Operational Plan: Matanuska-Susitna Valley and Anchorage Area Invasive Northern Pike Surveying and Monitoring, 2022–2024

by

Parker Bradley

Cody Jacobson

and

Kristine Dunker

October 2022

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H_A
kilogram	kg		AM, PM, etc.	base of natural logarithm	e
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	$(F, t, \chi^2, etc$
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	N	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	E
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	≤
		et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	log _{2,} etc.
degrees Celsius	°C	Federal Information		minute (angular)	,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	K	id est (that is)	i.e.	null hypothesis	H_{O}
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	P
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three	, D	hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	® TM	(acceptance of the null	
ampere	A	trademark	I IVI	hypothesis when false)	β
calorie	cal	United States	U.S.	second (angular)	"
direct current			11.0		CD
	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE SE
hertz horsepower	Hz hp	United States of America (noun)	USA	standard error variance	SE
hertz	Hz	United States of America (noun) U.S.C.	USA United States Code	standard error	
hertz horsepower hydrogen ion activity	Hz hp	United States of America (noun)	USA United States Code use two-letter	standard error variance population	SE Var
hertz horsepower hydrogen ion activity (negative log of)	Hz hp pH ppm ppt,	United States of America (noun) U.S.C.	USA United States Code use two-letter abbreviations	standard error variance population	SE Var
hertz horsepower hydrogen ion activity (negative log of) parts per million	Hz hp pH ppm ppt, %	United States of America (noun) U.S.C.	USA United States Code use two-letter	standard error variance population	SE Var
hertz horsepower hydrogen ion activity (negative log of) parts per million	Hz hp pH ppm ppt,	United States of America (noun) U.S.C.	USA United States Code use two-letter abbreviations	standard error variance population	SE Var

REGIONAL OPERATIONAL PLAN NO. ROP.SF.2A.2022.33

OPERATIONAL PLAN: MATANUSKA-SUSITNA VALLEY AND ANCHORAGE AREA INVASIVE NORTHERN PIKE SURVEYING AND MONITORING, 2022–2024

by
Parker Bradley
Alaska Department of Fish and Game, Division of Sport Fish, Palmer

Cody Jacobson Alaska Department of Fish and Game, Division of Sport Fish, Palmer

and

Kristine Dunker Alaska Department of Fish and Game, Division of Sport Fish, Anchorage

> Alaska Department of Fish and Game Division of Sport Fish 333 Raspberry Road, Anchorage, Alaska, 99518-1565

> > October 2022

The Regional Operational Plan Series was established in 2012 to archive and provide public access to operational plans for fisheries projects of the Divisions of Commercial Fisheries and Sport Fish, as per joint-divisional Operational Planning Policy. Documents in this series are planning documents that may contain raw data, preliminary data analyses and results, and describe operational aspects of fisheries projects that may not actually be implemented. All documents in this series are subject to a technical review process and receive varying degrees of regional, divisional, and biometric approval, but do not generally receive editorial review. Results from the implementation of the operational plan described in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author if you have any questions regarding the information provided in this plan. Regional Operational Plans are available on the Internet at: http://www.adfg.alaska.gov/sf/publications/.

Product names used in this publication are included for completeness and do not constitute product endorsement. The Alaska Department of Fish and Game does not endorse or recommend any specific company or their products.

Parker Bradley, Alaska Department of Fish and Game, Division of Sport Fish, 1801 S. Margaret Dr., Palmer, AK 99645-6736, USA

Cody Jacobson, Alaska Department of Fish and Game, Division of Sport Fish, 1801 S. Margaret Dr., Palmer, AK 99645-6736, USA

and

Kristine Dunker, Alaska Department of Fish and Game, Division of Sport Fish, 333 Raspberry Rd, Anchorage AK 99518-1599, USA

This document should be cited as follows:

Bradley, P., C. Jacobson, and K. Dunker. 2022. Operational Plan: Matanuska-Susitna Valley and Anchorage area invasive northern pike surveying and monitoring, 2022–2024. Alaska Department of Fish and Game, Division of Sport Fish, Regional Operational Plan No. ROP.SF.2A.2022.33, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526

U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203 Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers: (VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

SIGNATURE PAGE

Project Title: Matanuska-Susitna Valley and Anchorage Area Invasive

Northern Pike Surveying and Monitoring

Project leader(s): Parker Bradley, Cody Jacobson, and Kristine Dunker

Division, Region and Area Division of Sport Fish, Region II, Palmer Office

Project Nomenclature: State Wildlife Grant T-10-13 P-28: Northern Cook Inlet

Invasive Northern Pike Suppression and Monitoring

Period Covered June 2022 through October 2024

Field Dates: Year round

Plan Type: Category II

Approval

Title	Name	Signature	Date
Regional Invasive Species Coordinator	Kristine Dunker		2/17/22
Project coleader	Parker Bradley		2/14/2022
Project coleader	Cody Jacobson		2/23/2022
Biometrician	Mike Martz		4/26/2022
Research Coordinator	Tim McKinley		10/21/2022

TABLE OF CONTENTS

	· ·	age
LIST O	OF FIGURES	ii
LIST O	OF APPENDICES	iii
ABSTR	RACT	1
INTRO	DDUCTION	1
Purpose	6e	1
Backgr	round	1
OBJEC	CTIVES	2
Primary	y Objectives	2
Second	dary Objectives	3
METH	IODS	3
Study A	Area	3
•	Design	
	mary Objective 1: Documenting CPUE of Northern Pike in Confirmed Waters	
	nary Objective 2: Documenting Presence or Probable Absence in Suspected Pike Watersnary Objective 3: Monitoring Highly Vulnerable Waters	
	Collection and Reduction	
	n Sampling	
	NA Samplinge Mapping	
	Analysis	
	rthern Pike Surveys	
	ch-Per-Unit-Effort Comparison	
SCHEL	DULE AND DELIVERABLES	11
RESPO	ONSIBILITIES	11
REFER	RENCES CITED	12
APPEN	NDIX A: LISTS OF PRIORITIZED WATERBODIES	13
APPEN	NDIX B: ENVIRONMENTAL DNA SAMPLING	19
APPEN	NDIX C: SAMPLING FORMS	23
	LIST OF FIGURES	
Figur		Page
1 2	Northern pike range in Alaska	2
2	waters	3
3	Example of a lake broken into sections, each with approximately 1.6 km of shoreline	
4	Anderson Lake showing location of under-ice netting (total of 213.5 m of gillnets), with gillnets	7
5	indicated by red lines and holes drilled in the ice indicated by dots	/
5	gillnets indicated by red lines and holes drilled in the ice indicated by dots	
6	Netting locations on Chuitbuna Lake in 2019 showing relative CPUE for each net	11

LIST OF APPENDICES

Appe	endix	Page
A1	List of prioritized waterbodies for Objective 1	14
A2	List of prioritized waterbodies for Objective 2	16
	List of prioritized waterbodies for Objective 3	
	eDNA sampling effort	
	Northern pike capture form.	
C2	Northern pike stomach sampling form.	25

ABSTRACT

This project will conduct surveys to detect invasive northern pike *Esox lucius* ("pike") and determine baseline catch per unit effort (CPUE) throughout the Matanuska–Susitna (Mat–Su) Valley and Anchorage area. Waterbodies in these areas will be prioritized for sampling based on whether they fall into 1 of 3 categories: 1) waters with known pike presence, 2) waters with unconfirmed, suspected, or reported pike populations, and 3) vulnerable waters with no known pike populations. For waters in the first category, northern pike will be captured by means of gillnet surveys using a standardized protocol that adjusts netting effort to lake littoral area. Waters in the second category will be probed by means of gillnet surveys and environmental DNA (eDNA). In vulnerable waters where no known pike population occurs, eDNA detection methods will be the primary monitoring method. Results from this survey and monitoring project will be used to refine the known distribution of pike in the Mat–Su Valley and Anchorage area, increase the likelihood of early detections of new populations, and help prioritize future pike suppression and eradication projects in the region.

Keywords: invasive species, northern pike, Esox lucius, Matanuska-Susitna Valley, Anchorage, eDNA

INTRODUCTION

PURPOSE

The mission of the Alaska Department of Fish and Game (ADF&G), Division of Sport Fish (SF) is "to protect and improve the state's recreational fisheries resources," and an objective of the SF strategic plan is to "minimize impacts of invasive species on fish stocks, recreational fisheries, and fish habitat." Removing northern pike (*Esox lucius*; also referred to here as "pike") from vital salmon rearing habitat directly addresses this objective. ADF&G has an aquatic nuisance species management plan (Fay 2002) and an invasive northern pike management plan (ADF&G 2007). A new interagency management plan for northern pike will be available in the spring of 2022. Goals and objectives in these plans address the need to remove invasive northern pike where possible and improve salmon populations impacted by northern pike. The activities proposed in this project are aligned with several plans and initiatives, and ADF&G believes this project will provide the first step in a long-term program to effectively survey, monitor, and prioritize pike suppression and eradication projects in the Matanuska–Susitna (Mat–Su) Valley and Anchorage area.

BACKGROUND

Northern pike is an invasive species in Southcentral Alaska that negatively impacts salmonid (*Oncorhynchus* spp.) populations via predation of juvenile salmon in invaded waters (ADF&G 2007). The effects of this are most severe in shallow, slow moving, vegetated lakes and streams where northern pike and rearing salmonids share complete habitat overlap (Sepulveda et al. 2013; Sepulveda et al. 2015). Northern pike are native throughout much of Alaska but do not naturally occur south and east of the Alaska Range (Figure 1). It is thought that pike were first introduced by an air charter operator to the Yentna River drainage (Bulchitna Lake, Lake Creek drainage) in the late 1950s and subsequently spread throughout the Susitna River basin via natural migration and further illegal stockings. Currently, northern pike have been documented from over 150 lakes and rivers in Southcentral Alaska¹.

More recent, smaller-scale "secondary" pike infestations (i.e., originating from the Susitna River basin infestation) have been reported widely throughout the Mat–Su Valley. Some of these infestations are the result of illegal actions by people intentionally transporting pike. Over time,

¹ ADF&G "pike mapper"

 $[\]frac{\text{https://adfg.maps.arcgis.com/apps/webappviewer/index.html?id=ad27ebc052814b66a60d0e52701e64f7\&_ga=2.30854847.1642248700.1601938699-959016251.1583185835}{699-959016251.1583185835}$

pike have continued to spread throughout the watershed. Many reports of pike in the Mat–Su Valley and Anchorage have come from sport anglers; however, most reports lack live or dead specimens, preventing conclusive identification and knowledge of the extent of infestation.

To effectively prioritize and design northern pike suppression and eradication projects, it is necessary to begin with baseline information about the pike population in a given area, and what other species may occur (e.g., Baxter and Neufeld 2015). This project will lay the foundation for a long-term northern pike surveying and monitoring program for the Mat–Su Valley and Anchorage area.

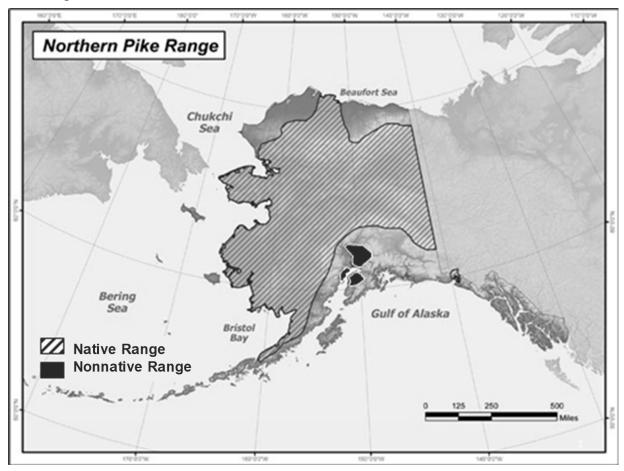


Figure 1.-Northern pike range in Alaska.

OBJECTIVES

PRIMARY OBJECTIVES

- 1) Document catch-per-unit-effort (CPUE) of northern pike in waters where they are confirmed to be present and document the presence of other fish species.
- 2) Document presence or probable absence of northern pike in unconfirmed, suspected, or reported waters.
- 3) Monitor highly vulnerable waterbodies for northern pike presence with annual eDNA surveys.

SECONDARY OBJECTIVES

- 1) Document length, weight, stomach contents, and sex for all northern pike captured, and collect otoliths and cleithra from each.
- 2) Generate bathymetric maps of waterbodies containing northern pike populations.

METHODS

STUDY AREA

This project will take place in the Mat–Su Valley and Anchorage area. The Mat–Su Valley is made up of 2 watersheds totaling approximately 65,000 square kilometers and containing thousands of lakes and miles of river. The Mat–Su Valley also contains the fastest-growing human population in the state and is home to approximately 100,000 residents, and Anchorage is home to nearly 300,000 residents. There is a wide variety of aquatic habitats ranging from high gradient clear streams and large glacial rivers to low gradient swamp and marsh habitat. This low gradient habitat, which is optimal for northern pike, primarily occurs on the west side of the Parks Highway and supports many of the confirmed and suspected northern pike populations (Figure 2). The watershed also supports all 5 species of Pacific salmon in addition to many resident fish species such as rainbow trout (*Oncorhynchus mykiss*), burbot (*Lota lota*), Arctic grayling (*Thymallus arcticus*), and longnose suckers (*Catostomus catostomus*). Many of these waters are also stocked with rainbow trout and other hatchery fish to provide additional angler opportunity.

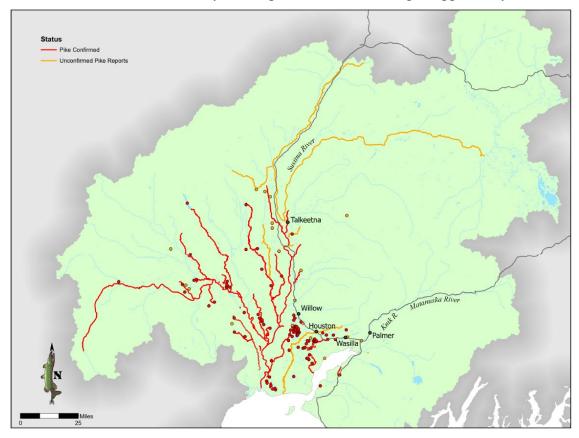


Figure 2.—Map of the Mat-Su drainage and Anchorage areas with confirmed and unconfirmed northern pike waters.

STUDY DESIGN

Primary Objective 1: Documenting CPUE of Northern Pike in Confirmed Waters

Waterbodies in the "confirmed pike waters" category are shown in red in Figure 2. Prioritized waterbodies in this category are listed in Appendix A1. The primary purpose of documenting CPUE is to establish a baseline for later comparison and to document the degree of infestation. By utilizing repeatable and consistent sampling techniques and effort, comparisons can be made between waterbodies, and future efforts can be prioritized. However, circumstances such as severe bycatch or high public use of lakes may prevent use of certain gear types and methods. In these cases, alternative gear or methods (see examples below) will be used to keep sampling effort in that given waterbody consistent between years.

Sampling

For open water sampling, the waterbody will be divided into sections, with each section containing approximately 1.6 km of shoreline (Figure 3). One gillnet per each 0.16 km of shoreline will be fished in each section (10 gillnets per 1.6 km of shoreline). Gillnets will be set overnight along the littoral zone and checked the following day approximately 24 hours later. Nets will be distributed uniformly in the littoral zone of each section, and net locations will be recorded with GPS for repeatability, noting the start and stop times for each set. The nets will be pulled as they are checked and reset in the next section of the lake. This will repeat until all sections have been sampled.

Lakes with significant bycatch concern will have the same density of nets per section, but the nets will be set for a shorter duration (approximately 4–5 hours) and they will be closely monitored. Throughout the sampling period, the crew will continuously boat along the nets and remove any northern pike or bycatch that are captured. A new section will be sampled each day until all sections have been sampled.

Some lakes (e.g., Nancy Lake or Big Lake) will be too big to sample with this amount of effort. In these cases, netting effort may be limited to specific areas of the waterbody that provide good pike habitat. In addition, other gear types may be used depending on the circumstances such as fyke nets or hook-and-line. Use of these gear types will be specific to the waterbody, but effort will be made to remain consistent between sampling years at that given waterbody.

Sampling frequency for confirmed pike waterbodies will occur at least once every 5 years.

Lake Mapping

Lake bathymetry data will also be collected to produce volume estimates and a bathymetric map useful for planning northern pike control and eradication efforts. To collect bathymetry data, we will use a boat-mounted Lowrance HDS chart plotter and transducer to record x, y, z mapping data. Mapping will take place in roughly 40-hectare sections. For each section, the perimeter will be mapped as near shore as safely feasible, followed by a repeat of the perimeter circuit about 20 m farther offshore. After 2 complete section perimeter circuits, the rest of the lake section will be mapped by sequential line transects, typically orientated along the greatest length of each section. Typically, transects lines should be no greater than 40 m apart and all mapping will be done traveling at a slow speed (<5 mph); this can be gauged by watching the GPS track on the Lowrance unit's monitor.

Figure 3.-Example of a lake broken into sections, each with approximately 1.6 km of shoreline.

Primary Objective 2: Documenting Presence or Probable Absence in Suspected Pike Waters

Waterbodies with unconfirmed pike reports (orange in Figure 2), waterbodies with a surface connection to confirmed pike waters, or places with creditable reports, will be sampled according to Primary Objective 2. Prioritized waterbodies in this category are listed in Appendix A2. The primary purpose of Objective 2 is to confirm pike presence or probable absence in suspected pike waters and to further refine the known distribution of northern pike in southcentral Alaska. Methods will be geared toward determining, with confidence, whether pike are present or not. However, circumstances such as severe bycatch concern or lakes highly used by the public may prevent use of certain gear types and methods.

Sampling

For open water sampling, the waterbody will be divided into sections, with each section containing approximately 1.6 km of shoreline (Figure 3). Like Objective 1, gillnetting effort for each section will be 1 gillnet per 0.16 km of shoreline. Gillnets will be set overnight along the littoral zone and checked the following day approximately 24 hours later. Nets will be distributed relatively uniformly, with high effort placed in ideal pike habitat. Locations will be recorded with GPS for repeatability, noting the start and stop times. The nets will be pulled as they are checked and reset in the next section of the lake. This will repeat until all sections have been sampled.

Lakes with significant bycatch concern will have a similar netting scheme, except the nets will be set for a shorter duration (approximately 4–5 hours) and they will be closely monitored. Throughout the sampling period, the crew will continuously boat along the nets and remove any northern pike or bycatch that are captured. A new section will be sampled each day until all sections have been sampled.

If netting takes place and no northern pike are captured, eDNA samples may be taken to confirm their absence. The number of eDNA samples will be based on the eDNA detection probabilities calculated in Appendix B1.

Some waterbodies are more easily accessed in the winter. Additionally, some waterbodies may have high waterfowl bycatch concerns and are best sampled in the winter. For winter sampling, under-ice gillnets and (or) tip-ups will be used. Tip-ups are devices used to suspend a piece of bait in the water column through a hole drilled in the ice. A flag attached to the spool springs up when a fish takes the bait, giving indication of a fish strike to the angler. Up to 20 tip-ups baited with herring, eulachon, or hotdogs will be used at a time. If under-ice gillnets are used, nets will either be set individually, or 2 may be tied together as a pair so that there is 61 m of gillnet per set. Underice gillnets will be 30.5 m long, 1.2 m deep, and composed of 32 mm monofilament mesh. Different numbers of nets and types of configurations will be set depending on the lake bathymetry (e.g., Figures 4 and 5). Depending on ambient temperatures, nets will be checked every 24 to 48 hours to avoid nets freezing in and becoming unrecoverable. In the spring with warmer temperatures, net sets can be checked once per week.

Once pike are confirmed, the waterbody will be added to the list for lake mapping, following methods outlined under the previous objective.

Primary Objective 3: Monitoring Highly Vulnerable Waters

Waterbodies that fall into this category typically had prior pike populations that have been eradicated or are waterbodies with a fishery resource that would be extremely vulnerable if pike became established and where pike would be difficult and (or) expensive to eradicate. Prioritized waterbodies in this category are listed in Appendix A3. Early detection of pike in these waterbodies could result in successful eradication with gillnets if the response is quick and sufficient. In small, closed lakes (<16 ha), intensive under-ice gillnetting has proven to be an effective eradication alternative (R. Massengill, Fishery Biologist, ADF&G, Soldotna, personal communication) but only when the northern pike population is small (<30 individuals) and reproduction success is low as noted by the lack of multiple age classes or juvenile northern pike during sampling efforts. Successful eradication using gillnets alone has involved fishing gillnets continuously from fall ice-up until spring ice-out with gillnet densities of 1.25–5.0 nets/ha (R. Massengill, Fishery Biologist, ADF&G, Soldotna, personal communication). Because these systems often have a severe bycatch

potential with gillnets, monitoring of these systems will utilize eDNA, which has zero potential for any impacts on native species.

Sampling

Primary sampling will be collection of eDNA samples annually in the fall. The number and location of samples will be based on the eDNA detection probabilities outlined in Appendix B1.



Figure 4.–Anderson Lake showing location of under-ice netting (total of 213.5 m of gillnets), with gillnets indicated by red lines and holes drilled in the ice indicated by dots.

Figure 5.—Sand Lake in Anchorage showing location of under-ice gillnet sets (total of 152.5 m linear nets), with gillnets indicated by red lines and holes drilled in the ice indicated by dots.

DATA COLLECTION AND REDUCTION

Fish Sampling

Gillnet GPS locations and set and check times will be recorded for each gillnet set. Start and stop times will also be recorded for other gear types used. All capture data will be recorded on water-resistant paper following the format in Appendix C1.

All northern pike will be dispatched and processed for fork length (nearest millimeter), sex, weight (nearest gram), and stomach contents. Cleithra bones will be removed and archived for age determination at a later date. Otoliths may be removed and archived. Each pike will be numbered in chronological order ("Fish #" column; Appendix C2) so archived otoliths and cleithras can be associated with the proper fish. All field data will be recorded on the northern pike sampling forms (Appendix C2). Data will be transferred from the data sheets to Microsoft Excel worksheets for analysis.

eDNA Sampling

The eDNA sampling will follow protocols outlined in Abbott et al. (2021). Each eDNA sampling location will be recorded with a handheld GPS and given a unique identifying name. Control blank samples will be similarly labeled. Each duplicate water sample will be given a unique identifying name and labeled with the waterbody name and collection date. If funding allows, enough samples will be taken to have a 95% detection probability (Appendix B1). During sample filtration, an array of sample data will be recorded in an Excel file on a laptop computer. These data will include the sample collection and filtering dates, filtering time, number of filters used, waterbody name, unique sample identifier, initials of the collector and the person doing the filtering, collection site location (lat and long) and any comments. Original GPS location data will be downloaded to Garmin Basecamp software on a PC. Sample site location data will be converted in Basecamp to Excel format and copied into the same Excel file holding the sample collection and filtering data. The eDNA samples will be sent to an appropriate lab for analysis.

Lake Mapping

After concluding the mapping survey, the mapping data, stored by the Lowrance chart plotter as an .sl2 file on an external memory SD card, will be downloaded to a computer and uploaded to a cloud-based subscription service (BioBase). BioBase will run algorithms on the data and generate a report that includes the lake volume, surface area estimates, and a printable bathymetric map.

DATA ANALYSIS

Northern Pike Surveys

Gillnet Sampling

The capture of a northern pike during a gillnet survey will confirm the presence of northern pike. If no northern pike are caught, we will conclude either no northern pike are present or that the population is very small, requiring follow up removal attempts.

eDNA Sampling

Analyzing eDNA detection results requires an understanding that nonliving sources of DNA and sample contamination can occasionally confound results. Local experience with eDNA sampling has indicated that positive eDNA detections are not always associated with the presence of a live

northern pike population. On the Kenai Peninsula, northern pike eDNA surveys where only a single sample tested positive (N=7) have never been associated with a live northern pike population following subsequent gillnet surveys (R. Massengill, Fishery Biologist, ADF&G, Soldotna, personal communication). Therefore, when enough sampling occurs to obtain an 80% or greater detection probability, only eDNA surveys yielding greater than 1 positive eDNA detection will trigger the need for a follow-up gillnet survey. When there is a complete lack of positive eDNA detections in a survey, we will conclude the probability of failing to detect a northern pike population of 20 individuals is less than 0.20.

Catch-Per-Unit-Effort Comparison

Northern pike CPUE can be calculated for each net set k, and location l using Equation 1:

$$CPUE_{kl} = \frac{c_{kl}}{e_{kl}} \tag{1}$$

where

 c_{kl} = catch of northern pike in net set k at location l, and

 e_{kl} = the fishing duration of net set k (in hours) at location l (total net hours).

The pooled CPUE at location *l* is calculated by Equation 2:

$$CPUE_{l} = \frac{\sum_{k=1}^{m_{l}} c_{kl}}{\sum_{k=1}^{m_{l}} e_{kl}}$$
 (2)

where

 m_l = total number of net sets at location l

Simple linear regression analysis (or an appropriate time series analysis) will be used to evaluate if CPUE of northern pike changes for a given waterbody between years. In addition, maps will be generated showing relative CPUE of netting efforts for each waterbody (e.g., Figure 6).

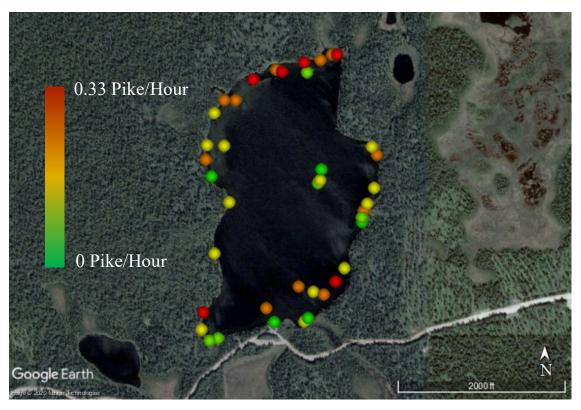


Figure 6.-Netting locations on Chuitbuna Lake in 2019 showing relative CPUE for each net.

SCHEDULE AND DELIVERABLES

Dates	Activity
June 2022–Oct 2024	Perform open water netting and sampling
October 2022, 2023, 2024	Collect eDNA samples
Winter 2022, 2023	Data Entry Otolith/cleithra prep/aging Perform under-ice netting
Winter 2024	Analyze data and write performance report for our State Wildlife Grant

RESPONSIBILITIES

Kristine Dunker, Fishery Biologist III, ADF&G

Duties: Provide oversight and make recommendations on study designs and project plans; assist with data analysis and project reporting; coordinate and assist with the completion of project deliverables.

Parker Bradley, Fishery Biologist II, ADF&G

Duties: Serve as the primary project biologist; assist with planning and coordinating field logistics; author State Wildlife Grant project report and presentations to the public.

Cody Jacobson, Fishery Biologist I, ADF&G

Duties: Assist with planning and coordinating field logistics and equipment procurement; supervise field activities and technicians.

Mike Martz, Biometrician I, ADF&G

Duties: Provide guidance on study design; assist with postseason data analysis; review project operational plans and reports.

Fish and Wildlife Technicians, ADF&G

Duties: Assist with field activities.

REFERENCES CITED

- Abbott, C., M. Coulson, N. Gagne, A. Lacoursière-Roussel, G. J. Parent, R. Banjo, C. Dietrich, and S. May-McNally. 2021. Guidance on the use of target environmental DNA (eDNA) analysis for the management of aquatic invasive species and species at risk. Fisheries and Oceans Canada, Canadian Science Advisory Secretariat Research Document 2021/019.
- ADF&G (Alaska Department of Fish and Game). 2007. Management plan for invasive northern pike in Alaska. Alaska Department of Fish and Game, Southcentral Northern Pike Control Committee, Anchorage.
- Baxter, J. T. A., and M. Neufeld. 2015. Lower Columbia River northern pike suppression and stomach analysis 2014. Final report to Teck Trail Operations, British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Nelson, BC.
- Dunker, K. J., A. J. Sepulveda, R. L. Massengill, J. B. Olsen, O. L. Russ, J. K. Wenburg, and A. Antonovich. 2016. Potential of environmental DNA to evaluate northern pike (*Esox lucius*) eradication efforts: an experimental test and case study. PLOS One 11(9):e0162277. doi:10.1371/journal.pone.0162277
- Fay, V. 2002. Alaska aquatic nuisance species management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Informational Report 5J02-10, Juneau. http://www.adfg.alaska.gov/FedAidpdfs/RIR.5J.2002.10.pdf.
- Sepulveda, A. J., D. S. Rutz, A. W. Dupuis, P. A. Shields, and K. J. Dunker. 2015. Introduced northern pike consumption of salmonids in Southcentral Alaska. Ecology of Freshwater Fish 24(4):519–531.
- Sepulveda, A. J., D. S. Rutz, S. S. Ivey, K. J. Dunker, and J. A. Gross. 2013. Introduced northern pike predation on salmonids in southcentral Alaska. Ecology of Freshwater Fish 22(2):268–279.

APPENDIX A: LIS	STS OF PRIORITIZ	ZED WATERBODIES

Appendix A1.-List of prioritized waterbodies for Objective 1.

					Latest		Surface		Max
			Stocked	Anadromous	survey	Mapped	area	Volume	depth
Drainage	Waterbody name	Latitude, longitude	?	?	year	?	(acre)	(acre/ft)	(ft)
Campbell Creek	Campbell Lake	61.132746 -149.939426	No	Yes	2022	No	NA	NA	NA
Chester Creek	West Chester Lagoon	61.207348 -149.919044	Yes	Yes	NA	No	NA	NA	NA
Fish Creek	South Rolly Lake	61.666412 -150.133924	Yes	Yes	2022	Yes	108	2,842	63
	Tanaina Lake	61.674522 -150.093203	Yes	Yes	2022	Yes	110	3,175	110
	Milo Lake	61.670833 -150.080556	No	Yes	2020	Yes	60	778	40
Goose Creek	Anna Lake	61.466688 -149.963856	No	No	2021	Yes	113	1,630	29
	Stephan Lake	61.487713 -149.926555	No	Yes	2021	Yes	329	2,063	15
	Loonsong Lake	61.466667 -149.948611	No	No	2021	Yes	80	578	15
Deshka River	Amber Lake	62.165885 -150.542079	No	Yes	1980s	No	180	NA	NA
Little Meadow Creek	Blodgett Lake	61.576944 -149.666667	No	Yes	2022	Yes	72	715	31
Little Susitna River	Nancy Lake	61.689391 -150.012691	No	Yes	2022	Yes	761	NA	65
	East Papoose Lake	61.540931 -150.069664	No	Yes	2021	Yes	166	1,956	40
	Horseshoe Lake (Big								
	Lake area)	61.573386 -149.924215	No	Yes	2021	Yes	426	4,025	23
	Hourglass Lake	61.559762 -149.955898	No	Yes	2022	Yes	109	1,165	22
	West Horseshoe Lake	61.575875 -149.942795	No	Yes	2020	Yes	137	1,290	16
Meadow Creek	Gerry Lake (Audra								
	Lake)	61.569685 -149.848360	No	Yes	2022	Yes	18	136	8
	Beaverhouse Lake	61.57297 -149.863652	No	Yes	2022	No	33	NA	NA
	West Beaver Lake	61.581403 -149.855246	Yes	No	2020	Yes	110	1,235	24
	Stepan Lake	61.572222 -149.816667	No	Yes	2020	Yes	62	587	17
	Lynda Lake	61.570833 -149.833333	No	Yes	2020	Yes	15	182	22
	Big Lake	61.578348 -149.841354	No	Yes	2021	Yes	3,085	87,546	82
NA-Landlocked	Crystal Lake	61.711812 -150.116258	Yes	No	2020	No	132	1,548	24
	Lalen Lake	61.600317 -149.691805	Yes	No	2022	Yes	112	700	13
	Leo Lake	61.435780 -149.899945	No	No	2021	Yes	30	96	6
	Memory Lake	61.625593 -149.419047	Yes	No	NA	Yes	90	734	20
	Prator Lake	61.616686 -149.733509	Yes	No	2022	Yes	92	1,116	24
	Baptist Pond	61.574189 -149.725109	No	No	2021	Yes	9	41	10

-continued-

Appendix A1.—Page 2 of 2.

Drainage	Waterbody name	Latitude, longitude	Stocked ?	Anadromous ?	Latest survey year	Mapped ?	Surface area (acre)	Volume (acre/ft)	Max depth (ft)
Sixmile Creek	Sixmile (Lower) Lake	61.289710 -149.800865	No	Yes	2022	Yes	130	814	9
Willow Creek	Long Lake	61.716667 -150.083333	No	Yes	2020	Yes	241	2,541	23
	Shirley Lake	61.747170 -150.103700	No	Yes	2019	No	121	NA	20

Note: NA means not available or not applicable.

Appendix A2.-List of prioritized waterbodies for Objective 2.

					Latest survey		Surface area	Volume	Max depth
Drainage	Waterbody name	Latitude, longitude	Stocked?	Anadromous?	year	Mapped?	(acre)	(acre/ft)	(ft)
Birch Creek	Fish Lake	62.250000 - 150.066667	No	Yes	1980s	No	154	NA	NA
Caswell Creek	Caswell Lake	62.013452 -149.968042	No	Yes	NA	No	NA	NA	NA
Little Susitna River	Horseshoe Lake (Pt. Mac)	61.362500 -150.147222	No	Yes	2006	No	160	NA	23
	West Papoose Lake	61.535982 -150.094578	No	Yes	NA	No	192	NA	24
	Yohn Lake	61.469424 -150.174021	No	Yes	NA	No	NA	NA	NA
Little Willow Creek	Kashwitna Lake	61.829982 -150.073508	Yes	Yes	2020	Yes	156	1,080	13
Meadow Creek	Lazy Lake	61.572222 -149.805556	No	No	NA	No	NA	NA	NA
	Twin Lake	61.572055 -149.781711	No	Yes	NA	No	NA	NA	NA
	Long Lake (Meadow Creek)	61.577778 -149.766667	No	Yes	NA	No	NA	NA	NA
NA-Landlocked	Island Lake	61.627708 -149.617547	No	No	2021	No	NA	NA	NA
	Knik Lake	61.458249 -149.729576	Yes	No	NA	Yes	53	872	38
	Matanuska Lake	61.553995 -149.228059	Yes	No	2020	Yes	64	2,108	80
	Pear Lake	61.591782 -149.897018	No	No	NA	No	61	NA	12
	Visnaw Lake	61.618985 -149.675161	Yes	No	2022	No	131	NA	17
	Loberg Lake	61.559125 -149.257256	Yes	No	NA	No	11	NA	48
Ninemile Creek	Scotty Lake	62.318599 -150.322296	No	No	NA	No	220	NA	6
	Aurora Lake	62.274320 -150.355450	No	No	NA	No	NA	NA	NA
Rolly Creek	North Rolly Lake	61.674525 -150.129003	Yes	No	NA	No	122	NA	65
Susitna River	Caswell Creek	61.942572 -150.078495	No	Yes	NA	No	NA	NA	NA
	Rabideaux Creek	62.177134 -150.193550	No	Yes	NA	No	NA	NA	NA
	Sunshine Creek	62.175889 -150.115069	No	Yes	NA	No	NA	NA	NA
Willow Creek	Rainbow Lake	61.695881 -150.096068	No	No	NA	No	150	NA	45

Note: NA means not available or not applicable.

17

Appendix A3.-List of prioritized waterbodies for Objective 3.

				Previously eradicated						
				pike population?,		Latest survey		Surface area	Volume	Max depth
Drainage	Waterbody name	Latitude, longitude	Stocked?	year	Anadromous?	year	Mapped?	(acre)	(acre/ft)	(ft)
Cottonwood	Wasilla Lake	61.583333 -149.410150	No	No	Yes	2017	No	374	NA	48
Creek	Anderson Lake	61.620686 -149.336494	Yes	Yes, 2020	Yes	NA	Yes	105	808	28
	Kings Lake	61.617164 -149.359731	Yes	Yes, 2020	Yes	NA	Yes	112	793	24
	Cottonwood Lake	61.596428 -149.333020	No	No	Yes	2017	Yes	254	2,977	43
	Mud Lake	61.596803 -149.345600	No	No	Yes	2017	No	55	NA	17
Jim Creek	Jim Lake	61.554167 -148.925000	No	No	Yes	NA	No	170	NA	5
	Leaf Lake	61.653521 -148.887568	No	No	Yes	NA	No	NA	NA	NA
	Mud Lake	61.561785 -149.949728	No	No	Yes	NA	No	50	NA	3
	Swan Lake	61.5269570 -148.90089	No	No	Yes	NA	No	NA	NA	NA
Meadow Creek	Big Beaver Lake	61.578348 -149.841354	Yes	No	Yes	NA	No	161	NA	NA
NA-Landlocked	Finger Lake	61.608704 -149.263784	Yes	No	No	NA	Yes	372	6,047	42
	Sand Lake	61.152480 -149.957299	Yes	Yes, 2009	No	2021	Yes	78	1,188	37
	Cheney Lake	61.200313 -149.761945	Yes	Yes, 2008	No	2021	Yes	27	161	16

Note: NA means not available or not applicable.

APPENDIX I	P. ENVIR	ONMENTAL	DNAS	AMPLING
). I'' Y I N			

To develop an eDNA sampling effort sufficiently robust to detect northern pike populations with low abundance, the estimated mean detection probabilities of northern pike eDNA were used. The detection probabilities were estimated from the results of replicate 1-liter water samples collected at 1, 10, and 40 meters from a single, caged, live northern pike and were estimated to have a 0.89, 0.57, and 0.27 probability of detection, respectively. For this project, 1-liter samples will be collected in duplicate to account for the lower detection probabilities using the Biomeme Two3 device.

The following calculations will be used to estimate how many eDNA samples are needed to detect a small northern pike population (N = 20) with a desired probability of detection provided lake acreage is known and no gillnet sampling occurs. Calculations will be based on 3 assumptions: 1) fish are randomly distributed throughout the littoral area, 2) there are no false detections, 3) the probability of detection beyond 40 meters is zero because no estimates are available for this region, and 4) all samples are taken at least 40 meters away from each other.

To account for differences in the probability of detection due to the distance between a northern pike and the sample site, we will divide the 40-meter radius circle around each sample site into 3 distinct subregions. These subregions will be the circular area less than 1 meter from the sample site and the donut-shaped areas between 1 and 10 meters and between 10 and 40 meters from the sample site, which we will label subregions 1, 2, and 3, respectively. Because previous work (Dunker et al. 2016) estimated the probability of detection at 1, 10, and 40 meters, we will use their estimates as conservative proxies for the probability of detection within the respective subregions.

If P represents the probability of detecting a northern pike, D is the event a northern pike is detected, and R_i is the event that a single northern pike is present in a sampling subregion i for i = (1, 2, 3), we note by the law of total probability and the definition of conditional probabilities, the following relationship can be used to calculate the probability of detection:

$$P(D) = P(D \mid R_1) \times P(R_1) + P(D \mid R_2) \times P(R_2) + P(D \mid R_3) \times P(R_3)$$
(B1)

Thus, the probability a northern pike is detected is equivalent to the probability a northern pike can be detected, given it is within a subregion, times the probability it is in the subregion summed over all subregions. The probability a northern pike can be detected in subregion i, given it is present in the subregion, $P(D \mid R_i)$, is 0.89, 0.57, or 0.27 for sampling subregions 1–3, respectively. Under the assumption that northern pike are randomly distributed throughout the littoral area, the probability a northern pike is present in subregion i is the proportion of total area represented by that region:

$$P(R_i) = \frac{area\ of\ region\ i}{total\ littoral\ area\ of\ lake}$$
(B2)

where the fixed areas of the subregions are divided by the known total surface area, and the total littoral area of the lake is taken from Biobase results overlaid on Google Earth, and then using the area calculator tool.

-continued-

Finally, assuming northern pike are randomly distributed throughout the littoral area, sample sites are identical and at least 40 meters apart, and there are no false positives, it can be shown that the probability of detection given the northern pike is within detection range of a sample site is equal to the probability of detection given the northern pike is near 1 of S sample sites for S = 1, 2, ..., n. Thus, the only change in our probability calculation for S sites is that the proportion of area represented by each subregion is now $S \times P(R_i)$. By another application of the law of total probability and definition of conditional probabilities, the probability of detection at S sites is as follows:

$$P(\text{detection at } S \text{ sites}) = P(D \mid R_1) \times S \times P(R_1) + P(D \mid R_2) \times S \times P(R_2) + P(D \mid R_3) \times S \times P(R_3) = S \times P(D)$$
(B3)

Because the N pike are assumed to be randomly distributed throughout the littoral area, the number of northern pike that are successfully detected follows a Binomial[N, S × P(D)] distribution. Samples may be taken randomly or systematically throughout the littoral area as long as they are >40 m apart. The probability of at least 1 detection at S sites is $1 - [1 - S * P(D)]^N$. This expression is then set to the desired probability of detection and solved for S. Table B1 displays calculated eDNA sampling requirements for a variety of desired probabilities of detection and acreages assuming a population of N = 20 northern pike.

Table B1.-Number of samples required to achieve the desired probability of detection.

	Littoral acres							
Probability of detection	10	25	50	75	100	200		
0.50	1	3	5	8	10	19		
0.75	2	5	10	14	19	38		
0.90	4	8	16	23	31	61		
0.95	4	10	20	30	39	78		

APPENDIX C: SAMPLING FORMS

Appendix C1.-Northern pike capture form.

	NORTHERN PIKE SURVEY AND MONITOR NET FORM Page of										
	WATERBODY: SAMPLERS:	SECTION #:			CAPTURE DEVICE:			START DATE: STOP DATE:			
NET#	GPS LOCATION LAT./LONG.	START TIME:	STOP TIME:	# Northern Pike							

Appendix C2.-Northern pike stomach sampling form.

	Page	_ of							
WATERBODY: SAMPLERS:						START DATE: STOP DATE:			
Fish # (NP Only)	NET#	FISH SPECIES	FORK LENGTH (mm)	WEIGHT (g)	SEX (M, F, U)	Stomach contents (Yes/No)	STOMACH CONTENT	DNA Card #	Fish # (1-10)
-									