UPPER COOK INLET COMMERCIAL FISHERIES ANNUAL MANAGEMENT REPORT, 2004

by
Pat Shields
and
Jeff Fox

REGIONAL INFORMATION REPORT¹ NO. 2A05-01

UPPER COOK INLET STAFF

Area Management Biologist	Jeff Fox
Asst. Area Management Biologist	Pat Shields
Research Project Leader	Mark Willette
Research Biologist	Bob DeCino
Research Biologist	Dave Westerman
Research Technician	Terri Tobias
Field Office Assistant	. Sandi Seagren

Alaska Department of Fish and Game
Division of Commercial Fisheries
Central Region
333 Raspberry Road
Anchorage, Alaska 99518-1599

September 2005

.

¹ Contribution 05-01 is from the Soldotna area office. The Regional Information Report Series was established in 1987 to provide an information access system for all unpublished divisional reports. These reports frequently serve diverse ad hoc informational purposes or archive basic uninterpreted data. To accommodate timely reporting of recently collected information, reports in this series undergo only limited internal review and may contain preliminary data; this information may be subsequently finalized and published in the formal literature. Consequently, these reports should not be cited without prior approval of the author or the Commercial Fisheries Division.

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Measures (fisheries)	
centimeter	cm	Alaska Administrative		fork length	FL
deciliter	dL	Code	AAC	mideye-to-fork	MEF
gram	g	all commonly accepted		mideye-to-tail-fork	METF
hectare	ha	abbreviations	e.g., Mr., Mrs.,	standard length	SL
kilogram	kg		AM, PM, etc.	total length	TL
kilometer	km	all commonly accepted			
liter	L	professional titles	e.g., Dr., Ph.D.,	Mathematics, statistics	
meter	m		R.N., etc.	all standard mathematical	
milliliter	mL	at	@	signs, symbols and	
millimeter	mm	compass directions:		abbreviations	
		east	E	alternate hypothesis	H_A
Weights and measures (English)		north	N	base of natural logarithm	e
cubic feet per second	ft ³ /s	south	S	catch per unit effort	CPUE
foot	ft	west	W	coefficient of variation	CV
gallon	gal	copyright	©	common test statistics	$(F, t, \chi^2, etc.)$
inch	in	corporate suffixes:		confidence interval	CI
mile	mi	Company	Co.	correlation coefficient	
nautical mile	nmi	Corporation	Corp.	(multiple)	R
ounce	oz	Incorporated	Inc.	correlation coefficient	
pound	lb	Limited	Ltd.	(simple)	r
quart	qt	District of Columbia	D.C.	covariance	cov
yard	yd	et alii (and others)	et al.	degree (angular)	0
yard yd		et cetera (and so forth)	etc.	degrees of freedom	df
Time and temperature		exempli gratia		expected value	E
day	d	(for example)	e.g.	greater than	>
degrees Celsius	°C	Federal Information		greater than or equal to	≥
degrees Fahrenheit	°F	Code	FIC	harvest per unit effort	HPUE
degrees kelvin	K	id est (that is)	i.e.	less than	<
hour	h	latitude or longitude	lat. or long.	less than or equal to	≤
minute	min	monetary symbols		logarithm (natural)	ln
second	S	(U.S.)	\$, ¢	logarithm (base 10)	log
		months (tables and		logarithm (specify base)	log _{2,} etc.
Physics and chemistry		figures): first three		minute (angular)	'
all atomic symbols		letters	Jan,,Dec	not significant	NS
alternating current	AC	registered trademark	®	null hypothesis	H_{O}
ampere	A	trademark	TM	percent	%
calorie	cal	United States		probability	P
direct current	DC	(adjective)	U.S.	probability of a type I error	
hertz	Hz	United States of		(rejection of the null	
horsepower	hp	America (noun)	USA	hypothesis when true)	α
hydrogen ion activity (negative log of)	pН	U.S.C.	United States Code	probability of a type II error (acceptance of the null	
parts per million	ppm	U.S. state	use two-letter	hypothesis when false)	β
parts per thousand	ppt,		abbreviations	second (angular)	"
1	%o		(e.g., AK, WA)	standard deviation	SD
volts	V			standard deviation	SE
watts	W			variance	
-				population	Var
				sample	var
				P	

UPPER COOK INLET COMMERCIAL FISHERIES

ANNUAL MANAGEMENT REPORT, 2004

by
Pat Shields,
Division of Commercial Fisheries, Soldotna
and
Jeff Fox,
Division of Commercial Fisheries, Soldotna

September 2005

Alaska Department of Fish and Game Division of Commercial Fisheries 333 Raspberry Road, Anchorage, Alaska, 99518-1599

Pat Shields.,

Alaska Department of Fish and Game, Division of Commercial Fisheries, 43961 Kalifornsky Beach Rd., Suite B, Soldotna, AK 99669 USA

Jeff Fox,

Alaska Department of Fish and Game, Division of Commercial Fisheries, 43961 Kalifornsky Beach Rd., Suite B, Soldotna, AK 99669 USA

This document should be cited as:

Shields, P. and J. Fox. 2005. Upper Cook Inlet commercial fisheries annual management report, 2004. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 2a05-01, Anchorage.

The Alaska Department of Fish and Game administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information please write to ADF&G, P.O. Box 25526, Juneau, AK 99802-5526; U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington, VA 22203 or O.E.O., U.S. Department of the Interior, Washington DC 20240.

For information on alternative formats for this and other department publications, please contact the department ADA Coordinator at (voice) 907-465-4120, (TDD) 907-465-3646, or (FAX) 907-465-2440.

TABLE OF CONTENTS

	Page
LIST OF TABLES	ii
LIST OF FIGURES	ii
LIST OF APPENDICES	ii
INTRODUCTION	1
SalmonHerring	1
Razor Clams	
2004 COMMERCIAL SALMON FISHERY	2
Chinook SalmonSockeye Salmon	
Coho Salmon	
Pink SalmonChum Salmon	
Price, Average Weight and Participation	
Salmon Enhancement	16
Stock Status and Outlook	17
COMMERCIAL HERRING FISHERY	22
COMMERCIAL RAZOR CLAM FISHERY	22
SUBSISTENCE	23
Tyonek Subsistence Salmon Fishery	23
Upper Yentna River Subsistence Salmon Fishery	24
Kenaitze Tribal Educational Fishery	
Ninilchik Traditional Council/Native Descendents Educational Fishery	
PERSONAL USE SALMON FISHERY	
2004 Personal Use Fishery	25
REFERENCES CITED	27
FIGURES AND TABLES	29
APPENDIX A	77

LIST OF TABLES

Table	Page
1.– Offshore test fish sockeye salmon catch results, F/V Corrina Kay, 2004	33
2Upper Cook Inlet sockeye salmon enumeration by river and date, 2004.	
3Commercial Chinook salmon catch by area and date, Upper Cook Inlet 2004.	
4.—Commercial sockeye salmon catch by area and date, Upper Cook Inlet, 2004.	
5Commercial coho salmon catch by area and date, Upper Cook Inlet, 2004.	41
6Commercial pink salmon catch by area and date, Upper Cook Inlet, 2004	43
7Commercial chum salmon catch by area and date, Upper Cook Inlet, 2004.	
8Commercial salmon catch by gear, statistical area and species, Upper Cook Inlet, 2004	47
9.—Commercial salmon catch per permit by statistical area, Upper Cook Inlet, 2004.	48
10Commercial fishery emergency orders issued during the 2004 Upper Cook Inlet fishing season	49
11Commercial salmon fishing periods, Upper Cook Inlet, 2004	
12Age composition (in percent) of sockeye salmon escapements, Upper Cook Inlet, 2004	
13Upper Cook Inlet salmon average weights (in pounds) by area, 2004 ^a .	
14.—Buyers and processors of Upper Cook Inlet fishery products, 2004	
15Reported personal use harvest by gear, area and species, Upper Cook Inlet, 2003.	
16Age, weight, sex, and size distribution of Pacific herring sampled by gillnet in Upper Cook Inlet, 2004 ^a .	
17.–Seldovia District tide tables, April-September, 2004.	74
LIST OF FIGURES Figure	Page
1.—Major tributaries of the Cook Inlet Basin.	30
2Upper Cook Inlet commercial fisheries subdistrict fishing boundaries.	31
2.–Upper Cook Inlet commercial fisheries subdistrict fishing boundaries.3.–Upper Cook Inlet commercial fisheries statistical areas.	31
2.—Upper Cook Inlet commercial fisheries subdistrict fishing boundaries. 3.—Upper Cook Inlet commercial fisheries statistical areas.	31
2Upper Cook Inlet commercial fisheries subdistrict fishing boundaries. 3Upper Cook Inlet commercial fisheries statistical areas. LIST OF APPENDICES	31
3Upper Cook Inlet commercial fisheries statistical areas.	31
3Upper Cook Inlet commercial fisheries statistical areas. LIST OF APPENDICES	31 32 Page
3Upper Cook Inlet commercial fisheries statistical areas. LIST OF APPENDICES Appendix	31 32 Page 78
3.–Upper Cook Inlet commercial fisheries statistical areas. LIST OF APPENDICES Appendix A1.–Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	3132 Page7880
3.–Upper Cook Inlet commercial fisheries statistical areas. LIST OF APPENDICES Appendix A1.–Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004. A2.–Upper Cook Inlet commercial sockeye salmon harvest by gear type and area, 1966-2004.	3132 Page788082
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page80828486
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004. A2.—Upper Cook Inlet commercial sockeye salmon harvest by gear type and area, 1966-2004. A3.—Upper Cook Inlet commercial coho salmon harvest by gear type and area, 1966-2004. A4.—Upper Cook Inlet commercial pink salmon harvest by gear type and area, 1966-2004. A5.—Upper Cook Inlet commercial pink salmon harvest by gear type and area, 1966-2004. A6.—Upper Cook Inlet commercial salmon harvest by species, 1956-2004.	Page8082848688
LIST OF APPENDICES Appendix A1Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page8082848688
LIST OF APPENDICES Appendix A1.–Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page32 Page8082868889
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004. A2.—Upper Cook Inlet commercial sockeye salmon harvest by gear type and area, 1966-2004. A3.—Upper Cook Inlet commercial coho salmon harvest by gear type and area, 1966-2004. A4.—Upper Cook Inlet commercial pink salmon harvest by gear type and area, 1966-2004. A5.—Upper Cook Inlet commercial pink salmon harvest by gear type and area, 1966-2004. A5.—Upper Cook Inlet commercial chum salmon harvest by gear type and area, 1966-2004. A6.—Upper Cook Inlet commercial salmon harvest by species, 1956-2004. A7.—Approximate exvessel value of Upper Cook Inlet commercial salmon harvest by species, 1960-2004. A8.—Commercial herring harvest by fishery, Upper Cook Inlet, 1973-2004. A9Commercial harvest of razor clams in Cook Inlet, 1919-2004.	Page32 Page808284868991
LIST OF APPENDICES Appendix A1Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page32 Page808486899192
LIST OF APPENDICES Appendix A1Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page32 Page8084868991929394
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page32 Page808486899192939495
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page32 Page808486899192939495
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page3132 Page80848689919293949597
LIST OF APPENDICES Appendix A1.—Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004	Page3132 Page8084868991929394959798

INTRODUCTION

The Upper Cook Inlet (UCI) management area consists of that portion of Cook Inlet north of the latitude of Anchor Point and is divided into the Central and Northern Districts (Figures 1 and 2). The Central District is approximately 75 miles long, averages 32 miles in width, and is further subdivided into six subdistricts. The Northern District is 50 miles long, averages 20 miles in width and is divided into two subdistricts. At present, all five species of Pacific salmon (*Oncorhynchus*), razor clams (*Siliqua patula*), and Pacific herring (*Clupea harengus pallasi*) are subject to commercial harvest in Upper Cook Inlet. Harvest statistics are gathered and reported by five-digit statistical areas and sub-areas (Figure 3).

SALMON

Since the inception of a commercial fishery in 1882, many gear types, including fish traps, gillnets, and seines have been employed with varying degrees of success to harvest salmon in UCI. Currently, set (fixed) gillnets are the only gear permitted in the Northern District, while both set and drift gillnets are used in the Central District. The use of seine gear is restricted to the Chinitna Bay Subdistrict where they are employed sporadically. Drift gillnets have accounted for approximately 50% of the average annual salmon harvest since 1966 with set gillnets harvesting virtually all of the remainder (Appendix A1-5).

Commercial salmon harvest statistics for UCI specific to gear type and area are available only back to 1956 (Appendix A6). Run-timing and migration routes utilized by all species overlap to such a degree that the commercial fishery is largely mixed-stock and mixed-species in nature. Typically, the UCI harvest represents approximately 5% of the statewide catch. Nearly 10% of all salmon permits issued statewide are for the Cook Inlet area.

In terms of their economic value, sockeye salmon (*O. nerka*) are by far the most important component of the catch followed by coho (*O. kisutch*), chum (*O. keta*), pink (*O. gorbuscha*) and Chinook salmon (*O. tshawytscha*) (Appendix A7).

HERRING

Commercial herring fishing began in UCI in 1973 with a modest harvest of bait-quality fish along the east side of the Central District and expanded in the late 1970's to include small-scale sac roe fisheries in Chinitna and Tuxedni Bays (Appendix A8). The total herring harvest has averaged well under 400 tons, having an exvessel value below \$200,000, making it one of the smallest herring fisheries in the state. Since 1998, the exvessel value of this fishery has been far less than in prior years, with an exvessel value of less than \$20,000 in each of the last seven years.

Because the glacial waters of UCI preclude the use of aerial surveys to estimate biomass of herring stocks, the management approach utilized has departed from the standard techniques employed in the more traditional herring fisheries. Gillnets are the only legal gear for herring in Upper Cook Inlet, with set gillnets being used almost exclusively. Harvests are generally concentrated in the Clam Gulch area (bait herring) and in the Snug Harbor and Magnetic Island areas of Tuxedni Bay, and near Clam Cove and Camp Point in Chinitna Bay (roe herring).

Beginning in 1988 in Tuxedni Bay, significant decreases in herring abundance and a shift towards older age class herring were observed, resulting in the closure of Tuxedni Bay to commercial herring fishing by emergency order prior to the 1992 season. In Chinitna Bay and

along the eastside beaches similar declines began to materialize after the 1990 season. As a result of these declines, an Alaska Department of Fish and Game (ADF&G) proposal to the Alaska Board of Fisheries (BOF) to open the UCI herring fishery, by emergency order only, was submitted. This proposal passed and became regulation for the 1993 season, ending a long period with fixed opening dates of April 15 on the east side and April 22 on the west side of Cook Inlet. This action effectively closed these fisheries to provide time for herring stocks to recover. Beginning in 1998, the Upper Subdistrict was reopened for commercial herring fishing for two days per week, from April 15 to May 20, to assess the status of this population. The herring fisheries on the west side of Cook Inlet remained closed until the status of the east side stocks was determined. In addition, ADF&G submitted proposals to the BOF to restructure the herring fishery to two 30-hour periods per week, beginning on Mondays and Thursdays. These proposals included preseason registration requirements as well as stipulating that fishermen must report their harvest within 12 hours of the closure of a fishing period. The proposals were passed in the form of a management plan prior to the 1999 season. The management plan was amended by the BOF prior to the 2002 fishing season, extending the closing date for the fishery an additional 11 days to May 31. In 2002, both the Chinitna Bay and Western Subdistricts (Tuxedni Bay) were reopened to commercial herring fishing, following the same amended management plan.

RAZOR CLAMS

The commercial harvest of razor clams from UCI beaches dates back to 1919 (Appendix A9). Harvest levels have fluctuated from no fishery for as many as eight consecutive years to production in excess of half a million pounds (live weight) in 1922. The sporadic nature of the fishery has been more a function of limited market opportunities rather than limited availability of the resource. Razor clams are present in many areas of Cook Inlet, with particularly dense concentrations occurring near Polly Creek on the western shore and from Clam Gulch to Ninilchik on the eastern shore (Nickerson 1975). The eastern shoreline has been set aside for sport harvest exclusively since 1959 and all commercial harvests since that time have come from the west shore, principally from the Polly Creek and Crescent River sandbar areas. A large portion of the Polly Creek beach is approved for the harvest of clams for the human food market. Within this approved area, a limit of 10% shell breakage is allowed for sale as bait clams. No overall harvest limits are in place for any area in regulation; however, the department manages the commercial razor clam fishery to achieve a harvest of no more than 350,000 to 400,000 pounds annually. Virtually all of the commercial harvest has come by hand digging, although regulations prior to 1990 allowed the use of mechanical harvesters (dredges) south of Spring Point, or within a one-mile section of the Polly Creek beach. Numerous attempts to develop feasible dredging operations were largely unsuccessful due to excessive shell breakage or the limited availability of clams in the area open to this gear. Currently, the use of mechanical harvesters is not permitted in any area of Cook Inlet.

2004 COMMERCIAL SALMON FISHERY

The 2004 UCI commercial harvest of 5.7 million salmon (Table A6.) represents the highest harvest in UCI in the past 10 years and was also approximately 47% greater than the average annual harvest from 1956-2003 (1956 is when Cook Inlet was divided into Upper and Lower management areas). The 2004 exvessel value of \$20.7 million represents an improvement in the last five years, but is somewhat poor when viewed over the long term, with values more than 120 million dollars in 1988 (Table A7.). As is the case statewide, prices paid for all salmon, and

sockeye salmon in particular, remain depressed (Table A11.), which has had a significant effect on exvessel values, even for strong runs (Table A7.). Sockeye salmon escapement goals to all five monitored systems in UCI (Westerman & Willette 2004) were met or exceeded in 2004, other than the Yentna River (see table below and Table A10.).

UCI SOCKEYE SALMON ESCAPEMENT ^a					
	Upper				
System	Escapement	Goal	Goal		
Crescent River	103,201	25,000	50,000		
Fish Creek	22,157	20,000	70,000		
Kasilof River	577,581	150,000	300,000		
Kenai River	1,385,981	850,000	1,100,000		
Yentna River	71,281	90,000	160,000		

^a Escapement estimates do not include any harvest above weir or sonar sites.

CHINOOK SALMON

The 2004 harvest of 27,448 Chinook salmon (Table 3) was the highest catch since 1988 and was more than 12,000 fish greater than the 1966-2003 average annual harvest; it ranks as the 8th highest overall harvest since 1956 (Tables A1. and A6.). The two fisheries where Chinook salmon are harvested in appreciable numbers occur in set gillnet fisheries in the Northern District and in the Upper Subdistrict of the Central District.

Created by the BOF in 1986, and most recently modified in 2002 (Fox and Shields 2004), the Northern District King Salmon Management Plan (5AAC 21.366) provides direction to ADF&G regarding management of the Northern District of UCI for the commercial harvest of king (Chinook) salmon with set gillnets. The fishing season opens on the first Monday on or after May 25 and then again on the following two consecutive Monday's. Fishing periods are from 7:00 a.m. to 1:00 p.m. each Monday; however, each permit holder is allowed to fish only one 35fathom set gillnet with a minimum separation of 1,200 feet between nets, which is twice the normal separation between gear. The most productive waters for harvesting Chinook salmon occurs from one mile south of the Theodore River to the mouth of the Susitna River. This area is open to fishing for the second regular Monday period only. The commercial fishery is also limited by a harvest limit of 12,500 Chinook salmon. In 2004, approximately 1,819 Chinook salmon were harvested during this fishery (Table 3), while approximately 2,058 were caught during the entire season, a total slightly less than the previous 10 year average annual harvest (Table A1.). Chinook salmon escapement is enumerated at only one weir site, (the Deshka River weir) and the 2004 count of approximately 58,000 was the highest count since the project began in 1995, and was also more than double the average annual escapement during that time frame. Approximately 42 commercial permit holders participated in the Northern District Chinook salmon fishery in 2004, which is slightly more than the previous two years. The small harvest from this fishery, which doesn't seem to be strongly correlated to run strength, can partly be attributed to three factors: (1) poor runs during the mid-1990's; (2) registration requirements which prevent Central District fishermen from moving back and forth between the Northern District and Central District fisheries, and (3) allowing only one fishing period to occur in the most productive fishing waters for Chinook salmon in the Northern District.

In 2004, nearly 79% of UCI's Chinook salmon commercial harvest occurred in the Upper Subdistrict set gillnet fishery (Table A1.). The estimated harvest of 21,700 fish is the highest

harvest ever recorded in this area. The 2004 sonar estimate of late-run Chinook salmon passage of 52,375 into the Kenai River was the second highest escapement index since the initiation of the sonar program in 1987. When the inriver recreational harvest estimate above the sonar counter of 16,000 fish is removed from the sonar estimate, nearly 36,400 fish are believed to have escaped all fisheries. The Biological Escapement Goal (BEG) range for this system is 17,800 to 35,700 Chinook salmon. The 2004 estimated total inriver return of late-run Kenai River Chinook salmon of approximately 80,000 will likely rank as either the 1st or 2nd highest on record.

The 2004 exvessel value for Chinook salmon in UCI was estimated at \$675,000, approximately 3.3% of the total exvessel value (Table A7).

SOCKEYE SALMON

Management of the Upper Cook Inlet sockeye salmon fishery integrates information received from a variety of programs, which together provide an inseason model of the actual return. These programs include offshore test fishing (OTF), escapement enumeration by sonar and weir, comparative analysis of historic commercial harvest and effort levels, and age composition studies.

The OTF program employs a chartered gillnet vessel fishing six fixed stations along a transect crossing Cook Inlet from Anchor Point to the Red River delta (Shields and Willette 2004). The program provides an inseason estimation of sockeye salmon run-strength by determining the fish passage rate, which is an estimate of the number of sockeye salmon that enter the district per index point (catch per unit of effort or CPUE). The cumulative CPUE curve is then compared to historic run-timing profiles so that an estimate can be made of the final CPUE, which in turn provides for an inseason estimate of the total run to UCI. In 2004, the program was conducted aboard the F/V *Corrina Kay*, captained by Roy Self.

Hydroacoustic technology is used to quantify salmon escapement into glacial rivers and was first employed in UCI in the Kenai and Kasilof Rivers in 1968 and expanded to the Susitna River in 1978 and the Crescent River in 1979 (Westerman and Willette 2003). Operations followed standard procedures in all systems in 2004. An adult salmon weir was operated by ADF&G Sport Fish Division at Fish Creek (Knik Arm) and provided daily escapement counts for this system. The weir on Packers Creek has not been operational since 2000 and therefore no counts were available for this drainage. The 2004 sockeye salmon escapement estimates can be found in Table 2, while Table A10. provides historical escapement data.

UCI commercial catch statistics refined to gear type, area, and date are available back to 1966. Currently, all commercially harvested salmon, whether sold or kept for personal use, are recorded on fish tickets and entered into the statewide fish ticket database. The 2004 commercial catch by species, gear type, area, and date can be found in Tables 3 through 7. Total harvest by statistical area and average catch per permit are reported in Tables 8 and 9. A summary of emergency orders issued in 2004 can be found in Table 10 while a summary of fishing periods by gear type and area is summarized in Table 11.

Inseason analyses of the age composition of sockeye salmon escaping the principle watersheds of UCI provides helpful information in estimating the stock contributions in various fisheries. During the 2004 fishery, approximately 32,000 sockeye salmon were examined from catch and escapement samples (Terri Tobias, Personal Communication, ADF&G, October 27, 2004). The

age composition of adult sockeye salmon returning to monitored systems is provided in Table 12.

The preseason forecast for 2004 projected a run of 5.2 million sockeye salmon, with a harvest estimate (sport and commercial) of 3.7 million fish. The total run to the Kenai River was forecasted at 3.2 million sockeye salmon, which if realized, would have resulted in an escapement goal target of 750,000 to 950,000 fish past the sonar counter at river mile 19. The UCI actual harvest of 4.9 million sockeye salmon was 32% greater than the preseason forecast (Appendix A14) while the total run of sockeye salmon to UCI (Tobias and Willette 2004) was 54% above the preseason forecast (see table below). Returns to all systems in UCI, except the Susitna drainage, were stronger than expected in 2004, with the Kasilof River sockeye salmon run more than 130% over the preseason forecast. Conversely, the Susitna drainage return was approximately 40% weaker than expected.

2004 SOCKEYE SALMON FORECAST & RETURN					
System	Forecast	Actual	Difference		
Crescent River	136,000	170,072	+25%		
Fish Creek	33,000	41,440	+26%		
Kasilof River	727,000	1,673,757	+130%		
Kenai River	3,193,000	4,931,347	+54%		
Susitna River	464,000	278,662	-40%		
All Systems	5,236,000	7,875,803	+50%		

Sockeye salmon prices at the beginning of the season averaged \$0.60 to \$0.65 per pound. Typically this price is adjusted by the end of the season, but for the past few years prices have not changed dramatically from the beginning to the end of the season (Table A11.). The total exvessel value in UCI for sockeye salmon was \$20.7 million, which was 94% of the total UCI exvessel value for salmon (Table A7.).

The first commercial sockeye salmon fishery to open in UCI in 2004 was the Big River fishery. Operating under the Big River Sockeye Salmon Management Plan (5AAC 21.368), which was adopted in 1989, a small set gillnet fishery takes place in June in the northwest corner of the Central District. Between June 1 and June 24, fishing is allowed each Monday, Wednesday, and Friday from 7:00 a.m. to 7:00 p.m. Permit holders are limited to a single 35-fathom gillnet and the minimum distance between nets is 1,800 feet, which is three times the normal separation. Targeting an early run of sockeye salmon returning to Big River, this fishery also encounters Chinook salmon migrating through the area. The management plan for this fishery limits the harvest of Chinook salmon to no more than 1,000 fish; in recent years, however, harvests have been well below that level. The 2004 fishery began on June 2 and yielded a total catch of approximately 3,500 sockeye salmon and a Chinook salmon harvest of 429 (Tables 3 and 4). Effort was light, with six permit holders making a landing at the peak of the fishery, compared to past years where the effort level peaked at 33 permit holders.

The next significant fishery to open that harvests sockeye salmon is the set gillnet fishery in the Western Subdistrict of the Central District. Harvesting sockeye salmon bound primarily for the Crescent River, this fishery opens on the first Monday or Thursday, on or after June 16th. The regular schedule consists of two twelve-hour weekly fishing periods throughout the season, unless modified by emergency order. Following a period of record runs in the mid-1980's, the

Crescent River sockeye salmon run declined sharply, resulting in closure of the local set gillnet fishery and a closure of the southwest corner of the Central District to drift fishing. These restrictions were implemented in order to achieve established escapement goals. As a result of the poor runs to Crescent Lake, limnological investigations were initiated in an attempt to identify sources that were contributing to the decline in adult sockeye salmon production. The limnology studies compared previously collected data with an assessment of more recent information, including an evaluation of zooplankton abundance, light penetration, and adult sockeye salmon escapement levels. Unfortunately, these studies were terminated in 2001 due to lack of funding. However, within the limited scope of the investigation, a hypothesis was developed that identified one possible mechanism for the diminished runs as increased turbidity levels in Crescent Lake, which in turn caused a decline in primary and secondary productivity (Edmundson and Edmundson 2002). The exact cause for the shift in turbidity could not be isolated before the project was terminated, but the limited data did provide the grounds for a recommendation that the BEG for this system should be reduced, which it was beginning in 1999. By 2001, the depressed zooplankton populations had shown a slight improvement, but the short-term outlook for sockeye salmon production from this system remains uncertain. Commercial harvest data and escapement levels into Crescent River in 2004 indicated early in the season that the lower end of the escapement goal would be met and continuous fishing was allowed 24 hours per day in the set gillnet fishery in the Western Subdistrict south of Redoubt Point from June 26 until July 30 (Table 10). The harvest from the Western Subdistrict was approximately 68,000 sockeye salmon (Table 4). However, due in large part to declining runs and previous fishery closures, few permit holders participated, even though fishing time was extended from the end of June through nearly all of July, 24 hours per day, the upper end of the escapement goal was exceeded by more than 53,000 sockeye salmon. The final escapement into Crescent Lake was estimated to be 103,201 sockeye salmon (Table 2).

In February, 2002, the BOF made substantial changes to the management plans that govern the commercial salmon set gillnet fishery in the Upper Subdistrict of the Central District. The early part of the season is now managed under the Kasilof River Salmon Management Plan (5AAC 21.365). In the Kasilof Section, set gillnets may open by emergency order as soon as June 25. From June 25 through July 7 ADF&G is limited to no more than 48-hours of additional fishing time per week (Sunday through Saturday) through emergency order and also is required to close the fishery for 48 consecutive hours per week. Beginning July 8, the Kasilof Section is managed in combination with the Kenai and East Forelands Sections per the Kenai River Late-Run Sockeye Salmon Management Plan (5AAC 21.360). Until an assessment of the Kenai River sockeye salmon run strength has been made, which is traditionally around July 20, ADF&G is to manage the Upper Subdistrict set gillnet fishery based on the preseason forecast and inseason assessment of the Kenai River sockeye salmon total return. In essence, there are three basic options available for the management of the fishery. First, if the Kenai River sockeye salmon run is projected to be less than two million fish, there may be no more than 24-hours of additional fishing time per week in the Upper Subdistrict. If the Kenai and East Forelands Sections are not open during regular or additional openings, ADF&G may limit regular and additional periods in the Kasilof Section to an area within ½ mile of the shoreline. There are no mandatory window closures on Kenai River sockeye salmon runs of less than two million fish, but if ADF&G projects that the Kasilof River optimum escapement goal of 300,000 may be exceeded, an additional 24 hours of fishing time per week may be allowed within ½ mile of the shoreline in the Kasilof Section after July 15. The second management option is for Kenai River

runs of between two and four million sockeye salmon. In this scenario, ADF&G may allow up to 36-hours of additional fishing time per week and will close the Upper Subdistrict set gillnet fishery for 48 consecutive hours per week. If the Kenai and East Forelands Sections are not open, ADF&G may limit regular and extra periods in the Kasilof Section to within ½ mile of the shoreline. Finally, for Kenai River sockeye salmon runs exceeding four million fish, ADF&G may allow up to 60-hours of additional fishing time per week and will close the Upper Subdistrict set gillnet fishery for 36 consecutive hours per week. Again, if the Kenai and East Forelands Sections are not fished, ADF&G may limit regular and extra periods in the Kasilof Section to within ½ mile of the shoreline. Escapement goals also vary according to the size of the run; for runs less than two million the inriver goal is 600,000 to 850,000; at runs between two and four million, the goal is 750,000 to 950,000; and for Kenai River runs greater than four million, the inriver goal is 850,000 to 1.1 million sockeye salmon.

In 2004, the Kasilof Section opened to set and drift gillnet fishing by emergency order on Friday, June 25, in response to sockeye salmon escapement levels that had already exceeded 100,000 fish. The Kasilof River Management Plan allowed for the season to open as early as June 25 and because the fishery was closed from Sunday through Thursday that week, the weekly 48-hour mandatory closure had already been fulfilled. Emergency orders one and two were issued opening the set gillnet fishery in the Kasilof Section from 12:00 midnight on Friday, June 25, until midnight on Saturday, June 26, which used all 48-hours allowed in the management plan (Table 10). Extra fishing time outside of regular periods for drift gillnets can only be granted in the Kenai and Kasilof Section ("the corridor") and standard practice limits drift gillnets to daylight hours as darkness precludes enforcement of the offshore boundary. Drift gillnet fishing was thus opened in the Kasilof Section from 4:00 a.m. until 12:00 midnight on June 25 and 26. Emergency order number four opened set gillnet fishing in the same area from 7:00 a.m. on Sunday, June 27, until the start of the regular period on Monday, June 28, at 7:00 a.m. Drift gillnet fishing was opened in the Kasilof Section from 7:00 a.m. until midnight on Sunday, and then again from 4:00 a.m. until 7:00 a.m. on Monday. Both drift and set gillnets fished their regular 12-hour period on Monday, June 28. The sockeye salmon harvest during this period (June 25-28) was approximately 218,000 fish, with set gillnets taking 192,000 and the drift fleet harvesting 26,000. Sockeye salmon escapement estimates in the Kasilof River had now reached approximately 134,000 fish. Both harvest and escapement figures were the highest ever recorded by this date, with the total harvest of 218,000 sockeye salmon more than twice the highest catch recorded through June 28.

Emergency order number six opened set gillnet fishing in the Kasilof Section for 36 hours, from 7:00 p.m. on Tuesday, June 29, until the start of the regular period on Thursday, July 1, at 7:00 a.m. This order used all extra fishing time allowed in the management plan for this week. Drift gillnet fishing was opened in the Kasilof Section for five hours on June 29, then for 20 hours on June 30, and from 4:00 a.m. until 7:00 a.m. on July 1. Both gear types fished the regular 12-hour period on July 1. Emergency order number seven redescribed the Kasilof Section of the Upper Subdistrict to include those waters within six miles of the mean high tide mark. Drift gillnet fishing was opened in this area on Friday, July 2, from 9:00 a.m. until 12:00 midnight. This action was taken in an attempt to increase the exploitation rate on Kasilof River sockeye salmon. No set gillnet fishing took place from 7:00 p.m. on Thursday, July 1 until 5:30 a.m. on Sunday, July 4 (58.5 hours), in order to fulfill the 48-hour weekly closure mandated in the Kasilof River management plan. Both set and drift gear fished the Kasilof Section for 15-hours on Sunday, July 4. During this fishing period the Kasilof Section was again expanded for drift gillnets, with

the outer boundaries now defined by waypoints (Table 10). Through midnight on Sunday, July 4, sockeye salmon escapement into the Kasilof River reached 153,000 fish, meeting the lower end of the BEG. Total harvest reached 427,000 sockeye salmon, with set net harvest at 356,000 sockeye and drift gillnet harvest at 71,000 sockeye.

Because the Kasilof River sockeye salmon escapement had reached unprecedented levels through July 4, and the combined drift gillnet and Upper Subdistrict set gillnet harvests were the 2nd strongest on record, ADF&G petitioned the BOF to adopt an emergency regulation amending the Kasilof River Salmon Management plan. Specifically, ADF&G asked that until July 16 the Kasilof Section set gillnet fishery be allowed a maximum of 60 hours of additional fishing time per management week and the window closure period be reduced from a mandatory 48-hours to 24-hours. The petition was taken up on July 1, but the BOF tabled their decision until Monday, July 5 so that a few more days of catch and escapement data could be assessed. By July 5, both harvest and escapement had slowed down and the BOF rejected the request to modify the management plan. They did, however, direct ADF&G to resubmit a petition if it felt that the Kasilof run had changed course and was too strong to manage under the current plan restrictions.

Both gear types fished the regular period on Monday, July 5, and both were extended by emergency order from 7:00 p.m. until 10:00 p.m., with drift gillnets fishing in the expanded Kasilof Section. Set gillnets were then closed until Thursday, July 8, at 3:00 a.m. to fulfill the 48-closure per week as required in the management plan. On Wednesday, July 7, drift gillnet fishing was opened in the regular Kasilof Section for five hours, from 5:00 p.m. until 10:00 p.m. and again on Thursday morning, July 8, for three hours before to the regular period.

Per regulation, the Kenai and East Forelands Sections may not open to set gillnet fishing until July 8. Emergency order number 12 allowed set gillnet fishing in the Kenai, Kasilof, and East Forelands Sections for four hours before the start of the regular period on July 8. Drift gillnet fishing was also open for two hours prior to the start of the regular drift period. Set gillnets were extended from the end of the period until 12:00 midnight and drift fishing was extended in the Kenai and Kasilof Sections until 11:00 p.m. The drift gillnet harvest on July 8 was nearly 275,000 sockeye salmon, with 372 boats participating, for an average catch of 737 sockeye salmon per boat. This was the 2nd best catch per boat for the season. Sockeye salmon escapement levels in the Kasilof River were the highest ever recorded for this date, now at 173,000 through July 8. Because Kenai sockeye salmon escapement was just beginning, an emergency order was issued opening the Kasilof Section to set gillnet fishing from 9:00 p.m. on Friday, July 9, until 6:00 p.m. on Saturday, July 10. Drift gillnet fishing was opened in the regular Kasilof Section from 9:00 p.m. until 11:00 p.m. on July 9 and from 5:00 a.m. until 6:00 p.m. on July 10. The combined harvest from the two gear types during the additional fishing time was approximately 26,000 sockeye salmon.

The preseason forecast projected that 3.2 million sockeye salmon would return to the Kenai River in 2004. Based upon this forecast, management plans stated that the inriver escapement goal should be 750,000 to 950,000 fish and that no more than 36 hours of additional fishing time per week could be allowed in the Upper Subdistrict set gillnet fishery. Moreover, the plans also required at least 48 consecutive hours of closure per week to the set gillnet fishery. For the drift gillnet fishery, the Northern District Salmon Management Plan (5AAC 21.358) required ADF&G to restrict one regular period from July 9 to July 15 to the Kenai and Kasilof Sections of the Upper Subdistrict. In 2004, that meant either the July 12th or July 15th period would need to be restricted. This first drift gillnet restriction was implemented on Monday, July 12, limiting

drift gillnet fishing to the Kenai and Kasilof Sections. Again, because the Kasilof River sockeye salmon run was so strong, the Kasilof Section was expanded to include all waters south of the Kalgin Island buoy and westward to the boundaries of the Chinitna Bay and Western Subdistricts. The drift gillnet harvest from this period was very strong, with 325 boats delivering approximately 687 sockeye salmon per boat. Set gillnets fished their regular period in the Upper Subdistrict on Monday, July 12, but the harvest was somewhat modest with a total catch of 33,000.

In light of the fact that the July 12 set gillnet harvest was somewhat less than expected, with many fishermen reporting very little activity in the last half of the period, and escapement lagging during the latter half of the day, it was hypothesized that the best time to implement the 48-hour window closure period, as required by management plan, would be from 7:00 p.m. on July 12 until 7:00 p.m. on July 14. However, approximately 24 hours later, the Kasilof River sonar counter began to experience an increase in sockeye salmon passage rate, with the majority of the 36,000 fish that were estimated to have escaped that day doing so in a 4-hour period from 8:00 p.m. until 12:00 midnight. On Wednesday morning, July 14, an examination of the beaches around the mouth of the Kasilof River revealed a very significant body of fish. There were two options to consider. The first would be to come out of the 48-hour window period and start This option was not chosen because by this time fishing with set and drift gillnets. approximately 40 hours of the 48-hour window period had passed and if fishing was allowed the entire 48-hour window period would have to start over. The second option to consider was fishing the Kasilof River Special Harvest Area (KRSHA), as defined in the Kasilof River Salmon Management Plan. This area includes the waters approximately one mile south and one mile north of the terminus of the Kasilof River and extends seaward approximately one and onehalf miles. Because of the severity of the situation, this option was chosen and implemented, which was the first time it had ever been used. Emergency order number 16 opened the KRSHA to set and drift gillnet fishing from 3:00 p.m. until 6:00 p.m. on Wednesday, July 14. Because of the special circumstances needed to be able to fish this area, it did not violate the 48-hour window period that was being implemented in the Upper Subdistrict set gillnet fishing. By 7:00 p.m. on July 14, the 48-hour window closure period had been fulfilled and an emergency order was issued opening set and drift gillnet fishing in the Kenai, Kasilof, and East Forelands Sections. Set gillnets were allowed to fish from 7:00 p.m. on July 14 until 7:00 a.m. on Thursday, July 15. Drift gillnet fishing was opened from 7:00 to 11:00 p.m. on July 14 and from 5:00 a.m. until 7:00 a.m. on July 15. Unfortunately, the exact number of fish harvested during the KRSHA opening could not be determined because many fishermen did not deliver their catch during the one hour period between the KRSHA opening and the extra time allowed one hour after it closed. However, a conservative estimate of the number of sockeye salmon harvested during the three-hour opening was 30,000 to 50,000 fish. Even though the KRSHA catch for three hours was quite strong, the largest single day escapement in Kasilof River history had taken place. On July 14, almost 93,000 sockeye salmon were estimated to have escaped, for a total escapement through that date of more than 310,000, which meant the optimum escapement goal for this system had already been exceeded.

For the regular period on Thursday, July 15, drift gillnet fishing was restricted to south of the latitude of the north end of Kalgin Island in an attempt to reduce the exploitation rate on Susitna River sockeye salmon. Although it was early in the season, escapement counts at the Yentna River sonar site were less than 1,000 fish. Set gillnets fished their regular 12-hour period on July 15 in the Kenai, Kasilof and East Forelands Sections. The combined catch from these two gear

types was approximately 637,000 sockeye salmon, the largest daily combined catch for the year, with drifters taking 274,000 from 409 boats, for a boat average of 670. Set gillnets took 363,000 fish, which was nearly three times higher than any other single day catch for the year. The cumulative catch for the season from all areas was now estimated at two million. Both set and drift gillnet fishing was opened by emergency order on Friday, July 16, from 9:00 a.m. until 9:00 p.m., with drift gillnets restricted to the Kenai and Kasilof Sections. On Saturday, July 17, set and drift gillnet fishing was opened in the KRSHA from 4:00 a.m. until 7:00 a.m. Then, from 9:00 a.m. until 9:00 p.m. set gillnet fishing was opened in the Kenai, Kasilof and East Forelands Sections, using up all 36-hours of additional fishing time for the week, while drifting was opened in an expanded Kenai and Kasilof Section (Table 10). At the end of this management week, July 11-17, the estimated escapement total for the Kasilof River had reached 377,000, while the Kenai River sockeye salmon passage rate estimate was 439,000. The cumulative sockeye salmon harvest through July 17 was 2.2 million.

During the management week of July 18-24, ADF&G again presented the BOF with an emergency petition, seeking modifications to multiple management plans governing UCI commercial fisheries. In a petition dated July 19, 2004, ADF&G asked for up to 60 hours of additional fishing time per management week (through July 31) as well as a reduction in the mandatory window closures from 48 hours per management week to 12 hours. Moreover, ADF&G asked for one additional 12-hour drift gillnet district-wide period per management week. At the same time, ADF&G also communicated to the BOF that it was very likely the total sockeye salmon run to the Kenai River in 2004 would exceed 4 million fish, which would automatically liberalize commercial fishing opportunity in both the Upper Subdistrict set gillnet fishery and the Central District drift gillnet fishery. When Kenai River sockeye salmon runs exceed four million fish, the weekly hour limitations to the set gillnet fishery increased from no more than 36 hours of additional fishing time per week to a maximum of 60 hours. The mandatory window closure periods also changed from 48 consecutive hours per week to 36 hours per week. Finally, drift gillnet restrictions also are relaxed in runs greater than 4 million. In this petition, the BOF ruled that an emergency did exist and provided ADF&G with up to 60 hours per week of additional fishing time, and if needed, also approved a reduction in the mandatory window closure period from 48 to 12 hours per week.

A very busy week of fishing began on Sunday, July 18 with emergency order number 22 opening set gillnet fishing in the Upper Subdistrict from 10:00 a.m. until 10:00 p.m. while drift gillnet fishing was opened in an expanded Kenai and Kasilof Section for the same time period. Both gear types fished the regular period on Monday, July 19, and both were extended from 7:00 p.m. until 10:00 p.m., with the extension for drift gillnet fishers confined to the regular Kenai and Kasilof Sections. Emergency orders 24-26 opened drift gillnet fishing in the Central District south of the latitude of the north end of Kalgin Island on Wednesday, July 21, from 7:00 a.m. until 7:00 p.m. In essence, the regular drift gillnet period that would have occurred on Thursday was moved to Wednesday. The 12-hour period on Wednesday was extended from 7:00 p.m. until 11:00 p.m., followed by a 5:00 a.m. to 7:00 p.m. period on Thursday, July 22, both in the regular Kenai and Kasilof Sections. Emergency orders 24-26 also opened set gillnet fishing in the Kenai, Kasilof, and East Forelands Sections from 10:00 a.m. on Wednesday, July 21, until 7:00 a.m. on Thursday, July 22. Set gillnets in the Upper Subdistrict fished the regular period on Thursday, July 22. Drift gillnet fishing was opened by emergency order number 27 on Friday, July 23 from 7:00 a.m. until 7:00 p.m. south of a line extending from Collier's dock to the northwest corner of Kalgin Island to the western shore of Cook Inlet. This extra period had been approved by the BOF at the July 19 meeting. The closure of the northern end of the Central District was to protect Yentna sockeye salmon, which were still lagging in escapement. Drift gillnet fishing was extended on July 23 from 7:00 p.m. until 11:00 p.m. in the Kenai and Kasilof Sections. Set gillnet fishing was opened on July 23 in the Kenai, Kasilof and East Forelands Sections from 11:00 a.m. until 11:00 p.m. The KRSHA was also opened to both set and drift gillnet fishing on July 23 from 5:00 a.m. until 10:00 a.m. and also from 11:00 p.m. on July 23 until 10:00 a.m. on Saturday, July 24, and again from 11:00 p.m. on Saturday, July 24, until 2:00 p.m. on Sunday, July 25, all in an attempt to slow down the escapement rate of Kasilof River sockeye salmon.

In summary, for the week of July 18-24, the set gillnet fishery in the Upper Subdistrict fished 60 additional hours beyond the two 12-hour regular periods and was closed for one 36-hour window. Both set and drift gillnet fishing was open in the KRSHA for a total of 17 hours during the management week. Drift gillnets fished three inlet wide periods, although two of them were restricted to south of the north end of Kalgin Island. Sockeye salmon escapement during this week was approximately 59,000 fish in the Kasilof River, for a season total of 436,000. In the Kenai River, more than 250,000 fish were estimated to have passed the sonar counter during the week, for a season total of approximately 689,000. Finally, at the Yentna River, sockeye salmon escapement was estimated at 20,000 for a total of 47,000. The Upper Subdistrict set gillnet fishery harvested 460,000 sockeye salmon for a season total of 1.61 million. Drifters harvested 955,000 fish for a total of 1.97 million fish. The UCI total sockeye salmon harvest through July 24 was 3.7 million fish. During this week, ADF&G officially announced projections that estimated the total Kenai River sockeye salmon run would exceed four million fish, which now resulted in an inriver sockeye salmon goal of 850,000 to 1.1 million fish. Moreover, because of the increased run size, the management plan restrictions changed from allowing no more than 36 hours of additional fishing time per week to Upper Subdistrict set gillnet fishing to no more than 60 hours. The mandatory window closure per management week also changed from 48 hours to 24 hours. Thus, the net change to management plans passed by the BOF on July 19 was a reduction in the window closed period from 24 hours to 12 hours per week and the addition of one inlet wide drift gillnet fishing period per week; both changes applied through the end of July only.

During the final management week of the month, July 25-31, a total of 13 emergency orders were issued affecting various fisheries. The KRSHA was opened to set and drift gillnet fishing on Sunday, July 25, from midnight through 2:00 p.m. Drift and set gillnet fishing was also opened in the traditional areas; drift gillnet fishing in the Kenai and Kasilof Sections from 11:00 a.m. until 11:00 p.m. and set gillnet fishing in the Kenai, Kasilof, and East Forelands Sections from 12:00 noon to 12:00 midnight. Both gear types fished the regular period on Monday, July 26, albeit drift gillnet fishing was held south of a line extending from Collier's dock to the northwest point on Kalgin Island, then to the western shore of Cook Inlet. This restriction was put in place to reduce the exploitation rate on northern bound sockeye and coho salmon. At the end of the regular period, set gillnet fishing was extended from 7:00 p.m. until 12:00 midnight and drift fishing was extended in the Kenai and Kasilof Sections from 7:00 p.m. until 11:00 p.m. On Tuesday, July 27, the KRSHA was opened to set and drift gillnet fishing from 12:01 a.m. until 7:00 a.m. Drift fishing was also opened in the regular Kenai and Kasilof Sections from 5:00 a.m. until 11:00 p.m., while set gillnet fishing was opened in the Upper Subdistrict from 8:00 a.m. until 3:00 pm. The KRSHA was reopened to both gear types from 4:00 p.m. on July 27 until 8:00 a.m. on Wednesday, July 28. Drifters fished an inlet-wide period on both July 28 and July 29, from 7:00 a.m. until 7:00 p.m., but were held south of the same line from Collier's dock to Kalgin Island to the western shore. Set gillnet fishing was opened in the Upper Subdistrict on July 28 from 9:00 a.m. until 9:00 p.m. The KRSHA was opened three additional times during the week: from 10:00 p.m. on July 28 until 6:00 a.m. on Thursday, July 29; from 8:00 p.m. on July 29 until 10:00 a.m. on Friday, July 30; and from 11:00 p.m. on July 30 until 11:00 a.m. on Saturday, July 31. Set gillnet fishing was opened in the Upper Subdistrict from 11:00 a.m. until 11:00 p.m. on Friday, July 30. Drifters fished in an expanded Kenai and Kasilof corridor on July 30 from 6:00 a.m. until 10:00 p.m. On Saturday, July 31, set gillnet fishing was opened in the Upper Subdistrict from 12:00 noon until 12:00 midnight, while drift gillnet fishing was opened in an expanded Kenai and Kasilof corridor from 6:00 a.m. until 11:00 p.m.

A summary of this management week, July 25-31, shows that the KRSHA was opened six different times for a total of 71 hours. Set gillnets in the Kenai, Kasilof and East Forelands Sections (Upper Subdistrict) fished an additional 60 hours beyond the two regular 12-hour periods, which was the maximum allowed in management plans or by the BOF. There were at least four window periods of 12 hours or longer (up to 18 hours) where no set gillnet fishing took place. Finally, drifters fished two regular inlet-wide periods and one additional 12-hour inletwide period, with all three periods held south of a line from Collier's dock to the northwest point on Kalgin Island to the western shore of Cook Inlet. Holding drifters south of this line was done to allow Kenai and Kasilof sockeye salmon to be harvested, while trying to reduce harvest rates on northern bound sockeve and coho salmon stocks. Sockeve salmon escapement estimates for the week showed that 233,000 fish swam past the sonar counter in the Kenai River for a season total of 922,000, meaning that the minimum inriver escapement goal for runs greater than four million had already been achieved. In the Kasilof River, the escapement estimate for the week was 38,000 fish for a season total of 475,000. Finally, at the Yentna River, 8,800 sockeye salmon were estimated to have passed by the sonar counter, for a season total of 56,000. The minimum sockeye salmon escapement goal at the Yentna River sonar counter was 90,000. The total set gillnet harvest during this management week was 392,000 while drifters harvested 342,000. The total UCI harvest through this date was estimated at 4.4 million.

Operating under the guidelines of the Kenai River Coho Salmon Conservation Management Plan (5AAC 21.357), the Upper Subdistrict set gillnet fishery closes no later than August 7th. Moreover, this plan states that the commissioner may only issue one emergency order, not to exceed 24-hours in duration for the month of August. All of the window closure periods and extra hours provided by management plans and BOF actions terminated at the end of July. Emergency order number 46 opened set gillnet fishing in the Upper Subdistrict for 24 hours on Sunday, August 1, using up all of the additional hours provided for in the coho salmon plan. Drift gillnets fished an expanded corridor for 17 hours on Sunday, August 1. Both gear types fished the regular 12-hour period on Monday, August 2 and drift gillnet fishing was again opened for 17 hours in the expanded Kenai and Kasilof corridor on Tuesday, August 3. Because the Kasilof River sockeye salmon escapement estimate was 487,000 fish by August 3, already exceeding the optimum escapement goal by more than 187,000 fish, and the Kenai River sonar escapement estimate was approaching 1 million, with projections of 1.4 million and higher, the commissioner of the Department met with both Sport and Commercial Fisheries staff three different times during the first week in August to plan a course of action for the final week of commercial fishing. The outcome of these meetings resulted in additional fishing time for set gillnets beyond the scope of the coho salmon plan, due primarily to the strength of the Kenai and Kasilof River sockeye salmon runs and also due to the fact that the Kenai River coho salmon run

was just beginning. Emergency order number 49 moved the regular fishing period for set and drift gillnets from Thursday, August 5, to Wednesday, August 4. Both gear types fished for 12 hours, with drifters in an inlet-wide period. Drift gillnet fishing was extended in the Kenai and Kasilof Sections from 7:00 to 11:00 p.m. On Thursday, August 5, set gillnet fishing was opened from 10:00 a.m. to 10:00 p.m. in the Upper Subdistrict while drift gillnets fished in the expanded Kenai and Kasilof corridor from 5:00 a.m. until 11:00 p.m. Set gillnet fishing was opened from 5:00 a.m. until 11:00 p.m. in the Upper Subdistrict on both Friday and Saturday, August 6 and 7, respectively. Drift gillnet fishing was again opened in the expanded Kenai and Kasilof corridor from 5:00 a.m. until 11:00 p.m. on August 6, 7, and 8. On August 9, drift gillnets fished the regular 12-hour period inlet-wide. The KRSHA was opened to set and drift gillnet fishing on Friday, August 6, from 4:00 p.m. until 11:00 p.m.

Eleven emergency orders were issued during the final week of the season and three meetings were held involving ADF&G staff, the commissioner, representatives from the attorney general's office, sport and commercial fisheries division directors, and regional and area staff. From August 1 through August 7, the estimated passage at the Kenai River sonar site was 193,000 sockeye salmon for a season total of 1.11 million. For the Kasilof River, the estimated escapement for the week was 43,000 for a season total of 518,000. Upper Subdistrict set gillnet fishers harvested approximately 238,000 sockeye salmon during the week, while drift fishers caught an estimated 208,000 sockeye salmon. The UCI total harvest through August 7 was 4.90 million. The Upper Subdistrict set gillnet fishery closed by regulation on August 7, while drift gillnet fishing closed by regulation on August 9. All other areas in UCI remained open to commercial fishing for regular periods for the remainder of the year. Most fishing activity, however, ceased by about mid-September.

This season marked the sixth year of managing Kenai River sockeye salmon using abundancebased escapement goal. For five of these six years the goal has been modified during the season in response to runs that differed from the preseason forecast. In 2004, for example, the forecasted Kenai River sockeye salmon run was 3.2 million fish, which meant the inriver escapement goal range was 750,000 to 950,000 fish. Around July 20, it became apparent though that the run was significantly stronger than expected, with the OTF model projecting that more than four million fish would return to the Kenai River. At this run size, the inriver escapement goal increased to 850,000 to 1.1 million and the hourly limitations in the management plans also changed. In reality, the total sockeye salmon run to UCI in 2004 was estimated at 7.9 million, with the Kenai River run estimated at 4.9 million (Tobias and Willette 2004). The final Kasilof River sonar estimate of escapement was approximately 580,000 fish, which was the largest escapement ever recorded for this system, and marked the seventh time in the last eight years that the upper end of the BEG range had been exceeded. The estimate of passage at the Kenai River sonar site was 1.39 million, which was the third highest inriver estimate since the sonar program began in 1978. It also was the third consecutive year where the upper end of the inriver goal was exceeded.

The Northern District set gillnet fishery opened for regular periods on Monday, June 28. Additional periods, other than the weekly fishing periods provided in regulation, may not be allowed when coho salmon are expected to be the most abundant species in the harvest. In addition, no extra periods may take place after August 15. In 2004, the Northern District fished their full complement of gear and regular periods up until Monday, July 26, when the first of two gear restrictions was implemented to reduce the exploitation rate on Susitna sockeye salmon,

which were lagging behind desired escapement levels. On July 26, legal gear was reduced from three set gillnets per permit to two and then for the regular period on July 29 legal gear was reduced from three set gillnets to one per permit. Finally, in response to sockeye salmon escapement levels at the Yentna River sonar site that were still lower than needed to meet escapement objectives, the entire Northern District was closed to commercial salmon fishing on Monday, August 2. No further actions were taken in this fishery as the majority of sockeye salmon that would eventually be counted at the Yentna River sonar station would have already transited the Northern District by this time of year. The final sockeye salmon estimate of passage, measured by sonar at the Yentna River, was 71,281. The escapement goal (SEG) for this system is 90,000 to 160,000. The total harvest of sockeye salmon by set gillnets in the Northern District in 2004 was 27,000 fish, of which approximately 25% would have been bound for the Yentna River.

The Northern District Salmon Management Plan also requires the Central District drift gillnet fleet to be restricted to the Kenai and Kasilof Sections (corridor fishing) for one regular period between July 9 and 15 in order to pass sockeye salmon into the Northern District. In 2004, the first drift gillnet corridor restriction occurred on July 12. However, in response to the Kasilof River sockeye salmon run, which had already reached approximately 180,000 fish by this date, the Kasilof Section was expanded to include the waters south of the latitude of the Kalgin Island buoy (Table 10). The following regular drift gillnet period, which occurred on July 15, was also restricted to the waters south of the latitude of the north end of Kalgin Island. This action was taken to allow drifters to harvest Kenai and Kasilof sockeye salmon while protecting fish in the northern end of the Central District that likely were destined for the Northern District. By July 16 escapement levels had begun to increase at the Yentna River, with a cumulative estimate of approximately 19,000 sockeye salmon, which was the 7th highest count in the last 24 years for this date. However, daily counts subsequently decreased to only one to 3,000 by July 21 and never did significantly increase, regardless of management actions taken to protect the stock. These actions included restricting seven of eight drift gillnet inlet wide periods from July 12 to July 29 to south of the latitude of the north end of Kalgin Island or south of a line from Collier's dock to Kalgin Island to the western shoreline. The total sockeye salmon run estimate for the entire Susitna drainage in 2004 was only 280,000 fish. Approximately 50% are estimated to be Yentna River fish, which means the run to this system in 2004 was only 140,000.

The commercial fishery targeting Fish Creek sockeye salmon stocks in Knik Arm was closed by the BOF prior to the 2001 season. However, because UCI is a mixed-stock fishery, Fish Creek sockeye salmon are harvested in the Central and Northern Districts. All enhanced fish are otolith marked and the adult return is evaluated for marks at a weir on Fish Creek. In 2004, the estimated total run to this system was more than 41,000, with approximately 19,000 harvested in the commercial fisheries. Although the run of 41,000 is the smallest since 2000, it still exceeded the preseason forecast by more than 8,000 fish.

COHO SALMON

The 2004 commercial coho salmon harvest of approximately 310,000 (Table A3.) represents the 2nd highest harvest in the past 10 years and the 13th highest since 1966. Commercial coho salmon harvests in UCI during the 1980's and early 1990's were much higher than the long term average due to good coho production, and also due to strong sockeye salmon runs to Upper Cook Inlet, which resulted in additional fishing time, especially in the Central District. However, as with pink and chum salmon, recent coho salmon harvest statistics may not be a true indication of run

strength, largely due to regulatory changes that dictate how the fishery is prosecuted. Since 1996, BOF regulations have reduced fishing time for the drift fleet in the Central District and eliminated additional fishing time directed at coho and sockeye salmon surpluses in the Northern District and Kalgin Island Subdistricts. A special BOF meeting in 2000 further restricted both sport and commercial fisheries targeting coho salmon, with the commercial set gillnet fishery in the Upper Subdistrict now closing no later than August 7 and no more than one emergency order, not to exceed 24 hours in duration, is allowed in the entire month of August. All of these actions have resulted in marked reductions in the commercial coho salmon exploitation rate. Therefore, gauging the strength or weakness of coho salmon stocks based entirely on commercial harvest statistics may be misleading. However, because of the strength of the sockeye salmon run to UCI in 2004, additional time was granted to both Upper Subdistrict set and Central District drift gillnet fishermen to harvest Kenai and Kasilof stocks. This additional time provided to harvest surplus sockeye salmon undoubtedly resulted in an increased total coho salmon harvest. Recently, ADF&G developed a model that projected whether or not an aggregate of coho salmon escapement goals in the Northern District would likely be met based upon inseason harvest statistics. This predictive model was based upon an analysis of drift gillnet CPUE for inlet wide periods, rather than just total harvest. In 2004, this analysis projected that the aggregate Northern District coho salmon escapement goal would likely be achieved.

The exvessel value of coho salmon from the UCI commercial fishery was approximately \$414,000 or 2.0 percent of the total exvessel value (Table A7.).

PINK SALMON

The 2004 UCI harvest of approximately 357,000 pink salmon was the third smallest even-year harvest since 1966 (Table A4.). Again, there is difficulty in assessing the true run strength of pink salmon in UCI based on catch statistics, especially considering the significant restrictions to set gillnet fishing in the Upper Subdistrict in August. Pink salmon escapements are not monitored in Upper Cook Inlet to an appreciable degree; however, it appears that many river systems in 2004 received average to above average runs of pink salmon for an even-year return. The average price paid for pink salmon in 2004 was approximately \$0.05 per pound, resulting in an exvessel value for this species of \$66,000, or 0.3% of the total exvessel value (Table A7.).

CHUM SALMON

As a result of the floods of 1986, chum salmon production in much of south-central Alaska was adversely affected, with commercial harvests since that time well below the long-term average annual harvest of 520,000 (Table A5.). However, beginning in 1995 improvements in chum salmon runs were observed. The 2004 commercial harvest of approximately 145,000 fish was about 50,000 less than the average annual harvest from the previous 10 years. But, as already mentioned for other stocks, comparing recent harvest statistics to historical averages for the purpose of making assessments of stock strength can be misleading because of how much differently the commercial fishery is now prosecuted. In addition, beginning in 1995 there was a significant drop in the price per pound paid for chum salmon, which has continued to decline, with the past three year's average price at \$0.12/lb (Table A11). Many drift gillnet fishers have reported moving to different areas when they begin encountering chum salmon. Therefore, low prices and changes to how fisheries are prosecuted have contributed to reductions in commercial chum salmon harvests. The 2004 exvessel value for chum salmon was approximately \$129,000, which was just 0.6% of the overall exvessel value of the 2004 fishery (Table A7.).

PRICE, AVERAGE WEIGHT AND PARTICIPATION

In general, prices paid to fishermen for their catch in 2004 were quite similar to what they received the past couple of years, but still significantly lower than the long-term average (Appendix A11). In fact, the average price paid for sockeye salmon of \$0.60 to \$0.65 per pound for the past four years is the lowest average price since 1975. Chinook, coho, pink and chum salmon were sold for \$1.00, \$0.20, \$0.05 and \$0.12 per pound, respectively, which in general represent reductions for all species, other than Chinook salmon, from previous year's averages. Some fishermen sold a significant portion of their Chinook salmon catch to smaller processors who offered higher prices by catering to small niche markets. It should be noted that the average prices reported here are generated from inseason grounds prices and do not reflect any post-season adjustments. In most years, the price paid for fish rises by the end of the season, or post-season, but it is believed that it did not occur this year due to various market factors, including competition from farmed fish and losses recorded by processors from previous year's operations.

As determined from fish ticket calculations, the average weight by species did not vary significantly from the 1969-2003 average (Table 13, Appendix A12). The largest variation occurred in Chinook salmon average weights, with the 2004 average of 24.6 pounds being approximately 7% less than the long-term average of 26.5 pounds. However, the 2004 Chinook weights were up more than four pounds from last year. Sockeye salmon averaged 6.0 pounds per fish, which is slightly under the long-term average of 6.3 pounds, but equals the previous 10-year's average weight per fish. The average weight for coho, pink and chum salmon were 6.7, 3.7, and 7.4 pounds, respectively.

The Commercial Fisheries Entry Commission (CFEC) reported that in 2004 there were 571 active drift gillnet permits for the Cook Inlet area, with 70% issued to Alaskan residents (Appendix A13). However, of these permits, 33 were not renewed, meaning that only 538 were fishable. CFEC also reported that there were 739 active set gillnet permits in Cook Inlet, with 84% being issued to Alaskan residents. Of these, 31 were not renewed, meaning that only 708 were fishable in 2004. The number of non-renewed permits for both set and drift gillnets in 2004 represents a substantial increase over any other year on record (for more information limited entry permits please visit http://www.cfec.state.ak.us/SPCS/MENUS.HTM). A total of 32 firms purchased Upper Cook Inlet fishery products during 2004, with the major buyers listed in Table 14.

SALMON ENHANCEMENT

Salmon enhancement through hatchery stocking has been a part of UCI salmon production since the early 1970's. Presently, only a single commercially-oriented hatchery remains operational in Upper Cook Inlet – the Trail Lakes facility located in the upper Kenai River drainage near Moose Pass. Trail Lakes hatchery was originally built and operated by the ADFG's FRED Division, but was subsequently leased to Cook Inlet Aquaculture Association (CIAA) in 1990 as the State operating budget declined. This hatchery has functioned to produce primarily sockeye salmon, with minor production of coho and Chinook salmon. Located on the Kenai Peninsula, both Hidden Lake and Tustumena Lake are stocked with sockeye salmon, with adult production from these enhancement programs available to both the common property commercial fishery and the personal use and recreational fisheries. All of the sockeye salmon that are released from this facility are otolith marked and smolt and adult enumeration programs are conducted by CIAA staff as part of their evaluation programs. In general, hatchery-produced sockeye salmon have accounted for substantially less than 10 percent of the total commercial harvest.

Although final word has probably not been spoken on the matter, the U.S. Ninth Circuit Court of Appeals issued a ruling in December of 2003 stating that the 30-year-old stocking program in Tustumena Lake amounted to a commercial enterprise and violated provisions of the 1964 Wilderness Act. The Wilderness Society and the Alaska Center for the Environment brought suit against the U.S. Fish and Wildlife Service over the stocking program being conducted by CIAA. In essence, the ruling meant that the 6 million sockeye salmon fry being incubated at Trail Lakes Hatchery could not be released into Tustumena Lake in 2004 and thus would have to be destroyed. At the request of fishing groups and other citizens, Governor Murkowski had asked Interior Secretary Gale Norton to request a full hearing before the 9th Circuit Court on the matter. The Department of Justice, which handled the case for the Department of the Interior, instead petitioned only on the issue of the injunction regarding the fate of the fry. The court granted a rehearing on that issue and amended its order stopping the stocking program. In the end, the U.S. Ninth Circuit Court of Appeals allowed the district court in Alaska discretion in what to do with the 6 million sockeye salmon fry, which they permitted to be stocked into Tustumena Lake in 2004 only. CIAA did not collect sockeye salmon eggs from Tustumena Lake this year and for the short term, at least, the stocking program at Tustumena Lake has been halted.

STOCK STATUS AND OUTLOOK

Overall, the status of UCI's salmon stocks is generally very optimistic, although some areas merit further discussion. In 2004, approximately 5.2 million sockeye salmon were projected to return to Upper Cook Inlet, which would have provided some 3.7 million fish for all users to harvest. The forecasted harvest in 2004 was only 300,000 fish below the 20-year average annual harvest. In reality, the estimated sockeye salmon run in 2004 of 7.9 million produced more than 4.9 million fish that were commercially harvested and likely will have provided 500 to 700 thousand to sport and recreational users. Sockeye salmon escapement goals were exceeded in three of five systems, met in one, and fell short in another.

After experiencing record-level runs through the mid to late 1980's, the Crescent River sockeye salmon run declined dramatically and remained depressed throughout most of the 1990's. In 1996, limnological studies were initiated to determine whether the decline in sockeye salmon production was related to changing conditions in Crescent Lake, the major nursery lake in this watershed. These studies revealed a low abundance of the primary food resource for juvenile sockeye salmon in Crescent Lake, namely, the cyclopoid copepod Cyclops scutifer (Edmundson and Edmundson 2002). As a result of these findings, the BEG for this system was reduced in 1998 from 50,000 to 100,000 to the current 25,000 to 50,000 range. After the 2000 season, and before the causes of the decline in Cyclops abundance could be more precisely defined, the limnological studies were terminated because of budgetary constraints. While not able to clearly identify the mechanisms leading to the decline in zooplankton production, the limnology studies did provide some insight. First, it was theorized that that increased turbidity levels in the lake prior to 1996 resulted in a reduction in primary production associated with a lack of light penetration in the lake. Another possible source of the decline in production was attributed to a top-down grazing effect on the Cyclops population from sockeye salmon fry produced from large escapements beginning in 1984. In speculating on the mechanisms responsible for the reduced sockeye salmon runs to this system, Edmundson and Edmundson (2000) cited that it is likely some combination of increased turbidity and over-grazing of the forage base. Since 2000, however, sockeye salmon runs to Crescent Lake have improved (see table on next page). The total run estimate of more than 170,000 fish in 2004 is the largest return to Crescent Lake since 1987 and this year's estimated commercial harvest of 67,000 is the largest since 1988. More than 103,000 sockeye salmon were estimated to have escaped in 2004, which means that since the escapement goal was changed in 1998, the new goal has been exceeded every year. As a result of this data, the ADF&G escapement goal review committee recommended a small increase in the sockeye salmon goal for this system. For the past few years, set gillnet fishing in the Western Subdistrict south of Redoubt Point has been allowed 24 hours per day nearly all of July, yet the exploitation rate from 2000 to 2004 has averaged 33%. This is largely a result of many fishermen and nearly all processors abandoning this fishery during the 1990's because of diminished returns and considerable restrictions placed on the fishery in order to achieve escapement goals. It remains to be seen whether or not more fishermen or new processors will become involved in this fishery in the near future.

Crescent River Sockeye Salmon				
	Average Annual Average Annual			
	Total Run Commercial Harves			
Decade	(thousands)	(thousands)		
1976-1979	130	56		
1980-1989	169	81		
1990-1999	73	23		
2000-2004	125	41		

Much like the story at Crescent Lake, sockeye salmon runs to Fish Creek, which drains Big Lake and flows into Knik Arm, have been relatively poor, particularly from 1998 to 2001. The average annual total sockeye salmon run to Big Lake from 1980 to 1997 was 212,000; however, from 1998-2001 the average annual return fell to 52,000 (Tobias and Willette 2004) and during this time period the sockeye salmon BEG of 50,000 was not achieved. Prior to the 2002 BOF meeting an escapement goal review team recommended that the Fish Creek goal be changed to an SEG of 20,000 to 70,000. In 2002 and 2003, escapement into this system exceeded the new SEG by approximately 20,000 fish each year. In addition, the total sockeye salmon run to Fish Creek in 2002 was more than 134,000 fish, and in 2003 it exceeded 147,000 fish. However, the forecasted total run for 2004 was only 33,000 fish, based largely on the 2002 smolt emigration estimate of only 49,000 fish (Dodson 2003). The estimated total run to Fish Creek in 2004 ended up being approximately 41,000 fish, with more than 22,000 counted through the weir (Table 2). Although the run did exceed expectations, the total of 41,000 was the second smallest return since 1978. The number of smolt emigrating Big Lake has improved the past two years with estimates of 117,000 in 2003 and 256,000 in 2004.

A technical review assessing Big Lake sockeye salmon production was completed prior to the 2002 BOF meeting (Litchfield and Willette 2002). This report proposed two likely causes for the decline in sockeye salmon production: (1) degradation of spawning habitat as a result of questionable hatchery practices and (2) placement of a coffer dam at the outlet of the lake, which prevented many wild fry from being able to recruit into the lake as well as causing a productive spawning area at the lake outlet to be filled in with silt and mud. At the 2002 BOF meeting, Fish Creek sockeye salmon were found to be a stock of yield concern and ADF&G proposed additional studies to more clearly define the limitations to sockeye salmon production in this system. As a result of identifying the coffer dam as a limitation to sockeye salmon production, modifications were made at the lake outlet that allowed fry to more easily recruit into Big Lake.

It is expected that more adults will again utilize this productive spawning area. The long-term outlook for Big Lake sockeye salmon has improved. The escapement goal was met or exceeded for the past three years (Table A10), hatchery practices and stocking procedures have been tightened up, and modifications at the lake outlet should result in more fry being able to recruit into the lake. These improvements led ADF&G to recommend removing Big Lake sockeye salmon as a stock of yield concern.

Sockeye salmon runs to the Susitna River drainage have also been somewhat depressed recently; for example, in three of the last five years (2000-2004) the escapement goal, as measured at the Yentna River, was not achieved (Table A10.). However, the total sockeye salmon run to the Susitna River drainage in 2003 of 607,000 fish (Tobias and Willette 2004) was the second largest in the past 10 years. The 2004 preseason forecast projected a total run of approximately 464,000 fish, which was about equal to the recent 10-year (1994-2003) average of 452,000 fish. But, the estimated run in 2004 of 279,000 fell significantly short (40%) of the forecast. For the past few years, CIAA has flown many of the watersheds throughout the Susitna River drainage and observed some of them to be partially to totally blocked to adult salmon migration by beaver dams. In those cases where numerous salmon were being held up, CIAA removed enough of the dams to allow salmon passage, but subsequent inspection often found that the dams had been quickly rebuilt. It is unknown to what degree beaver dams have limited sockeye salmon production throughout the Susitna River drainage, but it has definitely occurred to some degree. For more details on studies pertaining to sockeye salmon production in this drainage, see Tarbox and Kyle 1989; Kyle et al. 1994; King and Walker 1997; Edmundson et al. 2000; and Todd et al. 2001.

Pink salmon runs in UCI are even-year dominant. The 2000 and 2002 runs were characterized as strong or very strong, thus reversing the trend of diminished returns realized since the flood in 1986. Yet, the 2000 UCI commercial harvest of pink salmon was the smallest even-year harvest since 1966. This mostly can be explained by the fact that the commercial fishery operated under numerous restrictions to ensure that sockeye salmon escapement goals were achieved. The 2004 run of pink salmon was portrayed as average to above average. For example, the escapement count at the Deshka River weir was approximately 390,000, which is significantly less than the average of more than 900,000 observed in 1998, 2000, and 2002. But, the OTF cumulative CPUE of 439 in 2004 was the third highest even-year CPUE in the past 12 even-year cycles. Describing the pink salmon run is difficult and is largely based on commercial fish reports, recreational fishing success, and limited escapement monitoring. There are no enumeration projects in all of UCI designed to specifically monitor pink salmon escapements, but they are counted as part of programs designed to enumerate Chinook, sockeye, and coho salmon.

Chum salmon production suffered through about a decade of mediocre runs, beginning in the mid-1980's, in part due to impacts from fall flooding in the Susitna River Basin in 1986, but in all probability also due to poor general environmental factors. Chum salmon stocks throughout Southcentral Alaska have mirrored Susitna River chum salmon production, both revealing reductions in abundance from the mid-1980's to the mid-1990's. Fortunately, since 1995 a steady improvement in chum salmon production has been observed in many areas of South Central Alaska, including UCI. Indications from the OTF project, the commercial fishery, and the few escapement programs where chum salmon are enumerated would in general support the characterization that the 2000-2004 runs were much improved from those realized during the 1990's. For example, the 2000 OTF cumulative chum salmon CPUE of 672 was the 3rd largest since chum salmon began being enumerated in 1988. Aerial census counts of chum salmon in

Chinitna Bay estimated an escapement of nearly 23,000 in 2000, which is the largest aerial census estimate ever recorded for this area. The 2002 escapement counts of chum salmon at the Little Susitna River, Willow Creek, and Wasilla Creek weirs were the highest counts ever observed for these systems, while the 2001 chum salmon escapement in the Little Susitna River was the second largest observed. The 2004 OTF cumulative chum salmon CPUE would seem to indicate that this year's run was of average abundance as the 1988-2003 mean CPUE of 465 was very close to the 2004 cumulative CPUE of 447. While ADF&G lacks long-term quantitative escapement information, chum salmon escapements to streams throughout UCI have undoubtedly been augmented by management actions or regulatory changes aimed principally at other species. These actions include significant reductions in the offshore drift gillnet and Northern District set gillnet fisheries to conserve Yentna River sockeye salmon; the adoption of a Northern District Coho Salmon Management Plan, which further limits these two fisheries to allocate coho salmon for other users; the lack of a directed chum salmon fishery in Chinitna Bay; and finally, harvest avoidance, as much as possible, by the drift fishery as a result of the current low prices being paid for chum salmon. In recent years, chum salmon runs to Chinitna Bay have been essentially unexploited as the local set gillnet fishery has been inactive due to poor prices and also due to no tendering service from any processor. Aerial and/or foot surveys of chum salmon escapement are conducted during August and September on drainages in Chinitna Bay, including Clearwater and Fitz Creeks and the Chinitna River. Peak counts from each year can provide indices to escapement trends. In 2004, the peak chum salmon count conducted during aerial censuses was more than 15,000, which was the 5th highest count since 1971.

UCI's coho salmon stocks generally benefited from excellent production throughout most of the 1980's and early 1990's. However, coho salmon runs in 1997 and 1999 were viewed as mediocre to poor, prompting BOF measures in 1997, 1999 and 2000 that resulted in coho salmon conservation restrictions to sport and commercial fishermen in much of UCI. Ironically, the 2000 run appeared to be much improved (see table next page), with the 2001 run being even stronger yet, and finally the 2002 run being exceptional, perhaps even a record run. Because coho salmon are strongly dominated by a 4-year cycle, the returns from the 1997 and 1999 brood years occurred primarily in 2001 and 2003. The 2003 run, while not exceptionally strong, still produced escapements nearly three times the level of the 1999 brood year (the aggregate escapement of coho salmon from Cottonwood, Fish, and Wasilla Creeks and Little Susitna River in 1999 was 6,470 and produced an aggregate escapement to these same systems in 2003 of 17,872). In 2004, ADF&G's Sport Fish Division terminated coho salmon enumeration at Wasilla Creek, and in 2005 they will no longer enumerate coho salmon at Cottonwood and Fish Creeks as assessments showed that the Little Susitna River escapement provided an accurate gauge of coho salmon escapement from Knik Arm stocks. Based on the Little Susitna River coho salmon escapement, the 2004 run appears to have been very strong. It needs to be emphasized though, that these are just escapement data and do not take into account commercial and sport harvest. In fact, due to exceptionally strong sockeye salmon runs to the Kenai and Kasilof Rivers, extra time was granted to commercial fishermen in the Central District, which may have even increased the harvest of Northern District coho salmon stocks. If this was the case, the 2004 run may have been as strong as the 2002 run.

Coho Salmon Escapement Enumeration						
	Cottonwood	Fish	Little Susitna	Wasilla	Deep	OTF
Year	Creek	Creek	River	Creek	Creek	CPUE
1996			15,803			534
1997	936	2,578	9,894	670	2,017	362
1998	2,114	5,463	15,159	3,777	1,541	403
1999	478	1,766	3,017	1,587	2,267	294
2000	1,888	5,979	14,436	6,154	3,408	766
2001	3,525	10,047	30,587	6,784	3,747	838
2002	4,270	15,187	48,308	13,195	6,132	798
2003	791	2,142	11,127	3,712		368
2004	2,004	3,234 ^a	40,199			785

^aRepresents a partial count, the weir was pulled before coho run was complete.

The total return of Kenai River adult coho salmon has been estimated annually by: (A) the population specific harvest in marine commercial fisheries, (B) the inriver sport and personal use harvest, and (C) the spawning escapement (Carlon In Prep., and Massengill, et al In prep). The sum of these three components (A + B + C) provide the estimate of annual adult production. Smolt enumeration studies are conducted in the Moose River, a Kenai River tributary that has been shown to be a very important rearing environment for juvenile coho salmon. At the 1997 & 2000 BOF meetings, conservation measures were implemented to reduce sport and commercial exploitation of Kenai River coho salmon as a result of increasing harvest levels in the early 1990's, and a decreasing trend in smolt production from 1993-1997. Since 1997, the drainagewide coho salmon smolt emigrations have stabilized. Interestingly, the 1999 record low adult escapement (7,364) produced a near historical average smolt production level. However, the record low smolt emigration of 1997 (374,225) is associated with what is believed to be a very weak return of adults in 1998, although total return strength for that year is unknown. Since 1999, Kenai River adult coho salmon returns have been considered good to excellent. In 2004, an emergency petition form the Kenai-Soldotna Fish and Game Advisory Committee was taken up by the BOF regarding extending the Kenai River sport fishing season for coho salmon. Based upon a review of past stock assessments and a record setting fish wheel catch rate in the adult mark recapture project, ADF&G anticipated an above average Kenai River coho salmon escapement. In response to these data, the BOF extended sport fishing for coho salmon from the regular closing date of September 30 to October 31 in the main stem Kenai River for the 2004 fishing season. Continued monitoring of smolt and/or adult production will provide valuable information about Kenai River coho salmon returns from various levels of escapements.

The commercial fisheries division of ADF&G conducted a marine salmon tagging study in 2001 & 2002 (Willette et al 2003). Two important objectives of this study were to (1) estimate the total number of coho, pink, and chum salmon entering UCI, and (2) apportion out coho salmon escapement to the major watersheds of UCI by locating radio-tagged fish in streams throughout the inlet. Based upon recoveries of Passive Integrated Transponder (PIT) tags, a point estimate for the number of coho salmon that entered UCI in 2002 was approximately 2.5 million. The commercial fishery exploitation rate on all coho salmon stocks was estimated at 10%. Based upon radio telemetry tagging, the 2002 coho salmon escapement in all UCI streams was 1.36 million. The PIT tag population estimate of coho salmon escapement overlapped the radio telemetry population estimate, but was statistically (z-test statistic) different. The PIT tag estimate of coho salmon

escapement was 2.27 million. For Kenai River coho salmon, the marine tagging study showed that up through the last day of tagging, which was August 7, this stock had not entered UCI to an appreciable degree. Thus, only the beginning phase of the Kenai River coho salmon run had entered UCI by this date. Because the commercial fishery also ended on August 7 in 2002, exploitation rates on Kenai River coho salmon had to be significantly less than the overall 10% rate applied to all other coho salmon stocks.

After experiencing a significant downturn in the early to mid 1990s, Northern District Chinook salmon stocks continue to trend significantly upward and no generalized conservation issues are currently known. In fact, in response to strong Chinook salmon runs, some streams in the Northern District have had bag limits or number of days that fishing was allowed liberalized through emergency order.

Late-run Kenai River Chinook salmon returns have been relatively stable and escapement objectives have been consistently achieved or exceeded. The 2004 run appears to have been one of the strongest runs on record. The early-run Kenai River Chinook salmon return is believed to migrate through Cook Inlet prior to any commercial fishing taking place.

COMMERCIAL HERRING FISHERY

In 1998 ADF&G reopened the Eastern Subdistrict of the Northern District and the Upper Subdistrict of the Central District to commercial herring fishing from April 15 to May 20. In 1999, the Central District Herring Recovery Management Plan became effective, limiting herring fishing in Upper Cook Inlet to the waters of the Upper, Western, and Chinitna Bay Subdistricts. In 2004, the herring fishery in the Upper Subdistrict was open for two 30-hour periods per week from April 20 to May 31. The May 31 closure date represents a modification made to the management plan at the 2001 BOF meeting.

In 2001, samples of herring were collected in Chinitna and Tuxedni Bays. Age, sex, and size distribution of the samples revealed that the years of closed fishing in these areas had resulted in an increase of younger fish being recruited into the population. As a result of these analyses, and in accordance with the Central District Herring Recovery Management Plan, the commercial fishery was reopened in Chinitna Bay and in the Western Subdistrict in 2002. The management plan allows for a very conservative harvest quota, not to exceed 40 and 50 tons, respectively. However, there has been very minimal participation in either fishery.

The 2004 herring fishery in the UCI resulted in a harvest of 6.8 tons (Table A8.). For the past two years only eight permits holders have participated in these herring fisheries, which is down approximately 50% from recent levels of participation. Current proposals before the BOF seek more fishing time per week while retaining existing harvest quotas.

COMMERCIAL RAZOR CLAM FISHERY

Historically the razor clam fishery on the west side of Cook Inlet has been confined to the area between Crescent River and Redoubt Point. All clams harvested in this area are directed by regulation to be sold for human consumption, except for the small percentage (less than 10% of the total harvest) of broken clams, which may be sold for bait. Razor clams are present throughout this area, with especially dense concentrations in the Polly Creek and Crescent River areas. Beginning in 1993, the Department of Environmental Conservation certified additional area for human consumption. The additional area is located north of the existing certified beach at Polly Creek north to Redoubt Creek. In 1994 this certification was extended further north to Harriet Point. In

the remainder of the Upper Cook Inlet Management Area, there are no restrictions on the amount of clams that can be sold for bait. Currently though, there is no directed effort to harvest razor clams for the bait market. The minimum legal size for razor clams is four and one-half inches (114mm) in shell length.

The 2004 harvest, taken primarily from the Polly Creek/Crescent River area, was approximately 420,000 pounds (Appendix A9). A total of 24 diggers participated during the season, reporting harvest from 53 different days, from the time period of May 16 to August 4. Diggers were paid an average of \$.55 per pound for their harvest, resulting in an exvessel value of this fishery of \$230,000. In 2004, approximately 22,000 pounds of the clams (5%) were processed as bait due to shell breakage, the remainder were sold as food as required.

The summer's tide schedule can be found in Table 17.

SUBSISTENCE

There is a long history of Alaskans harvesting fish and game for their personal consumptive needs under sport, subsistence, and commercial fishing regulations in the Cook Inlet area (Braund 1982). Since 1978, when the State of Alaska passed its first subsistence statute (AS 16.05.258), many changes have occurred in the regulations governing the harvest of fish and game for personal consumption in Cook Inlet. Beginning in 1981, a new category of fisheries was established. Personal use fishing was created to provide for the personal consumptive needs of state residents not able to meet their needs under other fisheries. Since their creation, numerous changes have occurred in the personal use or subsistence fisheries in Cook Inlet as a result of challenges in the State of Alaska Court System, The Alaska State Legislature, or the BOF process. The only personal use or subsistence fishery that has occurred consistently in Cook Inlet during this entire period is the Tyonek Subsistence fishery. A review of the various personal use and subsistence fisheries that have been conducted in Cook Inlet are reported in Brannian and Fox (1996) and Reimer and Sigurdsson (2004).

TYONEK SUBSISTENCE SALMON FISHERY

The present subsistence fishery in the Tyonek Subdistrict was created by an Anchorage Superior Court order in May 1980. In March 1981, the Board of Fisheries adopted permanent regulations for this fishery. Originally open only to those individuals living in the village of Tyonek, recent court decisions allow any Alaska resident to participate, although very few non-villagers seek permits. Fishing is allowed only in the Tyonek Subdistrict of the Northern District. A limit of one permit per household can be issued and each permit holder is allowed a single ten-fathom gillnet, having a mesh size no greater than six inches. Fishing is allowed from 4:00 a.m. to 8:00 p.m. each Tuesday, Thursday, and Friday from May 15 to June 15, or until 4,200 Chinook salmon are taken. Fishing is again allowed from 6:00 a.m. to 6:00 p.m. each Saturday after June 15, although the opening is delayed until July 1, if 4,200 Chinook salmon were taken before June 16. The permit allows 25 salmon per permit holder and 10 salmon for each additional member. However, 5 AAC 01.595(a)(3) allows for up to 70 Chinook salmon per permit holder in the Tyonek Subsistence fishery. Annual Chinook salmon harvests have ranged from a low of 639 in 1997 to as many as 2,665 in 1983 (Appendix A15). In 2004, preliminary reports from the Tyonek subsistence fishery show a harvest of 1,080 Chinook, 51 sockeye, 0 coho, 15 pink, and 0 chum salmon.

UPPER YENTNA RIVER SUBSISTENCE SALMON FISHERY

A subsistence salmon fishery is allowed in the Yentna River drainage outside the Anchorage-Matsu-Kenai non subsistence area described in 5 AAC99.015(a)(3). The provisions for this fishery allow for the harvest of 25 salmon per head of household plus 10 more for each dependent; however, all Chinook salmon and rainbow trout must be returned to the water alive. The specific area open for this fishery is in the main stem Yentna River from its confluence with Martin Creek upstream to its confluence with the Skwenta River. Legal gear consists only of fish wheels. The subsistence fishing season occurs from July 15 through July 31 from 4:00 a.m. to 8:00 p.m. each Monday, Wednesday, and Friday during this time frame. The preliminary harvest reports from the 2004 Yentna River subsistence fishery show that 441 sockeye, 146 coho, 36 pink, and 3 chum salmon were harvested (Appendix A15). There were 21 Yentna River subsistence permits issued in 2004.

KENAITZE TRIBAL EDUCATIONAL FISHERY

In 1993 a state court ordered ADFG to create an educational fishery for the Kenaitze Indian Tribe, pending final court rulings on other subsistence cases. The objectives for educational fisheries are specified in 5 AAC 93.235 as "educating persons concerning historic, contemporary, or experimental methods for locating, harvesting, handling, or processing fishery resources". Standards, general conditions, and requirements of the educational fishery program are outlined in 5 AAC 93.200-235. Tables A15 and A16. summarize the harvest from the Kenaitze educational fishery since it began in 1994. In 2004, this amounted to 10 Chinook, 4,113 sockeye, 765 coho, and 417 pink salmon, for a total of 5,305 salmon, which is nearly identical to the 2003 harvest, with both year's totals nearly a 1,000 fish more than any other annual harvest.

NINILCHIK TRADITIONAL COUNCIL/NATIVE DESCENDENTS EDUCATIONAL FISHERY

In 1993 the Ninilchik Traditional Council (NTC) applied for and was granted a permit for an educational fishery (Szarzi and Begich 2001). In 1998, a group of NTC members formed a new organization, the Ninilchik Native Descendents (NND), and requested a separate permit with similar goals of passing on traditional knowledge and providing food for needy tribal members. Initially one permit was issued for both groups, but this was not acceptable to the NTC and both groups were allowed to fish concurrently. There have been a number of changes to the annual harvest limits allowed under these permits, but in 2004 the NTC harvested 73 Chinook 395 sockeye, and 83 coho, salmon (Tables A15 & A16.). The NND caught 78 Chinook,199 sockeye, 79 coho and 14 pink salmon. The largest reported harvest since the inception of the NNT/NND educational fishery occurred in 2001 when the combined harvest from the two groups was slightly more than 1,500 fish.

NINILCHIK EMERGENCY SERVICES EDUCATIONAL FISHERY

In 2004, another group from Ninilchik applied for and was granted approval for an educational fishery. The Ninilchik Emergency Services (NES) group harvested 77 sockeye salmon, 9 pink salmon, and 1 coho salmon (Table A16.).

PERSONAL USE SALMON FISHERY

Under the Upper Cook Inlet Personal Use Salmon Fishery Management Plan (5 AAC 77.540), personal use fishing is allowed in limited areas in Cook Inlet. The management plan received substantial changes at the BOF meeting in January of 1996. In 1995, the personal use fishery allowed set gillnets in most areas of Cook Inlet normally open to commercial set gillnet fishing. However, for the 1996 season, most of this area was closed, but to compensate for the lost opportunity, dip net fisheries were expanded to allow for approximately the same level of harvest that had occurred with gillnets in 1995. Currently, personal use fishing using gillnets is open near the Kasilof River in the waters of UCI normally closed to commercial set gillnet fishing. This area encompasses approximately one mile on either side of the Kasilof River, extending out from shore for one mile. In addition, dip net fishing is allowed at the terminus of the Kenai and Kasilof Rivers. The personal use management plan was again amended at the 2002 BOF meeting, modifying how the dip net fishery at Fish Creek in Knik Arm was to be managed as well as making time changes to both the Kenai and Kasilof personal use fisheries. The Fish Creek dip net fishery was continued in regulation, but opens only if the upper end of the escapement goal of 70,000 is projected to be exceeded. The Kasilof gillnet fishery was modified, expanding the days and hours that the fishery is open. The fishery now opens on June 15 and takes place from 6:00 a.m. until 11:00 p.m. daily. Instead of being managed for a harvest goal of 10,000 to 20,000 fish, the fishery remains open until 11:00 p.m. on June 24, regardless of how many fish are harvested. The amended management plan also changed how the Kenai River dip net fishery was prosecuted. This fishery is open from July 10 through July 31, seven days per week, but only from 6:00 a.m. to 11:00 p.m. daily. But, if ADF&G determines that the abundance of Kenai River late-run sockeye salmon is greater than two million fish, this fishery may be extended, by emergency order, to 24-hours per day. The Kasilof River dip net personal use fishery occurs from June 25 through August 7, 24-hours per day.

A permit issued by ADF&G, along with a valid resident sport fishing license, or an exemption from licensing under AS 16.05.400, is required to participate in the personal use fisheries. The annual bag and possession limits are 25 salmon per head of household, with an additional 10 salmon for each household member. In the Kasilof River dip net fishery, however, Chinook salmon may not be retained and must be released immediately to the water unharmed. In the Kenai River dip net fishery, one Chinook salmon may be retained per household. There are no Chinook salmon limitations in the Kasilof River gillnet personal use fishery. Legal gear under the management plan are set gillnets and dip nets. A set gillnet cannot exceed 10 fathoms (60 feet) in length or 45 meshes in depth. Mesh size must be greater than four inches, but may not exceed six inches. Gillnets must be set at least 100 feet apart at all times. A legal dip net has been defined in regulation (5 AAC 39.105) as a bag-shaped net supported on all sides by a rigid frame. The maximum straight-line distance between any two points on the net frame, as measured through the net opening, may not exceed five feet. The depth of the bag must be at least one-half of the greatest straight-line distance, as measured through the net opening. No portion of the bag may be constructed of webbing that exceeds a stretched measurement of 4.5 inches; the frame must be attached to a single rigid handle and be operated by hand.

2004 PERSONAL USE FISHERY

The personal use fishery using gillnets at the mouth of the Kasilof River opened on June 15 and closed, as stipulated by the amended management plan, on June 24. Approximately 25 thousand sockeye salmon were harvested in this fishery (Table 15), which is 7 thousand fish (41%) more than

the previous maximum number harvested in 1997. The total harvest of all salmon in the personal use gillnet fishery was approximately 25.6 thousand.

The Kasilof River dip net fishery was open from June 25 to August 7. The total sockeye salmon harvest in the dip net fishery was approximately 48 thousand fish, which is ~1,500 (3%) more that the previous highest harvest that occurred in 2002. The total harvest in this fishery was nearly 50 thousand salmon.

The dip net fishery in the Kenai River opened on July 10 and closed, as scheduled, at midnight on July 31. In compliance with the management plan, the fishery was open from 6:00 a.m. to 11:00 p.m. daily. But, on July 20, an emergency order (2-RS-1-20-04) was announced by Sport Fish division expanding dip net hours to 24-hours per day, which was provided for in the management plan when the Kenai River sockeye salmon run exceeded 2 million fish. Nearly 263 thousand sockeye salmon were harvested in the 2004 Kenai River dip net fishery, which exceeded the previous maximum harvest of 224 thousand in 2003 by more than 39 thousand fish, or an increase of approximately 18%. The total harvest of all species of salmon from the Kenai River dip net fishery was more than 268 thousand fish.

The Fish Creek personal use dip net fishery was not opened in 2004.

A summary of the harvest of sockeye salmon in the personal use fisheries at the Kenai and Kasilof Rivers reveals that more than 350 thousand fish were taken in 2004. This total exceeded the 2003 sockeye salmon harvest, which had been the highest harvest to date, by more than 50 thousand fish. The 2004 harvest also represents an increase of more than 180% from the harvest of approximately 124 thousand fish taken just eight years ago.

REFERENCES CITED

- Brannian, L. and J. Fox. 1996. Upper Cook Inlet Subsistence and Personal Use Fisheries Report to the Alaska Board of Fisheries, 1996. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2S96-03, Anchorage.
- Braund, S. R. 1982. Cook Inlet Subsistence Salmon Fishery. Alaska Department of Fish and Game, Division of Subsistence Technical Paper 54, Juneau.
- Carlon, J. A. In Preparation. Assessment of coho salmon from the Kenai River, Alaska: Estimation of Adult Abundance, 1999-2003. Alaska Department of Fish and Game, Division of Sport Fish, Anchorage.
- Dodson, T.T. 2003. Big Lake Sockeye Salmon Enhancement Progress Report, 2002. Cook Inlet Aquaculture Association. Soldotna, Alaska.
- Edmundson, J. A., V. P. Litchfield, and D. M. Cialek. 2000. An assessment of trophic status of 25 lakes in the Matanuska-Susitna borough, Alaska. Alaska Department of Fish and Game, Commercial Fisheries Division, Regional Information Report 2A00-26.
- Edmundson, J.M. and J.A. Edmundson. 2002. Sockeye Salmon Production Relative to Changes in Rearing Capacity of Crescent Lake, Upper Cook Inlet. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A02-08, Anchorage.
- King, B. E., and S. C. Walker. 1997. Susitna River sockeye salmon fry studies, 1994 and 1995. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Regional Information Report 2A97-26, Anchorage.
- Litchfield, V.P. and T.M. Willette. 2002. Fish Creek Sockeye Salmon Technical Review. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A01-32, Anchorage.
- Massengill, R. L. and J. A. Carlon. In Preparation. Assessment of coho salmon from the Kenai River, Alaska, 2003. Alaska Department of Fish and Game, Division of Sport Fish, Anchorage.
- Nickerson, R.B. 1975. A Critical Analysis of Some Razor Clam Populations in Alaska. Alaska Department of Fish and Game, Fisheries Rehabilitation, Enhancement and Development Division, Juneau.
- Reimer, A. M., and D. Sigurdsson. 2004. Upper Cook Inlet personal use salmon fishery report, 1996-2003. Alaska Department of Fish and Game, Fishery Data Series No. 04-31, Anchorage.
- Shields, P.A. and T.M. Willette. 2004. An estimate of the Migratory Timing and Abundance of Sockeye Salmon into Upper Cook Inlet, Alaska, in 2003. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A04-15, Anchorage.
- Szarzi, N. and R. Begich. 2001. Recreational fisheries in the Lower Cook Inlet Management Area, 1995-2000. A Report to the Alaska Board of Fisheries. Alaska Department of Fish and Game, Division of Sport Fish, Anchorage. 157p.
- Tarbox, K. E. and G. B. Kyle. 1989. An estimate of adult sockeye salmon *Oncorhynchus nerka* production based on euphotic volume for the Susitna River Drainage, Alaska. Alaska Department of Fish and Game, Commercial Fisheries Division. Regional Information Report No. 2S89-01.
- Tobias, T.M. and T.M. Willette. 2004. Abundance, age, sex and size of chinook, sockeye, coho, and chum salmon returning to Upper Cook Inlet, Alaska in 2003. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A04-10, Anchorage.
- Tobias, T.M. and T.M. Willette. 2004. An estimate of Total Return of Sockeye Salmon to Upper Cook Inlet, Alaska, 1976-2003. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A04-11, Anchorage.
- Todd, G. L., S. R. Carlson, P. A. Shields, D. L. Westerman, and L. K. Brannian. 2001. Sockeye and coho salmon escapement studies in the Susitna drainage. Alaska Department of Fish and Game, Division of Commercial Fisheries. Regional Information Report 2A01-11. Anchorage.

- Westerman, D.L. and T.M. Willette. 2003. Upper Cook Inlet Escapement Studies, 2003. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A04-03, Anchorage.
- Willette, T.M., R. DeCino, and N. Grove. 2003. Mark-Recapture Population Estimates of Coho, Pink, and Chum Salmon Runs to Upper Cook Inlet in 2002. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 2A03-20, Anchorage.
- Yanusz, R., J. Carlon, D. Bosch, and R. Clark. 2002. Stock Status of Coho Salmon in Upper Cook Inlet, Report to the Alaska Board of Fisheries. Alaska Department of Fish and Game, Division of Sport Fish, Anchorage

FIGURES AND TABLES

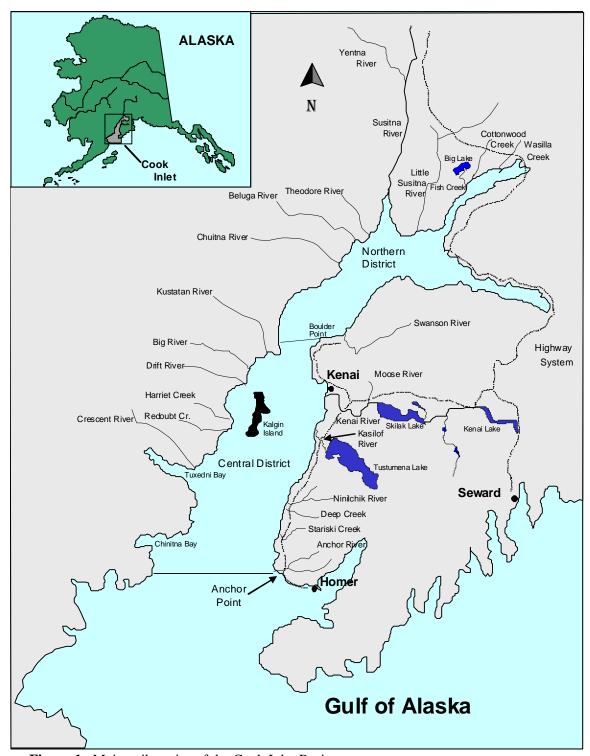


Figure 1.-Major tributaries of the Cook Inlet Basin.

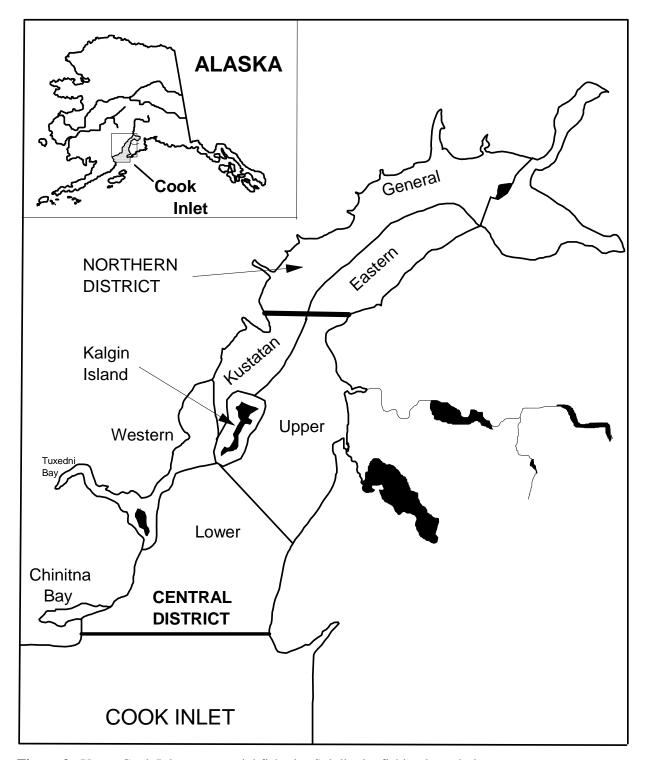


Figure 2.–Upper Cook Inlet commercial fisheries Subdistrict fishing boundaries.

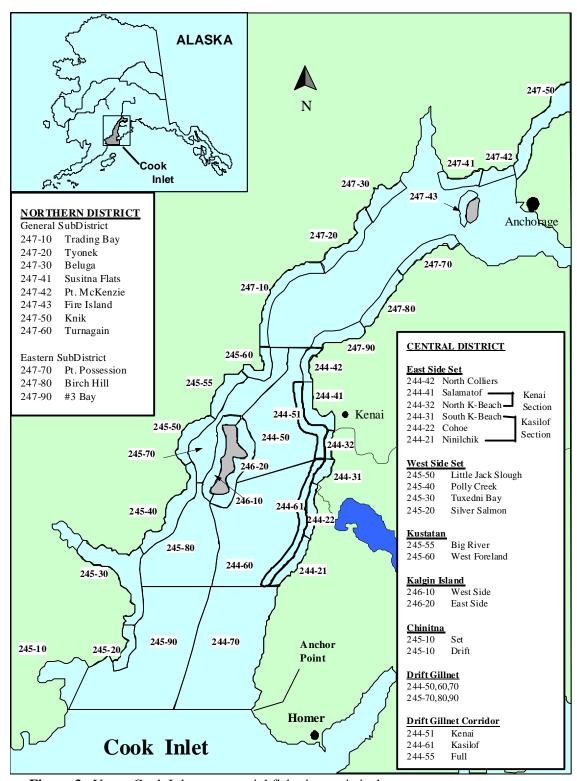


Figure 3.-Upper Cook Inlet commercial fisheries statistical areas.

 ω

Table 1.-Offshore test fish sockeye salmon catch results, F/V Corrina Kay, 2004.

	Number	Fishing					Mean	Water	Air			nning		ding
		Time		Cum		Cum	Length	Temp	Temp	Salinity	W	ind	W	ind
Date	Stations	(min)	Catch	Catch	Index	Index	(mm)	(c)	(c)	(ppm)	Vel	Dir	Vel	Dir
1-Jul	6	222.0	46	46	37	37	545	9.2	6.3	30.3	10	SW	5	SW
2-Jul	6	220.0	35	81	28	65	536	9.2	7.8	30.7	0	-	0	-
3-Jul	6	223.0	17	98	14	79	551	9.4	9.5	30.6	0	-	0	-
of ^{4-Jul}	6	194.0	11	109	9	88	531	9.0	8.2	31.0	8	NE	10	NW
5-Jul	6	227.0	37	146	29	117	542	9.6	9.7	30.6	20	S	12	SE
6-Jul	6	209.0	54	200	43	160	555	9.9	12.0	30.4	8	SE	0	-
7-Jul	6	220.5	42	242	34	194	552	9.4	8.5	30.7	4	S	0	-
8-Jul	6	222.5	31	273	24	218	542	10.1	12.2	30.2	8	NW	0	-
9-Jul	6	228.5	125	398	89	308	567	10.1	10.3	30.2	4	NW	15	NW
10-Jul	6	230.0	146	544	110	417	543	10.7	15.0	30.1	15	NW	0	-
11-Jul	6	231.5	198	742	133	551	560	10.7	12.5	29.9	12	SE	5	NE
12-Jul	6	214.5	127	869	90	640	557	11.0	12.0	29.5	10	SE	18	SE
13-Jul	6	251.0	312	1,181	214	854	579	11.3	9.8	28.1	20	SW	0	
14-Jul	6	230.5	100	1,281	67	921	562	11.5	11.5	28.4	0	-	15	SW
15-Jul	6	212.0	12	1,293	10	932	560	11.7	12.0	28.3	10	SE	4	SW
16-Jul	6	238.5	276	1,569	182	1,114	556	11.6	12.5	28.3	2	SW	10	SW
17-Jul	6	219.0	43	1,612	35	1,148	570	11.0	9.8	29.0	8	SW	15	N
18-Jul	6	249.5	269	1,881	171	1,320	585	10.2	10.5	30.5	20	NW	18	N
19-Jul	6	216.0	30	1,911	24	1,344	563	10.7	10.2	30.3	8	NW	0	-
20-Jul	6	208.0	98	2,009	91	1,435	576	11.2	11.8	29.4	5	S	3	S
21-Jul	6	219.5	30	2,039	24	1,459	561	10.0	10.0	30.8	0	-	14	N
22-Jul	6	260.5	415	2,454	242	1,701	550	10.3	10.3	30.6	28	NW	25	NW
23-Jul	6	226.0	72	2,526	53	1,754	577	9.9	10.5	31.0	12	NE	0	-
24-Jul	6	236.5	96	2,622	60	1,814	553	10.9	13.2	29.8	0	-	15	SW
25-Jul	6	233.5	71	2,693	52	1,866	577	11.2	10.3	29.5	5	NE	8	N
26-Jul ^a	0	227.0	69	2,762	52	1,918	566	-	-	-	-	-	-	-
27-Jul	6	220.5	67	2,829	52	1,970	555	10.4	9.7	30.2	10	NW	10	NE
28-Jul	6	213.5	23	2,852	19	1,989	565	10.7	10.0	25.3	12	NW	0	-
29-Jul	6	227.5	30	2,882	21	2,010	550	11.0	11.5	29.5	0	-	14	SE
30-Jul	6	214.0	13	2,895	11	2,021	550	10.9	10.7	30.9	15	S	0	-

^a The test fish boat was unable to fish on this day; the data was interpolated from day before and day after catches.

Table 2.-Upper Cook Inlet sockeye salmon enumeration by river and date, 2004.

1 able 2		Cook Inlet s i River		f River		nt River		2004. a River	Fish	Creek
Date	daily	cum.	daily	cum.	daily	cum.	daily	cum.	daily	cum.
15-Jun	dany	cuii.	4,176	4,176	uany	cuiii.	uany	cuiii.	uany	cuiii.
15-Jun 16-Jun			1,837	6,013						
10-Jun 17-Jun			1,346	7,359						
17-Jun 18-Jun			2,650	10,009						
18-Jun 19-Jun										
			2,855	12,864						
20-Jun			6,512	19,376						
21-Jun			11,133	30,509						
22-Jun			22,798	53,307						
23-Jun			26,543	79,850						
24-Jun			28,054	107,904	2,368	2,368				
25-Jun			20,270	128,174	1,352	3,720				
26-Jun			1,092	129,266	921	4,641				
27-Jun			1,524	130,790	1,759	6,400				
28-Jun			2,941	133,731	2,694	9,094				
29-Jun			4,517	138,248	4,023	13,117				
30-Jun			4,636	142,884	1,223	14,340				
1-Jul	3,164	3,164	1,253	144,137	1,415	15,755				
2-Jul	3,427	6,591	1,724	145,861	3,003	18,758				
3-Jul	3,560	10,151	2,764	148,625	3,410	22,168				
4-Jul	2,358	12,509	4,339	152,964	2,649	24,817				
5-Jul	1,825	14,334	1,731	154,695	2,686	27,503				
6-Jul	2,045	16,379	3,488	158,183	2,351	29,854				
7-Jul	3,748	20,127	8,797	166,980	1,698	31,552	122	122		
8-Jul	6,013	26,140	5,666	172,646	1,988	33,540	186	308		
9-Jul	2,835	28,975	1,556	174,202	1,758	35,298	109	417		
10-Jul	2,688	31,663	1,769	175,971	1,675	36,973	113	530		
11-Jul	2,224	33,887	1,575	177,546	3,361	40,334	71	601	9	9
12-Jul	3,241	37,128	3,953	181,499	4,847	45,181	93	694	0	9
13-Jul	6,016	43,144	36,448	217,947	7,027	52,208	65	759	3	12
14-Jul	114,106	157,250	92,732	310,679	7,409	59,617	237	996	236	248
15-Jul	138,212	295,462	37,697	348,376	4,563	64,180	5,587	6,583	278	526
16-Jul	94,920	390,382	17,578	365,954	2,698	66,878	12,179	18,762	86	612
17-Jul	48,378	438,760	10,928	376,882	2,443	69,321	8,118	26,880	16	628
18-Jul	32,094	470,854	7,883	384,765	2,463	71,784	5,690	32,570	104	732
19-Jul	20,657	491,511	5,549	390,314	2,284	74,068	4,422	36,992	481	1,213
20-Jul	10,189	501,700	4,471	394,785	2,390	76,458	2,549	39,541	1,840	3,053
21-Jul	30,484	532,184	16,134	410,919	1,824	78,282	1,326	40,867	2,299	5,352
21-Jul 22-Jul	95,470	627,654	7,458	418,377	1,657	79,939	1,412	42,279	659	6,011
23-Jul	29,246	656,900	9,507	427,884	2,939	82,878	1,859	44,138	2,016	8,027
24-Jul	32,187	689,087		436,241	1,111	83,989	2,718	46,856	2,368	10,395
			8,357	430,241						
25-Jul	34,719	723,806	7,750	,	1,018	85,007	1,720	48,576	480	10,875
26-Jul	41,591	765,397	6,498	450,489	979	85,986	2,093	50,669	970	11,845
27-Jul	35,116	800,513	4,746	455,235	332	86,318	780 512	51,449	980	12,825
28-Jul	42,010	842,523	6,069	461,304	721	87,039	512	51,961	985	13,810
29-Jul	35,212	877,735	4,610	465,914	4,729	91,768	733	52,694	688	14,498
30-Jul	25,221	902,956	4,707	470,621	2,591	94,359	1,221	53,915	71	14,569
31-Jul	19,498	922,454	3,905	474,526	1,583	95,942	1,723	55,638	332	14,901
1-Aug	13,483	935,937	2,926	477,452	1,966	97,908	797	56,435	308	15,209

Table 2.—Page 2 of 2.

	Kena	ai River	Kasilo	of River	Cresce	ent River	Yentn	a River	Fish	Creek
Date	daily	cum.	daily	cum.	daily	cum.	daily	cum.	daily	cum.
2-Aug	17,838	953,775	3,845	481,297	1,706	99,614	1,249	57,684	195	15,404
3-Aug	39,009	992,784	5,892	487,189	1,457	101,071	1,193	58,877	416	15,820
4-Aug	43,784	1,036,568	11,723	498,912	1,278	102,349	1,795	60,672	468	16,288
5-Aug	29,016	1,065,584	7,685	506,597	852	103,201	2,180	62,852	592	16,880
6-Aug	27,525	1,093,109	5,924	512,521			2,043	64,895	193	17,073
7-Aug	21,543	1,114,652	5,335	517,856			1,695	66,590	566	17,639
8-Aug	12,077	1,126,729	5,318	523,174			1,340	67,930	157	17,796
9-Aug	30,261	1,156,990	9,782	532,956			1,051	68,981	845	18,641
10-Aug	46,407	1,203,397	6,931	539,887			921	69,902	1,346	19,987
11-Aug	44,475	1,247,872	6,440	546,327			873	70,775	650	20,637
12-Aug	46,103	1,293,975	6,188	552,515			506	71,281	610	21,247
13-Aug	29,391	1,323,366	7,452	559,967					363	21,610
14-Aug	20,115	1,343,481	7,134	567,101					127	21,737
15-Aug	15,686	1,359,167	5,971	573,072					420	22,157
16-Aug	9,918	1,369,085	4,509	577,581						
17-Aug	10,454	1,379,539								
18-Aug	6,442	1,385,981								

36

Table 3.-Commercial Chinook salmon catch by area and date, Upper Cook Inlet 2004.

							East Si	de Setnet						We	est Side S	Subdistri	cts				Norther	n District	<u> </u>
		D :64		Salama		N & :					4.1	***	4	T7. 4	.4.	17.1	. •	GI: 14		***	G: 1	F . 4	G: 1
D .	-	Drift		E.Forel		Bea			Ninilchik		otal	West		Kust		Kal			na Bay	1	Side		Side
Date	Daily	Cum	1	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
5/31																				237	237	117	117
6/2														76	76						237		117
6/4														93	169					0.40	237	122	117
6/7														31	200					943	1,180	123	240
6/9														113	313						1,180		240
6/11														60	373						1,180		240
6/14														40	413					324	1,504	75	315
6/16														3	416						1,504		315
6/17												5	5		416						1,504		315
6/18													5	12	428						1,504		315
6/21												33	38		428						1,504		315
6/23													38	1	429						1,504		315
6/24													38		429						1,504		315
6/25		5				37	37	137	137	174	174	71	109	1	430						1,504		315
6/26	424	429				9	46	218	355	227	401	4	113		430						1,504		315
6/27		429					46	8	363	8	409										1,504		315
6/28	50	479				68	114	129	492	197	606	99 113	212	430	430	7	7			46	1,550	8	323
6/29	1	480				10	124	11	503	21	627	113 16	228	150	430		7				1,550		323
6/30	9	489				63	187	212	715	275	902	14	242		430		7				1,550		323
7/1	102	591				86	273	258	973	344	1,246	41	283		430	6	13			9	1,559	6	329
7/2	8	599							973		1,246	13	296				13				1,559		329
7/3		599				273			973		1,246	11	307	430			13				1,559		329
7/4		599				72 ⁷³	345	213	1,186	285	1,531	16	323	430	430		13				1,559		329
7/5	265	864				273 208	553	381	1,567	589	2,120	47	370	430		2	15			5	1,564	1	330
7/6		864					553		1,567		2,120	15	385	430	430		15				1,564		330
7/7		864					553		1,567		2,120	13	398	430	430		15				1,564		330

37

Table 3.–Page 2 of 3.

							East Sic	de Setnet						W	est Side S	Subdistri	cts				Norther	n District	t
		Dr	:f4	Salam E.Fore		N & Bea		Cabaall	Ninilchik	T	otal	Wes	torn	Kuef	tatan	K o	lgin	Chinit	na Bav	Wos	t Side	Foet	Side
n	ate	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
	//8	138	1,002	580	580	363	916	645	2,212	1,588	3,708	32	430	Daily	430	6	21	Daily	Cum	8	1,572	Dany 1	331
	7/9	1	1,002	300	580	34	950	38	2,212	72	3,780	17	447		430		21				1,572	1	331
	/10	15	1,018		580	180	1,130	689	2,939	869	4,649	5	452		430		21				1,572		331
	/11	10	1,018		580	100	1,130	00)	2,939	00)	4,649	9	461		430		21				1,572		331
	/12	94	1,112	408	988	586	1,716	606	3,545	1,600	6,249	81	542		430		21			8	1,580		331
	/13	7.	1,112	.00	988	200	1,716	000	3,545	1,000	6,249	12	554		430		21				1,580		331
	/14	40	1,152	10	998	62	1,778	69	3,614	141	6,390	1	555		430		21				1,580		331
1	/15	38	1,190	129	1,127	362	2,140	465	4,079	956	7,346	46	601		430	5	26			2	1,582	2	333
i	/16	21	1,211	136	1,263	248	2,388	334	4,413	718	8,064	3	604		430		26				1,582	_	333
	/17	53	1,264	131	1,394	241	2,629	401	4,814	773	8,837	5	609		430		26				1,582		333
7/	/18	10	1,274	87	1,481	271	2,900	400	5,214	758	9,595		609		430		26				1,582		333
וי	/19	24	1,298	215	1,696	319	3,219	376	5,590	910	10,505	7	616		430	1.103	1,129			3	1,585	1	334
7/	/20		1,298		1,696		3,219		5,590		10,505	3	619		430	,	1,129				1,585		334
7/	/21	30	1,328	108	1,804	249	3,468	417	6,007	774	11,279		619		430		1,129				1,585		334
7/	/22	15	1,343	161	1,965	352	3,820	476	6,483	989	12,268	7	626		430	1	1,130				1,585		334
7/	/23	28	1,371	326	2,291	323	4,143	359	6,842	1,008	13,276	1	627		430		1,130				1,585		334
7/	/24	16	1,387	87	2,378	237	4,380	668	7,510	992	14,268		627		430	1	1,131				1,585		334
7/	/25	12	1,399	70	2,448	187	4,567	446	7,956	703	14,971		627		430		1,131				1,585		334
7/	/26	12	1,411	75	2,523	259	4,826	483	8,439	817	15,788	4	631		430		1,131				1,585		334
7/	/27	23	1,434	41	2,564	126	4,952	249	8,688	416	16,204		631		430		1,131				1,585		334
7/	/28	15	1,449	112	2,676	281	5,233	408	9,096	801	17,005		631		430		1,131				1,585		334
7/	/29	14	1,463	126	2,802	263	5,496	332	9,428	721	17,726		631		430		1,131			3	1,588	2	336
7/	/30	11	1,474	132	2,934	269	5,765	337	9,765	738	18,464		631		430		1,131				1,588		336
7/	/31	4	1,478	85	3,019	179	5,944	201	9,966	465	18,929		631		430	6	1,137				1,588		336
8	3/1	3	1,481	204	3,223	350	6,294	229	10,195	783	19,712		631		430		1,137				1,588		336
8	3/2	7	1,488	72	3,295	126	6,420	202	10,397	400	20,112	1	632		430	2	1,139				1,588		336

Table 3.–Page 3 of 3.

						East Si	de Setnet						W	est Side S	Subdistri	icts				Norther	n District	t
		•	Salam	atof /	N &	S K.																
	Dr	rift	E.Fore	elands	Be	ach	Cohoe/	Ninilchik	To	otal	Wes	tern	Kust	tatan	Ka	lgin	Chinit	na Bay	West	Side	East	Side
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
8/3	5	1,493		3,295		6,420		10,397		20,112		632		430		1,139				1,588		336
8/4	12	1,505	93	3,388	254	6,674	108	10,505	455	20,567	1	633		430		1,139				1,588		336
8/5	6	1,511	114	3,502	149	6,823	118	10,623	381	20,948		633		430	2	1,141				1,588		336
8/6	8	1,519	122	3,624	168	6,991	55	10,678	345	21,293		633		430		1,141				1,588		336
8/7	3	1,522	137	3,761	146	7,137	80	10,758	363	21,656		633		430		1,141				1,588		336
8/8		1,522		3,761		7,137		10,758		21,656		633		430		1,141				1,588		336
8/9	4	1,526		3,761		7,137		10,758		21,656		633		430		1,141			1	1,589		336
8/12		1,526		3,761		7,137		10,758		21,656	3	636		430		1,141				1,589	132	468
8/13		1,526		3,761		7,137		10,758		21,656		636		430		1,141				1,589		468
8/14		1,526		3,761		7,137		10,758		21,656		636		430	1	1,142				1,589		468
8/16		1,526		3,761		7,137		10,758		21,656		636		430		1,142				1,589	1	469

38

Table 4.—Commercial sockeye salmon catch by area and date, Upper Cook Inlet, 2004.

					,	East Side	Setnet						We	st Side S	Subdistricts				N	Vorthern	District	
	Drift		Salamatof / E.	.Forelands	N & S K.	Beach	Cohoe/Ni	nilchik	Tot	al	West S	ide	Kustata	an	Kalgi	n	Chinitna	a Bay	West Si	de	East Si	ide
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
31-May																			39	39	111	111
2-Jun													560	560						39		111
4-Jun													948	1,508						39		111
7-Jun													149	1,657					193	232	449	560
9-Jun											47	47	227	1,884						232		560
11-Jun												47	458	2,342						232		560
14-Jun												47	508	2,850					36	268	101	661
16-Jun												47	53	2,903						268		661
17-Jun											54	101		2,903						268		661
18-Jun												101	430	3,333						268		661
21-Jun											174	275		3,333						268		661
23-Jun												275	161	3,494						268		661
24-Jun											30	305		3,494						268		661
25-Jun	1,260	1,260			18,820	18,820	61,092	61,092	79,912	79,912	1,771	2,076	181	3,675						268		661
26-Jun	258	1,518			9,983	28,803	37,004	98,096	46,987	126,899	1,086	3,162		3,675						268		661
27-Jun		1,518				28,803	4,281	102,377	4,281	131,180		3,162		3,675						268		661
28-Jun	22,670	24,188			22,859	51,662	38,426	140,803	61,285	192,465	3,308	6,470		3,675	1,711	1,711			231	499	563	1,224
29-Jun	58	24,246			2,562	54,224	10,834	151,637	13,396	205,861	1,917	8,387		3,675		1,711				499		1,224
30-Jun	2,021	26,267			6,930	61,154	55,043	206,680	61,973	267,834	1,033	9,420		3,675		1,711				499		1,224
1-Jul	30,319	56,586			9,541	70,695	32,225	238,905	41,766	309,600	1,608	11,028		3,675	2,852	4,563			32	531	772	1,996
2-Jul	2,740	59,326				70,695		238,905		309,600	2,017	13,045		3,675		4,563				531		1,996
3-Jul		59,326				70,695		238,905		309,600	960	14,005		3,675		4,563				531		1,996
4-Jul	970	60,296			6,875	77,570	39,132	278,037	46,007	355,607	1,073	15,078		3,675		4,563				531		1,996
5-Jul	64,140	124,436			6,081	83,651	25,435	303,472	31,516	387,123	1,573	16,651		3,675	976	5,539			101	632	273	2,269
6-Jul		124,436				83,651		303,472		387,123	1,762	18,413		3,675		5,539				632		2,269
7-Jul	296	124,732				83,651		303,472		387,123	2,062	20,475		3,675		5,539				632		2,269
8-Jul	273,850	398,582	3,929	3,929	8,174	91,825	39,530	343,002	51,633	438,756	1,082	21,557		3,675	1,507	7,046			537	1,169	196	2,465
9-Jul	1,025	399,607		3,929	842	92,667	1,483	344,485	2,325	441,081	4,021	25,578		3,675		7,046				1,169		2,465
10-Jul	409	400,016		3,929	2,442	95,109	18,604	363,089	21,046	462,127	933	26,511		3,675		7,046				1,169		2,465
11-Jul		400,016		3,929		95,109		363,089		462,127	3,596	30,107		3,675		7,046				1,169		2,465
12-Jul	222,717	622,733	13,699	17,628	5,747	100,856	13,570	376,659	33,016	495,143	5,259	35,366		3,675	7,266	14,312			305	1,474	107	2,572
13-Jul		622,733		17,628		100,856		376,659		495,143	1,712	37,078		3,675		14,312				1,474		2,572
14-Jul	36,608	659,341	22,303	39,931	56,100	156,956	34,354	411,013	112,757	607,900	2,044	39,122		3,675		14,312			23	1,497		2,572
15-Jul	273,799	933,140	209,804	249,735	105,615	262,571	46,345	457,358	361,764	969,664	5,338	44,460		3,675	3,947	18,259			4,302	5,799	4,891	7,463
16-Jul	33,024	966,164	50,788	300,523	25,689	288,260	24,430	481,788	100,907	1,070,571	1,840	46,300		3,675		18,259				5,799		7,463
17-Jul	27,632	993,796	40,176	340,699	17,913	306,173	16,086	497,874	74,175	1,144,746	1,132	47,432		3,675		18,259				5,799		7,463

Table 4.–Page 2 of 2.

						East Side	Setnet						W	est Side S	Subdistricts					Northeri	District	
	Drif	t	Salamatof / E	.Forelands	N & S K.	Beach	Cohoe/Ni	nilchik	To	tal	West S	ide	Kustat	tan	Kalg	in	Chinitr	na Bay	West S	ide	East S	ide
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cun	n Daily	Cum	Daily	Cum
18-Jul	5,630	999,426	23,167	363,866	13,498	319,671	11,881	509,755	48,546	1,193,292	2,026	49,458		3,675		18,259				5,799		7,463
19-Jul	409,779	1,409,205	13,301	377,167	6,670	326,341	7,472	517,227	27,443	1,220,735	3,455	52,913		3,675	12,449	30,708			3,505	9,304	755	8,218
20-Jul		1,409,205		377,167		326,341		517,227		1,220,735	1,803	54,716		3,675		30,708				9,304		8,218
21-Jul	220,250	1,629,455	71,381	448,548	48,946	375,287	18,840	536,067	139,167	1,359,902	138	54,854		3,675		30,708				9,304		8,218
22-Jul	9,001	1,638,456	31,217	479,765	27,378	402,665	10,194	546,261	68,789	1,428,691	2,652	57,506	92	3,767	4,191	34,899			1,137	10,441	645	8,863
23-Jul	269,573	1,908,029	39,043	518,808	20,287	422,952	8,572	554,833	67,902	1,496,593	880	58,386		3,767		34,899				10,441		8,863
24-Jul	52,724	1,960,753	77,170	595,978	22,990	445,942	7,655	562,488	107,815	1,604,408	353	58,739		3,767	3,354	38,253				10,441		8,863
25-Jul	16,764	1,977,517	57,838	653,816	19,585	465,527	5,598	568,086	83,021	1,687,429	412	59,151		3,767		38,253				10,441		8,863
26-Jul	79,910	2,057,427	28,213	682,029	41,922	507,449	11,983	580,069	82,118	1,769,547	945	60,096		3,767	716	38,969			945	11,386	183	9,046
27-Jul	87,876	2,145,303	13,419	695,448	31,495	538,944	14,834	594,903	59,748	1,829,295		60,096		3,767		38,969			17	11,403		9,046
28-Jul	76,448	2,221,751	27,289	722,737	22,833	561,777	9,472	604,375	-	1,888,889	18	60,114		3,767		38,969				11,403		9,046
29-Jul	68,042	2,289,793	26,099	748,836	13,030	574,807	3,172	607,547		1,931,190	2,276	62,390	50	3,817	3,709	42,678			737	12,140	670	9,716
30-Jul	10,405	2,300,198	21,388	770,224	9,073	583,880	3,312	610,859	-	1,964,963	85	62,475		3,817		42,678				12,140		9,716
31-Jul	4,965	2,305,163	18,638	788,862	9,254	593,134	3,402	614,261	-	1,996,257		62,475		3,817	1,876	44,554				12,140		9,716
1-Aug	8,436	2,313,599	25,166	814,028	22,281	615,415	3,934	618,195		2,047,638		62,475		3,817		44,554				12,140		9,716
2-Aug	54,805	2,368,404	32,623	846,651	12,061	627,476	2,899	621,094	47,583	2,095,221	1,514	63,989		3,817	4,217	48,771				12,140		9,716
3-Aug	44,772	2,413,176	27.056	846,651	12.550	627,476	2 422	621,094	42.027	2,095,221	1.754	63,989	274	3,817		48,771				12,140		9,716
4-Aug	62,135	2,475,311	27,956	874,607	12,558 6,905	640,034	3,423 5,247	624,517		2,139,158	1,754	65,743	274	4,091	4,707	48,771			1.066	12,140	448	9,716
5-Aug 6-Aug	19,361 14,696	2,494,672 2,509,368	21,461 21,428	896,068 917,496	10,049	646,939 656,988	2,543	629,764 632,307		2,172,771 2,206,791		65,743 65,743		4,091 4,091	4,707	53,478 53,478			1,066	13,206 13,206	446	10,164 10,164
7-Aug	4,136	2,513,504	14,818	932,314	7,204	664,192	5,557	637,864		2,234,370		65,743		4,091	2,689	56,167				13,206		10,164
8-Aug	2,412	2,515,916	14,010	932,314	7,204	664,192	5,557	637,864	21,317	2,234,370		65,743		4,091	2,007	56,167				13,206		10,164
9-Aug	7,564	2,523,480		932,314		664,192		637,864		2,234,370	1,175	66,918	10	4,101	2,342	58,509			622	13,828	630	10,794
12-Aug		2,523,480		932,314		664,192		637,864		2,234,370	763	67,681	6	4,107	1,733	60,242			157	13,985	576	11,370
13-Aug	234	2,523,714		932,314		664,192		637,864		2,234,370		67,681		4,107		60,242				13,985		11,370
14-Aug		2,523,714		932,314		664,192		637,864		2,234,370		67,681		4,107	786	61,028				13,985		11,370
16-Aug	13	2,523,727		932,314		664,192		637,864		2,234,370	284	67,965		4,107	599	61,627			114	14,099	655	12,025
19-Aug		2,523,727		932,314		664,192		637,864		2,234,370	301	68,266		4,107		61,627			51	14,150	552	12,577
23-Aug		2,523,727		932,314		664,192		637,864		2,234,370	159	68,425		4,107	89	61,716			7	14,157	303	12,880
26-Aug		2,523,727		932,314		664,192		637,864		2,234,370	56	68,481		4,107		61,716				14,157	80	12,960
30-Aug		2,523,727		932,314		664,192		637,864		2,234,370		68,481		4,107		61,716				14,157	9	12,969
2-Sep		2,523,727		932,314		664,192		637,864		2,234,370		68,481		4,107		61,716				14,157		12,969
6-Sep		2,523,727		932,314		664,192		637,864		2,234,370		68,481		4,107		61,716				14,157	4	12,973
9-Sep		2,523,727		932,314		664,192		637,864		2,234,370		68,481		4,107		61,716				14,157	11	12,984
13-Sep		2,523,727		932,314		664,192		637,864		2,234,370		68,481		4,107		61,716				14,157	3	12,987

Table 5.—Commercial coho salmon catch by area and date, Upper Cook Inlet, 2004.

						East Side	Setnet						W	est Side S	Subdistricts					Northern	n District	
	Drift		Salamatof/E Fo	orelands	N & S K. B	each	Cohoe/Nini	lchik	Total		Wester	rn	Kustata	n	Kalgin		Chinitna I	Bay	West Sic	le	East Sid	le
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
14-Jun																			5	5		
25-Jun							4	4	4	4	3	3								5		
26-Jun							8	12	8	12		3								5		
27-Jun								12		12		3								5		
28-Jun	443	443			3	3	3	15	6	18	5	8			19	19			101	106	64	64
29-Jun	2	445			1	4		15	1	19	8	16				19				106		64
30-Jun		445			1	5	11	26	12	31	4	20				19				106		64
1-Jul	1,286	1,731			1	6	15	41	16	47	5	25			67	86			7	113	136	200
2-Jul	13	1,744				6		41		47	5	30				86				113		200
3-Jul		1,744				6		41		47	4	34				86				113		200
4-Jul		1,744			2	8	9	50	11	58	6	40				86				113		200
5-Jul	2,563	4,307			3	11	4	54	7	65	13	53			177	263			24	137	10	210
6-Jul		4,307				11		54		65	12	65				263				137		210
7-Jul	18	4,325				11		54		65	26	91				263				137		210
8-Jul	8,650	12,975	91	91	14	25	16	70	121	186	13	104			329	592			227	364	81	291
9-Jul	45	13,020		91	1	26	1	71	2	188	80	184				592				364		291
10-Jul	14	13,034		91	25	51	20	91	45	233	32	216				592				364		291
11-Jul		13,034		91		51		91		233	97	313				592				364		291
12-Jul	13,049	26,083	128	219	14	65	9	100	151	384	88	401			1,424	2,016			1,904	2,268	43	334
13-Jul		26,083		219		65		100		384	35	436				2,016				2,268		334
14-Jul	311	26,394	155	374	42	107	32	132	229	613	105	541				2,016				2,268		334
15-Jul	10,146	36,540	254	628	27	134	54	186	335	948	253	794			584	2,600			3,800	6,068	369	703
16-Jul	312	36,852	173	801	6	140	43	229	222	1,170	137	931				2,600				6,068		703
17-Jul	479	37,331	172	973	12	152	41	270	225	1,395	167	1,098				2,600				6,068		703
18-Jul	237	37,568	143	1,116	5	157	28	298	176	1,571	390	1,488				2,600				6,068		703
19-Jul	27,324	64,892	287	1,403	40	197	44	342	371	1,942	318	1,806			1,545	4,145			2,981	9,049	284	987
20-Jul		64,892		1,403		197		342		1,942	359	2,165				4,145				9,049		987
21-Jul	18,738	83,630	1,126	2,529	74	271	97	439	1,297	3,239	18	2,183				4,145				9,049		987
22-Jul	227	83,857	354	2,883	18	289	38	477	410	3,649	521	2,704	168	168	1,941	6,086			1,557	10,606	743	1,730
23-Jul	33,048	116,905	1,244	4,127	150	439	76	553	1,470	5,119	403	3,107		168		6,086				10,606		1,730
24-Jul	1,472	118,377	844	4,971	98	537	124	677	1,066	6,185	51	3,158		168	1,978	8,064			Ī	10,606		1,730

Table 5.–Page 2 of 2.

						East Side	e Setnet						W	est Side S	ubdistricts					Norther	n District	
	Drift		Salamatof/E Fo	orelands	N & S K. B	each	Cohoe/Ninil	chik	Total		Western	n	Kustatan	n	Kalgin		Chinitna I	Bay	West Sie	le	East Si	de
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
25-Jul	435	118,812	421	5,392	43	580	55	732	519	6,704	57	3,215		168		8,064				10,606		1,730
26-Jul	7,020	125,832	1,599	6,991	133	713	195	927	1,927	8,631	356	3,571		168	369	8,433			3,446	14,052	521	2,251
27-Jul	5,164	130,996	1,990	8,981	167	880	153	1,080	2,310	10,941		3,571		168		8,433				14,052		2,251
28-Jul	12,976	143,972	2,899	11,880	137	1,017	195	1,275	3,231	14,172	139	3,710		168		8,433				14,052		2,251
29-Jul	20,107	164,079	999	12,879	145	1,162	75	1,350	1,219	15,391	1,037	4,747	876	1,044	1,953	10,386			3,803	17,855	698	2,949
30-Jul	1,498	165,577	671	13,550	111	1,273	137	1,487	919	16,310	379	5,126		1,044		10,386				17,855		2,949
31-Jul	535	166,112	554	14,104	120	1,393	117	1,604	791	17,101		5,126		1,044	1,254	11,640				17,855		2,949
1-Aug	380	166,492	1,581	15,685	373	1,766	210	1,814	2,164	19,265		5,126		1,044		11,640				17,855		2,949
2-Aug	8,220	174,712	551	16,236	124	1,890	187	2,001	862	20,127	943	6,069		1,044	1,885	13,525				17,855		2,949
3-Aug	2,117	176,829		16,236		1,890		2,001		20,127		6,069		1,044		13,525				17,855		2,949
4-Aug	12,682	189,511	843	17,079	297	2,187	174	2,175	1,314	21,441	1,336	7,405	800	1,844		13,525				17,855		2,949
5-Aug	1,837	191,348	856	17,935	513	2,700	467	2,642	1,836	23,277		7,405		1,844	2,954	16,479			3,950	21,805	429	3,378
6-Aug	1,642	192,990	1,999	19,934	597	3,297	261	2,903	2,857	26,134		7,405		1,844		16,479				21,805		3,378
7-Aug	742	193,732	2,193	22,127	910	4,207	900	3,803	4,003	30,137		7,405		1,844	2,029	18,508				21,805		3,378
8-Aug	290	194,022		22,127		4,207		3,803		30,137		7,405		1,844		18,508				21,805		3,378
9-Aug	4,288	198,310		22,127		4,207		3,803		30,137	1,237	8,642	388	2,232	1,558	20,066			3,260	25,065	535	3,913
12-Aug		198,310		22,127		4,207		3,803		30,137	1,333	9,975	471	2,703	351	20,417			2,704	27,769	987	4,900
13-Aug	173	198,483		22,127		4,207		3,803		30,137		9,975		2,703		20,417				27,769		4,900
14-Aug		198,483		22,127		4,207		3,803		30,137		9,975		2,703	357	20,774				27,769		4,900
16-Aug	10	198,493		22,127		4,207		3,803		30,137	741	10,716		2,703	281	21,055			2,293	30,062	1,673	6,573
19-Aug		198,493		22,127		4,207		3,803		30,137	626	11,342		2,703		21,055			1,408	31,470	1,292	7,865
23-Aug		198,493		22,127		4,207		3,803		30,137	654	11,996		2,703	41	21,096			463	31,933	2,050	9,915
26-Aug		198,493		22,127		4,207		3,803		30,137	462	12,458		2,703		21,096			375	32,308	1,848	11,763
30-Aug		198,493		22,127		4,207		3,803		30,137		12,458		2,703		21,096			188	32,496	147	11,910
2-Sep		198,493		22,127		4,207		3,803		30,137		12,458		2,703		21,096			15	32,511		11,910
6-Sep		198,493		22,127		4,207		3,803		30,137		12,458		2,703		21,096				32,511	13	11,923
9-Sep		198,493		22,127		4,207		3,803		30,137		12,458		2,703		21,096				32,511	85	12,008
13-Sep		198,493		22,127		4,207		3,803		30,137		12,458		2,703		21,096				32,511	300	12,308

43

Table 6.—Commercial pink salmon catch by area and date, Upper Cook Inlet, 2004.

						East Side	Setnet						We	st Side S	Subdistricts					Norther	n District	
	Drift		Salamatof/E Fo	orelands	N & S K. Be	ach	Cohoe/Ninil	chik	Total		Weste	rn	Kustata	an	Kalgin		Chinitna	Bay	West Sid	e	East Sid	le
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
25-Jun	1	1			1	1	6	6	7	7												
26-Jun		1			1	2	5	11	6	13	1	1										
27-Jun		1				2		11		13		1										
28-Jun	26	27				2	4	15	4	17	1	2									1	1
29-Jun		27				2	1	16	1	18	3	5										1
30-Jun		27				2	6	22	6	24		5										1
1-Jul	59	86			2	4	15	37	17	41	1	6			1	1						1
2-Jul	1	87				4		37		41	2	8				1						1
3-Jul		87				4		37		41		8				1						1
4-Jul		87			2	6	5	42	7	48	1	9				1						1
5-Jul	158	245			1	7	108	150	109	157	3	12			3	4					3	4
6-Jul		245				7		150		157	4	16				4						4
7-Jul	12	257				7		150		157	6	22				4						4
8-Jul	1,140	1,397	26	26	8	15	41	191	75	232	5	27			13	17					1	5
9-Jul	2	1,399		26	3	18	7	198	10	242	17	44				17						5
10-Jul	2	1,401		26	3	21	84	282	87	329	6	50				17						5
11-Jul		1,401		26		21		282		329	25	75				17						5
12-Jul	4,345	5,746	66	92	10	31	82	364	158	487	68	143			165	182			6	6	3	8
13-Jul		5,746		92		31		364		487	17	160				182				6		8
14-Jul	184	5,930		158	51	82	54	418	171	658	39	199				182				6		8
15-Jul	13,508	19,438		433	13	95	230	648	518	1,176	76	275			113	295			100	106		225
16-Jul	459	19,897	247	680	19	114	182	830	448	1,624	50	325				295				106		225
17-Jul	649	20,546	590	1,270	21	135	233	1,063	844	2,468	3,024	3,349				295				106		225
18-Jul	288	20,834	327	1,597	14	149	235	1,298	576	3,044	44	3,393				295				106		225
19-Jul	43,311	64,145	220	1,817	62	211	270	1,568	552	3,596	65	3,458			762	1,057			96	202	140	365
20-Jul		64,145		1,817		211		1,568		3,596	69	3,527				1,057				202		365

Table 6.—Page 2 of 2.

						East Side	e Setnet						We	st Side	Subdistricts					Norther	n District	
	Drift		Salamatof/E F	orelands	N & S K. B	each	Cohoe/Nini	lchik	Total	l	Weste	rn	Kustata	an	Kalgir	1	Chinitna	Bay	West Sid	le	East Sid	ie
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
21-Jul	33,401	97,546	1,530	3,347	38	249	212	1,780	1,780	5,376	3	3,530				1,057				202		365
22-Jul	248	97,794	830	4,177	34	283	160	1,940	1,024	6,400	96	3,626			713	1,770			63	265	283	648
23-Jul	39,388	137,182	1,273	5,450	40	323	143	2,083	1,456	7,856	47	3,673				1,770				265		648
24-Jul	1,624	138,806	1,066	6,516	59	382	162	2,245	1,287	9,143	10	3,683			1,199	2,969				265		648
25-Jul	518	139,324	795	7,311	52	434	220	2,465	1,067	10,210	16	3,699				2,969				265		648
26-Jul	12,037	151,361	776	8,087	125	559	527	2,992	1,428	11,638	49	3,748				2,969			78	343	122	770
27-Jul	2,655	154,016	955	9,042	202	761	336	3,328	1,493	13,131		3,748				2,969				343		770
28-Jul	12,590	166,606	1368	10410	502	1,263	707	4,035	2,577	15,708	4	3,752				2,969				343		770
29-Jul	16,728	183,334	1269	11,679	486	1,749	332	4,367	2,087	17,795	46	3,798			500	3,469			54	397	312	1,082
30-Jul	2,305	185,639	1296	12,975	737	2,486	447	4,814	2,480	20,275	15	3,813				3,469				397		1,082
31-Jul	708	186,347	1210	14,185	792	3,278	615	5,429	2,617	22,892		3,813			215	3,684				397		1,082
1-Aug	636	186,983	3046	17,231	2,005	5,283	953	6,382	6,004	28,896		3,813				3,684				397		1,082
2-Aug	6,606	193,589	1519	18,750	986	6,269	2,027	8,409	4,532	33,428	151	3,964			454	4,138				397		1,082
3-Aug	3,205	196,794		18,750		6,269		8,409		33,428		3,964				4,138				397		1,082
4-Aug	10,582	207,376	3782	22,532	3,645	9,914	2,665	11,074	10,092	43,520	233	4,197				4,138				397		1,082
5-Aug	4,297	211,673	6261	28,793	4,392	14,306	7,413	18,487	18,066	61,586		4,197			1,001	5,139			119	516	28	1,110
6-Aug	4,528	216,201	9421	38,214	5,712	20,018	3,901	22,388	19,034	80,620		4,197				5,139				516		1,110
7-Aug	5,394	221,595	10384	48,598	9,604	29,622	7,188	29,576	27,176	107,796		4,197			1,667	6,806				516		1,110
8-Aug	3,635	225,230		48,598		29,622		29,576		107,796		4,197				6,806				516		1,110
9-Aug	9,628	234,858		48,598		29,622		29,576		107,796	129	4,326			518	7,324			8	524	136	1,246
12-Aug		234,858		48,598		29,622		29,576		107,796	121	4,447			194	7,518			2	526	98	1,344
13-Aug	60	234,918		48,598		29,622		29,576		107,796		4,447				7,518				526		1,344
14-Aug		234,918		48,598		29,622		29,576		107,796		4,447			180	7,698				526		1,344
16-Aug	6	234,924		48,598		29,622		29,576		107,796	66	4,513			283	7,981				526	34	1,378
19-Aug		234,924		48,598		29,622		29,576		107,796	23	4,536				7,981			2	528	58	1,436
23-Aug		234,924		48,598		29,622		29,576		107,796	24	4,560				7,981			4	532	38	1,474
26-Aug		234,924		48,598		29,622		29,576		107,796	14	4,574				7,981				532	11	1,485

45

Table 7.—Commercial chum salmon catch by area and date, Upper Cook Inlet, 2004.

						East Sid	e Setnet						We	est Side S	Subdistricts				I	Northeri	n District	
	Drift		Salamatof/E Fo	relands	N & S K. I	Beach	Cohoe/Nini	lchik	Total		Western	1	Kustatan	ı	Kalgin		Chinitna B	lay	General		Eastern	1
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum
26-Jun							2	2	2	2												
27-Jun								2		2												
28-Jun	853	853						2		2												
29-Jun		853						2		2	1	1										
30-Jun		853						2		2		1										
1-Jul	3,152	4,005						2		2		1										
2-Jul	16	4,021						2		2		1										
3-Jul		4,021						2		2	1	2										
4-Jul		4,021					1	3	1	3		2										
5-Jul	3,701	7,722			1	1	1	4	2	5	4	6			32	32					1	1
6-Jul		7,722				1		4		5	3	9				32						1
7-Jul	112	7,834				1		4		5	3	12				32						1
8-Jul	10,164	17,998	6	6	1	2	1	5	8	13	4	16			25	57			66	66	8	9
9-Jul	40	18,038		6		2		5		13	11	27				57				66		9
10-Jul	17	18,055		6		2	1	6	1	14	1	28				57				66		9
11-Jul		18,055		6		2		6		14	116	144				57				66		9
12-Jul	10,957	29,012	5	11		2	1	7	6	20	51	195			76	133			95	161	4	13
13-Jul		29,012		11		2		7		20	8	203				133				161		13
14-Jul	20	29,032	1	12	1	3		7	2	22	40	243				133				161		13
15-Jul	7,559	36,591	21	33	4	7		7	25	47	84	327			16	149			268	429	22	35
16-Jul	96	36,687	1	34		7	1	8	2	49	26	353				149				429		35
17-Jul	279	36,966	4	38		7	10	18	14	63	17	370				149				429		35
18-Jul	332	37,298	2	40		7	3	21	5	68	40	410				149				429		35
19-Jul	16,415	53,713	167	207		7	2	23	169	237	53	463			134	283			352	781	12	47
20-Jul		53,713		207		7		23		237	55	518				283				781		47
21-Jul	10,388	64,101	16	223		7		23	16	253	3	521				283				781		47
22-Jul	70	64,171	10	233		7		23	10	263	115	636			65	348			107	888	10	57
23-Jul	19,401	83,572	13	246	1	8	4	27	18	281	37	673				348				888		57
24-Jul	364	83,936	9	255	1	9	5	32	15	296	31	704			182	530				888		57
25-Jul	198	84,134	12	267	1	10	2	34	15	311	19	723				530				888		57

Table 7.—Page 2 of 2.

						East Side	Setnet						W	est Side S	Subdistricts					Northeri	n District	
	Drift		Salamatof/E Fo	relands	N & S K. Be	each	Cohoe/Ninil	chik	Total		Western	n	Kustata	n	Kalgin		Chinitna I	Вау	General		Eastern	a
Date	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cum	Daily	Cun	Daily	Cum	Daily	Cum
26-Jul	6,950	91,084	28	295	168	178	16	50	212	523	179	902				530			211	1,099	10	67
27-Jul	946	92,030	75	370	11	189	15	65	101	624		902				530				1,099		67
28-Jul	7,217	99,247	78	448	1	190	5	70	84	708	12	914				530				1,099		67
29-Jul	11,641	110,888	15	463		190	2	72	17	725	172	1,086			61	591			205	1,304	9	76
30-Jul	1,117	112,005	39	502	1	191	5	77	45	770	27	1,113				591				1,304		76
31-Jul	415	112,420	79	581	5	196	4	81	88	858		1,113			25	616				1,304		76
1-Aug	417	112,837	138	719	1	197	2	83	141	999		1,113				616				1,304		76
2-Aug	7,718	120,555	16	735	105	302	2	85	123	1,122	147	1,260			164	780				1,304		76
3-Aug	2,968	123,523		735		302		85		1,122		1,260				780				1,304		76
4-Aug	8,803	132,326	14	749	3	305	855	940	872	1,994	321	1,581	1	1		780				1,304		76
5-Aug	1,268	133,594	8	757		305		940	8	2,002		1,581		1	241	1,021			474	1,778	4	80
6-Aug	650	134,244	4	761	1	306		940	5	2,007		1,581		1		1,021				1,778		80
7-Aug	332	134,576	9	770		306	3	943	12	2,019		1,581		1	333	1,354				1,778		80
8-Aug	141	134,717		770		306		943		2,019		1,581		1		1,354				1,778		80
9-Aug	1,256	135,973		770		306		943		2,019	610	2,191		1	149	1,503			129	1,907	37	117
12-Aug		135,973		770		306		943		2,019	360	2,551		1	47	1,550			42	1,949	13	130
13-Aug	23	135,996		770		306		943		2,019		2,551		1		1,550				1,949		130
14-Aug		135,996		770		306		943		2,019		2,551		1	65	1,615				1,949		130
16-Aug	14	136,010		770		306		943		2,019	235	2,786		1	77	1,692			18	1,967	1	131
19-Aug		136,010		770		306		943		2,019	217	3,003		1		1,692			7	1,974	4	135
23-Aug		136,010		770		306		943		2,019	175	3,178		1	14	1,706			13	1,987	11	146
26-Aug		136,010		770		306		943		2,019	71	3,249		1		1,706				1,987	3	149
30-Aug		136,010		770		306		943		2,019		3,249		1		1,706				1,987	5	154
2-Sep		136,010		770		306		943		2,019		3,249		1		1,706			1	1,988		154
6-Sep		136,010		770		306		943		2,019		3,249		1		1,706				1,988		154
9-Sep		136,010		770		306		943		2,019		3,249		1		1,706				1,988		154
13-Sep		136,010		770		306		943		2,019		3,249		1		1,706				1.988	6	160

Table 8.-Commercial salmon catch by gear, statistical area and species, Upper Cook Inlet, 2004.

Total	Chum	Pink	Coho	Sockeye	Chinook	Permits	Stat Area	Subdistrict	District	Gear
3,094,483	136,006	234,915	198,477	2,523,727	1,526	441	All	All	Central	Drift
381,901	885	15,774	1,454	358,722	5,066	99	24421	Upper	Central	Set Net
301,043	58	13,802	2,349	279,142	5,692	102	24422			
5,124	1	131	20	4,904	68	17	24425			
375,305	128	12,960	1,936	356,124	4,157	87	24431			
325,035	177	16,531	2,251	303,164	2,912	52	24432			
876,671	372	39,093	12,201	821,406	3,599	74	24441			
130,899	398	9,505	9,926	110,908	162	41	24442			
2,395,978	2,019	107,796	30,137	2,234,370	21,656	356	All			
72,379	1,583	7,819	17,466	44,380	1,131	18	24610	Kalgin Is.		
21,262	123	162	3,630	17,336	11	3	24620			
93,641	1,706	7,981	21,096	61,716	1,142	19	All			
0	-	-	-	-	-	-	24510	Chinitna		
288	0	3	60	224	1	1	24520	Western		
69,906	3,129	4,048	7,314	54,867	548	24	24530			
5,131	29	134	487	4,394	87	5	24540			
14,073	91	389	4,597	8,996	0	4	24550			
89,398	3,249	4,574	12,458	68,481	636	29	All			
6,981	1	0	2,535	4,015	430	8	24555	Kustatan		
260	0	0	168	92	0	1	24560			
7,241	1	0	2,703	4,107	430	9	All			
2,586,258	6,975	120,351	66,394	2,368,674	23,864	391	All	All		
1,105	3	3	735	225	139	4	24710	General	Northern	
3,559	243	25	1,929	883	479	10	24720			
8,325	221	196	4,474	3,220	214	13	24730			
16,465	849	197	10,458	4,599	362	14	24741			
12,866	590	111	8,632	3,306	227	9	24742			
8,457	82	0	6,141	2,066	168	6	24743			
50,777	1,988	532	32,369	14,299	1,589	41	All			
15,486	125	980	6,138	7,962	281	18	24770	Eastern		
2,382	11	110	1,717	543	1	4	24780			
8,994	24	395	3,906	4,482	187	15	24790			
26,862	160	1,485	11,761	12,987	469	26	All		_	
77,639	2,148	2,017	44,130	27,286	2,058	66	All	All	· ·	
2,663,897	9,123	122,368	110,524	2,395,960	25,922	468	All	All	All	
0	0	0	0	0	0	0	All	All	All	Seine
5,758,380	145,129	357,283	309,001	4,919,687	27,448	909	All	All	All	All

Table 9.—Commercial salmon catch per permit by statistical area, Upper Cook Inlet, 2004.

Gear	District	Subdistrict	Stat Area	Permits	Chinook	Sockeye	Coho	Pink	Chum	Total
Drift	Central	All	All	441	3.5	5,723	450	533	308	7,017
Set Net	Central	Upper	24421	99	51	3,623	15	159	9	3,858
			24422	102	56	2,737	23	135	1	2,951
			24425	17	4	288	1	8	0	301
			24431	87	48	4,093	22	149	1	4,314
			24432	52	56	5,830	43	318	3	6,251
			24441	74	49	11,100	165	528	5	11,847
			24442	41	4	2,705	242	232	10	3,193
			All	356	61	6,276	85	303	6	6,730
		Kalgin Is.	24610	18	63	2,466	970	434	88	4,021
			24620	3	4	5,779	1,210	54	41	7,087
			All	19	60	3,248	1,110	420	90	4,928
		Chinitna	24510	-	-	-	-	-	-	0
		Western	24520	1	1	224	60	3	0	288
			24530	24	23	2,286	305	169	130	2,913
			24540	5	17	879	97	27	6	1,026
			24550	4	0	2,249	1,149	97	23	3,518
			All	29	22	2,361	430	158	112	3,083
		Kustatan	24555	8	54	502	317	0	0	873
			24560	1	0	92	168	0	0	260
			All	9	48	456	300	0	0	805
-		All	All	391	61	6,058	170	308	18	6,614
	Northern	General	24710	4	35	56	184	1	1	276
			24720	10	48	88	193	3	24	356
			24730	13	16	248	344	15	17	640
			24741	14	26	329	747	14	61	1,176
			24742	9	25	367	959	12	66	1,430
			24743	6	28	344	1,024	0	14	1,410
			All	41	39	349	789	13	48	1,238
		Eastern	24770	18	16	442	341	54	7	860
			24780	4	0	136	429	28	3	596
			24790	15	12	299	260	26	2	600
			All	26	18	500	452	57	6	1,033
		All	All	66	31	413	669	31	33	1,176
	All	All	All	468	55	5,120	236	261	19	5,692
Seine	All	All	All	-	-	-	-	-	-	-
All	All	All	All	909	30	5,412	340	393	160	6,335

Table 10.—Commercial fishery emergency orders issued during the 2004 Upper Cook Inlet fishing season.

Emergency	Effective		
Order No.	Date	Action	Reason
1	25-Jun	Opened set gillnetting in the Kasilof Section of the Upper Subdistrict on Friday, June 25, 2004 from 12:01 a.m. until 12:00 midnight on Friday June 25, 2004. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict on Friday, June 25, 2004 from 4:00 a.m. to 12:00 midnight on Friday June 25, 2004.	To reduce the escapement rate of Kasilof River sockeye salmon.
2	26-Jun	Extended set gillnetting in the Kasilof Section of the Upper Subdistrict from 12:00 midnight on Friday June 25th until 12:00 midnight on Saturday June 26th. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict on Saturday June 26th from 4:00 A.M. to 12:00 midnight.	To reduce the escapement rate of Kasilof River sockeye salmon.
3	26-Jun	Opened set gillnetting in that portion of the Western Subdistrict of the Central District south of the latitude of Redoubt Point from 7:00 A.M. on Saturday June 26 until 7:00 A.M. on Monday June 28.	To increase the exploitation rate on Crescent River sockeye salmon.
4	27-Jun	Opened set gillnetting in the Kasilof Section of the Upper Subdistrict from 7:00 p.m. on Sunday, June 27 until 7:00 a.m. on Monday, June 28. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict from 7:00 p.m. until 12:00 midnight on Sunday, June 27, and from 4:00 a.m.until 7:00 a.m. on Monday, June 28.	To reduce the escapement rate of Kasilof River sockeye salmon.
5	28-Jul	Extendeded commercial salmon fishing with set gillnets in that portion of the Western Subdistrict of the Central District south of the latitude of Redoubt Point from 7:00 P.M. Monday, June 28, until further notice.	To increase the exploitation rate on Crescent River sockeye salmon.
6	29-Jun	Opened set gillnetting in the Kasilof Section of the Upper Subdistrict on Tuesday, June 29, 2004 from 7:00 p.m. until 7:00 a.m. on Thursday, July 1. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict on Tuesday, June 29, from 7:00 p.m.until 12:00 midnight, and on Wednesday, June 30, from 4:00 a.m. until 12:00 midnight, and on Thursday, July 1, from 4:00 a.m. until 7:00 a.m.	To reduce the escapement rate of Kasilof River sockeye salmon.

Table 10.–Page 2 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
7	2-Jul	Redescribed the Kasilof Section of the Upper Subdistrict to include those waters of the Upper Subdistrict within six miles of the mean high tide mark on the Kenai Peninsula shoreline from 60° 04.02' N. lat. to 60° 27.10' N. lat. Drift gillnetting was opened in that portion of the Kasilof Section just described from 1 and ½ miles to six miles from the mean high tide mark on the Kenai Peninsula shoreline from 9:00 a.m. to 12:00 midnight on Friday, July 2nd. The area from shore to one and one half miles of the mean high tide mark remained closed to set and drift gillnets during this period.	To reduce the escapement rate of Kasilof River sockeye salmon.
8	4-Jul	Opened set gillnetting in the Kasilof Section of the Upper Subdistrict from 5:30 a.m. until 5:30 p.m. on Sunday, July 4th. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict from 5:30 a.m.until 5:30 p.m. on Sunday July 4th. During the fishing period on July 4th the offshore boundary of the Kasilof Section was expanded for drift gillnetting to include the waters out to the following three points: 1) 60° 27.10' N. lat; 151° 29.50' W. long.; 2) 60° 12.75' N. lat., 151° 38.30' W. long.; 3) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kasilof River sockeye salmon.
9	4-Jul	Extended set gillnetting in the Kasilof Section of the Upper Subdistrict from 5:30 p.m. until 8:30 p.m. on Sunday, July 4th. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict from 5:30 p.m. until 8:30 p.m. on Sunday July 4th. During this extension, the offshore boundary for drift gillnetting remained out to the points listed under emergency order number 8 at: 1) 60 ⁰ 27.10' N. lat; 151 ⁰ 29.50' W. long.; 2) 60 ⁰ 12.75' N. lat., 151 ⁰ 38.30' W. long.; 3) 60 ⁰ 04.02' N. lat., 151 ⁰ 52.60' W. long.	To reduce the escapement rate of Kasilof River sockeye salmon.

Table 10.–Page 3 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
10	5-Jul	Extended set gillnetting in the Kasilof Section of the Upper Subdistrict from 7:00 p.m. until 10:00 p.m. on Monday July 5th. Drift gillnetting was open in the Kasilof Section of the Upper Subdistrict from 7:00 p.m. until 10:00 p.m. on Monday July 5th. During the extension from 7:00 p.m. until 10:00 p.m. on Monday July 5th, the offshore boundary of the Kasilof Section was expanded for drift gillnetting to include the waters out to the following three points: 1) 60 ⁰ 27.10' N. lat; 151 ⁰ 29.50' W. long.; 2) 60 ⁰ 12.75' N. lat., 151 ⁰ 38.30' W. long.; 3) 60 ⁰ 04.02' N. lat., 151 ⁰ 52.60' W. long.	To reduce the escapement rate of Kasilof River sockeye salmon.
11	7-Jul	Opened drift gillnetting only in the Kasilof Section of the Upper Subdistrict from 5:00 p.m. until 10:00 p.m. on Wednesday July 7th. The area from shore to one and one half miles of the mean high tide mark on the Kenai Peninsula shoreline remained closed to set and drift gillnets during this period. The offshore boundary of the Kasilof Section remained as published in the regulation book on page 79 (C) at the top of the page. This is out to approximately three miles from shore.	To reduce the escapement rate of Kasilof River sockeye salmon.
12	8-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands sections of the Upper Subdistrict from 3:00 a.m. until 7:00 a.m. on Thursday July 8th. Drift gillnetting was opened in the Kenai and Kasilof sections of the Upper Subdistrict from 5:00 a.m. until 7:00 a.m. on Thursday July 8th .	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
13	8-Jul	Extended set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 7:00 p.m. until 12:00 midnight on Thursday, July 8th . Drift gillnetting was open in the Kenai and Kasilof sections of the Upper Subdistrict from 7:00 p.m. until 11:00 p.m. on Thursday, July 8th .	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
14	9-Jul	Opened set gillnetting in the Kasilof Section of the Upper Subdistrict from 9:00 p.m. on Friday July 9th until 6:00 p.m. on Saturday July 10th. Drift gillnetting was opened in the Kasilof Section of the Upper Subdistrict from 9:00 p.m. until 11:00 p.m. on Friday July 9th and from 5:00 a.m. until 6:00 p.m. on Saturday July 10th. For this period the Kasilof Section remained as published in the regulation book on page 79.	To reduce the escapement rate of Kasilof River sockeye salmon.

Table 10.–Page 4 of 13.

Emergency Order No.	Effective Date	Action	Reason
15	12-Jul	Closed drift gillnetting in all areas of the Central District of Upper Cook Inlet, except in the Kenai and Kasilof Sections, from 7:00 a.m. to 7:00 p.m. on Monday, July 12. During the regular period on Monday July 12, the southern and western boundaries of the Kasilof Section were expanded to include that portion of the Central District south of 60° 04.70' N. lat., which is approximately the latitude of the Kalgin Buoy, excluding those waters in the Western and Chinitna Bay Subdistricts. The waters normally closed to drift gillnetting remained in effect during this period.	To reduce the exploitation rate on Susitna River sockeye salmon
16	14-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 3:00 p.m. until 6:00 p.m. on Wednesday July 14.	To reduce the escapement rate of Kasilof River sockeye salmon.
17	14-Jul	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 7:00 p.m. on Wednesday July 14th until 7:00 a.m. on Thursday July 15. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 7:00 p.m. until 11:00 p.m. on Wednesday July 14th and from 5:00 a.m. until 7:00 a.m. on Thursday July 15.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
18	15-Jul	Closed drift gillnetting in all areas of the Central District except in the Kenai and Kasilof sections and that portion of the Central District south of 60 ⁰ 31.250' N. lat., which is the latitude of the North West Point on Kalgin Island, from 7:00 a.m. to 7:00 p.m. on Thursday, July 15.	To reduce the exploitation rate on Susitna River sockeye salmon and also to reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
19	16-Jul	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 9:00 a.m. until 9:00 p.m. on Friday, July 16th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 9:00 a.m. until 9:00 p.m. on Friday, July 16th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
20	17-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 4:00 a.m. until 7:00 a.m. on Saturday July 17.	To reduce the escapement rate of Kasilof River sockeye salmon.

Table 10.–Page 5 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
21	17-Jul	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 9:00 a.m. until 9:00 p.m. on Saturday, July 17th . Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 9:00 a.m. until 9:00 p.m. on Saturday July 17th . During the period on July 17 from 9:00 a.m. until 9:00 p.m. the offshore boundary of the Kenai and Kasilof Sections was expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
22	18-Jul	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 10:00 a.m. until 10:00 p.m. on Sunday, July 18th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 10:00 a.m. until 10:00 p.m. on Sunday, July 18th. During the period on July 18th from 10:00 a.m. until 10:00 p.m. the offshore boundary of the Kenai and Kasilof Sections was expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
23	19-Jul	Extended set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 7:00 p.m. until 10:00 p.m. on Monday, July 19th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 7:00 p.m. until 10:00 p.m. on Monday July, 19th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 6 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
24	21-Jul	Opened drift gillnetting in that portion of the Central District south of 60 degrees 31.25 minutes N. Latitude (which is the approximate latitude of Northwest Point on Kalgin Island) on Wednesday, July 21 from 7:00 A.M. to 7:00 P.M. During this period the area within 1.5 miles of the mean high tide mark on the Kenai Peninsula shoreline was closed to drift gillnetting. This Emergency Order, in effect, rescheduled the regular period for drift gillnets only, from Thursday, July 22 to Wednesday, July 21.	To reduce the exploitation rate on Susitna River sockeye and coho salmon and also to reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
25	21-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict on Wednesday, July 21 from 10:00 a.m. until 11:00 p.m. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict on Wednesday, July 21 from 7:00 p.m. until 11:00 p.m.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
26	21-Jul	Extended set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 11:00 p.m. on Wednesday July 21st until 7:00 a.m. on Thursday July 22nd. Drift gillnetting was closed in all areas of the Central District of Upper Cook Inlet except in the Kenai and Kasilof Sections of the Upper Subdistrict on Thursday, July 22 from 5:00 a.m. until 7:00 p.m.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
27	23-Jul	Opened commercial salmon fishing with drift gillnets in that portion of the Central District south of a line from Collier's Dock at 60° 40.35' N. Lat., 151° 23.00' W. Long. to Northwest Point on Kalgin Island at 60° 31.25' N. Lat., 151° 55.75' W. Long. to a point on the western shore at 60° 31.25' N. Lat. from 7:00 a.m. to 7:00 p.m. on Friday, July 23.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
28	23-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 5:00 a.m. until 10:00 a.m. on Friday, July 23.	To reduce the escapement rate of Kasilof River sockeye salmon.
29	23-Jul	Opened set gillnetting in the Kenai, Kasilof, and East Forelands Sections of the Upper Subdistrict from 11:00 a.m. until 11:00 p.m. on Friday, July 23. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict from 7:00 p.m. until 11:00 p.m. on Friday, July 23.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 7 of 13.

Emergency	Effective		_
Order No.	Date	Action	Reason
30	23-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 11:00 p.m. on Friday, July 23, until 10:00 a.m. on Saturday, July 24.	To reduce the escapement rate of Kasilof River sockeye salmon.
31	24-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 11:00 a.m. until 11:00 p.m. on Saturday, July 24th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m. on Saturday, July 24th. During the period on July 24, from 5:00 a.m. until 11:00 p.m. the offshore boundary of the Kenai and Kasilof Sections was expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
32	24-Jul	Opened set gillnetting in the Kalgin Island Subdistrict of the Central District from 7:00 a.m. until 7:00 p.m.on Saturday, July 24th.	To reduce the escapement rate of Packers Creek sockeye salmon.
33	24-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 11:00 p.m. on Saturday July 24 until further notice. This area was closed when the Kasilof Section reopened.	To reduce the escapement rate of Kasilof River sockeye salmon.
34	25-Jul	Opened drift gillnetting in the Kenai and Kasilof Sections of the Upper Subdistrict from 11:00 a.m. until 11:00 p.m. on Sunday, July 25th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
35	25-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 12:00 noon until 12:00 midnight on Sunday, July 25th. The Kasilof Terminal area was closed to set and drift gillnets at 2:00 p.m.on Sunday July 25th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 8 of 13.

E	Dec ations		
Emergency	Effective		D
Order No. 36	Date 26-Jul	Action Closed commercial salmon fishing with drift gillnets in that portion of the Central District north of a line from Collier's Dock at 60 ⁰ 40.35 minutes N. lat. 151 ⁰ 23.00' W. long. to Northwest Point on Kalgin Island at 60 ⁰ 31.25' N. lat. 151 ⁰ 55.75' W. long. to a point on the western shore at 60 ⁰ 31.25' N. lat. from 7:00 a.m. to 7:00 p.m. on Monday, July 26. In the Northern District legal gear was reduced to two set gillnets per permit, measuring no more than 35 fathoms in length each on Monday, July 26.	Reason To reduce the exploitation rate on Susitna River sockeye and coho salmon and also to reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
37	26-Jul	Extended set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 7:00 p.m. until 12:00 midnight on Monday July 26th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict from 7:00 p.m. until 11:00 p.m. on Monday July 26th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
38	27-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 8:00 a.m. until 3:00 p.m. on Tuesday, July 27th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict from 5:00 a.m. until 3:00 p.m. on Tuesday, July 27th. Set and drift gillnetting was opened in the Kasilof River Special Harvest Area from 12:01 a.m. until 7:00 a.m. on Tuesday, July 27th	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
39	27-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 4:00 p.m. on Tuesday, July 27th, until 8:00 a.m. on Wednesday, July 28th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict from 3:00 p.m. until 11:00 p.m. on Tuesday, July 27th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
40	28-Jul	Opened set gillnetting in the Kenai, Kasilof and East Forelands Sections of the Upper Subdistrict from 9:00 a.m. until 9:00 p.m. on Wednesday, July 28th. Drift gillnetting was opened in that portion of the Central District south of a line from Collier's Dock at 60° 40.35' N. lat. 151°23.00' W. long. to Northwest Point on Kalgin Island at 60° 31.25' N. lat. 151° 55.75' W. long. to a point on the western shore at 60° 31.25' N. lat. from 7:00 a.m. to 7:00 p.m. on Wednesday, July 28.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 9 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
41	28-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 10:00 p.m. on Wednesday, July 28th, until 6:00 a.m. on Thursday, July 29th. Drift gillnetting was closed in that portion of the Central District north of a line from Collier's Dock at 60° 40.35' N. lat. 151° 23.00' W. long. to Northwest Point on Kalgin Island at 60° 31.25' N. lat. 151° 55.75' W. long. to a point on the western shore at 60° 31.25' N. lat. from 7:00 a.m. to 7:00 p.m. on Thursday, July 29th. In the Northern District, legal gear was reduced to one set gillnet per permit, measuring no more than 35 fathoms in length on Thursday, July 29th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon and to reduce the exploitation rate of Susitna River sockeye and coho salmon.
42	30-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 8:00 p.m. on Thursday, July 29th, until 10:00 a.m. on Friday, July 30th. Set gillnetting was opened in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 11:00 a.m. until 11:00 p.m. on Friday, July 30th. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 6:00 a.m. until 10:00 p.m. on Friday, July 30th. During the period on Friday July 30th, the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
43	30-Jul	Rescinded Emergency Order Number 5 effective at 7:00 p.m. on Friday July 30. Fishing in the Western Subdistrict South of Redoubt Point was closed at 7:00 p.m. on Friday July 30 and returned to the regular fishing schedule from 7:00 a.m. to 7:00 p.m. on Mondays and Thursdays only.	To reduce the exploitation rate of coho salmon in the Western Subdistrict

Table 10.–Page 10of 13.

Emergency	Effective		_
Order No.	Date	Action	Reason
44	30-Jul	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 11:00 p.m. on Friday, July 30th until 11:00 a.m. on Saturday, July 31st. Set gillnetting was opened in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 12:00 noon until 12:00 midnight on Saturday, July 31st. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 6:00 a.m. until 11:00 p.m. on Saturday, July 31st. During the period on Saturday, July 31st, the offshore boundary of the Kenai and Kasilof Sections was expanded for drift gillnetting to include the waters out to the following four points: 1) 60 ⁰ 40.35' N. lat; 151 ⁰ 27.00' W. long.; 2) 60 ⁰ 27.10' N. lat; 151 ⁰ 29.50' W. long.; 3) 60 ⁰ 12.75' N. lat., 151 ⁰ 38.30' W. long.; 4) 60 ⁰ 04.02' N. lat., 151 ⁰ 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
45	31-Jul	Opened set gillnetting in the Kalgin Island Subdistrict of the Central District from 7:00 a.m. until 7:00 p.m. on Saturday, July 31st.	To reduce the escapement rate of Packers Lake sockeye salmon.
46	31-Jul	Extended set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 12:00 midnight on Saturday, July 31st until 12:00 midnight Sunday, August 1st. Drift gillnetting was opened in the Kenai and Kasilof Sections of the Upper Subdistrict, from 6:00 a.m. until 11:00 p.m. on Sunday, August 1st. During the period on Sunday, August 1st, the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
47	2-Aug	Closed set gillnetting in the Northern District of Upper Cook Inlet from 7:00 a.m. until 7:00 p.m. on Monday August 2nd.	To reduce the exploitation rate on Susitna River sockeye salmon.

Table 10.–Page 11 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
48	3-Aug	Opened drift gillnetting in the Kenai and Kasilof Sections of the Upper Subdistrict from 6:00 a.m. until 11:00 p.m. on Tuesday, August 3rd. During the period, the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
49	4-Aug	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 9:00 a.m. until 9:00 p.m. on Wednesday, August 4th. Drift gillnetting was opened in the Central District from 7:00 a.m. until 7:00 p.m. on Wednesday, August 4. This Emergency Order, in effect, rescheduled the regular period for drift and set gillneting from Thursday, August 5 to Wednesday, August 4.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
50	4-Aug	Opened drift gillnetting in the Kenai and Kasilof Sections of the Upper Subdistrict from 7:00 p.m. until 11:00 p.m. on Wednesday, August 4th.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
51	5-Aug	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 10:00 a.m. until 10:00 p.m. on Thursday, August 5th. Set gillnetting was closed in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 7:00 a.m. until 10:00 a.m. on Thursday August 5th. Drift gillnetting was closed in all areas of the Central District of Upper Cook Inlet except in the Kenai and Kasilof Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m on Thursday, August 5th. During the period, the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 12 of 13.

Emergency	Effective		n.
Order No. 52	Date	Action Opened set gillnetting in the Kenai, Kasilof and East Foreland	Reason
32	6-Aug	Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m. on Friday, August 6th. Drift gillnetting was open in the Kenai and Kasilof Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m on Friday, August 6th. During this period on Friday, August 6th the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
53	7-Aug	Opened set gillnetting in the Kenai, Kasilof and East Foreland Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m. on Saturday August 7th. Drift gillnetting was open in the Kenai and Kasilof Sections of the Upper Subdistrict from 5:00 a.m. until 11:00 p.m on Saturday, August 7th. During this period on Saturday, August 7th the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.
54	6-Aug	Opened set and drift gillnetting in the Kasilof River Special Harvest Area from 4:00 p.m. until 11:00 p.m. on Friday, August 6 and on Saturday, August 7th from 5:00 a.m. until 11:00 p.m.	To reduce the escapement rate of Kasilof River sockeye salmon.
55	7-Aug	Opened set gillnetting in the Kalgin Island Subdistrict of the Central District from 7:00 a.m. until 7:00 p.m. on Saturday, August 7th.	To increase the escapement rate of Packers Lake sockeye salmon.
56	8-Aug	Opened drift gillnetting in the Kenai and Kasilof Sections of the Upper Subdistrict, from 5:00 a.m. until 11:00 p.m. on Sunday, August 8th. During this period, the offshore boundary of the Kenai and Kasilof Sections will be expanded for drift gillnetting to include the waters out to the following four points: 1) 60° 40.35' N. lat; 151° 27.00' W. long.; 2) 60° 27.10' N. lat; 151° 29.50' W. long.; 3) 60° 12.75' N. lat., 151° 38.30' W. long.; 4) 60° 04.02' N. lat., 151° 52.60' W. long.	To reduce the escapement rate of Kenai and Kasilof River sockeye salmon.

Table 10.–Page 13 of 13.

Emergency	Effective		
Order No.	Date	Action	Reason
57	11-Aug	Opened drift gillnetting in the area described in 5 AAC	To implement the Experimental
		21.356 (c)(3) from 7:00 A.M. to 7:00 P.M. on Wednesday,	Drift Gillnet Pink Salmon
		August 11, on Friday August 13 and on Monday August 16.	Management Plan
58	14-Aug	Opened set gillnetting in the Kalgin Island Subdistrict of the Central District from 7:00 a.m. until 7:00 p.m. on Saturday, August 14th.	To reduce the escapement rate of Packers Lake sockeye salmon.

Table 11.—Commercial salmon fishing periods, Upper Cook Inlet, 2004.

Date	Day	Time	Set Gill Net	Drift Gill Net
31-May	Mon	0700-1300	Northern District	
7-Jun	Mon	0700-1300	Northern District	
		0700-1900	Kustatan/Big River	
9-Jun	Wed	0700-1900	Kustatan/Big River	
11-Jun	Fri	0700-1900	Kustatan/Big River	
14-Jun	Mon	0700-1300	Northern District	
		0700-1900	Kustatan/Big River	
16-Jun	Wed	0700-1900	Kustatan/Big River	
17-Jun	Thu	0700-1900	Western Subdistrict	
18-Jun	Fri	0700-1900	Kustatan/Big River	
21-Jun	Mon	0700-1900	Kustatan/Big River & Western Subdistrict	
23-Jun	Wed	0700-1900	Kustatan/Big River	
24-Jun	Thu	0700-1900	Western Subdistrict	
25-Jun	Fri	0000-2400	Kasilof Section	
		0400-2400		Kasilof Section
26-Jun	Sat	0000-2400	Kasilof Section	
		0400-2400		Kasilof Section
		0700-2400	Western Subdistrict south of Redoubt Pt.	
27-Jun	Sun	0000-2400	Western Subdistrict south of Redoubt Pt.	
		1900-2400	Kasilof Section	Kasilof Section
28-Jun	Mon	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-0700	Kasilof Section	
		0400-0700		Kasilof Section
		0700-1900	All except Kenai & E. Forelands Sections	All
29-Jun	Tue	0000-2400	Western Subdistrict south of Redoubt Pt.	
		1900-2400	Kasilof Section	Kasilof Section
30-Jun	Wed	0000-2400	Kasilof Section & Western Subdistrict S. of Redoubt Pt.	
		0400-2400		Kasilof Section
1-Jul	Thu	0000-2400	Western Subdistrict south of Redoubt Pt.	

Table 11.–Page 2 of 6.

Date	Day	Time	Set Gill Net	Drift Gill Net
		0000-1900	All except Kenai & E. Forelands Sections	
		0400-0700		Kasilof Section
		0700-1900		All
2-Jul	Fri	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0900-2400		Expanded Kasilof Section
3-Jul	Sat	0000-2400	Western Subdistrict south of Redoubt Pt.	
4-Jul	Sun	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0530-2030	Kasilof Section	Expanded Kasilof Section
5-Jul	Mon	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0700-1900	All except Kenai & E. Forelands Sections	
		0700-2200	Kasilof Section	
		0700-1900		Kasilof Section
		1900-2200		Expanded Kasilof Section
6-Jul	Tue	0000-2400	Western Subdistrict south of Redoubt Pt.	
7-Jul	Wed	0000-2400	Western Subdistrict south of Redoubt Pt.	
		1700-2200		Kasilof Section
8-Jul	Thu	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0300-0700	Kenai, Kasilof & East Forelands Sections	
		0500-0700		Kenai & Kasilof Sections
		0700-1900	All	All
		1900-2400	Kenai, Kasilof & East Forelands Sections	
		1900-2300		Kenai & Kasilof Sections
9-Jul	Fri	0000-2400	Western Subdistrict south of Redoubt Pt.	
		2100-2400	Kasilof Section	
		2100-2300		Kasilof Section
10-Jul	Sat	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-1800	Kasilof Section	
		0500-1800		Kasilof Section

Table 11.–Page 3 of 6.

Date	Day	Time	Set Gill Net	Drift Gill Net
11-Jul	Sun	0000-2400	Western Subdistrict south of Redoubt Pt.	
12-Jul	Mon	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0700-1900	All	Kenai, Kasilof Sections & S. of Kalgin Buoy
13-Jul	Tue	0000-2400	Western Subdistrict south of Redoubt Pt.	
14-Jul	Wed	0000-2400	Western Subdistrict south of Redoubt Pt.	
		1500-1800	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		1900-2400	Kenai, Kasilof & East Forelands Sections	
		1900-2300		Kenai & Kasilof Sections
15-Jul	Thu	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-0700	Kenai, Kasilof & East Forelands Sections	
		0500-0700		Kenai & Kasilof Sections
		0700-1900	All	All except north of north end of Kalgin Isl.
16-Jul	Fri	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0900-2100	Kenai, Kasilof & East Forelands Sections	Kenai & Kasilof Sections
17-Jul	Sat	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0400-0700	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0900-2100	Kenai, Kasilof & East Forelands Sections	Expanded Kenai & Kasilof Sections
18-Jul	Sun	0000-2400	Western Subdistrict south of Redoubt Pt.	
		1000-2200	Kenai, Kasilof & East Forelands Sections	Expanded Kenai & Kasilof Sections
19-Jul	Mon	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0700-1900	All	All
		1900-2200	Kenai, Kasilof & East Forelands Sections	Kenai & Kasilof Sections
20-Jul	Tue	0000-2400	Western Subdistrict south of Redoubt Pt.	
21-Jul	Wed	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0700-1900		All except north of north end of Kalgin Isl.
		1000-2400	Kenai, Kasilof & East Forelands Sections	
		1900-2300		Kenai & Kasilof Sections

Table 11.–Page 4 of 6.

Date	Day	Time	Set Gill Net	Drift Gill Net
22-Jul	Thu	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-0700	Kenai, Kasilof & East Forelands Sections	
		0500-1900		Kenai & Kasilof Sections
		0700-1900	All	
23-Jul	Fri	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0500-1000	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0700-1900		All except n. of NW point on Kalgin
		1100-2300	Kenai, Kasilof & East Forelands Sections	
		1900-2300		Kenai & Kasilof Sections
		2300-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
24-Jul	Sat	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-1000	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0500-2300		Expanded Kenai & Kasilof Sections
		0700-1900	Kalgin Island Subdistrict	
		1100-2300	Kenai, Kasilof & East Forelands Sections	
		0000-2400	Western Subdistrict south of Redoubt Pt.	
		2300-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
25-Jul	Sun	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-1400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		1100-2300		Kenai & Kasilof Sections
		1200-2400	Kenai, Kasilof & East Forelands Sections	
26-Jul	Mon	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0700-1900	All ^a	All except n. of NW point on Kalgin
		1900-2300		Kenai & Kasilof Sections
		1900-2400	Kenai, Kasilof & East Forelands Sections	
27-Jul	Tue	0000-2400	Western Subdistrict south of Redoubt Pt.	

Table 11.–Page 5 of 6.

Date	Day	Time	Set Gill Net	Drift Gill Net
		0000-0700	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0500-2300		Kenai & Kasilof Sections
		0800-1500	Kenai, Kasilof & East Forelands Sections	
		1600-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
28-Jul	Wed	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-0800	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0700-1900		All except n. of NW point on Kalgin
		0900-2100	Kenai, Kasilof & East Forelands Sections	
		2200-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
29-Jul	Thu	0000-2400	Western Subdistrict south of Redoubt Pt.	
		0000-0600	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0700-1900	All ^b	All except n. of NW point on Kalgin
		2000-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
30-Jul	Fri	0000-1900	Western Subdistrict south of Redoubt Pt.	
		0000-1000	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area Expanded Kenai &
		0600-2200		Kasilof Sections
		1100-2300	Kenai, Kasilof & East Forelands Sections	
		2300-2400	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
31-Jul	Sat	0000-1100	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0600-2300		Expanded Kenai & Kasilof Sections
		0700-1900	Kalgin Island Subdistrict	2200102
		1200-2400	Kenai, Kasilof & East Forelands Sections	
1-Aug	Sun	0000-2400	Kenai, Kasilof & East Forelands Sections	
		0600-2300		Expanded Kenai & Kasilof Sections
2-Aug	Mon	0700-1900	All except Northern District	All
3-Aug	Tue	0600-2300		Expanded Kenai & Kasilof Sections
4-Aug	Wed	0700-1900		All

Table 11.–Page 6 of 6.

Date	Day	Time	Set Gill Net	Drift Gill Net
		0900-2100	Kenai, Kasilof & East Forelands Sections	
		1900-2300		Kenai & Kasilof Sections
5-Aug	Thu	0500-2300		Expanded Kenai & Kasilof Sections
		0700-1000	All except Kenai, Kasilof, & E. Forelands Sections	
		1000-1900	All	
		1900-2200	Kenai, Kasilof & East Forelands Sections	
6-Aug	Fri	0500-2300	Kenai, Kasilof & East Forelands Sections	Expanded Kenai & Kasilof Sections
		1600-2300	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
7-Aug	Sat	0500-2300	Kenai, Kasilof & East Forelands Sections	Expanded Kenai & Kasilof Sections
		0500-2300	Kasilof River Special Harvest Area	Kasilof River Special Harvest Area
		0700-1900	Kalgin Island Subdistrict	
8-Aug	Sun	0500-2300		Expanded Kenai & Kasilof Sections
9-Aug	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	All
11-Aug	Wed	0700-1900		Pink salmon drift area (5AAC 21.356)
12-Aug	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
13-Aug	Fri	0700-1900		Pink salmon drift area (5AAC 21.356)
16-Aug	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	Pink salmon drift area (5AAC 21.356)
19-Aug	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
23-Aug	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
26-Aug	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
30-Aug	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
2-Sep	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
6-Sep	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
9-Sep	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
13-Sep	Mon	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	
16-Sep	Thu	0700-1900	All except Kenai, Kasilof, & E. Forelands Sections	

^a Northern District reduced to two set gillnets per permit.

^b Northern District reduced to one set gillnet per permit.

Table 12.—Age composition (in percent) of sockeye salmon escapements, Upper Cook Inlet, 2004.

						Age (Class						
Stream	0.2	1.1	0.3	1.2	2.1	1.3	2.2	3.1	1.4	2.3	3.2	2.4	3.3
Kenai River			0.39	10.1	0.2	69.1	8.2		0.2	11.1	0.2	0.16	0.24
Kasilof River		0.1		43.7	0.2	18.9	32.6		0.1	4.3			
Yentna River	0.7	0.7	1.1	17.0		50.0	8.3		0.7	21.7			
Crescent River				14.1		31.3	16.0		0.2	38.0		0.2	0.2
Fish Creek	1.0	2.7		41.8	0.6	41.6	2.5		0.8	9.1			
Hidden Creek				66.5		18.9	12.4			2.2			

Table 13.-Upper Cook Inlet salmon average weights (in pounds) by area, 2004^a.

Chinook	Sockeye	Coho	Pink	Chum
24.6	6.1	6.7	3.7	7.4
15.7	5.8	6.5	3.3	6.8
16.4	5.9	6.6	3.8	6.9
				8.0
17.1	6.3	6.5	3.6	6.8
9.8	6.2	6.5	4.3	6.3
18.7	5.9	6.5	3.9	6.6
16.0	5.4	6.7	3.0	7.6
18.7	5.6	6.6		6.8
13.4	5.7	6.5	3.1	5.9
16.5	5.9	6.5	3.0	5.8
13.0	6.0	6.5	3.9	6.8
8.8	5.2	6.5	3.2	6.0
25.3	6.1	6.7	3.7	7.4
27.3	5.7	7.0	3.9	4.7
24.6	6.2	6.8	3.6	6.1
24.6	6.3	7.1	3.8	5.9
24.9	5.8	6.5	3.1	6.2
27.3	5.6	7.3	4.2	5.3
26.9	5.2	7.2	3.9	4.3
27.9	6.1	7.3	4.5	6.1
27.8	4.0	7.4	3.5	9.0
28.2	5.1	7.5	3.9	3.4
25.7	5.1	7.5	3.9	6.9
31.0	5.2	7.5	3.9	3.1
27.3	6.0	6.9	1.2	7.1
	4.7	6.8	3.0	7.1
28.7	5.8	6.2	2.6	8.1
27.1	6.2	6.9	1.0	7.1
5.0	6.1	6.7	3.7	
17.7	4.8	6.7		7.0
17.7	4.8	6.7		7.0
	5.1	7.0		
7.1	5.6	6.5	4.0	6.7
7.0	5.6	6.6	4.0	6.7
17.1	5.6	6.2	4.0	6.8
	15.7 16.4 15.7 17.1 9.8 18.7 16.0 18.7 13.4 16.5 13.0 8.8 25.3 27.3 24.6 24.6 24.9 27.3 26.9 27.9 27.8 28.2 25.7 31.0 27.3 28.7 27.1 5.0 17.7 17.7	15.7 5.8 16.4 5.9 15.7 7.2 17.1 6.3 9.8 6.2 18.7 5.9 16.0 5.4 18.7 5.6 13.4 5.7 16.5 5.9 13.0 6.0 8.8 5.2 25.3 6.1 27.3 5.7 24.6 6.2 24.6 6.2 24.6 6.3 24.9 5.8 27.3 5.6 26.9 5.2 27.9 6.1 27.8 4.0 28.2 5.1 25.7 5.1 31.0 5.2 27.3 6.0 4.7 28.7 28.7 5.8 27.1 6.2 5.0 6.1 17.7 4.8 17.7 4.8 17.7 4.8 17.7 4.8 17.1 5.6 <tr< td=""><td>15.7 5.8 6.5 16.4 5.9 6.6 15.7 7.2 6.4 17.1 6.3 6.5 9.8 6.2 6.5 18.7 5.9 6.5 16.0 5.4 6.7 18.7 5.6 6.6 13.4 5.7 6.5 16.5 5.9 6.5 13.0 6.0 6.5 8.8 5.2 6.5 25.3 6.1 6.7 27.3 5.7 7.0 24.6 6.2 6.8 24.6 6.2 6.8 24.6 6.3 7.1 24.9 5.8 6.5 27.3 5.6 7.3 26.9 5.2 7.2 27.9 6.1 7.3 27.8 4.0 7.4 28.2 5.1 7.5 31.0 5.2 7.5 27.3 6.0 6.9 4.7 6.8 28.7 5.8</td><td>15.7 5.8 6.5 3.3 16.4 5.9 6.6 3.8 15.7 7.2 6.4 3.3 17.1 6.3 6.5 3.6 9.8 6.2 6.5 4.3 18.7 5.9 6.5 3.9 16.0 5.4 6.7 3.0 18.7 5.6 6.6 6.6 13.4 5.7 6.5 3.1 16.5 5.9 6.5 3.0 13.0 6.0 6.5 3.9 8.8 5.2 6.5 3.2 25.3 6.1 6.7 3.7 27.3 5.7 7.0 3.9 24.6 6.2 6.8 3.6 24.6 6.2 6.8 3.6 24.9 5.8 6.5 3.1 27.3 5.6 7.3 4.2 26.9 5.2 7.2 3.9 27.9 6.1 7.3 4.5 27.8 4.0 7.4 3.5 2</td></tr<>	15.7 5.8 6.5 16.4 5.9 6.6 15.7 7.2 6.4 17.1 6.3 6.5 9.8 6.2 6.5 18.7 5.9 6.5 16.0 5.4 6.7 18.7 5.6 6.6 13.4 5.7 6.5 16.5 5.9 6.5 13.0 6.0 6.5 8.8 5.2 6.5 25.3 6.1 6.7 27.3 5.7 7.0 24.6 6.2 6.8 24.6 6.2 6.8 24.6 6.3 7.1 24.9 5.8 6.5 27.3 5.6 7.3 26.9 5.2 7.2 27.9 6.1 7.3 27.8 4.0 7.4 28.2 5.1 7.5 31.0 5.2 7.5 27.3 6.0 6.9 4.7 6.8 28.7 5.8	15.7 5.8 6.5 3.3 16.4 5.9 6.6 3.8 15.7 7.2 6.4 3.3 17.1 6.3 6.5 3.6 9.8 6.2 6.5 4.3 18.7 5.9 6.5 3.9 16.0 5.4 6.7 3.0 18.7 5.6 6.6 6.6 13.4 5.7 6.5 3.1 16.5 5.9 6.5 3.0 13.0 6.0 6.5 3.9 8.8 5.2 6.5 3.2 25.3 6.1 6.7 3.7 27.3 5.7 7.0 3.9 24.6 6.2 6.8 3.6 24.6 6.2 6.8 3.6 24.9 5.8 6.5 3.1 27.3 5.6 7.3 4.2 26.9 5.2 7.2 3.9 27.9 6.1 7.3 4.5 27.8 4.0 7.4 3.5 2

Table 13.–Page 2 of 2.

Fishery	Chinook	Sockeye	Coho	Pink	Chum
6. Central District Set Total	26.1	5.7	6.8	3.8	6.3
7. Central District Drift Total	12.7	6.4	6.7	3.6	7.5
a. West Side 245-70,80,90	9.6	5.5	6.2	3.2	7.1
b. East Side 244-50,60,70	14.4	6.4	6.7	3.6	7.5
c. East Side Corridor Total	10.6	6.4	6.8	3.8	7.4
2. Kasilof Corridor 244-61	6.7	6.1	7.0	3.3	7.7
3. E. Side Corridor 244-55	19.2	6.4	6.8	3.8	7.3
e. Kasilof Terminal 244-25	26.3	6.4	7.3	4.0	

^a Average weights determined from total pounds of fish divided by numbers of fish from commercial harvest tickets

Table 14.—Buyers and processors of Upper Cook Inlet fishery products, 2004.

Buyer/Processor	Plant Site	Contact	Address
10th and M Seafoods	Anchorage	Judy	1020 M St.
F4323			Anchorage, AK 99501
Alaska Salmon Purchasers	Kenai	Mark Powell	HC01 Box 240
F4665			Kenai, AK 99611-0240
Cohoe Beach Seafoods	Kasilof	Nancy	24745 Cohoe Loop Rd.
F6158-5			Kasilof, AK 99610
Copper River Seafoods	Kasilof	Daryl	4000 W 50th, Suite 2
F5983-4	12001101	241)1	Anchorage, AK 99502
			<i>3</i> /
Deep Creek Custom Packing	Ninilchik	Jeff Berger	P.O. Box 39229
F1051-5			Ninilchik Ak. 99639
Eighbard, Eigharian	V:	Ctarra Eigla	D.O. D 715
Fishhawk Fisheries F1540-1	Kenai	Steve Fick	P.O. Box 715 Astoria Or. 97103
F1340-1			Astoria Or. 97103
Fishermen's Express	Anchorage	Cade	417 D. St.
F5584-3	C		Anchorage, AK 99501
Icicle Seafoods	Seward	Melody Jordan	P.O. Box 79003
F0135			Seattle Wa. 98119
Inlet Fisheries Inc.	Kenai	Patrick Klier	P.O. Box 530
F4682-0	Kenar	I direct Kilei	Kenai Ak. 99611
1.002 0			2201111 2 211 2 2 2 2 2
Mayflower	Kenai	Rich King	4371 Kapuna Rd.
F5838-6			Kilauea, HI 96754
0	17.	D (II I'	D 0162
Ocean Beauty F5202/F5204	Kenai	Pat Hardina	Box 8163 Nikiski Ak. 99635
F3202/F3204			NIKISKI AK. 99033
Pacific Star Seafoods	Kenai	Dan Foley	520 Bridge Access Rd.
F1834			Kenai, AK 99611
Desired In Description	C - 1.1 - 4	A	700 K. D 1. D.1
Peninsula Processing F3789-6	Soldotna	Annette	720 K. Beach Rd. Soldotna, AK 99669
F3/89-0			Soldottia, AK 99009
R & J Seafoods	Kasilof	Randy Meier	P.O. Box 165
F6087-5		-	Kasilof, AK 99610
Calamataf C - C - 1	<i>V</i> !	Walie Deed	DO Don 1450
Salamatof Seafoods F0037-1	Kenai	Wylie Reed	P.O. Box 1450 Kenai Ak. 99615
1.0037-1			Keliai Ak. 99013
Snug Harbor Seafoods	Kenai	Paul Dale	P.O. Box 701
F3894			Kenai, AK 99611
0 1 41 1	A 1	ъ.	2210 T
Sockeye Alaska	Anchorage	Dennis	3210 Turnagain
F5133-0			Anchorage, AK 99517

Table 15.-Reported personal use harvest by gear, area and species, Upper Cook Inlet, 2004.

			Harve	est ^a		
Fishery	Chinook	Sockeye	Coho	Pink	Chum	Total
Did Not Fish						
Kasilof Gillnet	163	25,417	58	6	0	25,644
Kasilof Dip Net	44	48,315	668	396	90	49,515
Kenai Dip Net	792	262,831	2,661	2,103	387	268,773
Fish Creek Dip Net						0
No Site Reported	99	13,527	366	210	25	14,227
Total	1,098	350,090	3,753	2,715	502	358,159 ^a

^a Harvest data is expanded for permits that were not returned (~3,400) as required. Does not include educational or subsistence fishery harvests.

Table 16.—Age, weight, sex, and size distribution of Pacific herring sampled by gillnet in Upper Cook Inlet, 2004^a.

Sample date = May 24, 2004

			Nun	nbers of	Fish			Percent	,	Weigh	t	1	Lengtl	h
Sample			Imm.	Ripe	Spawned			of	Mean		Number	Mean		Number
Retion	Age	Male	Female	Female	Female	Unknown	Total	Total	(g)	SD	Weighed	(mm)	SD	Measured
ESSN	3	2		1			3	2.6	101	6.4	3	184	1.8	3
	4	13		19	7		39	33.3	124	16.4	39	200	8.5	39
	5	17		11	16		44	37.6	134	18.9	44	209	11.1	44
	6	16		1	4		21	17.9	144	18.1	21	216	10.9	21
	7	7			2		9	7.7	152	18.6	9	222	7.9	9
	8	1					1	0.9	153	NA	1	227	NA	1
	9													
	10													
Sample To	otal	56	0	32	29	0	117	100.0	133	20.2	117	208	12.6	117
Sex Comp	osition	47.9%	0.0%	27.4%	24.8%	0.0%								

Sample date = May 28, 2004

			Nun	nbers of	Fish			Percent	,	Weigh	t	1	Lengtl	h
Sample			Imm.	Ripe	Spawned			of	Mean		Number	Mean		Number
Period	Age	Male	Female	Female	Female	Unknown	Total	Total	(g)	SD	Weighed	(mm)	SD	Measured
ESSN	3	1		1			2	2.2	130	0.7	2	203	2.3	2
	4	9		19	6		34	38.2	136	21.6	34	212	13.8	34
	5	5		16	3		24	27.0	147	19.4	24	217	10.2	24
	6	7		1	8		16	18.0	140	19.9	16	220	10.8	16
	7	2 2		5		9	10.1	167	26.8	9	231	9.8	9	
	8			1			1	1.1	118	NA	1	200	NA	1
	9	1					1	1.1	192	NA	1	240	NA	1
	10													
	11				1		1	1.1	210	NA	1	241	NA	1
	12			1			1	1.1	131	NA	1	202	NA	1
Sample T	otal	25	0	41	23	0	89	100.0	144	24.1	89	217	13.5	89
Sex Comp	oosition	28.1%	0.0%	46.1%	25.8%	0.0%								

Sample date = May 31, 2004

			Nun	ibers of	Fish			Percent	,	Weigh	t	1	Lengtl	h
Sample			Imm.	Ripe	Spawned			of	Mean		Number	Mean		Number
Period	Age	Male	Female	Female	Female	Unknown	Total	Total	(g)	SD	Weighed	(mm)	SD	Measured
ESSN	3	1		1			2	3.1	111	1.4	2	198	3.0	2
	4	9		6	7		22	34.4	116	21.8	22	202	9.3	22
	5	5		5	13		23	35.9	132	26.4	23	215	12.7	23
	6	4		2	8		14	21.9	140	24.0	14	220	14.5	14
	7	1			1		2	3.1	161	2.1	2	225	1.1	2
	8	1					1	1.6	144	NA	1	225	NA	1
	9													
	10													
Sample To	otal	21	0	14	29	0	64	100.0	129	25.6	64	211	14.1	64
Sex Comp	osition	32.8%	0.0%	21.9%	45.3%	0.0%			1					

Sample date = May 28, 2004

			Numl	bers of	Fish			Percent	7	Veigh	t ^a	1	Lengtl	h
Sample			Imm.	Ripe	Spawned			of	Mean		Number	Mean		Number
Period	Age	Male	Female I	Female	Female	Unknown	Total	Total	(g)	SD	Weighed	(mm)	SD	Measured
Chinitna	3	2		2			4	2.9	119	8.5	4	206	10.8	4
Bay	4	20		41			61	44.2	126	14.9	61	208	8.9	61
	5	21		35			56	40.6	136	17.0	56	216	9.2	56
	6	4		11			15	10.9	158	31.4	15	223	13.0	15
	7			1			1	0.7	112	NA	1	203	NA	1
	8			1			1	0.7	235	NA	1	233	NA	1
	9													
	10													
Sample To	otal	47	0	91	0	0	138	100.0	134	22.2	138	213	10.9	138
Sex Comp	osition	34.1%	0.0%	65.9%	0.0%	0.0%								

^a Fish were salted so weights likely do not accurately represent true live fish weight.

Table 17.—Seldovia District tide tables, April-September, 2004.

					APR	IL											MA	Y					
		HIGH	TIDE	ES				LOV	W TID	ES				HIGH	TIDES	S				LO	W TID	ES	
_	_	A.M.		P.M.	_	_		A.M.		P.M.	_	_		A.M.		P.M.				A.M.		P.M.	
Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet	Date		Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet
1	Thu	0:16	14.1	11:44	14.7	1	Thu	5:52	6.1	6:15	1.6	1	Sat	1:28	17.2	1:41	16.8	1	Sat	7:49	3.0	7:57	1.6
2	Fri	0:45	15.7	12:32	16.4	2	Fri	6:32	4.0	6:50	1.3	2	Sun	2:02	18.9	2:28	18.3	2	Sun	8:29	0.6	8:37	0.9
3	Sat	1:13	17.4	1:14	18	3	Sat	7:08	1.8	7:23	-0.7	3	Mon	2:36	20.5	3:13	19.6	3	Mon	9:08	-1.6	9:17	0.5
		2.41			t Savings '				0.0	0.55		4	Tue	3:11	21.8	3:58	20.4	4	Tue	9:49	-3.4	9:58	0.5
4	Sun	2:41	19.0	2:54	19.3	4	Sun	8:43	-0.2	8:57	-1.2	5	Wed	3:48	22.6	4:44	20.7	5	Wed	10:30	-4.6	10:40	0.8
5	Mon	3:10	20.3	3:34	20.0	5	Mon	9:20	-2.0	9:33	-1.3	6	Thu	4:28	22.8	5:31	20.3	6	Thu	11:13	-5.0	11:24	1.5
6	Tue	3:42	21.2	4:16	20.1	6	Tue	9:58 10:37	-3.2 -3.8	10:09 10:48	-0.8	7	Fri	5:10	22.4 21.3	6:21	19.3	7	Fri	11:59	-4.6		2.4
,	Wed	4:15	21.5	4:59	19.6	7	Wed				0.2	8	Sat	5:56		7:16	18.1	8	Sat	0:11	2.5	12:49	-3.4
8	Thu Fri	4:32 5:31	21.2	5:46 6:38	18.4 16.8	8 9	Thu Fri	11:19	-3.6	11:30	1.7 -2.6	9 10	Sun	6:48 7:48	19.7 17.8	8:19 9:31	16.9 16.2	9 10	Sun Mon	1:04	3.7	1:45	-1.8
	Sat	6:17	18.8	7:41	15.1		Sat	0:17	3.3	12:06 1:00	-2.0		Mon	9:04	16.2	10:46	2:24			2:05	4.8	2:50	-0.2
10		7:12	17.0	9:01	13.1	10		1:13	5.0	2:07	0.4	11	Tue	10:31	15.3	11:54	16.7	11	Tue	3:21	5.5	4:05	1.1
11	Sun	8;27	15.3	10:35	13.9	11 12	Sun	2:27	6.3	3:32	1.5	12 13	Wed Thu	11:56	15.3	11:54	10.7	12 13	Wed Thu	4:48	5.3	5:22 6:28	1.8 2.0
12 13	Mon Tue	10:02	14.4	11:55	14.7		Mon Tue	4:04		5:04	1.5		Fri	0:49	17.6	1:06	15.9		Fri	6:10	4.1		2.0
	Wed	11:36	14.4		14.7	13 14		5:36	6.4 5.2	6:14	0.9	14		1:32	18.4	2:00	16.7	14	Sat	7:12	2.5	7:20	2.1
14	Thu	0:51	16.1	12:46	15.9	15	Wed Thu	6:42	3.3	7:05	0.9	15	Sat	2:08	19.1	2:45	17.4	15		8:01 8:41	1.0 -0.3	8:04 8:42	2.4
15 16	Fri	1:33	17.5	1:39	17.1	16	Fri	7:31	1.4	7:46	-0.1	16 17	Sun Mon	2:39	19.1	3:24	18.0	16 17	Sun Mon	9:17	-0.3	9:17	2.4
17	Sat	2:08	18.6	2:22	17.9	17	Sat	8:11	-0.2	8:22	-0.2	18	Tue	3:09	19.9	4:01	18.3	18	Tue	9:51	-1.2	9:51	3.0
18	Sun	2:38	19.4	3:01	18.5	18	Sun	8:47	-1.4	8:55	0.1	19	Wed	3:38	20.0	4:36	18.3	19	Wed	10:23	-2.0	10:25	3.4
19	Mon	3:06	19.4	3:36	18.6	19	Mon	9:21	-2.1	9:26	0.6	20	Thu	4:09	19.8	5:12	18.0	20	Thu	10:56	-1.8	11:00	4.0
20	Tue	3:34	19.9	4:11	18.4	20	Tue	9:53	-2.3	9:58	1.4	21	Fri	4:41	19.4	5:50	17.5	21	Fri	11:30	-1.4	11:35	4.6
21	Wed	4:01	19.6	4:46	17.8	21	Wed	10:25	-2.1	10:29	2.5	22	Sat	5:14	18.7	6:30	16.7	22				12:06	-0.7
22	Thu	4:28	18.9	5:22	16.8	22	Thu	10:57	-1.4	11:01	3.6	23	Sun	5:50	17.8	7:13	15.8	23	Sun	0:13	5.4	12:44	0.2
23	Fri	4:57	17.9	6:00	15.6	23	Fri	11:31	-0.4	11:35	4.9	24	Mon	6:29	16.7	8:02	15.0	24	Mon	0:53	6.2	1:26	1.2
24	Sat	5:28	16.8	6:44	14.2	24	Sat			12:07	0.8	25	Tue	7:15	15.5	8:56	14:24	25	Tue	1:41	6.9	2:14	2.1
25	Sun	6:02	15.4	7:37	12.9	25	Sun	0:12	6.1	12:50	2.1	26	Wed	8:13	14.5	9:54	14.6	26	Wed	2:40	7.3	3:10	2.9
26	Mon	6:45	14.1	8:48	12.1	26	Mon	0:57	7.3	1:44	3.3	27	Thu	9:28	13.8	10:50	15.2	27	Thu	3:53	7.1	4:14	3.4
27	Tue	7:50	12.8	10:14	12.1	27	Tue	2:03	8.2	3:00	4.1	28	Fri	10:49	13.8	11:41	16.2	28	Fri	5:10	6.0	5:18	3.5
28	Wed	9:23	12.2	11:24	13.0	28	Wed	3:40	8.3	4:25	4.0	29	Sat			12:03	14.6	29	Sat	6:15	4.3	6:17	3.4
29	Thu	10:55	12.7			29	Thu	5:11	7.1	5:31	3.3	30	Sun	0:26	17.5	1:08	15.8	30	Sun	7:08	2.0	7:10	3.0
30	Fri	0:11	14.4	12:05	14.0	30	Fri	6:10	5.1	6:21	2.3	31	Mon	1:10	19.0	2:04	17.2	31	Mon	7:56	-0.3	8:00	2.6

Table 17.–Page 2 of 3.

					June												Ju	ıly					
		HIGH	ł TIDE	ES				LO	W TI	DES				HIGI	H TIDE	S				LO	W TI	DES	
		A.M.		P.M.				A.M.		P.M.				A.M.		P.M.		-		A.M.		P.M.	
Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet
1	Tue	1:12a	19.2	2:15p	17.3	1	Tue	7:48a	-2.6	7:54p	2.0	1	Thu	1:33a	19.9	2:57p	17.6	1	Thu	8:20a	-4.0	8:27p	2.7
2	Wed	1:56a	20.4	3:04p	18.2	2	Wed	8:34a	-4.3	8:41p	1.7	2	Fri	2:26a	20.8	3:46p	18.4	2	Fri	9:10a	-5.1	9:18p	2.1
3	Thu	2:41a	21.2	3:54p	18.7	3	Thu	9:20a	-5.4	9:29p	1.7	3	Sat	3:18a	21.2	4:34p	18.9	3	Sat	9:58a	-5.5	10:09p	1.6
4	Fri	3:28a	21.4	4:43p	18.7	4	Fri	10:07a	-5.7	10:18p	1.9	4	Sun	4:09a	21.1	5:21p	19.0	4	Sun	10:45a	-5.2	10:59p	1.5
5	Sat	4:16a	21.0	5:34p	18.3	5	Sat	10:56a	-5.3	11:09p	2.3	5	Mon	5:00a	20.4	6:07p	18.8	5	Mon	11:31a	-4.3	11:51p	1.6
6	Sun	5:07a	20.0	6:27p	17.6	6	Sun	11:46a	-4.2	*	*	6	Tue	5:52a	19.1	6:54p	18.3	6	Tue	*	*	12:18p	-2.8
7	Mon	6:02a	18.6	7:23p	16.9	7	Mon	12:04a	2.9	12:39p	-2.7	7	Wed	6:45a	17.4	7:41p	17.6	7	Wed	12:44a	2.1	1:05p	-0.9
8	Tue	7:01a	16.8	8:22p	16.3	8	Tue	1:04a	3.5	1:36p	-1.0	8	Thu	7:41a	15.6	8:29p	16.9	8	Thu	1:41a	2.6	1:53p	1.1
9	Wed	8:08a	15.2	9:21p	16.0	9	Wed	2:11a	3.9	2:36p	0.6	9	Fri	8:45a	14.0	9:18p	16.2	9	Fri	2:44a	3.0	2:45p	3.1
10	Thu	9:22a	13.9	10:20p	0:00	10	Thu	3:26a	3.8	3:39p	2.1	10	Sat	9:57a	21:36	10:10p	15.7	10	Sat	3:52a	3.2	3:43p	4.8
11	Fri	10:41a	13.4	11:13p	16.2	11	Fri	4:40a	3.2	4:42p	3.2	11	Sun	11:18a	12.5	11:03p	15.4	11	Sun	5:01a	2.9	4:47p	6.0
12	Sat	11:54a	13.5	*	*	12	Sat	5:45a	2.2	5:39p	3.9	12	Mon	12:34p	12.9	11:56p	15.5	12	Mon	6:05a	2.3	5:50p	6.6
13	Sun	12:00a	16.5	12:56p	14.0	13	Sun	6:37a	1.1	6:30p	4.4	13	Tue	1:33p	13.7	*	*	13	Tue	6:58a	1.6	6:47p	6.5
14	Mon	12:41a	16.8	1:46p	14.7	14	Mon	7:21a	0.2	7:14p	4.6	14	Wed	12:46a	15.9	2:19p	14.5	14	Wed	7:42a	0.7	7:36p	6.1
15	Tue	1:19a	17.2	2:29p	15.3	15	Tue	8:00a	-0.6	7:55p	4.6	15	Thu	1:32a	16.5	2:57p	15.4	15	Thu	8:21a	-0.1	8:18p	5.5
16	Wed	1:54a	17.5	3:07p	15.9	16	Wed	8:36a	-1.2	8:34p	4.5	16	Fri	2:14a	17.2	3:32p	16.1	16	Fri	8:58a	-0.8	8:58p	4.9
17	Thu	2:30a	17.8	3:44p	16.2	17	Thu	9:11a	-1.5	9:11p	4.5	17	Sat	2:53a	17.8	4:06p	16.6	17	Sat	9:32a	-1.3	9:35p	4.3
18	Fri	3:06a	17.9	4:20p	16.3	18	Fri	9:46a	-1.7	9:49p	4.5	18	Sun	3:31a	18.2	4:38p	17.0	18	Sun	10:06a	-1.7	10:12p	3.9
19	Sat	3:42a	17.8	4:57p	16.2	19	Sat	10:22a	-1.6	10:27p	4.6	19	Mon	4:09a	18.3	5:11p	17.2	19	Mon	10:39a	-1.7	10:49p	3.7
20	Sun	4:20a	17.5	5:35p	16.0	20	Sun	10:58a	-1.3	11:06p	4.8	20	Tue	4:46a	18.1	5:43p	17.3	20	Tue	11:12a	-1.4	11:27p	3.5
21	Mon	4:58a	17.0	6:14p	15.6	21	Mon	11:34a	-0.8	11:46p	5.1	21	Wed	5:24a	17.5	6:16p	17.2	21	Wed	11:46a	-0.7	*	*
22	Tue	5:38a	16.2	6:53p	15.3	22	Tue	*	*	12:12p	-0.1	22	Thu	6:05a	16.6	6:50p	17.1	22	Thu	12:06a	3.5	12:21p	0.3
23	Wed	6:22a	15.3	7:34p	15.1	23	Wed	12:31a	5.3	12:52p	0.8	23	Fri	6:51a	15.5	7:26p	16.9	23	Fri	12:50a	3.4	1:00p	1.6
24	Thu	7:12a	14.3	8:18p	15.1	24	Thu	1:20a	5.4	1:36p	1.7	24	Sat	7:46a	14.3	8:09p	16.7	24	Sat	1:39a	3.4	1:45p	3.1
25	Fri	8:14a	9:36	9:05p	15.4	25	Fri	2:18a	5.2	2:27p	2.8	25	Sun	8:54a	7:12	9:01p	16.6	25	Sun	2:39a	3.2	2:40p	4.6
26	Sat	9:26a	12.9	9:55p	15.9	26	Sat	3:24a	4.4	3:26p	3.7	26	Mon	10:17a	12.9	10:04p	16.7	26	Mon	3:50a	2.6	3:50p	5.7
27	Sun	10:45a	13.0	10:49p	16.7	27	Sun	4:32a	3.1	4:30p	4.3	27	Tue	11:45a	13.4	11:13p	17.2	27	Tue	5:07a	1.6	5:08p	6.0
28	Mon	12:00p	13.8	11:44p	17.7	28	Mon	5:36a	1.4	5:35p	4.4	28	Wed	*	*	1:00p	14.7	28	Wed	6:18a	0.0	6:21p	5.4
29	Tue	*	*	1:06p	15.1	29	Tue	6:35a	-0.6	6:36p	4.1	29	Thu	12:22a	18.2	2:00p	16.2	29	Thu	7:19a	-1.7	7:24p	4.2
30	Wed	12:39a	18.8	2:04p	16.4	30	Wed	7:29a	-2.5	7:33p	3.5	30	Fri	1:25a	19.4	2:50p	17.7	30	Fri	8:12a	-3.3	8:19p	2.8
				1						•		31	Sat	2:21a	20.6	3:34p	18.9	31	Sat	9:00a	-4.4	9:10p	1.6

Table 17.–Page 3 of 3.

	August											S	eptembe	r									
		HIGI	H TIDE	ES				LO	W TI	DES			HIGH TIDES				LOW TIDES						
		A.M.	_	P.M.				A.M.		P.M.			A.M. P.M.			-		A.M.	_	P.M.			
Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet	Date	Day	Time	Feet	Time	Feet
1	Sun	3:13a	21.3	4:16p	19.8	1	Sun	9:45a	-4.9	9:58p	0.6	1	Wed	1:48a	16.6	2:46p	16.8	1	Wed	8:18a	0.6	8:23p	4.2
2	Mon	4:01a	21.4	4:57p	20.2	2	Mon	10:27a	-4.6	10:44p	0.2	2	Thu	2:24a	17.8	3:11p	17.8	2	Thu	8:47a	-0.1	8:55p	3.0
3	Tue	4:48a	20.9	5:36p	20.1	3	Tue	11:08a	-3.6	11:29p	0.2	3	Fri	2:57a	18.7	3:35p	18.6	3	Fri	9:15a	-0.5	9:26p	2.0
4	Wed	5:34a	19.7	6:14p	19.5	4	Wed	11:48a	-2.0	-	-	4	Sat	3:30a	19.2	4:00p	19.3	4	Sat	9:42a	-0.6	9:57p	1.3
5	Thu	6:20a	18.0	6:52p	18.6	5	Thu	12:15a	0.8	12:27p	0.0	5	Sun	4:03a	19.3	4:25p	19.6	5	Sun	10:10a	-0.3	10:28p	0.8
6	Fri	7:09a	16.1	7:31p	17.4	6	Fri	1:03a	1.6	1:07p	2.3	6	Mon	4:37a	0:00	4:50p	19.6	6	Mon	10:39a	0.5	11:00p	0.7
7	Sat	8:03a	14.3	8:12p	16.2	7	Sat	1:54a	2.6	1:51p	4.5	7	Tue	5:11a	18.2	5:17p	19.2	7	Tue	11:08a	1.6	11:33p	0.9
8	Sun	9:10a	19:12	9:01p	15.1	8	Sun	2:53a	3.6	2:43p	6.5	8	Wed	5:48a	17.1	5:45p	18.6	8	Wed	11:40a	3.0	-	-
9	Mon	10:38a	12.0	10:02p	14.3	9	Mon	4:07a	4.1	3:53p	7.8	9	Thu	6:30a	15.6	6:17p	17.8	9	Thu	12:09a	1.4	12:14p	4.5
10	Tue	12:17p	12.4	11:16p	14.3	10	Tue	5:30a	3.9	5:18p	8.3	10	Fri	7:23a	14.1	6:59p	16.8	10	Fri	12:53a	2.1	12:57p	6.2
11	Wed	1:24p	13.3	-	-	11	Wed	6:38a	3.1	6:32p	7.8	11	Sat	8:39a	12.8	8:01p	15.7	11	Sat	1:52a	3.0	1:58p	7.6
12	Thu	12:25a	14.9	2:07p	14.5	12	Thu	7:27a	2.0	7:24p	6.8	12	Sun	10:25a	12.5	9:32p	15.2	12	Sun	3:16a	3.4	3:33p	8.3
13	Fri	1:18a	15.9	2:41p	15.6	13	Fri	8:06a	0.9	8:06p	5.6	13	Mon	11:59a	13.7	11:10p	15.9	13	Mon	4:55a	2.8	5:14p	7.5
14	Sat	2:02a	17.1	3:11p	16.6	14	Sat	8:40a	-0.1	8:43p	4.5	14	Tue	-	-	12:58p	15.6	14	Tue	6:12a	1.2	6:28p	5.5
15	Sun	2:41a	18.1	3:39p	17.6	15	Sun	9:11a	-1.0	9:17p	3.4	15	Wed	12:27a	17.5	1:42p	17.7	15	Wed	7:08a	-0.6	7:23p	0.0
16	Mon	3:18a	18.9	4:08p	18.3	16	Mon	9:42a	-1.5	9:52p	2.5	16	Thu	1:26a	19.4	2:21p	19.6	16	Thu	7:53a	-2.1	8:10p	0.6
17	Tue	3:53a	19.3	4:36p	18.9	17	Tue	10:13a	-1.6	10:26p	1.9	17	Fri	2:17a	21.0	2:57p	21.2	17	Fri	8:35a	-3.0	8:54p	-1.4
18	Wed	4:30a	19.3	5:05p	19.2	18	Wed	10:44a	-1.3	11:02p	1.4	18	Sat	3:04a	21.9	3:32p	22.2	18	Sat	9:14a	-3.1	9:37p	-2.7
19	Thu	5:07a	18.8	5:34p	19.2	19	Thu	11:16a	-0.5	11:39p	1.2	19	Sun	3:49a	22.0	4:07p	22.6	19	Sun	9:52a	-2.5	10:18p	-3.2
20	Fri	5:47a	17.9	6:06p	18.9	20	Fri	11:50a	0.8	-	-	20	Mon	4:32a	21.4	4:42p	22.2	20	Mon	10:30a	-1.1	10:59p	-2.8
21	Sat	6:31a	16.6	6:41p	18.4	21	Sat	12:19a	1.3	12:28p	2.3	21	Tue	5:16a	2:24	5:16p	21.1	21	Tue	11:08a	0.7	11:40p	-1.7
22	Sun	7:25a	15.1	7:24p	17.6	22	Sun	1:06a	1.7	1:12p	4.1	22	Wed	6:01a	18.3	5:52p	19.5	22	Wed	11:46a	2.8	-	-
23	Mon	8:34a	16:48	8:20p	16.8	23	Mon	2:04a	2.2	2:09p	5.8	23	Thu	6:49a	16.2	6:29p	17.5	23	Thu	12:24a	0.0	12:27p	5.0
24	Tue	10:06a	13.0	9:35p	16.2	24	Tue	3:20a	2.5	3:27p	7.0	24	Fri	7:48a	14.3	7:14p	15.5	24	Fri	1:13a	1.9	1:15p	7.1
25	Wed	11:45a	13.6	11:01p	16.4	25	Wed	4:50a	2.1	5:00p	7.0	25	Sat	9:10a	12.8	8:18p	13.8	25	Sat	2:16a	3.8	2:23p	8.7
26	Thu	-	-	12:59p	15.1	26	Thu	6:11a	0.7	6:20p	5.8	26	Sun	11:08a	12.7	10:01p	13.0	26	Sun	3:51a	4.8	4:17p	9.3
27	Fri	12:21a	17.6	1:52p	16.9	27	Fri	7:13a	-0.9	7:22p	4.0	27	Mon	12:29p	13.6	11:44p	13.6	27	Mon	5:34a	4.5	6:00p	8.2
28	Sat	1:25a	19.1	2:35p	18.5	28	Sat	8:03a	-2.4	8:13p	2.1	28	Tue	-	-	1:12p	14.8	28	Tue	6:34a	3.6	6:53p	6.7
29	Sun	2:18a	20.4	3:14p	19.9	29	Sun	8:46a	-3.3	8:59p	0.4	29	Wed	12:45a	14.8	1:42p	16.0	29	Wed	7:14a	2.6	7:28p	5.0
30	Mon	3:05a	21.3	3:50p	20.8	30	Mon	9:26a	-3.6	9:42p	-0.7	30	Thu	1:27a	16.2	2:06p	17.2	30	Thu	7:44a	1.7	7:59p	9:36
31	Tue	3:49a	21.5	4:24p	21.2	31	Tue	10:03a	-3.2	10:23p	-1.2												

APPENDIX A

Appendix A1.–Upper Cook Inlet commercial Chinook salmon harvest by gear type and area, 1966-2004.

	Central District			Central Dis	trict Set Gillnet		Northern	District	
	Drift (Gillnet	East	t Side	Kalgin/W	Vest Side	Set G	illnet	
Year	Number ^b	%	Number ^b	%	Number ^b	%	Number ^b	%	Total
1966	392	4.6	7,329	85.8	401	4.7	422	4.9	8,544
1967	489	6.2	6,686	85.1	500	6.4	184	2.3	7,859
1968	182	4.0	3,304	72.8	579	12.8	471	10.4	4,536
1969	362	2.9	5,834	47.1	3,286	26.5	2,904	23.4	12,386
1970	356	4.3	5,368	64.4	1,152	13.8	1,460	17.5	8,336
1971	237	1.2	7,055	35.7	2,875	14.5	9,598	48.6	19,765
1972	375	2.3	8,599	53.5	2,199	13.7	4,913	30.5	16,086
1973	244	4.7	4,411	84.9	369	7.1	170	3.3	5,194
1974	422	6.4	5,571	84.5	434	6.6	169	2.6	6,596
1975	250	5.2	3,675	76.8	733	15.3	129	2.7	4,787
1976	690	6.4	8,249	75.9	1,469	13.5	457	4.2	10,865
1977	3,411	23.1	9,730	65.8	1,084	7.3	565	3.8	14,790
1978	2,072	12.0	12,468	72.1	2,093	12.1	666	3.8	17,299
1979	1,089	7.9	8,671	63.1	2,264	16.5	1,714	12.5	13,738
1980	889	6.4	9,643	69.9	2,273	16.5	993	7.2	13,798
1981	2,320	19.0	8,358	68.3	837	6.8	725	5.9	12,240
1982	1,293	6.2	13,658	65.4	3,203	15.3	2,716	13.0	20,870
1983	1,125	5.5	15,042	72.9	3,534	17.1	933	4.5	20,634
1984	1,377	13.7	6,165	61.3	1,516	15.1	1,004	10.0	10,062
1985	2,048	8.5	17,723	73.6	2,427	10.1	1,890	7.8	24,088
1986	1,834	4.7	19,824	50.5	2,108	5.4	15,488	39.5	39,254
1987	4,552	11.5	21,150	53.6	1,029	2.6	12,700	32.2	39,431
1988	2,237	7.7	12,870	44.3	1,137	3.9	12,836	44.1	29,080
1989			10,914	40.8	3,092	11.6	12,731	47.6	26,737
1990	621	3.9	4,139	25.7	1,763	10.9	9,582	59.5	16,105
1991	246	1.8	4,893	36.1	1,544	11.4	6,859	50.6	13,542
1992	615	3.6	10,718	62.4	1,284	7.5	4,554	26.5	17,171
1993	765	4.1	14,079	74.6	720	3.8	3,307	17.5	18,871
1994	464	2.3	15,562	78.0	730	3.7	3,185	16.0	19,941
1995	594	3.3	12,068	67.4	1,101	6.2	4,130	23.1	17,893

Appendix A1.–Page 2 of 2.

	Central District			Central District Set Gillnet			Northern	District	
	Drift (Gillnet	East	Side	Kalgin/W	est Side	Set Gi	llnet	
Year	Numberb	%	Number ^b	%	Number ^b	%	Number ^b	%	Total
1996	389	2.7	11,564	80.8	395	2.8	1,958	13.7	14,306
1997	627	4.7	11,325	85.2	207	1.6	1,133	8.5	13,292
1998	335	4.1	5,087	62.6	155	1.9	2,547	31.4	8,124
1999	575	4.0	9,463	65.8	1,533	10.7	2,812	19.6	14,383
2000	270	3.7	3,684	50.1	1,089	14.8	2,307	31.4	7,350
2001	619	6.7	6,009	64.6	856	9.2	1,811	19.5	9,295
2002	415	3.3	9,478	74.5	926	7.3	1,895	14.9	12,714
2003	1,240	6.7	14,810	80.1	770	4.2	1,670	9.0	18,490
2004	1,526	5.6	21,656	78.9	2,208	8.0	2,058	7.5	27,448
1966-03 Avg ^a	974	6	9,575	66	1,367	10	3,266	18	15,181
1994-03 Avg	553	4	9,905	71	776	6	2,345	19	13,579

^a 1989 not used in average as the drift fleet did not fish due to the Exxon Valdez oil spill and this had an effect on all other fisheries. ^b Harvest data prior to 2004 reflect minor adjustments to historical catch database.

Appendix A2.—Upper Cook Inlet commercial sockeye salmon harvest by gear type and area, 1966-2004.

	Central	District		Central 1	District Set Gillnet	t	Northern	n District	
	Drift (Sillnet	East	Side	Kalgin/V	Vest Side	Set G	illnet	
Year	Number ^b	%	Number ^b	%	Number ^b	%	Number ^b	%	Total
1966	1,103,261	59.6	485,330	26.2	132,443	7.2	131,080	7.1	1,852,114
1967	890,152	64.5	305,431	22.1	66,414	4.8	118,065	8.6	1,380,062
1968	561,737	50.8	317,535	28.7	85,049	7.7	140,575	12.7	1,104,896
1969	371,747	53.7	210,834	30.5	71,184	10.3	38,050	5.5	691,815
1970	460,690	62.9	142,701	19.5	62,723	8.6	66,458	9.1	732,572
1971	423,107	66.5	111,505	17.5	61,144	9.6	40,533	6.4	636,289
1972	506,281	57.5	204,599	23.3	83,176	9.5	85,755	9.7	879,811
1973	375,695	56.1	188,816	28.2	59,973	8.9	45,614	6.8	670,098
1974	265,771	53.5	136,889	27.5	52,962	10.7	41,563	8.4	497,185
1975	368,124	53.8	177,336	25.9	73,765	10.8	65,526	9.6	684,751
1976	1,055,786	63.4	476,376	28.6	62,338	3.7	69,649	4.2	1,664,149
1977	1,073,098	52.3	751,178	36.6	104,265	5.1	123,750	6.0	2,052,291
1978	1,803,479	68.8	660,797	25.2	105,767	4.0	51,378	2.0	2,621,421
1979	454,707	49.2	247,359	26.8	108,422	11.7	113,918	12.3	924,406
1980	770,247	48.9	559,812	35.6	137,882	8.8	105,647	6.7	1,573,588
1981	633,380	44.0	496,003	34.5	60,217	4.2	249,662	17.3	1,439,262
1982	2,103,429	64.5	971,423	29.8	66,952	2.1	118,060	3.6	3,259,864
1983	3,222,428	63.8	1,508,511	29.9	134,575	2.7	184,219	3.6	5,049,733
1984	1,235,337	58.6	490,273	23.3	162,139	7.7	218,965	10.4	2,106,714
1985	2,032,957	50.1	1,561,200	38.4	285,081	7.0	181,191	4.5	4,060,429
1986	2,837,857	59.2	1,658,161	34.6	153,714	3.2	141,830	3.0	4,791,562
1987	5,638,916	59.6	3,454,470	36.5	208,036	2.2	164,572	1.7	9,465,994
1988	4,139,358	60.5	2,428,385	35.5	146,377	2.1	129,713	1.9	6,843,833
1989			4,543,492	90.7	186,831	3.7	280,801	5.6	5,011,124
1990	2,305,331	64.0	1,117,581	31.0	84,949	2.4	96,398	2.7	3,604,259
1991	1,118,115	51.3	844,156	38.8	99,859	4.6	116,201	5.3	2,178,331
1992	6,069,495	66.6	2,838,076	31.2	131,304	1.4	69,478	0.8	9,108,353
1993	2,558,732	53.8	1,941,783	40.8	108,181	2.3	146,633	3.1	4,755,329
1994	1,901,452	53.3	1,458,162	40.9	85,830	2.4	120,142	3.4	3,565,586
1995	1,773,873	60.1	961,216	32.6	107,640	3.6	109,098	3.7	2,951,827

Appendix A2.–Page 2 of 2.

	Central District			Central 1	District Set Gillnet	t	Northern	District		
	Drift (Gillnet	East	Side	Kalgin/V	Vest Side	Set G	illnet		
Year	Numberb	%	Number ^b	%	Number ^b	%	Number ^b	%	Total	
1996	2,205,067	56.7	1,483,008	38.1	96,719	2.5	104,128	2.7	3,888,922	
1997	2,197,736	52.6	1,832,824	43.9	48,723	1.2	97,455	2.3	4,176,738	
1998	599,202	49.1	512,225	42.0	47,165	3.9	60,650	5.0	1,219,242	
1999	1,413,995	52.8	1,092,946	40.8	114,454	4.3	59,115	2.2	2,680,510	
2000	656,427	49.6	529,747	40.1	92,477	7.0	43,831	3.3	1,322,482	
2001	846,257	46.3	870,019	47.6	59,709	3.3	50,848	2.8	1,826,833	
2002	1,367,251	49.3	1,303,158	47.0	69,609	2.5	33,100	1.2	2,773,118	
2003	1,593,638	45.8	1,746,841	50.3	87,193	2.5	48,487	1.4	3,476,159	
2004	2,523,559	51.3	2,234,370	45.4	134,304	2.7	27,286	0.6	4,919,545	
1966-03 Avg ^a	1,592,814	56	975,045	33	100,498	5	102,198	5	2,770,555	
1994-03 Avg	1,455,490	52	1,179,015	42	80,952	3	72,685	3	2,788,142	

a 1989 not used in average as the drift fleet did not fish due to the Exxon Valdez oil spill and this had an effect on all other fisheries.
 b Harvest data prior to 2004 reflect minor adjustments to historical catch database.

Appendix A3.–Upper Cook Inlet commercial coho salmon harvest by gear type and area, 1966-2004.

	Central l	District	C	entral Dist	rict Set Gillnet		Northern	District	_
	Drift G	illnet	East S	Side	Kalgin/W	est Side	Set Gil	llnet	
Year	Number ^b	%	Number ^b	%	Number ^b	%	Number ^b	%	Total
1966	80,901	27.9	68,877	23.8	59,509	20.5	80,550	27.8	289,837
1967	53,071	29.9	40,738	22.9	40,066	22.5	43,854	24.7	177,729
1968	167,383	35.8	80,828	17.3	63,301	13.5	156,648	33.5	468,160
1969	33,053	32.8	18,988	18.9	28,231	28.0	20,412	20.3	100,684
1970	110,070	40.0	30,114	10.9	52,299	19.0	82,722	30.1	275,205
1971	35,491	35.4	16,589	16.5	26,188	26.1	22,094	22.0	100,362
1972	21,577	26.7	24,673	30.5	15,300	18.9	19,346	23.9	80,896
1973	31,784	30.4	23,901	22.9	24,784	23.7	23,951	22.9	104,420
1974	75,640	37.8	36,837	18.4	40,610	20.3	47,038	23.5	200,125
1975	88,579	39.0	46,209	20.3	59,537	26.2	33,051	14.5	227,376
1976	80,712	38.7	47,873	22.9	42,243	20.2	37,835	18.1	208,663
1977	110,184	57.2	23,693	12.3	38,093	19.8	20,623	10.7	192,593
1978	76,259	34.8	34,134	15.6	61,711	28.2	47,089	21.5	219,193
1979	114,496	43.2	29,284	11.0	68,306	25.8	53,078	20.0	265,164
1980	89,510	33.0	40,281	14.8	51,527	19.0	90,098	33.2	271,416
1981	226,366	46.7	36,024	7.4	88,390	18.2	133,625	27.6	484,405
1982	416,274	52.5	108,393	13.7	182,205	23.0	85,352	10.8	792,224
1983	326,965	63.3	37,694	7.3	97,796	18.9	53,867	10.4	516,322
1984	213,423	47.4	37,166	8.3	84,618	18.8	114,786	25.5	449,993
1985	357,388	53.6	70,657	10.6	147,331	22.1	91,837	13.8	667,213
1986	506,818	66.9	76,461	10.1	85,932	11.4	88,108	11.6	757,319
1987	202,506	44.8	74,923	16.6	74,930	16.6	97,062	21.9	449,421
1988	278,828	49.6	54,975	9.9	77,403	13.8	149,742	26.7	560,948
1989	743	0.2	82,333	24.1	81,004	23.9	175,738	51.8	339,818
1990	247,357	49.3	40,351	8.0	73,429	14.6	140,506	28.0	501,643
1991	175,782	41.2	30,435	7.1	87,968	20.6	132,302	31.0	426,487
1992	267,300	57.0	57,078	12.2	53,419	11.4	91,133	19.4	468,930
1993	121,829	39.7	43,098	14.0	35,661	11.6	106,294	34.6	306,882
1994	310,114	52.7	68,449	11.9	61,166	10.5	144,064	24.8	583,793
1995	241,473	54.0	44,750	10.0	71,431	16.0	89,300	20.0	446,954

Appendix A3.–Page 2 of 2.

	Central District		Central District Set Gillne			et Northern District				
	Drift Gi	llnet	East Side		Kalgin/West Side		Set Gillnet			
Year	Number ^b	%	Number ^b	%	Number ^b	%	Number ^b	%	Total	
1996	171,434	53.3	40,724	12.6	31,405	9.8	78,105	24.3	321,668	
1997	78,662	51.6	19,668	12.9	16,705	11.0	37,369	24.5	152,404	
1998	83,338	51.9	18,677	11.6	24,286	15.1	34,359	21.4	160,660	
1999	64,814	51.5	11,923	9.3	17,725	14.1	31,446	25.1	125,908	
2000	131,478	55.5	11,078	4.7	22,840	9.6	71,475	30.2	236,871	
2001	39,418	34.8	4,246	3.7	23,719	20.9	45,928	40.5	113,311	
2002	125,831	51.1	35,153	14.3	35,005	14.2	50,292	20.4	246,281	
2003	52,432	51.5	10,171	10.0	15,138	14.9	24,015	23.6	101,756	
2004	198,493	64.1	30,137	9.7	36,257	11.7	44,819	14.5	309,706	
1966-03 Avg ^a	156,988	44.9	40,408	13.7	56,222	18.1	72,145	23.3	325,763	
1994-03 Avg	129,899	50.8	26,484	10.1	31,942	13.6	60,635	25.5	248,961	

a 1989 not used in average as the drift fleet did not fish due to the Exxon Valdez oil spill and this had an effect on all other fisheries.
 b Harvest data prior to 2004 reflect minor adjustments to historical catch database.

Appendix A4.—Upper Cook Inlet commercial pink salmon harvest by gear type and area, 1966-2004.

	Central	District	(Central Dist	rict Set Gillnet		Northern 1	District	
	Drift (Gillnet	East S	Side	Kalgin/W	est Side	Set Gil	lnet	
Year	Numberb	%	Number ^b	%	Numberb	%	Number ^b	%	Total
1966	593,654	29.6	969,624	48.3	70,507	3.5	371,960	18.5	2,005,745
1967	7,475	23.2	13,038	40.5	3,256	10.1	8,460	26.2	32,229
1968	880,512	38.7	785,887	34.5	75,755	3.3	534,839	23.5	2,276,993
1969	8,233	25.3	10,968	33.7	5,711	17.6	7,587	23.3	32,499
1970	334,737	41.1	281,067	34.5	24,763	3.0	174,193	21.4	814,760
1971	6,433	18.1	18,097	50.8	2,637	7.4	8,423	23.7	35,590
1972	115,117	18.3	403,706	64.2	18,913	3.0	90,830	14.5	628,566
1973	91,901	28.2	80,596	24.7	16,437	5.0	137,250	42.1	326,184
1974	140,432	29.0	291,408	60.2	9,014	1.9	42,876	8.9	483,730
1975	113,868	33.9	112,423	33.4	19,086	5.7	90,953	27.0	336,330
1976	599,594	47.7	479,024	38.1	30,030	2.4	148,080	11.8	1,256,728
1977	286,308	51.7	125,817	22.7	25,212	4.6	116,518	21.0	553,855
1978	934,442	55.3	372,601	22.1	54,785	3.2	326,614	19.3	1,688,442
1979	19,554	26.8	19,983	27.4	7,061	9.7	26,382	36.1	72,980
1980	964,526	54.0	299,444	16.8	47,963	2.7	474,488	26.6	1,786,421
1981	53,888	42.4	15,654	12.3	4,276	3.4	53,325	41.9	127,143
1982	270,380	34.2	432,715	54.7	14,242	1.8	73,307	9.3	790,644
1983	26,629	37.9	18,309	26.0	3,785	5.4	21,604	30.7	70,327
1984	273,565	44.3	220,895	35.8	16,708	2.7	106,284	17.2	617,452
1985	34,228	39.0	17,715	20.2	5,653	6.4	30,232	34.4	87,828
1986	615,522	47.3	530,955	40.8	15,460	1.2	139,002	10.7	1,300,939
1987	38,714	35.4	47,235	43.2	5,229	4.8	18,203	16.6	109,381
1988	227,885	48.4	176,043	37.4	12,938	2.7	54,210	11.5	471,076
1989	1	0.0	37,982	56.3	5,580	8.3	23,878	35.4	67,441
1990	323,759	53.7	225,429	37.4	10,302	1.7	43,944	7.3	603,434
1991	5,791	39.5	2,670	18.2	1,049	7.2	5,153	35.1	14,663
1992	423,738	60.9	244,068	35.1	4,250	0.6	23,805	3.4	695,861
1993	46,463	46.0	41,690	41.3	2,313	2.3	10,468	10.4	100,934
1994	256,248	49.0	234,827	44.9	3,178	0.6	29,181	5.6	523,434
1995	64,632	48.4	53,420	40.0	3,810	2.9	11,713	8.8	133,575

Appendix A4.–Page 2 of 2.

	Central	District	C	entral Dis	trict Set Gillnet		Northern 1			
	Drift (Gillnet	East Side		Kalgin/W	Kalgin/West Side		lnet		
Year	Number ^b	%	Number ^b	%	Numberb	%	Number ^b	%	Total	
1996	122,728	50.5	95,717	39.4	3,792	1.6	20,674	8.5	242,911	
1997	29,917	42.2	32,046	45.2	4,701	6.6	4,269	6.0	70,933	
1998	200,382	36.3	332,092	60.2	7,231	1.3	11,555	2.1	551,260	
1999	3,552	22.0	9,355	57.8	2,674	16.5	593	3.7	16,174	
2000	90,508	61.8	23,746	16.2	11,983	8.2	20,245	13.8	146,482	
2001	31,218	43.0	32,998	45.5	3,988	5.5	4,355	6.0	72,559	
2002	224,229	50.2	214,771	48.1	1,736	0.4	6,224	1.4	446,960	
2003	30,369	62.3	16,474	33.8	375	0.8	1,564	3.2	48,782	
2004	234,924	65.8	107,796	30.2	12,555	3.5	2,017	0.6	357,292	
1966-03 Avg	229,490	41.0	196,825	37.4	14,887	4.5	87,821	17.1	529,022	
1994-03 Avg	105,378	46.6	104,545	43.1	4,347	4.4	11,037	5.9	225,307	

^a 1989 not used in average as the drift fleet did not fish due to the Exxon Valdez oil spill and this had an effect on all other fisheries. ^b Harvest data prior to 2004 reflect minor adjustments to historical catch database.

Appendix A5.–Upper Cook Inlet commercial chum salmon harvest by gear type and area, 1966-2004.

	Central I	District	(Central Dist	trict Set Gillnet		Norther	n District	
	Drift G	illnet	East S	Side	Kalgin/W	est Side	Set G	lillnet	
Year	Number ^b	%	Number ^b	%	Number ^b	%	Number ^b	%	Total
1966	424,972	79.8	7,461	1.4	64,725	12.1	35,598	6.7	532,756
1967	233,041	78.5	399	0.1	25,013	8.4	38,384	12.9	296,837
1968	1,002,900	90.5	1,563	0.1	44,986	4.1	58,454	5.3	1,107,903
1969	238,497	89.1	399	0.1	16,954	6.3	11,836	4.4	267,686
1970	678,448	90.4	1,228	0.2	48,591	6.5	22,507	3.0	750,774
1971	274,567	84.8	128	0.0	32,647	10.1	16,603	5.1	323,945
1972	564,726	90.2	1,727	0.3	40,179	6.4	19,782	3.2	626,414
1973	605,738	90.7	1,965	0.3	29,019	4.3	30,851	4.6	667,573
1974	344,496	86.8	506	0.1	15,346	3.9	36,492	9.2	396,840
1975	886,474	93.2	980	0.1	33,347	3.5	30,787	3.2	951,588
1976	405,769	86.5	1,484	0.3	47,882	10.2	14,045	3.0	469,180
1977	1,153,454	93.5	1,413	0.1	54,708	4.4	23,861	1.9	1,233,436
1978	489,119	85.5	4,563	0.8	40,946	7.2	37,151	6.5	571,779
1979	609,239	93.8	867	0.1	30,342	4.7	9,310	1.4	649,758
1980	339,970	87.7	2,147	0.6	28,970	7.5	16,728	4.3	387,815
1981	756,922	91.0	2,386	0.3	26,461	3.2	46,208	5.6	831,977
1982	1,348,510	94.1	4,777	0.3	36,647	2.6	43,006	3.0	1,432,940
1983	1,044,636	93.7	2,822	0.3	38,079	3.4	29,321	2.6	1,114,858
1984	568,097	83.5	3,695	0.5	34,207	5.0	74,727	11.0	680,726
1985	700,848	90.7	4,133	0.5	31,746	4.1	36,122	4.7	772,849
1986	1,012,669	89.2	7,030	0.6	39,078	3.4	76,040	6.7	1,134,817
1987	211,745	60.7	16,605	4.8	53,558	15.4	66,901	19.2	348,809
1988	582,699	82.0	11,763	1.7	40,425	5.7	75,728	10.7	710,615
1989	72	0.1	12,326	10.1	27,705	22.7	81,948	67.1	122,051
1990	289,447	82.4	4,611	1.3	21,355	6.1	35,710	10.2	351,123
1991	215,469	76.9	2,387	0.9	22,974	8.2	39,393	14.1	280,223
1992	232,955	84.9	2,867	1.0	13,180	4.8	25,301	9.2	274,303
1993	88,826	72.4	2,977	2.4	5,566	4.5	25,401	20.7	122,770
1994	249,748	82.4	2,927	1.0	10,443	3.4	40,059	13.2	303,177
1995	468,224	88.4	3,711	0.7	13,820	2.6	43,667	8.2	529,422

Appendix A5.—Page 2of2.

	Central District		(Central Dis	strict Set Gillnet		Northern	District		
	Drift G	illnet	East S	ide	Kalgin/W	est Side	Set G	illnet		
Year	Number ^b	%	Numberb	%	Number ^b	%	Number ^b	%	Total	
1996	140,968	90.1	1,448	0.9	2,314	1.5	11,771	7.5	156,501	
1997	92,163	89.4	1,222	1.2	1,770	1.7	7,881	7.6	103,036	
1998	88,036	92.0	688	0.7	2,953	3.1	3,977	4.2	95,654	
1999	166,612	95.5	373	0.2	3,567	2.0	3,989	2.3	174,541	
2000	118,074	92.9	325	0.3	4,386	3.5	4,284	3.4	127,069	
2001	75,599	89.5	248	0.3	6,445	7.6	2,202	2.6	84,494	
2002	224,587	94.4	1,790	0.8	6,671	2.8	4,901	2.1	237,949	
2003	106,467	88.2	1,933	1.6	7,861	6.5	4,483	3.7	120,744	
2004	136,010	93.7	2,019	1.4	4,956	3.4	2,148	1.5	145,133	
1966-03 Avg ^a	460,398	87.2	2,907	0.7	26,410	5.4	29,823	6.7	519,537	
1994-03 Avg	173,048	90.3	1,467	0.8	6,023	3.5	12,721	5.5	193,259	

^a 1989 not used in average as the drift fleet did not fish due to the Exxon Valdez oil spill and this had an effect on all other fisheries. ^b Harvest data prior to 2004 reflect minor adjustments to historical catch database.

Appendix A6.-Upper Cook Inlet commercial salmon harvest by species, 1956-2004^a.

Year Chinook Sockeye Coho Pink Chu 1956 64,977 1,258,789 198,189 1,595,375 782,6 1957 42,158 643,712 125,434 21,228 1,001 1958 22,727 477,392 239,765 1,648,548 471,6 1959 32,651 612,676 106,312 12,527 300,3 1960 27,512 923,314 311,461 1,411,605 659,9 1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,0 1964 4,531 970,055 452,654 3,231,961 1,079,1 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 <th>051 3,899,381 ,470 1,834,002 697 2,860,129 319 1,064,485 997 3,333,889 628 1,683,463</th>	051 3,899,381 ,470 1,834,002 697 2,860,129 319 1,064,485 997 3,333,889 628 1,683,463
1958 22,727 477,392 239,765 1,648,548 471,6 1959 32,651 612,676 106,312 12,527 300,3 1960 27,512 923,314 311,461 1,411,605 659,5 1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,0 1964 4,531 970,055 452,654 3,231,961 1,079,1 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,107 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732	6972,860,1293191,064,4859973,333,8896281,683,463
1959 32,651 612,676 106,312 12,527 300,3 1960 27,512 923,314 311,461 1,411,605 659,5 1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,6 1964 4,531 970,055 452,654 3,231,961 1,079,1 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,107 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,5 1971 19,765 636,2	6972,860,1293191,064,4859973,333,8896281,683,463
1960 27,512 923,314 311,461 1,411,605 659,9 1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,6 1964 4,531 970,055 452,654 3,231,961 1,079 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107, 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 <td>997 3,333,889 628 1,683,463</td>	997 3,333,889 628 1,683,463
1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,0 1964 4,531 970,055 452,654 3,231,961 1,079,0 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,0 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	628 1,683,463
1961 19,737 1,162,303 117,778 34,017 349,6 1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,0 1964 4,531 970,055 452,654 3,231,961 1,079,0 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,0 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	628 1,683,463
1962 20,210 1,147,573 350,324 2,711,689 970,5 1963 17,536 942,980 197,140 30,436 387,6 1964 4,531 970,055 452,654 3,231,961 1,079,0 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,107 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1963 17,536 942,980 197,140 30,436 387,0 1964 4,531 970,055 452,654 3,231,961 1,079 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,9 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1964 4,531 970,055 452,654 3,231,961 1,079, 1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107, 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1965 9,741 1,412,350 153,619 23,963 316,4 1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107, 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1966 8,544 1,852,114 289,837 2,005,745 532,7 1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,9 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1967 7,859 1,380,062 177,729 32,229 296,8 1968 4,536 1,104,896 468,160 2,276,993 1,107,107,107,107,107,107,107,107,107,10	
1968 4,536 1,104,896 468,160 2,276,993 1,107, 1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1969 12,386 691,815 100,684 32,499 267,6 1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1970 8,336 732,572 275,205 814,760 750,7 1971 19,765 636,289 100,362 35,590 323,5 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1971 19,765 636,289 100,362 35,590 323,9 1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1972 16,086 879,811 80,896 628,566 626,4 1973 5,194 670,098 104,420 326,184 667,5	
1973 5,194 670,098 104,420 326,184 667,5	
1975 4,787 684,751 227,376 336,330 951,5	
1976 10,865 1,664,149 208,663 1,256,728 469,1	
1977 14,790 2,052,291 192,593 553,855 1,233,	
1978 17,299 2,621,421 219,193 1,688,442 571,7	
1979 13,738 924,406 265,164 72,980 649,7	
1980 13,798 1,573,588 271,416 1,786,421 387,8	
1981 12,240 1,439,262 484,405 127,143 831,5	
1982 20,870 3,259,864 792,224 790,644 1,432,	
1983 20,634 5,049,733 516,322 70,327 1,114	
1984 10,062 2,106,714 449,993 617,452 680,7	
1985 24,088 4,060,429 667,213 87,828 772,8	
1986 39,254 4,791,562 757,319 1,300,939 1,134,	
1987 39,431 9,465,994 449,421 109,381 348,8	
1988 29,080 6,843,833 560,948 471,076 710,6	
1989 26,737 5,011,124 339,818 67,441 122,0	
1990 16,105 3,604,259 501,643 603,434 351,1	
1991 13,542 2,178,331 426,487 14,663 280,2	
1992 17,171 9,108,353 468,930 695,861 274,3	
1993 18,871 4,755,329 306,882 100,934 122,7	
1994 19,941 3,565,586 583,793 523,434 303,1	
1995 17,893 2,951,827 446,954 133,575 529,4	
1996 14,306 3,888,922 321,668 242,911 156,5	
1997 13,292 4,176,738 152,404 70,933 103,6	
1998 8,124 1,219,242 160,660 551,260 95,6	, , , , , , , , , , , , , , , , , , ,
1999 14,383 2,680,510 125,908 16,174 174,5	
2000 7,350 1,322,482 236,871 146,482 127,6	
2001 9,295 1,826,833 113,311 72,559 84,4	
2002 12,714 2,773,118 246,281 446,960 237,9	
2003 18,490 3,476,159 101,756 48,782 120,7	
2004 27,448 4,919,545 309,706 357,292 145,1	
1956-2003 Avg 17,713 2,439,017 305,119 632,554 534,6	651 3,929,053
1994-03 Avg. 14,330 2,923,535 221,481 208,692 177,4 a Catch statistics prior to 2004 reflect minor adjustments to harvest database.	454 3,545,492

^a Catch statistics prior to 2004 reflect minor adjustments to harvest database.

Appendix A7.—Approximate exvessel value of Upper Cook Inlet commercial salmon harvest by species, 1960-2004.

Year	Chinook \$	%	Sockeye \$	%	Coho \$	%	Pink \$	%	Chum \$	%	Total \$
1960	140,000	5.0%	1,334,000	47.9%	307,000	11.0%	663,000	23.8%	343,000	12.3%	2,787,000
1961	100,000	4.7%	1,687,000	79.4%	118,000	5.6%	16,000	0.8%	204,000	9.6%	2,125,000
1962	100,000	2.5%	1,683,000	42.3%	342,000	8.6%	1,274,000	32.0%	582,000	14.6%	3,981,000
1963	89,000	4.6%	1,388,000	72.3%	193,000	10.1%	13,000	0.7%	236,000	12.3%	1,919,000
1964	20,000	0.5%	1,430,000	38.9%	451,000	12.3%	1,131,000	30.8%	646,000	17.6%	3,678,000
1965	50,000	2.0%	2,099,000	82.1%	109,000	4.3%	70,000	2.7%	230,000	9.0%	2,558,000
1966	50,000	1.2%	2,727,000	64.4%	295,000	7.0%	823,000	19.4%	338,000	8.0%	4,233,000
1967	49,000	1.9%	2,135,000	82.6%	187,000	7.2%	13,000	0.5%	202,000	7.8%	2,586,000
1968	30,000	0.7%	1,758,000	40.4%	515,000	11.8%	1,209,000	27.8%	843,000	19.4%	4,355,000
1969	70,000	4.0%	1,296,697	73.9%	134,003	7.6%	18,291	1.0%	236,404	13.5%	1,755,394
1970	89,382	3.0%	1,190,303	39.9%	468,179	15.7%	456,354	15.3%	780,622	26.2%	2,984,840
1971	189,504	9.2%	1,250,771	61.0%	137,815	6.7%	18,402	0.9%	454,483	22.2%	2,050,974
1972	224,396	6.3%	1,863,177	52.6%	137,315	3.9%	478,246	13.5%	840,057	23.7%	3,543,192
1973	121,156	2.0%	3,225,847	52.3%	318,950	5.2%	362,658	5.9%	2,135,025	34.6%	6,163,635
1974	209,712	3.2%	3,072,221	46.8%	843,048	12.8%	919,916	14.0%	1,517,637	23.1%	6,562,535
1975	63,990	1.0%	2,628,036	39.2%	838,859	12.5%	419,173	6.3%	2,752,555	41.1%	6,702,612
1976	274,172	2.0%	8,668,095	63.4%	819,006	6.0%	1,874,915	13.7%	2,041,225	14.9%	13,677,413
1977	523,776	2.4%	13,318,720	61.8%	932,540	4.3%	767,273	3.6%	5,995,611	27.8%	21,537,920
1978	661,375	2.0%	26,167,741	80.3%	1,380,312	4.2%	2,154,176	6.6%	2,217,510	6.8%	32,581,114
1979	616,360	4.2%	8,093,280	55.3%	1,640,277	11.2%	82,339	0.6%	4,199,765	28.7%	14,632,021
1980	414,771	3.2%	7,937,699	61.7%	891,098	6.9%	2,114,283	16.4%	1,513,960	11.8%	12,871,810
1981	424,390	2.3%	11,080,411	60.1%	2,623,598	14.2%	170,038	0.9%	4,150,158	22.5%	18,448,596
1982	763,267	2.4%	25,154,115	80.0%	4,080,570	13.0%	553,635	1.8%	886,129	2.8%	31,437,716
1983	590,730	2.0%	24,016,294	81.8%	1,601,976	5.5%	41,338	0.1%	3,109,814	10.6%	29,360,152
1984	310,899	1.8%	12,450,532	71.8%	2,039,681	11.8%	522,795	3.0%	2,011,253	11.6%	17,335,160
1985	799,318	2.3%	27,497,929	80.0%	3,359,824	9.8%	57,412	0.2%	2,644,995	7.7%	34,359,478
1986	915,189	2.0%	38,683,950	83.3%	2,909,043	6.3%	724,367	1.6%	3,197,973	6.9%	46,430,522
1987	1,609,777	1.6%	95,915,522	94.9%	2,373,254	2.3%	84,439	0.1%	1,116,165	1.1%	101,099,156
1988	1,120,885	0.9%	111,537,736	91.3%	4,738,463	3.9%	650,931	0.5%	4,129,002	3.4%	122,177,017
1989	803,494	1.4%	56,194,753	95.0%	1,674,393	2.8%	86,012	0.1%	415,535	0.7%	59,174,188
1990	436,822	1.1%	35,804,485	88.0%	2,422,214	6.0%	512,591	1.3%	1,495,827	3.7%	40,671,938
1991	348,522	2.3%	12,249,200	80.4%	1,996,049	13.1%	5,478	0.0%	643,400	4.2%	15,242,649

Appendix A7.–Page 2 of 2.

Year	Chinook \$	%	Sockeye \$	%	Coho \$	%	Pink \$	%	Chum \$	%	Total \$
1992	634,466	0.6%	96,026,864	96.0%	2,261,862	2.3%	404,772	0.4%	740,294	0.7%	100,068,258
1993	617,092	2.1%	27,969,409	93.1%	1,081,175	3.6%	36,935	0.1%	322,205	1.1%	30,026,815
1994	642,291	1.9%	29,441,442	85.5%	3,297,865	9.6%	240,545	0.7%	831,121	2.4%	34,453,264
1995	474,475	2.2%	19,168,077	87.1%	1,295,353	5.9%	53,114	0.2%	1,023,926	4.7%	22,014,944
1996	402,980	1.4%	28,238,578	95.0%	800,423	2.7%	44,386	0.1%	225,751	0.8%	29,712,117
1997	365,316	1.1%	31,439,536	97.1%	434,327	1.3%	12,004	0.0%	143,244	0.4%	32,394,427
1998	181,318	2.1%	7,686,993	88.5%	497,050	5.7%	187,759	2.2%	132,025	1.5%	8,685,145
1999	337,482	1.6%	20,095,838	95.5%	329,164	1.6%	5,995	0.0%	265,026	1.3%	21,033,505
2000	183,044	2.2%	7,115,614	87.2%	626,287	7.7%	47,065	0.6%	186,385	2.3%	8,158,395
2001	169,593	2.2%	7,135,690	92.3%	297,387	3.8%	20,312	0.3%	111,028	1.4%	7,734,010
2002	326,051	2.8%	10,682,051	91.7%	329,031	2.8%	84,922	0.7%	224,148	1.9%	11,646,203
2003	358,688	2.9%	11,659,037	95.1%	132,079	1.1%	8,659	0.1%	99,831	0.8%	12,258,294
2004	675,221	3.3%	19,378,088	93.8%	414,387	2.0%	65,742	0.3%	128,878	0.6%	20,662,315

Appendix A8.—Commercial herring harvest by fishery, Upper Cook Inlet, 1973-2004.

		Harvest (T	ons)	
Year	Eastside	Chinitna Bay	Tuxedni Bay	Total
1973	13.8	-	-	13.8
1974	36.7	-	-	36.7
1975	6.2	-	-	6.2
1976	5.8	-	-	5.8
1977	17.3	-	-	17.3
1978	8.3	55.3	-	63.6
1979	67.3	96.2	24.8	188.3
1980	37.4	20	86.5	143.9
1981	86.2	50.5	84.9	221.6
1982	60.2	91.8	50.2	202.2
1983	165.3	49.2	238.2	452.7
1984	117.5	90.6	159	367.1
1985	121.7	47.4	220.5	389.6
1986	178.9	111.1	191.9	481.9
1987	130.5	65.1	152.5	348.1
1988	50.7	23.4	14.1	88.2
1989	55.2	122.3	34.3	211.8
1990	55.4	55.9	16.1	127.4
1991	13.4	15.7	1.6	30.7
1992	24.7	10.4	-	35.1
1993	-	-	-	-
1994	-	-	-	-
1995	-	-	-	-
1996	-	-	-	-
1997	-	-	-	-
1998	19.5	-	-	19.5
1999	10.4	-	-	10.4
2000	14.7	-	-	14.7
2001	9.9	-	-	9.9
2002	16.2	1.9	0	18.1
2003	3.7	0	0	3.7
2004	6.7	0.1	0	6.8

Appendix A9.-Commercial harvest of razor clams in Cook Inlet, 1919-2004.

Year	Pounds	Year	Pounds
1919	76,963	1962	195,650
1920	11,952	1963	0
1921	72,000	1964	0
1922	510,432	1965	0
1923	470,280	1966	0
1924	156,768	1967	0
1925	0	1968	0
1926	0	1969	0
1927	25,248	1970	0
1928	0	1971	14,755
1929	0	1972	31,360
1930	0	1973	34,415
1931	No Record	1974	0
1932	93,840	1975	10,020
1933	No Record	1976	0
1934	No Record	1977	1,762
1935	No Record	1978	45,931
1936	No Record	1979	144,358
1937	8,328	1980	140,420
1938	No Record	1981	441,949
1939	No Record	1982	460,639
1940	No Record	1983	269,618
1941	0	1984	261,742
1942	0	1985	319,034
1943	0	1986	258,632
1944	0	1987	312,349
1945	15,000	1988	399,376
1946	11,424	1989	222,747
1947	11,976	1990	323,602
1948	2,160	1991	201,320
1949	9,672	1992	296,727
1950	304,073	1993	310,481
1951	112,320	1994	355,165
1952	0	1995	248,358
1953	0	1996	355,448
1954	0	1997	366,532
1955	0	1998	371,877
1956	0	1999	352,910
1957	0	2000	369,397
1958	0	2001	348,917
1959	0	2002	338,938
1960	372,872	2003	411,403
1961	277,830	2004	419,697

Appendix A10.-Enumeration goals and counts of sockeye salmon in selected Streams of Upper Cook Inlet, 1978-2004.

	Kenai R	iver	Kasilof I	River	Fish C	reek
	Enumeration	Enumeration	Enumeration	Enumeration	Enumeration	Enumeration
Year	Goal	Estimate ^{a,f}	Goal	Estimate ^{a,f}	Goal	Estimate ^b
1978	350,000-500,000	398,900	75,000-150,000	116,600	0	3,555
1979	350,000-500,000	285,020	75,000-150,000	152,179	0	68,739
1980	350,000-500,000	464,038	75,000-150,000	184,260	0	62,828
1981	350,000-500,000	407,639	75,000-150,000	256,625	0	50,479
1982	350,000-500,000	619,831	75,000-150,000	180,239	50,000	28,164
1983	350,000-500,000	630,340	75,000-150,000	210,271	50,000	118,797
1984	350,000-500,000	344,571	75,000-150,000	231,685	50,000	192,352
1985	350,000-500,000	502,820	75,000-150,000	505,049 ^g	50,000	68,577
1986	350,000-500,000	501,157	75,000-150,000	275,963	50,000	29,800
1987	400,000-700,000	1,596,871	150,000-250,000	249,250	50,000	91,215
1988	400,000-700,000	1,021,469	150,000-250,000	204,000 ^d	50,000	71,603
1989	400,000-700,000	1,599,959	150,000-250,000	158,206	50,000	67,224
1990	400,000-700,000	659,520	150,000-250,000	144,289	50,000	50,000
1991	400,000-700,000	647,597	150,000-250,000	238,269	50,000	50,500
1992	400,000-700,000	994,798	150,000-250,000	184,178	50,000	71,385
1993	400,000-700,000	813,617	150,000-250,000	149,939	50,000	117,619
1994	400,000-700,000	1,003,446	150,000-250,000	205,117	50,000	95,107
1995	450,000-700,000	630,447	150,000-250,000	204,935	50,000	115,000
1996	550,000-800,000	797,847	150,000-250,000	249,944	50,000	63,160
1997	550,000-825,000	1,064,818	150,000-250,000	266,025	50,000	54,656
1998	550,000-850,000	767,558	150,000-250,000	273,213	50,000	22,853
1999	750,000-950,000	803,379	150,000-250,000	312,587	50,000	26,667
2000	600,000-850,000	624,578	150,000-250,000	256,053	50,000	19,533
2001	600,000-850,000	650,036	150,000-250,000	307,570	50,000	43,469
2002	750,000-950,000	957,924	150,000-250,000	226,682	20,000 - 70,000	90,483
2003	750,000-959,000	1,181,309	150,000-250,000	359,633	20,000 - 70,000	92,298
2004	850,000-1,100,000	1,385,981	150,000-250,000	577,581	20,000 - 70,000	22,157

	Yentna I	River	Crescent	River	Packers Creek		
	Enumeration	Enumeration	Enumeration	Enumeration	Enumeration	Enumeration	
Year	Goal ^c	Estimate ^{a,f}	Goal	Estimate ^{a,f}	Goal	Estimate ^b	
1978	100,000		0	N/C	0	N/C	
1979	100,000		50,000	86,654	0	N/C	
1980	100,000		50,000	90,863	0	16,477	
1981	100,000	139,401	50,000	41,213	0	13,024	
1982	100,000	113,847	50,000	58,957	0	15,687	
1983	100,000	104,414	50,000	92,122	0	18,403	
1984	100,000	149,375	50,000	118,345	0	30,684	
1985	100,000	107,124	50,000	128,628	0	36,850	
1986	100,000-150,000	92,076	50,000	20,385 ^e	0	29,604	
1987	100,000-150,000	66,054	50,000-100,000	120,219	0	35,401	
1988	100,000-150,000	52,330	50,000-100,000	57,716	15,000-25,000	18,607	
1989	100,000-150,000	96,269	50,000-100,000	71,064	15,000-25,000	22,304	
1990	100,000-150,000	140,290	50,000-100,000	52,238	15,000-25,000	31,868	
1991	100,000-150,000	109,632	50,000-100,000	44,578	15,000-25,000	41,275	
1992	100,000-150,000	66,054	50,000-100,000	58,229	15,000-25,000	28,361	
1993	100,000-150,000	141,694	50,000-100,000	37,556	15,000-25,000	40,869	
1994	100,000-150,000	128,032	50,000-100,000	30,355	15,000-25,000	30,788	
1995	100,000-150,000	121,479	50,000-100,000	52,311	15,000-25,000	29,473	
1996	100,000-150,000	90,781	50,000-100,000	28,729	15,000-25,000	19,095	
1997	100,000-150,000	157,822	50,000-100,000	70,768	15,000-25,000	33,846	
1998	100,000-150,000	119,623	50,000-100,000	62,257	15,000-25,000	17,732	
1999	100,000-150,000	99,029	25,000-50,000	66,519	15,000-25,000	25,648	
2000	100,000-150,000	133,094	25,000-50,000	56,599	15,000-25,000	20,151	
2001	100,000-150,000	83,532	25,000-50,000	78,081	15,000-25,000	no count	
2002	90,000-160,000	78,591	25,000-50,000	62,833	15,000-25,000	no count	
2003	90,000-160,000	180,813	25,000-50,000	122,457	15,000-25,000	no count	
2004	90,000-160,000	71,281	25,000-50,000	103,201	15,000-25,000	no count	

^a Derived from sonar counters unless otherwise noted.

^b Weir Counts.

d Combined counts from weirs on Bear and Glacier Flat Creeks and surveys of remaining spawning streams; sonar count was 151,856.

^e Counts through 16 July only.

f Enumeration estimates prior to 2004 reflect minor adjustments to the escapement database.

Appendix A11.—Average price paid for commercially harvested salmon, Upper Cook Inlet, 1969-2004^a.

Year	Chinook	Sockeye	Coho	Pink	Chum
1969	0.38	0.28	0.19	0.14	0.12
1970	0.40	0.28	0.25	0.14	0.14
1971	0.37	0.30	0.21	0.15	0.15
1972	0.47	0.34	0.27	0.19	0.20
1973	0.62	0.65	0.50	0.30	0.42
1974	0.88	0.91	0.66	0.46	0.53
1975	0.54	0.63	0.54	0.35	0.41
1976	0.92	0.76	0.61	0.37	0.54
1977	1.26	0.86	0.72	0.38	0.61
1978	1.16	1.32	0.99	0.34	0.51
1979	1.63	1.41	0.98	0.34	0.88
1980	1.15	0.85	0.57	0.34	0.53
1981	1.46	1.20	0.83	0.38	0.65
1982	1.27	1.10	0.72	0.18	0.49
1983	0.97	0.74	0.45	0.18	0.36
1984	1.08	1.00	0.64	0.21	0.39
1985	1.20	1.20	0.70	0.20	0.45
1986	0.90	1.40	0.60	0.15	0.38
1987	1.40	1.50	0.80	0.22	0.45
1988	1.30	2.47	1.20	0.37	0.76
1989	1.25	1.70	0.75	0.40	0.47
1990	1.20	1.55	0.75	0.25	0.60
1991	1.20	1.00	0.77	0.12	0.35
1992	1.50	1.60	0.75	0.15	0.40
1993	1.20	1.00	0.60	0.12	0.45
1994	1.00	1.45	0.80	0.12	0.40
1995	1.00	1.15	0.45	0.12	0.27
1996	1.00	1.15	0.40	0.05	0.19
1997	1.00	1.15	0.45	0.05	0.19
1998	1.00	1.15	0.45	0.09	0.19
1999	1.00	1.30	0.45	0.12	0.19
2000	1.10	0.85	0.40	0.09	0.19
2001	1.00	0.65	0.40	0.08	0.19
2002	1.15	0.60	0.20	0.05	0.12
2003	0.95	0.60	0.20	0.05	0.12
2004	1.00	0.65	0.20	0.05	0.12

^a Price is expressed as dollars per pound.

Data Source: 1969-1983, Commercial Fisheries Entry Commission. 1984-2004, random fish ticket averages, does not include bonus or post season adjustments.

Appendix A12.—Average weight (in pounds) of commercially harvested salmon, Upper Cook Inlet, 1969-2004^a.

Year	Chinook	Sockeye	Coho	Pink	Chum
1969	17.1	6.7	7.0	3.9	7.3
1970	26.8	5.8	6.8	4.0	7.2
1971	25.9	6.6	6.5	3.4	9.3
1972	29.7	6.2	6.3	4.0	6.7
1973	37.6	7.4	6.1	3.7	7.6
1974	36.1	6.8	6.4	4.1	7.2
1975	24.8	6.1	6.8	3.6	7.1
1976	27.4	6.9	6.4	4.0	8.1
1977	28.1	7.6	6.7	3.7	8.0
1978	33.0	7.6	6.4	3.8	7.6
1979	27.5	6.2	6.3	3.3	7.3
1980	26.1	5.9	5.8	3.5	7.3
1981	23.8	6.4	6.5	3.5	7.7
1982	28.8	7.0	7.1	3.9	8.2
1983	29.5	6.4	6.9	3.3	7.8
1984	28.6	5.9	7.1	4.0	7.6
1985	27.7	5.6	7.2	3.3	7.6
1986	25.9	5.8	6.4	3.7	7.4
1987	29.0	6.7	6.6	3.5	7.1
1988	29.7	6.6	7.1	3.7	7.7
1989	24.0	6.6	6.6	3.2	7.3
1990	22.6	6.4	6.5	3.4	7.1
1991	21.5	5.6	6.1	3.1	6.6
1992	24.6	6.6	6.4	3.9	6.8
1993	27.5	5.9	5.9	3.1	5.8
1994	31.7	5.7	7.1	3.9	6.9
1995	26.6	5.7	6.4	3.3	7.2
1996	28.3	6.3	6.2	3.7	7.6
1997	27.6	6.6	6.3	3.4	7.3
1998	22.7	5.5	6.9	3.8	7.3
1999	23.9	5.8	5.8	3.1	8.0
2000	22.6	6.3	6.6	3.6	7.7
2001	18.2	6.0	6.6	3.5	6.9
2002	22.3	6.4	6.7	3.8	7.9
2003	20.4	5.6	6.5	3.6	6.9
2004	24.6	6.1	6.7	3.7	7.4
Average	26.4	6.3	6.5	3.6	7.4

^a Total poundage divided by numbers of fish from fish ticket totals.

Appendix A13.—Registered units of gillnet fishing effort by gear type in Cook Inlet . 1960-2004.

	D	rift Gillnet			Set Gillnet		
		Non-	Sub-		Non-	Sub-	
Year	Resident	Resident	Total	Resident	Resident	Total	Total
1960	221	67	288	511	59	570	858
1961	279	93	372	564	22	586	958
1962	260	112	372	589	28	617	989
1963	333	139	472	626	34	660	1,132
1964	323	145	468	596	35	631	1,099
1965	329	145	474	556	34	590	1,064
1966	328	176	504	580	48	628	1,132
1967	350	186	536	554	50	604	1,140
1968	407	204	611	638	43	681	1,292
1969	497	208	705	686	42	728	1,433
1970	537	220	757	707	65	772	1,529
1971	519	191	710	693	38	731	1,441
1972	419	152	571	672	35	707	1,278
1973	516	146	662	632	43	675	1,337
1974	436	149	585	698	54	752	1,337
1975	539	245	784	695	63	758	1,542
1976	410	186	596	675	44	719	1,315
1977	387	188	575	690	43	733	1,308
1978	401	190	591	701	46	747	1,338
1979	410	189	599	705	44	749	1,348
1980	407	190	597	699	48	747	1,344
1981	412	186	598	687	60	747	1,345
1982	413	178	591	695	53	748	1,339
1983	415	172	587	684	61	745	1,332
1984	423	165	588	670	74	744	1,332
1985	418	173	591	669	76	745	1,336
1986	412	176	588	665	78	743	1,331
1987	415	171	586	662	81	743	1,329
1988	421	164	585	660	83	743	1,328
1989	415	170	585	645	98	743	1,328
1990	412	173	585	644	99	743	1,328
1991	412	172	584	642	103	745	1,329
1992	404	179	583	636	109	745	1,328
1993	398	185	583	633	112	745	1,328
1994	395	187	582	628	117	745	1,327
1995	393	189	582	622	123	745	1,327
1996	392	190	582	621	124	745	1,327
1997	392	189	581	621	124	745	1,326
1998	394	185	579	621	124	745	1,324
1999	390	185	575	621	124	745	1,320
2000	394	182	576	621	124	745	1,321
2001	395	179	574	625	119	744	1,318
2002	396	176	572	620	123	743	1,315
2003	401	171	572	619	123	742	1,314
2004	401	170	571	609	120	729	1,300

Source: 1960-1974 ADF&G unpublished reports, 1975-2003 Commercial Fisheries Entry Commission. http://www.cfec.state.ak.us/SPCS/MENUS.HTM

Appendix A14.–Forecast and projected commercial harvests of salmon by species, Upper Cook Inlet, 1984-2004^{a,b}.

	\$	Sockeye			Coho			Pink			Chum		(Chinook	
Year	Forecast	Actual ^c	Error	Projected	Actual ^c	Error									
1984	2,200,000	2,102,767	-4%	250,000	442,619	77%	1,700,000	622,510	-63%	350,000	684,124	95%	14,000	8,819	-37%
1985	3,700,000	4,060,260	10%	250,000	667,213	167%	112,500	87,828	-22%	700,000	772,829	10%	17,500	24,086	38%
1986	4,200,000	4,787,982	14%	450,000	756,830	68%	1,250,000	1,299,360	4%	900,000	1,134,173	26%	32,500	39,240	21%
1987	4,800,000	9,465,994	98%	500,000	449,421	-10%	150,000	348,809	-27%	1,000,000	348,809	-65%	30,000	39,431	32%
1988	5,300,000	6,843,833	29%	400,000	560,948	40%	400,000	710,615	17%	800,000	710,615	-11%	35,000	29,080	-17%
1989	2,500,000	5,011,124	100%	400,000	339,818	-15%	100,000	122,051	-33%	800,000	122,051	-85%	30,000	26,737	-11%
1990	4,300,000	3,604,259	-16%	250,000	501,643	101%	600,000	351,123	-41%	400,000	351,123	-12%	25,000	16,105	-36%
1991	3,200,000	2,178,331	-32%	400,000	426,487	7%	90,000	280,223	211%	500,000	280,223	-44%	20,000	13,542	-32%
1992	3,600,000	9,108,353	153%	400,000	468,930	17%	400,000	274,303	-31%	350,000	274,303	-22%	20,000	17,171	-14%
1993	2,500,000	4,755,329	90%	450,000	306,882	-32%	25,000	122,770	391%	350,000	122,770	-65%	15,000	18,871	26%
1994	2,000,000	3,565,586	78%	400,000	583,793	46%	600,000	303,177	-49%	250,000	303,177	21%	15,000	19,941	33%
1995	2,700,000	2,951,827	9%	400,000	446,954	12%	100,000	529,422	429%	250,000	529,422	112%	15,000	17,893	19%
1996	3,300,000	3,888,922	18%	400,000	321,668	-20%	600,000	156,501	-74%	350,000	156,501	-55%	15,000	14,306	-5%
1997	5,300,000	4,176,738	-21%	400,000	152,404	-62%	100,000	103,036	3%	250,000	103,036	-59%	15,000	13,292	-11%
1998	2,500,000	1,219,242	-51%	300,000	160,660	-46%	300,000	95,654	-68%	200,000	95,654	-52%	17,000	8,124	-52%
1999	2,000,000	2,680,510	34%	300,000	125,908	-58%	75,000	174,541	133%	200,000	174,541	-13%	16,000	14,383	-10%
2000	3,000,000	1,322,482	-56%	150,000	236,871	58%	500,000	127,069	-75%	200,000	127,069	-36%	15,000	7,350	-51%
2001	2,700,000	1,826,833	-32%	300,000	113,311	-62%	50,000	84,494	69%	250,000	84,494	-66%	13,000	9,295	-29%
2002	2,200,000	2,773,118	26%	160,000	246,281	54%	170,000	237,949	40%	120,000	237,949	98%	10,000	12,714	27%
2003	2,400,000	3,476,159	45%	170,000	101,756	-40%	80,000	120,744	51%	140,000	120,744	-14%	10,000	18,490	85%
2004	5,200,000	7,875,803	51%	160,000	308,449	93%	380,000	357,283	-6%	150,000	145,073	-3%	10,000	27,448	174%
Avg.	3,314,286	4,175,022	26%	328,095	367,564	19%	370,595	309,974	41%	405,238	327,556	-11%	18,571	18,872	7%

^a Harvest forecasts have typically been prepared using average return per spawner values, parent-year escapements and average marine maturity schedules or time series modeling tempered by available juvenile production data or combinations of these data sets.

b Harvest projections are prepared using subjective estimates of parent-year escapements, gross trends in harvest, and expected intensity of fishery.

^c Actual harvests prior to 2004 reflect minor adjustments to harvest database.

Appendix A15.—Subsistence and educational fishery salmon harvest, Upper Cook Inlet, 1980-2004.

Fishery	No. of Permits	Chinook	Sockeye	Coho	Pink	Chum
Tyonek Subsistence			*			
1980	67	1,757	235	0	0	0
1981	70	2,002	269	64	32	15
1982	69	1,590	310	113	14	4
1983	75	2,665	187	59	0	6
1984	75	2,200	266	79	3	23
1985	76	1,472	164	91	0	10
1986	65	1,676	203	223	50	46
1987	64	1,610	166	149	10	24
1988	47	1,587	91	253	8	12
1989	49	1,250	85	115	0	1
1990	42	781	66	352	20	12
1991	57	902	26	58	0	0
1992	57	907	75	234	7	19
1993	62	1,370	57	77	19	17
1994	49	770	85	101	0	22
1995	55	1,317	45	153	0	15
1996	49	1,039	68	137	21	7
1997	42	639	101	137	0	8
1998	74	978	163	64	1	2
1999	76	1,230	144	94	32	11
2000	60	1,157	63	87	6	0
2001	84	976	172	49	4	6
2001	102	898	76	127	17	4
2002	91	973	89	29	5	10
2003 2004 ^a	76	1,080	51	0	15	0
Yentna Subsistence						
1996	17	0	242	46	115	51
1997	24	0	549	83	30	10
1997	21	0	495	113	30	15
1999	18	0	516	48	18	13
2000	19		379	92	4	7
2000	16	0	545	50	10	4
2001	25	0	454			31
				133	14	
2003 2004 ^a	19 21	0	553 441	67 146	2 36	8 3
Educational Fisheries ^b						
1994	no	57	1,907	948	134	
1994	na	40	1,498	948 953	35	-
1993 1996	na	105	2,242	933 648	211	-
1997	na	236	2,242	290	60	-
1997	na	250 252	2,884 3,266	843	135	-
1998 1999	na	283			28	-
	na		2,690	690		-
2000	na	220	2,713	835	680	-
2001	na	353	4,510	805	166	-
2002	na	200	3,366	1,122	545	=
2003	na	307	5,171	616	91	-
2004	na	162	4,784	927	440	-

a Preliminary estimates, some permits were not returned at the time this report was published.
 b Educational fisheries consist of Kenaitze Tribal, Ninilchik Traditional Council, Ninilchik Native Descendents, and Ninilchik Emergency Services.

Appendix A16.—Breakdown of individual educational fishery salmon harvest, 1994-2004.

Year	Fishery	Chinook	Sockeye	Coho	Pink	Chum
1994	Kenaitze	57	1,907	829	134	
	NTC			119		
	NND					
	Total	57	1,907	948	134	0
1995	Kenaitze	40	1,498	868	35	
	NTC			85		
	NND					
	Total	40	1,498	953	35	0
1996	Kenaitze	105	2,242	592	211	
	NTC			56		
	NND					
	Total	105	2,242	648	211	0
1997	Kenaitze	142	2,410	191	5	
	NTC	94	474	99	55	
	NND					
	Total	236	2,884	290	60	0
1998	Kenaitze	133	2,621	638	58	
	NTC	67	506	95	57	
	NND	52	139	110	20	
	Total	252	3,266	843	135	0
1999	Kenaitze	118	1,944	530	5	
	NTC	109	442	84	6	
	NND	56	304	76	17	
	Total	283	2,690	690	28	0
2000	Kenaitze	130	2,088	656	617	
	NTC	40	423	82	48	
	NND	50	202	97	15	
	Total	220	2,713	835	680	0
2001	Kenaitze	204	3,441	572	107	
	NTC	75	760	123	42	
	NND	74	309	110	17	
	Total	353	4,510	805	166	0
2002	Kenaitze	70	2,889	921	482	
	NTC	65	339	106	52	
	NND	65	138	95	11	
	Total	200	3,366	1,122	545	0
2003	Kenaitze	151	4,651	439	63	
	NTC	87	426	100	15	
	NND	69	94	77	13	
	Total	307	5,171	616	91	0
2004	Kenaitze	10	4,113	765	417	
	NTC	73	395	83	0	
	NND	78	199	79	14	
	NES	1	77	0	9	
	Total	162	4,784	927	440	0