# Operational Plan: Upper Cook Inlet Commercial Eastside Set Gillnet Chinook Salmon Harvest Composition Study 

by
Tony Eskelin
and
Andrew W. Barclay


## Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

| Weights and measures (metric) |  | General |  | Mathematics, statistics |
| :--- | :--- | :--- | :--- | :--- | :--- |
| centimeter | cm | Alaska Administrative |  | all standard mathematical |
| deciliter | dL | Code | AAC | signs, symbols and |
| gram | g | all commonly accepted |  | abbreviations |

# REGIONAL OPERATIONAL PLAN SF.2A.2017.12 

# OPERATIONAL PLAN: UPPER COOK INLET COMMERCIAL EASTSIDE SET GILLNET CHINOOK SALMON HARVEST COMPOSITION STUDY 

by<br>Tony Eskelin<br>and<br>Andrew W. Barclay

Alaska Department of Fish and Game
Division of Sport Fish, Research and Technical Services
333 Raspberry Road, Anchorage, Alaska, 99518-1565
May 2017

The Regional Operational Plan Series was established in 2012 to archive and provide public access to operational plans for fisheries projects of the Divisions of Commercial Fisheries and Sport Fish, as per joint-divisional Operational Planning Policy. Documents in this series are planning documents that may contain raw data, preliminary data analyses and results, and describe operational aspects of fisheries projects that may not actually be implemented. All documents in this series are subject to a technical review process and receive varying degrees of regional, divisional, and biometric approval, but do not generally receive editorial review. Results from the implementation of the operational plan described in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author if you have any questions regarding the information provided in this plan. Regional Operational Plans are available on the Internet at: http://www.adfg.alaska.gov/sf/publications/

> Tony Eskelin,
> Alaska Department of Fish and Game, Division of Sport Fish, 43961 Kalifornsky-Beach Road, Ste. B, Soldotna, AK 99669-8276
> and
> Andrew W. Barclay,
> Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation Laboratory, 333 Raspberry Road, Anchorage, AK 99518-1599, USA

This document should be cited as follows:
Eskelin, T., and A. W. Barclay. 2017. Operational Plan: Upper Cook Inlet commercial eastside set gillnet Chinook salmon harvest composition study. Alaska Department of Fish and Game, Regional Operational Plan ROP.SF.2A.2017.12, Anchorage.

The Alaska Department of Fish and Game (ADF\&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:
ADF\&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526
U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240
The department's ADA Coordinator can be reached via phone at the following numbers:
(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078
For information on alternative formats and questions on this publication, please contact:
ADF\&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

|  |  |
| :---: | :---: |
| Project THitos | Upper Cook Silet Carmancial Butada Sot Gillint Crinook Sillurom smutiling Straty |
| Prujoct lumdera): | Tomy Pakcion tadAadew W. Barcity |
| Divisom, Rugion, and Area | Spout Fin Divition, Regton II Soldotom <br>  |
| Projuet Nompaclotures | Proffic Stole Mindue Fivherien Coumulalon, Crant No. 16101 a |
| Puiod Covarel: | Juna 2017-Oataber 2018 |
| Fidd Dites; | June 20-Augat 15, 2017 |
| Plan Typres | Cungory III |

Approwal


## TABLE OF CONTENTS

LIST OF TABLES ..... iii
LIST OF FIGURES ..... iii
LIST OF APPENDICES ..... iii
ABSTRACT ..... 1
INTRODUCTION ..... 1
Purpose ..... 1
Background. ..... 1
Management of the Eastside Set Gillnet Fishery ..... 5
Chinook Salmon Research ..... 6
Baseline and Reporting Groups ..... 6
Tissue and Age, Sex, and Length Sampling and Analyses ..... 7
Stock Compositions and Stock-specific Harvest Estimates Stratified by Size ..... 11
2017 Sampling ..... 11
OBJECTIVES ..... 11
Primary Objectives ..... 11
Secondary Objectives ..... 12
METHODS ..... 12
Study Design ..... 12
Reported Chinook Salmon Harvest ..... 12
Sampling Fishery Openings ..... 12
Sampling Strategy ..... 13
Tissue Sampling for MSA ..... 14
Scale, Sex, and Length Sampling ..... 14
Coded Wire Tag Recovery ..... 14
Sample Selection for Analyses ..... 14
Stratification of Stock Compositions, Stock-specific Harvest Estimates and ASL Compositions ..... 15
Data Collection ..... 17
Tissue Collection ..... 17
Scale, Sex, and Length Collection ..... 17
CWT Collections ..... 17
Laboratory Analysis. ..... 17
Data Reduction ..... 18
Data Analysis ..... 18
Mixed Stock Analysis and Stock Compositions ..... 18
Stock-specific Harvest Estimates ..... 19
Age Composition ..... 20
Sex Composition ..... 21
Length Composition ..... 21
CWT Recoveries ..... 22
SCHEDULE AND DELIVERABLES ..... 22
RESPONSIBILITIES ..... 22
BUDGET SUMMARY ..... 23
REFERENCES CITED ..... 25

## TABLE OF CONTENTS (Continued)

APPENDIX A: SAMPLING SCHEDULE ..... 27
APPENDIX B: INSTRUCTIONS FOR TISSUE SAMPLING ..... 29
APPENDIX C: SAMPLING FORMS ..... 31
LIST OF TABLES
Table ..... Page

1. Upper Cook Inlet commercial Chinook salmon gillnet harvest by gear type and area, 1966-2016 ..... 4
2. Populations of Chinook salmon in the Upper Cook Inlet genetic baseline, including the sampling location, collection years, the number of individuals sampled from each population ( $n$ ), and the reporting groups used for mixed stock analysis of Chinook salmon harvest in the Eastside set gillnet fishery, Upper Cook Inlet, Alaska. ..... 8
3. Mixture number, time period, and geographic area for proposed temporal and geographic strata in the Eastside set gillnet fishery, Upper Cook Inlet, Alaska, 2017. ..... 16
4. Proposed temporal and geographic strata for ASL and MSA analyses to be conducted in 2017. ..... 16
LIST OF FIGURES
Figure Page
5. Map of Upper Cook Inlet commercial fishing districts and subdistricts. ..... 2
6. Map of Upper Cook Inlet Eastside set gillnet commercial fishing statistical areas .....  3
7. Sampling locations and reporting groups for Chinook salmon populations included in the genetic baseline used for MSA of Chinook salmon harvested in the Eastside set gillnet fishery in Upper Cook Inlet. ..... 10
LIST OF APPENDICES
Appendix ..... Page
A1. Preliminary 2017 ESSN Chinook salmon sampling schedule ..... 28
B1. Instructions for tissue sampling. ..... 30
C1. Chinook salmon ESSN harvest sampling form for 2017 ..... 32
C2. Coded wire tag sampling form. ..... 33


#### Abstract

Genetic tissue and age, sex, and length composition information will be collected from harvested Chinook salmon in the Upper Cook Inlet eastside set gillnet (ESSN) commercial fishery in 2017. The primary goals of the study are to estimate the stock composition and stock-specific harvest of Chinook salmon in the ESSN commercial fishery by reporting group and size (less than 75 cm METF [mid eye to tail fork] and 75 cm METF and longer) for each temporal and geographic stratum, and for the entire 2017 season. Harvest estimates will be apportioned into 4 reporting groups: Kenai River mainstem, Kasilof River mainstem, Kenai River tributaries, and Cook Inlet other. Age, sex, and length composition will also be estimated for each temporal and geographic stratum and for the entire 2017 season.


Key words: Chinook salmon, Oncorhynchus tshawytscha, Kenai River, eastside set gillnet, commercial fishery, ESSN, upper Cook Inlet, MSA, stock-specific harvest, PSMFC

## INTRODUCTION

## Purpose

Stock-specific harvest and age, sex, and length (ASL) composition of Chinook salmon harvest in the ESSN commercial fishery are needed for effective management of Chinook salmon stocks in Cook Inlet, in order to improve understanding of stock productivity, for brood table development, and for setting and attaining escapement goals. Genetic samples are needed to estimate the stock-specific harvest of Chinook salmon in the ESSN commercial fishery temporally, geographically, and by size. ASL composition of the Chinook salmon harvest is needed to more accurately characterize the harvest and assess production and age at maturity trends. This project will collect and analyze ASL and genetic tissue samples of Chinook salmon harvested in the ESSN commercial fishery. The Alaska Department of Fish and Game (ADF\&G) Division of Sport Fish (SF) will be responsible for the collection of genetic tissue samples and ASL data. Tissue samples will be sent to the Division of Commercial Fisheries (CF) Gene Conservation Lab (GCL), which will be responsible for mixed stock analysis (MSA).

## BACKGROUND

All 5 species of Pacific salmon are harvested by the commercial fisheries in Upper Cook Inlet (UCI). Sockeye salmon (Oncorhynchus nerka) comprise the majority of the harvest (Shields and Dupuis 2017) but Chinook salmon (O. tshawytscha) are also harvested. Harvest statistics are monitored by the Alaska Department of Fish and Game (ADF\&G) from fish tickets (5 AAC 21.355). Harvest data are available and reported by 5 -digit statistical areas (Shields and Dupuis 2017). Most of the UCI commercial Chinook salmon harvest occurs in the Upper Subdistrict of the Central District, commonly referred to as the Eastside set gillnet (ESSN) fishery, located along the eastern shore of Cook Inlet between Ninilchik and Boulder Point (Figures 1 and 2). On average since 1966, the ESSN fishery has accounted for $65.0 \%$ of all Chinook salmon harvested in UCI commercial fisheries (Table 1).


Figure 1.-Map of Upper Cook Inlet commercial fishing districts and subdistricts.
Note: Thick black lines indicate district borders and thin lines indicate subdistrict borders; the thick maroon line near the eastern shore of Cook Inlet denotes the Eastside set gillnet fishery.


Figure 2.-Map of Upper Cook Inlet Eastside set gillnet commercial fishing statistical areas.
Note: Small circles represent approximate locations of processing plants or receiving sites. KRSHA (244-25) is the Kasilof River Special Harvest Area.

Table 1.-Upper Cook Inlet commercial Chinook salmon gillnet harvest by gear type and area, 19662016.

| Year | Central District |  |  |  |  |  | Northern Districtsetnet |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eastside setnet |  | Drift |  | Kalgin-Westside setnet |  |  |  |  |
|  | Harvest | \% | Harvest | \% | Harvest | \% | Harvest | \% |  |
| 1966 | 7,329 | 85.8 | 392 | 4.6 | 401 | 4.7 | 422 | 4.9 | 8,544 |
| 1967 | 6,686 | 85.1 | 489 | 6.2 | 500 | 6.4 | 184 | 2.3 | 7,859 |
| 1968 | 3,304 | 72.8 | 182 | 4.0 | 579 | 12.8 | 471 | 10.4 | 4,536 |
| 1969 | 5,834 | 47.1 | 362 | 2.9 | 3,286 | 26.5 | 2,904 | 23.4 | 12,386 |
| 1970 | 5,368 | 64.4 | 356 | 4.3 | 1,152 | 13.8 | 1,460 | 17.5 | 8,336 |
| 1971 | 7,055 | 35.7 | 237 | 1.2 | 2,875 | 14.5 | 9,598 | 48.6 | 19,765 |
| 1972 | 8,599 | 53.5 | 375 | 2.3 | 2,199 | 13.7 | 4,913 | 30.5 | 16,086 |
| 1973 | 4,411 | 84.9 | 244 | 4.7 | 369 | 7.1 | 170 | 3.3 | 5,194 |
| 1974 | 5,571 | 84.5 | 422 | 6.4 | 434 | 6.6 | 169 | 2.6 | 6,596 |
| 1975 | 3,675 | 76.8 | 250 | 5.2 | 733 | 15.3 | 129 | 2.7 | 4,787 |
| 1976 | 8,249 | 75.9 | 690 | 6.4 | 1,469 | 13.5 | 457 | 4.2 | 10,865 |
| 1977 | 9,730 | 65.8 | 3,411 | 23.1 | 1,084 | 7.3 | 565 | 3.8 | 14,790 |
| 1978 | 12,468 | 72.1 | 2,072 | 12.0 | 2,093 | 12.1 | 666 | 3.8 | 17,299 |
| 1979 | 8,671 | 63.1 | 1,089 | 7.9 | 2,264 | 16.5 | 1,714 | 12.5 | 13,738 |
| 1980 | 9,643 | 69.9 | 889 | 6.4 | 2,273 | 16.5 | 993 | 7.2 | 13,798 |
| 1981 | 8,358 | 68.3 | 2,320 | 19.0 | 837 | 6.8 | 725 | 5.9 | 12,240 |
| 1982 | 13,658 | 65.4 | 1,293 | 6.2 | 3,203 | 15.3 | 2,716 | 13.0 | 20,870 |
| 1983 | 15,042 | 72.9 | 1,125 | 5.5 | 3,534 | 17.1 | 933 | 4.5 | 20,634 |
| 1984 | 6,165 | 61.3 | 1,377 | 13.7 | 1,516 | 15.1 | 1,004 | 10.0 | 10,062 |
| 1985 | 17,723 | 73.6 | 2,048 | 8.5 | 2,427 | 10.1 | 1,890 | 7.8 | 24,088 |
| 1986 | 19,826 | 50.5 | 1,834 | 4.7 | 2,108 | 5.4 | 15,488 | 39.5 | 39,256 |
| 1987 | 21,159 | 53.6 | 4,552 | 11.5 | 1,029 | 2.6 | 12,700 | 32.2 | 39,440 |
| 1988 | 12,859 | 44.2 | 2,237 | 7.7 | 1,148 | 3.9 | 12,836 | 44.1 | 29,080 |
| 1989 | 10,914 | 40.8 | 0 | 0.0 | 3,092 | 11.6 | 12,731 | 47.6 | 26,737 |
| 1990 | 4,139 | 25.7 | 621 | 3.9 | 1,763 | 10.9 | 9,582 | 59.5 | 16,105 |
| 1991 | 4,893 | 36.1 | 246 | 1.8 | 1,544 | 11.4 | 6,859 | 50.6 | 13,542 |
| 1992 | 10,718 | 62.4 | 615 | 3.6 | 1,284 | 7.5 | 4,554 | 26.5 | 17,171 |
| 1993 | 14,079 | 74.6 | 765 | 4.1 | 720 | 3.8 | 3,307 | 17.5 | 18,871 |
| 1994 | 15,575 | 78.0 | 464 | 2.3 | 730 | 3.7 | 3,193 | 16.0 | 19,962 |
| 1995 | 12,068 | 67.4 | 594 | 3.3 | 1,101 | 6.2 | 4,130 | 23.1 | 17,893 |
| 1996 | 11,564 | 80.8 | 389 | 2.7 | 395 | 2.8 | 1,958 | 13.7 | 14,306 |
| 1997 | 11,325 | 85.2 | 627 | 4.7 | 207 | 1.6 | 1,133 | 8.5 | 13,292 |
| 1998 | 5,087 | 62.6 | 335 | 4.1 | 155 | 1.9 | 2,547 | 31.4 | 8,124 |
| 1999 | 9,463 | 65.8 | 575 | 4.0 | 1,533 | 10.7 | 2,812 | 19.6 | 14,383 |
| 2000 | 3,684 | 50.1 | 270 | 3.7 | 1,089 | 14.8 | 2,307 | 31.4 | 7,350 |
| 2001 | 6,009 | 64.6 | 619 | 6.7 | 856 | 9.2 | 1,811 | 19.5 | 9,295 |
| 2002 | 9,478 | 74.5 | 415 | 3.3 | 926 | 7.3 | 1,895 | 14.9 | 12,714 |
| 2003 | 14,810 | 80.1 | 1,240 | 6.7 | 770 | 4.2 | 1,670 | 9.0 | 18,490 |

Table 1.-Page 2 of 2.

| Year | Central District |  |  |  |  |  | Northern District setnet |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eastside setnet |  | Drift |  | Kalgin-Westside setnet |  |  |  |  |
|  | Harvest | \% | Harvest | \% | Harvest | \% | Harvest | \% |  |
| 2004 | 21,684 | 80.5 | 1,104 | 4.1 | 2,208 | 8.2 | 1,926 | 7.2 | 26,922 |
| 2005 | 21,597 | 78.1 | 1,958 | 7.1 | 739 | 2.7 | 3,373 | 12.2 | 27,667 |
| 2006 | 9,956 | 55.2 | 2,782 | 15.4 | 1,030 | 5.7 | 4,261 | 23.6 | 18,029 |
| 2007 | 12,292 | 69.7 | 912 | 5.2 | 603 | 3.4 | 3,818 | 21.7 | 17,625 |
| 2008 | 7,573 | 56.8 | 653 | 4.9 | 1,124 | 8.4 | 3,983 | 29.9 | 13,333 |
| 2009 | 5,588 | 63.9 | 859 | 9.8 | 672 | 7.7 | 1,631 | 18.6 | 8,750 |
| 2010 | 7,059 | 71.3 | 538 | 5.4 | 553 | 5.6 | 1,750 | 17.7 | 9,900 |
| 2011 | 7,697 | 68.4 | 593 | 5.3 | 659 | 5.9 | 2,299 | 20.4 | 11,248 |
| 2012 | 704 | 27.9 | 218 | 8.6 | 555 | 22.0 | 1,049 | 41.5 | 2,526 |
| 2013 | 2,988 | 55.4 | 493 | 9.1 | 590 | 10.9 | 1,327 | 24.6 | 5,398 |
| 2014 | 2,301 | 49.4 | 382 | 8.2 | 507 | 10.9 | 1,470 | 31.5 | 4,660 |
| 2015 | 7,781 | 72.1 | 556 | 5.1 | 538 | 5.0 | 1,923 | 17.8 | 10,798 |
| 2016 | 6,759 | 67.4 | 606 | 6.0 | 460 | 4.6 | 2,202 | 22.0 | 10,027 |
| Average |  |  |  |  |  |  |  |  |  |
| 1966-2015 ${ }^{\text {a }}$ | 9,418 | 65.0 | 961 | 6.5 | 1,232 | 9.3 | 3,055 | 19.2 | 14,573 |
| 2006-2014 | 6,394 | 59.0 | 799 | 7.7 | 683 | 8.5 | 2,351 | 24.7 | 10,227 |

a Data from 1989 were not used in averages because the drift fleet did not fish due to the Exxon Valdez oil spill, which affected all other fisheries.

## Management of the Eastside Set Gillnet Fishery

The ESSN (commercial) fishery is divided into 3 sections (Kenai, Kasilof, and East Foreland) and 6 main statistical areas: Ninilchik Beach (244-22), Cohoe Beach (244-22), South K-Beach (244-31), North K-Beach (244-32), Salamatof Beach (244-41), and East Foreland Beach (24442) (Figure 2). Management plans generally dictate the ESSN fishery be opened by sections, which are mostly groups of statistical areas. The Kasilof Section is composed of Ninilchik Beach, Cohoe Beach, and South K-Beach. The Kenai Section is composed of North K-Beach and Salamatof Beach. East Foreland Section is composed of East Foreland Beach and has historically been fished concurrently with the Kenai Section.
The Kasilof Section opens on the first Monday or Thursday on or after 25 June, unless ADF\&G estimates that 50,000 sockeye salmon are in the Kasilof River prior to that date, at which time the commissioner may open the Kasilof Section by emergency order (EO); however, the Kasilof Section may not open earlier than 20 June (Alaska Administrative Code 5 AAC 21.310 b. 2.C.[i]). The Kenai and East Foreland sections open by regulation on the first Monday or Thursday on or after 8 July (5 AAC 21.310). Within but separate from the Kasilof Section, there as a small area at the mouth of the Kasilof River designated the Kasilof River Special Harvest Area (KRSHA, 244-25). KRSHA has been opened separately from the Kasilof Section to concentrate harvest of Kasilof River sockeye salmon while minimizing harvest of other stocks, especially Chinook salmon. However, at the 2017 UCI Board of Fisheries (BOF) meeting, the management plan was changed to allow the possibility of much more (unlimited) fishing time in the Kasilof Section itself with openings restricted to within 600 ft of the mean high tide line. This
change was intended to provide a management tool to maximize Kasilof River sockeye salmon harvest if necessary, but to limit the use of KRSHA. In addition, at the 2017 UCI BOF meeting, North K-Beach (Kenai Section) within 600 ft of the mean high tide line was also added as a management tool that can be fished concurrently with openings of the Kasilof Section restricted to within 600 ft of the mean high tide line if the ESSN fishery is closed for conservation of Kenai River Chinook salmon or Kenai River sockeye salmon.

There are other restrictions to the ESSN fishery. After the Kenai and East Foreland sections open for the season, 2 mandatory no fishing windows per week are in place whereby the ESSN fishery is closed for 36 continuous hours beginning sometime between 7:00 PM Thursday and 7:00 AM Friday and also closed for 24 continuous hours beginning sometime between 7:00 PM Monday and 7:00 AM Wednesday. Openings of the Kasilof Section and North K-Beach that are restricted to within 600 ft of the mean high tide line are not tied to the weekly no-fishing window restrictions. The ESSN fishery is also paired with the Kenai River sport fishery such that when the inriver sport fishery is restricted from the use of bait, the ESSN fishery may, by emergency order (EO), be allowed extra fishing periods up to 48 hours per week. Furthermore, when the inriver sport fishery is restricted to catch-and-release only fishing, the ESSN fishery may, by EO, be allowed extra fishing periods up to 24 hours per week.

The ESSN fishery closes on 15 August with only regular periods allowed after August 10. In addition, the ESSN fishery closes if less than $1 \%$ of the cumulative sockeye salmon harvest is harvested in consecutive fishery openings after 7 August.

## Chinook Salmon Research

A recent downturn in Chinook salmon productivity and abundance statewide has created social and economic hardships for many communities in Alaska (ADF\&G Chinook Salmon Research Team 2013). Fishery management has been responsive to lower run abundances in an attempt to achieve escapement goals. This downturn has also heightened concerns about stock-specific harvest of Chinook salmon. In July 2012, the ADF\&G initiated a comprehensive Chinook Salmon Research Initiative (CSRI) to increase stock assessment capabilities, address knowledge gaps, and elucidate causal mechanisms behind the observed trend in Chinook salmon productivity and abundance. This research plan included Kenai River Chinook salmon as 1 of 12 statewide indicator stocks and represented an effort to address critical knowledge gaps that limit management capabilities, particularly during times of low abundance. The ESSN Chinook salmon sampling project was funded by CSRI during 2013-2016 in an effort to better assess Kenai River Chinook salmon adult abundance and gain a better understanding of stock-specific harvests of Chinook salmon harvested in the ESSN fishery. This project in 2017 is funded by the Pacific States Marine Fisheries Commission (PSMFC) and continues the same level of research that has been conducted since 2013.

## Baseline and Reporting Groups

Estimation of adult abundance requires stock-specific information on the escapement and inriver run as well as marine and freshwater harvests. For mixed-stock harvests from marine and freshwater fisheries, stock-specific harvest can be estimated by using genetic information in a mixed-stock analysis (MSA). This analysis requires a comprehensive genetic baseline that includes genetic data from fish representing all potential populations that may contribute to the harvest. In addition, for available genetic markers, there must be sufficient genetic variation
among baseline populations to accurately estimate the contribution of population groups (stocks) in an MSA. These groups of populations are referred to as reporting groups. Stock compositions and stock-specific harvest estimates refer to reporting group compositions and harvest by reporting group.
In 2012, a UCI Chinook salmon genetic baseline was first developed, which included 30 populations and 38 genetically variant single nucleotide polymorphism (SNP) loci (Barclay et al. 2012). Since then, the baseline has been augmented with additional collections and previously unrepresented populations and it is now quite comprehensive with 55 populations and 39 variant SNPs (Barclay and Habicht 2015). To minimize misallocation between MSA reporting groups, the Slikok Creek population from the Kenai River drainage was removed from the baseline because it represents a very small number of fish and is genetically similar to the Crooked Creek population from the Kasilof River drainage (Barclay et al. 2012). Therefore, the baseline (Table 2 and Figure 3) only includes 54 of the 55 populations reported in Barclay and Habicht (2015).
Reporting groups chosen to apportion the harvest were selected based on 1 or more of the following criteria: 1) genetic similarity among populations, 2) the expectation that proportional harvest would be greater than $5 \%$, or 3 ) ability to answer fishery management questions. The 4 reporting groups chosen to apportion the ESSN Chinook salmon harvest were as follows: Kenai River mainstem (Kenai River mainstem populations and Juneau Creek), Kenai River tributaries (Kenai River tributary populations excluding Juneau Creek), Kasilof River mainstem (the Kasilof River mainstem population), and Cook Inlet other (all remaining UCI baseline populations).

Juneau Creek, a Kenai River tributary, was included in the Kenai River mainstem reporting group due to its genetic similarity with Kenai River mainstem populations (Barclay et al. 2012). The results of baseline evaluation tests (proof tests) for the 4 reporting groups are reported in Eskelin et al. (2013). Since that report, 12 additional northern Cook Inlet populations have been added to the baseline. Because northern Cook Inlet populations are included in the Cook Inlet other reporting group, which represents a very small component of the ESSN Chinook salmon harvest, the previous proof test results are still a good indicator of the performance of the updated baseline for ESSN Chinook salmon reporting groups.

## Tissue and Age, Sex, and Length Sampling and Analyses

Age, sex, and length (ASL) samples have been collected from Chinook salmon harvested in the ESSN fishery since 1983 (Tobias and Willette 2002). Tissue samples for MSA were added to the collection effort beginning in 2010. Stock compositions and stock-specific harvest estimates were produced for 2010-2016 except for 2012 due to low sample size. During 2013-2016, funding provided by CSRI increased sampling effort which provided for better coverage of the fishery and allowed stock compositions and stock-specific harvest estimates to be stratified by time and area. Results from these studies have been published in Eskelin et al. (2013) and Eskelin and Barclay $(2014,2016,2017)$.

Table 2.-Populations of Chinook salmon in the Upper Cook Inlet genetic baseline, including the sampling location, collection years, the number of individuals sampled from each population ( $n$ ), and the reporting groups used for mixed stock analysis of Chinook salmon harvest in the Eastside set gillnet fishery, Upper Cook Inlet, Alaska.

| $\begin{gathered} \text { Map } \\ \text { no. }{ }^{2} \\ \hline \end{gathered}$ | Reporting group | Location | Collection year(s) | $n$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Cook Inlet other | Straight Creek | 2010 | 95 |
| 2 |  | Chuitna River | 2008, 2009 | 134 |
| 3 |  | Coal Creek | 2009, 2010, 2011 | 118 |
| 4 |  | Theodore River | 2010, 2011, 2012 | 190 |
| 5 |  | Lewis River | 2011, 2012 | 87 |
| 6 |  | Red Creek | 2012, 2013 | 111 |
| 7 |  | Hayes River | 2012, 2013 | 50 |
| 8 |  | Canyon Creek | 2012, 2013 | 91 |
| 9 |  | Talachulitna River | 1995, 2008, 2010 | 178 |
| 10 |  | Sunflower Creek | 2009, 2011 | 123 |
| 11 |  | Peters Creek | 2009, 2010, 2011, 2012 | 107 |
| 12 |  | Portage Creek | 2009, 2010, 2011, 2013 | 162 |
| 13 |  | Indian River | 2013 | 79 |
| 14 |  | Middle Fork Chulitna River | 2009, 2010 | 169 |
| 15 |  | East Fork Chulitna River | 2009, 2010, 2011, 2013 | 77 |
| 16 |  | Byers Creek | 2013 | 55 |
| 17 |  | Spink Creek | 2013 | 56 |
| 18 |  | Troublesome Creek | 2013 | 71 |
| 19 |  | Bunco Creek | 2013 | 98 |
| 20 |  | Upper Talkeetna no name creek | 2013 | 69 |
| 21 |  | Prairie Creek | 1995, 2008 | 161 |
| 22 |  | East Fork Iron Creek | 2013 | 57 |
| 23 |  | Disappointment Creek | 2013 | 64 |
| 24 |  | Chunilna Creek | 2009, 2012 | 123 |
| 25 |  | Montana Creek | 2008, 2009, 2010 | 213 |
| 26 |  | Little Willow Creek | 2013 | 54 |
| 27 |  | Willow Creek | 2005, 2009 | 170 |
| 28 |  | Deshka River | 1995, 2005, 2012 | 303 |
| 29 |  | Sucker Creek | 2011, 2012 | 143 |
| 30 |  | Little Susitna River | 2009, 2010 | 228 |
| 31 |  | Moose Creek - Matanuska River | 1995, 2008, 2009, 2012 | 149 |
| 32 |  | Eagle River | 2009, 2011, 2012 | 77 |
| 33 |  | Ship Creek | 2009 | 261 |
| 34 |  | Campbell Creek | 2010 | 110 |

Table 2.-Page 2 of 2.

| Map <br> no. $^{a}$ | Reporting group | Location | Collection year(s) | $n$ |
| :---: | :--- | :--- | :--- | ---: |
| 35 |  | Carmen River | 2011,2012 | 50 |
| 36 |  | Resurrection Creek | $2010,2011,2012$ | 98 |
| 37 |  | Chickaloon River | $2008,2010,2011$ | 128 |
| 38 | Kenai R. tributaries | Grant Creek | 2011,2012 | 55 |
| 39 |  | Quartz Creek | $2006,2007,2008,2009,2010,2011$ | 131 |
| 40 |  | Crescent Creek | 2006 | 164 |
| 41 |  | Russian River | $2005,2006,2007,2008$ | 214 |
| 42 |  | Kenjamin Creek | 2005,2006 | 204 |
| 43 |  | Funny River | 2005,2006 | 255 |
| 44 |  | Juneau Creek | 2005,2006 | 219 |
| 45 | Kenai R. mainstem | $2005,2006,2007$ | 140 |  |
| 46 |  | Upper Kenai R. mainstem | 2009 | 191 |
| 47 |  | Middle Kenai R. mainstem | $2003,2004,2006$ | 299 |
| 48 |  | Lower Kenai R. mainstem | 2010,2011 | 118 |
| 49 | Kasilof R. mainstem | Kasilof River mainstem | 2005 | 321 |
| 50 | Cook Inlet other | Crooked Creek | 2005,2011 | 306 |
| 51 |  | Ninilchik River weir | 2006,2010 | 209 |
| 52 |  | Deep Creek | 2009,2010 | 196 |
| 53 |  | Stariski Creek | 2011,2012 | 104 |
| 54 |  | Anchor River weir | 2006,2010 | 249 |

a Map numbers correspond to sampling locations on Figure 3.


Figure 3.-Sampling locations and reporting groups for Chinook salmon populations included in the genetic baseline used for MSA of Chinook salmon harvested in the Eastside set gillnet fishery in Upper Cook Inlet.

Note: Numbers correspond to map numbers listed in Table 2.

## Stock Compositions and Stock-specific Harvest Estimates Stratified by Size

Management of Kenai River Chinook salmon has transitioned to assessment and management based on sonar estimates of Chinook salmon that are 75 cm from mid eye to tail fork (METF) and longer. This modification to the management plan was finalized at the 2017 UCI BOF meeting. There are many reasons for the transition, but the primary reason is that inriver estimates of Kenai River Chinook salmon 75 cm METF and longer (hereafter referred to "large fish") constitute the most reliable information available for inseason management and those large fish represent the majority of the stock's potential reproductive capacity (Fleischman and Reimer 2017). In contrast, accurate estimates of Chinook salmon less than 75 cm METF length (hereafter referred to "small fish") are indirect, imprecise, time consuming, and difficult to obtain for effective inseason management. See Fleischman and Reimer (2017) for more detail explaining the impetus to base inseason management of Kenai River Chinook salmon fisheries on direct sonar estimates of large Chinook salmon. To support the new management regime and to provide as much pertinent information as possible, we have developed methods to estimate stock compositions and stock-specific harvest of ESSN Chinook salmon stratified by size (i.e., large and small fish as defined above).

## 2017 Sampling

This project in 2017 will be essentially the same as studies conducted during 2013-2016 that included a more comprehensive and thorough sampling effort of the Chinook salmon harvest to collect genetic tissue and ASL samples. A total of 3 technicians will sample the ESSN fishery during every regular period opening and most fishing periods opened by EO.

## OBJECTIVES

## Primary Objectives

1) Estimate the proportion of Chinook salmon harvested in the ESSN fishery by reporting group ${ }^{1}$ and size $^{2}$ for each temporal and geographic stratum, and for the entire season, such that the estimated proportions are within 13 percentage points of the true values $90 \%$ of the time.
2) Estimate the harvest of Kenai River mainstem and Kasilof River mainstem Chinook salmon in the ESSN fishery by size for each temporal and geographic stratum, and for the entire season, such that the estimates are within $30 \%$ of the true value, $90 \%$ of the time ${ }^{3}$.
3) Estimate the age composition of Chinook salmon harvested by the ESSN fishery such that the estimates are within 10 percentage points of the true values $95 \%$ of the time ${ }^{4}$.
[^0]
## Secondary Objectives

1) Estimate the harvest of Chinook salmon by size for the reporting groups Kenai River tributaries and Cook Inlet Other in the ESSN fishery for each temporal and geographic stratum, and for the entire season ${ }^{5}$.
2) Sample $30 \%$ of the Chinook salmon harvested in the ESSN fishery for tissue, coded wire tags (CWTs), scales, sex, and METF length ${ }^{6}$.
3) Estimate the age composition of the Chinook salmon harvest for each temporal and geographic stratum.
4) Estimate the sex and length compositions of Chinook salmon harvested in the ESSN fishery for each temporal and geographic stratum, and for the entire season.
5) Determine the sex of sampled fish that are shorter than 75 cm METF length by internal examination.

## METHODS

## Study Design

## Reported Chinook Salmon Harvest

By regulation, all salmon harvested in the ESSN fishery must be recorded on fish tickets, including those not sold but kept for personal use (Alaska Administrative Code 5 AAC 21.355 Reporting requirements). Along with the number of fish harvested, the ticket includes information on the date and location of the harvest. Fish ticket information will be entered into the ADF\&G fish ticket database by ADF\&G commercial fisheries staff and reported to the project biologist the day after each fishery opening. Final harvest information from the ESSN fishery will be retrieved from this database and used for subsequent analyses postseason.

## Sampling Fishery Openings

The first scheduled regular period in the Kasilof Section (statistical areas 244-21, 244-22, and 244-31) for the 2017 season is Monday, June 26; but may be opened earlier (as early as June 20) depending on sockeye salmon passage at the Kasilof River sockeye salmon sonar site. The first Kasilof Section regular period or EO opening and all subsequent openings prior to the first opening of the Kenai and East Foreland sections for the season will be sampled. The first scheduled regular period in the Kenai and East Foreland sections (statistical areas 244-32, 24441, and 244-42) for the 2017 season is Monday, July 10.
All regular fishing periods and most fishing periods opened by EO per week will be sampled. The particular EOs chosen for sampling will be depend on recent harvests, collections to date for each proposed stratum, and insight from commercial fishery managers of likely upcoming fishery openings. All area-restricted openings in relation to the mean high tide line (i.e., within 600 ft , or one-half mile) will be sampled. The fishery is scheduled to end August 15, with only

[^1]regular fishing periods allowed after August 10. The regular period sampling schedule is detailed in Appendix A1 but the sampling schedule will be modified inseason.

## Sampling Strategy

During and after fishery openings, 3 ADF\&G personnel will travel to the receiving sites for fish processing plants after each tide and sample harvested Chinook salmon for genetic tissue, scales, sex, length, and for CWT recovery. All Chinook salmon at each receiving site will be sampled if possible. If the technician is not able to sample all Chinook salmon at a receiving site due to time constraints, Chinook salmon will be sampled for tissue and ASL composition with regard to size such that they sample representatively from the Chinook salmon that are available. Generally, as many Chinook salmon as possible will be sampled, but some areas will be sampled more vigorously than other areas. Based on past experience, it has been more difficult to collect sufficient tissue samples from the Ninilchik Beach and South K-Beach statistical areas to meet sample size requirements for MSA when stratified by time and beach, so more time may be spent sampling in those areas. North K-Beach may also be sampled more rigorously in an effort to collect enough samples to stratify the MSA by time period in July for that area. Salamatof Beach will be sampled less vigorously than other statistical areas due to MSA results consistently showing that nearly all ( $>95 \%$ ) of the harvest has been composed of Kenai River mainstem fish and sample size goals from that area have been easily attained in previous years.
Each technician will be assigned a specific area to sample; however, there will be overlap in sampling areas among technicians and modifications to assigned areas may occur during the season. Inseason analyses of the number of samples collected and the sampling rate by statistical area will be conducted and modifications will be made to the sampling strategy as necessary to meet sample size requirements for each proposed stratum.
Technicians will begin sampling on the southern end of their sampling area after the first round of deliveries to each buying station. Sampling at the southern end first and moving northward follows the fish deliveries as they occur and will maximize the number of samples collected. This sampling strategy should not introduce bias. If technicians started at the northern end and moved southerly, they could miss samples and may have a lower sampling rate due to the generally later timing of northern deliveries. Technicians will sample during each opening at the receiving sites until the fish are transported to processing plants. The day following each fishing period, additional Chinook salmon samples may be collected at the fish processing plants, if necessary.
There will probably be 20 or more receiving sites in total, spread throughout each statistical area, where Chinook salmon are delivered. The number and location of receiving sites can change from year to year so prior to the 2017 field season, the project biologist will develop a list with processor contact information and a map showing possible locations to sample, which will be distributed to each technician. There will be no set schedule for times to sample at each location. Sampling times will depend on tides and the times of fishing periods. Technicians will gauge when and where they need to be to maximize sample collections, yet still attempting to sample representatively.

## Tissue Sampling for MSA

A $11 / 3 \mathrm{~cm}$ (half-inch) piece of the axillary process will be removed from each fish and placed on a Whatman ${ }^{7}$ paper card in its own grid space and then stapled in place. Whatman cards with tissue samples will be placed in an airtight case with desiccant beads to preserve the tissue for DNA extraction. Tissue sampling instructions are detailed in Appendix B1.

## Scale, Sex, and Length Sampling

Three scales will be removed from the preferred area of each fish and placed on an adhesivecoated card (Clutter and Whitesel 1956; Welander 1940). Acetate impressions will be made of the scales on the card using a 25,000 PSI press, and the scale growth patterns will be viewed with a $40 \times$ microfiche reader to determine freshwater and marine residence times. Sex will generally be identified from external morphometric characteristics (i.e., protruding ovipositor on females or a developing kype on males). METF length will be measured to the nearest half-centimeter. Fish less than 75 cm METF will be examined internally to positively confirm sex by cutting a small slit in the anal opening using a plastic gut hook, if permission is granted by the processor or receiving site.

## Coded Wire Tag Recovery

All sampled Chinook salmon will be examined for an adipose fin clip. Technicians will remove the head of all adipose finclipped Chinook salmon encountered. A cinch strap will be attached to the head, which will be returned to the office for storage in a freezer.

## Sample Selection for Analyses

Subsampling of collections is required postseason to ensure analyses accurately represent the harvest by time, area, size, sex, and age. In 2016, technicians collected 1,863 tissue samples from the total harvest of 6,759 Chinook salmon, which equated to a $28 \%$ sampling rate overall (Eskelin and Barclay 2017). After subsampling representatively, 909 samples ( $13 \%$ of the harvest) were used in MSA. The goal for 2017 will be to sample at least $30 \%$ of the harvest and to select samples from $10 \%$ of the total harvest for MSA. However, sampling goals will not drive the study design because the number of samples collected and the sampling rate is largely dependent on harvest. Strata to be used in the MSA will depend on the number of representative samples collected within each potential stratum.
Once the number of samples required from a particular day and statistical area is determined, samples will be selected randomly from all available tissues sampled on that date and statistical area. When insufficient samples are collected to select samples in proportion to harvest for a given day, excess samples from the next closest day will be used to represent the harvest, provided that samples were collected within 3 days of each other. Length will be incorporated into the sample selection such that the length distribution of fish selected for MSA will be approximately equivalent to the length distribution of all sampled fish within each stratum. Sampled fish within each stratum will be divided into length categories and the proportion required for each length category will be determined based on lengths of collected samples. Random MSA samples will then be proportionally selected from each length category to

[^2]compose a total of 100 MSA samples for the stratum. For strata with less than or equal to 100 sampled fish, all tissue samples will be included in the MSA.

Proof tests conducted by the GCL have demonstrated that with a fishery mixture of 100 samples, we can estimate stock composition for the 4 reporting groups (Kenai river tributaries, Kenai River mainstem, Kasilof River mainstem, and Cook Inlet other) within 13 percentage points of the true values $90 \%$ of the time (Eskelin and Barclay. 2014). These tests followed the same protocol as reported in Eskelin et al. (2013) for baseline evaluation tests; however, instead of using test mixtures with $100 \%$ of 1 reporting group, test mixtures were created with proportions from each reporting group that represented a realistic scenario for what might be expected in these fisheries. Taking into account the reporting group proportions from the analyses of the 2010, 2011, and 2013 ESSN harvests (Eskelin et al. 2013), tests were conducted under a realistic scenario for reporting group proportions in ESSN fishery mixtures: 0.02 for Kenai tributary, 0.58 for Kenai Mainstem, 0.38 for Kasilof Mainstem, and 0.02 for Cook Inlet other. With this precision for stock composition estimates and an anticipated sample size of 100 fish, we will be able to estimate the harvest of Kenai River mainstem and Kasilof River mainstem Chinook salmon in the UCI ESSN commercial fishery in each stratum within $30 \%$ of the true values $90 \%$ of the time if harvest estimates for the stock account for at least $20 \%$ of the total harvest within that stratum. If the harvest estimates account for less than $20 \%$ of the total harvest within the stratum, it is unnecessary and unrealistic to meet this criterion.

## Stratification of Stock Compositions, Stock-specific Harvest Estimates and ASL Compositions

Judicious effort will be made to stratify the stock composition and stock-specific harvest estimates to maximize new information from this fishery, yet provide comparative estimates for similar strata from previous years and remain within budgetary constraints.

## Geographic and Temporal Stratification

Harvest samples will be stratified both temporally and spatially to form mixtures for MSA. The level of stratification will be dependent on several factors: how the ESSN fishery is prosecuted in 2017; the number of representative tissue samples of the harvest that are collected by date, area, time period and size; the ability to provide new information; and the ability to provide comparative information from past studies.
In 2016, MSA was performed for 9 mixtures stratified by beach and time period. This was the first MSA to include mixtures by beach, the Kasilof Section periods in June, and the Kasilof Section periods in July prior to the Kenai and East Foreland sections opening, which produced useful results. If possible, we will stratify 2017 mixtures similar to those in 2016.

Mixtures will also be produced for Kasilof Section openings restricted to within one-half mile of the mean high tide line, Kasilof Section openings restricted to within 600 ft of the mean high tide line, and North K-Beach restricted to within 600 ft of the mean high tide line if those areas are fished and a sufficient number of samples are collected for each area. Table 3 details proposed mixtures for 2017 if the fishery is prosecuted similar to 2016 and sufficient samples are collected for each mixture.

Table 3.-Mixture number, time period, and geographic area for proposed temporal and geographic strata in the Eastside set gillnet fishery, Upper Cook Inlet, Alaska, 2017.

| Mixture no(s). | Time period | Geographic area |
| :---: | :--- | :--- |
| 1 | 26 June-9 July | Ninilchik Beach |
| 2 | 26 June-9 July | Cohoe Beach |
| 3 | 26 June-9 July | South K-Beach |
| 4 | 10 July-last period in July | Ninilchik Beach |
| 5 | 10 July-last period in July | Cohoe Beach |
| 6 | 10 July-last period in July | South K-Beach |
| 7 | 10 July-last period in July | North K-Beach |
| $8^{\text {a }}$ | 10 July-last period in July | Salamatof-East Foreland beaches |
| $9^{\text {b }}$ | 1 August-end of fishery | All areas |

${ }^{\text {a }}$ If East Foreland is opened separately from Salamatof Beach, we will produce a mixture for East Foreland beach if sample size allows.
b Samples collected in August will be geographically stratified if a sufficient number of samples are collected from each area. Most likely, the August samples would then be stratified by Kasilof and Kenai-East Foreland sections.

Since 2013, MSA estimates have been produced for 3 similar strata annually: 1) Kasilof Section "early" prior to the Kenai and East Foreland sections opening for the season, 2) Kasilof Section "late" in July after the Kenai and East Foreland sections open, and 3) Kenai and East Foreland sections "late" in July. In addition, MSA estimates have been produced for all areas in August, including 2015 when estimates were produced for the Kasilof Section and Kenai-East Foreland sections in August. If possible we will produce MSA estimates for Kasilof section "early," Kasilof Section "late," Kenai and East Foreland sections "late," Kasilof Section "August," and Kenai-East Foreland sections "August" in 2017. Table 4 shows the proposed stratification in 2017 for each of the major strata that have been conducted similarly since 2013, except for the August component.

Table 4.-Proposed temporal and geographic strata for ASL and MSA analyses to be conducted in 2017.

| Stratum no(s). | Time period | Geographic area |
| :---: | :--- | :--- |
| 1 | 26 June-9 July | Kasilof Section |
| 2 | 10 July-last period in July | Kasilof Section |
| 3 | 10 July-last period in July | Kenai and East Foreland sections |
| 4 | 1 August-end of fishery | Kasilof Section |
| 5 | 1 August-end of fishery | Kenai and East Foreland sections |

Note: Stratification in August will depend on the number of samples collected by geographic area. It is likely that all samples collected in August will be included in 1 stratum from all areas combined.

## Size Stratification

All MSA results will be stratified by size in order to provide stock composition and stockspecific harvest estimates of large Kenai River Chinook salmon. This information will provide pertinent information germane to management of Kenai River Chinook salmon stocks.

## Age, Sex, and Length Compositions

Only samples that are used in the MSA will be analyzed for ASL composition and reported by the same strata chosen for MSA and for the entire season. The objective criterion $( \pm 0.10$ with $95 \%$ confidence level) for estimating the age composition of Chinook salmon harvested in the ESSN fishery should be achieved with approximately 170 scale samples. To arrive at this sample
size, we assumed a worst-case scenario of $25 \%$ scale regeneration rate with multinomial proportions of equality among ages (Thompson 1987). We plan to collect and analyze substantially more samples in 2017 so we are likely to achieve much higher precision for the age composition estimates than the objective states.
Technicians will also verify sex of fish less than 75 cm METF by internal examination, if permission is given from the processor. This is similar to how sex determination of small fish was done in 2016.

## Data Collection

## Tissue Collection

Each Whatman card will have a unique barcode and a numbered grid. Card barcodes (5-digit) and grid position numbers (1-10) will be recorded on data sheets for each sample (Appendix C1) and will also be entered into field computers. All Whatman cards will be stored at the Soldotna office until the end of the season then sent to the GCL for analysis and archiving.

## Scale, Sex, and Length Collection

All scales, sex, and length information will be recorded on data sheets and handheld computers, including positive sex identification of small fish (Appendix C1).

## CWT Collections

Adipose finclipped Chinook salmon that had their head removed for CWT recovery will be recorded on a tag recovery form (Appendix C2). The cinch strap number will also be recorded along with scale, sex, and length data (Appendix C1) to enable cross-referencing between datasets. Collected data will be returned to the Project Leader (Anthony Eskelin). CWT forms and heads of all adipose finclipped fish will be shipped at the end of the season to the ADF\&G Mark, Tag, and Age Laboratory for CWT recovery, determination of stock of origin, and for archiving data.

## Laboratory Analysis

## Assaying Genotypes

We will extract genomic DNA from tissue samples using a NucleoSpin 96 Tissue Kit by Macherey-Nagel (Düren, Germany). DNA will be screened for 39 SNP markers. To ensure that DNA concentrations are high enough with the dry sampling method used to preserve samples, preamplification will be conducted before screening the DNA.

The concentration of template DNA from samples will be increased using a multiplexed preamplification PCR of 42 screened SNP markers. Reactions will be conducted in $10 \mu \mathrm{~L}$ volumes consisting of $4 \mu \mathrm{~L}$ of genomic DNA, $5 \mu \mathrm{~L}$ of 2 X Multiplex PCR Master Mix (QIAGEN) and $1 \mu \mathrm{~L}$ each ( $2 \mu \mathrm{M}$ SNP unlabeled forward and reverse primers). Thermal cycling will be performed on a Dual 384-Well GeneAmp PCR system 9700 (Applied Biosystems) at a $95{ }^{\circ} \mathrm{C}$ hold for 15 min followed by 20 cycles of $95^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 4 min , and a final extension hold at $4{ }^{\circ} \mathrm{C}$.

We will screen the preamplified DNA for the 39 SNP markers using Fluidigm 192.24 Dynamic Array Integrated Fluidic Circuits (IFCs), which systematically combine up to 24 assays and 192 samples into 4,608 parallel reactions. The components are pressurized into the IFC using the IFC

Controller RX (Fluidigm). Each reaction will be conducted in a 9 nL volume chamber consisting of a mixture of 20X Fast GT Sample Loading Reagent (Fluidigm), 2X TaqMan GTXpress Master Mix (Applied Biosystems), Custom TaqMan SNP Genotyping Assay (Applied Biosystems), 2X Assay Loading Reagent (Fluidigm), 50X ROX Reference Dye (Invitrogen), and $60-400 \mathrm{ng} / \mu \mathrm{L}$ DA. Thermal cycling will be performed on a Fluidigm FC1 Cycler using a Fast PCR protocol as follows: an initial "Hot-Start" denaturation of $95^{\circ} \mathrm{C}$ for 2 min followed by 40 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 2 s and annealing at $60^{\circ} \mathrm{C}$ for 20 sec , with a final "CoolDown" at $25^{\circ} \mathrm{C}$ for 10 sec . The Dynamic Array IFCs will be read on a Biomark or EP1 System (Fluidigm) after amplification and genotyped using Fluidigm SNP Genotyping Analysis software.

Genotypes will be imported and archived in the Gene Conservation Laboratory's Oracle database, LOKI.

## Laboratory Failure Rates and Quality Control

The overall failure rate will be calculated by dividing the number of failed single-locus genotypes by the number of assayed single-locus genotypes. An individual genotype will be considered a failure when a locus for a fish cannot be satisfactorily scored.

Quality control (QC) measures will be instituted to identify laboratory errors and to determine the reproducibility of genotypes. In this process, 8 of every 96 fish ( 1 row per 96 -well plate) are reanalyzed for all markers by staff not involved with the original analysis. Laboratory errors found during the QC process will be corrected, and genotypes will be corrected in the database. Inconsistencies not attributable to laboratory error will be recorded, but original genotype scores will be retained in the database.

Assuming that the inconsistencies among analyses (original vs. QC genotyping) are due equally to errors in original genotyping and errors during the QC genotyping, and that the analyses are unbiased, error rates in the original genotyping will be estimated as one-half the rate of inconsistencies.

## Data Reduction

Technicians will return their genetic cards, scale cards, field data sheets, and field computers to the Soldotna office daily and will be responsible for ensuring the recorded data are legible and accurate. The project biologist will ensure all data are returned, legible, and entered correctly and will also download files from the field computer to the office computer. Age data will be entered upon scale reading. CWT forms will be edited to ensure accuracy and mailed to Juneau ADF\&G for data entry. A final edited copy of all data files along with a data map will be sent to the Alaska Department of Fish and Game Research and Technical Services (RTS) for archiving.

## Data Analysis

## Mixed Stock Analysis and Stock Compositions

The stock compositions of the ESSN mixtures will be estimated in R using the Pella and Masuda (2001) model. The Pella-Masuda model employs a Gibbs sampling algorithm to estimate the most probable contribution of the baseline populations to explain the combination of genotypes in the mixture sample. Within each iterate of the algorithm, each individual is stochastically assigned a hypothetical stock-of-origin based on the statistical likelihood of its genotype in each population. After all assignments are made, they are summarized for deriving the stock
composition for that iterate. The process of assigning individuals and deriving stock compositions is repeated many times. Output files will be written for composition estimates by reporting group for each iteration (RGN output) and reporting group assignments for each fish at each iteration (CLS output). We will run 8 Markov Chain Monte Carlo chains (MCMC) with 25,000 iterations for each mixture.

The prior distribution used for this analysis will be based upon the stock composition estimates of similar strata from the analyses of ESSN Chinook salmon samples from previous years. If no estimates are available from a similar stratum analyzed in a previous year, the prior parameters for each reporting group will be defined to be equal (i.e., a flat prior). Prior parameters will be set equal to 1 , thus minimizing the overall influence of the prior distribution. Chains will be run until among-chain convergence is reached (shrink factor less than 1.2; Pella and Masuda 2001). The first 12,500 iterations from each MCMC chain will be discarded to reduce the influence of the starting values and the remaining iterations from each chain will be combined to form the posterior distribution ( 100,000 iterations). Stock composition estimates and $90 \%$ credibility intervals (CIs) for each stratum will be calculated by taking the mean and $5 \%$ and $95 \%$ quantiles of the posterior distribution from the RGN output (Gelman et al. 2004).

To estimate the stock composition by size for each reporting group for the 2017 ESSN mixtures, we will use the posterior distribution for the RGN output as well as the posterior distribution CLS output. Within each iterate, we will summarize the number of fish that are assigned to reporting group $i\left(n_{i}\right)$, along with how many of those are large $\left(b_{i}\right)$. For that iterate, the proportion of this stock that is large fish $\left(\beta_{i}\right)$, will be derived as a draw from a beta distribution with parameters $b_{i}+1 / 2$ and $n_{i}-b_{i}+1 / 2$, before it is multiplied by the reporting group's composition $\left(p_{i}\right)$ in the same iterate. This produces the desired parameter $\left(s_{i}=p_{i} \beta_{i}\right)$. These proportions will be summarized across iterates to provide their estimates $\left(\hat{s}_{i}\right)$ for both large and small fish for each reporting group.

## Stock-specific Harvest Estimates

Stock-specific harvest estimates and $90 \%$ CIs for each stratum will be calculated by multiplying the reported harvest from that stratum by its unrounded estimates of reporting group proportions (obtained from MSA) and the upper and lower $90 \%$ bounds of that estimate. Results will be rounded to the nearest fish.

The number of Chinook salmon from reporting group $g\left(\hat{H}^{g}\right)$ harvested in the commercial ESSN fishery between the first opening as early as late June and the last opening on or before August 15 will be estimated as follows:

$$
\begin{equation*}
\hat{H}^{g}=\sum_{i=1}^{T} \sum_{j=1}^{S} H_{i, j} \hat{p}_{i, j}^{g}, \tag{1}
\end{equation*}
$$

where
$\hat{p}_{i, j}^{g}=\begin{aligned} & \text { estimated proportion of ESSN harvest in time stratum } i \text { and geographic stratum } j \\ & \text { comprising Chinook salmon from reporting group } g \text { (Kenai River mainstem, Kasilof }\end{aligned}$ River mainstem, Kenai River tributaries, or Cook Inlet other) and obtained based on

Bayesian MSA as described in the previous section,
$H_{i, j}=$ ESSN Chinook salmon harvest in time stratum $i$ and area stratum $j$ obtained from fish ticket data,
$T \quad=$ number of time strata (prior to 10 July, 10 July-last period in July, and August),
$S \quad=$ number of geographic strata (e.g., if Kenai-East Foreland and Kasilof sections, $S=2$ )
The variance, $\operatorname{var}\left(\hat{H}^{g}\right)$, will be estimated as follows:

$$
\begin{equation*}
\operatorname{var}\left(\hat{H}^{g}\right)=\sum_{i} \sum_{j}\left(H_{i, j}\right)^{2} \operatorname{var}\left(\hat{p}_{i, j}^{g}\right) \tag{2}
\end{equation*}
$$

where $\operatorname{var}\left(\hat{p}_{i, j}^{g}\right)$ will be available from the Bayesian mixed stock analysis (Pella and Masuda 2001).

The stratified estimates will be calculated with the following equation:

$$
\begin{equation*}
\hat{p}_{g}=\frac{\sum_{i=1}^{S} H_{i} \hat{p}_{g, i}}{\sum_{i=1}^{S} H_{i}} \tag{3}
\end{equation*}
$$

where $H_{i}$ is the overall harvest in stratum $i, \hat{p}_{g, i}$ is the proportion of reporting group $g$ fish in stratum $i$, and $\hat{p}_{g}$ is the overall proportion of reporting group $g$ fish within $S$ strata. Symbol " $\wedge$ " denotes an estimated value in Equation 1 and all following equations.
To calculate confidence intervals for $H_{g}$ (the overall harvest of reporting group $g$ ), its distribution will be estimated via MCMC by resampling 100,000 draws of the posterior output from each of the constituent strata and applying the harvest to the draws according to this slight modification of Equation 1:

$$
\begin{equation*}
\hat{H}_{g}=\sum_{i=1}^{S} H_{i} \hat{p}_{g, i} . \tag{4}
\end{equation*}
$$

This method will probably yield the same point estimate for number of harvested fish within the fishery as would be obtained by simply summing the point estimates from each constituent stratum, but it will produce a more appropriate credibility interval than simply summing the lower and upper bounds of the credibility intervals together (cf. Piston 2008). This method also accommodates nonsymmetrical CIs.

## Age Composition

The age proportions of Chinook salmon harvested in the commercial ESSN fishery by stratum will be estimated as follows:

$$
\begin{equation*}
\hat{p}_{i}^{(z)}=\frac{n_{i}^{(z)}}{n_{i}} \tag{5}
\end{equation*}
$$

where $\hat{p}_{i}^{(z)}$ is the estimated proportion of salmon of age category $z$ from sampling stratum $i, n_{i}^{(z)}$ equals the number of fish sampled from sampling stratum $i$ that were classified as age category $z$, and $n_{i}$ equals the number of Chinook salmon age determinations from stratum $i$.
The variance of $\hat{p}_{i}^{(z)}$ will be calculated as follows:

$$
\begin{equation*}
\operatorname{var}\left[\hat{p}_{i}^{(z)}\right]=\left(1-\frac{n_{i}}{H_{i}}\right) \frac{\hat{p}_{i}^{(z)}\left(1-\hat{p}_{i}^{(z)}\right)}{n_{i}-1}, \tag{6}
\end{equation*}
$$

where $H_{i}$ is the reported number of Chinook salmon harvested in stratum $i$.
The estimates of harvest by age category in each stratum will be calculated as follows:

$$
\begin{equation*}
\hat{H}_{i}^{(z)}=H_{i} \hat{p}_{i}^{(z)} \tag{7}
\end{equation*}
$$

with variance

$$
\begin{equation*}
\operatorname{var}\left[\hat{H}_{i}^{(z)}\right]=H_{i}^{2} \operatorname{var}\left[\hat{p}_{i}^{(z)}\right] . \tag{8}
\end{equation*}
$$

The total Chinook salmon harvest by age category and its variance will be estimated by the following summations:

$$
\begin{equation*}
\hat{H}^{(z)}=\sum_{i=1}^{S} \hat{H}_{i}^{(z)} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{var}\left[\hat{H}^{(z)}\right]=\sum_{i=1}^{S} \operatorname{var}\left[\hat{H}_{i}^{(z)}\right] \tag{10}
\end{equation*}
$$

where $S$ equals the number of sampling strata.
Finally, the total proportion of the ESSN Chinook salmon harvest by age category and its variance will be estimated by the following:

$$
\begin{equation*}
\hat{p}^{(z)}=\frac{\hat{H}^{(z)}}{H} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{var}\left[\hat{p}^{(z)}\right]=\frac{\operatorname{var}\left[\hat{H}^{(z)}\right]}{H^{2}}, \tag{12}
\end{equation*}
$$

where $H$ is the total reported Chinook salmon harvest for 2017.

## Sex Composition

Sex composition will be estimated using the same Equations 5-12 used to estimate age composition.

## Length Composition

Mean length $\bar{I}_{z}$ of Chinook salmon in age class $z$ will be estimated as follows:

$$
\begin{equation*}
\bar{l}_{z}=\frac{1}{n_{z}} \sum_{i=1}^{n_{z}} l_{i}, \tag{13}
\end{equation*}
$$

where $l_{i}$ is the length of fish $i$ in sample $n_{z}$, and $n_{z}$ is the number of Chinook salmon of age class $z$.

The variance $\operatorname{var}\left(\bar{l}_{z}\right)$ of the mean length-at-age class $z$ will be estimated as follows:

$$
\begin{equation*}
\operatorname{var}\left(\bar{l}_{z}\right)=\frac{1}{n_{z}} \frac{\sum_{i=1}^{n_{z}}\left(l_{i}-\bar{l}_{z}\right)^{2}}{n_{z}-1} . \tag{14}
\end{equation*}
$$

## CWT Recoveries

Low numbers of CWT recoveries are expected, so no direct estimates of CWT recoveries by stock will be made, but the data will be archived with Mark, Tag, and Age Laboratory in Juneau.

## SCHEDULE AND DELIVERABLES

| Dates ${ }^{\text {a }}$ | Activity |
| :---: | :---: |
| Mid-late June 2017 | Hiring and preseason training (Eskelin). |
| Late June-mid-August 2017 | ESSN Chinook salmon harvest sampling, collection of ASL data and genetic tissue ( 3 FWT II). |
| September 2017 | Data edited, tissue collection transferred to GCL (Eskelin). |
| November 2017 | Final harvest estimates by data and statistical area (CF management staff). |
|  | Tissue, age, sex, and length subsamples selected for composition analysis (Eskelin and Huang). |
| December 2017 | Scales aged (Eskelin) |
|  | Draft ASL composition estimates completed (Eskelin and Huang) |
| January-March 2018 | Extract DNA and analyze tissues (GCL and Barclay) |
| March 2018 | Draft MSA and harvest estimates complete by temporal and geographic stratum and overall by reporting group (Barclay, Eskelin, Huang) |
| July 2018 | FDS draft report summarizing draft results disseminated to regional staff and out for review (Eskelin and Barclay). |
| October 2018 | Publication of final FDS report (Eskelin and Barclay) |

[^3]
## RESPONSIBILITIES

## Principal investigator: Tony Eskelin, Project Leader, Fishery Biologist II

Duties: As project leader, responsible for writing the operational plan. Serves as the project biologist, who is responsible hiring and training personnel, supervising data collection, collating data, and transferring tissue samples and associated data to Anchorage for MSA, and any CWT heads and data forms to the Mark, Tag and Age lab in Juneau. Responsible for all scale aging, ensuring all data is in proper format, and archiving data with RTS at the completion of the field season. Serves as the primary author on any reporting.

## Coprinciple investigator: Andy Barclay, Fishery Biologist III

Duties: Represents the Gene Conservation Laboratory and is responsible for the analysis of tissue samples for MSA and providing estimates to the project biologist and biometrician. Serves as coauthor on FDS reports and memos.

## Consulting Biometrician: Jiaqi Huang, Biometrician III

Duties: Provides guidance on sampling design and data analysis, selects samples for analysis, prepares estimates of harvest of Chinook salmon by reporting group and assisting with preparation and editing of the operational plan and any reports.

## Sampling Crew:

Madeline Fox, Fish and Wildlife Technicial II, 20 June-16 August, 2017
Vacant, Fish and Wildlife Technician II, 20 June-16 August, 2017
Vacant, Fish and Wildlife Technician II, 20 June-16 August, 2017
Duties: Operates State of Alaska vehicles, adhers to sampling schedule, samples harvested Chinook salmon for ASL and tissue, records data accurately, enters data into a computerized database in a timely manner, and completes miscellaneous duties as assigned.

## BUDGET SUMMARY

The following budget summary is the budget that was approved for the Pacific State Marine Fisheries Commission (PSMFC), Grant No. 16-101G. This is the total budget for the 2017 sampling project and all associated analyses and reporting duties.

## Total Budget

| Line item | Category | Budget (\$K) |
| ---: | ---: | ---: |
| 100 | Personal Services | 60.136 |
| 200 | Travel | - |
| 300 | Contractual | 5.654 |
| 400 | Commodities | 10.463 |
| 500 | Equipment | - |
|  | Indirect | 12.629 |
| Total |  | 88.882 |

## Division of Sport Fish

| Category | Description | Cost |
| :---: | :---: | :---: |
| Personnel | Matt Sutherland: Fish and Wildlife Technician II | \$12,340 |
|  | Johnna Elkins: Fish and Wildlife Technician II | \$12,340 |
|  | Madeline Fox: Fish and Wildlife Technician II <br> Costs for each technician include 1.7 months base salary, benefits/retirement, 30 hours OT, swing/grave differential | \$12,340 |
|  | Jiaqi Huang: Biometrician III | \$11,307 |
|  | Costs includes 1.0 months base salary, benefits and retirement. |  |
|  | Personnel Total | \$48,327 |
| Travel | No travel funding requested | - |
| Contractual | First Aid \& CPR training (mandatory for ADF\&G employees) | \$300 |
|  | Vehicle Fuel (fuel to conduct sampling) | \$1,500 |
|  | State of Alaska vehicle contractual costs (DOT rental fee) | \$1,920 |
|  | Vehicle maintenance (oil changes, inspection, etc.) | \$1,000 |
|  | Vehicles are necessary for personnel to conduct this project to get to and moving between sampling sites. |  |
|  | Contractual total | \$4,720 |
| Supplies | Sampling gear (raingear, gloves, boots) | \$1,614 |
|  | Sampling Equipment (genetic and scale cards, clipboards, pens, etc.) | \$300 |
|  | Sampling gear and equipment are necessary for data collection. |  |
|  | Supplies Total | \$1,914 |
| Equipment | No equipment funding requested | - |
| Indirect | Indirect costs (21\% of personnel costs) | \$10,149 |
| Total |  | \$65,110 |

## Division of Commercial Fisheries, GCL Budget

| Category | Description | Cost |
| :--- | :--- | ---: |
| Personnel | Christina Elmaleh: Fish and Wildlife Technician IV | $\$ 6,420$ |
|  | $\quad$ Costs include 1 month base salary, benefits and retirement |  |
|  | Andrew Barclay: Fishery Biologist III |  |
|  | $\quad$ Costs include 0.5 months base salary, benefits and retirement | $\$ 5,389$ |
|  | Personnel total | $\$ 11,809$ |
| Travel | No travel funding requested | - |
| Contractual | Lab equipment maintenance cost | $\$ 934$ |
|  | $\quad$ Costs are required to maintain existing lab equipment |  |
|  | Contractual total | $\$ 934$ |
| Supplies | Lab consumables | $\$ 2,500$ |
|  | Field sampling supplies | $\$ 539$ |
|  | Fludigm 192.24 chips | $\$ 3,750$ |
|  | DNA extraction kits | $\$ 1,760$ |
|  | $\quad$ Costs are required to conduct genetic analysis | $\$ 8,549$ |
| Equipment | No equipment funding requested | - |
| Indirect | Indirect costs $(21 \%$ of personnel costs) | $\$ 2,480$ |
| Total |  | $\$ 23,772$ |

## REFERENCES CITED

ADF\&G Chinook Salmon Research Team. 2013. Chinook salmon stock assessment and research plan, 2013. Alaska Department of Fish and Game, Special Publication No. 13-01, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/SP13-01.pdf
Barclay, A. W., and C. Habicht. 2015. Genetic baseline for Upper Cook Inlet Chinook salmon: 42 SNPs and 7,917 fish. Alaska Department of Fish and Game, Fishery Manuscript Series No. 15-01, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/FMS15-01.pdf
Barclay, A. W., C. Habicht, R. A. Merizon, and R. J. Yanusz. 2012. Genetic baseline for Upper Cook Inlet Chinook salmon: 46 SNPs and 5,279 fish. Alaska Department of Fish and Game, Fishery Manuscript Series No. 12-02, Anchorage. http://www.adfg.alaska.gov/FedAidpdfs/FMS12-02
Clutter, R., and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. International Pacific Salmon Commission, Bulletin 9. Westminster, British Columbia, Canada.
Eskelin, A., and A. W. Barclay. 2016. Mixed stock analysis and age, sex, and length composition of Chinook salmon in Upper Cook Inlet, Alaska, 2015. Alaska Department of Fish and Game, Fishery Data Series No. 1616, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/FDS16-16.pdf
Eskelin, A., and A. W. Barclay. 2017. Mixed stock analysis and age, sex, and length composition of Chinook salmon in the Eastside Set Gillnet Fishery in Upper Cook Inlet, Alaska, 2016, including an examination of large fish harvest for 2015 and 2016. Alaska Department of Fish and Game, Regional Information Report 2A17-03, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/RIR.2A.2017.03.pdf
Eskelin, T., A. W. Barclay, and A. Antonovich. 2013. Mixed stock analysis and age, sex, and length composition of Chinook salmon in Upper Cook Inlet, Alaska, 2010-2013. Alaska Department of Fish and Game, Fishery Data Series No. 13-63, Anchorage. http://www.adfg.alaska.gov/FedAidpdfs/FDS13-63
Eskelin, T., and A. W. Barclay. 2014. Upper Cook Inlet commercial eastside set gillnet Chinook salmon harvest composition study. Alaska Department of Fish and Game, Regional Operational Plan ROP.SF.2A.2014.20, Soldotna. http://www.adfg.alaska.gov/FedAidPDFs/ROP.SF.2A.2014.20.pdf
Fleischman, S. J., and A. M. Reimer. 2017. Spawner-recruit analyses and escapement goal recommendations for Kenai River Chinook salmon. Alaska Department of Fish and Game, Fishery Manuscript Series No. 17-02, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/FMS17-02.pdf
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian data analysis. 3rd edition. Chapman and Hall, Boca Raton, Florida.
Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99:151-167.
Piston, A. W. 2008. Hugh Smith Lake sockeye salmon adult and juvenile studies, 2007. Alaska Department of Fish and Game, Fishery Data Series No. 08-43, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/fds0843.pdf

Shields, P., and A. Dupuis. 2017. Upper Cook Inlet commercial fisheries annual management report, 2016. Alaska Department of Fish and Game, Fishery Management Report No. 17-05, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/FMR17-05.pdf
Thompson, S. K. 1987. Sample size for estimating multinomial proportions. The American Statistician 41(1):4246.

Tobias, T. M., and M. Willette. 2002. Age and length composition of sockeye, Chinook, coho, and chum salmon from 1979-2001 and sockeye salmon female contribution from 1987-2001 in selected commercial fisheries and river escapements, upper Cook Inlet, Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A02-11, Anchorage. http://www.adfg.alaska.gov/FedAidPDFs/RIR.2A.2002.11.pdf
Welander, A. D. 1940. A study of the development of the scale of Chinook salmon Oncorhynchus tshawytscha. Master's thesis. University of Washington, Seattle.

## APPENDIX A: SAMPLING SCHEDULE

Appendix A1.-Preliminary 2017 ESSN Chinook salmon sampling schedule.

| Sunday | Monday |  | Tuesday |  | Wednesday |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note: Schedule will change during the season as fishery openings occur.

## APPENDIX B: INSTRUCTIONS FOR TISSUE SAMPLING

# Adult Finfish Tissue Sampling for DNA Analysis ADF\&G Gene Conservation Lab, Anchorage 

## I. General Information

We use fin tissues as a source of DNA to genotype fish. Genotyped fish are used to determine the genetic characteristics of fish stocks or to determine stock compositions of fishery mixtures. The most important thing to remember in collecting samples is that only quality tissue samples give quality results. If sampling from carcasses: tissues need to be as "fresh" and as cold as possible.

Preservative used: Silica desiccant bead packet and salt dries and preserves tissues for later DNA extraction. Quality DNA preservation requires Fast drying (under 5 hours at $65^{\circ} \mathrm{F}$ ); Dry storage (with 2 desiccant packs) in weathertight file box.
II. Sampling Method

IV. Supplies included in sampling kit:

Clippers - for cutting a portion of selected fin.
Whatman genetics card - holds 10 fish/card.
Pelican case - $1^{\text {st }}$ stage of drying and holding card samples.
Non-iodized salt - distribute 1 tsp. non-iodized salt over each card.
Silica packs - desiccant removes moisture from samples.
Blotter paper - covers full sample card for drying; multiple use. Watertight file box - dry storage prior to return shipment. Plastic photo page - 10 cards per page for return shipment. Manila envelope - pack dried cards in manila envelope. Shipp ing box - put sealed manila env elope inside box Stapler - extra protection, secure sample to numbered grid. Staples - only use staples provided, specific for stapler. Dehydrator - oven-dry desiccant packs overnight (share w/CF). Laminated "return address" labels.
Sampling instructions.
16. Pencil

## III. Sampling Instructions

- Every morning: before sampling, rotate 3 desiccant packs (2Pelican micro, 1 -file box) into dehydrator @ $160^{\circ} \mathrm{F}$ for 12 hrs. (NOT SAMPLES)!
- Prior to sampling: Set up work space, fill out required collection information (upper left hand corner only) and place Whatman genetics card ( 10 WGC ) flat for easy access; ready to sample.
- Sampling:
- Wipe fin prior to sampling.
- Briefly wipe or rinse clippers with water between samples to reduce cross contaminating.
- Using clippers, cut one axillary fin per fish.
- Place one clipped fin tissue onto appropriate grid space. Follow sampling order printed on card - do not deviate. If large tissue sample, center tissue diagonally on grid space.
- Only one fin clip per fish into each numbered grid space.
- Staple each sample to 10 WGC (see photo).
- Sampling complete, dust tissues with $\mathbf{1}$ tsp. non-iodized salt to promote the preservation process.
- Staple landscape cloth "rain fly" to paper edge (2 staples max).
- Loading Pelican Case
- $1^{\text {st }}$ card: Remove blotter papers and desiccant packs from Pelican case. Place first card in Pelican case with tissues facing up. Next, place blotter paper directly over card and place one desiccant pack on top. Close and secure lid so drying begins.
- Up to 4 cards can be added per case. Add them so tissue samples always face the desiccant pack through blotter paper: $2^{\text {nd }}$ card facing down between desiccant packs; $3^{\text {rd }}$ card facing up between desiccant packs; and $4^{\text {th }}$ card facing down on top of second desiccant pack. Close and secure Pelican case after inserting each card.
- All Whatman cards remain in Pelican overnight to dry flat.
- Post-sampling storage: Every morning, store dried tissue cards in weathertight file box at room temperature. Two desiccant packs are allocated for file box: every morning rotate 3 desiccant packs (2-Pelican, 1file box) into dehydrator @ $160^{\circ} \mathbf{F}$ for 12 hours. (NOT SAMPLES):
- Shipping at end of the season: Pack 10 dried cards per plastic photo page, slide in manila envelope; pack inside priority mailing box. Tape box shut and tape return address on box.
V. Shipping: Address the sealed mailer box for return shipment to ADF\&G Genetics lab.

| Return to ADF\&G Anchorage lab: | ADF\&G-Genetics | Lab staff: 907-267-2247 |
| :--- | :--- | :--- |
|  | 333 Raspberry Road | Judy Berger: 907-267-2175 |
|  | Anchorage, Alaska 99518 | Freight code: |



## APPENDIX C: SAMPLING FORMS

Appendix C1.-Chinook salmon ESSN harvest sampling form for 2017.

## 2017 ESSN Chinook salmon sampling form

| Date: $\qquad$ <br> Start Time: |  | METF <br> Length | Sex | Sex <br> Verify? | Sampler(s): <br> End Time: $\qquad$ |  |  | Stat <br> Area | $\begin{gathered} \text { CWT } \\ \# \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scale |  |  |  |  | Genetics |  | Sample <br> Location |  |  |
| Card\# | Scale\# |  |  |  | Card\# | Box\# |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |
|  | 8 |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |
|  | 10 |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |
|  | 8 |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |
|  | 10 |  |  |  |  |  |  |  |  |
|  | 1 |  |  |  |  |  |  |  |  |
|  | 2 |  |  |  |  |  |  |  |  |
|  | 3 |  |  |  |  |  |  |  |  |
|  | 4 |  |  |  |  |  |  |  |  |
|  | 5 |  |  |  |  |  |  |  |  |
|  | 6 |  |  |  |  |  |  |  |  |
|  | 7 |  |  |  |  |  |  |  |  |
|  | 8 |  |  |  |  |  |  |  |  |
|  | 9 |  |  |  |  |  |  |  |  |
|  | 10 |  |  |  |  |  |  |  |  |

Sex: 1-male 2-female, verify sex for fish less than 750 cm METF (if granted permission).
Length: mid eye to fork-of-tail to nearest cm .

Appendix C2.-Coded wire tag sampling form.



[^0]:    ${ }^{1}$ Reporting groups to apportion the harvest will be Kenai River mainstem, Kasilof River mainstem, Kenai River tributaries, and Cook Inlet other.
    ${ }^{2}$ Size will be stratified by small fish (shorter than 75 cm METF) and large fish ( 75 cm METF and longer).
    ${ }^{3}$ This criterion is for harvest estimates of stocks that account for at least $20 \%$ of the total harvest within a stratum. It is not necessary nor realistic for harvest estimates that account for less than $20 \%$ to meet this criterion.
    ${ }^{4}$ The sample size goal for collection of age (scale) samples will be driven by Objectives 1 and 2 .

[^1]:    ${ }^{5}$ Based on previous MSA results, it is anticipated that Chinook salmon harvest of reporting groups Kenai River tributaries and Cook Inlet Other will be low ( $<150$ fish) so no precision criteria are set for estimation of these reporting groups. Sample size is driven by Objectives 1 and 2.
    ${ }^{6}$ The goal to collect biological samples from $30 \%$ of the harvest is a rough guideline based on the sampling rate from previous years, whereas the actual goal is to collect as many representative samples distributed evenly between statistical areas during each sampling day. Depending on harvest in 2017, it is very possible to meet precision criteria in Objectives 1 and 2, yet not sample $30 \%$ of the Chinook salmon harvest during this project.

[^2]:    7 Product names used in this publication are included for completeness but do not constitute product endorsement.

[^3]:    ${ }^{\text {a }}$ Dates are given to satisfy the Pacific State Marine Fisheries Commission (PSMFC), Grant no. 16-101G. It is possible that the dates of extracting DNA, analyzing tissues, completing draft MSA and harvest estimates, drafting FDS report, and publication of final FDS report will be earlier than outlined in this schedule of deliverables.

