of water resources using fish communities. CRC Press, Boca Raton, Florida.
- Temple, G. M., and T. N. Pearsons. 2007. Electrofishing: backpack and drift boat. Pages 95–132 [*In*] D. H. Johnson, B. M. Shrier, J. S. O'Neal, J. A. Knutzen, X. Augerot, T. A. O'Neil, and T. N. Pearsons. Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, Maryland.
- Viereck, L. A., C. T. Dyrness, A. R. Batten, and K. J. Wenzlick. 1992. The Alaska vegetation classification. U.S. Forest Service, Pacific Northwest Research Station, General Technical Report PNW-GTR-286, Portland, Oregon.
- Wentworth, C. K. 1922. A scale of grade and class for clastic sediments. Journal of Geology 30(5):377-392.

APPENDIX A

The procedure to collect fish with a backpack electrofisher (Smith-Root LR-24 or Apex) is presented below. The objective is to detect all the common fish species found in the reach. Fish collection should be completed within 30 minutes with a cumulative electrofishing time of at least 300 s.

Procedures to collect fish at wadeable sites. (adapted from McCormick and Hughes 1998).

- 1. Establish the habitat transect (station) in a straight, representative, non-pool (preferably glide or run) channel unit, mark the first GPS waypoint at the station, and complete habitat characterization and data entry.
- 2. Measure wetted channel width (CW, to the nearest 0.1 m) at the station. The minimum fish collection reach length is 40 CW, or 150 m, whichever is greater. The maximum reach length for wadeable streams is 300 m.
- 3. Both crewmembers must wear leak-free chest waders with wading belt snugly fastened, wading shoes that fit properly, electrically-insulated gloves, and polarized sunglasses. A hat with a brim may also be helpful in reducing glare.
- 4. Make sure the electrofisher battery is securely fastened. Check electrical connections (battery, anode, cathode). Replace the battery cover securely.
- 5. Try on the backpack unit, and make any adjustments to the suspension system to achieve a comfortable fit, with the unit snug against the operator's back and resting above the hip bones. If necessary, untangle and route the cathode (rat tail) and anode cables.
- 6. With both electrodes out of the water and clear of each other and both operators, turn the unit on and confirm the system is ready. Reset the timer to zero.
- 7. The two person electrofishing team will typically begin electrofishing at the station and work their way upstream the predetermined reach length while collecting fish. If the downstream end of the reach does not coincide with the station, the team will mark a second GPS waypoint at the downstream end of the reach. A handheld, consumer-grade GPS unit in trip computer mode, a hip chain, or other similarly accurate method, will be used to measure the reach length as they work their way upstream. At the upstream end of the reach, the team will mark a third GPS waypoint. While walking back downstream to the start of the reach, continue electrofishing in the thalweg (see Step 14 below).
- 8. To use a smooth-DC waveform (preferred):
 - a. Set the waveform to smooth DC, and select the initial voltage setting according to the ambient water conductivity (not specific conductance, which is temperature compensated) —see Appendix A3.

- b. Ensure that all non-target organisms are clear of the water, and begin fishing when both crewmembers are ready.
- c. Closely observe the fishes' response and attempt to maximize capture-prone responses (i.e, taxis or forced swimming) and minimize responses associated with elevated trauma (i.e., immobilization, branding, spinal deformities, or recovery period exceeding 15 seconds). Try to capture fish before they approach near to the electrodes, and remove fish quickly from the electric field.
- d. If fish are unresponsive, increase the voltage by 50 V, press the Enter key and try again. If fish exhibit symptoms of trauma, decrease the voltage by 50 V, press the Enter key, and try again.
- e. If fish are still not showing capture-prone responses, or if it is necessary to extend battery life, switch to a pulsed-DC waveform.
- 9. To use a pulsed-DC waveform:
 - a. Select initial voltage setting according to the ambient (not temperature compensated) water conductivity—see Appendix A3.
 - b. Set initial pulse frequency to 30 pulses-per-second (pps).
 - c. Set duty cycle to achieve a pulse width of 2 ms, according to the following table:

	Duty cycle		
Frequency	(%)		
(pps)	2 ms	4 ms	
30	6	12	
35	7	14	
40	8	16	
45	9	18	
50	10	20	
60	12	24	

- d. If electrofishing is unsuccessful:
 - i. Increase the voltage by 50 V, press the enter key and try again. Stop increasing voltage when fish exhibit a forced response (twitch).
 - ii. If fish twitch, but are not showing taxis (induced movement of the fish toward the anode), increase the duty cycle to achieve a pulse width of 4 ms, according to the table in Step 9.c. Press the Enter key and try again. If necessary, repeat this step, increasing duty cycle by 10% until fish show

- taxis. If the duty cycle is increased to maximum, and taxis is still not achieved, proceed to Step iii.
- iii. Increase the frequency by 10 pps, and press the Enter key. Adjust the duty cycle to achieve a pulse width of 2 ms for the new frequency setting (see Step 9.c), and try again. Repeat Step ii after each frequency increase. Avoid frequencies >60 pps.
- 10. Beginning at the downstream end of the sampling reach, the electrofishing team will fish in an upstream direction, zigzagging across the channel from bank to bank in order to sample all habitat types. On the upstream pass, the emphasis is on sampling cover and channel margins. The thalweg is more effectively sampled during the downstream pass. Depress the switch and sweep the anode slowly from side to side in the water. Electrofish intermittently to avoid herding fish, especially in glides or long pools. After electrofishing continuously for a duration of up to 5 s, quietly advance upstream approximately 2–4 m before resuming electrofishing.
- 11. Attempt to sample the variety of habitats (deep and shallow, fast and slow, complex and simple, warmer and colder) present throughout the reach. Be sure to sample available cover (e.g., large substrate elements, large wood, debris piles, undercut banks, aquatic macrophyte beds, overhanging vegetation). Move the anode into confined cover with the power off, then depress the switch and sweep the anode away from the cover to draw fish out into open. Do not attempt to sample in or near pools greater than waist deep, or where velocity is too fast to safely wade. Always move slowly and carefully to avoid startling fish and to minimize risk of falling.
- 12. The netter follows downstream of the electrofisher operator, collecting fish with a dip net with a non-conductive handle (e.g. fiberglass or wood) and placing them into a 5 gallon bucket with stream water for later processing. Try to net all fish seen. When this is not feasible (e.g., in highly productive systems), try to collect a representative sample of the fish assemblage (e.g., not just large game fish). Pay special attention to netting small and benthic fish, as well as fish that respond differently to the electric field—not just the big fish that move to the surface. Particularly when visibility is obscured by turbidity, debris, or vegetation, the netter should keep the dip net in the water downstream of the anode. The dip net opening should be near vertical, perpendicular to the current, with the dip net frame in contact with the substrate. The distance between the anode and the dip net is related to the current velocity: the faster the current, the greater the distance between the anode and dip net. In fast water, the net should remain several meters downstream of the anode.
- 13. Refresh the water in the bucket periodically to minimize physiological stress prior to measuring fish.

- 14. At the upstream end of the reach, mark a GPS waypoint. Then, while walking back downstream to the start of the reach, electrofish the thalweg while trying to walk the same speed as the water. Try to herd fish out of deep pools towards the pool tailout. When approaching the tailout, to avoid herding fish further downstream into the riffle, briefly (e.g., 2-s pause) cease electrofishing to allow fish to turn and attempt to re-enter the pool, then resume electrofishing as they swim past the anode. For the downstream pass, the netter should stay even with the electrofisher operator as they both walk downstream.
- 15. Record in the database the final, or most successful, electrofisher output settings (voltage, frequency, waveform, electrofisher on-time, duty cycle and typical peak current and power), sampling efficiency (poor, fair, good, excellent), and distance sampled, along with fish observations, including fish collected while electrofishing, as well as any additional fish observed within the reach, but not collected⁸. If conditions prevent safe or effective electrofishing within a reach, the conditions, and their effect on sampling efficiency, should be noted in the Sampling Event tab in the database, and the length of stream that was actually sampled should be noted in Sampling Event comments.

_

⁸ In the database, only those fish captured while electrofishing should be associated with an electrofishing sampling event. Fish observed, but not captured should be recorded under a separate sampling event (e.g., visual observations-ground). Fish collected from off-channel habitats (e.g., tributaries, side channels, floodplain habitats, adjacent beaver ponds) should be recorded under a distinct sampling event.

The objective is to detect all the common fish species found in the reach. The procedure to sample with a generator powered boat electrofisher unit (Smith-Root GPP 2.5) is presented below.

Procedures to collect fish by boat electrofishing. (adapted from McCormick and Hughes 2000)

Onshore at launch site

- 1. Check generator oil and fill tank with gas (wipe up any spillage).
- 2. Attach electrodes to boat, and connect their cables to the corresponding outlet on the control box. If the fishing site is distant, keep electrodes and anode poles in boat.
- 3. Connect generator and pulsator (control box).
- 4. Confirm that all gear for the day is in the boat.
- 5. Put on a life jacket. Wear polarized sunglasses to aid vision.

At sample reach

- 1. Establish the habitat transect (station) in a straight, representative, non-pool (preferably glide or run) channel unit, mark the first GPS waypoint at the station, and complete habitat characterization and data entry.
- 2. Measure wetted channel width (CW, in meters) at the station—multiply by 10—this is the length of a single subreach. The minimum fish collection reach length is 12 subreaches, plus any additional subreaches necessary until no new species are detected in the last 6 consecutive subreaches (or as much as can be sampled in a day). Record fish observations and electrofisher settings separately for each subreach under a unique sampling-event code.
- 3. Check all electrical connections and suspend the electrodes in the water. The wetted surface area of the cathode(s) should be greater than that of the anode(s). Fill live well and put on electrically insulated gloves. Verify that all electrical switches are off, that all non-target organisms are clear of the water or 2 boat lengths away, and that both crewmembers are clear of the water and electrodes and ready to begin electrofishing. Reset the timer on the electrofisher control box to zero at the start of each subreach.
- 4. If ambient conductivity is $<300 \,\mu\text{S/cm}$, set the Range dial to High. If ambient conductivity is $>300 \,\mu\text{S/cm}$, set the Range dial to Low. Switch the Mode dial to DC (Caution! The position of this switch should not be changed when the foot

- switch is engaged!) and select an initial frequency of 30 pulses-per-second (pps) and an initial Percent of Range (POR) setting of 10%.
- 5. Start the generator and depress the foot pedal to begin electrofishing. Increase POR as needed to elicit a capture-prone response [i.e, taxis (induced movement of the fish toward the anode) or forced swimming] from fish, while minimizing responses associated with elevated trauma (i.e., immobilization, branding, spinal deformities, or recovery period exceeding 15 seconds).

Note: Where water conductivity is high (>300 μ S/cm), avoid using POR settings in excess of 60%, which will simply increase duty cycle, but not peak voltage, and may overload the generator (Martinez and Kolz 2009). If the generator sounds labored, decrease POR and/or switch from High to Low range.

- 6. If fish taxis cannot be achieved, increase frequency to 60 pps, return the POR dial to 10%, and repeat Step 5.
- 7. Select the riverbank for fishing (river left for odd-numbered target streams, river right for even), and stay along the selected bank through the entire reach, to the degree it is safely navigable. Position the boat so the bow is angled downstream and toward the bank. While drifting downstream, maneuver laterally in the channel to avoid obstacles and position the anode(s) into habitats providing cover for fish. Most effort should occur near the bank, where most fish are expected to occur, and at depths less than 3 m wherever possible. However, all habitat types should be sampled, so zigzag between the thalweg and the bank to allocate some sampling effort to a variety of habitats throughout the channel.

With electrical current off, maneuver the boat so the anode(s) approach near to fish cover elements (e.g., large substrate elements, large wood, debris piles, undercut banks, aquatic macrophyte beds, overhanging vegetation), then begin electrofishing as the boat is backed away from the cover. Electrofish intermittently to avoid herding fish, especially in glides or long pools. After electrofishing continuously for a duration of up to 10 s, drift quietly for 5–10 m before resuming electrofishing. Do not place the boat in danger in order to fish particular habitats. Cut the generator and stow the gear before negotiating hazards.

8. The netter uses a dip net with non-conductive (e.g. fiberglass) handle to retrieve fish, which are then deposited into a livewell for later processing. Try to capture fish before they approach near to the electrodes, and remove fish quickly from the electric field. Try to net all fish seen. When this is not feasible (e.g., in highly

productive systems), try to collect a representative sample of the fish assemblage (e.g., not just large game fish). Pay special attention to netting small and benthic fish, as well as fish that respond differently to the electric field—not just the big fish that move to the surface. If benthic fish are being missed, hold the net behind the anode just above the bottom so some are collected.

- 9. Change the water in the livewell periodically to minimize stress prior to processing.
- 10. Using a GPS unit in trip computer mode to monitor distance traveled, continue sampling downstream to the end of the subreach. At the end of the subreach, process the fish according to Appendix A4. Be sure to release them upriver, or preferably near the opposite bank, to reduce the likelihood of recapturing them.
- 11. Record in the database the final, or most successful, electrofisher output settings (mode, range, POR, pulse frequency, current, electrofisher on-time, duty cycle and power, if known), sampling efficiency (poor, fair, good, excellent), and distance sampled, along with fish observations, including fish collected while electrofishing, as well as any additional fish observed within the reach, but not collected. If conditions prevent safe or effective electrofishing within a reach, the conditions, and their effect on sampling efficiency, should be noted in the Sampling Event tab in the database, and the length of stream that was actually sampled should be noted.
- 12. Be sure the station visit information is completely entered before leaving the site.

_

⁹ In the database, only those fish captured while electrofishing should be associated with an electrofishing sampling event. Fish observed, but not captured should be recorded under a separate sampling event (e.g., visual observations-ground). Fish collected from off-channel habitats (e.g., tributaries, side channels, floodplain habitats, adjacent beaver ponds) should be recorded under a distinct sampling event.

Appendix A3.–Recommended target voltage for standardized backpack electrofishing (constant power transfer) for predominantly juvenile salmonids in cold waters at various ambient water conductivities.

This table provides a starting voltage setting for standardized backpack electrofishing. While electrofishing, always monitor the response of target and non-target organisms, and fine-tune electrofisher operations and settings as recommended in the user's manual to achieve the desired response.

Ambient	Target	voltage	Ambient	ε	
conductivity (µS/cm)	pulsed DC ^a	Smooth DC	conductivity (μS/cm)	pulsed DC	Smooth DC
20	1155	490	170	306	130
30	834	354	180	299	127
40	674	286	190	294	125
50	577	245	200	289	123
60	513	218	210	284	121
70	467	199	220	280	119
80	433	184	230	276	117
90	406	173	240	273	116
100	385	163	250	269	115
110	367	156	260	266	113
120	353	150	270	264	112
130	340	145	280	261	111
140	330	140	290	259	110
150	321	136	300	257	109
160	313	133			

Note: Target voltage values were calculated for a Smith-Root LR-24 backpack electrofisher fitted with a standard Smith-Root rat-tail cathode (a 10-ft length of braided, 3/16-in stainless-steel cable with the connected end insulated with a 6-ft length of neoprene) and a single anode pole having a standard Smith-Root 11-inch-diameter stainless-steel anode ring, and are optimized for capturing juvenile salmonids in cold, wadeable flowing waters with predominantly rocky substrates. These target voltages may not be optimal for electrofishing systems having a different internal resistance (i.e., different electrofishing system, electrode type, or if electrodes are heavily corroded), if targeting different fish species/life stages, or when electrofishing in un-wadeable waters or over predominantly fine substrates. (continued)

We prepared this power-standardization table based on the power-transfer theory for electrofishing (Kolz 1989), using water ambient conductivity measurements and metered electrofisher output values (peak voltage and current) selected while electrofishing to maximize capture-prone responses (taxis and forced swimming) and minimize responses associated with elevated trauma (immobilization, branding, spinal deformities, or recovery period exceeding 15 seconds) in target fish. We assumed fish conductivity = $100 \, (\mu \text{S/cm})$.

^a 30 pulses per second, 12% duty cycle (4 mS pulse width)

- 1. Anesthetize collected fish with AQUI-S 20E according to instructions.
- 2. Remove 1 fish at a time from the sedation bucket and place on a length measuring tube (FL \leq 250 mm) or board (FL \geq 250 mm).
- 3. Identify all collected fish to species (Appendix B5), life stage (Appendix B1), and life history (anadromous, resident, marine/estuarine, and unknown) and measure fork length to the nearest mm. Refer primarily to Pollard et al. 1997 to identify unknown salmonids (salmon, trout, or char) and to Mecklenburg et al. 2002 for all other species. Also refer to photos of known specimens for confirmation. Check each fish for external anomalies (Appendix B2). Document any definite fish passage barriers (Appendix B3) found in or adjacent to the reach. Immediately after identification and measurement, place fish in a second bucket of fresh stream water for recovery.
- 4. Take a representative photo of each anadromous species and life stage, as well as any rare or unusual fish, fish with anomalies, or fish where ID was uncertain. Record the photo number(s) associated with each fish in the database.
- 5. Take a fin clip from species requested by UAF (see UAF instructions). Record the fin clip vial number in the database.
- 6. Retain the following specimens:
 - Species unknown: In 10% formalin—up to 5 (from each site) individual fish of each species and life stage that cannot be confidently identified in the field;
 - UAF Museum: In 10% formalin—voucher specimens of each species (see UAF instructions);

Euthanize (by a blow to the head, or an overdose of AQUI-S 20E) all specimens to be retained. Tag any retained fish with a unique tag number, and record the tag number in the database. For UAF, each fish must be individually tagged. For all other retained specimens, fish of the same species and life stage that were all collected from the same reach may be retained as a group with a single unique tag for the group. For specimens >200 mm, make an incision through the belly wall before placing in formalin. Keep specimens cool (e.g., in fresh stream water) until they can be put in formalin or frozen. CAUTION! MINIMIZE THE CHANCE OF ATTRACTING WILDLIFE BY KEEPING RETAINED FISH INSIDE A COVERED COOLER OR HEAVY DUTY PLASTIC BAG. NEVER LEAVE SPECIMENS UNATTENDED IN THE FIELD.

7. While 1 crewmember processes fish, the other will enter fish observations into the appropriate fields in the database.

Appendix A4.—Page 2 of 2.

8. When fish have recovered, release them to slow water. When additional subreaches will be sampled downstream (un-wadeable streams), be sure to release the fish upriver, or preferably near the opposite bank, to avoid recapturing them.

Record the species, life stage, life history, and count, along with any comments indicating average size, behavior, anomalies, etc., of any additional fish that were observed, but not collected (e.g., visually observed adults).

APPENDIX B

Appendix B1.–Fish life stage classes

Note: A hyphen or missing value indicates that we assigned individual fish to the indicated life stage based only on examination of morphological indicators of sexual maturity, not based on fork-length threshold values.

Descriptions of fish life stage classes.

Code	Name	Description	
FXE	fixed egg	Eggs adhering to or buried within a substrate.	
PLE	planktonic	Non-adherent, buoyant or nearly so, eggs drifting with currents.	
	egg		
FXA	Alevin	Pre-emergent sac-fry within the interstices of the substrate.	
PLL	planktonic	Hatched juveniles drifting with currents and with no, or poorly,	
	larvae	developed volitional swimming capabilities.	
JUV	Juvenile	Sexually immature free-swimming fish.	
SMT	Smolt	Juvenile anadromous fish on first emigration from fresh to marine	
		water.	
JOA	juvenile/adult	Free swimming fish whose sexual maturity is not determined.	
ADT	Adult	Fish at or approaching sexual maturity.	
ASP	adult	Adults observed in the act of spawning.	
	spawning		
KLT	Kelt	Post-spawning iteroparous anadromous fish in freshwater prior to	
		return to marine water.	
CAR	Carcass	Post-spawning adult carcass.	
NAP	not	No fish observed or general information record only.	
	applicable		
NRD	not recorded	Life stage not recorded.	

Fork-length threshold values (mm) used to assign fish to selected life-stage classes.

		Life stage	
		Juvenile-or-	
Species	Juvenile	adult	Adult
lamprey-			
unspecified	-	-	-
longnose sucker	<188	188–348	>348
northern pike	<330	330–448	>448
Alaska blackfish	<42	42–113	>113
broad whitefish	<343	343-448	>448
humpback			
whitefish	< 280	280–363	>363
least cisco	<199	199–318	>318
round whitefish	<199	199–318	>318
inconnu			
(sheefish)	< 586	586–648	>648
Arctic grayling	<190	190–328	>328
pink salmon	-	-	-
chum salmon	-	-	-
coho salmon	-	-	-
sockeye salmon	-	-	-
Chinook salmon	-	-	-
Dolly Varden	<83	83–	-
burbot	< 280	280-498	>498
slimy sculpin	<51	51–68	>68

Appendix B3.-Fish-anomaly classes.

Code	Name	Description	
AB	Absent	Absent eye, fin, tail.	
BK	Blackening	Tail or whole body with darkened pigmentation.	
BL	Blisters	In mouth, just under skin.	
BS	Extensive	Small black cysts (dots) all over the fins and body.	
	black spot		
CO	Copepod	A parasitic infection characterized by a worm-like copepod embedded in the flesh of the	
		fish; body extends out and leaves a sore/discoloration at base, may be in mouth gills,	
		fins, or anywhere on body.	
CY	Cysts	Fluid-filled swellings; may be either small or large dots.	
DE	Deformities	Skeletal anomalies of the head, spine, and body shape; amphibians may have extra tails,	
		limbs, toes.	
EF	Eroded fins	Appear as reductions or substantial fraying of fin surface area.	
EG	Eroded gills	Gill filaments eroded from tip.	
EX	Exophthalmia	Bulging of the eye.	
FA	Fin anomalies	Abnormal thickenings or irregularities of rays	
FU	Fungus	May appear as filamentous or "fuzzy" growth on the fins, eyes, or body.	
GR	Grubs	White or yellow worms embedded in muscle or fins.	
HM	Hemorrhaging	Red spots on mouth, body, fins, fin bases, eyes, and gills.	
IC	Ich	White spots on the fins, skin or gills.	
LE	Lesions	Open sores or exposed tissue; raised, granular, or warty outgrowths.	
LI	Lice	Scale-like, mobile arthropods.	
MU	Mucus	Thick and excessive on skin or gill, or as long cast from vent.	
NO	None	No anomalies present.	
OT	Other	Anomalies or parasites not specified.	
SA	Scale	Missing patches, abnormal thickenings, granular skin	
	anomalies		
SO	Shortened	Leaves a portion of the gill chamber uncovered	
	operculum		
TU	Tumors	Areas of irregular cell growth which are firm and cannot be easily broken open when	
		pinched. (Masses caused by parasites can usually be opened easily.)	
WR	Leeches	Annelid worms which have anterior and posterior suckers. They may attach anywhere	
		on the body.	

Source: McCormick and Hughes 1998.

Code Name

Description

EBD Ephemerally Fixed, Beaver Dam

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a beaver dam. Used where the location of the barrier to movement is known within 100 m.

EDJ Ephemerally Fixed, Debris Jam

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a debris jam. This category is restricted to small scale (?10 m) features that do not dramatically alter the overall channel type. Larger mass-wasting created barriers fall in the EGD category. Used where the location of the ultimate barrier to movement is known within 100 m.

EGD Ephemerally Fixed, Hydro-Geomorphically Dynamic

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by current hydrological or geomorphic conditions but where evidence indicates that these landscape-scale conditions are in flux over brief (decades) geologic time. Used in areas of recent or ongoing geomorphic alteration (e.g., glacial advance or retreat, mass wasting, tectonic movements, dynamic channel formation). Used where the location of the barrier to movement is within 100 m.

ELF Ephemerally Fixed, Low Flow

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by low stream flow, but where evidence indicates that at higher stream flow, fish could ascend further up the channel. Used where the location of the barrier to movement is known within 100 m.

EOT Ephemerally Fixed, Other

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a non-permanent barrier other than those listed immediately above. Used where the location of the ultimate barrier to movement is known within 100 m.

ESS Ephemerally Fixed, Spring Source

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling or on-site analysis, to be blocked by the emergence of ground water from an unconfined substrate. Compare to GSL. Used where the location of the barrier to movement is known within 100 m.

GLK Geologically Fixed, Lake Shore

Where the upstream movements of a given species appear, based on sufficient sampling or on-site analysis, to be limited by the perimeter of a geologically-stable lake shore. Used where the location of the barrier to movement is known within 100 m.

GOT Geologically Fixed, Other

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling or on site analysis, to be blocked by a geologically fixed barrier other than those listed immediately above. Used where the location of the ultimate barrier to movement is known within 100 m.

GSL Geologically Fixed, Stream Limit

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling or on-site analysis, to be limited to the presence of surface water, and where that presence of surface water appears to be fixed in space and stable in time (compare to ELF). Spring-fed headwall pools are examples. Used where the location of the barrier to movement is known within 100 m.

GWG Geologically Fixed, Waterfall/High Gradient

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling or on-site analysis, to be blocked by a waterfall, cascade, or other similar geologically fixed barrier. Used where the location of the barrier to movement is known within 100 m.

HCU Human, Culvert

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a culvert through a road bed, a railroad bed, a runway, or through any other type of fill. This code includes culverts of all materials (e.g., metal, plastic, wood) and shapes (e.g., round, arched, bottomless) Used where the location of the barrier to movement is known within 100 m.

HDB Human, Debris

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by debris placed or deposited in the stream as the direct result of human activities but where that material was not intentionally placed to impound, filter, or divert stream flow. Examples include woody debris from logging activities, and debris flows from failed road prisms. Used where the location of the barrier to movement is known within 100 m.

HDM Human, Dam

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a dam, weir, head gate, or other cross channel structure that impounds, filters, or diverts stream flow. This code includes structures of all materials (e.g., earth, concrete, rip rap, metal, wood). Used where the location of the barrier to movement is known within 100 m.

HOT Human, Other

Where the upstream movements of a given species appear, based on sufficient upstream and downstream sampling, to be blocked by a human-created structure other than those listed immediately above. Used where the location of the barrier to movement is known within 100 m.

NAP Not applicable No fish observed.

See downstream stations.

Appendix B3.-Page 4 of 4.

NON None

No barrier exists at survey station.

SBU Specific Barrier Unknown

Where a given species is collected at a downstream station and not at an upstream station but where no specific barrier is known between the 2 stations. Used where the distributional limits are not known within 100 m.

UNK Unknown

No information exists upstream of a sample station. Often where a species is collected at a station and no additional sampling or survey occurs upstream.

Appendix B4.-Water color, substrate, stream-stage, and embeddednes classes.

Water-color classes.

Code	Description	Definition
CLR	Clear	Transparent water, or nearly so.
FER	Ferric	Rust- (orange) stained.
GHT	Glacial,	High turbidity waters (visibility ≤ 30 cm (12 in) typical of streams originating
	High	directly from glaciers (e.g., Matanuska River).
	Turbidity	
GLT	Glacial,	Low turbidity waters (visibility > 30 cm) typical of systems with large lakes
	Low	(settling basins) below glacial discharge (e.g., Kenai River). These waters are
	Turbidity	frequently turquoise-colored.
HUM	Humic	Tea-colored water (tannic)
MUD	Muddy	Dark water with high suspended particulate load.

Substrate classes.

Code	Name	Intermediate-axis dimensions	
BED	Bedrock	> 4,096 mm. Solid rock—few or no discrete particles	
BLD	Boulder	256–4,096 mm	
CBL	Cobble	64–256 mm	
GRV	Gravel	2–64 mm	
SND	Sand	0.0625–2 mm	
SCL	Silt/Clay	≤ 0.0625 mm	
ORG	Organic	Incompletely-decomposed organic material	

Source: adapted (Bedrock and Organic classes added) from Cummins (1962), which is based on the Wentworth (1922) scale.

Stream-stage classes.

Code	Description	
DNC	Dry, no defined channel	
DDC	Dry, defined channel	
LDF	Low, intermittent surface flow	
LCF	Low, continuous surface flow	
MED	Medium	
HIH	High	
WNC	Wet, no defined channel	

Embeddedness classes.

Note: If the dominant substrate type is sand, silt, or clay, the level of embeddedness will be rated as Very high. If the dominant substrate type is bedrock, the level of embeddedness will be rated as Negligible. *Source:* modified from Bain (1999), which was adapted from Platts et al. 1983.

	Level of	
Code	$embeddedness^a$	Description
NEG	Negligible	Gravel, cobble, and boulder particles have <5% of their height covered by fine sediment ^b .
		Gravel, cobble, and boulder particles have 5-25% of their height covered by fine
LOW	Low	sediment.
MOD	Moderate	Gravel, cobble, and boulder particles have 25-50% of their height covered by fine sediment.
		Gravel, cobble, and boulder particles have 50-75% of their height covered by fine
HIH	High	sediment.
		Gravel, cobble, and boulder particles have >75% of their height covered by fine
VHI	Very high	sediment.

^a Embeddedness (*sensu* Armantrout 1998): Degree that gravel and larger sizes of particles (boulders, cobble, or rubble) are surrounded or covered by fine sediment (e.g., less than 2 mm).

^b <2 mm, i.e., sand, silt, or clay.

Appendix B5.-Fish species codes.

Code	Common name	Scientific name
ACI	sturgeon-unspecified	Acipenser sp.
ATG	green sturgeon	Acipenser medirostris
ATW	white sturgeon	Acipenser
		transmontanus
CAC	Arctic char	Salvelinus alpinus
CBT	brook trout	Salvelinus fontinalis
CDV	Dolly Varden	Salvelinus malma
CHR	char-unspecified	Salvelinus sp.
CLK	lake trout	Salvelinus namaycush
DAL	Alaska blackfish	Dallia pectoralis
ERC	trout-perch	Percopsis
EAD	A 4' CI 1	omiscomaycus
FAR	Arctic flounder	Pleuronectes glacialis
FLN	righteye flounders- unspecified	Pleuronectidae
FST	starry flounder	Platichthys stellatus
GAD	cod-unspecified	Gadidae
GAR	Arctic cod	Boreogadus saida
GBR	burbot	Lota lota
GPA	Pacific cod	Gadus macrocephalus
GRA	Arctic grayling	Thymallus arcticus
GSA	saffron cod	Eleginus gracilis
HAM	American shad	Alosa sapidissima
HER	herrings-unspecified	Clupeidae
HPA	Pacific herring	Clupea pallasii
IDA	salmonid, unspecified	Salmonidae
KNS	ninespine stickleback	Pungitius pungitius
KSB	stickleback-	Gasterosteidae
KTS	unspecified threespine stickleback	Gasterosteus aculeatus
LAC	Arctic-Alaskan brook	L. camtschatica /
Lite	lamprey paired species	L. alaskense
LAK	Alaskan brook	Lampetra alaskense
2	lamprey	zampen a anasnense
LAR	Arctic lamprey	Lampetra camtschatica
LMO	Atlantic salmon	Salmo salar
LMP	lamprey-unspecified	Lampetra sp.
LPC	Pacific lamprey	Lampetra tridentata
LRV	American river lamprey	Lampetra ayresii
LWB	western brook lamprey	Lampetra richardsoni
MIN	lake chub	Couesius plumbeus
NOS	longnose sucker	Catostomus catostomus
OEU	eulachon	Thaleichthys pacificus
OLS	longfin smelt	Spirinchus thaleichthys
OPS	pond smelt	Hypomesus olidus
ORM	rainbow smelt	Osmerus mordax
OSM	smelt-unspecified	Osmeridae
OSS	surf smelt	Hypomesus pretiosus
PIK	northern pike	Esox lucius
SAM	Pacific salmon-	semelparous
	unspecified	Oncorhynchus sp.
SCK	Chinook salmon	Oncorhynchus
SCM	chum salmon	tshawytscha Oncorhynchus keta

Appendix B5.—Page 2 of 2.

Code	Common name	Scientific name
SCO	coho salmon	Oncorhynchus kisutch
SPI	pink salmon	Oncorhynchus
	•	gorbuscha
SSE	sockeye salmon	Oncorhynchus nerka
TCT	cutthroat trout	Oncorhynchus clarkii
TRB	rainbow trout	Oncorhynchus mykiss
TRT	trout-unspecified	iteroparous
	-	Oncorhynchus sp.
UCR	coastrange sculpin	Cottus aleuticus
UFH	fourhorn sculpin	Myoxocephalus
		quadricornis
ULP	sculpin-unspecified	Cottidae
UPR	prickly sculpin	Cottus asper
UPS	Pacific staghorn	Leptocottus armatus
USH	sculpin sharpnose sculpin	Clinocottus acuticeps
USL	slimy sculpin	Cottus cognatus
WAK	Alaska whitefish	Coregonus nelsonii
WAR	Arctic cisco	Coregonus autumnalis
WBC	Bering cisco	Coregonus laurettae
WBD	broad whitefish	Coregonus nasus
WHB	humpback whitefish	Coregonus pidschian
WHC	humpback whitefish	C. clupeaformis / C.
	complex	nelsonii / C. pidschian
WHF	whitefish-unspecified	Coregoninae
WIN	inconnu (sheefish)	Stenodus leucichthys
WLC	least cisco	Coregonus sardinella
WLK	lake whitefish	Coregonus clupeaformis
WPG	pygmy whitefish	Prosopium coulteri
WRN	round whitefish	Prosopium
		cylindraceum
YMA	shiner perch	Cymatogaster aggregata
YYP	yellow perch	Perca flavescens
QQQ	other species not listed	-
VVV	no collection effort	-
XXX	no fish collected or	-
	observed	
ZZZ	general fish	-
	observation, no species	
	information	

Appendix B6.-Riparian vegetation communities (Viereck et al. 1992).

Code	Key	Class	Description
Ι	Trees > 3 m tall with canopy cover of $\ge 10\%$. If not, go to II.	Forest	Single stemmed woody plants at least 3 m tall at maturity and at least 10% cover.
IA	> 75% of tree cover contributed by coniferous species. If not, go to IB.	Coniferous Forest	Dominated by coniferous (needleleaf) tree species (Sitka, White, and Black Spruce; Western and Mountain Hemlock; Western Redcedar; Alaska-Cedar, Silver and Subalpine Fir, Pacific Yew, Lodgepole Pine, and Tamarack.
IA1	Tree canopy of 60 - 100% cover. If not, go to IA2.	Closed Coniferous Forest	Forest community has a 60 - 100% total tree canopy coverage.
IA1a	Sitka Spruce dominates overstory and regeneration.	Closed Sitka Spruce Forest	Occupies wet sites in SE Alaska, primarily in alluvial flood plains, and in narrow coastal band in SC Alaska to Kodiak.
IA1b	Western Hemlock dominates overstory; other species < 25% of overstory.	Closed Western Hemlock Forest	Widespread in SE Alaska, often with a Sitka Spruce component.
IA1c	Sitka Spruce and Western Hemlock each contribute > 30% cover. Sitka Spruce constitutes most of overstory, Western Hemlock usually provides most of understory.	Closed Sitka Spruce- Western Hemlock Forest	Occurs on moist sites throughout SE Alaska and in coastal band in SC Alaska.
IA1d	Western Hemlock dominates. Sitka Spruce > 25% cover but < Western Hemlock.	Closed Western Hemlock-Sitka Spruce-(Western Redcedar) Forest	Widespread in SE Alaska and in coastal band in SC Alaska (Redcedar may be present S of 57° N).
IA1e	Western Hemlock and Alaska-Cedar dominate (each contributes 25 - 75% of canopy cover).	Closed Western Hemlock-Alaska- cedar	Occurs on a variety of upland sites from sea level to subalpine throughout SE Alaska.
IA1f	Mountain Hemlock dominates canopy cover.	Closed Mountain Hemlock Forest	Occurs near tree line, normally on saturated soil, throughout SE Alaska and in narrow subalpine band in SC Alaska.
IA1g	Western Hemlock and Western Redcedar dominate (each contributes 25 - 75% of canopy cover). Alaska-cedar and Mountain Hemlock may also be significant.	Closed Western Hemlock-Western Redcedar Forest	Occurs on low-producing, poorly drained sites in southern SE Alaska.
IA1h	Silver Fir and Western Hemlock dominate (each contributes 25 - 75% of canopy cover). Sitka Spruce and Western Redcedar may also be important.	Closed Silver Fir- Western Hemlock Forest	Limited distribution in southernmost SE Alaska.

Appendix B6.–Page 2 of 15.

Code	Key	Class	Description
IA1i	Subalpine Fir dominates canopy cover. Other important species include Sitka Spruce, Mountain Hemlock, and Alaska-cedar.	Closed Subalpine Fir Forest	Occurs in scattered locations near tree line in SE Alaska.
IA1j	White Spruce dominates canopy cover. May include scattered Paper Birch or Balsam Poplar.	Closed White Spruce Forest	Widespread in SC and Interior Alaska, generally on well-drained, permafrost-free soils.
IA1k	Black Spruce dominates canopy cover. White Spruce and Paper Birch may be present.	Closed Black Spruce Forest	Widespread in SC and Interior Alaska, generally on poorly-drained organic soils, often over permafrost-free soils.
IA11	Black Spruce and White Spruce codominate (each contributes 25 - 75% of canopy cover).	Closed Black Spruce- White Spruce Forest	Occurs in Interior Alaska near the northern and western limits of trees. Also on terraces and bases of south-facing slopes.
IA2	Tree canopy of 25 - 60% cover. If not, go to IA3.	Open Coniferous Forest	Forest community has a 25 - 60% total tree canopy coverage.
IA2a	Sitka Spruce dominate overstory. Other species < 25% of canopy cover.	Open Sitka Spruce Forest	Often occurs in alluvial deposits and glacial moraines and outwash in SE Alaska and in narrow coastal band in SC Alaska to Kodiak.
IA2b	Western Hemlock and Sitka Spruce dominate overstory (each contributes 25 - 75% of canopy cover).	Open Western Hemlock-Sitka Spruce Forest	Occurs from low to mid-elevations in SE Alaska.
IA2c	Mountain Hemlock dominates overstory. Other trees < 25% of canopy cover.	Open Mountain Hemlock Forest	Primarily on high mountain slopes in SC and SE Alaska.
IA2d	Dominated by various combinations of Alaska-cedar, Western Hemlock, Mountain Hemlock, Sitka Spruce, Lodgepole Pine, Western Redcedar, and Pacific Yew.	Open Mixed Conifer Forest	Stands with 3 - 5 overstory conifer species common on level or gently sloping wet sites in SE Alaska.
IA2e	White Spruce dominates overstory. Other species < 25% of canopy cover.	Open White Spruce Forest	On well-drained sites and near tree line in Interior, SW, NW, and SC Alaska.
IA2f	Black Spruce dominates overstory. Other species < 25% of canopy cover.	Open Black Spruce Forest	Extremely common on poorly drained, cold sites in Interior and SC Alaska.
IA2g	Black Spruce and White Spruce codominate (each contributes 25 - 75% of canopy cover).	Open Black Spruce- White Spruce Forest	Occurs mostly near tree line in Interior Alaska.
IA2h	Black Spruce and Tamarack codominate (each contributes 25 - 75% of canopy cover).	Open Black Spruce- Tamarack Forest	On wet lowland sites with permafrost in Interior Alaska.

Appendix B6.–Page 3 of 15.

Code	Key	Class	Description
IA3	Tree canopy of 10 - 25% cover.	Coniferous Woodland	Forest community has a 10 - 25% total tree canopy coverage.
IA3a	Lodgepole Pine dominates overstory. Other species < 25% of canopy cover.	Lodgepole Pine Woodland	Generally on boggy, poorly-drained sites in SE Alaska.
IA3b	Sitka Spruce dominates overstory. Other species < 25% of canopy cover.	Sitka Spruce Woodland	On poorly-drained sedge peat in SE and coastal SC Alaska.
IA3c	White Spruce dominates overstory. Other species < 25% of canopy cover.	White Spruce Woodland	Common and northern and elevational treelines.
IA3d	Black Spruce dominates overstory. Other species < 25% of canopy cover.	Black Spruce Woodland	In Interior, SC, SW, and NW Alaska on wet, boggy sites, often with sphagnum mosses, and on dry upland sites frequently with lichens.
IA3e	Black Spruce and White Spruce codominate (each contributes 25 - 75% of canopy cover).	Black Spruce-White Spruce Woodland	In Interior, SC, SW, and NW Alaska, often near the northern, western, and elevational limit of trees.
IB	> 75% of tree cover contributed by broadleaf species. If not, go to IC.	Broadleaf Forest	Dominated by broadleaf (all deciduous trees except for tamarack) tree species (Red Alder, Black Cottonwood, Balsam Poplar, Quaking Aspen, Paper Birch).
IB1	Tree canopy of 60 - 100% cover. If not, go to IB2.	Closed Broadleaf Forest	Forest community has a 60 - 100% total tree canopy coverage.
IB1a	Red Alder dominates overstory. Other species < 25% of canopy cover.	Closed Red Alder Forest	Occupies moist sites and disturbed areas in SE Alaska.
IB1b	Black Cottonwood dominates overstory. Other species < 25% of canopy cover.	Closed Black Cottonwood Forest	Generally along streams in SE and SC Alaska.
IB1c	Balsam Poplar dominates overstory. Other species < 25% of canopy cover.	Closed Balsam Poplar Forest	Occurs most frequently on floodplains in Interior, SC, and SW Alaska and in isolated stands on the northern slope of the Brooks Range.
IB1d	Paper Birch dominates overstory. Other species < 25% of canopy cover.	Closed Paper Birch Forest	Occurs on many upland sites, both with and without permafrost, in Interior and SC Alaska.
IB1e	Quaking Aspen dominates overstory. Other species < 25% of canopy cover.	Closed Quaking Aspen Forest	Occurs on warm, well-drained upland soils in Interior and SC Alaska.

Appendix B6.–Page 4 of 15.

Code	Key	Class	Description
IB1f	Paper Birch and Quaking Aspen codominate (each contributes 25 - 75% of canopy cover).	Closed Paper Birch- Quaking Aspen Forest	Found on moderately warm sites in Interior and SC Alaska.
IB1g	Quaking Aspen and Balsam Poplar codominate (each contributes 25 - 75% of canopy cover).	Closed Quaking Aspen-Balsam Poplar Forest	Occurs on floodplains in Interior Alaska.
IB2	Tree canopy of 25 - 60% cover. If not, go to IB3.	Open Broadleaf Forest	Forest community has a 25 - 60% total tree canopy coverage.
IB2a	Paper Birch dominates overstory. Other species < 25% of canopy cover.	Open Paper Birch Forest	Occurs on dry to moist sites in Interior, SC, and W Alaska. On dry sites lichens are important in understory; on moist sites, shrubs are dominant.
IB2b	Quaking Aspen dominates overstory. Other species < 25% of canopy cover.	Open Quaking Aspen Forest	Primarily on extremely dry sites on steep south-facing slopes in Interior and SC Alaska.
IB2c	Balsam Poplar or Black Cottonwood dominate overstory. Other species < 25% of canopy cover.	Open Balsam Poplar (Black Cottonwood) Forest	Occurs as open clumps near tree line in Interior, SC, SW, and NW Alaska and in isolated groves on north slope of Brooks Range (Black Cottonwood restricted to SC and SE Alaska).
IB3	Tree canopy of 10 - 25% cover.	Broadleaf Woodland	Forest community has a 10 - 25% total tree canopy coverage.
IB3a	Paper Birch (may be multistemmed) dominates overstory. Other species < 25% of canopy cover.	Paper Birch Woodland	On dry sites, such as old sand dunes and coarse gravel deposits, in NW and northern Interior Alaska.
IB3b	Balsam Poplar dominates overstory. Other species < 25% of canopy cover.	Balsam Poplar Woodland	Reported from the Susitna R. floodplain. May occur on slopes near tree line.
IB3c	Paper Birch and Quaking Aspen codominate (each contributes 25 - 75% of canopy cover).	Paper Birch-Balsam Poplar Woodland	Reported from the Susitna Valley.
IC	Broadleaf or coniferous species both contribute 25 - 75% of tree cover.	Mixed Forest	Broadleaf or coniferous species contribute 25 - 75% of tree cover.
IC1	Tree canopy of 60 - 100% cover. If not, go to IC2.	Closed Mixed Forest	Forest community has a 60 - 100% total tree canopy coverage.

Appendix B6.–Page 5 of 15.

Code	Key	Class	Description
IC1a	Paper Birch and White and/or Black Spruce dominate overstory.	Closed Spruce-Paper Birch Forest	Primarily in Interior and SC Alaska where it tends to occur on cool wet sites when black spruce is included in mixture
IC1b	White Spruce, Paper Birch, and Balsam Poplar/Black Cottonwood dominate overstory.	Closed White Spruce- Paper Birch-Balsam Poplar (Black Cottonwood Forest)	Reported from the Susitna Valley.
IC1c	White and/or Black Spruce, Paper Birch, and Quaking Aspen dominate overstory.	Closed Spruce-Paper Birch-Quaking Aspen Forest	Reported from Interior Alaska.
IC1d	Quaking Aspen and White and/or Black Spruce dominate overstory.	Closed Quaking Aspen-Spruce Forest	Most common in Interior and SC Alaska on warm, well-drained sitesan intermediate successional phase.
IC1e	Balsam Poplar and White Spruce dominate overstory.	Closed Balsam Poplar-White Spruce Forest	On floodplains In Interior, SC, SW, and NW Alaska where it is an intermediate successional stage.
IC2	Tree canopy of 25 - 60% cover. If not, go to IC3.	Open Mixed Forest	Forest community has a 25 - 60% total tree canopy coverage.
IC2a	Paper Birch and White and/or Black Spruce dominate overstory.	Open Spruce-Paper Birch Forest	On a variety of upland sites in Interior, SC, SW, and NW Alaska.
IC2b	Quaking Aspen and White and/or Black Spruce dominate overstory.	Open Quaking Aspen- Spruce Forest	Reported from the Porcupine River area in Interior Alaska.
IC2c	White Spruce, Paper Birch, and Balsam Poplar dominate overstory.	Open Paper Birch- Balsam Poplar-Spruce Forest	Reported from Susitna Valley.
IC2d	White Spruce and Balsam Poplar dominate overstory.	Open Spruce-Balsam Poplar	Reported from Susitna Valley.
IC3	Tree canopy of 10 - 25% cover.	Mixed Woodland	Forest community has a 10 - 25% total tree canopy coverage.
IC3a	Paper Birch and White and/or Black Spruce dominate overstory.	Spruce-Paper Birch Woodland	Reported from Susitna Valley.
II	Erect to decumbent woody shrubs with cover \geq 25% OR dwarf trees (< 3 m tall) with cover \geq 10% cover. If not, go to III.	Scrub	Scrub communities are composed of combinations of dwarf trees, and tall, low, and dwarf shrubs.

Appendix B6.–Page 6 of 15.

	Key	Class	Description
IIA	Dwarf trees (< 3 m tall) with cover \geq 10% cover. If not, go to IIB.	Dwarf Tree Scrub	Community dominated by dwarf trees (< 3 m tall), usually shrublike. Shrubs may be absent or abundant.
IIA1	Dwarf tree canopy of 60 - 100% cover. If not, go to IIA2.	Closed Dwarf Tree Scrub	Dwarf tree canopy of 60 - 100% cover.
IIA1a	Mountain Hemlock dominates overstory. Sitka Spruce may be present.	Closed Mountain Hemlock Dwarf Tree Scrub	Occurs at tree line in SE Alaska. On wind-exposed sites may form mat 0.3 m tall.
IIA1b	Subalpine Fir dominates overstory. Mountain Hemlock and Sitka Spruce may be present.	Closed Subalpine Fir Dwarf Tree Scrub	Forms dense stands at elevational tree line in SE Alaska. On highly exposed sites may form prostrate mat 0.15 m tall.
IIA2	Dwarf tree canopy of 25 - 59% cover. If not, go to IIA3.	Open Dwarf Tree Scrub	Dwarf tree canopy of 25 - 59% cover. Shrubs may be absent or abundant, usually common.
IIA2a	Black Spruce dominates overstory. Dwarf tamarack and paper birch may also be present.	Open Black Spruce Dwarf Tree Scrub	Found on very cold and/or wet soils in Interior, SC, and W Alaska.
IIA2b	Mountain Hemlock dominates overstory. Sitka Mountainash may be present.	Open Mountain Hemlock Dwarf Tree Scrub	Common on peatlands and sometimes on exposed ridges in SE Alaska.
IIA3	Dwarf tree canopy of 10 - 25% cover.	Dwarf Tree Scrub Woodland	Dwarf tree canopy of 10 - 24% cover. If other vegetation types are lacking, dwarf tree cover can be as low as 2%.
IIA3a	Black Spruce dominates overstory. Other tree species usually not present.	Black Spruce Dwarf Tree Woodland	Common in Interior, SC, and W Alaska on very cold or wet sites.
IIB	Shrubs > 1.5 m tall and $\ge 25\%$ cover dominate. If not, go to IIC.	Tall Scrub	Woody plants other than trees > 1.5 m tall and $\ge 25\%$ cover dominate.
IIB1	Shrub canopy cover > 75%. If not, go to IIB2.	Closed Tall Scrub	Shrub canopy cover > 75%.
IIB1a	Willow species dominate overstory (< 25% other canopy species).	Closed Tall Willow Shrub	Characteristic of floodplains and common throughout Alaska except for Aleutian Is. and Arctic coast.
IIB1b	Alder species dominate overstory (< 25% other canopy species).	Closed Tall Alder Shrub	Common throughout most of state on steep slopes, floodplains, and stream banks.
IIB1c	Shrub Birch species or hybrids dominate overstory (< 25% other canopy species).	Closed Tall Shrub Birch Shrub	Generally found in taiga openings in Interior Alaska near tree line.
IIB1d	Alder and Willow species codominate (each contributes 25 - 75% of canopy cover).	Closed Tall Alder- Willow Shrub	Occurs on floodplain terraces and drainages on slopes throughout most of Alaska except Aleutian Is. and Arctic Coastal Plain.

Appendix B6.–Page 7 of 15.

Code	Key	Class	Description
IIB1e	Shrub Birch and Willow species codominate (each contributes 25 - 75% of canopy cover).	Closed Tall Shrub Birch-Willow Shrub	Not common but present on Seward Peninsula.
IIB1f	Standing water present most or all of growing season. Alder (usually) and willow typically dominate.	Closed Tall Shrub Swamp	Common in Interior, SC, and SE Alaska on sites with poorly drained soil and hummocky microrelief with depressions containing standing water. Typically dominated by alder or willow.
IIB2	Shrub canopy cover 25 - 74% OR \geq 2% IF little or no other vegetation cover present.	Open Tall Scrub	Shrub canopy cover 25 - 74% (or \geq 2% if little or no other vegetation present).
IIB2a	Willow species dominate overstory (< 25% other canopy species).	Open Tall Willow Shrub	Occupies a variety of sites, from dunes to river banks. Most common in Interior, W, SC, and Arctic Alaska.
IIB2b	Alder species dominate overstory (< 25% other canopy species).	Open Tall Alder Shrub	Found throughout state, but not as abundant as closed alder communities.
IIB2c	Shrub Birch species or hybrids dominate overstory (< 25% other canopy species).	Open Tall Shrub Birch Shrub	Occurs at and above tree line, especially in Alaska Range.
IIB2d	Alder and Willow species codominate (each contributes 25 - 75% of canopy cover).	Open Tall Alder- Willow Shrub	On floodplain terraces and steep slopes near tree line in Interior and N Alaska.
IIB2e	Shrub Birch and Willow species codominate (each contributes 25 - 75% of canopy cover).	Open Tall Shrub Birch-Willow Shrub	Occurs near tree line especially in Alaska Range and W Alaska.
IIB2f	Standing water present most or all of growing season. Alder (usually) and Willow typically dominate.	Open Tall Shrub Swamp	Occurs on floodplains and drainages in Interior and SC Alaska.
IIC	Shrubs 0.2 - 1.5 m tall and $\geq 25\%$ cover dominate. If not, go to IID	Low Scrub	Woody plants other than trees 0.2 - 1.5 m tall and \geq 25% cover dominate.
IIC1	Shrub canopy cover > 75%. If not, go to IIC2.	Closed Low Scrub	Shrub canopy cover > 75%.
IIC1a	Shrub Birch species or hybrids dominate overstory (< 25% other canopy species).	Closed Low Shrub Birch	Thickets not common but do occur on Seward Peninsula and Interior Alaska.
IIC1b	Willow species dominate overstory (< 25% other canopy species).	Closed Low Willow Shrub	Common in Interior, W and N Alaska along streams and lakes.
IIC1c	Shrub Birch and Willow species codominate (each contributes 25 - 75% of canopy cover).	Closed Low Shrub Birch-Willow Shrub	Occupies alluvial deposits in N and W Alaska.
IIC1d	Ericaceous (e.g., Copperbush Cladothamnus pyrolaeflorus) species dominate.	Closed Low Ericaceous Shrub	Near tree line in SE Alaska (Copperbush Cladothamnus pyrolaeflorus).

Appendix B6.–Page 8 of 15.

Code	Key	Class	Description
IIC1e	Alder and Willow species codominate (each contributes 25 - 75% of canopy cover).	Closed Low Alder- Willow Shrub	Reported from SE Alaska on poorly drained soils.
IIC2	Shrub canopy cover 25 - 74% OR \geq 2% IF little or no other vegetation cover present.	Open Low Scrub	Shrub canopy cover 25 - 74% (or \geq 2% if little or no other vegetation present).
IIC2a	Mixed shrubs and tussock-forming sedges dominate (in arctic and alpine regions beyond tree line).	Open Low Mixed Shrub-Sedge Tussock Tundra	One of the most extensive tundra units in Alaska; centered in N and W Alaska.
IIC2b	Mixed shrubs and tussock-forming sedges dominate (in subarctic and subalpine regions within tree limit).	Open Low Mixed Shrub-Sedge Tussock Bog	Occurs in lowland areas of Interior and SC Alaska.
IIC2c	Shrub Birch and Ericaceous species codominate (each contributes 25 - 75% of canopy cover) on wet non-peat soils. Hydrophytic sedges and Sphagnum are absent.	Open Low Mesic Shrub Birch- Ericaceous Shrub	Mesic slopes and alpine areas in Interior and SC Alaska and in N and W Alaska. Hydrophytic sedges and Sphagnum mosses generally absent.
IIC2d	Shrub Birch and Ericaceous species codominate (each contributes 25 - 75% of canopy cover) on wet peat soils. Peat-forming sedges and/or mosses are present.	Open Low Shrub Birch-Ericaceous Shrub Bog	Common on peat mounds and ridges of poorly drained lowlands in all Alaska except SE Alaska and Aleutian Is. Hydrophytic sedges and Sphagnum mosses generally present
IIC2e	Ericaceous species dominate (< 25% other canopy species). Wet peat soils.	Open Low Ericaceous Shrub Bog	Common in maritime climates of SE and SC Alaska and Aleutian Is. Hydrophytic sedges and Sphagnum mosses generally present.
IIC2f	Shrub Birch and Willow species codominate (each contributes 25 - 75% of canopy cover).	Open Low Shrub Birch-Willow Shrub	Occurs in poorly drained lowlands and on moist slopes in N, Interior, SC, and SW Alaska
IIC2g	Willow species dominate overstory (< 25% other canopy species).	Open Low Willow Shrub	Occurs on moist uplands in N, Interior, and SC Alaska
IIC2h	Willow species dominate overstory (< 25% other canopy species); sedges dominate understory (in arctic and alpine regions beyond tree line).	Open Low Willow- Sedge Shrub Tundra	Occurs on poorly drained lowlands of Arctic and W Alaska.
IIC2i	Willow species dominate overstory (< 25% other canopy species); graminoids dominate understory on peat soils (in subarctic and subalpine regions within tree line).	Open Low Willow- Graminoid Shrub Bog	Occurs in wet stream bottoms and depressions in Interior, SW, SC, and SE Alaska.

Appendix B6.–Page 9 of 15.

Code	Key	Class	Description
IIC2j	Sweetgale and graminoids dominate on extremely wet (often standing water) on peat soils.	Open Low Sweetgale- Graminoid Bog	Occupies poorly drained lowlands and pond margins in SE, SC, and SW Alaska.
IIC2k	Alder and Willow species codominate (each contributes 25 - 75% of canopy cover).	Open Low Alder- Willow Shrub	Occurs near tree line in interior Alaska and on river terraces in Arctic Alaska.
IIC21	Alder species dominate overstory (< 25% other canopy species).	Open Low Alder Shrub	Occupies moist areas, especially drainages, in most of Alaska, except SE and Aleutian Is.
IIC2m	Sagebrush and Juniper dominate.	Sagebrush-Juniper	Exists on steep south-facing bluffs in Interior and SC Alaska.
IIC2n	Sagebrush and grasses dominate.	Sagebrush-Grass	Occurs on south-facing bluffs in Interior and SC Alaska.
IID	Shrubs < 0.2 m tall and \geq 25% cover OR \geq 2% IF little or no other vegetation cover present.	Dwarf Scrub	Woody plants other than trees < 0.2 m tall and $\ge 25\%$ cover dominate.
IID1	Dryas species dominate. If not, go to IID2.	Dryas Dwarf Scrub	Dryas species dominant in dwarf shrub layer.
IID1a	Dryas species dominate.	Dryas Dwarf Shrub Tundra	Very wide-spread throughout the northern two-thirds of Alaska.
IID1b	Dryas species and sedges dominate.	Dryas-Sedge Dwarf Shrub Tundra	Common on alpine sites throughout the northern two-thirds of Alaska.
IID1c	Dryas species and fruticose lichens dominate.	Dryas-Lichen Dwarf Shrub Tundra	Occurs on windswept alpine sites, especially on the Seward Peninsula.
IID2	Ericaceous species dominate. If not, go to IID3.	Ericaceous Dwarf Scrub	Ericaceous species dominant in dwarf shrub layer.
IID2a	Bearberry Arctostaphylos species dominate.	Bearberry Dwarf Shrub Tundra	Occurs in alpine areas in Interior and Arctic Alaska, but most common in W Alaska.
IID2b	Vaccinium cranberry species dominate.	Vaccinium Dwarf Shrub Tundra	Common in alpine areas of Interior, N, and W Alaska.
IID2c	Crowberry Empetrum nigrum dominates.	Crowberry Dwarf Shrub Tundra	Characteristic of S. Alaska and Aleutian Is.
IID2d	Mountain-Heath Phyllodoce aleutica dominates.	Mountain Heath Dwarf Shrub Tundra	Common on alpine slopes in SC and SE Alaska.
IID2e	Cassiope species dominate.	Cassiope Dwarf Shrub Tundra	Widespread on moist alpine sites throughout Alaska.
IID3	Willow species dominate.	Willow Dwarf Scrub	Willow species dominant in dwarf shrub layer.

Appendix B6.–Page 10 of 15.

Code	Key	Class	Description
IID3a	Willow species dominate.	Willow Dwarf Shrub Tundra	Common in alpine areas throughout Alaska except for SE Alaska.
III	Herbaceous (non-woody) vegetation dominates with < 25% scrub and < 10% forest cover. If not, go to IV.	Herbaceous	Herbaceous (non-woody) vegetation with \leq 25% shrub cover and \leq 10% forest cover.
IIIA	Grasses and Sedges dominate (Rushes and Horsetails are treated as forbs). If not, go to IIIB.	Graminoid Herbaceous	Grasses, sedges, or rushes dominant.
IIIA1	Graminoids dominate on well- to excessively-drained sites. If not, go to IIIA2	Dry Graminoid Herbaceous	Grasslands of well-drained, dry sites, such as south facing bluffs, old beaches, and sand dunes.
IIIA1a	Elymus species dominate.	Elymus	Occurs on beaches, dunes, gravel outwash flats, and dry slopes mostly in coastal areas, but occasionally in Alaska and Brooks Ranges and Interior Alaska.
IIIA1b	Fescue species dominate.	Dry Fescue	Occupies dry slopes in Interior, SC, and W Alaska.
IIIA1c	Medium height grasses dominate with conspicuous shrubs providing $< 25\%$ cover.	Midgrass-Shrub	Locally common on steep, south-facing slopes in Interior and SC Alaska.
IIIA1d	Medium height grasses and broad-leaved herbs dominate.	Midgrass-Herb	Occupies various sites in SC, SE, and Interior Alaska and Aleutian Is. from alpine meadows to stream banks.
IIIA1e	Hair-grasses Deschampsia species dominate.	Hair-Grass	Common in Aleutian Is. and along southern coast of Alaska. Often diverse stands with small numbers of a great many species.
IIIA2	Graminoids dominate or codominate on mesic sites.	Mesic Graminoid Herbaceous	Grasslands on moist sites, but usually not with standing water (tussocks often present).
IIIA2a	Bluejoint Calamagrostis dominates (includes lawns).	Bluejoint Meadow	Found throughout Alaska except for SE and Arctic Alaska. Occupies large areas in SC and SW Alaska. Includes installed and maintained lawns.
IIIA2b	Bluejoint Calamagrostis and herbs codominate.	Bluejoint-Herb	Widely distributed in southern half of state.
IIIA2c	Bluejoint Calamagrostis dominates with conspicuous shrubs providing < 25% cover.	Bluejoint-Shrub	Extensive in SW Alaska and probably also common in SC and Interior Alaska.
IIIA2d	Sedges in tussock growth form dominate (in arctic and alpine regions beyond tree line).	Tussock Tundra	Widely distributed throughout W, N, and Interior Alaska.
IIIA2e	Sedges and Grasses dominate in various combinations (in arctic and alpine regions beyond tree line).	Mesic Sedge-Grass Meadow Tundra	Usually of minor extent in arctic and alpine settings.

Appendix B6.–Page 11 of 15.

Code	Key	Class	Description
IIIA2f	Sedges and broad-leaved herbs codominate (in arctic and alpine regions beyond tree line).	Mesic Sedge-Herb Meadow Tundra	Usually of minor extent in arctic and alpine settings.
IIIA2g	Grasses and broad-leaved herbs codominate (in arctic and alpine regions beyond tree line).	Mesic Grass-Herb Meadow Tundra	Occurs in small, limited areas. Reported from Arctic Slope but probably more widespread.
IIIA2h	Sedges dominate with conspicuous willow component providing < 25% cover (in arctic and alpine regions beyond tree line).	Sedge-Willow Tundra	Widely distributed in tundra areas throughout Alaska except SC and SE; probably most abundant from Brooks Range north.
IIIA2i	Sedges dominate with conspicuous shrub birch component providing $< 25\%$ cover (in arctic and alpine regions beyond tree line).	Sedge-Birch Tundra	Known from northern Alaska.
IIIA2j	Sedges dominate with conspicuous dryas component providing < 25% cover (in arctic and alpine regions beyond tree line).	Sedge-Dryas Tundra	Widely distributed in tundra areas throughout Alaska except SE.
IIIA3	Graminoids dominate or codominate on wet (saturated or flooded most or all of growing season) sites.	Wet Graminoid Herbaceous (emergent)	Grasslands on wet sites, standing water present for part of year; dominated by sedges or grasses; includes wet tundra, bogs, marshes, and fens.
IIIA3a	Sedges dominate (in arctic and alpine regions beyond tree line).	Wet Sedge Meadow Tundra	Found in very wet areas, generally underlain by permafrost, in every part of Alaska except SE and Aleutian Is.
IIIA3b	Sedges and Grasses dominate in various combinations (in arctic and alpine regions beyond tree line).	Wet Sedge-Grass Meadow Tundra	Largely confined to the Arctic Coastal Plain in very wet areas underlain by shallow permafrost.
IIIA3c	Sedges and broad-leaved herbs codominate (in arctic and alpine regions beyond tree line).	Wet Sedge-Herb Meadow Tundra	Found on very wet, poorly drained sites with standing water, such as oxbow lakes and alpine bogs. Apparently widely distributed throughout Alaska.
IIIA3d	Tall Sedges emerging from standing water (> 0.15 m deep) dominate.	Fresh Sedge Marsh	Found in SC and SE Alaska; may be found in Interior.
IIIA3e	Grasses emerging from standing water (> 0.15 m deep) dominate.	Fresh Grass Marsh	Common in ponds, slow-flowing streams, lake margins, and thermokarst pits in N and W Alaska. Depth of water ranges from seasonally flooded to 2 m.

Appendix B6.–Page 12 of 15.

Code	Key	Class	Description
IIIA3f	Coarse, relatively tall Sedges in saturated or shallow flooded (≤ 0.15 m deep) soils dominate (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Sedge Wet Meadow	Common in very wet areas on floodplains, margins of ponds, lakes, and sloughs and in depressions in upland areas. Reported from W, SC, SE, Interior Alaska and Aleutian Is.
IIIA3g	Sedges in saturated or shallow flooded (≤ 0.15 m deep) soils dominate with conspicuous shrub component providing $< 25\%$ cover (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Sedge-Shrub Wet Meadow	Occupies upper parts of coastal marshes in SC and SE Alaska.
IIIA3h	Salt-tolerant Grasses (e.g., Puccinellia) dominate.	Halophytic Grass Wet Meadow	Commonly occupies tidal mud flats along entire Alaska coast.
IIIA3i	Salt-tolerant Sedges (e.g., Carex) dominate.	Halophytic Sedge Wet Meadow	Commonly occupies tidal mud flats along entire Alaska coast.
IIIA3j	Delicate, low Sedges on bog peats dominate (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Sedge-Bog Meadow	Develops on peat deposits, sometimes forming quaking sedge mats, in filled lakes, ponds, and depressions throughout the southern two-thirds of Alaska.
IIIA3k	Mosses (e.g., Sphagnum) dominate with delicate, low sedges present and usually codominant on peat soils (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Sedge-Moss Bog Meadow	Occurs on peat soils, including seepage slopes, raised bogs, slope bogs, early stages of flat bogs, and floating bogs in SE and SC Alaska and Aleutian Is.
IIIB	Forbs (broad-leaved herbs), Rushes (Juncaceae), Horsetails (Equisetaceae), and Ferns dominate. If not, go to IIIC.	Forb Herbaceous	Vegetation dominated by forbs (broadleaf herbs, ferns, rushes, or horsetails).
IIIB1	Forbs dominate on dry sites (often sparsely vegetated pioneer communities). If not, go to IIIB2.	Dry Forb Herbaceous	On dry sites, usually rocky and well-drained; mostly tundra sites.
IIIB1a	Open Herb communities colonizing previously unvegetated non-alpine sites.	Seral Herbs	Found throughout Alaska on floodplains, river banks, and eroding bluffs.
IIIB1b	Wide variety of herbs and sedges dominate on sites covered by late melting snow beds.	Alpine Herb-Sedge (Snowbed)	Includes a wide-variety of types below late-lying snowbanks in mountainous areas throughout Alaska.
IIIB1c	Sparse herb communities on alpine rock outcrops, talus and blockfields.	Alpine Herbs	Occur as sparse vegetation on talus and blockfields, and in some well-vegetated herbaceous meadows in alpine valleys throughout Alaska.
IIIB2	Forbs dominate on mesic soils.	Mesic Forb Herbaceous	On moist sites but without standing water, mostly within forested areas.

Appendix B6.–Page 13 of 15.

Code	Key	Class	Description
IIIB2a	Mixture of herbs dominate.	Mixed Herbs	Occur on mesic slopes and streambanks throughout most of Alaska.
IIIB2b	Fireweed Epilobium angustifolium dominates.	Fireweed	Occurs on disturbed areas in SC and Interior Alaska.
IIIB2c	Tall (0.5 - 1.5 m) Umbilliferae (e.g., Heracleum and Angelica) dominate.	Large Umbel	Occurs on moist to wet areas, often along drainages, in SE and SC Alaska and Aleutian Is.
IIIB2d	Ferns (e.g., Athyrium and Dryopteris) dominate.	Ferns	Restricted to localized areas in SE and SC Alaska and Aleutian Is.
IIIB3	Forbs dominate on wet (saturated or flooded most or all of growing season) sites.	Wet Forb Herbaceous (emergent)	On wet sites, usually with standing water for part of year.
IIIB3a	Herbs (e.g., Equisetum, Menyanthes trifoliata, and Potentilla palustris) emerging from standing water (> 0.15 m deep) dominate.	Fresh Herb Marsh	Found in ponds, sloughs, and oxbow lakes in SC, SW, SE and Interior Alaska.
IIIB3b	Herbs on saturated or shallow flooded (≤ 0.15 m deep) non-peat soils dominate (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Herb Wet Meadow	Found in seepage areas, ephemeral pools, pond margins and upper edges of coastal marshes on Aleutian Is. and in W, SC, and SE Alaska.
IIIB3c	Broad-leaved Herbs on saturated or shallow flooded (≤ 0.15 m deep) peat soils (often floating mat) dominate (in subarctic and subalpine regions within tree limit).	Subarctic Lowland Herb Bog Meadow	Commonly forms floating mats or occurs along margins of bog ponds in Interior, SC, and SE Alaska. Also occurs in wet areas above streams in Aleutian Is.
IIIB3d	Halophytic Herbs dominate on tidal areas inundated \geq a few times/month by salt water.	Halophytic Herb Wet Meadow	Occurs on a variety of wet substrates on beaches and seaward parts of coastal marshes along entire Alaska coastline.
IIIC	Bryophytes (mosses and liverworts) and/or Lichens dominate. If not, go to IIID.	Bryoid herbaceous	Vegetation dominated by mosses or lichens.
IIIC1	Bryophytes (mosses and liverworts) dominate. If not, go to IIIC2.	Bryophyte	Vegetation cover dominated by mosses.
IIIC1a	Bryophytes (e.g., Gymnocolea, Scapania, and Nardia) dominate on wet sites. Vascular plants are virtually absent.	Wet Bryophyte	Occurs on a wide variety of small and localized, mostly wet sites in the southern part of Alaska.
IIIC1b	Bryophytes (e.g., Rhacomitrium, Grimmia, and Andreaea) dominate on non-wet sites. Vascular plants are virtually absent.	Dry Bryophyte	Occurs on gravelly slopes, sand dunes, and mounds. Cover usually is sparse.
IIIC2	Lichens dominate.	Lichen	Vegetation cover dominated by lichens.

Appendix B6.–Page 14 of 15.

Code	Key	Class	Description
IIIC2a	Crustose Lichen species dominate.	Crustose Lichen	Occurs on extremely harsh, dry, windblown rocky sites with little or no soil development primarily in alpine regions throughout Alaska.
IIIC2b	Foliose and Fruticose Lichen species dominate. Other plant types are absent or nearly so.	Foliose and Fruticose Lichen	Occurs on dry fellfields and exposed ridges.
IIID	Plants with floating or submerged leaves dominate. Plants may also have emergent leaves and flowers.	Aquatic (nonemergent) Herbaceous	Dominant vegetation growing submerged in water or floating on water surface. Emergent (often specialized) leaves may occur.
IIID1	Aquatic communities in fresh water.	Freshwater Aquatic Herbaceous	Vegetation submerged or floating in fresh water.
IIID1a	Pondlilies Nuphar and Nymphaea dominate.	Pondlily	In fairly large ponds with mineral substrates. Widely distributed throughout SE, SC, W, and Interior Alaska.
IIID1b	Common Marestail Hippuris vulgaris dominates. Standing water may dry up for several weeks during growing season. Emergents are absent or nearly so.	Common Marestail	Found in oxbows, tundra ponds, and sluggish sloughs in SE, SC, W, and N Alaska.
IIID1c	Aquatic Buttercup Ranunculus species dominate or codominate.	Aquatic Buttercup	Occurs in shallow ponds and flooded gravel pits in SC, W, and N Alaska.
IIID1d	Burreed Sparganium species dominate.	Burreed	Occurs in shallow ponds and lakes in SE, SC, W, and N Alaska.
IIID1e	Water Milfoil Myriophyllum spicatum dominates.	Water Milfoil	Found in shallow ponds in SC, W, and Interior Alaska.
IIID1f	Pondweeds Potamogeton species dominate.	Fresh Pondweed	Present in small ponds and pools throughout Alaska.
IIID1g	Water Star-Wort Callitriche species dominate.	Water Star-Wort	Reported from shallow seasonal pools with rock bottoms on Amchika Is.
IIID1h	Aquatic Cryptogams (e.g., mosses Fontinalis, liverwort Scapania, lichen Siphula, and quillwort Isoetes) dominate.	Aquatic Cryptogam	Poorly described but probably widely distributed in shallow lakes and ponds throughout Alaska.
IIID2	Aquatic communities in brackish water.	Brackish Water Aquatic Herbaceous	Vegetation submerged or floating in brackish water.
IIID2a	Four-Leaf Marestail Hippuris tetraphylla dominates.	Four-Leaf Marestail	Occurs on deltas, tidal flats, and bays along the Alaska coastline.
IIID2b	Brackish water-tolerent Pondweed Potamogeton, Wigeongrass Ruppia spiralis, or Horned Pondweed Zannichellia palustris dominate.	Brackish Pondweed	Occurs in permanent shallow (0.10 - 0.15 m deep) brackish ponds in SE, SC, and SW Alaska.

Appendix B6.–Page 15 of 15.

Code	Key	Class	Description
IIID3	Aquatic communities in marine water.	Marine Aquatic Herbaceous	Vegetation submerged or floating in salt water.
IIID3a	Eelgrass Zostera marina dominates.	Eelgrass	Occupies subtidal and low intertidal sites with clear water in bays, inlets, and lagoons from SE Alaska to the Seward Peninsula.
IIID3b	Marine Algae dominates.	Marine Algae	Found on subtidal and intertidal sites, often in exposed rocky areas on the SC, SE, and Aleutian coasts.
IV	< 2% vegetative cover.	Unvegetated	Less than 2% vegetative cover; either natural or anthropogenic.

Appendix B7.-Vegetation disturbance classes.

Code	Description
A	Anthropogenic Disturbance
AA	Unique
AA1	Timber Harvest
AA1a	0-1 year post-harvest
AA1b	1-5 year post-harvest
AA1c	10-20 year post-harvest
AA1d	20+ year post-harvest
AA2	Construction
AA2a	0-1 year post-construction
AA2b	1-5 year post-construction
AA2c	10-20 year post-construction
AA2d	20+ year post-construction
AA3	Enhancement/Restoration
AA3a	Bank Stabilization
AA3b	Riparian Thinning
AA3c	Fisheries Related
AA3d	Rip-Rap
AB	Repeated Seasonal
AB1	Foot Traffic
ABla	Anglers
AB1b	Non-anglers
AB2	Vehicle Traffic
AB2a	Non-Recreational (road vehicle)
AB2b	Recreational (ATV, snowmachine)
AC	Permanent
AC1	Pervious Surfaces
AC1a	Urban/Commercial Landscaping
AC1b	Agricultural
AC1c	Gravel
AC1d	Other
AC2	Impervious Surfaces
AC2a	Parking Area
AC2b	Paved Trail/Walkway
AC2c	Concrete Wall/Abutment
N	Natural Disturbance
NA	Water/Flood
NA1	Slumping/Undercutting
NA1a	Wood Inputs
NA1b	Sediment Inputs

Appendix B7.–Page 2 of 2.

Code	Description
NA2	Sediment deposition from tributary
NB	Windthrow
NC	Glacial Retreat
ND	Fire
NE	Mass Wasting
NE1	Avalanche
NE2	Landslide
NE3	Debris Torrent
NE4	Natural Tree Mortality

APPENDIX C

Appendix C1.-Headwater target stream location information.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
H001	66.475	-150.207	123.1	536.2	50.7	187.1
H002	67.815	-155.284	115.9	554.5	114.9	74.0
H003	65.446	-155.358	110.0	182.6	144.3	112.3
H004	67.321	-154.075	65.6	221.3	70.6	80.9
H005	66.485	-150.938	64.6	449.7	35.9	167.2
H006	67.316	-156.547	57.8	199.7	134.6	27.3
H007	66.518	-155.304	57.2	163.4	103.0	53.0
H008	67.383	-156.091	56.1	135.9	123.5	37.3
H009	65.787	-151.294	55.6	506.6	78.3	175.6
H010	67.186	-155.253	52.7	196.5	98.7	47.8
H011	67.378	-155.752	49.6	163.0	114.6	43.1
H012	67.368	-155.082	43.3	203.5	97.2	57.3
H013	67.509	-158.062	42.5	118.2	176.9	49.9
H014	65.559	-157.555	40.6	69.5	188.9	97.5
H015	66.738	-153.897	40.1	435.6	61.6	83.6
H016	67.642	-158.696	38.9	114.6	195.3	68.1
H017	65.646	-156.161	86.3	158.9	152.5	92.1
H018	65.888	-153.174	36.8	69.4	81.7	126.9
H019	66.138	-153.542	36.3	382.3	73.9	108.5
H020	67.383	-154.670	65.1	220.8	87.0	67.6
H021	65.886	-152.281	31.7	457.1	72.5	148.0
H022	67.499	-157.178	31.5	167.0	153.7	38.9
H023	67.851	-153.603	97.0	535.6	82.8	108.3
H024	67.040	-152.406	29.5	426.1	21.5	122.7
H025	66.207	-152.603	28.4	434.7	54.6	129.4
H026	66.528	-156.298	40.6	146.9	129.5	33.3
H027	66.412	-153.955	25.9	331.9	71.2	89.2
H028	67.025	-159.111	25.7	53.3	202.4	60.4
H029	66.172	-150.494	91.7	504.8	60.7	185.2
H030	67.605	-156.541	25.3	186.0	139.3	46.5
H031	66.809	-157.683	24.6	162.6	164.1	23.3
H032	65.823	-155.578	23.7	176.3	131.8	85.8
H033	67.379	-152.812	23.7	489.8	44.4	114.7
H034	65.619	-154.462	23.1	268.0	118.1	114.3
H035	65.841	-151.749	31.1	482.1	73.8	162.6
H036	65.737	-153.721	22.1	286.2	98.8	121.9
H037	66.486	-156.296	52.0	158.2	130.1	35.8
H038	66.985	-153.737	21.1	445.5	56.0	86.4

Appendix C1.—Page 2 of 5.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
H039	67.792	-153.965	92.2	530.9	86.3	98.1
H040	65.761	-155.599	81.8	154.4	134.9	89.5
H041	67.576	-159.209	20.4	93.2	207.8	75.9
H042	66.991	-155.499	20.3	134.1	104.0	38.4
H043	67.500	-153.065	20.1	484.7	55.1	110.4
H044	66.574	-155.514	49.8	156.0	107.6	46.0
H045	67.685	-153.516	78.0	516.6	72.6	104.4
H046	67.538	-158.889	31.3	107.0	199.0	67.4
H047	67.572	-153.231	71.7	510.3	61.8	108.0
H048	65.903	-152.526	31.4	64.0	73.2	141.4
H049	67.383	-158.358	26.5	102.2	183.4	49.6
H050	65.624	-154.678	16.1	253.8	121.9	110.5
H051	67.198	-155.842	16.0	129.4	114.5	33.7
H052	65.662	-157.273	15.6	68.9	178.2	89.2
H053	66.225	-152.924	33.6	379.5	58.2	120.8
H054	67.472	-156.486	19.6	180.3	135.3	38.1
H055	66.244	-153.530	27.8	373.7	68.5	105.1
H056	65.851	-151.412	46.9	497.9	73.5	170.5
H057	65.876	-152.115	28.3	453.7	72.3	152.4
H058	66.793	-152.874	14.3	416.3	33.4	110.7
H059	67.339	-158.007	31.4	107.1	173.7	40.4
H060	67.392	-154.360	85.2	523.8	79.6	75.4
H061	66.153	-154.841	13.5	306.5	101.7	79.1
H062	66.730	-156.346	13.1	99.6	128.2	21.3
H063	66.107	-155.045	13.1	205.7	108.2	77.5
H064	66.328	-150.646	94.9	508.0	49.4	177.9
H065	66.613	-155.744	37.8	144.0	113.2	39.2
H066	66.467	-152.349	11.5	370.1	35.4	129.7
H067	66.410	-156.019	41.6	147.9	124.2	44.3
H068	65.721	-155.533	94.8	167.5	135.1	92.8
H069	65.551	-155.399	99.6	172.2	140.0	105.2
H070	67.003	-152.802	10.4	474.2	31.0	111.8
H071	67.311	-154.808	38.5	198.7	88.9	62.1
H072	67.037	-154.569	24.4	180.2	78.9	63.9
H073	66.107	-152.712	27.6	433.9	62.2	129.8
H074	65.788	-152.561	27.4	59.9	81.1	145.1
H075	67.103	-152.450	10.1	473.8	24.6	121.6

Appendix C1.—Page 3 of 5.

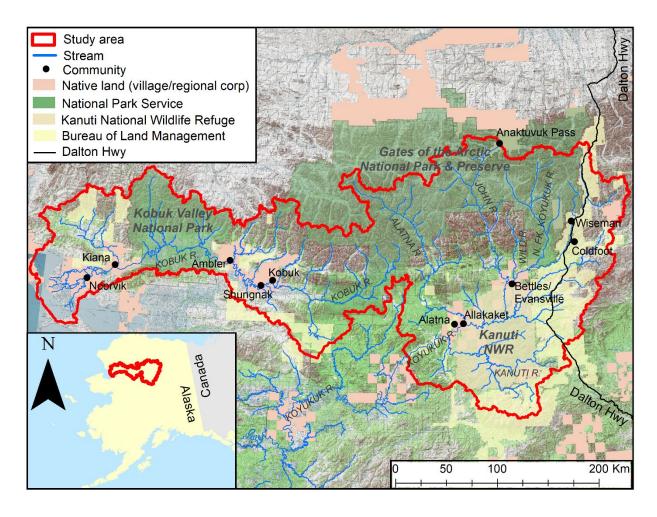
Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
H076	67.347	-158.794	16.6	92.4	194.7	58.2
H077	67.512	-154.545	89.5	528.2	87.6	74.7
H078	67.018	-156.440	23.8	103.6	129.7	13.6
H079	65.816	-155.997	19.3	171.8	141.8	82.0
H080	66.537	-156.261	39.5	145.7	128.3	33.2
H081	67.249	-153.817	38.4	477.0	62.3	86.3
H082	66.522	-155.379	55.5	161.7	104.9	51.1
H083	66.065	-154.829	11.4	304.4	104.8	83.7
H084	66.054	-153.000	30.8	376.7	69.3	124.5
H085	66.373	-156.629	8.2	198.9	141.2	40.2
H086	67.352	-153.794	47.5	486.1	64.6	88.7
H087	65.729	-153.195	9.6	42.1	91.7	133.3
H088	66.909	-153.868	8.1	374.8	59.5	82.9
H089	66.956	-155.156	17.2	160.9	94.6	47.7
H090	67.683	-154.203	85.5	524.1	86.2	88.7
H091	67.058	-153.960	46.0	201.8	62.7	80.5
H092	65.516	-155.765	59.1	131.8	149.4	103.8
H093	66.400	-151.671	36.3	421.3	35.1	149.0
H094	67.370	-155.480	48.0	161.4	107.4	48.4
H095	66.032	-155.030	10.7	203.3	110.8	81.7
H096	65.625	-152.842	10.1	42.7	94.3	145.6
H097	65.741	-156.024	81.0	153.7	145.4	86.7
H098	67.125	-158.659	7.4	70.2	190.1	49.3
H099	65.639	-155.023	99.0	171.7	128.0	104.4
H100	66.079	-153.219	29.8	375.8	71.3	118.4
H101	66.417	-151.231	53.6	438.7	36.2	160.5
H102	66.900	-154.076	7.0	373.8	65.2	77.3
H103	66.477	-150.412	110.8	523.8	46.2	181.5
H104	66.362	-155.849	41.1	147.3	120.8	49.7
H105	66.121	-151.389	42.4	455.4	55.1	163.0
H106	66.135	-151.168	74.6	487.6	55.4	168.4
H107	65.840	-153.103	24.6	57.1	83.7	130.5
H108	66.823	-152.182	8.8	405.4	14.7	129.4
H109	67.028	-154.445	25.9	181.6	75.5	67.2
H110	66.514	-153.685	23.7	419.2	61.3	93.4
H111	66.371	-151.005	87.8	500.9	41.7	167.4
H112	67.404	-153.864	55.8	494.4	68.0	88.1

Appendix C1.–Page 4 of 5.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
H113	66.637	-153.764	22.3	417.8	59.9	88.7
H114	66.471	-155.525	45.4	151.6	109.9	50.1
H115	66.053	-151.118	31.6	482.7	61.2	171.9
H116	66.442	-151.983	29.2	414.3	33.2	139.9
H117	67.154	-152.543	6.9	473.0	28.7	119.4
H118	65.874	-151.751	29.5	480.5	71.5	161.4
H119	66.975	-159.399	17.5	45.1	210.3	68.1
H120	66.968	-152.173	25.4	422.0	13.8	129.0
H121	67.460	-154.040	68.9	507.5	74.0	85.1
H122	67.605	-156.871	22.1	182.8	147.6	45.5
H123	67.762	-153.556	96.3	534.9	77.2	106.0
H124	67.280	-154.219	65.1	220.9	73.2	76.4
H125	66.979	-154.700	22.0	177.8	82.2	60.1
H126	65.936	-152.765	30.4	63.0	73.5	134.5
H127	66.233	-153.794	5.1	306.0	74.6	99.0
H128	66.988	-155.815	16.7	130.1	112.6	29.8
H129	67.265	-155.206	40.3	200.5	98.5	51.1
H130	67.244	-156.086	49.5	129.3	121.5	30.3
H131	67.021	-159.222	20.7	48.3	205.4	63.4
H132	67.423	-152.971	17.6	482.1	49.6	111.3
H133	65.977	-152.902	31.3	63.8	72.6	129.7
H134	67.402	-153.530	52.1	490.7	60.3	96.5
H135	67.669	-154.387	85.2	523.9	89.5	84.1
H136	67.629	-159.499	16.7	89.5	216.1	84.3
H137	66.244	-150.563	89.7	502.8	55.5	181.8
H138	67.552	-154.675	89.5	528.1	91.9	73.2
H139	66.066	-156.127	4.6	165.6	136.2	64.4
H140	65.899	-151.268	41.6	492.6	70.8	172.6
H141	67.349	-156.310	52.9	132.7	128.8	32.2
H142	66.129	-150.935	77.0	490.1	57.8	174.7
H143	67.459	-153.170	17.4	482.0	55.1	106.9
H144	66.517	-152.485	4.5	363.1	34.7	125.0
H145	65.492	-157.348	37.7	66.6	186.4	101.2
H146	67.120	-158.124	4.4	94.8	175.6	35.3
H147	65.611	-155.145	97.5	170.1	131.8	104.5
H148	65.476	-156.413	4.4	77.0	165.4	102.4
H149	66.545	-153.903	29.6	425.0	65.8	87.0

Appendix C1.—Page 5 of 5.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
H150	66.146	-151.795	24.0	437.1	52.7	151.9
H151	65.467	-155.989	22.6	95.3	156.4	105.3
H152	67.605	-153.441	73.8	512.4	67.3	103.8
H153	66.826	-155.607	6.0	119.8	107.3	36.4
H154	66.938	-152.546	4.0	422.5	23.4	118.9
H155	67.043	-153.796	19.7	444.1	58.1	84.9
H156	66.714	-155.490	3.8	127.6	105.0	41.9
H157	66.372	-155.970	41.4	147.6	123.8	47.2
H158	67.257	-155.482	41.6	155.0	105.6	44.2
H159	67.108	-154.874	16.6	176.8	87.7	56.4
H160	66.648	-153.601	13.8	409.3	55.4	92.9
H161	66.136	-154.121	3.4	284.8	85.9	95.2
H162	66.369	-151.772	34.0	419.1	37.3	147.0
H163	66.792	-157.384	15.9	153.9	156.0	16.8
H164	67.492	-158.466	26.7	102.5	187.3	56.6
H165	67.230	-158.391	11.2	86.9	183.2	44.9
H166	66.847	-156.336	3.3	89.7	127.1	16.9
H167	67.342	-153.048	11.8	476.3	47.4	107.9
H168	66.723	-156.167	5.4	111.6	123.4	25.3
H169	67.020	-154.142	42.2	198.0	67.3	75.4
H170	66.205	-153.435	26.2	372.1	68.5	108.7
H171	67.776	-154.053	92.2	530.8	87.2	95.6
H172	67.222	-154.485	48.1	203.9	78.9	68.4
H173	65.944	-152.346	26.4	451.8	69.1	144.3
H174	67.197	-153.709	35.6	474.2	58.3	88.5
H175	67.871	-155.107	113.5	552.1	113.1	79.9
H176	67.149	-154.688	21.4	181.6	83.2	61.8
H177	66.383	-154.145	20.4	326.4	76.8	85.4
H178	65.838	-151.650	29.2	480.2	74.0	165.1
H179	65.762	-154.680	4.3	242.0	115.0	102.6
H180	67.144	-158.166	4.0	94.3	176.8	37.0


Appendix C2.-Cataraft (un-wadeable) target stream location information.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
C01	67.836	-155.128	110.9	549.4	112.2	77.7
C02	66.406	-150.455	110.1	523.1	48.7	181.5
C03	65.578	-155.288	95.6	170.4	136.4	104.8
C04	67.252	-154.079	60.0	234.2	69.0	79.5
C05	66.488	-151.285	51.8	436.8	31.1	157.8
C06	66.440	-155.483	50.3	171.6	109.4	52.4
C07	65.862	-151.208	48.8	499.6	73.5	175.3
C08	67.286	-155.633	40.3	172.2	110.0	41.7
C09	66.101	-153.389	30.2	376.1	73.0	113.5
C10	67.370	-158.132	29.5	116.1	177.2	44.3
C11	67.511	-158.605	28.3	114.9	191.2	60.3
C12	65.919	-152.919	26.5	59.2	76.4	131.6
C13	65.653	-156.101	71.5	146.3	150.8	92.0
C14	67.800	-153.703	91.0	529.5	81.8	104.2
C15	67.278	-154.615	55.1	229.4	83.3	66.2
C16	66.208	-150.660	85.1	498.0	56.2	180.0
C17	67.546	-156.770	16.7	188.3	143.9	41.6
C18	66.477	-156.067	34.1	155.4	124.1	39.7
C19	65.898	-151.619	24.0	474.8	69.8	163.8
C20	67.696	-153.921	84.9	523.4	80.9	95.4
C21	67.576	-153.558	69.6	508.1	68.2	100.1
C22	66.453	-156.033	43.5	164.7	123.7	41.5
C23	66.154	-152.945	27.3	373.2	62.6	122.5
C24	65.840	-152.697	23.3	56.0	79.0	139.8
C25	67.437	-158.715	20.6	107.2	193.3	59.5
C26	67.474	-153.514	60.2	498.8	62.8	98.5
C27	67.383	-156.643	10.7	182.3	138.0	31.0
C28	67.490	-154.285	77.7	516.2	80.7	80.1
C29	66.257	-153.246	18.2	364.0	62.2	111.7
C30	66.416	-151.297	51.5	436.5	35.7	158.7
C31	67.073	-156.020	4.4	136.2	118.4	25.6
C32	67.578	-154.516	84.6	523.1	89.1	77.8
C33	66.423	-155.843	37.8	159.0	119.3	46.4
C34	66.463	-155.844	35.1	156.3	118.5	44.2
C35	65.705	-155.292	82.9	157.6	130.5	96.8
C36	67.055	-154.139	39.3	213.6	67.5	75.6
C37	66.149	-153.086	22.8	368.6	65.1	119.1
C38	67.318	-156.182	49.2	147.3	125.0	32.3

Appendix C2.-Page 2 of 2.

Target Site	Latitude	Longitude	Dist. to AWC (River Miles)	Dist. to Salt Water (River Miles)	Dist. to Bettles (Miles)	Dist. to Dahl Creek (Miles)
C39	66.672	-156.771	46.6	46.6	140.3	19.2
C40	67.193	-156.609	45.2	197.9	135.0	18.9
C41	67.122	-155.210	45.1	207.3	96.9	47.6
C42	67.280	-155.061	36.6	215.2	94.9	55.0
C43	65.526	-157.411	33.0	62.2	186.6	99.1
C44	67.782	-159.723	31.9	52.3	223.9	95.2
C45	66.601	-153.858	27.8	423.2	63.2	87.0
C46	67.443	-157.323	24.3	170.7	156.7	36.1
C47	65.991	-152.284	21.0	446.2	65.5	144.2
C48	65.324	-157.010	20.3	53.1	185.4	112.1
C49	66.934	-152.283	19.8	416.3	16.2	126.1
C50	66.144	-152.496	18.7	424.9	57.3	134.0
C51	66.353	-154.169	17.9	323.8	78.4	85.8
C52	67.028	-159.376	14.7	40.1	209.6	67.6
C53	67.041	-153.662	14.3	438.7	54.5	88.5
C54	67.264	-152.741	14.0	480.0	37.6	115.0
C55	65.784	-153.883	13.6	277.5	98.9	116.3
C56	66.937	-155.628	13.3	145.6	107.5	34.8
C57	67.402	-153.106	12.8	477.3	51.2	107.4
C58	66.807	-157.456	12.6	161.4	157.9	17.9
C59	67.569	-159.494	12.0	95.5	215.3	82.0
C60	67.219	-157.806	11.9	134.8	167.4	30.9

APPENDIX D

Appendix D1.-Study area general land status map.

APPENDIX E

Introduction:

This appendix was adapted from material provided by Coastal Helicopters and Greens Creek Mine, and is used by permission. The purpose of this information is to provide employees with safe practices in and around helicopters.

Pre-Flight Briefing

- 1. The aircraft pilot is in charge of all passengers. The pilot is responsible and accountable for all aspects regarding the safe operation and performance of the aircraft in flight or on the ground.
- Transport of Cargo: Field Gear is controlled by and at the discretion of the pilot. Always inform the pilot about any weapons or other potentially hazardous items to be taken on board the aircraft, especially aerosol deterrents such as "Bear Pepper Spray". Items such as these should be isolated and transported in sealed containers.
- 3. Passengers riding in the front seat should never ride with items larger than a map board in their hand. Bulkier items should be stowed in the cargo bay or on the rear seats.
- 4. Have daily supplies and equipment needs planned ahead of time, so loads can be properly stowed prior to boarding the aircraft.
- 5. Know the location and operation of seat belts, harnesses, doors and hatches that may have to be operated during an emergency.
- 6. Know and understand the use of the intercom system.
- 7. Know the location and operation of all emergency and survival equipment on board appropriate for the type of flight operation conducted. This includes the fire extinguisher, emergency fuel shut-off, and the ELT (emergency locator transmitter) and emergency floatation devices.
- 8. Smoking and open flames are not permitted within 100 feet of the aircraft, fuel tanks or landing sites containing either.

Personal Protection for Flight

- 1. Hearing protection is mandatory.
- 2. Natural fiber clothing (wool, cotton, etc.) offer better protection than synthetics in case of fire.
- 3. PFDs should be worn for extended overwater flights.

Approaching and Departing the Helicopter

Always keep your eyes on the ship during landings and takeoffs. When performing these critical tasks, your observations and awareness will protect you and others from unnecessary risk while the helicopter is in operation.

NEVER TURN YOUR BACK TOWARD THE AIRCRAFT!

Appendix E1.—Page 2 of 7.

- Always wait for the pilot's acknowledgement, command or signal before approaching or departing the aircraft.
- Always approach and depart the aircraft within the pilot's field of view.
- Crouch low when approaching or departing under the main rotor.
- In side-hill situations always approach and depart from the aircraft from the DOWNHILL SIDE.
- NEVER approach or depart the aircraft from the rear.
- Always stay alert when near the aircraft, but DON'T RUSH! Be deliberate and think your actions through (don't let the noise and air blast make you hasty!).
- Ensure that no loose objects can be sucked, blown, or thrown into the rotor system; ensure that loose personal items such as hats (including hard hats), jackets, clipboards, folders, maps, etc. are secure.
- Always check and then double check for loose exterior items or loads.
- To avoid contact with the main rotor blades, long pieces of equipment or tools (e.g., electrofishing poles, dip net handles) should be carried horizontally at or below waist level. Equipment or tools of this type should never be carried upright and/or over the shoulder.
- NEVER THROW OR TOSS anything from or toward the aircraft.
- Eye protection must be worn at all times near the aircraft. If suddenly blinded by dust, stop and crouch down or, better yet, sit down and wait for help.

Entering the Helicopter

- 1. When entering the aircraft, confirm the pilot acknowledges your approach, use caution, the doors are fragile (and expensive pieces of equipment). Do not put your weight on the doors and do not use the doors as handles for hoisting or lowering yourself into or from the aircraft. Close doors snugly so that all latches are engaged and check to ensure that interior loads will not damage the doors when shut.
- 2. Once in the aircraft, fasten your seatbelt and (if present) shoulder harness. Put on and secure the headset. Rear seat passengers should notify the pilot when they are secured that they are ready.
- 3. The pilot and passengers must ensure that all equipment on board in the cockpit is securely stowed before taking off.

Exiting the Helicopter

- 1. Wait until the pilot has given you permission to exit the aircraft. Follow any special instructions that the pilot gives you.
- 2. When landed, remove the headset and seat/shoulder belts.

Appendix E1.—Page 3 of 7.

- 3. Retrieve any equipment stored in the cockpit or cargo hold, being cautious of the main rotor at all times. Carry equipment and loads horizontally. Secure loose clothing, equipment etc.
- 4. Depart downhill if the landing site is on a hill and always walk around the front of the aircraft to avoid the area of lowest rotor clearance.
- 5. Enter or Exit on the Downhill Side
- 6. NEVER ATTEMPT TO WALK AROUND THE REAR OF THE AIRCRAFT TO AVOID LOW MAIN ROTOR CLEARANCE ON A HILL!
- 7. Use caution if the landing surface is slippery or wet.
- 8. Move as far away as possible from the helicopter to offer the maximum amount of take-off room possible. If it is a tight remote landing zone, the pilot may command you to crouch down next to the aircraft/skids as the take-off is performed.
- 9. If the helicopter departs the sampling site for fuel or other reasons, reconfirm the time and place for the next pick-up; have a contingency plan and alternate-landing zone in case the weather is down or the helicopter fails to show for a pick-up.

In-flight

- 1. Be extra eyes and ears for pilot. Observe your surroundings and airspace at all times. Watch for hazards while landing and taking off. Warn the pilot of any unusual circumstances regarding the safety of the aircraft.
- 2. Wear your seatbelt and shoulder harness at all times during the flight.
- 3. Ensure to keep communication over the intercom to a minimum so as not to distract the pilot.

Remote Landing Zone Sites & Operations

- 1. Each LANDING ZONE selected by the crew leader will be inspected and approved by the pilot before landing.
- 2. All landing sites are at the complete discretion of the pilot
- 3. Exit or enter a hovering aircraft one at a time in one smooth, unhurried motion.

Finding and Preparing Suitable Landing Zones:

Do.....

a. Select a spot that is relatively flat and open. The clearing needs to be wide enough to allow safe approach and departure angles for the aircraft at all times.

Appendix E1.—Page 4 of 7.

- b. The pilot has absolute final say on the appropriateness of the landing site. If the pilot cannot land there, search for an alternative suitable Landing Zones.
- c. Position yourself in such a way that you are not in the direct path of the aircraft and so that you have an accessible escape route should something go wrong.

Do Not.....

- d. Do not select a Landing Zones with abundant small trees or other hazards that could inadvertently obstruct the tail rotor.
- e. Do not select a Landing Zones with abundant loose material on the ground.
- f. Do not select a Landing Zones where the placement of the tail rotor will endanger other individuals or strike other objects.
- g. Do not demand the pilot to land at a site that is not desirable or presents unacceptable risks, give only suggestions and trust the judgment of the pilot.

Refueling Operations

- 1. No smoking or open flames are allowed within 100 feet of the aircraft or fuel storage tanks.
- 2. The aircraft and fueling tanks should be grounded to dissipate static electricity.
- 3. If a spill occurs, the helicopter company will follow its emergency spill response plan.
- 4. Ground power units should not be connected or disconnected during refueling.
- 5. Fuel servicing personnel should not carry lighters or matches when refueling.
- 6. At the first sight of lightning in the area, refueling operations should be suspended.
- 7. Refueling should not be conducted with passengers on board.

Slinging Equipment

- 1. Slinging is an unusual event most often used to transport fuel drums to and from remote fuel stashes.
- 2. The pilot shall ensure that all persons are briefed before takeoff on all pertinent procedures to be followed (including normal, abnormal, and emergency procedures) and equipment to be used during the external-load operation.
- 3. Have all loads and pick-ups planned out ahead of time so that the operation can proceed smoothly.
- 4. The pilot will determine the sites and both ends of the operations and of all loads being transported (must be well within the aircraft's lifting ability). All slings must be furnished by the aircraft company.

- 5. All verbal commands and hand signals will be reviewed and confirmed before operations take place.
- 6. The slinging of loads must be pre-planned so the load flies in the intended manner, and ensures that nothing will cause the load to hang up, get caught, or have articles come loose during flying. When an inbound load is spinning on the sling the pilot should set it down near the destination to stop the spinning, then bring it to the unload point. Do not attempt to grab a spinning load.
- 7. Helicopter slung loads will often build up static electricity that will give a shock to the individual unhooking the sling. Use insulated gloves and have the pilot discharge the line first by touching the ground.
- 8. Never go underneath a slung load.
- 9. Do not reach for a load as you may over reach and lose balance. Let the pilot bring the load to you.
- 10. Always have an escape route in the event of sudden and unexpected movement of the load so that you can quickly get away from the area.

Flight Following Procedures

1. Pilots will abide by their company's procedures for flight following.

Flight Plan and Overdue Aircraft Procedures

- 1. Each morning at base camp, each team leader will fill out a daily flight plan, which will include the date, aircraft type, tail number, color, company name, pilot and crewmembers' names, destinations (target stream IDs) listed in the order to be visited, and time due back.
- 2. During the day, the team leader will check in with the base camp by radio or satellite phone, if any deviation from the flight plan occurs.
- 3. If a helicopter is overdue, base camp staff will initiate the following overdue aircraft procedures:
 - a. 10 minutes past due: Base camp personnel will begin a communications search. Attempt contact with the helicopter via radio and/or InReach.
 - b. 30 minutes past due: Base camp personnel will continue attempting contact with the overdue helicopter. If the 2nd project helicopter and/or other teams are still out, also attempt contact with them to notify them of the overdue helicopter and obtain its last-known location. If airborne, the 2nd helicopter pilot will also attempt radio contact with the overdue helicopter.
 - c. 60 minutes past due:
 - i. Check in with helicopter charter company (40mile Air 907-883-5191 for Bettles work; Quicksilver Air 907-457-1941 for Kobuk work) to notify them of the overdue helicopter and see if they have been in contact with the pilot.

- Obtain last-known location from helicopter company (Coastal has automatic flight following; Quicksilver uses a spot indicator activated by the pilot).
- ii. Aircraft is declared "Missing". Notify DPS Alaska State Troopers: MATCOM 907-352-5401 or State Troopers in Fairbanks (907-451-5100) or Kotzebue (907-442-3222) to activate Search and Rescue. Continue attempting to contact the helicopter. State Troopers will coordinate all search and rescue activities, including any search flights to be made by the second project helicopter.

Emergency Procedures

- 1. Respond and obey to all instructions or commands given by the pilot.
- 2. Passenger Position: The passenger's body position is an important factor in a survivable accident. The "brace-for-impact" position is used to reduce secondary impact and flailing around. If contact with the aircraft interior is likely, the passenger should place his/her body against what the passenger will hit before the impact occurs. If a passenger is resting against the surrounding structure, he/she can "ride the structure down" during the crash, thus avoiding a secondary impact. In addition, this position will reduce the forces acting on the body and can help reduce the severity of injuries. If a passenger is in a seat equipped with a shoulder harness and a safety belt, the harness should be snug, not slack.
- 3. After a forced landing, follow the pilot's instructions. Exit the aircraft immediately, unless there is danger from the rotor blades or directed not to do so by the pilot.
- 4. Emergency Water Landing. Passengers should follow the instructions of the pilot in the event of a forced landing in water. Use life vests when clear of the aircraft. If the life raft lanyard is dangling loose the pilot and passengers should exercise extreme caution not to accidentally pull the lanyard or allow it to become entangled with the aircraft.
- 5. If practical, retrieve the emergency and survival gear, and ensure that the ELT is transmitting.
- 6. If practical, and the pilot is incapacitated, activate the emergency fuel shutoff valve.
- 7. If available, activate a personal locator beacon.
- 8. Administer first aid to those in need.
- 9. Assess the situation: determine the need to evacuate the injured individuals, determine the nearest landing zone and the easiest route to safety.).

Evacuation Procedures

On an Iridium satellite phone, dial "911" and press "OK". Hit "SOS" on InReach. The call/alert will be routed to the nearest public safety location. You may also contact the DPS Alaska State Troopers:
 MATCOM 907-352-5401 or State Troopers in Fairbanks (907-451-5100) or Kotzebue (907-442-3222) for medical assistance, to request an air ambulance, or any other special medivac needs.

- 2. Be prepared to provide the following information:
 - a. Nature of the emergency and evacuation urgency (e.g., urgent evacuation—life or limb threat);
 - b. Number of victims and basic diagnosis of injuries (e.g., "internal bleeding and loss of consciousness");
 - c. GPS coordinates for the injured person's location;
 - d. Injured person's full name, date of birth, and weight;
 - e. Name and weight of escort (if any) who will ride along in the medivac;
- 3. As an alternative to waiting for a medivac to arrive, if the accident occurred during daylight hours and an aircraft is available, coordinate with State Troopers to fly the victim to the nearest or most appropriate hospital (likely Dillingham or Anchorage). Contact the hospital emergency room at the contact number advised by the trooper ASAP to provide the ETA and to request an accepting physician.
- 4. Contact base camp personnel. Base camp personnel will contact the Field Supervisor. The Field Supervisor (or base camp personnel, if Field Supervisor cannot be reached) will contact victim's emergency contact(s) listed on the project contact sheet.

This guidance is commensurate with material contained in the following aviation safety documents:

- Federal Aviation Administration AC 61-13B Helicopter Handbook.
- Federal Aviation Administration AC 91-32B Safety In and Around Helicopters
- United States Government Interagency Helicopter Operations Guide

Appendix E2.—Bear safety.

The following outline, used by permission, accompanies the video *Staying safe in bear country*, which will be mandatory viewing for all field crew members.

Main Messages of the Video

STAYING SAFE IN BEAR COUNTRY

Safety in Bear Country Society, 2001

BEAR'S CHARACTERISTICS, BEHAVIOR AND SOCIETY

DEAN S CHARACTERISTICS, DEINVIONAND SOCIETY
MIND OF BEARS
☐ Bears are intelligent.
□ Curious
□ Individuals
☐ More predictable than most people think.
PHYSICAL TRAITS
\square Amazing noses and ears and eyes are good.
☐ Strong and fast, good swimmers.
☐ Black bears are great at tree climbing, but grizzlies are not bad.
BLACK VS GRIZZLY BEARS
☐ Grizzly distribution more limited but locally can be the most abundant.
☐ Grizzlies more likely to attack when threatened.
☐ Black bears rarely attack defensively.
\Box Grizzlies more dangerous than blacks, but risks from either much less than people tend to fear.
☐ Humans are more tolerant of black bears.
BEAR SOCIETY
☐ Flexible social structure that allows bears to function at low densities or at concentrated food sources with reduced chance of injury.
☐ Bears do fight but more often use avoidance, restraint, and posturing to prevent injury.
THREE MAJOR ASPECTS OF BEAR SOCIETY
☐ Body language and vocalizations to communicate with each other

Appendix E2.–Page 2 of 6.
☐ Dominance hierarchy or pecking order
☐ Personal space
BEARS' MOTIVATIONS
Bears have varying motivations for what they do.
☐ Food and the search for it dominate a bear's life
☐ Mating and raising offspring
☐ Investigating novel stimuli; curiosity
☐ Establishing and asserting dominance
From a safety standpoint it's important to understand the difference between "defensive" and other motivations, especially ones that might lead to "predatory" attack. It is also important to understand the psychology of bears as they grow up. There's a big difference in the mentality of a recently weaned 2 to 4 year old bear versus an adult female with cubs or an adult male.
BEAR-HUMAN INTERACTIONS
Most bears have previous experience around people and learn from each interaction. Humans usually don't even know they came close to a bear, BEARS USUALLY AVOID PEOPLE. Two major categories of bear-human interactions where bears don't avoid or even approach people: Defensive and Non-defensive.
DEFENSIVE INTERACTIONS
\Box Bear thinks you are a threat to itself, its cubs or its food.
☐ Usually you approached it and entered into its personal space, surprising or crowding it.
☐ Most likely will appear agitated and stressed.
\Box Closer you are to it before it becomes aware of you, more likely it is to react defensively.
☐ Almost always stop short of contact, fight/flight is triggered.
□ Defensive response that results in an attack (physical contact) almost always involves grizzly bears surprised at close range, on a carcass or protecting young. The few defensive attacks by black bears have been females protecting cubs (but these are very rare).
NON-DEFENSIVE INTERACTIONS
A number of different non-defensive motivations that may appear similar to each other:
□ Curious bear
☐ Human-habituated bear
☐ Food-conditioned bear

Appendix E2.–Page 3 of 6.
☐ Dominance-testing bear
☐ Predatory bear
AVOIDING BEAR ENCOUNTERS OR REACTING DURING ONE
AVOID BEARS WHENEVER POSSIBLE
LET BEAR YOU CANNOT AVOID KNOW YOU ARE HUMAN by talking and slowly waving your arms. Try to give the bear your scent
AVOID BEARS THAT ARE AWARE OF YOU AND UNCONCERNED
NEVER APPROACH A BEAR
LEAVE AREA YOU ENCOUNTERED A BEAR
IF YOU HEAR VOCALIZATIONS OR SEE UNATTENDED CUBS be extremely cautious and leave the area silently the way you came.
Review of your response during bear encounters:
☐ Identify yourself as human to bears you cannot avoid by talking and slowly waving your arms. Try to give the bear your scent.
☐ Increase your distance from the bear, even if it appears unconcerned.
☐ Do not run, it could invite pursuit.
If a bear approaches you:
☐ Stand your ground!
☐ Quickly assess the situation. Is the bear behaving defensively or in some other way?
☐ Remain calm, attacks are rare.
☐ Do not run unless you're absolutely sure of reaching safety.
☐ Group together. Prepare your deterrent
If the bear is approaching in a defensive manner:
☐ Stand your ground. Try to appear non-threatening.
☐ Don't shout at the bear. Talk to the bear in a calm voice.
\Box If the bear stops its approach, increase your distance.
☐ If the bear resumes its approach, stand your ground, keep talking calmly, and prepare to use your deterrent.

Appendix E2.–Page 4 of 6.
☐ If the bear cannot be deterred and is intent on attack, fall to the ground as close to contact as possible and play dead.
☐ When the attack stops, remain still and wait for the bear to leave. If an attack is prolonged or the bear starts eating you, it is no longer being defensive.
If the bear approaches in a non-defensive manner:
☐ Talk to the bear in a firm voice.
☐ Try to move away from the bear's travel path; that may be all it wants you to do.
☐ If the bear follows you with its attention directed at you. Stop! Stand your ground and prepare to use your deterrent.
□ Act aggressively toward the bear. Let the bear know you will fight if attacked. Shout! Make yourself look as big as possible. Stamp your feet as you take a step or two toward the bear. Threaten the bear with whatever is at hand A bear that is initially curious or testing you may become predatory if you do not stand up to it. The more the bear persists, the more aggressive your response should be.
☐ If the bear attacks, use your deterrent and fight for your life. Kick, punch, or hit the bear with whatever weapon is available. Concentrate your attack on the face, eyes, and nose. Fight any bear that attacks you in your building or tent.
Remember:
☐ If an attack (that is, physical contact is made) is defensive Play dead. (Don't play dead before you have used all possible means, such as deterrents to prevent an attack).
☐ If the attack is predatory Fight back.
HELPING SOMEONE BEING ATTACKED
You may be able to drive away an attacking bear from someone else, but if you do this you risk drawing the attack to yourself.
DETERRENTS AND PREVENTING PROBLEMS
DETERRENTS
BEAR SPRAY
☐ Used to deter bears at close range.
☐ It is not 100 percent effective or a substitute for avoiding an encounter.
☐ Use only approved bear sprays.
☐ Carry it ready to use and keep it handy in your tent at night.
☐ Exercise caution

FIREARMS
☐ Make sure it's adequate
□ Practice
☐ Mentally rehearse the situations where you would use it.
DETERRENTS IN GENERAL
☐ Know their capabilities and limitations.
☐ Can be useful but should not give you a false sense of security.
☐ Training and practice are essential.
☐ Observe regulations governing their transport and use.
☐ Consult with local authorities.
PREVENTING BEAR PROBLEMS
Most of bear safety is prevention.
LEARN ABOUT BEARS
AVOID ENCOUNTERS
\square Move away undetected from bears that are unaware of you or distant.
STAY ALERT
Be aware of your surroundings.
☐ Look for signs of recent bear activity.
DON'T SURPRISE BEARS
☐ Warn bears of your presence.
TRAVEL IN A GROUP
\Box Groups are noisier and easier to detect and several people are more intimidating to a bear.
KEEP CHILDREN CLOSE
DOGS
\square Keep it on a leash or leave it at home. The exception is a specially trained dog, but most dogs are not.
CHOOSE CAMPSITES CAREFULLY
☐ Don't camp on bear travel routes

Appendix E2.—Page 6 of 6.
☐ Use local knowledge of bears and recommended camping practices.
DON'T ATTRACT BEARS OR REWARD THEM WITH FOOD
☐ Keep a clean camp free of attractants.
OTHER DETECTION/DETERRENT OPTIONS
☐ Trip wires, motion detectors and compact electric fences can be useful
FIRST AID
☐ Be proficient in first aid.
☐ Carry sufficient medical supplies.
COMMUNICATION
☐ Inform others of your plans. Communication can save lives.

For 2022, all electrofishing crew leaders are required to have attended an approved electrofishing course. Other electrofishing crewmembers will receive an electrofishing orientation (see Appendix E3) and be directly-supervised by the crew leader at all times while electrofishing. All crewmembers will be certified in 1st Aid and adult CPR.

The following was adapted from McCormick and Hughes, 1998:

Because fishes are collected using electrofishing units, safety procedures must be followed meticulously at all times. Safety while electrofishing is the primary responsibility of the electrofishing team leader. Electrofishing units have a high voltage output and may deliver a dangerous electrical shock.

While electrofishing, avoid contact with the water unless sufficiently insulated against electrical shock. Use chest waders or hip boots with nonslip soles and watertight rubber (or electrician's) gloves. If they become wet inside, **stop fishing until they are thoroughly dry. Avoid contact with the anode and cathode at all times due to the potential shock hazard.** If you perspire heavily, wear polypropylene or some other wicking and insulating clothing instead of cotton.

While electrofishing, avoid reaching into the water. If it is necessary for a team member to reach into the water to pick up a fish or something that has been dropped, **do so only after the electrical current has been interrupted and the anode is removed from the water**. Do not resume electrofishing until all individuals are clear of the electroshock hazard.

Avoid operating electrofishing equipment near unprotected people, or non-target animals. Discontinue activity during thunderstorms or heavy rain.

Team members should keep each other in constant view or communication while electrofishing. Although the electrofishing team leader has authority, each team member has the responsibility to question and modify an operation or decline participation if it is unsafe.

Appendix E4.—Acknowledgment of electrofishing orientation. **Acknowledgment of Electrofishing Orientation** I have received instruction and orientation about Electrofishing from my employer. As a result, I understand and accept the following conditions: Electrofishing (EF) is an inherently hazardous activity in which safety is the primary concern. The electrical energy used in EF is sufficient to cause death by electrocution. During operations, it is critical to avoid contact with the electrodes and surrounding water. The EF field is most intense near the electrodes and can extend 5-10 m outward. The electrodes are energized by the power source, a generator or battery, and controlled by safety switches; these switches must remain off until the signal is given to begin EF. The power source has a main switch that must be turned off immediately if an emergency occurs. The electrodes are usually metal probes suspended in the water. If direct current is issued from a boat, the anodes (+) are in front of the boat to catch fish and the cathodes (-) may be suspended from the sides; both can produce electroshock. When a metal boat is the cathode, the boat is safe as long as all metal surfaces inside it are connected to the hull. Moveable anodes on a boat are dangerous, especially on metal boats. All electrodes on a conventional EF boat should be in fixed position during operation. Dry skin and clothing are good protection against electroshock. The body should be fully clothed during EF. Rubber knee boots are minimal foot protection, as are rubber gloves for the hands. A personal flotation device must be worn when the water is considered swift, cold, or deep. Ear protection is necessary for those working near the generator. At least 2 members of the EF crew must have knowledge of CPR and first aid. A first aid kit and, in an EF boat, a fire extinguisher must be within immediate reach during an operation. Electroshock can cause heart fibrillations or respiratory arrest; CPR can cure only the latter. The EF crew must know the location of the nearest defibrillation unit. A communication system, particularly hand signals, must be available to all members of an EF crew. When multiple anodes are used in a portable EF operation, the buddy system must be used. Above all, NEVER OPERATE ALONE. 10. Stunned fish should be removed from the EF field as soon as possible and not subjected to continuous electroshock by being held in the dip net. Using the anode as a dip net is unhealthy for fish and people and should be avoided. 11. An EF operation should proceed slowly and carefully; avoid chasing fish and other sudden maneuvers. Night activities require bright, bowmounted headlights. Operations should crease during lightning or thunderstorms; use discretion during rain. Avoid EF too close to bystanders and pets or livestock. 12. All EF crewmembers must know who their leader is and recognize his or her authority as final in operational decisions. However, every crewmember has the right to ask questions or express concern about any safety aspect of an EF operation. A crewmember has the right to decline participation in an EF operation, without fear of employer recrimination, if he or she feels unsafe in such participation.

*Adapted from Reynolds (1996), with permission.

Date

Date

I have discussed the above-named conditions with the employee and am satisfied that he or she understands them.

Signature of Employee

Signature of Supervisor

APPENDIX F

Appendix F1.-Anadromous Waters Catalog nomination form.

Division	of Alaska rtment of Fish and Game ion of Sport Fish	Nomination Form Anadromous Waters Catalog			
Region		USGS Quad(s	s)		
AWC Number of Water Boo	dy				
Name of Water body			Usgs	S Name	Local Name
☐ Addition	☐ Deletion ☐ Correction		p Information		
Nomination #		or Office Use			
Revision Year:		Fishe	Fisheries Scientist		e
Revision to: AtlasCatalog		Habitat Operations Manager		 Date	
		AWCP	roject Biologist	Dat	ee e
Revision Code:	_		IS Analyst	Dat	re
	OBSERVA'	TION INFORMA	TION		
Species	Date(s) Observed	Spawning	Rearing	Present	Anadromous
number of fish and life stages o location of mouth and observed	upporting documentation that this water boo observed; sampling methods, sampling dura d upper extent of each species, as well as o eights of any barriers; etc.	ation and area samp	oled; copies of field notes	; etc. Attach a copy of a r	nap showing
habitat, locations, types, and he					
Comments Name of Observer (please pa				-	
Comments Name of Observer (please pr	ature:			- Date:	
Comments Name of Observer (please pa	ature: ncy:			- Date:	
Comments Name of Observer (please properties) Signa Ager Addr	ature: ncy:		ormation is evidenc	- - -	