Review of Salmon Escapement Goals in the Kodiak Management Area, 2016

by

Kevin L. Schaberg M. Birch Foster Michelle L. Wattum and Timothy R. McKinley

REVISED 1/17/2016

This version contains changes due to one error that occurred in 3 locations throughout the report. This was a typographical error in reference to the Karluk River sockeye salmon late-run escapement goal. In all instances it was incorrectly defined as 200,000–400,000. The upper end of this range should be 450,000 as it is defined in the remainder of the report. This error was corrected to 200,000–450,000 in the text on page 1 and page 17, as well as in Table 1 on page 30. This revision has not otherwise changed the conclusions or recommendations of this publication.

December 2016

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H _A
kilogram	kg		AM, PM, etc.	base of natural logarithm	е
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	(F, t, χ^2 , etc.)
milliliter	mL	at	@	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	Ν	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	Ε
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	\geq
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	\leq
-	-	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	\log_{2} , etc.
degrees Celsius	°C	Federal Information		minute (angular)	,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	Κ	id est (that is)	i.e.	null hypothesis	Ho
hour	h	latitude or longitude	lat or long	percent	%
minute	min	monetary symbols		probability	Р
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	А	trademark	тм	hypothesis when false)	β
calorie	cal	United States		second (angular)	"
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity (negative log of)	pН	U.S.C.	United States Code	population sample	Var var
parts per million	ppm	U.S. state	use two-letter		
parts per thousand	ppt, ‰		abbreviations (e.g., AK, WA)		
volts	V				
watts	W				

FISHERY MANUSCRIPT SERIES NO. 16-09

REVIEW OF SALMON ESCAPEMENT GOALS IN THE KODIAK MANAGEMENT AREA, 2016

by

Kevin L. Schaberg Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, Alaska

M. Birch Foster Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak, Alaska

Michelle Wattum Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage

and

Timothy R. McKinley Alaska Department of Fish and Game, Division of Sport Fish, Anchorage

> Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 99518-1599

> > December 2016

The Fishery Manuscript Series was established in 1987 by the Division of Sport Fish for the publication of technically-oriented results of several years' work undertaken on a project to address common objectives, provide an overview of work undertaken through multiple projects to address specific research or management goal(s), or new and/or highly technical methods, and became a joint divisional series in 2004 with the Division of Commercial Fisheries. Fishery Manuscripts are intended for fishery and other technical professionals. Fishery Manuscripts are available through the Alaska State Library and on the Internet: <u>http://www.adfg.alaska.gov/sf/publications/</u> This publication has undergone editorial and peer review.

Kevin L. Schaberg, M. Birch Foster, and Michelle Wattum Alaska Department of Fish and Game, Division of Commercial Fisheries 351 Research Court, Kodiak, Alaska, USA

and

Timothy R. McKinley Alaska Department of Fish and Game, Division of Sport Fish 333 Raspberry Road, Anchorage, Alaska, USA

This document should be cited as:

Schaberg, K. L., M. B. Foster, M. Wattum, and T. R. McKinley. 2016. Review of salmon escapement goals in the Kodiak Management Area, 2016. Alaska Department of Fish and Game, Fishery Manuscript Series No. 16-09, Anchorage.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write:

ADF&G ADA Coordinator, P.O. Box 115526, Juneau AK 99811-5526

U.S. Fish and Wildlife Service, 4040 N. Fairfax Drive, Suite 300 Webb, Arlington VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers:

(VOICE) 907-465-6077, (Statewide Telecommunication Device for the Deaf) 1-800-478-3648, (Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact:

ADF&G, Division of Sport Fisheries, Research and Technical Services, 333 Raspberry Road, Anchorage, AK 99518 (907)267-2375.

TABLE OF CONTENTS

Page

LIST OF TABLES	iv
LIST OF FIGURES	iv
LIST OF APPENDICES	v
ABSTRACT	1
INTRODUCTION	
Study Area	2
METHODS	2
Biological Escapement Goal Sustainable Escapement Goal	
Chinook Salmon	5
Ayakulik River	5
Escapement Goal Background and Previous Review	6
Chinook Salmon	6
2016 Review	6
Sockeye Salmon	7
Afognak Lake	
Escapement Goal Background and Previous Review	
2016 Review	
Ayakulik River	7
Escapement Goal Background and Previous Review	
2016 Review	
Buskin River	
Escapement Goal Background and Previous Review	
2016 Review	
Frazer Lake	
Escapement Goal Background and Previous Review	
2016 Review	
Karluk Lake	
Escapement Goal Background and Previous Review	
2016 Review Malina Creek	
Escapement Goal Background and Previous Review	
2016 Review	
Pasagshak River	
Escapement Goal Background and Previous Review	
2016 Review	
Saltery Lake	
Escapement Goal Background and Previous Review	
2016 Review	13
Uganik Lake	13
Escapement Goal Background and Previous Review	13
2016 Review	
Upper Station	
Escapement Goal Background and Previous Review	
2016 Review	14

TABLE OF CONTENTS (Continued)

Page

Coho Salmon	
American, Buskin, Olds, and Pasagshak Rivers	
Escapement Goal Background and Previous Review	
2016 Review	
Pink Salmon	
Kodiak Archipelago and Mainland District Aggregates	15
Escapement Goal Background and Previous Review	
2016 Review	
Chum Salmon	
Kodiak Archipelago and Mainland District Aggregates	
Escapement Goal Background and Previous Review	
2016 Review	
RESULTS	
Chinook Salmon	
Ayakulik River	
Stock Status	
Escapement Goal Recommendation	
Karluk River	
Stock Status	
Escapement Goal Recommendation	
Sockeye Salmon	
Afognak Lake	
Stock Status	
Escapement Goal Recommendation	
Ayakulik River	
Stock Status	
Escapement Goal Recommendation	
Buskin River	
Stock Status	
Escapement Goal Recommendation	
Frazer Lake	
Stock Status	
Evaluation of Recent Data	
Escapement Goal Recommendation	
Karluk Lake Stock Status – Early Run	
Stock Status – Early Run	
Evaluation of Recent Data	
Escapement Goal Recommendation	
Malina Creek	
Stock Status	
Escapement Goal Recommendation	
Pasagshak River	
Stock Status	
Escapement Goal Recommendation	
Saltery Lake	
Stock Status	
Escapement Goal Recommendation	

TABLE OF CONTENTS (Continued)

	Page
Uganik Lake Stock Status	
Escapement Goal Recommendation	
Upper Station	
Stock Status – Early Run	
Stock Status – Late Run	22
Evaluation of Recent Data – Early Run	
Evaluation of Recent Data – Late Run	
Escapement Goal Recommendation	
Coho Salmon	23
American, Buskin, Olds, and Pasagshak Rivers	
Stock Status – All Systems	
Evaluation of Recent Data	
Escapement Goal Recommendation	
Pink Salmon	
Kodiak Archipelago and Mainland District Aggregates	
Stock Status	
Escapement Goal Recommendation	
Chum Salmon	24
Kodiak Archipelago and Mainland District Aggregates	
Stock Status	
Evaluation of Recent Data	
Escapement Goal Recommendation	25
SUMMARY OF STAFF RECOMMENDATIONS TO DIRECTORS	
REFERENCES CITED	26
TABLES AND FIGURES	29
APPENDIX A. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AYAKULIK RIVER CHINOOK SALMON	35
APPENDIX B. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KARLUK RIVER CHINOOK SALMON	43
APPENDIX C. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AFOGNAK LAKE SOCKEYE SALMON	51
APPENDIX D. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AYAKULIK RIVER SOCKEYE SALMON	
APPENDIX E. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR BUSKIN RIVER SOCKEYE SALMON	61
APPENDIX F. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR FRAZER LAKE SOCKEYE SALMON	67
APPENDIX G. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KARLUK LAKE SOCKEYE SALMON	73
APPENDIX H. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR MALINA CREEK SOCKEYE SALMON	83
APPENDIX I. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR PASAGSHAK RIVER SOCKEYE SALMON	87

TABLE OF CONTENTS (Continued)

APPENDIX J. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR SALTERY LAKE SOCKEYE SALMON	91
APPENDIX K. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR UGANIK LAKE SOCKEYE SALMON	95
APPENDIX L. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR UPPER STATION RIVER SOCKEYE SALMON	99
APPENDIX M. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AMERICAN RIVER COHO SALMON	.107
APPENDIX N. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR BUSKIN RIVER COHO SALMON	.111
APPENDIX O. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR OLDS RIVER COHO SALMON	.119
APPENDIX P. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR PASAGSHAK RIVER COHO SALMON	.123
APPENDIX Q. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK ARCHIPELAGO PINK SALMON	.127
APPENDIX R. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK MAINLAND PINK SALMON	.131
APPENDIX S. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK CHUM SALMON	.135
APPENDIX T. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR MAINLAND DISTRICT CHUM SALMON	.141

LIST OF TABLES

LIST OF FIGURES

Figure		Page
1.	The Kodiak Management Area, showing the commercial salmon fishing districts.	31
2.	Geographic boundaries of aggregate escapement goals for chum and pink salmon in the Kodiak	
	Management Area in 2016.	
3.	Locations of Chinook, sockeye, and coho salmon systems with escapement goals in the Kodiak	
	Management Area in 2016.	

LIST OF APPENDICES

Appe	ndix P	age
A1.	Description of stock and escapement goal for Ayakulik River Chinook salmon.	
A2.	Annual harvest, weir count, total return, and escapement estimates for Ayakulik River Chinook	
	salmon, 1977–2015.	
A3.	Ayakulik River Chinook salmon escapement and escapement goal ranges, 1977–2015.	
A4.	Brood table for Ayakulik River Chinook salmon	
A5.	Ricker spawner-recruit function fitted to Ayakulik River Chinook salmon data, 1977-2009 brood years.	
	Parameter estimates are posterior medians	40
A6.	Optimal yield profiles obtained by fitting an age-structured spawner recruit model to Ayakulik River	
	Chinook salmon data, 1977–2015. Probability of achieving at least 70%, 80%, and 90% of maximum	
	sustained yield is plotted. Vertical lines show recommended escapement goal	41
B1.	Description of stock and escapement goal for Karluk River Chinook salmon.	44
B2.	Annual harvest, weir count, total run, and escapement estimates for Karluk River Chinook salmon,	
	1976–2015	45
B3.	Karluk River Chinook salmon escapement and escapement goal ranges, 1976–2015	46
B4.	Brood Table for Karluk River Chinook salmon.	47
B5.	Ricker spawner-recruit function fitted to Karluk River Chinook salmon data, 1976–2009 brood years.	
	Parameter estimates are posterior medians	48
B6.	Optimal yield profiles obtained by fitting an age-structured spawner recruit model to Karluk River	
	Chinook salmon data, 1976–2015. Probability of achieving at least 70%, 80%, and 90% of maximum	
	sustained yield is plotted. Vertical lines show escapement goal.	49
C1.	Description of stock and escapement goal for Afognak Lake sockeye salmon	52
C2.	Afognak Lake sockeye salmon escapement, 1921–2015.	
C3.	Afognak Lake sockeye salmon escapement and escapement goal ranges, 1921-2015	54
D1.	Description of stock and escapement goal for Ayakulik River sockeye salmon.	56
D2.	Ayakulik River sockeye salmon escapement and harvest estimates, 1929–2015	
D3.	Ayakulik River sockeye salmon escapement and escapement goals, 1970–2015	
D4.	Ayakulik River sockeye salmon brood table.	
E1.	Description of stock and escapement goal for Buskin River sockeye salmon	62
E2.	Buskin River sockeye salmon estimated escapement and total run, 1990–2015	
E3.	Buskin River sockeye salmon escapement and escapement goals, 1990–2015.	
E4.	Ricker spawner-recruit function fitted to Buskin River sockeye salmon data, 1990–2011 brood years.	
	Parameter estimates are posterior medians	65
E5.	Optimal yield profile obtained by fitting an age-structured spawner recruit model to Buskin River	
	sockeye salmon data, 1990–2015. Probability of achieving at least 90% of maximum sustained yield is	
	plotted. Vertical lines show recommended escapement goal.	65
F1.	Description of stock and escapement goal for Frazer Lake sockeye salmon	68
F2.	Frazer Lake sockeye salmon escapement and total run estimates, 1956–2015.	
F3.	Frazer Lake sockeye salmon escapement and escapement goal ranges, 1989–2015	
G1.	Description of stock and escapement goals for Karluk Lake sockeye salmon.	
G2.	Karluk Lake early-run sockeye salmon escapement, 1981–2015	
G3.	Karluk Lake late-run sockeye salmon escapement, 1981–2015	
G4.	Karluk Lake early-run sockeye salmon escapement and escapement goal ranges, 1981-2015	
G5.	Karluk Lake late-run sockeye salmon escapement and escapement goals, 1981–2015.	
G6.	Karluk Lake early-run sockeye salmon brood table.	
G7.	Karluk Lake late-run sockeye salmon brood table.	80

LIST OF APPENDICES (Continued)

Appe	ndix	Page
G8.	Karluk Lake sockeye salmon stock-recruitment models expected relationship for brood years, 1981–2008 (combined runs). The dotted line represents the Ricker model, solid line represents Ricker AR(1	U
	and the dashed lined represents the replacement line.	
G9.	Parameter estimates and key quantities from the analysis of Karluk Lake sockeye salmon Ricker	
	models for brood years, 1981–2008.	82
H1.	Description of stock and escapement goal for Malina Creek sockeye salmon	84
H2.	Malina Creek sockeye salmon escapement, 1968–2015.	85
H3.	Malina Creek sockeye salmon escapement and escapement goals, 1968-2015	86
I1.	Description of stock and escapement goal for Pasagshak River sockeye salmon.	88
I2.	Pasagshak River sockeye salmon aerial survey and harvest estimates, 1968–2015	
I3.	Pasagshak River sockeye salmon escapement and escapement goals, 1968–2015.	90
J1.	Description of stock and escapement goal for Saltery Lake sockeye salmon.	
J2.	Saltery Lake sockeye salmon aerial survey and weir count estimates, 1976–2015	
J3.	Saltery Lake sockeye salmon escapement and escapement goals, 1976–2015.	94
K1.	Description of stock and escapement goal for Uganik Lake sockeye salmon.	96
K2.	Uganik Lake sockeye salmon aerial survey and weir count estimates, 1928-2015.	
K3.	Uganik Lake sockeye salmon escapement and escapement goals, 1974–2015	98
L1.	Description of stock and escapement goal for Upper Station River sockeye salmon	
L2.	Upper Station River early-run sockeye salmon escapement and harvest estimates, 1969–2015	
L3.	Upper Station River late-run sockeye salmon escapement and harvest estimates, 1966–2015	
L4.	Upper Station River early-run sockeye salmon escapement and escapement goals, 1969–2015	103
L5.	Upper Station River early-run sockeye salmon brood table. Shaded years excluded from the analysis due to fertilization influence.	104
L6.	Upper Station River late-run sockeye salmon brood table. Shaded years excluded from the analysis du to fertilization influence.	e
M1.	Description of stock and escapement goal for American River coho salmon.	109
M2.	Annual escapement index and harvest of American River coho salmon, 1980–2015	
M3.	American River coho salmon escapement and escapement goals, 1980–2015	
WIJ.	Anterican Kiver cono sannon escapement and escapement goars, 1960–2015.	110
N1.	Description of stock and escapement goal for Buskin River coho salmon	
N2.	Annual escapement and harvest of Buskin River coho salmon, 1980–2015	
N3.	Buskin River coho salmon escapement and escapement goals, 1985–2014	
N4.	Buskin River coho salmon brood table, 1989–2014	115
01.	Description of stock and escapement goal for Olds River coho salmon.	
O2.	Annual escapement index of Olds River coho salmon, 1980-2015	
03.	Olds River coho salmon escapement and escapement goals, 1980–2015.	122
P1.	Description of stock and escapement goal for Pasagshak River coho salmon.	124
P2.	Annual escapement index of Pasagshak River coho salmon, 1980-2015	
P3.	Pasagshak River coho salmon escapement and escapement goals, 1980-2015.	126
Q1.	Description of stock and escapement goal for Kodiak Archipelago pink salmon.	128
Q2.	Kodiak Archipelago pink salmon peak escapement and harvest estimates, 1978-2015	
Q3.	Kodiak Archipelago pink salmon indexed escapement and escapement goal ranges, 1978-2015	130

LIST OF APPENDICES (Continued)

Appen	ndix	Page
R1.	Description of stock and escapement goal for Kodiak Mainland pink salmon.	132
R2.	Kodiak Mainland pink salmon aggregate escapement and harvest estimates, 1978-2015	133
R3.	Kodiak Mainland pink salmon indexed escapement and escapement goals ranges, 1978–2015	134
S1.	Description of stock and escapement goal for Kodiak chum salmon.	136
S2.	Kodiak Archipelago chum salmon aggregate escapement estimates, 1967-2015	137
S3.	Kodiak Archipelago chum salmon peak aerial survey counts, in selected indicator streams, 1978-20	15138
S4.	Kodiak Archipelago chum salmon escapement and escapement goals ranges, 1967-2015	140
T1.	Description of stock and escapement goal for Mainland District chum salmon.	142
T2.	Kodiak Mainland District chum salmon aggregate escapement estimates, 1967–2015.	143
ТЗ.	Kodiak Mainland chum salmon escapement and escapement goals ranges, 1967-2015	144

ABSTRACT

An interdivisional team of staff from the Alaska Department of Fish and Game met 3 times beginning in March 2016 to review existing Pacific salmon *Oncorhynchus* spp. escapement goals in the Kodiak Management Area (KMA), for the purpose of making recommendations to the directors of the divisions of Commercial Fisheries and Sport Fish. The KMA salmon escapement goals had previously been reviewed in 2013.

The review team recommends 18 goals remain unchanged, the elimination of 2 goals (Uganik Lake sockeye salmon *O. nerka* lower-bound sustainable escapement goal, and Mainland District chum salmon *O. keta* aggregate lower-bound sustainable escapement goal), and the revision of 4 goals (Ayakulik Chinook salmon *O. tshawytscha* biological escapement goal range 4,800–8,400, Karluk River early-run sockeye salmon biological escapement goal range 150,000–250,000, Karluk River late-run sockeye salmon biological escapement goal range 200,000–450,000, and Kodiak Archipelago chum salmon aggregate lower-bound sustainable escapement goal 101,000).

When combined with existing escapement goals, these staff recommendations to the directors of the divisions of Commercial and Sport Fisheries result in 22 escapement goals for the KMA in 2017: 12 for sockeye salmon, 2 for Chinook salmon, 4 for coho salmon *O. kisutch*, 3 for pink salmon *O. gorbuscha*, and 1 for chum salmon.

Key words: Pacific salmon, *Oncorhynchus*, escapement goal, Kodiak, stock status

INTRODUCTION

This report documents the 2016 review of salmon escapement goals in the Kodiak Management Area (KMA) based on the Alaska Board of Fisheries (board) *Policy for the management of sustainable salmon fisheries* (SSFP; 5 AAC 39.222) and the *Policy for statewide salmon escapement goals* (5 AAC 39.223). Recommendations from this review are made to the directors of the divisions of Commercial Fisheries and Sport Fish of the Alaska Department of Fish and Game (department), and are intended to take effect for salmon stocks returning in 2017. Salmon escapement goals in the KMA were last reviewed in 2013 (Sagalkin et al. 2013).

Two important terms defined in the SSFP are:

- biological escapement goal (BEG): the escapement that provides the greatest potential for maximum sustained yield, and
- sustainable escapement goal (SEG): a level of escapement, indicated by an index or an escapement estimate, that is known to provide for sustained yield over a 5- to 10-year period, used in situations where a BEG cannot be estimated or managed for.

A report documenting the established escapement goals for stocks of 5 Pacific salmon species (Chinook *Oncorhynchus tshawytscha*, sockeye *O. nerka*, coho *O. kisutch*, pink *O. gorbuscha*, and chum *O. keta* salmon) spawning in the Kodiak, Chignik, Alaska Peninsula, and Aleutian Islands management areas of Alaska was prepared in 2001 (Nelson and Lloyd 2001). Most of the escapement goals documented in the 2001 report were based on average escapement estimates and spawning habitat availability, and had been implemented in the early 1970s and 1980s.

Since 2001, escapement goals for the KMA have gone through board review 4 times (2005, 2007, 2010, and 2013; Nelson et al. 2005; Honnold et al. 2007; Nemeth et al. 2010; Sagalkin et al. 2013).

In March 2016, an interdivisional team including staff from the divisions of Commercial Fisheries and Sport Fish (hereafter referred to as the team) was formed to review the existing KMA salmon escapement goals and recent escapements for stocks with escapement goals. For this review, the team 1) determined the appropriate goal type (BEG or SEG) for each KMA salmon stock with an existing goal, based on the quality and quantity of available data; 2) determined the most appropriate methods to evaluate the escapement goal ranges; 3) estimated

the escapement goal for each stock and compared these estimates with the current goal; 4) determined if a goal could be developed for any stocks or stock-aggregates that currently have no goal; 5) developed recommendations for each goal evaluated to present to the directors of the divisions of Commercial Fisheries and Sport Fish for approval; and 6) reviewed recent escapements for all stocks with escapement goals.

STUDY AREA

The KMA comprises the waters of the western Gulf of Alaska surrounding the Kodiak Archipelago, and along that portion of the Alaska Peninsula that drains into the Shelikof Strait between Cape Douglas and Kilokak Rocks (Figure 1).

The Kodiak Island archipelago extends from Shuyak Island south to Tugidak Island, a distance of approximately 240 km (150 miles). The Mainland portion of the KMA is about 256 km (160 miles) long and is separated from the archipelago by Shelikof Strait, which averages 48 km (30 miles) in width. Chirikof Island, located approximately 64 km (40 miles) south southwest of Tugidak Island, is also included in the KMA (Figure 2).

The KMA is divided into 7 commercial fishing districts: Afognak, Northwest Kodiak, Southwest Kodiak, Alitak, Eastside Kodiak, Northeast Kodiak, and Mainland districts (Jackson and Keyse 2013; Figure 1). These are further subdivided into sections, each of which is composed of smaller statistical areas, including terminal or special harvest areas. For commercial salmon fisheries, legal gear in districts or sections can consist of purse seines, hand purse seines, beach seines, or set gillnets. Subsistence fisheries occur throughout the KMA.

Commercial fisheries in the KMA primarily target sockeye salmon from June through early July; some early chum salmon stocks may influence management in localized areas (Jackson and Keyse 2013). Pink salmon stocks are targeted from early July through mid-August, with some areas managed specifically for local sockeye or chum salmon stocks. Late-run sockeye, coho, and late returning chum salmon are targeted from mid-August through early September; coho salmon are the targeted species in late September and October.

Sport fishing occurs throughout the KMA and is divided into 2 areas, the Kodiak Road Zone and the Kodiak Remote Zone, with the majority of the sport fishing effort occurring in the Kodiak Road Zone in proximity to the City of Kodiak. Anglers primarily target coho, sockeye, and Chinook salmon in several fisheries, although all species of salmon are harvested by anglers. Chinook salmon have historically been the most sought after species by anglers, with focus on returns to the Karluk and Ayakulik rivers during the month of June. Recently, sport fishing options for Chinook salmon have declined due to lower returns in these locations. The Chinook salmon enhancement project in the Kodiak Road Zone has provided opportunity for anglers to target Chinook salmon. Sockeye salmon are targeted in 3 Kodiak Road Zone drainages as well as numerous remote locations by both guided and unguided anglers. However, coho salmon are the species most targeted throughout the island by anglers. Anglers target them in nearshore salt waters surrounding Afognak and Shuyak islands during August and in fresh waters through early October.

METHODS

During the review process, escapement goals were evaluated for 2 Chinook, 13 sockeye, and 4 coho salmon stocks (Table 1). In addition, 3 pink and 2 chum salmon stock-aggregate goals were

reviewed (Table 1; Figure 3). The review was conducted similarly to the 2013 review (Sagalkin et al. 2013), primarily examining recent (2013–2015) data and updating previous analyses. The first formal meeting to discuss and develop recommendations was held in March 2016. The team also communicated on a regular basis by telephone and email.

Available escapement, harvest, and age data associated with each stock or combination of stocks to be examined were compiled from research reports, management reports, and unpublished historical databases. Limnological and spawning habitat data were compiled for each system when available. The team evaluated the type, quality, and amount of data for each stock according to criteria described in Clark et al. 2014. This evaluation was used to assist in determining the appropriate type of escapement goal to apply to each stock, as defined in the SSFP and the *Policy for statewide salmon escapement goals*.

Biological Escapement Goal

In Alaska, most salmon BEGs are developed using Ricker (1954) spawner-recruit models (Munro and Volk 2016). As defined in the SSFP (5 AAC 39.222), BEGs are estimates of the number of spawners that provide the greatest potential for maximum sustained yield (S_{MSY}). For this review, most ranges surrounding S_{MSY} were calculated as the escapement estimates that produced yields of at least 90% of MSY (CTC 1999; Hilborn and Walters 1992). The carrying capacity was estimated by the Ricker model as the escapement level that will provide an equivalent level of return or replacement (Quinn and Deriso 1999). Carrying capacity is defined as S_{EQ} and is the expected annual abundance of spawners when the stock has not been exploited. Estimates of S_{MSY} and S_{EO} were not used if the model fit the data poorly or if model assumptions were violated. Hilborn and Walters (1992), Quinn and Deriso (1999), and the Chinook Technical Committee (CTC; 1999) provide good descriptions of the Ricker model and diagnostics to assess model fit. All Ricker models assumed a multiplicative error structure and were tested for residual autocorrelation, which was not corrected for if present (in non-Bayesian models) based on the recommendations of Korman et al. (1995) for Alaskan sockeye salmon stocks. When auxiliary data were available (e.g., limnology and/or smolt abundance, age, and size) they were summarized and biological trends were compared to estimates of adult production.

Sustainable Escapement Goal

Sustainable escapement goals (SEGs) were developed using several methods, depending on the system, species, and type of data available. For this review, most SEGs were determined using the Percentile Approach (Clark et al. 2014), risk analysis (Bernard et al. 2009), or spawner-recruit model (Ricker 1954; described above). Other methods used were the yield analysis (Hilborn and Walters 1992), euphotic volume model (Koenings and Kyle 1997), and zooplankton forage model (Koenings and Kyle 1997). These latter 3 habitat-based models were used only for sockeye salmon to assess the likely number of fish that can be supported given available habitat or food. Escapement goals were generally not based on results from these models, but results were instead used as a secondary, alternative analysis that was less dependent on fish count data. When used, results from the euphotic volume and zooplankton forage models were reported as generally corroborating or not corroborating the primary analysis.

The Percentile Approach is based on the simple principle that a range of observed escapements, or an index of escapements that have been sustained over a period of time, represent an SEG for a stock that has been fished and likely sustained some unknown level of yields over the same time period. Thus, maintaining escapements of a stock within some range of percentiles observed

over the time series of escapements represents a proxy for maintaining escapements within a range that encompasses S_{MSY} (Clark et al. 2014). This method takes into account the measurement error of the data collection method (i.e., weirs and towers have lower measurement error than aerial or foot surveys), contrast of the escapement data (i.e., the ratio of highest observed escapement to the lowest observed escapement), and the exploitation rate of the stock. Based on these criteria, a tier system designates what percentiles should define the SEG range.

Tier	Escapement contrast	Measurement error	Harvest rate	SEG range
1	>8	High (aerial and foot surveys)	Low to Moderate (< 0.40)	20th to 60th Percentile
2	>8	Low (weirs and towers)	Low to Moderate (< 0.40)	15th to 65th Percentile
3	≤4-8	-	Low to Moderate (< 0.40)	5th to 65th Percentile

The risk analysis (Bernard et al. 2009) was used to establish a lower-bound SEG, in the form of a precautionary reference point, from a time series of observed escapement estimates using probability distributions. This method is based on estimating the risk of management error and is particularly appropriate in situations where a stock (or stock aggregate) is not "targeted" and observed escapement estimates are the only reliable data available. In essence, this analysis estimates the probability of detecting escapement falling below the SEG in a predetermined number of consecutive years (*k*). For example, if we believe there is cause for concern when escapement falls below the SEG for 3 consecutive years, *k* would be equal to 3. Simultaneously, a second probability is estimated, which is the probability of taking action (e.g., closing a fishery to protect the stock) for 3 consecutive years when no action was needed. This analysis assumes that escapement observations follow a lognormal distribution and have a stationary mean (i.e., no temporal trend). Normality and temporal trends (autocorrelation) of log-transformed escapement data can be examined and steps taken to correct violation of these assumptions.

The yield analysis was similar to that used by Hilborn and Walters (1992), and entailed applying a tabular approach to examine escapement versus yield relationships. Escapements were arranged into size intervals. Multiple ranges for the size intervals were used to provide varying aggregations of escapements. For each escapement interval, several measures of yield from the observed escapements in that interval were calculated: specifically, the average and median return per spawner, average and median surplus yield (estimated as the return minus parental spawning escapement), and average and median observed harvest. The average and median were both calculated because averages are highly influenced by large or small values.

The euphotic volume model followed the methods of Koenings and Kyle (1997) and estimated adult escapement in part by determining the volume of lake water capable of primary production that could sustain a rearing population of juvenile sockeye salmon. The euphotic volume indicated a level of phytoplankton forage (primary production) available to zooplankton, and thus a level of zooplankton forage available for rearing juvenile fish. The model assumed that shallower light penetration would result in lower adult production compared to lakes with deeper light penetration because the shallower lakes would not have the primary production necessary to sustain a larger rearing population. The euphotic volume model assumes there is no primary productivity below depths at which light has been attenuated by 99%.

The zooplankton model, as described in Witteveen et al. (2005), estimated smolt production based on an available zooplankton biomass fed upon by smolt of a targeted threshold size, in a lake of known size (Koenings and Kyle 1997). The zooplankton model, like the euphotic volume model, uses the premise that the availability of forage could affect survival of juvenile fish and subsequent adult production. Adult production was calculated using species fecundity and marine survival rates. The zooplankton model assumes zooplankton is the only available forage.

CHINOOK SALMON

Ayakulik River

The Ayakulik River is located on southwestern Kodiak Island and supports one of the 2 largest Chinook salmon stocks in the KMA. The Ayakulik River drains Red Lake, then flows into Shelikof Strait in the area designated as the Inner Ayakulik Section of Southwest Kodiak District (Jackson and Keyse 2013; Figures 1 and 3).

A BEG has been developed for the Ayakulik River Chinook salmon stock. Chinook salmon are counted using a weir in the lower Ayakulik River (Fuerst 2015). Annual Chinook salmon escapement was estimated by subtracting estimates of recreational and subsistence harvest from the inriver run counted at the weir (Tracy et al. 2012). Weir counts at the Ayakulik River were available from 1972 to 2015, although data from 1972 to 1976 were excluded because the weir was upstream of some Chinook salmon spawning locations in those years. Counts for 1980 and 1982 were expanded based on average run timing to the weir to account for days the weir was not operational (Schwarz et al. 2002).

Sport harvests for Chinook salmon were estimated by the Statewide Harvest Survey. Commercial harvests were tallied from the Division of Commercial Fisheries Statewide Harvest Receipt (fish ticket) database. Because stock-specific harvests by the commercial fishery are not available, all Chinook salmon in the Inner (256-15) and Outer (256-20) Ayakulik sections from June 1 through July 15 were assumed to be of Ayakulik River origin. Harvests occurring from June 1 through July 15 were used to most closely match traditional run timing of Chinook salmon stocks. Annual subsistence harvests were estimated from returns of completed permits received by the Division of Commercial Fisheries.

Scales were collected from Chinook salmon sampled at the Ayakulik River weir from 1993 to 2015 to estimate age composition of the run. Age composition of the commercial harvest was assumed to be the same as that observed at the weir.

Karluk River

The Karluk River drains Karluk Lake, then flows into the Shelikof Strait in the area designated as Inner Karluk Section of Southwest Kodiak District (Jackson and Keyse 2013; Figures 1 and 3).

A BEG has been developed for the Karluk River Chinook salmon stock. Chinook salmon are counted via weir in the lower Karluk River (Fuerst 2015). Annual Chinook salmon escapements were estimated by subtracting estimates of recreational and subsistence harvest from the inriver run counted at the weir (Tracy et al. 2012). Weir counts were available from 1976 to 2015.

Karluk River formerly served as the broodstock for Chinook salmon stocking projects on the Kodiak road system; brood was collected from 2000 to 2004.

Sport harvests for Chinook salmon were estimated by the Statewide Harvest Survey. Commercial harvests were tallied from the Division of Commercial Fisheries Statewide Harvest Receipt (fish ticket) database. Total commercial harvests of Chinook salmon in Inner (255-10) and Outer (255-20) Karluk sections from June 1 through July 15 were assumed to be Karluk River fish. Annual subsistence harvests were estimated from returns of completed permits received by the Division of Commercial Fisheries.

Scales were collected from Chinook salmon sampled at the Karluk River weir from 1993 to 2015 to estimate age composition of the run. Age composition of the commercial harvest was assumed to be the same as that observed at the weir.

Escapement Goal Background and Previous Review

CHINOOK SALMON

An initial escapement goal of 6,500 to 10,000 fish was established for Ayakulik River Chinook salmon based on average historical escapements providing harvestable surpluses (Nelson and Lloyd 2001). During the 2001/2002 board meeting cycle, a BEG of 4,800 to 9,600 fish was established based on a spawner-recruit analysis.^a The BEG was reevaluated in 2005 using an updated Ricker analysis, and subsequently left unchanged (Nelson et al. 2005). The BEG was evaluated again in 2007, with the conclusion that the most recent 3 years of data would not substantially change the results of previous analyses (Honnold et al. 2007). An analysis in 2010 changed the BEG to 4,000 to 7,000 fish (Nemeth et al. 2010). Escapement data were reviewed in 2013, but no changes were made to the BEG (Sagalkin et al. 2013).

In 1996, an escapement goal of 4,500 to 8,000 fish was established for Karluk River Chinook salmon based on average historical escapements providing harvestable surpluses (Nelson and Lloyd 2001). During the 2001/2002 board meeting cycle, a BEG of 3,600 to 7,300 spawners was established based on a spawner-recruit analysis.^a The BEG was reevaluated in 2005 using an updated Ricker analysis but was subsequently left unchanged (Nelson et al. 2005). The BEG was evaluated again in 2007, with the conclusion that addition of the most recent 3 years of data would not substantially change the results of previous analyses (Honnold et al. 2007). An analysis in 2010 changed the BEG to 3,000 to 6,000 fish (Nemeth et al. 2010). Escapement data were reviewed in 2013, but no changes were made to the BEG (Sagalkin et al. 2013).

2016 Review

The team determined that these stocks warranted further review. Age structured spawner recruit models (Fleischman et al. 2013) were fitted to data from both stocks. The Bayesian analyses were performed using the 'rjags' package (Plummer 2016) within the R software environment (R Core Team 2015).

^a Hasbrouck, J. J., and R. A. Clark. Unpublished. Escapement goal review of Chinook salmon in the Ayakulik, Chignik, and Karluk Rivers. Alaska Department of Fish and Game, Report to the Board of Fisheries 2002, Anchorage.

SOCKEYE SALMON

The team added escapement data from 2013 through 2015 to the existing data sets for sockeye salmon stocks in the KMA (Table 1). Six out of the 13 stocks with escapement goals in the KMA were reevaluated.

Afognak Lake

Afognak Lake is located on the southeast side of Afognak Island and has supported one of the largest sockeye salmon runs on the island (Schrof and Honnold 2003; Nelson et al. 2005). The lake drains (via the Afognak River) into Afognak Bay, which is located within the Southeast Afognak Section of the Afognak District (Jackson and Keyse 2013; Figures 1 and 3). A counting weir was established in 1921 at the lake outlet and was run intermittently through 1977. Escapement monitoring has been continuous from 1978 to present, although the weir was moved in 1986 from the lake outlet to 200 meters upstream from the mouth of the Afognak River (Thomsen and Richardson 2013). In response to declining adult returns in 1987, ADF&G in cooperation with the Kodiak Regional Aquaculture Association (KRAA) initiated prefertilization investigations (Honnold and Schrof 2001). As a result of these investigations Afognak Lake was fertilized from 1990 to 2000 (White et al. 1990), and backstocking occurred in 1991, 1993, 1995, 1996, and 1997. Afognak Lake has been a brood source for KRAA stocking projects since 1991.

Escapement Goal Background and Previous Review

The first published escapement goal for Afognak Lake was developed in 1988 and set at 20,000 to 40,000 sockeye salmon (Nelson and Lloyd 2001). Escapement goal reviews of this system were conducted in 2004, 2007, 2010, and 2013. All available stock assessment data were analyzed using a spawner-recruit analysis, the percentile method, euphotic volume analysis, and smolt biomass as a function of zooplankton (Nelson et al. 2005). The 2004 review resulted in changing the Afognak Lake escapement goal to a BEG of 20,000 to 50,000 sockeye salmon (starting in the 2005 season). The 2007, 2010, and 2013 reviews indicated that no changes were warranted to the Afognak Lake BEG (Honnold et al. 2007; Nemeth et al. 2010; Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

Ayakulik River

The Ayakulik River drainage is the second largest river system on Kodiak Island and drains approximately 500 km² of land on southwest Kodiak Island, including Red Lake (Hander 1997; Figures 1 and 3). The Ayakulik River sockeye salmon run extends from late May until September. Most sockeye salmon spawning is believed to occur in Red Lake or its associated tributaries.

Escapement Goal Background and Previous Review

The original sockeye salmon escapement goal of 200,000 to 300,000 fish for the Ayakulik River was established in 1983 based on spawning habitat observations of different run segments, historical escapement numbers, and recommendations from previous fishery managers (Nelson and Lloyd 2001). Prior to 1989, Ayakulik River sockeye salmon was divided into early and late

segments with separate escapement goals. Review in 2004, using all available stock assessment data in spawner-recruit, yield analysis, euphotic volume, and zooplankton biomass models, led to changing the Ayakulik River goal to an SEG of 200,000 to 500,000 fish (Nelson et al. 2005). The 2007 escapement goal review team recommended no change to the Ayakulik River sockeye salmon SEG (Honnold et al. 2007). In 2010, the team recommended reinstituting separate early-and late-run goals for Ayakulik River sockeye salmon; this was based on run-timing curves and new genetics data (Gomez-Uchida et al. 2012). An early-run SEG of 140,000 to 280,000 fish through July 15 and a late-run SEG of 60,000 to 120,000 fish after July 15 was adopted based on zooplankton biomass models and historical escapement goals (Table 1; Nemeth et al. 2010). The goal was reviewed in 2013 and the team recommended no change (Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

Buskin River

The Buskin River is located on the northeast side of Kodiak Island and flows into Chiniak Bay near the city of Kodiak (Figure 3). Annual escapement of sockeye salmon to the Buskin River watershed has been counted at a weir since 1985 (Pollum et al. 2014). Until 1990, the Buskin River weir was located about 2.5 km upstream of the river mouth. In 1990, the weir was relocated to the outlet of Buskin Lake due to numerous washouts caused by high water conditions and to better account for sockeye entering Buskin Lake. In most years, the weir was operated at this site from late May through late July or early August for sockeye salmon, then moved downstream to count coho salmon through September; however, more recently it has remained in place near the lake outlet and a second weir has been installed downstream during the coho run (Fuerst 2015).

Annual subsistence harvests of Buskin River sockeye salmon are estimated from returns of completed permits received by the Division of Commercial Fisheries. Approximately 90% of completed permits are returned annually and probably account for most of the annual subsistence harvest.

Stock-specific harvest estimates were available for the Buskin River sockeye salmon fisheries from 1990 through 2015. Sport harvests of Buskin River sockeye salmon are estimated by the Statewide Harvest Survey, whereas commercial harvests are tallied from the Division of Commercial Fisheries Statewide Harvest Receipt (fish ticket) database and include catches for the Woman's Bay (259-22) and Buskin River sections (259-26).

Age composition of Buskin River sockeye salmon are estimated from escapement and subsistence harvests (Pollum et al. 2014). Age composition of commercial and sport harvests is assumed to be the same as the escapement. Age composition data were available for all years analyzed except 1999, when age composition was estimated using the average from 1996 through 1998.

Escapement Goal Background and Previous Review

A Buskin Lake sockeye salmon escapement goal of 8,000 to 13,000 fish was developed in 1996, based on historical weir counts (Nelson and Lloyd 2001). The SEG was reevaluated in 2005; at that time, spawner-recruit data did not provide adequate information to develop a BEG for this

stock, although the model suggested that a point estimate of S_{MSY} may be lower than the 8,000 to 13,000 SEG (Nelson et al. 2005). The SEG was reevaluated again in 2007 and left unchanged (Honnold et al. 2007). In 2010, the analysis was updated again and the SEG was changed to a BEG and lowered to 5,000 to 8,000 (Nemeth et al. 2010). The 2013 review resulted in no changes to the BEG (Sagalkin et al. 2013)

2016 Review

The team agreed to update the analysis and re-evaluate the Buskin Sockeye BEG in 2016. An age-structured state-space stock-recruit Ricker model was fitted to escapement and return data from 1990 through 2015 as described in Fleischman et al. (2013) and Polum et al. (2014). The Bayesian analysis was performed using the 'rjags' package (Plummer 2016) within the R software environment (R Core Team 2015).

Frazer Lake

Frazer Lake is located on the southwest side of Kodiak Island and supports one of the largest sockeye salmon runs in the Kodiak Archipelago (Jackson and Keyse 2013). Sockeye salmon were introduced into the previously barren lake from 1951 through 1971 (Blackett 1979). The major donor stocks for Frazer Lake were the nearby Red (Ayakulik River drainage) and Karluk lakes. Frazer Lake's outlet creek, Dog Salmon Creek, flows into Olga Bay. The Olga Bay and Dog Salmon Flats sections within the Alitak District are the nearest fisheries management sections (Figures 1 and 3). A fish pass was constructed in 1962 to allow sockeye salmon to migrate around the barrier falls and into the lake. Frazer Lake was fertilized from 1988 to 1992 because of concerns about low escapement and poor smolt production.

Escapement Goal Background and Previous Review

The Frazer Lake sockeye salmon escapement goal, which initially did not have a range, was 175,000 sockeye salmon from the 1950s through the 1970s while the run was in development. In 1981, the Frazer Lake escapement goal was changed to 350,000 to 400,000 sockeye salmon based upon rearing capacity and spawning habitat calculations (Nelson and Lloyd 2001). The goal range was lowered to 200,000 to 275,000 fish in 1986, with a BEG of 140,000 to 200,000 fish established in 1988.

Subsequent escapement goal reviews of this system were conducted during 2004, 2007, 2010, and 2013. All available stock assessment data were analyzed using the spawner-recruit analysis, percentile method, euphotic volume analysis, smolt biomass as a function of zooplankton biomass, and spawning habitat models (Nelson et al. 2005). The 2004 review team recommended decreasing the Frazer Lake BEG to 70,000 to 150,000 fish based on a spawner-recruit analysis, excluding data from years affected by fertilization. The recommendation was adopted by the department and the new BEG went into effect in 2005. The 2007 review resulted in changing the BEG to 75,000 to 170,000 fish (Honnold et al. 2007). In 2010 and 2013, the spawner-recruit analysis was updated again, and based on the results, the team recommended no change to the BEG (Nemeth et al. 2010; Sagalkin et al. 2013).

2016 Review

Spawner-recruit relationships were estimated for the Frazer Lake run by analyzing spawning stock and recruitment data from brood years 1966 to 2008 using a Ricker spawner-recruit model (Eggers 2001; Hilborn and Walters 1992; Ricker 1954) with a multiplicative error structure

(Quinn and Deriso 1999). Spawner-recruit data not affected by fertilization of Frazer Lake (excluding brood year data from 1985 to 1991) was used. If a Ricker spawner-recruit model was significant, S_{MSY} was estimated, along with the range of escapements that would produce 90% to 100% of MSY.

Special consideration of the jack life history was accounted for in several runs of the analysis. This included complete discounting of jacks, and weighted jack to large male equivalencies. It was apparent that discounting jacks in the production models would introduce more uncertainty than could be explained by considering it, and only a complete brood table was considered.

Karluk Lake

Karluk Lake is located on the west side of Kodiak Island and supports the largest sockeye salmon run in the KMA (Jackson and Keyse 2013). The lake's outlet stream, the Karluk River, flows into Shelikof Strait in the area designated as the Inner Karluk Section of the Southwest Kodiak District. Two temporally distinct sockeye salmon runs return to Karluk Lake (Barrett and Nelson 1994). The early-run returns from late May until mid-July and the late-run returns from mid-July through September.

Escapement Goal Background and Previous Review

Published escapement goals for Karluk Lake sockeye salmon date back to the 1970s. Many of the early goals are split into months (Nelson and Lloyd 2001). From 1988 to 1991, there was an early-run escapement goal of 250,000 to 350,000 fish and a late-run escapement goal of 310,000 to 550,000 fish. In 1992, spawner-recruit analyses were used to develop BEGs of 150,000 to 250,000 fish for the Karluk Lake early run and 400,000 to 550,000 fish for the Karluk Lake late run (Nelson and Lloyd 2001). Escapement goals were reviewed again in 2004, when all available stock assessment data were evaluated using a spawner-recruit analysis, euphotic volume analysis, and smolt biomass as a function of zooplankton biomass. The review resulted in changing the BEG for the Karluk Lake sockeye salmon stocks to 100,000–210,000 fish for the early run and to 170,000–380,000 fish for the late run (Nelson et al. 2005). After the next review by Honnold et al. in 2007, the early-run BEG was changed to 110,000–250,000 sockeye salmon (based on spawner-recruit analysis with the inclusion of recent strong brood-year returns) and the late-run BEG was left at 170,000 to 380,000 fish (Honnold et al. 2007). The goals were reviewed again in 2010 and 2013(Nemeth et al. 2010; Sagalkin et al. 2013) and left unchanged.

2016 Review

The team agreed to review both the early and late-run BEGs in 2016. Sockeye salmon escapements from Karluk Lake were enumerated by weir counts. These data were available from 1922 to 2015. Escapement assigned to the early run was estimated by including all counts prior to July 22 while escapement assigned to the late run was estimated by including all counts after July 21. Stock-specific harvest estimates were available for the Karluk Lake sockeye salmon fisheries from 1985 to 2015.

Spawner-recruit relationships were estimated for the early run, late run, and combined using the 1981 through 2008 brood years. Spawning stock and recruitment data were analyzed using a Ricker spawner-recruit model (Eggers 2001; Hilborn and Walters 1992; Ricker 1954) with a multiplicative error structure (Quinn and Deriso 1999). If a Ricker spawner-recruit model was significant, then S_{MSY} was estimated along with the range of escapements that would produce 90% to 100% of MSY. Residuals were examined for autocorrelation and temporal trends. To

account for serial correlation in the model residuals, a lag-1 autoregressive model (AR(1); Noakes et al. 1987) was utilized if significant positive serial correlation was detected.

Several events relating to Karluk Lake sockeye salmon complicated analysis of the escapement goals. From 1986 to 1990, Karluk Lake was fertilized to enhance juvenile sockeye salmon survival (Schrof and Honnold 2003). However, the brood years thought to be affected by fertilization were not excluded because the level of artificial nutrient additions were less than 10% of the total estimated nutrient inputs of other sources (salmon carcass and spring loading) during that timeframe (Schmidt et al. 1998). ADF&G also backstocked sockeye salmon fry into the Upper Thumb River in the Karluk Lake watershed after eggs were incubated at the Kitoi Bay Hatchery from 1979 to 1987. The stocking program was initially viewed as a success with increases in the spawning density to Upper Thumb, but this coincided with major increases in escapement observed starting in 1985 that demonstrated increased spawning density in all areas of Karluk Lake pointing to other causes (White 1991). Brood years thought to be affected by backstocking were not excluded.

Malina Creek

Malina Creek is located on the southwest side of Afognak Island in the Kodiak Archipelago. The creek drains 2 lakes (Upper and Lower Malina lakes), then flows westerly into Malina Bay, in the Southwest Afognak Section of the Afognak District (Figures 1 and 3). The system supports a small run of sockeye salmon. Malina Lake is used as a backup brood source by KRAA for early-run stocking projects; broodstock was obtained from Malina Lake in 2004 and 2005. To increase the natural production of sockeye salmon into the system, Upper Malina Lake was fertilized from 1991 through 2001, and Lower Malina Lake was fertilized from 1996 through 2001. The lakes were backstocked with juvenile sockeye fry from 1992 to 1999 (Schrof and Honnold 2003).

Escapement Goal Background and Previous Review

The first published escapement goal for Malina Creek was developed in 1988 and was set at 5,000 to 10,000 sockeye salmon; it was based on historical aerial survey indexed escapements and, to a lesser extent, cursory spawning habitat evaluations (Nelson and Lloyd 2001). The escapement goal was revised to 10,000 to 20,000 in 1992, based on further limnological studies and rehabilitation investigations (Kyle and Honnold 1991). A review in 2004 recommended reducing the SEG to 1,000 to 10,000 fish; this recommendation was based on the results of the percentile approach and zooplankton biomass model. With 3 years of additional data, the 2007 escapement goal review team determined that the additional stock assessment data would not substantially affect the results of previous escapement goal analyses. Thus, the Malina Creek sockeye salmon SEG was left unchanged in 2007 (Honnold et al. 2007). A review in 2010 and 2013 with updated limnology and aerial survey data corroborated the SEG, and the team recommended no change (Nemeth et al. 2010; Sagalkin et al. 2013).

2016 Review

Limnological data from 1990 to 2015 were analyzed using zooplankton biomass and euphotic volume models to assess optimal escapement levels. The Percentile Approach was employed using available peak aerial survey and weir data from 1990 to 2015.

Pasagshak River

The Pasagshak River, which drains from Lake Rose Teed into Ugak Bay of the Eastside Kodiak District. The system is also located on the Kodiak Island road system and supports one of the largest sockeye salmon subsistence fisheries for Kodiak Island residents (Figure 3). Historically, escapement was estimated using aerial and foot surveys of the spawning grounds, but there has been a weir since the 2011 season.

Escapement Goal Background and Previous Review

The first Pasagshak River sockeye salmon escapement goal was 1,000 to 5,000 fish and was established in 1988 (Nelson and Lloyd 2001) based on historical aerial survey index counts and, to a lesser extent, cursory spawning habitat evaluations. Nelson and Lloyd (2001) noted that this goal may be too low. In 2004, the SEG was revised to 3,000 to 12,000 fish, based on the percentile approach and a risk analysis (Nelson et al. 2005). This goal was assessed again in 2010 and a lower-bound SEG of 3,000 fish was implemented in 2011(Nemeth et al. 2010). The goal was reviewed again in 2013 and the team recommended no change (Sagalkin et al 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

Saltery Lake

Saltery Lake is located southwest of the city of Kodiak and is one of the most productive sockeye salmon systems on the east side of Kodiak Island (Honnold and Sagalkin 2001; Jackson and Keyse 2013). The Inner Ugak Bay Section of the Eastside Kodiak District is the nearest fisheries management area to the confluence of the lake's outlet creek (Saltery Creek) and Ugak Bay (Figures 1 and 3). Saltery Lake is the primary brood source for fry stocked into Spiridon Lake by the KRAA. Sockeye salmon escapements to Saltery Lake were estimated using aerial surveys from 1976 through 1986, 1992, and 2004 through 2007; escapements were estimated using weirs from 1986 to 1991, 1993 to 2003, and 2008 to 2015.

Escapement Goal Background and Previous Review

The first published escapement goal for Saltery Lake was developed in 1988 and set at 20,000 to 40,000 sockeye salmon (Nelson and Lloyd 2001). In 2001, the SEG was changed to a BEG of 15,000 to 30,000 fish, based upon spawner-recruit data, euphotic zone depth and volume, smolt biomass as a function of zooplankton biomass, smolt biomass as a function of lake rearing availability, and spawning habitat availability analyses (Honnold and Sagalkin 2001). The goal was reviewed again in 2004 and left unchanged, with the review team recommending that S_{MSY} (23,000), or the lower end of goal, be targeted in the short term, citing decreased biomass of zooplankton in the lake. In 2007, the consensus of the review team was to change the Saltery Lake sockeye salmon escapement goal from a BEG of 15,000 to 30,000 to an SEG of 20,000 to 50,000, based on the percentile approach using aerial survey data (Honnold et al. 2007). At the time of the 2007 review, Saltery Lake sockeye escapement was estimated only by aerial survey and no age data were collected. There was no indication of any future plan to operate a weir, and the team decided that using only aerial survey data with the percentile approach was a more appropriate method (Honnold et al. 2007).

In early 2008, the goal was reanalyzed when KRAA agreed to operate a weir project at Saltery Lake. The team recommended retaining the prior BEG of 15,000 to 30,000 used to manage the stock since 2001, because the 2007 review team's recommended change to an SEG (of 20,000 to 50,000 fish) was predicated on escapement assessments by aerial survey only. In addition, the team determined that the "weir only" spawner-recruit analysis was similar to the "combination weir/aerial survey" spawner-recruit analysis that resulted in the current BEG, and the zooplankton data indicated that habitat limitations still existed in Saltery Lake. The goal was reanalyzed again in 2010 resulting in a change to a BEG of 15,000 to 35,000 fish (Nemeth et al. 2010). The goal was reviewed again in 2013 and the team recommended no change (Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

Uganik Lake

Uganik Lake is located on the west side of Kodiak Island and is a moderate producer of sockeye salmon (Booth 1993). Uganik River flows from the lake into the East Arm of Uganik Bay, which is part of the Inner Uganik Bay Section of the Northwest Kodiak District (Jackson and Keyse 2013; Figures 1 and 3).

Escapement Goal Background and Previous Review

The first published escapement goal for Uganik Lake was developed in 1988 and set at 40,000 to 60,000 sockeye salmon (Nelson and Lloyd 2001). An escapement goal review of this system in 2004 resulted in eliminating the Uganik Lake sockeye salmon SEG due to incomplete escapement data and the inability to actively manage escapements to this system (Nelson et al. 2005).

The 2007 escapement goal review of Uganik Lake sockeye salmon utilized aerial survey and weir count estimates with the percentile approach. This analysis lead the review team to recommend establishing a lower-bound SEG of 24,000 sockeye salmon, which was implemented in 2008 (Honnold et al. 2007). The goal was reviewed again in 2010 and 2013 resulting in no change (Nemeth et al. 2010; Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined and the team agreed to review this goal with consideration of management utility and poor aerial survey conditions present in the system.

Upper Station

The Upper Station system, also referred to as South Olga lakes, is composed of 2 major lakes located on the southern end of Kodiak Island, and drains into Inner Upper Station Section of the Alitak District (Figures 1 and 3). The system supports one of the largest sockeye salmon runs in the Kodiak Archipelago (Jackson and Keyse 2013). Two temporally distinct sockeye salmon runs return to Upper Station (Barrett and Nelson 1994). The early-run returns from late May through mid-July; the late-run returns from mid-July through September. Sockeye salmon escapements at Upper Station have been enumerated through the weir since 1969 for the early run and 1966 for the late run; counts through July 15 are attributed to the early run and counts after July 15 to the late run.

Escapement Goal Background and Previous Review

From 1978 to 1982, the Upper Station sockeye salmon stock was managed for one escapement goal (range of 100,000 to 180,000 fish) that was stratified by month. Early and late runs were not identified, but the escapement goals were for July and August. In 1983, the department increased the escapement goal to 150,000 to 250,000 fish and extended goals into June (presumably for the early run); this goal remained in place through 1987 (Nelson and Lloyd 2001). In 1988, the goal was split into separate escapement goals of 50,000 to 75,000 fish for the early run and 150,000 to 200,000 fish for the late run (Nelson and Lloyd 2001). An optimal escapement goal of 25,000 fish was established for the early Upper Station run in 1999 by the Board of Fisheries. During the 2004 review, the team recommended changing the current Upper Station early-run sockeye salmon SEG to 30,000 to 65,000 fish based on the percentile approach, and changing the late-run sockeye salmon SEG to a BEG of 120,000 to 265,000 fish (S_{MSY} =186,000) based on a significant Ricker spawner-recruit relationship. No change was recommended to either goal during the 2007 escapement goal review (Honnold et al. 2007). In 2010, both goals were reviewed, and the Upper Station early-run goal was changed to a BEG of 43,000 to 93,000. There was no change recommended to the Upper Station late run (Nemeth et al. 2010). The goal was reviewed again in 2013 and the team recommended no change (Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

COHO SALMON

American, Buskin, Olds, and Pasagshak Rivers

Coho salmon escapement goals have been established for 4 rivers in the KMA, all of which are located on the road system in the northeast corner of Kodiak Island (Figure 3). The American, Olds, and Buskin rivers empty into Chiniak Bay, in the Inner Chiniak Bay Section (Figures 1 and 3). The Pasagshak River empties into Ugak Bay, in the Outer Ugak Bay Section (Figures 1 and 3).

Escapement to the American, Olds, and Pasagshak rivers are estimated via surveys by foot. The surveys have been conducted annually since 1980, and are done in October and early November to coincide with peak spawning periods (as determined through a combination of factors, including timing of past escapement surveys, inseason anecdotal reports of spawning activity, and preference for optimal water levels and viewing conditions). Foot survey routes were standardized for each stream using periodically updated GPS waypoints to identify starting and stopping destinations, as well as tributary and stream branch confluence locations. The count for a stream survey is interpreted as a minimum number of salmon escaping to that stream and therefore, is viewed as an index of total escapement. The highest number (peak count) of coho salmon observed during a single foot survey has been used as the annual index of abundance for that stream.

The fourth system in the KMA with a coho salmon escapement goal is the Buskin River, in which returning coho salmon are counted with a weir operated at various sites since 1985. Buskin River has served as a brood source for a number of Division of Sport Fish stocking projects in the KMA since 1993.

Escapement Goal Background and Previous Review

The existing coho salmon escapement goals in the KMA were first established in 1999 (Nelson and Lloyd 2001). The first American River coho salmon SEG was 300 to 400 fish, then changed to 400–900 fish in 2005 (Clark et al. 2006). The first Olds River SEG was 450 to 675 fish (Nelson and Lloyd 2001), then changed to 1,000–2,200 fish in 2005 (Clark et al. 2006). The first Pasagshak River coho salmon SEG was 1,500 to 3,000 fish (Nelson and Lloyd 2001), then changed to 1,200–3,300 fish in 2005 (Clark et al. 2006). The first Buskin River coho salmon SEG was 6,000 to 9,000 fish (Nelson and Lloyd 2001). In 2005, the SEG was changed to a BEG of 3,200 to 7,200 fish (Clark et al. 2006), and was meant to explicitly take into account 20% of the sport harvest that occurs upstream of the weir. In 2013, the BEG was changed to 4,700–9,600 fish based on updated brood table and spawner-recruit analysis (Sagalkin et al. 2013).

In 2007, the review team concluded that the addition of 3 years of escapement data would not substantially affect the results of previous analysis of any of the 4 goals, which were left unchanged (Honnold et al. 2007). In 2011, the upper bounds of the escapement goals for the American, Olds, and Pasagshak rivers were removed due to the lack of inseason management for the upper ends of the goals (Nemeth et al. 2010).

2016 Review

The team reviewed the most recent escapement data available for KMA coho salmon stocks, which consisted of 3 years of foot survey data from the American, Olds, and Pasagshak rivers, and 3 years of weir data from the Buskin River. The team concluded that these data would not substantially affect the results of previous escapement goal analyses for the American, Olds, and Pasagshak rivers, and thus recommended no further analysis of these goals.

The team decided to reevaluate the Buskin River coho BEG and update the spawner-recruit analysis. An age-structured state-space stock-recruit Ricker model was fitted to escapement and return data from 1989 through 2015 as described in Fleischman et al. (2013) and Schmidt and Evans (2012). The Bayesian analysis was performed using the 'rjags' package (Plummer 2016) within the R software environment (R Core Team 2015).

PINK SALMON

Kodiak Archipelago and Mainland District Aggregates

There are 2 escapement goals for pink salmon in the KMA, both of which are SEGs based on aggregates of escapements to multiple streams estimated from aerial surveys of spawning fish from fixed-wing aircraft (Figure 2; Jackson and Keyse 2013). The Mainland District aggregate goal is derived entirely from these aerial surveys; the Kodiak Archipelago aggregate goal is derived from aerial surveys supplemented by counts from weirs on Kodiak Island streams. Each year since 1964, pink salmon have been counted during one or more flights over a standardized subset of streams in the Kodiak Archipelago and across Shelikof Strait in the Mainland District (Figure 2). The highest number (peak count) of pink salmon observed during a single flight has been used as an annual index of abundance for that stream. Pink salmon from a given brood year mature in the same calendar year, 2 years after birth, leading to separate populations in odd and even years that do not interbreed (Heard 1991).

Escapement Goal Background and Previous Review

The first KMA districtwide pink salmon escapement goals were published in 1978 (Nelson and Lloyd 2001). The peak counts were summed over streams within 7 districts: Eastside, Northeast Kodiak, Afognak, Northwest Kodiak, Southwest Kodiak, Alitak Bay, and Mainland. Annual counts were averaged to produce SEGs for each district and for the Kodiak Archipelago as a whole, separately for even and odd years (Nelson and Lloyd 2001).

In 2005, the Mainland District SEG was retained as its own discrete goal, while the other 6 districts were combined to form the Kodiak Archipelago goal (Nelson et al. 2005). Also, separate goals for even and odd years were eliminated and replaced by an overall goal for both years combined. The newly created Kodiak Archipelago SEG was set at 2,000,000 to 5,000,000 fish and the Mainland District SEG was revised to 250,000–750,000 fish (Nelson et al. 2005). Pink salmon escapement goals were reevaluated during the 2007 review and left unchanged (Honnold et al. 2007). Goals were evaluated in 2010, and the team recommended changing the Kodiak Archipelago pink salmon SEG of 2,000,000 to 5,000,000 fish to an odd-year SEG of 2,000,000 to 5,000,000 pink salmon (Table 1). The team also recommended changing the Kodiak Mainland pink salmon SEG of 250,000 to 750,000 fish to an SEG of 250,000 to 1,000,000 fish. The goal was reviewed in 2010 and 2013 and the team recommended no change (Nemeth et al. 2010; Sagalkin et al. 2013).

2016 Review

Recent escapement data were examined to determine whether a change in the escapement goal was justified, and the team agreed that no further analysis was necessary.

CHUM SALMON

Kodiak Archipelago and Mainland District Aggregates

There are 2 aggregate escapements goals for chum salmon in the KMA, one for the Mainland District and one for the Kodiak Island Archipelago (Figure 2). Both escapement goals are SEGs based on aggregates of escapements to all streams estimated from aerial surveys of spawning fish from fixed-wing aircraft (Jackson and Keyse 2013). Peak counts of chum salmon from a single flight are used as the annual index of abundance for each stream.

Escapement Goal Background and Previous Review

Chum salmon escapement goals by district were established in 1988 (Nelson and Lloyd 2001), based on historic escapement. Goals were set for individual districts as follows: Mainland District, 133,000 to 399,000 fish; Northwest District, 46,000 to 138,000 fish; Southwest District, 25,000 to 75,000 fish; Alitak District, 26,000 to 78,000 fish; Eastside District, 35,000 to 105,000 fish; and Northeast District, 8,000 to 24,000 fish. In 2004, the goals were revised to be lowerbound SEGs (termed SEG thresholds at the time), and set at 153,000 fish for the Mainland District, 53,000 fish for the Northwest District, 7,300 fish for Southwest District, 28,000 fish for the Alitak District, 50,000 fish for the Eastside District, and 9,000 fish for the Northeast District. These lower-bound SEGs were implemented in 2005 (Honnold et al. 2007).

In 2007, the review team reanalyzed chum salmon escapement goals for the KMA. The lowerbound SEG for Mainland District chum salmon was reduced to 104,000 fish. The escapement goals for the remaining 6 districts (all on Kodiak Island) were aggregated into a single lowerbound SEG known as the Kodiak Archipelago goal. This goal was set at 151,000 fish (Honnold et al. 2007). Goals were reevaluated in 2010 and 2013, and the team recommended no changes.

2016 Review

Stock-specific harvest estimates for Kodiak Archipelago and Mainland District chum salmon were not available. Recent escapement data were examined to determine whether further analysis of the escapement goals was justified. Data were evaluated for consistency and analyzed using the Percentile Approach. The team determined that these stocks warranted further review.

RESULTS

The team reviewed stock assessment data for 2 Chinook salmon, 13 sockeye salmon, 4 coho salmon, 3 pink salmon aggregate stocks, and 2 chum salmon aggregate stocks with existing goals (Table 1). Initial efforts concentrated on reviewing data from 2013 through 2015, determining if previous analyses should be updated or if additional analyses were necessary, and identifying any management concerns with the existing goals.

The team concluded that the 3 additional years of data may affect the existing escapement goals for Ayakulik and Karluk rivers Chinook salmon; Buskin and Karluk (early- and late-run) rivers, Malina Creek, and Uganik and Frazer lakes sockeye salmon; American, Buskin, Olds, and Pasagshak rivers coho salmon; and Mainland and Kodiak Archipelago chum salmon. The team elected to formally analyze these stocks, using a combination of new escapement and brood year data available since the last review.

The team agreed to recommend to the directors of the divisions of Commercial Fisheries and Sport Fish that changes be made to 6 of the 14 goals analyzed: eliminating the escapement goals for Uganik Lake sockeye salmon and Mainland District chum salmon; changing the BEG ranges for Ayakulik River Chinook salmon to 4,800–8,400, Karluk River early-run sockeye salmon to 150,000–250,000, Karluk River late-run sockeye salmon to 200,000–450,000, and Kodiak Archipelago aggregate chum salmon lower-bound SEG to 101,000 (Table 1).

CHINOOK SALMON

Ayakulik River

Stock Status

Ayakulik River Chinook salmon escapements averaged 9,151 fish (range: 917 to 24,425) from 1977 through 2015 (Appendix A2) and total recruitment averaged 12,174 fish (range: 1,070 to 231,883) for brood years 1977 through 2009. Since 2011, escapements were below the current BEG of 4,000 to 7,000 in 3 of the last 5 years (Appendix A3).

Escapement Goal Recommendation

The BEG has not been fully evaluated since 2010, using data through 2009 (Table 1). Six additional years of information have accumulated. Fitting an age-structured spawner recruit model to the 1977–2015 data resulted in a point estimate (posterior median) for S_{MSY} of 6,213 spawning adults (90% credibility interval 3,920 to 12,400), approximately 20% higher than the previous estimate of 5,165 from the 2010 analysis. Other parameter estimates are summarized in Appendix A5.

Based on the results of this analysis, the team recommended raising the BEG for Ayakulik River Chinook salmon to 4,800–8,400 fish. The recommended goal is shown in the context of optimal yield profiles in Appendix A6.

Karluk River

Stock Status

Karluk River Chinook salmon escapements averaged 6,969 (range: 752 to 13,742) fish from 1976 through 2015 and total returns averaged 8,502 (range: 1,099 to 19,443) fish for brood years 1976 through 2009. The current BEG of 3,000 to 6,000 fish was implemented in 2011. Escapements were within the goal range in 2011 and 2012 (Appendices B2 and B3). Karluk River Chinook salmon were designated a *stock of concern* during the 2010 Kodiak board meeting, and remained *a stock of concern* following the 2013 review.

Escapement Goal Recommendation

Based on the updated analyses, the team recommends that the goal remain unchanged (3,000 to 6,000; Table 1). The recommended goal is shown in the context of optimal yield profiles in Appendix B6.

SOCKEYE SALMON

Afognak Lake

Stock Status

Escapements have been within the escapement goal range each year since the current BEG was implemented in 2005, except in 2010 when it was exceeded (Appendices C2 and C3). The returns for 1999 and 2001 brood years were the lowest in the 1978 to 2015 time series (Appendices C2 and C3), and were possibly reduced by top-down effects from high escapements from 1995 through 1999 (Appendices C2 and C3).

Escapement Goal Recommendation

Given that escapements have been within or above the BEG since its establishment (2005), and current data does not indicate a substantial change in stock productivity or utilization, the team agreed that the goal should remain unchanged (Table 1).

Ayakulik River

Stock Status

The Ayakulik River sockeye salmon SEG was split into early-run (140,000 to 280,000) and laterun (60,000 to 120,000) goals in 2011 (Table 1; Appendix D1). Sockeye salmon returns have been in decline since brood year 1994, but have recently shown signs of stabilizing or increasing (Appendices D2–D4). Department researchers theorize that the decline was likely due to the high escapements from 1989 to 1998, when escapements averaged about 400,000 fish, increasing competition among rearing fish and ultimately decreasing the size of outmigrating smolt. Escapements have been within the current SEG since it was implemented (Appendix D3).

Escapement Goal Recommendation

The SEG was reevaluated in 2010 (using data through 2009) and new goals were implemented in 2011. The 6 additional years of data does not indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged (Table 1).

Buskin River

Stock Status

The Buskin River sockeye salmon escapement goal was assessed in 2010 and changed from an SEG (8,000 to 13,000 fish) to a BEG (5,000 to 8,000 fish) for the 2011 season (Appendices E2 and E3). Returns have ranged from 9,724 fish (2008) to 37,544 fish (2003). Escapements have been above the current BEG since it was established (Table 1).

Escapement Goal Recommendation

A Bayesian spawner-recruit analysis incorporating escapements through 2015 was completed for the Buskin River sockeye stock. This analysis estimated the sockeye salmon escapement for S_{MSY} to be about 6,500 fish (90% credibility interval of 5,460 to 7,960) and a maximum sustained yield of approximately 21,000 sockeye salmon (90% credibility interval of 14,030 to 34,680). The 6 additional years of data does not indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged (Table 1). Important spawner-recruit parameter estimates are summarized in Appendix E4 and an optimal yield profile is given in Appendix E5.

Frazer Lake

Stock Status

Sockeye salmon escapements have been within the current BEG of 75,000 to 170,000 fish since its inception in 2008, except for 2014 and 2015 where the goal was exceeded (Appendices F2 and F3). Returns have ranged from 39,910 (1966) when the stock was being developed, to over 2 million fish (1986; Appendix F4)

Evaluation of Recent Data

A Ricker spawner-recruit model was fit to the Frazer Lake fully recruited brood year spawnerrecruit data from 1966 to 2008 (excluding the brood years of 1985 to 1991 where fertilization directly affected production; Appendix F4). There was no significant (P > 0.05) autocorrelation (lag-1) detected in the residuals.

Bathymetric data collected in 2009 were employed in calculating the euphotic volume model for Frazer Lake: the optimal escapement to Frazer Lake was estimated to be 224,497 adult sockeye salmon. The zooplankton biomass model estimated the optimal escapement to Frazer Lake to be 114,982 sockeye salmon.

Separating jacks within the analyses did not significantly change the estimates of S_{MSY} ; however, the alterations introduced an unknown amount of additional error in the model and without being able to describe the additional error, the range became much broader.

Escapement Goal Recommendation

The team recommended no change to the Frazer Lake sockeye salmon BEG of 75,000 to 170,000 fish (Table 1). The addition of 3 more years of spawner-recruit data yielded little change

in the estimates of productivity; similarly, the zooplankton biomass model corroborated the current BEG.

Karluk Lake

Stock Status – Early Run

Since the establishment of the current BEG (110,000 to 250,000 fish) in 2008, escapement of early-run Karluk River sockeye salmon have been above the upper goal in 2 years (2014 and 2015) and below the lower goal in 4 years (2008–2011; Appendices G2 and G4). The recent 10-year average return is about 267,000 fish.

Stock Status – Late Run

Since the establishment of the current BEG (170,000 to 380,000 fish) in 2005, escapement of late-run Karluk River sockeye salmon has met or been above the upper goal, except for 2008, when it was below the lower goal (Appendix G3 and G5). The recent 10-year average return is roughly 569,000 fish.

Evaluation of Recent Data

A Ricker spawner-recruit model was fit to the Karluk Lake early-run fully recruited brood year spawner-recruit data from 1981 to 2008 (Appendix G6). The multiplicative error model was significant ($P = 1.7 \times 10^{-5}$), S_{MSY} was estimated at 124,000, and S_{EQ} was estimated at 369,000 (Appendix G9). Presence of autocorrelation (lag-1) was calculated and found to be statistically significant. The autoregressive model AR(1) corrected estimate of S_{MSY} equaled 168,000, and S_{EQ} equaled 436,000.

A Ricker spawner-recruit model was fit to the Karluk Lake late-run fully recruited brood year spawner-recruit data from 1981 to 2008 (Appendix G7). The multiplicative error model was significant ($P = 4.9 \times 10^{-6}$), S_{MSY} was estimated at 259,000, and S_{EQ} was estimated at 713,000 (Appendix G9). Presence of autocorrelation (lag-1) was calculated and found to be statistically significant. The autoregressive model AR(1) corrected estimate of S_{MSY} equaled 294,000, and S_{EQ} equaled 777,000.

A Ricker spawner-recruit model was fit to the Karluk Lake combined runs fully-recruited brood year spawner-recruit data from 1981 to 2008 (Appendix G8). The multiplicative error model was significant ($P = 1.0 \times 10^{-4}$), S_{MSY} was estimated at 406,000, and S_{EQ} was estimated at 1,098,000 (Appendix G9). Presence of autocorrelation (lag-1) was calculated and found to be statistically significant. The autoregressive model AR(1) corrected estimate of S_{MSY} equaled 520,000 (90% S_{MSY} range of 340,000 to 730,000).

When environmental factors have a large impact on spawner-recruit relationships, often it can manifest as correlation between succeeding observations of escapement: good years followed by good years and bad years followed by bad years (Quinn and Deriso 1999). In this case, strong serial correlation was detected in the early, late, and combined model but more so in the early and combined, as evidenced by the Durbin-Watson test statistic (Appendix G9). In all models, correcting for the issue with the AR(1) model resulted in a lower estimated production parameter (α) and less density dependence (β), and accordingly increased S_{MSY} and decreased MSY, at same time accounting for a much greater amount of the variation (Appendix G9). An environmental factor that could cause the positive autocorrelation described above is positive feedback from carcass-derived nutrients in Karluk Lake (Schmidt et al. 1998; Finney et al. 2000; Uchiyama et al. 2008). The potential benefit of utilizing the AR(1) estimates in this scenario is that they incorporate other factors affecting estimates of productivity that may better promote long-term stability instead of short-term high production.

Comparing the cumulative early and late models to the combined model is an interesting case where the total system is more than just the sum of its parts and probably demonstrates the interaction between the early and late runs. Although the early and late run are generally temporally separated in spawning, all juveniles rear for 1 to 3 years in Karluk Lake together. For that reason, and the lowest σ (Appendix G9), the combined runs AR(1) model was chosen as the best estimate of Karluk Lake sockeye salmon theoretical production.

Escapement Goal Recommendation

The team recommended changing the Karluk Lake early-run BEG of 110,000 to 250,000 to 150,000–250,000 and the late-run BEG of 170,000 to 380,000 to 200,000–450,000 sockeye salmon based on the updated combined runs Ricker AR(1) model (Table 1). The breakdown of the combined runs between early and late was approximated by the relative proportions of the individual early and late (AR)1 models. The new combined goal for the early and late runs would equal 350,000 to 700,000, with a mid-point of 525,000. The breakdown of the individual early and late was approximated by the relative proportions of the individual early and late was approximated by the relative proportions of the combined run between early and late was approximated by the relative proportions of the individual early and late (AR)1 model estimates of S_{MSY} . The new goals for the early and late runs combined would equal 350,000 to 700,000, with a mid-point of 525,000.

Malina Creek

Stock Status

Escapements have been within the current SEG (1,000 to 10,000 fish) since it was implemented in 2005 (Appendix H3).

Escapement Goal Recommendation

No new information is available to indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged in 2016 (Table 1).

Pasagshak River

Stock Status

In 2011, the Pasagshak SEG was changed from 3,000 to 12,000 to a lower-bound SEG of 3,000 fish (Table 1). Escapements in 2012, 2014, and 2015 were below the goal (Appendix I3).

Escapement Goal Recommendation

No new information is available to indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged in 2016 (Table 1).

Saltery Lake

Stock Status

The current Saltery Lake sockeye salmon BEG of 15,000 to 35,000 was adopted in 2011 (Table 1). Since then, escapements have been within the BEG (Appendices J2 and J3).

Escapement Goal Recommendation

The BEG was reevaluated in 2010 (using data through 2009) and implemented in 2011. New information does not indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged in 2016 (Table 1).

Uganik Lake

Stock Status

The current Uganik Lake sockeye salmon lower-bound SEG is 24,000 fish (Table 1). Escapements have been above the goal since 2008, except in 2012, 2014, and 2015 (Appendices K2 and K3).

Escapement Goal Recommendation

The SEG was reevaluated in 2016 (using data through 2015) using the Percentile Approach and is recommended for elimination. The inconsistency of survey success, due to water conditions and funding, has resulted in very few acceptable surveys in recent years (Table 1; Appendix K2).

Upper Station

Stock Status – Early Run

The Upper Station early-run sockeye salmon BEG of 43,000 to 93,000 fish was implemented beginning in the 2011 season. Escapements since then have been below the BEG in all years (Appendices L2 and L4). Management of the fishery is guided by optimal escapement goals of 25,000 or 30,000 fish, which has been achieved in all but one year since it was implemented in 1999 (Table 1; Appendices L1, L2, and L4).

Stock Status – Late Run

Since the Upper Station late-run sockeye salmon BEG of 120,000 to 265,000 fish was implemented in 2005, escapements have been within the BEG in all but one year (2011; Appendices L3 and L4).

Evaluation of Recent Data – Early Run

The BEG was reevaluated in 2013 (using data through 2012) and remained unchanged. New information does not indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged in 2016 (Table 1).

Evaluation of Recent Data – Late Run

The BEG was reevaluated in 2013 (using data through 2012) and remained unchanged. New information does not indicate a substantial change in stock productivity, and the team agreed that the goal should remain unchanged in 2016 (Table 1).

Escapement Goal Recommendation

The team recommended no change to the early-run Upper Station sockeye salmon BEG of 43,000 to 93,000 fish or the late-run Upper Station sockeye salmon BEG of 120,000 to 265,000 fish (Table 1).

COHO SALMON

American, Buskin, Olds, and Pasagshak Rivers

Stock Status – All Systems

All 4 of these systems are located on the Kodiak road system and all were reviewed in 2010. Escapement goals for the American, Olds, and Pasagshak rivers were changed from a SEG to a lower-bound SEG (implemented in 2011). The lower-bound SEGs are 400 fish for the American River, 1,000 fish for the Olds River, and 1,200 fish for the Pasagshak River. Escapements have been as follows: American River escapements have been above the SEG every year of the last 6 years except for 2010 (Appendices M2 and M3); Olds River escapements were above the SEG in 2011 and 2013 to 2015 but not in 2010 or 2012 (Appendices O2 and O3); and Pasagshak River escapements have been above the SEG each of the last 6 years except 2011 (Appendices P2 and P3).

The Buskin River escapement goal was changed from a BEG of 3,200 to 7,200 fish to a BEG of 4,700 to 9,600 fish (implemented 2011). Escapements were within the BEG from 2010 through 2014 but not in 2015 (Appendices N2 and N3).

Evaluation of Recent Data

The escapement goal review team reviewed the most recent data available for KMA coho salmon stocks (Table 1); 6 additional years of escapement data were available for coho salmon from all 4 rivers (the Buskin, American, Olds, and Pasagshak rivers) since they were last reviewed, including spawner-recruit data for the Buskin River stock. A full probability spawner-recruit model was fitted to Buskin River coho salmon spawner-recruit data from 1989 to 2015 (Appendix N4). The contrast of the Buskin River escapement data was 3.3 (Appendix N1). Median S_{MSY} was estimated at 6,888 (90% credibility interval of 5,243 to 11,573) and median S_{EQ} was estimated at 16,196 fish (90% credibility interval of 12,704 to 26,609). Maximum sustained yield was estimated at approximately 5,900 coho salmon (90% credibility interval of 3,657 to 9,505). Important spawner-recruit parameter estimates are summarized in Appendix N5 and an optimal yield profile is given in Appendix N6.

Escapement Goal Recommendation

The escapement goal team recommended no change to the SEGs for the American, Olds, and Pasagshak rivers (Table 1).

The team recommended the Buskin River BEG be left unchanged (Table 1).

PINK SALMON

Kodiak Archipelago and Mainland District Aggregates

Stock Status

In 2011 the Kodiak Archipelago pink salmon SEG was split into an odd-year SEG of 2,000,000 to 5,000,000 and an even-year SEG of 3,000,000 to 7,000,000 pink salmon (Table 1; Appendices Q2 and Q3). The Kodiak Mainland pink salmon SEG also changed from 250,000 to 750,000 fish to an SEG of 250,000 to 1,000,000 fish (Table 1; Appendix R2 and R3). Escapements have been within the SEGs since they were adopted, except for the 2014 Kodiak Archipelago, which was just below the lower bound.

Escapement Goal Recommendation

Pink salmon SEGs were reevaluated in 2010 (using data through 2009) and new goals implemented in 2011. The additional data since 2011 does not indicate a substantial change in stock productivity, and the team recommended no change to the existing SEGs for the Kodiak Archipelago and Mainland District pink salmon stocks (Table 1).

CHUM SALMON

Kodiak Archipelago and Mainland District Aggregates

Stock Status

The current lower-bound SEGs for chum salmon in the KMA (Kodiak Archipelago and Mainland District) were set in 2007 (Table 1). The lower-bound SEG of 151,000 Kodiak Archipelago chum salmon was exceeded in 6 out of the last 8 years (Appendices S2–S4); the lower-bound SEG of 104,000 Mainland District chum salmon was exceeded in 6 of the last 8 years (Appendices T2 and T3). The additional data since 2013 do not indicate a substantial change in stock productivity.

Evaluation of Recent Data

Aerial survey counts of chum salmon were compiled from a database maintained by the Kodiak ADF&G office for the review process. It was determined that a lack of consistency in the number and scope of individual aerial survey estimates annually decreased the utility of the escapement goals in their current form. To standardize past and future evaluation, and reduce any inconsistencies in the data points, specific criteria were used in this review.

For each system that is surveyed annually in a given year, peak aerial survey (PAS) data for evaluation of escapement goals will adhere to these criteria:

- Only include a single flight
 - That flight will be the one with the highest count for the year (PAS)
- Only include counts from within the stream itself (no bays, mouths, or other areas)

The team thought it was important to make sure the number of systems included in the evaluation and measurement of escapement goals is consistent. For this reason we considered all the available data and evaluated the consistency of success across the years for each system. In the Kodiak Archipelago area, to warrant inclusion, a system must first have met the above criteria in at least 35 of the last 38 years (Appendix S3). Most of the systems that represented the majority of the escapement met this initial validation, because they were known chum systems, and surveyed annually. This resulted in 17 index streams throughout the Kodiak Archipelago (Uganik River 253-122, Terror River 253-331, Uyak River 254-202, Zachar River 254-301, Spiridon River 254-401, Sturgeon River 256-401, Deadman River 257-502, Sulua Creek 257-603, N. Kiliuda Creek 258-206, W. Kiliuda Creek 258-207, Midway Creek 258-521, Barling Creek 258-522, American River 259-231, Olds River 259-242, Kizhuyak River 259-365, Saltery River 259-415, and Eagle Harbor 259-424). These selected index streams represent an average of 9% of the total number of systems previously used to describe the escapement of chum salmon in Kodiak Archipelago, and represents an average of 72% of the chum escapement in the Kodiak Archipelago area of the KMA.

Peak counts of fish observed in each index system were aggregated to create a PAS index for the entire Kodiak Archipelago. A survey year is only attributed an annual PAS index if all 17 systems are successful. If 1 or more of the index systems was not successfully flown, then that year's index was not included in the evaluation and would not be used to measure achievement of the resulting escapement goal. Applying these criteria to the whole dataset resulted in 23 years of complete survey data, beginning in 1978.

Contrast was high for chum salmon PAS counts in individual systems (range: 13.5 to 6000.0; average of 760.1 for all systems) and high when the 17 indicator systems were aggregated (7.2; Appendices S1–S3). Implementing the Percentile Approach (Clark et. al 2014), this contrast, combined with high measurement error associated with the aerial survey method and a low exploitation rate of this aggregate, resulted in selection of Tier 1 to estimate the goal range (Clark et. al 2014). Using the 20th percentile resulted in a PAS lower-bound SEG for the aggregated indicator streams of 101,000 chum salmon (Table 1).

The Kodiak Archipelago chum salmon SEG was developed based on a select number of index streams that differ from previous analyses. The reason for reducing the number of index streams was to maintain a robust data set that can be consistently monitored in the future and assure that measurement of escapement on an annual basis is compared to the same systems identified as index streams.

In the Mainland District of the KMA, inconsistencies in the number of data points available for analysis across a given year, or an individual stream over a period of years, prevented an analysis similar to the Kodiak Archipelago aggregate. Streams of the Kodiak mainland are only surveyed a few times each year. As a consequence of finite funding, surveys are conducted at a time where sockeye, pink, and chum salmon escapement can all be assessed. This does not correspond with the peak in chum salmon escapement. Due to the quality and consistency of survey data, the current assessment probably no longer adequately indexes or monitors trends in chum salmon escapement on the mainland.

Escapement Goal Recommendation

The team recommends changing the Kodiak Archipelago chum salmon escapement goal to a lower-bound SEG of 101,000 fish that is based on a reduced number of index systems, new escapement data, and application of the new recommendations for the Percentile Approach. The team recommends eliminating the Kodiak Mainland chum salmon escapement goal because of inconsistencies in the quantity of successful surveys annually, and the timing of surveys has moved away from the peak of chum salmon escapement to allow for monitoring of more prevalent species (Table 1).

SUMMARY OF STAFF RECOMMENDATIONS TO DIRECTORS

The 2016 review team reviewed data for all 24 salmon escapement goals in the KMA, and then analyzed 14 of these goals further. Overall, the team recommended changing 4 goals and eliminating 2 goals. The new recommendations result in a total of 22 escapement goals in the KMA, as follows: 2 goals for Chinook salmon (both BEGs); 12 goals for sockeye salmon (8 BEGs, 3 SEGs, and 1 lower-bound SEG); 4 goals for coho salmon (one BEG and 3 lower-bound SEGs); 3 aggregate SEGs for pink salmon; and 1 aggregate lower-bound SEG for chum salmon.

REFERENCES CITED

- Barrett, B. M., and P. A. Nelson. 1994. Estimated run timing of selected sockeye salmon stocks on the west and east sides of Kodiak Island. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Regional Information Report 4K94-6, Kodiak.
- Bernard, D. R., J. J. Hasbrouck, B. G. Bue, and R. A. Clark. 2009. Estimating risk of management error from precautionary reference points (PRPs) for non-targeted salmon stocks. Alaska Department of Fish and Game, Special Publication No. 09-09, Anchorage.
- Blackett, R. 1979. Establishment of sockeye (*Oncorhynchus nerka*) and Chinook (*O. tshawytscha*) salmon runs at Frazer Lake, Kodiak Island, Alaska. Journal of Fisheries Research Board of Canada 36:1265–1277.
- Booth, J. A. 1993. Migration timing and abundance of adult salmonids in the Uganik River, Kodiak National Wildlife, Alaska, 1990 and 1991. U.S. Fish and Wildlife Service, Kenai Fishery Assistance Office. Alaska Fisheries Progress Report Number 93-1, Kenai, Alaska.
- CTC (Chinook Technical Committee). 1999. Maximum sustained yield of biologically based escapement goals for selected Chinook salmon stocks used by the Pacific Salmon Commission's Chinook Technical Committee for escapement assessment, Volume I. Pacific Salmon Commission Joint Chinook Technical Committee Report No. 99-3, Vancouver, BC.
- Clark, R. A., D. M. Eggers, A. R. Munro, S. J. Fleischman, B. G. Bue, and J. J. Hasbrouck. 2014. An evaluation of the percentile approach for establishing sustainable escapement goals in lieu of stock productivity information. Alaska Department of Fish and Game, Fishery Manuscript No. 14-06, Anchorage.
- Eggers, D. M. 2001. Biological escapement goals for Yukon River fall chum salmon. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 3A01-10, Anchorage.
- Finney, B., I. Gregory-Eaves, J. Sweetman, M. Douglas, and J. Smol. 2000. Impacts of climate change and fishing on Pacific salmon abundance over the past 300 years. Science 290:795–799.
- Fleischman, S. J., M. J. Catalano, R. A. Clarke, and D. R. Bernard. 2013. An age-structured stat-space stock-recruit model for Pacific salmon (Oncorhynchus spp.) Canadian Journal of Fisheries and Aquatic Sciences 70(3):401– 414. <u>http://www.nrcresearchpress.com/journal/cjfas</u>
- Fleischman, S. J., and T. R. McKinley. 2013. Run reconstruction, spawner–recruit analysis, and escapement goal recommendation for late-run Chinook salmon in the Kenai River. Alaska Department of Fish and Game, Fishery Manuscript Series No. 13-02, Anchorage.
- Fuerst, B. A. 2015. Kodiak Management Area weir descriptions and salmon escapement report, 2014. Alaska Department of Fish and Game, Fishery Management Report No. 15-14, Anchorage.
- Gomez-Uchida D., J. E. Seeb, C. Habicht, and L. W. Seeb. 2012. Allele frequency stability in large, wild exploited populations over multiple generations: insights from Alaska sockeye salmon (*Oncorhynchus nerka*). Canadian Journal of Fisheries and Aquatic Sciences 69:1–14.
- Hander, R. 1997. Spawning substrate and adequate escapement for coho salmon in the Ayakulik River, Kodiak National Wildlife Refuge. M.S. thesis, University of Alaska Fairbanks.
- Heard, W. R. 1991. Life history of pink salmon (*Oncorhynchus gorbuscha*). Pages 119–230 [*In*] C. Groot and L. Margolis, editors. Pacific Salmon Life Histories, UBC Press, Vancouver, BC.
- Hilborn, R., and C. J. Walters. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman and Hall, New York, NY.
- Honnold, S. G., and N. H. Sagalkin. 2001. A review of limnology and fishery data and a sockeye salmon escapement goal evaluation for Saltery Lake on Kodiak Island. Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-37, Kodiak.
- Honnold, S. G., and S. T. Schrof. 2001. A summary of salmon enhancement and restoration in the Kodiak Management Area through 2001: A report to the Alaska Board of Fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-65, Anchorage.

REFERENCES CITED (Continued)

- Honnold, S. G., M. J. Witteveen, M. B. Foster, I. Vining, and J. J. Hasbrouck. 2007. Review of escapement goals for salmon stocks in the Kodiak Management Area, Alaska. Alaska Department of Fish and Game, Fishery Manuscript No. 07-10, Anchorage.
- Jackson, J., and M. Keyse. 2013. Kodiak Management Area commercial salmon fishery annual management report, 2013. Alaska Department of Fish and Game, Fishery Management Report No. 13-44, Anchorage.
- Koenings, J. P., and G. B. Kyle. 1997. Consequences to juvenile sockeye salmon and the zooplankton community resulting from intense predation. Alaska Fisheries Research Bulletin 4(2):120–135.
- Korman, J., R. M. Peterman, and C. J. Walters. 1995. Empirical and theoretical analyses of correction of timeseries bias in stock-recruitment relationships of sockeye salmon. Canadian Journal of Fisheries and Aquatic Sciences 52(10):2174–2189.
- Kyle, G. B., and S. G. Honnold. 1991. Limnology and fisheries evaluation of sockeye salmon production (*Oncorhynchus nerka*) in Malina Lakes for fisheries development. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development, Report 110, Kodiak.
- Munro, A. R., and E. C. Volk. 2016. Summary of Pacific salmon escapement goals in Alaska, with a review of escapements from 2007 to 2015. Alaska Department of Fish and Game, Special Publication No. 16-04, Anchorage.
- Nelson, P. A., and D. S. Lloyd. 2001. Escapement goals for Pacific salmon in the Kodiak, Chignik, and Alaska Peninsula/Aleutian Islands Areas of Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K01-66, Kodiak.
- Nelson P. A., M. J. Witteveen, S. G. Honnold, I. Vining, and J. J. Hasbrouck. 2005. Review of salmon escapement goals in the Kodiak Management Area. Alaska Department of Fish and Game, Fishery Manuscript No. 05-05, Anchorage.
- Nemeth, M. J., M. J. Witteveen, M. B. Foster, H. Finkle, J. W. Erickson, J. S. Schmidt, S. J. Fleischman, and D. Tracy. 2010. Review of Escapement goals in 2010 for salmon stocks in the Kodiak Management Area, Alaska. Alaska Department of Fish and Game, Fishery Manuscript No. 10-09, Anchorage.
- Noakes, D., D. W. Welch, and M. Stocker. 1987. A time series approach to stock-recruitment analysis: transfer function noise modeling. Natural Resource Modeling 2:213–233.
- Plummer, M. 2016. rjags: Bayesian Graphical Models using MCMC. R package version 4-5. <u>http://CRAN.R-project.org/package=rjags</u>
- Polum, T. B., D. Evans, and T. H. Dann. 2014. Stock assessment of sockeye salmon in the Buskin River, 2010– 2013. Alaska Department of Fish and Game, Fishery Data Series No. 14-26, Anchorage.
- Quinn II, T. J., and R. B. Deriso. 1999. Quantitative fish dynamics. Oxford University Press. New York, NY.
- R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u>.
- Ricker, W. E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11:559-623.
- Sagalkin, N. H., B. Foster, M. B. Loewen, and J. W. Erickson. 2013. Review of salmon escapement goals in the Kodiak Management Area, 2013. Alaska Department of Fish and Game, Fishery Manuscript Series No. 13-11, Anchorage.
- Schmidt, J. S., and D. G. Evans. 2012. Stock assessment of Buskin River coho salmon, 2005–2007. Alaska Department of Fish and Game, Fishery Data Series No. 12-10, Anchorage.
- Schmidt, D., S. Carlson, G. Kyle, and B. Finney. 1998. Influence of carcass-derived nutrients on sockeye salmon productivity of Karluk Lake, Alaska: Importance in the assessment of an escapement goal. North American Journal of Fisheries Management 18(4):743–763.

REFERENCES CITED (Continued)

- Schrof, S. T., and S. G. Honnold. 2003. Salmon enhancement, rehabilitation, evaluation, and monitoring efforts conducted in the Kodiak Management Area through 2001. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 4K03-41, Kodiak.
- Schwarz, L., D. Tracy, and S. Schmidt. 2002. Area management report for the recreational fisheries of the Kodiak and Alaska Peninsula/Aleutian Islands regulatory areas, 1999 and 2000. Alaska Department of Fish and Game, Fishery Management Report No. 02-02, Anchorage.
- Thomsen, S. E., and N. Richardson. 2013. Afognak Lake sockeye salmon stock monitoring, 2012. Alaska Department of Fish and Game, Fisheries Data Series No. 13-40, Anchorage.
- Tracy, D. A., J. S. Schmidt, and S. J. Fleischman. 2012. Age composition and escapement of Chinook salmon in the Karluk, Ayakulik, and Chignik rivers, Alaska, 2006–2007. Alaska Department of Fish and Game, Fishery Data Series No. 12-21, Anchorage.
- Uchiyama, T., B. P. Finney, and M. D. Adkison. 2008. Effects of marine-derived nutrients on population dynamics of sockeye salmon (*Onchorhynchus nerka*). Canadian Journal of Fisheries and Aquatic Sciences 65:1635–1648.
- White, L. E., G. B. Kyle, S. G. Honnold, and J. P. Koenings. 1990. Limnological and fisheries assessment of sockeye salmon (*Onchorhynchus nerka*) production in Afognak Lake. Alaska Department of Fish and Game. Division of Fisheries Rehabilitation, Enhancement, and Development Report 103, Juneau.
- White, L. 1991. Kodiak Area sockeye salmon rehabilitation and enhancement; 1991 annual report. Alaska Department of Fish and Game, Division of Fisheries Rehabilitation, Enhancement and Development, AFS-52-4. Juneau.
- Witteveen, M. J., H. Finkle, P. A. Nelson, J. J. Hasbrouck, and I. Vining. 2005. Review of salmon escapement goals in the Chignik Management Area. Alaska Department of Fish and Game, Fishery Manuscript No. 05-06, Anchorage.

TABLES AND FIGURES

			Curre	nt escapem	ent goal		Escape	ements		_
Species	System	Escapement data ^a	Туре	Lower	Upper	2013	2014	2015	2016	Recommendation
Chinook	-									
	Ayakulik	WC	BEG	4,000	7,000	2,354	917	2,392	4,594	Revise BEG to 4,800–8,400
	Karluk	WC	BEG	3,000	6,000	1,824	1,182	2,777	3,434	No change
Sockeye										
	Afognak	WC	BEG	20,000	50,000	42,153	36,345	38,151	32,459	No change
	Ayakulik									
	Early run	WC	SEG	140,000	280,000	214,969	210,040	218,178	182,589	No change
	Late run	WC	SEG	60,000	120,000	67,195	87,671	108,257	71,978	No change
	Buskin	WC	BEG	5,000	8,000	16,189	13,976	8,718	11,584	No change
	Frazer	WC	BEG	75,000	170,000	136,059	200,296	219,093	122,585	No change
	Karluk									Ū.
	Early run	WC	BEG	110,000	250,000	234,880	252,097	260,758	164,760	Revise BEG to 150,000-250,000
	Late run	WC	BEG	170,000	380,000	336,479	543,469	396,618	324,049	Revise BEG to 200,000-450,000
	Malina	PAS	SEG	1,000	10,000	3,800	4,900	1,000	2,000	No change
	Pasagshak	PAS	LB SEG	3,000	,	9,750	350	600	3,200	No change
	Saltery	WC	BEG	15,000		35,939	29,047	44,796		No change
	Uganik Lake	PAS	LB SEG	24,000		26,000	14,000	9,000	34,100	Eliminate goal
	Upper Station			,		,	,	,	,	
	Early run	WC	BEG	43,000	93,000	27,712	36,823	54,473	48,047	No change
	Late run	WC	BEG	120,000		125,573	181,411		145,013	No change
Coho				<i>,</i>	,	,	<i>,</i>	,	,	U
	American	FS	LB SEG	400		841	1,595	530	500	No change
	Buskin	WC	BEG	4,700	9,600	5,959	8,413	4,341	2,513	No change
	Olds	FS	LB SEG	1,000	,	2,145	1,320	1,357	1,634	No change
	Pasagshak	FS	LB SEG	· · ·		1,648	4,934	1,790	737	No change
ink	e			<i>,</i>		,	,	,		6
	Kodiak Archipelago									
	Odd year	PAS	SEG	2.000.000	5,000,000	4,450,711	_	5,151,731	_	No change
	Even year	PAS	SEG		7,000,000	_	2,733,282	_		No change
	Mainland District	PAS	SEG		1,000,000	620,680	254,650	754,600		No change
Chum				,	,,		,	,	,0	
	Kodiak Archipelago	PAS	LB SEG	151,000		284,799	138,489	308.376	133,785	Reduce index streams, revise LB SEG to 101,00
	Mainland District	PAS	LB SEG			112,700	107,431		68,700	Eliminate goal

Table 1.-Kodiak Management Area escapements 2013–2016, with existing and recommended salmon escapement goals.

^a PAS = Peak Aerial Survey, WC = Weir Count, FS = Foot Survey.
 ^b Upper Station early run has the only optimal escapement goal (25,000) in the KMA, established by the board in 1999.

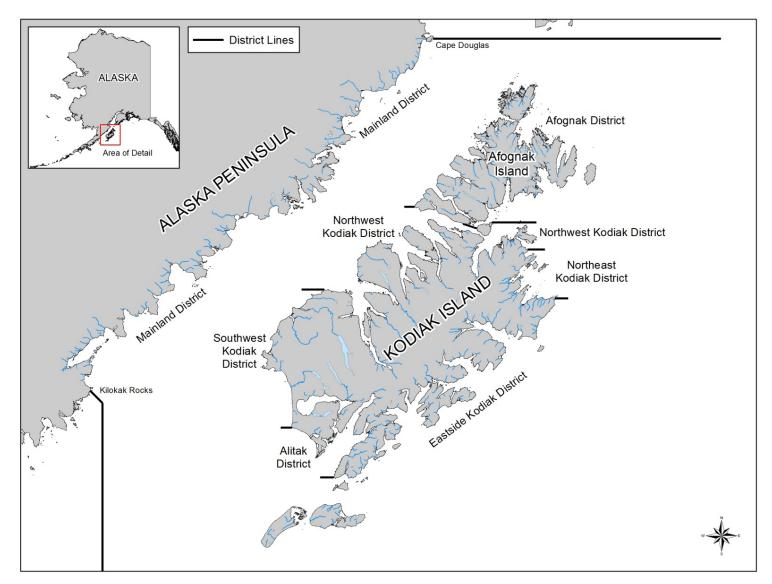


Figure 1.-The Kodiak Management Area, showing the commercial salmon fishing districts.

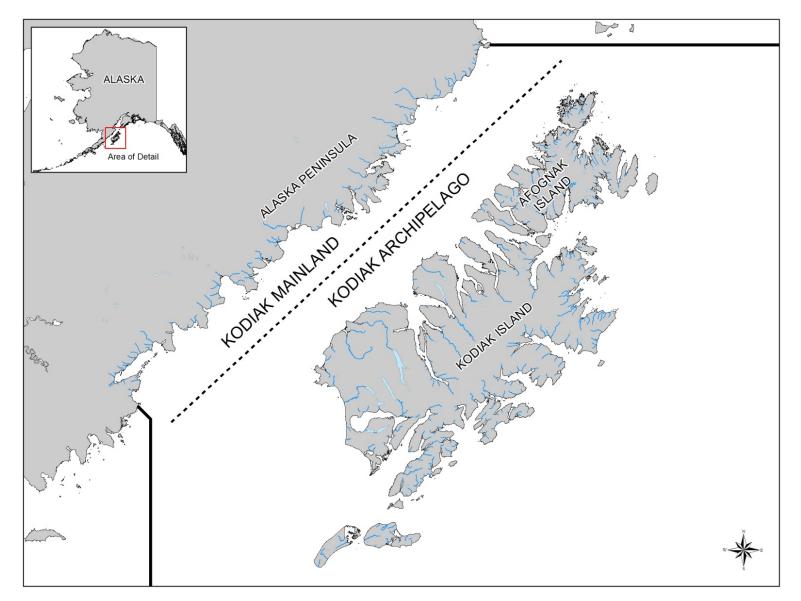


Figure 2.-Geographic boundaries of aggregate escapement goals for chum and pink salmon in the Kodiak Management Area in 2016.

32

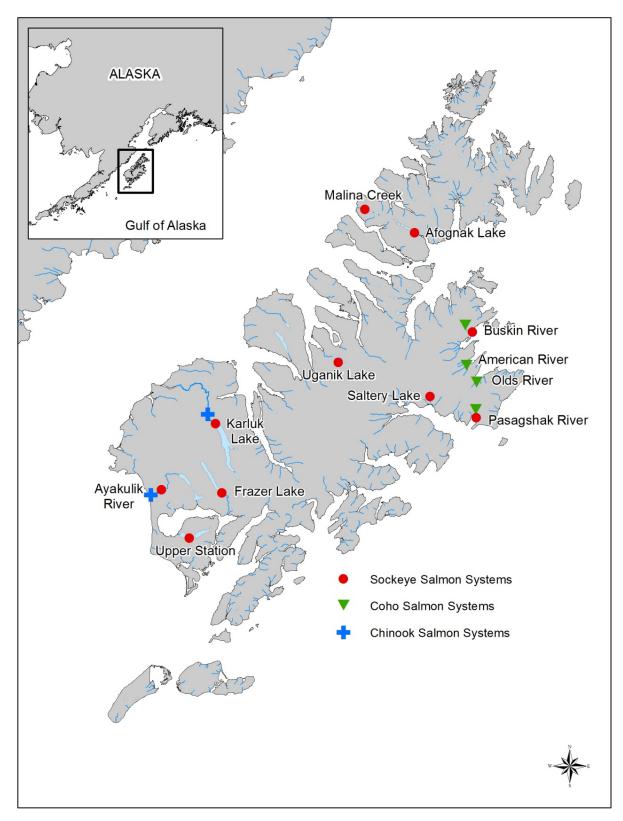


Figure 3.-Locations of Chinook, sockeye, and coho salmon systems with escapement goals in the Kodiak Management Area in 2016.

APPENDIX A. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AYAKULIK RIVER CHINOOK SALMON

Appendix A1.–Description of stock and escapement goal for Ayakulik River Chinook salmon.

System:Ayakulik RiverSpecies:Chinook salmon

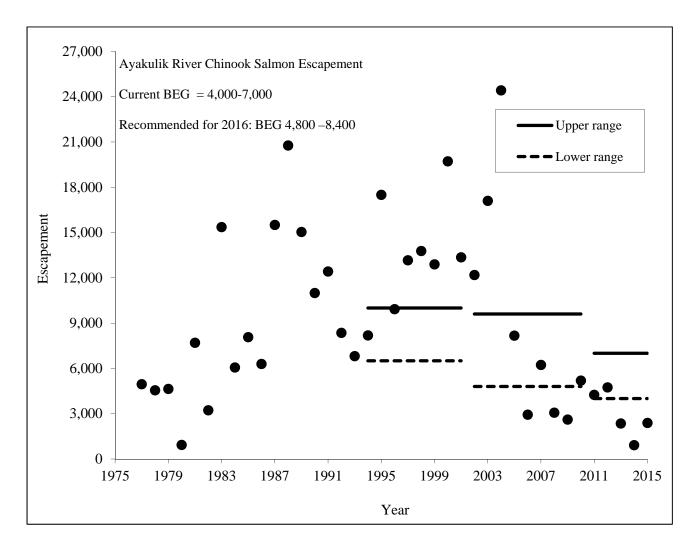
Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Commercial, sport, and subsistence
Current escapement goal:	BEG: 4,000–7,000 (2011)
Recommended escapement	
goal:	BEG: 4,800–8,400
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Weir counts, 1977 to 2015
Data summary:	
Data quality:	Good escapement and harvest data
Data type:	Weir estimates, harvest estimates, age composition.
Data contrast:	All Weir data 1977-2015: 26.6
Methodology:	Age-structured Ricker spawner-recruit model (Fleischman et al. 2013) fitted to 1977-2015 data under a Bayesian framework with RJAGS software.
Autocorrelation:	Time varying recruitment residuals assumed to have AR(1) structure.
Comments:	R code available from S. Fleischman, DSF Anchorage

Appendix A2.–Annual harvest, weir count, total return, and escapement estimates for Ayakulik River Chinook salmon, 1977–2015.

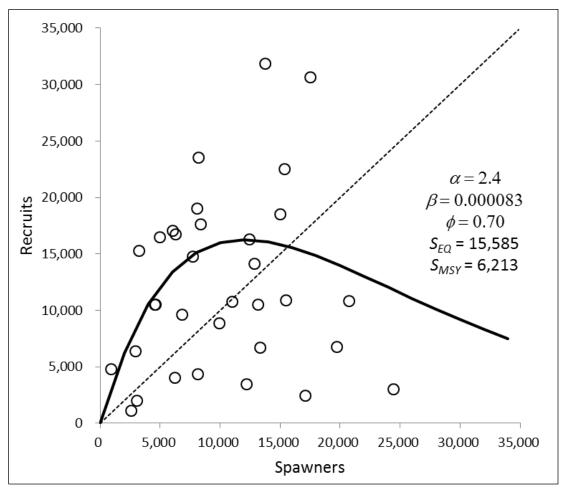
System: Ayakulik River

Species: Chinook salmon

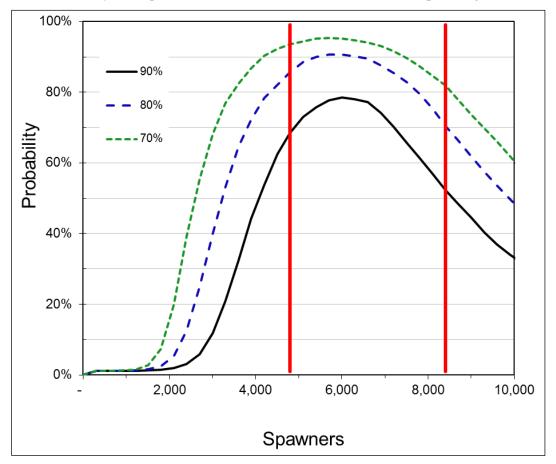

Return	Commercial	Subsistence	Weir		Sport	
Year	Harvest	Harvest	Count	Total Run	Harvest	Escapement
1977	361	0	5,163	5,524	205	4,958
1978	615	0	4,739	5,354	188	4,551
1979	70	0	4,833	4,903	192	4,641
1980	0	0	974	974	39	935
1981	473	0	8,018	8,491	319	7,699
1982	83	0	3,230	3,313	0	3,230
1983	662	0	15,511	16,173	145	15,366
1984	1,409	0	6,502	7,911	437	6,065
1985	3,043	0	8,151	11,194	76	8,075
1986	1,785	0	6,371	8,156	76	6,295
1987	729	0	15,636	16,365	126	15,510
1988	2,257	0	21,370	23,627	600	20,770
1989	0	0	15,432	15,432	390	15,042
1990	5,332	0	11,251	16,583	252	10,999
1991	4,685	0	12,988	17,673	563	12,425
1992	4,909	0	9,135	14,044	776	8,359
1993	2,708	0	7,819	10,527	1,004	6,815
1994	0	3	9,138	9,141	948	8,190
1995	2,412	4	17,701	20,117	200	17,501
1996	3,723	0	10,344	14,067	419	9,925
1997	812	0	14,357	15,169	1,190	13,167
1998	3,795	0	14,038	17,833	259	13,779
1999	3,564	26	13,503	17,093	609	12,894
2000	3,416	38	20,527	23,981	803	19,724
2001	6,727	16	13,929	20,672	568	13,361
2002	71	37	12,552	12,660	362	12,190
2003	0	14	17,557	17,571	451	17,106
2004	158	16	24,830	25,004	405	24,425
2005	0	8	8,340	8,348	165	8,175
2006	0	37	3,106	3,143	169	2,937
2007	0	0	6,535	6,535	303	6,232
2008	0	0	3,071	3,071	0	3,071
2009	0	0	2,615	2,615	0	2,615
2010	65	0	5,301	5,366	104	5,197
2011	62	0	4,316	4,378	65	4,251
2012	115	0	4,760	4,875	16	4,744
2013	633	0	2,369	3,002	15	2,354
2014	70	0	917	987	0	917
2015	356	0	2,392	2,748	0	2,392

Appendix A3.–Ayakulik River Chinook salmon escapement and escapement goal ranges, 1977–2015.

System: Ayakulik River


Species: Chinook salmon

Observed escapement by year (weir counts)


Brood				Return by Ag	ge			Return/
Year	Escapement	Age 3	Age 4	Age 5	Age 6	Age 7	Return	Spawner
1977	4,958	407	5,063	1,698	8,647	655	16,470	3.3
1978	4,551	1,173	833	4,314	3,480	726	10,525	2.3
1979	4,641	282	2,539	2,434	4,752	492	10,499	2.3
1980	935	367	745	1,562	1,799	294	4,767	5.1
1981	7,699	644	3,137	3,258	6,547	1,183	14,770	1.9
1982	3,230	999	1,810	4,327	7,462	676	15,274	4.7
1983	15,366	848	4,084	9,142	7,189	1,240	22,503	1.5
1984	6,065	1,096	4,009	4,165	6,676	1,086	17,032	2.8
1985	8,075	1,595	2,694	5,288	8,351	1,083	19,010	2.4
1986	6,295	801	2,705	5,175	6,430	1,627	16,738	2.7
1987	15,510	712	2,285	3,577	4,115	210	10,899	0.7
1988	20,770	752	2,008	1,893	4,697	1,471	10,822	0.5
1989	15,042	977	2,823	2,346	11,744	594	18,485	1.2
1990	10,999	97	1,016	2,813	5,964	836	10,725	1.0
1991	12,425	987	2,804	3,465	8,500	558	16,314	1.3
1992	8,359	996	3,465	3,104	9,788	267	17,620	2.1
1993	6,815	573	1,578	2,551	4,754	179	9,636	1.4
1994	8,190	1,150	2,771	8,324	10,716	589	23,550	2.9
1995	17,501	1,603	3,289	12,010	12,981	743	30,627	1.8
1996	9,925	464	888	3,711	3,626	127	8,816	0.9
1997	13,167	178	1,664	4,188	3,766	710	10,505	0.8
1998	13,779	1,698	3,452	10,207	16,276	250	31,883	2.3
1999	12,894	714	3,417	6,568	3,239	187	14,125	1.1
2000	19,724	122	732	3,471	1,077	1,327	6,728	0.3
2001	13,361	356	1,046	1,457	3,314	526	6,699	0.5
2002	12,190	336	416	1,335	1,229	151	3,467	0.3
2003	17,106	98	380	829	804	350	2,461	0.1
2004	24,425	110	397	768	1,585	172	3,032	0.1
2005	8,175	113	691	1,525	1,900	85	4,314	0.5
2006	2,937	217	1,637	1,473	2,905	169	6,401	2.2
2007	6,232	134	730	1,172	1,880	81	3,998	0.6
2008	3,071	120	633	649	428	140	1,972	0.6
2009	2,615	48	178	228	617		1,070	0.4
2010	5,197	130	192	868				
2011	4,251	72	710					
2012	4,744	400						
2013	2,354							
2014	917							
2015	2,392							

Appendix A4.–Brood table for Ayakulik River Chinook salmon.

Appendix A5.–Ricker spawner-recruit function fitted to Ayakulik River Chinook salmon data, 1977-2009 brood years. Parameter estimates are posterior medians.

Appendix A6.–Optimal yield profiles obtained by fitting an age-structured spawner recruit model to Ayakulik River Chinook salmon data, 1977–2015. Probability of achieving at least 70%, 80%, and 90% of maximum sustained yield is plotted. Vertical lines show recommended escapement goal.

APPENDIX B. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KARLUK RIVER CHINOOK SALMON

Appendix B1.–Description of stock and escapement goal for Karluk River Chinook salmon.

System: Karluk River

Species: Chinook salmon

Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Sport, commercial, and subsistence
Current escapement goal:	BEG: 3,000-6,000 (2011)
Recommended escapement	
goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Weir counts, 1976 to 2015
Data summary:	
Data quality:	Good escapement and harvest data.
Data type:	Weir estimates, harvest estimates, age composition.
Data contrast:	All survey data 1976 to 2015: 18.3
Methodology:	Age-structured Ricker spawner-recruit model (Fleischman et al. 2013) fitted to 1976-2015 data under a Bayesian framework with RJAGS software.
Autocorrelation:	Time varying recruitment residuals assumed to have AR(1) structure.
Comments:	Currently listed as a stock of management concern.

System:	Karluk Rive	er				
Species:	Chinook sal	mon				
Return	Commercial	Subsistence	Weir	Total	Sport	
Year	Harvest ^a	Harvest ^b	Count ^c	Run	Harvest ^d	Escapement ^e
1976	2	0	6,897	6,899	461	6,436
1977	0	0	8,434	8,434	461	7,973
1978	35	0	9,795	9,830	461	9,334
1979	0	0	9,555	9,555	461	9,094
1980	0	0	4,810	4,810	461	4,349
1981	0	0	7,575	7,575	461	7,114
1982	0	0	7,489	7,489	796	6,693
1983	0	0	11,746	11,746	304	11,442
1984	2	0	7,747	7,749	175	7,572
1985	5	0	5,362	5,367	472	4,890
1986	542	0	4,429	4,971	122	4,307
1987	313	0	7,930	8,243	199	7,731
1988	3	0	13,337	13,340	819	12,518
1989	0	0	10,484	10,484	559	9,925
1990	0	0	14,442	14,442	700	13,742
1991	0	0	14,022	14,022	1,599	12,423
1992	264	0	9,601	9,865	856	8,745
1993	3,082	5	13,944	17,031	1,634	12,310
1994	5,114	13	12,049	17,176	1,483	10,566
1995	1,794	31	12,657	14,482	1,284	11,373
1996	1,662	4	10,051	11,717	1,695	8,356
1997	1,445	17	13,443	14,905	1,574	11,869
1998	252	4	10,239	10,495	1,173	9,066
1999	1,067	7	13,063	14,137	1,766	11,297
2000	693	22	10,460	11,175	2,581	7,879
2001	2,588	24	4,453	7,065	1,304	3,149
2002	1,262	165	7,175	9,087	231	6,944
2003	1,336	6	7,256	8,891	270	6,986
2004	2,249	16	7,525	10,183	297	7,228
2005	349	5	4,798	5,406	114	4,684
2006	910	17	4,112	5,270	439	3,673
2007	314	1	1,765	2,217	68	1,697
2008	92	5	752	770	0	752
2009	0	0	1,306	1,306	0	1,306
2010	0	0	2,917	2,917	0	2,917
2011	0	2	3,420	3,422	0	3,420
2012	171	0	3,197	3,368	0	3,197
2013	1,550	0	1,824	3,374	0	1,824
2014	518	0	1,182	1,700	0	1,182
2015	228	0	2,777	3,005	0	2,777

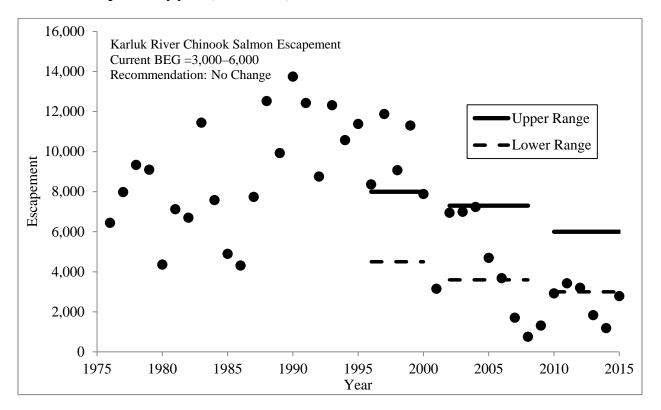
Appendix B2.-Annual harvest, weir count, total run, and escapement estimates for Karluk River Chinook salmon, 1976–2015.

^a ADF&G, Commercial Fish Division Statewide Harvest Receipt (fish ticket) database. Commercial harvest is the harvest of Chinook salmon from Inner and Outer Karluk statistical areas (255-10 and 255-20) through July 15.

b Based on subsistence harvest records maintained by the Westward Region, ADF&G Commercial Fish Division; includes all reported harvest in Karluk Section.

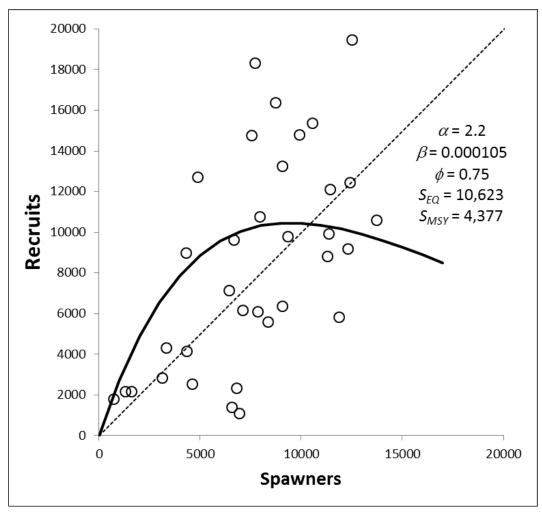
с ADF&G, Division of Commercial Fisheries, Kodiak escapement (weir count) database. Inriver run is the weir count of Chinook salmon.

^d Sport harvest is from the Statewide Harvest Survey.

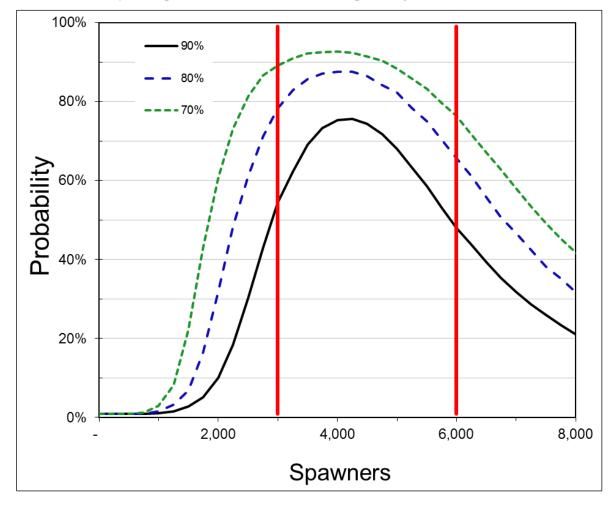

^e Escapement is weir count minus recreational harvest.

Appendix B3.-Karluk River Chinook salmon escapement and escapement goal ranges, 1976–2015.

System: Karluk River


Species: Chinook salmon

Observed escapement by year (weir counts)


			Re		Recruits/			
Brood Year	Escapement	Age 3	Age 4	Age 5	Age 6	Age 7	Recruits	Spawner
1976	6,436	418	625	2,297	3,082	721	7,143	1.1
1977	7,973	275	1,169	2,639	5,946	740	10,768	1.4
1978	9,334	409	1,018	3,685	4,115	551	9,779	1.0
1979	9,094	286	1,011	2,040	2,610	409	6,357	0.7
1980	4,349	237	563	1,236	1,746	345	4,128	0.9
1981	7,114	306	668	1,615	2,999	558	6,146	0.9
1982	6,693	335	837	2,782	5,037	621	9,612	1.4
1983	11,442	384	1,471	4,578	4,662	1,023	12,118	1.1
1984	7,572	646	2,270	3,590	7,025	1,225	14,756	1.9
1985	4,890	732	1,278	4,046	5,966	700	12,721	2.6
1986	4,307	415	1,353	3,419	3,673	124	8,984	2.1
1987	7,731	945	2,364	3,622	10,288	1,087	18,305	2.4
1988	12,518	977	1,519	5,205	10,254	1,488	19,443	1.6
1989	9,925	481	1,376	3,487	8,521	934	14,800	1.5
1990	13,742	97	1,643	2,147	5,811	879	10,577	0.8
1991	12,423	661	1,847	2,899	6,865	161	12,432	1.0
1992	8,745	454	1,915	5,248	7,907	850	16,374	1.9
1993	12,310	176	1,259	1,686	5,898	150	9,169	0.7
1994	10,566	589	1,437	5,846	6,777	703	15,352	1.5
1995	11,373	203	1,270	3,531	4,554	376	9,933	0.9
1996	8,356	166	472	1,543	3,248	155	5,584	0.7
1997	11,869	245	173	2,848	2,012	549	5,828	0.5
1998	9,066	151	2,242	5,013	5,603	240	13,249	1.5
1999	11,297	289	1,583	3,422	2,377	1,135	8,806	0.8
2000	7,879	121	459	2,111	2,905	499	6,095	0.8
2001	3,149	133	521	912	1,179	105	2,851	0.9
2002	6,574	162	225	368	533	108	1,396	0.2
2003	6,965	88	107	160	410	334	1,099	0.2
2004	6,805	70	52	497	1,332	376	2,327	0.3
2005	4,611	20	256	862	1,249	155	2,543	0.6
2006	3,351	53	325	1,449	1,865	618	4,310	1.3
2007	1,609	34	260	1,072	655	132	2,152	1.3
2008	752	65	209	792	599	115	1,780	2.4
2009	1,306	50	496	548	1,076		2,170	1.7
2010	2,916	793	318	1,181	,		·	
2011	3,420	119	469	,				
2012	3,197	178						
2013	1,824							
2014	1,182							
2015	2,777							

Appendix B4.–Brood table for Karluk River Chinook salmon.

Appendix B5.–Ricker spawner-recruit function fitted to Karluk River Chinook salmon data, 1976–2009 brood years. Parameter estimates are posterior medians.

Appendix B6.–Optimal yield profiles obtained by fitting an age-structured spawner recruit model to Karluk River Chinook salmon data, 1976–2015. Probability of achieving at least 70%, 80%, and 90% of maximum sustained yield is plotted. Vertical lines show escapement goal.

APPENDIX C. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AFOGNAK LAKE SOCKEYE SALMON

Appendix C1.–Description of stock and escapement goal for Afognak Lake sockeye salmon.

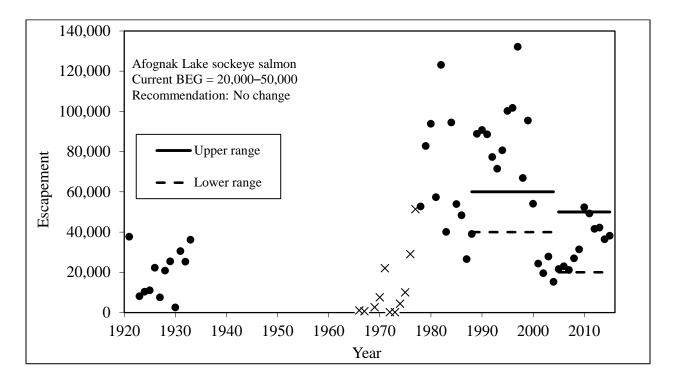
System:Afognak LakeSpecies:Sockeye salmonDescription of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Commercial purse seine, subsistence, and sport
Current escapement	
goal:	BEG: 20,000–50,000 (2005)
Recommended	
escapement goal:	No change
Optimal escapement	
goal:	None
Inriver goal:	None
Action points:	None
Escapement	
enumeration:	Weir counts, 1921–1933; 1978–2015
	Aerial survey, 1966–1977
Data summary:	
Data quality:	Fair for weir counts 1921–1933; fair for aerial surveys 1966–1977; excellent for weir enumeration 1978–2015; good for harvest and age data.
Data type:	Weir counts from 1978 to 2015 with escapement age data during weir counts, 1985–2015. Fixed-wing aerial surveys from 1966 to 1977.
	Commercial, subsistence, and sport fish harvest data from Afognak Bay (252–34) from 1978 to 2015.
Data contrast:	Recent weir data, 1982–2015: 8.7
Methodology:	Ricker spawner-recruit models, smolt biomass as a function of zooplankton biomass, and euphotic volume models.
Autocorrelation:	None
Comments:	None

System: Afognak Lake

Species: Sockeye salmon

Data available for analysis of escapement goals


Year	Weir Counts	Peak Aerial Survey	Year	Weir Counts
1921	37,653	_	1984	94,463
1922	_	_	1985	53,872
1923	8,025	_	1986	48,333
1924	10,317	_	1987	26,474
1925	11,000	_	1988	39,012
1926	22,250	_	1989	88,825
1927	7,491	_	1990	90,666
1928	20,812	_	1991	88,557
1929	25,400	_	1992	77,260
1930	2,467	_	1993	71,460
1931	30,515	_	1994	80,570
1932	25,202	_	1995	100,131
1933	36,154	_	1996	101,718
_	_	_	1997	132,050
1966	_	950	1998	66,869
1967	_	550	1999	95,361
1968	_	_	2000	54,064
1969	_	2,600	2001	24,271
1970	_	7,500	2002	19,520
1971	_	22,000	2003	27,766
1972	_	100	2004	15,181
1973	_	100	2005	21,577
1974	_	4,300	2006	22,933
1975	_	10,000	2007	21,070
1976	_	29,000	2008	26,874
1977	_	51,300	2009	31,358
1978	52,699	,	2010	52,255
1979	82,740	_	2011	49,193
1980	93,806	_	2012	41,553
1981	57,267	_	2013	42,153
1982	123,055	_	2014	36,345
1983	40,049	_	2015	38,151

Note: Weir count numbers do not account for spawners removed for broodstock.

System: Afognak Lake

Species: Sockeye salmon

Observed escapement by year (solid circles for weir counts, Xs for aerial surveys) and escapement goal ranges

APPENDIX D. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AYAKULIK RIVER SOCKEYE SALMON

Appendix D1.–Description of stock and escapement goal for Ayakulik River sockeye salmon.

System: Ayakulik River

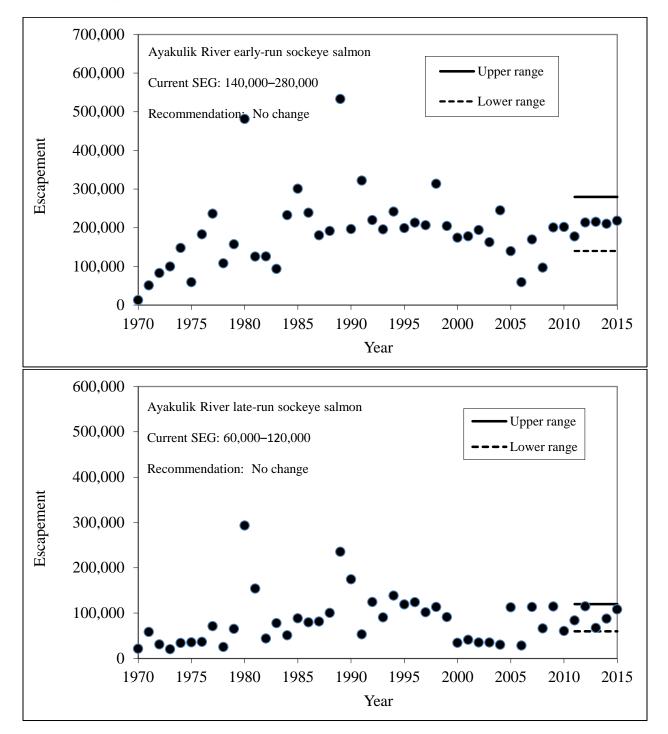
Species: Sockeye salmon

Description of stock and escapement goals

Deculatory areas	Kadiak Managamant Arag Wastward Dagian
Regulatory area: Management	Kodiak Management Area – Westward Region
division:	Sport and Commercial
Primary fishery: Current escapement	Commercial purse seine, subsistence, and sport
goal:	Early-run SEG: 140,000–280,000 (2011)
C	Late-run SEG: 60,000–120,000 (2011)
Recommended	
escapement goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement	
enumeration:	Weir counts, 1929–1961 (variable); 1962–2015
Data summary:	
Data quality:	Fair for weir counts 1929–1961; excellent for weir enumeration 1962–2015; good for harvest and age data.
Data type:	Weir counts from 1962 to 2015 with escapement age data during weir counts. Harvest estimates with age data 1970–2015. Limnology information 1990–1996 and 2009–2015.
Data contrast:	Weir data, 1970–2015: Early-run - 78.9; Late-run - 55.0
Methodology:	Ricker spawner-recruit models, smolt biomass as a function of zooplankton biomass, and euphotic volume models.
Autocorrelation:	None
Comments:	None

System: Ayakulik River

Species: Sockeye salmon


Data available for analysis of escapement goals

	Weir Counts		Commercial		Weir C	Counts	Commercial
Year	Early	Late	Harvest	Year	Early	Late	Harvest
1929	18,481	10,386	_	1977	236,127	70,855	165,424
1930	54,390	79,396	_	1978	107,847	25,017	178,080
1931	257,444	363,549	_	1979	157,408	64,862	31,901
1932	295,953	202,570	_	1980	481,165	293,163	208,281
1934	659,472	500,824	_	1981	125,272	153,928	177,795
1935	314,341	200,626	_	1982	125,852	43,826	102,075
1936	324,240	167,132	_	1983	93,540	77,875	25,003
1937	202,848	51,146	_	1984	232,466	50,749	392,218
1938	133,743	52,760	_	1985	300,568	88,191	517,250
1939	145,559	38,948	_	1986	238,557	79,578	415,848
1940	221,759	62,874	_	1987	180,515	81,398	119,459
1941	149,100	131,736	_	1988	191,386	100,388	312,132
1942	223,121	61,924	_	1989	533,066	235,035	0
1945	293,306	136,577	_	1990	196,695	174,587	1,467,737
1946	133,474	36,881	_	1991	321,985	52,874	926,419
1948	105,272	112,957	_	1992	219,723	124,461	404,246
1949	43,945	57,680	_	1993	195,701	90,469	338,727
1950	110,215	66,404	_	1994	241,811	138,370	41,331
1953	68,465	53,189	_	1995	198,864	118,968	565,040
1954	62,689	44,680	_	1996	213,229	123,926	906,897
1955	64,819	21,013	_	1997	206,346	101,868	135,595
1956	62,486	9,087	_	1998	313,739	113,469	1,018,898
1957	105,193	49,702	_	1999	204,552	91,165	693,912
1958	57,631	37,224	_	2000	174,297	34,354	236,190
1959	65,946	9,154	_	2001	177,822	41,070	367,522
1960	16,398	18,216	_	2002	194,187	35,105	6,505
1962	229,603	49,351	_	2003	162,708	35,184	90
1963	27,085	36,478	_	2004	245,123	30,115	170,749
1964	8,363	27,979	_	2005	139,246	112,660	53,835
1965	35,681	39,675	-	2006	59,315	28,465	32,325
1966	11,591	59,568	-	2007	169,596	113,446	99,937
1967	102,890	121,310	-	2008	96,912	65,976	81,540
1968	166,309	54,541	_	2009	200,648	114,536	70,588
1970	12,620	21,248	28,306	2010	201,933	60,394	255,942
1971	51,011	58,188	0	2011	177,480	83,661	170,490
1972	82,804	30,929	46,733	2012	213,501	114,753	229,906
1973	99,783	20,210	36,455	2013	214,969	67,195	147,877
1974	147,590	34,041	43,251	2014	210,040	87,671	329,711
1975	59,021	35,496	0	2015	218,178	108,257	491,289
1976	182,784	36,263	132,805				

System: Ayakulik River

Species: Sockeye salmon

Observed escapement by year

-	Brood		_							Ages									Total	Return/
	Year	Escapement	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	3.1	1.4	2.3	3.2	2.4	3.3	3.4	Return	Spawner
	1975	94,517	0	0	0	1,393	10,982	14,989	0	30,950	308,251	0	0	96,141	858	0	0	0	463,563	4.9
	1976	219,047	0	0	5,835	3,855	405,330	8,408	0	164,495	187,009	0	0	61,395	0	0	0	0	836,328	3.8
	1977	306,982	0	0	0	0	5,060	3,431	0	18,656	170,721	0	0	85,541	3,940	0	0	0	287,349	0.9
	1978	132,864	0	0	0	0		15,799	0	14,937	45,081	0	0	42,151	2,747	0	0	0	122,273	0.9
	1979	222,270	0	0	3,625	441	16,345	18,352	0	40,958	131,539	0	0	41,815	1,438	0	0	0	254,511	1.1
	1980	774,328	0	0	11,780	13,347	402,761	24,781	0	232,583	305,083	0	0	159,440	2,762	0	0	0	1,152,537	1.5
	1981	279,200	0	0	17,149	0	310,784	7,450	0	230,889	328,622	0	0	168,527	28,564	0	0	0	1,091,984	3.9
	1982	169,678	0	0	6,857	7,500	1,626	2,596	0	16,351	123,667	0	0	77,129	4,751	0	0	0	240,476	1.4
	1983	171,415	0	0	548	1,171	20,198		0		168,055	0	0	104,765	1,148	0	0	0	383,233	2.2
	1984	283,215	0	0	7,779	3,311	138,185	78,899	0	72,319	197,026	0	0	103,450	3,347	0	0	0	604,316	2.1
	1985	388,759	0	0	61,345	3,903	365,489		0	589,731	513,314	0	0	229,750	4,276	0	0	0	1,786,779	4.6
	1986	318,135	0	0)	571,371	6,489	0	506,463	365,644	0	0	231,471	5,967	0	0	0	1,730,211	5.4
	1987	261,913	0	0	12,991	15,380	173,341		0	103,512	317,142	0	0			0	5,063	0	1,015,566	3.9
	1988	291,774	0	0	2,822	3,351	81,584	2,832	0	62,159	126,124	0	0	27,783	10,655	0	8,225	0	325,535	1.1
	1989	768,101	0	0	2,571	5,565	26,297		0		310,379	0	0	254,557		0	46,238	0	752,667	1
	1990	371,282	0	0	1,028	8,047		14,638	0		295,167	0	0	202,600		0	102	38	600,475	1.6
	1991	384,859	0	640	22,371	17,118		36,123	0	393,249	482,187	0	19	158,923	5,779	64	2,796	0	1,265,194	3.3
	1992	344,184	0	4,591	2,578	9,900	65,889		205	10,135	200,817		2,685	230,460	19,788	1,983	6,010	112	582,035	1.7
	1993	286,170	0	0	3,093	3,678		16,283	400	176,539	409,718		8,075	138,504	7,591	344	5,426	0	772,671	2.7
	1994	380,181	0	465	42,711	7,275	555,246		17,036	338,728	344,937	546	79	102,628	7,224	401	1,737	0	1,454,921	3.8
ν Γ	1995	317,832	0	0	4,711	4,707	101,292	,	516	53,759	227,822	/	0	240,294		1,125	6,135	0	683,795	2.2
	1996	337,155	0	269	1,770	17,050	16,902	8,589	332	93,851	198,161	364	0	143,934	802	291	244	0	482,559	1.4
	1997	308,214	0	5	1,250	4,810	14,447	5,395	597	11,767	34,814	330	0	16,169	727	0	1,490	0	91,802	0.3
	1998	427,208	62	0	4,554	597	29,683	2,929	0	12,657		1,470	602	46,305	10,818	234	4,760	40	212,288	0.5
	1999	295,717	0	0	2,953	4,818	53,015	8,754	353	124,906	192,030	0	240	80,066	4,301	658	1,930	0	474,025	1.6
	2000	208,651	130	0	2,261	7,074	56,453	5,858	0	40,660	148,872	148	0	26,019	893	539	2,481	0	291,390	1.4
	2001	218,892	0	0	97	0	21,217	4,756	0	12,812	57,133	0	315	95,615	2,218	299	142	0	194,605	0.9
	2002	229,292	0	0	499	121	13,352	4,881	141		162,634	214	1,386	67,474	189	477	311	0	313,392	1.4
	2003	197,892	0	40	2,224	1,086	47,900	5,678	0	47,986	88,088	0	152	36,068	2,986	296	1,015	0	233,520	1.2
	2004	275,238	0	0	2,445	3,358	24,944	5,073	152	59,544	163,974	0	625	34,630	3,192	195	0	0	298,131	1.1
	2005	251,906	0	67	5,423	694			0	73,594	260,808	1,059	307	33,847	2,480	0	682	0	491,729	2.0
	2006	87,780	0	0	8,645	839			0		161,777	163	317	40,897	4,379	0	0	0	420,593	4.8
	2007	283,042	0	0	15,958	1,454			0	103,711		224	336	58,052	1,205	0	0	0	636,871	2.3
	2008	162,888	0	0	16,912	866	66,934		0	,	149,978	0	666	37,279	1,460	9	38		353,426	2.2
	2009	315,184	95	0	9,668	5,863	74,430		0		210,247	0	327	83,088	1,432				480,566	1.5
	2010	262,327	0	318	50,918	1,376	277,596	,	0	394,285	218,636	516							964,117	3.7
	2011	261,141	0	292	,	12,313	87,310	13,490											117,309	0.4
	2012	328,254		1,421	4,859															
	2013	282,164	0																	
	2014	297,711																		
_	2015	326,435																		

Appendix D4.–Ayakulik River sockeye salmon brood table.

Note: For brood years 1968–1974, refer to Nemeth et al. (2010).

59

APPENDIX E. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR BUSKIN RIVER SOCKEYE SALMON

Appendix E1.–Description of stock and escapement goal for Buskin River sockeye salmon.

System: Buskin River

Species: Sockeye salmon

Description of stock and escapement goals

D 1 . (V. J. I. Manager and Amer. Western J. Davis
Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Sport and Subsistence
Current escapement	
goal:	BEG: 5,000-8,000 (2011)
Recommended	
escapement goal:	No change
Optimal escapement	
goal:	None
Inriver goal:	None
Action points:	None
Escapement	
enumeration:	Weir counts, 1990 to present
Data summary:	
Data quality:	Good escapement and harvest data.
Data type:	Weir estimates, harvest estimates, age composition.
Data contrast:	Weir count escapement data 1990 to 2015: 4.0
Methodology:	Bayesian spawner-recruit analysis on 1990 to 2015 data; results include 90% credibility interval for S_{MSY} and a 90% optimum yield profile.
Autocorrelation:	Present
Comments:	None

System: Buskin River

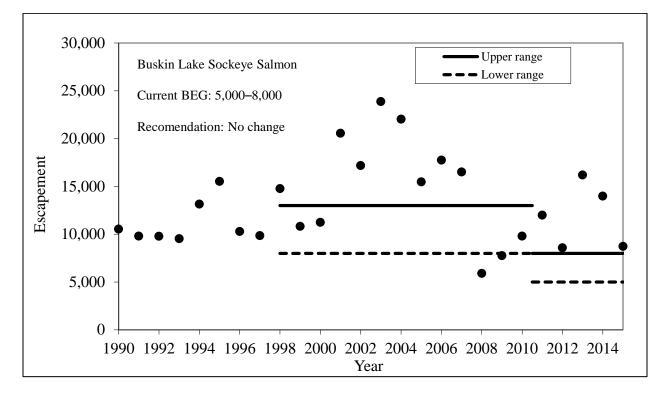
Species: Sockeye salmon

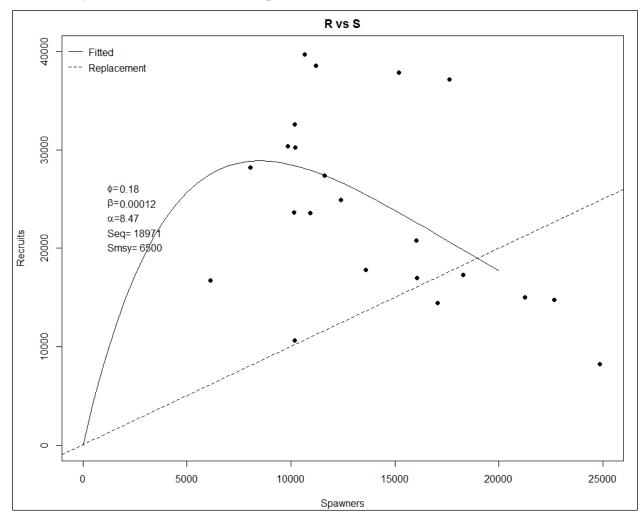
Data available for analysis of escapement goals

Year	Commercial Harvest ^a	Subsistence Harvest	Inriver Run ^b	Sport Harvest ^c	Total Run	Escapement ^d
1990	17	3,576	10,528	998	15,119	10,528
1991	16	4,525	9,789	1,575	15,905	9,789
1992	0	4,441	9,782	1,981	16,204	9,782
1993	4	4,779	9,526	1,544	15,853	9,526
1994	3	4,915	13,146	2,573	20,637	13,146
1995	80	5,563	15,520	1,087	22,250	15,520
1996	0	5,403	10,277	1,881	17,561	10,277
1997	0	5,892	9,840	1,843	17,575	9,840
1998	2	6,011	14,767	1,983	22,763	14,767
1999	1	7,985	10,812	1,467	20,265	10,812
2000	0	7,315	11,233	2,041	20,589	11,233
2001	0	10,260	20,556	827	31,643	20,556
2002	0	13,366	17,174	2,204	32,744	17,174
2003	6	10,651	23,870	3,017	37,544	23,870
2004	1,098	9,421	22,023	1,379	33,921	22,023
2005	0	8,239	15,468	1,540	25,247	15,468
2006	6	7,577	17,734	1,577	26,894	17,734
2007	30	11,151	16,502	1,509	29,192	16,502
2008	0	2,664	5,900	1,160	9,724	5,900
2009	45	1,883	7,757	687	10,372	7,757
2010	0	1,514	9,800	332	11,646	9,800
2011	38	4,639	11,982	1,277	17,936	11,982
2012	1	2,631	8,565	1,484	12,681	8,565
2013	17	6,160	16,189	1,310	23,676	16,189
2014	0	5,576	13,976	4,237	23,789	13,976
2015	12	NA	8,718	NA	NA	8,718

^a Commercial harvest is the harvest of sockeye salmon from the Buskin River and Womans Bay statistical areas (259-22, 259-26).

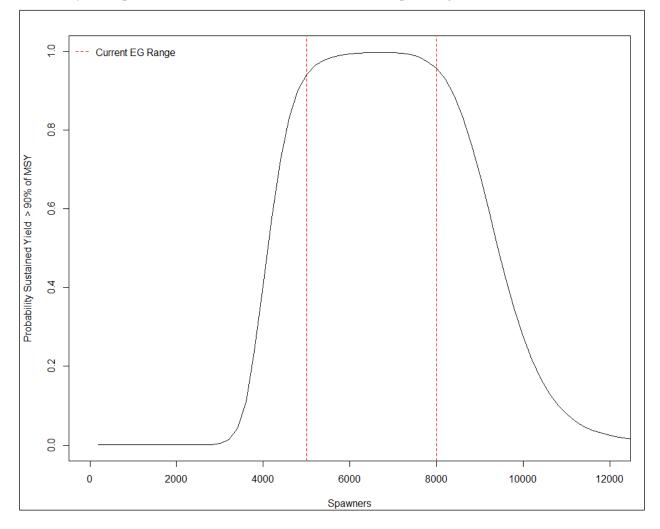
^b Inriver run is the estimated run to the weir at Buskin Lake.


^c Sport harvest from SWHS.


^d Escapement = inriver return.

System: Buskin River

Species: Sockeye salmon


Observed escapement by year (weir counts)

Appendix E4.–Ricker spawner-recruit function fitted to Buskin River sockeye salmon data, 1990–2011 brood years. Parameter estimates are posterior medians.

Appendix E5.–Optimal yield profile obtained by fitting an age-structured spawner-recruit model to Buskin River sockeye salmon data, 1990–2015. Probability of achieving at least 90% of maximum sustained yield is plotted. Vertical lines show recommended escapement goal.

APPENDIX F. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR FRAZER LAKE SOCKEYE SALMON

Appendix F1.–Description of stock and escapement goal for Frazer Lake sockeye salmon.

System: Frazer Lake

Species: Sockeye salmon

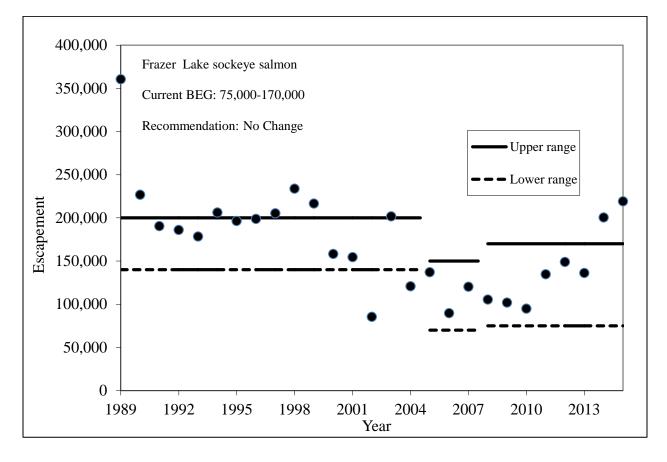
Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine and gillnet
Current escapement goal:	BEG: 75,000–170,000 (2008)
Recommended escapement	
goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Weir counts, 1956–2015
Data summary:	
Data quality:	Excellent for weir counts; good for harvest and age data.
Data type:	Weir counts from 1956 to 2015 with escapement age data during
	weir counts. Weir counts through Dog Salmon Creek (1985–2015).
	Total run estimates with age data 1974–2015. Limnology
	information 1985–1997 and 2001–2015.
Data contrast:	Weir data from 1989 through 2015: 4.2
Methodology:	Ricker spawner-recruit models (1966-2008; excluding 1985-1995), smolt biomass as a function of zooplankton biomass, and euphotic volume models.
Autocorrelation:	None
Comments:	None

System: Frazer Lake

Species: Sockeye salmon

Data available for analysis of escapement goals


Year	Weir Counts	Run Size	Year	Weir Counts	Run Size
		Kull Size			
1956	6	_	1986	126,529	178,205
1957	165	_	1987	40,544	57,582
1958	71	—	1988	246,704	458,461
1959	62	_	1989	360,373	1,070,871
1960	440	_	1990	226,707	979,833
1961	873	-	1991	190,358	1,268,145
1962	3,090	—	1992	185,825	418,773
1963	11,857	—	1993	178,391	751,405
1964	9,966	_	1994	206,071	650,045
1965	9,074	-	1995	196,323	952,377
1966	16,456	-	1996	198,695	700,913
1967	21,834	-	1997	205,264	416,419
1968	16,738	_	1998	233,755	606,343
1969	14,041	_	1999	216,565	357,079
1970	24,039	_	2000	158,044	394,705
1971	55,366	_	2001	154,349	403,372
1972	66,419	_	2002	85,317	110,225
1973	56,255	_	2003	201,679	313,914
1974	82,609	85,374	2004	120,664	712,251
1975	64,199	67,499	2005	136,948	625,937
1976	119,321	128,091	2006	89,516	117,900
1977	139,548	140,914	2007	120,186	168,571
1978	141,981	172,317	2008	105,363	520,603
1979	126,742	153,547	2009	101,845	474,976
1980	405,535	460,708	2010	94,680	165,112
1981	377,716	487,926	2011	134,642	372,422
1982	430,423	506,655	2012	148,884	372,047
1983	158,340	196,323	2013	136,059	271,230
1984	53,524	67,377	2014	200,296	426,265
1985	485,835	637,871	2015	219,093	437,169

Appendix F3.-Frazer Lake sockeye salmon escapement and escapement goal ranges, 1989-2015.

System: Frazer Lake

Species: Sockeye salmon

Observed escapement by year (circles)

Brood										Age									Total	Return/
Year	Escapement	0.2	1.1	0.3	1.2		0.4	1.3	2.2	3.1	1.4	2.3	3.2	4.1	2.4	4.2	3.3	3.4 or 4.3	Return	Spawner
1976	119,321	0	2,150	0	223,444	8,753	0	73,677	257,625	0	0	143,383	0	0	0	0	393	0	709,424	5.9
1977	139,548	0	2,764	0	73,189	2,928	0	92,211	107,917	0	0	146,064	393	0	0	0	0	0	425,466	3.0
1978	141,981	0	7,807	0	162,130	507	0	24,148	22,970	0	0	16,844	0	0	0	0	638	0	235,043	1.7
1979	126,742	0	507	0	1,374	982	0	2,965		0	0	26,791	0	0	0	0	2,165	0	59,106	0.5
1980	405,535	0	0	0	6,064	16,305	0	7,654	589,393	0	0	141,065	684	0	46	0	52	0	761,264	1.9
1981	377,716	0	876	0	12,120	0	0	2,455	7,748	0	172	5,239	0	0	0	0	862	0	29,471	0.1
1982	430,423	0	1,276	0	23,647	431	0	28,624	3,735	24	754	10,870	10,812	0	0	0	0	0	80,172	0.2
1983	158,340	0	10	26	8,935	9,729	0	13,438	380,531	1,604	0	586,833	0	0	0	0	36,986	0	1,038,092	6.6
1984	53,524	0	1,001	0	5,771	33,628	0	7,437	386,832	0	0	67,142	2,046	0	0	0	0	0	503,856	9.4
1985	485,835	0	192	0	16,502	4,399	0	49,290	53,978	151	0	22,578	9,032	0	1,595	0	2,694	0	160,412	0.3
1986	126,529	1,393	67,475	0	727,658	40,794	0	230,893	972,290	0	0	168,815	9,129	0	0	0	8,584	0	2,227,031	17.6
1987	40,544	0	1,787	1,851	3,019	26,596	0	3,902	187,581	0	0	159,822	104	0	156	0	882	0	385,701	9.5
1988	246,704	0	1,886	0	21,073	7,793	0	30,096	210,586	133	0	64,565	20,510	0	16	0	7,994	0	364,652	1.5
1989	360,373	0	16,191	208	327,929	12,847	0	153,078	373,277	5,752	0	300,182	145,325	0	0	0	40,754	0	1,375,543	3.8
1990	226,707	0	1,096	0	18,217	12,986	0	33,393	400,750	1,678	0	210,744	15,341	0	455	0	9,340	0	704,000	3.1
1991	190,358	0	621	0	2,031	57,463	0	1,728	330,834	302	0	105,361	630	0	0	0	0	0	498,970	2.6
1992	185,825	0	3,545	0	20,513	78,168	0	27,471	211,959	4,666	0	185,148	18,141	0	0	0	2,209	0	551,819	3.0
1993	178,391	0	2,529	45	12,677	41,759	0	56,178	291,218	4,831	0	64,155	17,867	0	256	0	5,830	0	497,344	2.8
1994	206,071	0	2,056	0	23,034	17,688	0	39,741	112,849	1,048	0	77,546	15,427	0	187	0	15,733	0	305,309	1.5
1995	196,323	0	10,106	0	59,574	39,574	0	77,223	152,287	1,251	0	251,356	11,284	0	878	0	5,794	0	609,328	3.1
1996	198,695	0	20,062	0	41,983	22,276	0	81,667	32,786	26	1,670	54,175	109	92	211	0	201	0	255,258	1.3
1997	205,264	0	626	0	8,327	1,639	0			176	833	19,673	2,251	0	0	0	0	77	59,662	0.3
1998	233,755	0	367	0	1,450	18,943	0	14,884	128,297	12,803	0	58,315	89,184	0	362	0	33,767	0	358,372	1.5
1999	216,565	0	879	0	3,754	104,150	0	79	484,554	0	0	239,961	1,297	0	649	0	2,576	97	837,997	3.9
2000	158,044	0	26,856	0	69,457	10,097	0	218,891	105,837	0	721	79,631	435	0	678	316	309	514	513,742	3.3
2001	154,349	0	565	0	21,563	2,508	0	7,110	5,096	8,508	145	14,177	38,040	223	774	706	80,473	1,502	181,390	1.2
2002	85,317	0	1,675	0	6,801	5,173	0	6,216		8,528	0	44,275	35,650	0	416	0	,	198	172,334	2.0
2003	201,679	0		0	9,899	44,359	0		169,365	3,430	0	81,123	31,296	0	184	0	1,236	0	358,440	1.8
2004	120,664	0	11,274	0	147,145	19,606	0		197,567	0	298	25,918	243	0	175	0	0	0	493,239	4.1
2005	136,948	0		0	34,034	8,824	0			5,935	435	36,735	3,222	89	339	0	500	0	172,382	1.3
2006	89,516	0		246	6,723	40,388	0		217,026	7,498		116,935	5,777	0	687	0	2,649	0	419,575	4.7
2007	120,186	0	3,793	661	13,301	67,117	0		171,111	0	0	87,987	576	0	454	0	0	0	366,050	3.0
2008	105,363	0	4,623	0	45,645	10,103	0	,	100,680	0	151	44,642	0	0	0	0	277		254,565	2.4
2009	101,845	495	93	0	10,784	17,550	0		322,752	860		174,311	12,255	0					- ,	
2010	94,680	0		0	13,154	26,967	0		160,354	2,047	÷	. ,	,							
2011	134,642	0	832	Ő	8,207	55,889	2	,_ 10	,	_,										
2012	148,884	513		0	-,,	,,-														
2013	136,059		2																	
2013	200,296																			
2015	219,093																			
	Shaded years (1985-1	1995) we	ere not	included	in snawne	r-re	cruit anal	vsis due to	o influer	ce froi	n fertilizat	tion.							

Appendix F4.–Frazer Lake sockeye salmon brood table.

APPENDIX G. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KARLUK LAKE SOCKEYE SALMON

Appendix G1.–Description of stock and escapement goals for Karluk Lake sockeye salmon.

System:Karluk LakeSpecies:Sockeye salmon

Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine and gillnet
Current escapement	
goal:	Early-run BEG: 110,000–250,000 (2008)
	Late-run BEG: 170,000–380,000 (2005)
Recommended	
escapement goal:	Revise Early-run BEG to 150,000–250,000
	Revise Late-run BEG to 200,000–450,000
Optimal escapement	
goal:	None
Inriver goal:	None
Action points:	None
Escapement	
enumeration:	Weir counts: 1922–2015
Data summary:	
Data quality:	Good
Data type:	Weir counts from 1922 to 2015. Age compositions and stock-specific harvest 1985–2015. Rough estimates of harvest attributed to both runs combined, 1922–2015. Smolt outmigration estimates 1961–68, 1980–84, 1991–92, 1999–2006, and 2011–2014. Limnology information 1981–2015.
Data contrast:	Weir data 1981–2015: early (8.6), late (19.9).
Methodology:	Ricker spawner-recruit model
Autocorrelation:	Yes
Comments:	None
Comments.	

System: Karluk Lake early run

Species: Sockeye salmon

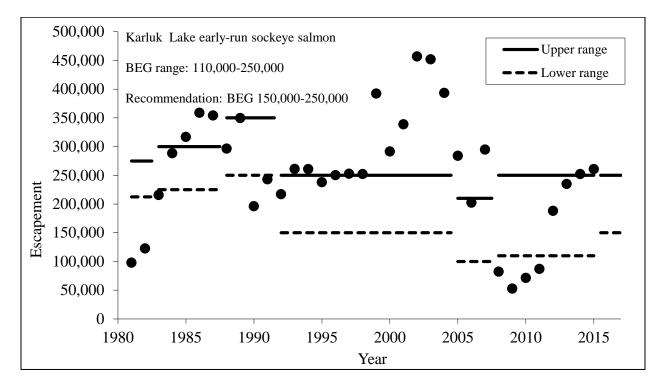
Data available for analysis of escapement goals

Year	Weir Counts	Commercial Harvest
1981	97,937	-
1982	122,705	-
1983	215,620	-
1984	288,422	-
1985	316,688	28,326
1986	358,756	116,191
1987	354,094	77,156
1988	296,510	35,236
1989	349,753	2
1990	196,197	32,021
1991	243,069	28,135
1992	217,152	245,012
1993	261,169	308,579
1994	260,771	188,452
1995	238,079	283,333
1996	250,357	509,874
1997	252,859	134,480
1998	252,298	116,473
1999	392,419	182,577
2000	291,351	266,485
2001	338,799	303,664
2002	456,842	167,038
2003	451,856	372,761
2004	393,468	396,088
2005	283,860	245,800
2006	202,366	272,537
2007	294,740	198,354
2008	82,191	70,751
2009	52,798	16,054
2010	71,453	9,908
2011	87,049	6,805
2012	188,085	47,801
2013	234,880	210,699
2014	252,097	176,323
2015	260,758	124,983

System: Karluk Lake late run

Species: Sockeye salmon

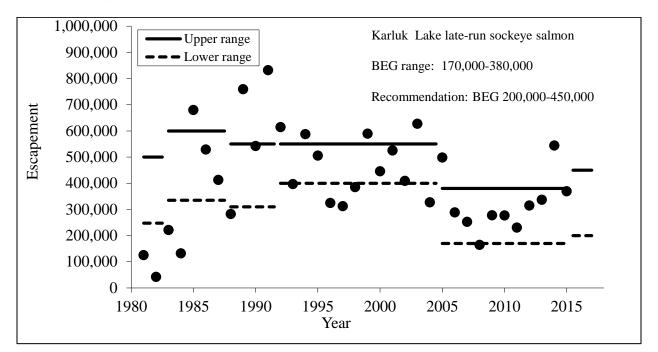
Data available for analysis of escapement goals


Year	Weir Counts	Commercial Harvest
1981	124,769	-
1982	41,702	_
1983	220,795	-
1984	131,846	-
1985	679,260	168,328
1986	528,415	297,042
1987	412,157	170,019
1988	282,306	127,721
1989	758,893	3,476
1990	541,891	990,660
1991	831,970	1,097,830
1992	614,262	442,692
1993	396,288	235,361
1994	587,258	106,325
1995	504,977	361,535
1996	323,969	187,717
1997	311,902	127,114
1998	384,848	302,166
1999	589,119	414,885
2000	445,393	211,546
2001	524,739	347,790
2002	408,734	457,285
2003	626,854	965,484
2004	326,466	332,464
2005	498,102	423,573
2006	288,007	282,441
2007	251,835	469,775
2008	164,299	130,587
2009	277,280	52,503
2010	276,649	39,348
2011	230,273	34,995
2012	314,605	275,192
2013	336,479	416,935
2014	543,469	744,893
2015	396,618	472,761

Appendix G4.-Karluk Lake early-run sockeye salmon escapement and escapement goal ranges, 1981-2015.

System: Karluk Lake early run

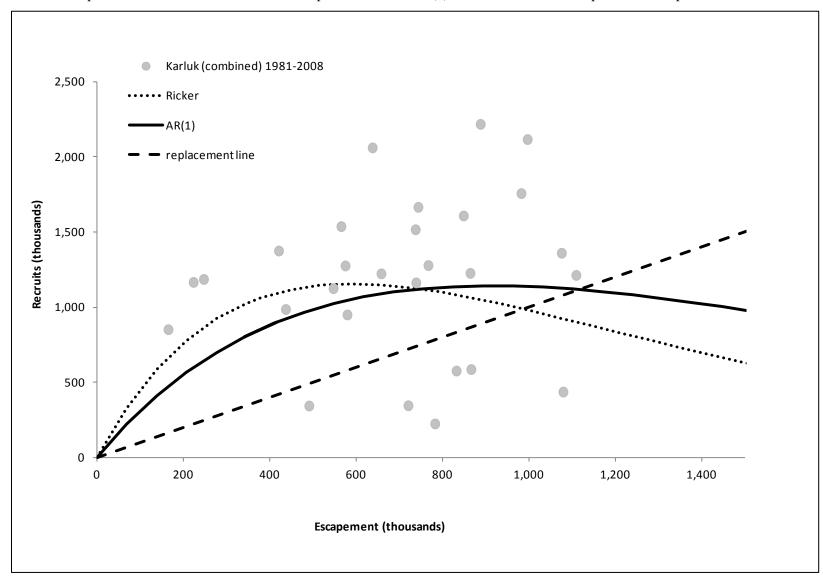
Species: Sockeye salmon


Observed escapement by year (circles)

System: Karluk Lake late run

Species: Sockeye salmon

Observed escapement by year (circles)



Brood											Ag	es											Total	Return/
Year	Esc.	0.1 (0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	3.1	1.4	2.3	3.2	4.1	2.4	3.3	4.2	2.5	3.4	4.3	4.4	Return	Spawner
1976	204,037																					0		
1977	185,312																		0	0	0	0		
1978	248,741															0	10,989	0	0	0	0	0	10,989	1
1979	212,872											0	50,484	45,654	0	641	14,673	0	0	0	0	0	111,453	
1980	132,396							0	11,635	193,760	4,085	0	103,899	60,395	0	0	37,689	0	0	0	0	0	411,464	
1981	97,937				0	8,558	18,604	0	3,735	278,831	1,672	0	117,158	38,129	0	272	22,433	0	0	0	0	0	489,391	5.0
1982	122,705	0	0	1,244	841	4,650	5,466	0	21,058	197,293	4,169	0	93,560	37,079	0	0	20,728	0	0	0	0	320	386,408	3.1
1983	215,620	0	0	143	564	8,159	7,032	0	14,244	149,947	1,728	0	183,829	33,945	0	337	14,082	0	0	0	0	0	414,009	1.9
1984	288,422	0	0	0	0	4,090	8,393	0	5,830	97,537	738	0	94,258	30,589	0	908	19,634	0	0	0	0	0	261,977	0.9
1985	316,688	0	0	0	24	4,258	2,842	0	3,969	72,857	3,010	0	88,599	57,934	0	1,955	40,331	0	0	38	30	0	275,847	0.9
1986	358,756	0	24	0	337	6,152	2,201	346	6,443	87,691	4,031	94	129,381	131,218	0	479	61,223	1,508	0	235	113	0	431,475	1.2
1987	354,094	04	27	0	1,456	958	2,884	0	8,503	114,504	19,876	416	44,051	337,905	0	285	60,244	2,309	0	690	1,969	0	596,477	1.7
1988	296,510	0	0	0	0	8,383	6,297	0	9,708	-)-		0	37,096	202,729	0	320	70,357	231	0	39	2,906	0	436,159	1.5
1989	349,753	0	0	1,621	0	8,492	7,624	0	13,979	104,564	5,517	0	167,751	101,296	0	1	69,709	5,362	0	0	1,713	0	487,630	1.4
1990	196,197	0	0	181	0	18,149	2,780	0	50,649	79,156	6,586	652	146,751	97,063	0	269	70,863	760	0	0	0	0	473,858	2.4
1991	243,069	0	0	1,224	1,062	26,661	12,015	0	83,430	326,422	7,087	0	127,809	81,364	809	107	12,113	2,476	0	0	247	0	682,826	2.8
1992	217,152	0	0	2,669	4	9,627	9,642	0	13,159	52,730	14,935	0	42,891	58,375	0	769	36,603	0	0	79	0	0	241,483	1.1
1993	261,169	0	2	1,534	350	3,309	18,252	0	7,718	226,377	2,275	0	128,158	35,029	0	1,752	42,563	437	0	288	0	0	468,044	1.8
1994	260,771	0	0	1,017	0	8,956	7,266	0	41,179	294,780	1,857	427	182,133	54,148	0	587	33,887	1,781	0	1,042	0	0	629,059	2.4
1995	238,079	0	0	218	0	23,268	13,106	0	33,004	231,809	3,463	0	245,934	83,559	0	1,405	52,470	835	0	492	0	0	689,562	2.9
1996	250,357	0	0	0	0	2,063	5,959	0	2,217	253,847	2,326	0	215,129	84,029	0	61	42,035	0	0	1,461	114	0	609,241	2.4
1997	252,859	0	0	0	1,838	3,930	11,696	0	6,691	233,964	3,274	0	131,879	63,748	0	0	24,066	0	0	0	0	0	481,086	1.9
1998	252,298	0	0	574	0	4,258	19,885	0	5,410	531,206	4,517	532	168,024	104,530	715	0	14,578	0	0	0	0	0	854,229	3.4
1999	392,419	0	0	898	0	15,382	28,948	0	33,620	432,204	10,393	76	192,314	80,270	0	0	48,461	0	0	116	0	0	842,682	2.1
2000	291,351	0	0	939	0	9,611	4,286	0	3,393	223,141	6,013	129	109,252	78,082	0	483	74,506	523	0	1,561	0	0	511,919	1.8
2001	338,799	0	0	0	0	3,223	6,573	0	1,102	216,151	5,644	0	274,770	51,394	0	3,144	42,585	425	59	771	65	0	605,906	1.8
2002	456,842	0	0	78	0	4,894	11,188	0	7,592	69,773	1,251	99	59,363	12,086	0	698	4,882	0	0	0	0	0	171,904	0.4
2003	451,856	0	0	0	286	2,237	9,403	0	1,150	30,926	638	49	15,852	15,878	621	1	1,494	686	0	0	128	0	79,349	0.2
2004	393,468	07	60	0	99	196	390	0	946	17,044	4,700	0	5,120	32,065	0	0	10,449	101	0	21	0	0	71,891	0.2
2005	283,860	0	0	279	0	6,029	1,257	0	2,506	14,088	4,245	0	7,754	16,806	176	0	871	0	0	0	0	0	54,010	0.2
2006	202,366	0	0	0		15,167	5,207	0	4,056	27,614	6,532	0	13,395	8,786	0	0	1,027	0	0	0	0	0	81,807	0.4
2007	294,740	0	0	759		3,832				175,426			158,348	9,584	0	700	5,643	0	0	0	0		382,002	
2008	82,191	0	0	338	0	15,219	10,309	102	44,996	184,375	2,182	137	145,950	9,675	0	63	1,599	0					414,946	5.0
2009	52,798	0	0	240	8	20,084	22,414	0	7,071	186,660	978	0	27,530	2,048	0								267,034	5.1
2010	71,453	0	0	2,288	0	28,315	41,549	0	23,538	276,983	1,242													
2011	87,049	148 1	84	1,556	0	23,576	28,230																	
2012	188,085	0	0	932																				
2013	234,880	0																						
2014	252,097																							
2015	260,758																							
	, -																							

Appendix G6.–Karluk Lake early-run sockeye salmon brood table.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Brood										Ages													Total	Return/
1977 366,936 0	-		0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	3.1	1.4	2.3	3.2	4.1	2.4	3.3	4.2	2.5	3.4	4.3		Return	Spawner
1979 142,194 0																									
1979 248,908																	0		0						
1980 14.227 0		,											0	<i></i>	1	0		,			-			,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,							0					,	,			,						,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				0	5 150	12 120			· ·	· ·		,	,		,)	
1988 220,795 0 0 0,4079 4,407 4,407 4,407 4,407 1,288 31,246 0,2170 4,7370 0 0 0 0 1,1598 8.4 1984 131,846 0 885 0 0 1,456 6,246 0,3051,642,112 0,937,305,422,271,018 0 471<71,764 61 0 0 0 1,110,598 8.4 1985 672,601,69 0 0 1,653,193,910 978 105,5797,871 83,1271 0 532,833,207,230 0 954,451,160 0 0 0 0 0,75,971 1.6 1987 741,871 0 3,127 189,196 72,490 0 1,101,212,1410 0 0 1,67,40 0 0 0 0 0 0,75,263 1,31 1,318 3,317 1,318,334 0 92,511,212,214,101 0 0 1,232,233,33 0 0 1,113 0 0 0 0 0 0 0 0 0 0 1,232,233,010 0 0		,		0	0		,	,			· ·	· ·		,				,						,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0					, -		- ,)							- ,							
1985 679,260 169 0 1.084 30,165 212 189 602,35 78,4914 1,494 593,474,21,972 0 462 43,998 0 0 42 0 0 1,838,733 3.7 1986 528,415 0 893 0.15,519 39,109 978 105 57,974 835,214 1,162 0.114,862 65,219 0 79 54,451 1,600 0 0 0 679,507 1.0 77,907 1.7 0 550 26,552 2,373 0 23,389 30,121 10,103 433,371 1,085 18 21,4110 0 0 16,740 0 0 0 0 72,863 1.0 1990 541,891 0 3,591 971 6,292 1,695 3,241 10,310 43,371 1,852 14,114 0 16,350 1,318 80,327 1,221 15,114 14,127 16,350 1,318 6,337 5,22 19,318 13,310 0 0 0 0 0 72,828 0						<i>'</i>	,	,			· ·	· ·		,	,		,	,						,	
1986 528.415 0 893 015.519 91.19 974 815.52.14 1,162 01.14.862 652.919 0 563 60.240 325 0 147 1.623 01.783.933 3.4 1987 412.157 106 5.976 201 17.067 24.703 1.737 0 550 226.552 2.373 0 23.389 320.723 0 79 54.451 1.600 0 0 0 0 0 79 54.451 1.600 0 0 0 0 51.212 21.4110 0 0 16.740 0																									
1987412.1571065.9720117.0724.7031.73705.50226.5522.737023.389320.7230795.4.4511.6000000079.9071.61.61988282.30600.55557993.7175.90912.00703.020308.4396.233015.122124.1010012.0309500000722.8631.01990541.89103.5517913.7175.90912.02008.568340.5354.73152191.31185.334095213.10765901.11000033.26690.511991831.97001.5671.23303.8806.759011.24447.1485.1043076.19613.887051328.3790000033.26690.511993386.288001.5012.8603.5507.168011.541412.7581.3623020.91375.591002.352300000975.4021.991994587.288001.4731.82301.7261616.3501.0080159.4149.453.870002.3441.840072.8631.9199550.497701.15603.219 <td< td=""><td></td><td>,</td><td></td><td></td><td></td><td>,</td><td>· ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>, ,</td><td></td></td<>		,				,	· ·							,	,									, ,	
1988 282,306 0 2,531 111 2,424 4,649 1,512 0 3,127 189,196 7,47 0 0 16,740 0 0 0 0 728,893 0 3,555 799 3,717 5,909 12,607 0 3,023 308,439 6,233 0 151,212 214,110 0 0 16,740 0 0 0 722,863 1.0 1990 541,891 0 3,551 971 6,292 1,023 57.18 514 12,111 85,334 0 52 13,107 659 0 1.0 0 6,57.007 0.88 6,759 0 12,214 57.18 1,312 18,52479 9,504 0 23,579 0 0 0 0 0 0 72,2862 19 1994 564,282 0 1,567 1,923 0 3,856 6,339 1,557 10 0 23,570 0 0 23,573 0 0 0 9,72,803 1,77 1,93,141 1,91 1,614,443						<i>'</i>	· ·			,	,	,		,	,			,				· ·		, ,	
1989758,893003,7175,90912,607003,302308,4396,2230151,212214,1100012,0309500000722,8631,01990541,891003,57916,29216,9953,241010,310447,3711,0851852,47980,226059162,3221,9950000667,5070.81992614,26201,5671,92303,8806,759011,541412,7581,3623602,91375,5910023,52300000332,6690.51993387,2880015012,8603,55017,16801,541412,7581,3623602,91375,5910023,52300000722,8631.51995504,97701,15603,21948,7668,68501,839353,8575,22700,908051441,27482101280076,8081.41996323,969054063302,9701080469283,0712,817014445139,8200012,3300002841,3433.41997311,9020002,511741,401076,4540,3						,	,	· ·			,	,		,	,			,						,	
1990 $541,891$ 0 $3,591$ 971 $6,292$ $16,995$ $3,241$ 0 $10,310$ $447,371$ $1,085$ 18 $52,479$ $80,226$ 0 591 $62,392$ $1,095$ 00 64 0 $686,721$ 1.3 1991 $81,1970$ 0 $7,113$ 340 $2,879$ $16,292$ $3,203$ 0 $8,568$ $340,555$ $4,713$ 52 $19,111$ $85,334$ 0 952 $13,107$ 659 0 111 0 0 $675,007$ 0.8 1993 $396,288$ 0 $1,501$ $2,860$ $3,550$ $17,168$ $011,541$ $412,758$ $1,362$ 36 $02,913$ $75,591$ 00 0 $23,523$ 0000 $752,802$ 1.9 1994 $587,258$ 0 1156 0 $3,219$ $48,766$ $8,685$ 0 1839 $353,875$ 5.222 0 $08,801$ $02,160$ 242 $28,523$ 00 0 $02,841,841$ 0 $07,75,802$ 119 1995 $504,977$ $01,156$ 03 $02,970$ 108 0 469 $283,071$ $2,817$ 0 $149,445$ $139,853$ $159,850$ 0 0 $2841,843$ 0 0 $664,238$ 2.119 1997 $311,902$ 0 4077 0 $1,473$ $2,827$ $0,86,61$ $28,631$ $235,707$ 0 0 2841 $2,124,530$ 3.119 1999 $589,119$ 0 <		,								,	· ·	· ·		· ·	,									,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				· ·			,	,		,	· ·	· ·		,	,									,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		,		,	· ·	· ·		,	· ·	· ·		· ·					,) -	
1993 396,288 0 0 1,501 2,860 3,550 17,168 0 11,541 412,758 1,362 36 202,913 75,591 0 0 23,523 0 0 0 0 75,2802 1.9 1994 587,258 0 1,156 0 3,219 48,766 8,685 0 1,839 353,857 5,252 0 30,880 129,216 0 424 28,253 405 0 284 1,34 0 97,6198 1.9 1995 504,977 0 1,473 21,821 0 291 494,043 18,682 0 88,481 0 0 0 2,873 0 0 0 1,053,807 3.4 1998 384,848 0 0 16 586 37,87 1,399 2,716 92,140 85 154,603 210,642 0 0 644,238 3.1 199 384,848 0 0 0 2,875 10,967 1,046 0 40,14 0 10 1,002,271 2.				,																				,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			,					,	,	· ·		· ·	,			·							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			· ·	,	,	,		,	,			,	,			·						,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				· ·	· ·	· ·		<i>'</i>	· ·	· ·		,	,										
1997 311,902 0 0 407 0 1,473 21,821 0 291 494,043 18,682 0 268,631 235,707 0 0 12,330 0 0 421 0 0 1,053,807 3.4 1998 384,848 0 0 136 0 586 33,787 1,399 2,716 923,141 8,407 0 78,063 143,454 0 0 12,558 0 0 0 284 0 1,204,530 3.1 1999 589,119 0 0 0 2,5117 41,401 0 7,665 603,399 3,410 85 154,603 210,642 0 65,446 0 0 208 94 0 100,02,271 2.3 2001 524,739 0 0 62 2,790 3,319 12,383 0 6,814 183,353 672 361 161,086 2,895 0 9 14,881 99 0 0 52,88 0 1,746 0 412,82 1,0		,		· ·		,	,	,		,	,	,												,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,		,	,									,	
1999 589,119 0 0 0 25,117 41,401 0 7,645 403,399 3,410 85 154,603 210,642 0 0 65,446 0 0 208 94 0 912,050 1.5 2000 445,393 155 669 51 3,376 6,049 270 0 1,126 531,303 2,955 0 292,380 55,025 0 2,875 100,967 1,046 0 4,014 0 0 1,002,271 2.3 2001 524,739 0 0 62 2,790 3,319 12,383 672 361 161,086 25,895 0 9 1,4881 99 0 0 528 0 412,282 1.0 2004 326,466 0 277 5 301 1,998 510 0 543 15,162 10,973 0 7,084 223,546 0 0 0 0 0 0 0 164,8266 0.3 2006 288,007 0 0 1,73											· ·	,		,	,									, ,	
2000 445,393 155 669 51 3,376 6,049 270 0 1,126 531,303 2,955 0 29,380 55,025 0 2,875 100,967 1,046 0 4,014 0 10 1,002,271 2.3 2001 524,739 0 0 62 2,790 3,319 12,383 0 2,611 132,216 3,786 0 305,575 113,907 0 13,374 38,224 0 21 231 10 0 617,873 1.2 2002 408,734 0 0 62 2,790 3,319 12,383 0 6,844 183,353 672 361 161,086 25,895 0 9 14,881 99 0 0 528 0 412,282 1.0 2004 326,466 0 277 5 301 1,998 510 0 543 15,162 10,973 0 7,084 23,546 0 0 8,868 2,084 0 0 0 271,352 0.8 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></tr<>																	0			0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		669	51		,	,												0		0	10	,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,				,	,			,	,			,			· ·	,	,						
2004 326,466 0 277 5 301 1,998 510 0 543 15,162 10,973 0 7,084 223,546 0 0 8,868 2,084 0 0 0 0 271,352 0.8 2005 498,102 0 3,532 63 0 423 2,022 0 543 15,162 10,973 0 7,084 223,546 0 0 3,929 0 0 0 0 0 168,266 0.3 2006 288,007 0 0 15 0 1,734 2,029 0 1,553 123,394 11,965 34 38,311 73,030 0 59 7,613 0 0 0 259,736 0.9 2007 251,835 0 0 0 34 8,620 6,489 0 5,738 464,655 508 159 215,642 60,733 0 154 5,958 0 768,690 4.7 2009 277,280 0 50,700 48,035 0	2002	408,734	0	0	62				0	6,844	183,353	672	361	161,086	25,895	0	9		99	0	0	528	0	412,282	1.0
2005 498,102 0 3,532 63 0 423 2,022 0 544 63,514 768 0 20,543 72,929 0 0 3,929 0 0 0 0 0 0 168,266 0.3 2006 288,007 0 0 15 0 1,734 2,029 0 1,553 123,394 11,965 34 38,311 73,030 0 59 7,613 0 0 0 0 259,736 0.9 2007 251,835 0 0 81 2,235 3,207 18,490 0 6,173 452,112 217 0 183,111 64,437 0 901 9,435 0 0 0 0 768,690 4.7 2009 277,280 0 501 349 7 14,742 11,322 0 7,407 921,554 6,778 0 51,167 74,985 0 1,088,811 3.9 2010 276,649 0 203 1,020 0 34,359 2,578	2003	626,854	0	0	208	1,750	2,494	1,544	0	1,887	41,395	2,247	0	15,635	269,401	348	0	5,707	10,460	0	0	1,746	0	354,822	0.6
2006 288,007 0 0 15 0 1,734 2,029 0 1,553 123,394 11,965 34 38,311 73,030 0 59 7,613 0 0 0 0 229,736 0.9 2007 251,835 0 0 81 2,235 3,207 18,490 0 6,173 452,112 217 0 183,111 64,437 0 901 9,435 0 0 0 740,399 2.9 2008 164,299 0 501 349 7 14,742 11,322 0 5,738 464,655 508 159 215,642 60,733 0 154 5,958 0 768,690 4.7 2009 277,280 0 501 349 7 14,742 11,322 0 7,407 921,554 6,778 0 51,167 74,985 0 1,088,811 3.9 2010 276,649 0 203 1,020 0 35,700 48,035 2,578 0 44,158 578,076 <	2004	326,466	0	277	5	301	1,998	510	0	543	15,162	10,973	0	7,084	223,546	0	0	8,868	2,084	0	0	0	0	271,352	0.8
2007 251,835 0 0 81 2,235 3,207 18,490 0 6,173 452,112 217 0 183,111 64,437 0 901 9,435 0 0 0 740,399 2.9 2008 164,299 0 0 0 34 8,620 6,489 0 5,738 464,655 508 159 215,642 60,733 0 154 5,958 0 768,690 4.7 2009 277,280 0 501 349 7 14,742 11,322 0 7,407 921,554 6,778 0 51,167 74,985 0 768,690 4.7 2010 276,649 0 203 1,020 0 34,359 28,966 0 44,158 578,076 2,578 1,088,811 3.9 3.9 2011 230,273 0 0 2,428 0 35,700 48,035 2,578 44,158 578,076 2,578 44,158 578,076 2,578 44,158 578,076 2,578 44,158 578,07	2005	498,102	0	3,532	63	0	423	2,022	0	544	63,514	768	0	20,543	72,929	0	0	3,929	0	0	0	0	0	168,266	0.3
2008 164,299 0 0 34 8,620 6,489 0 5,738 464,655 508 159 215,642 60,733 0 154 5,958 0 768,690 4.7 2009 277,280 0 501 349 7 14,742 11,322 0 7,407 921,554 6,778 0 51,167 74,985 0 1,088,811 3.9 2010 276,649 0 203 1,020 0 34,359 28,966 0 35,700 48,035 0 44,158 578,076 2,578 0 1,088,811 3.9 3.9 2012 314,605 0 0 846 2013 336,479 0 25,700 48,035 0 44,158 578,076 2,578 0 44,158 768,690 1 1,088,811 3.9 2014 543,469 0 846 646 647 647 647 647 647 647 647 647 647 647 647 647 647 647 647 647 </td <td>2006</td> <td>288,007</td> <td>0</td> <td>0</td> <td>15</td> <td>0</td> <td>1,734</td> <td>2,029</td> <td></td> <td></td> <td></td> <td>11,965</td> <td>34</td> <td>38,311</td> <td>73,030</td> <td>0</td> <td>59</td> <td>7,613</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>259,736</td> <td>0.9</td>	2006	288,007	0	0	15	0	1,734	2,029				11,965	34	38,311	73,030	0	59	7,613	0	0	0	0	0	259,736	0.9
2009 277,280 0 501 349 7 14,742 11,322 0 7,407 921,554 6,778 0 51,167 74,985 0 1,088,811 3.9 2010 276,649 0 203 1,020 0 34,359 28,966 0 44,158 578,076 2,578 0 1,088,811 3.9 2011 230,273 0 0 2,428 0 35,700 48,035 0 44,158 578,076 2,578 0 1,088,811 3.9 2012 314,605 0 0 846 0 35,700 48,035 0 35,700 48,035 2014 543,469 0 34,349 0 34,359 2,578 0 34,359 3,35	2007	251,835	0	0	81	2,235	3,207	18,490	0	6,173	452,112	217	0	183,111	64,437	0	901	9,435	0	0	0	0		740,399	2.9
2010 276,649 0 203 1,020 0 34,359 28,966 0 44,158 578,076 2,578 2011 230,273 0 0 2,428 0 35,700 48,035 2012 314,605 0 0 846 2013 336,479 0 2014 543,469	2008	164,299	0	0	0	34	8,620	6,489	0	5,738	464,655	508	159	215,642	60,733	0	154	5,958	0					768,690	4.7
2011 230,273 0 0 2,428 0 35,700 48,035 2012 314,605 0 0 846 2013 336,479 0 2014 543,469	2009	277,280	0	501	349	7	14,742	11,322	0	7,407	921,554	6,778	0	51,167	74,985	0								1,088,811	3.9
2012 314,605 0 0 846 2013 336,479 0 2014 543,469	2010	276,649	0	203	1,020	0	34,359	28,966	0	44,158	578,076	2,578													
2013 336,479 0 2014 543,469		,	0		· ·	0	35,700	48,035																	
2014 543,469		,		0	846																				
		,	0																						
2015 368,896																									
	2015	368,896																							

Appendix G7.–Karluk Lake late-run sockeye salmon brood table.

Appendix G8.–Karluk Lake sockeye salmon stock-recruitment models expected relationship for brood years, 1981–2008 (combined runs). The dotted line represents the Ricker model, solid line represents Ricker AR(1), and the dashed lined represents the replacement line.

		_	Parameter				Durbin- Watson	Key q	n thousands 1		
System	Model		$\ln \alpha$	β	ϕ	σ	test statistic	S _{MSY}	\mathbf{S}_{EQ}	MSY	R^2
Karluk Early	Ricker	Estimate	2.07	0.0063		0.74	0.68	124	369	461	0.40
·		Standard error	0.44	0.0015							
	Ricker AR(1)	Estimate	1.33	0.0038	0.731	0.54		168	436	293	0.67
		Standard error	0.76	0.0015	0.142						
Karluk Late	Ricker	Estimate	1.75	0.0027		0.62	0.82	259	713	633	0.44
		Standard error	0.28	0.0006							
	Ricker AR(1)	Estimate	1.52	0.0022	0.613	0.51		294	777	568	0.62
		Standard error	0.47	0.0005	0.162						
Karluk Combined	Ricker	Estimate	1.67	0.0017		0.61	0.62	406	1,098	904	0.34
(Early and Late)		Standard error	0.34	0.0005							
	Ricker AR(1)	Estimate	1.23	0.0011	0.729	0.44		520	1,301	710	0.66
		Standard error	0.35	0.0004	0.139						

Appendix G9.– Parameter estimates and key quantities from the analysis of Karluk Lake sockeye salmon Ricker models for brood years, 1981–2008.

APPENDIX H. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR MALINA CREEK SOCKEYE SALMON

Appendix H1.–Description of stock and escapement goal for Malina Creek sockeye salmon.

System: Malina Creek

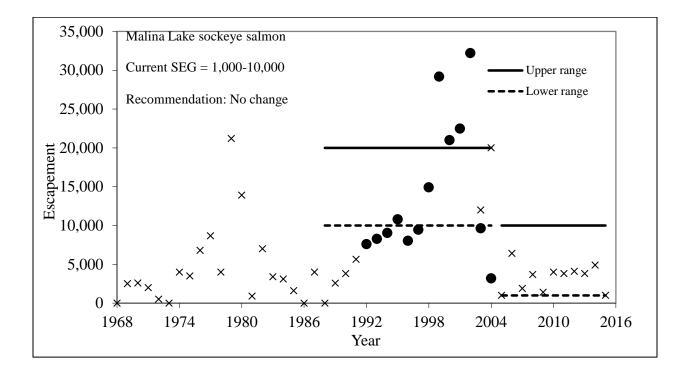
Species: Sockeye salmon

Description of stock and escapement goals

Regulatory area: Management division: Primary fishery: Current escapement goal: Recommended escapement goal: Optimal escapement goal: Inriver goal: Action points: Escapement enumeration: Data summary: Data quality:	 Kodiak Management Area – Westward Region Commercial Fisheries Commercial purse seine SEG: 1,000 to 10,000 (2005) No change None None None Aerial counts, 1968–1991, 2003–2015 Weir counts, 1992–2002, 2004–2005 Fair to poor for aerial counts, excellent for weir counts.
Data quanty: Data type:	Aerial counts from 1968 through 1991 and 2003 through 2015, weir counts from 1992 through 2002 and 2004 through 2005 include escapement age data. Limnology data from 1989 to 2009. No stock-specific harvest information is available.
Data contrast:	Peak aerial surveys 1968–1991, 2003–2015: 42.4 Weir data 1992–2002, 2004, 2005: 10.1
Methodology:	15th to 75th percentile (Bue and Hasbrouck unpublished), euphotic volume analysis, spawning habitat, smolt biomass as a function of zooplankton biomass.
Comments:	Lake was stocked with indigenous juvenile sockeye salmon from 1992 to 1999 and fertilized from 1991 to 2001.

System: Malina Creek

Species: Sockeye salmon


Data available for analysis of escapement goals

Year	Peak Aerial Survey	Weir Counts
1968	0	_
1969	2,500	_
1970	2,600	_
1971	2,000	_
1972	500	_
1973	0	_
1974	4,000	_
1975	3,500	_
1976	6,800	_
1970	8,667	_
1978	4,000	_
1978	21,200	—
1979	13,900	—
1980	900	—
1981		_
	7,000	_
1983	3,400	-
1984	3,100	-
1985	1,600	-
1986	0	-
1987	4,000	—
1988	0	_
1989	2,570	—
1990	3,800	—
1991	5,650	-
1992	-	7,610
1993	-	8,273
1994	-	9,042
1995	-	10,803
1996	-	8,030
1997	-	9,455
1998	-	14,917
1999	-	29,171
2000	-	21,006
2001	-	22,490
2002	-	32,214
2003	12,000	9,636
2004	20,000	3,180
2005	1,000	—
2006	6,400	_
2007	1,900	—
2008	3,690	—
2009	1,400	—
2010	4,000	_
2011	3,800	_
2012	4,100	_
2013	3,800	_
2014	4,900	_
2015	1,000	_

System: Malina Creek

Species: Sockeye salmon

Observed escapement by year (Xs for aerial surveys, solid circles for weir counts) and SEG.

APPENDIX I. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR PASAGSHAK RIVER SOCKEYE SALMON

Appendix I1.-Description of stock and escapement goal for Pasagshak River sockeye salmon.

System:Pasagshak RiverSpecies:Sockeye salmonDescription of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Subsistence gillnet, commercial purse seine, and sport.
Current escapement	
goal:	Lower-bound SEG: 3,000 (2011)
Recommended escapement goal: Optimal escapement	No change
goal:	None
Inriver goal:	None
Action points:	None
Escapement	Survey counts, 1968–1969, 1971–1976, 1978–2015. Weir counts, 2011–
enumeration:	2015.
Data summary:	
Data quality:	Good
Data type:	Fixed-wing peak aerial survey escapement index counts for 1968–2015; weir installed in 2011–2015. Subsistence harvest estimated annually since 1993 from permit returns. Inriver sport harvests estimated annually since 1977 through the Statewide Harvest Survey. No stock-specific harvest information for commercial fisheries, although total annual catch data are available from Pasagshak Bay (statistical area 259-43). Commercial harvests include sockeye salmon from the Pasagshak River and other nearby systems. No age data collected from the escapements or harvests. Limnology data collected in 2000.
Data contrast:	Aerial survey data 1968 to 2015: 232
Methodology:	Percentile
Comments:	None

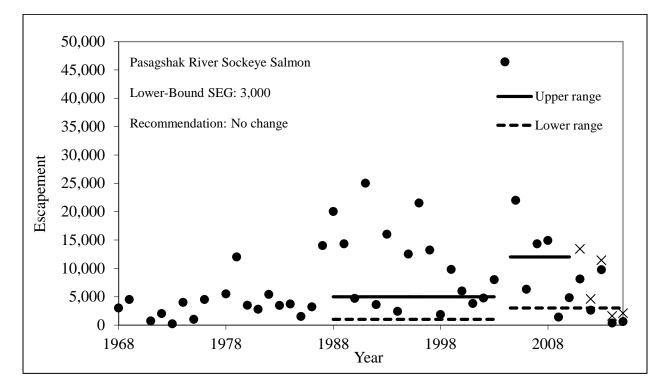
Species:	Sockeye salmon					
		Peak			Harvest	
	Year	Survey	Weir	Sport ^a	Subsistence ^b	Commercial ^c
	1968	3,000				
	1969	4,500				
	1970					
	1971	700				
	1972	2,000				
	1973	200				
	1974	4,000				
	1975	1,000				
	1976	4,500				
	1977	,		176		
	1978	5,470		85		
	1979	12,000		236		
	1980	3,484		284		
	1981	2,759		205		
	1982	5,400		199		
	1983	3,458		192		
	1984	3,700		374		
	1985	1,500		182		
	1986	3,200		428	64	
	1987	14,000		417	82	
	1988	20,000		819	84	
	1989	14,300		1,244	166	
	1990	4,680		1,018	598	
	1991	25,000		815	1,664	
	1992	3,590		427	1,752	
	1993	16,000		543	2,253	
	1994	2,400		861	1,554	
	1995	12,500		571	2,099	
	1996	21,500		723	2,854	
	1997	13,200		1,009	2,759	
	1998	1,850		614	1,089	
	1999	9,800		1,241	2,996	
	2000	6,000		2,721	4,520	
	2001	3,800		701	6,650	
	2002	4,750		1,062	4,577	
	2003	8,000		492	5,910	
	2004	46,400		3,192	10,023	8,612
	2005	22,000		3,751	7,416	1,861
	2006	6,300		2,074	7,616	612
	2007	14,300		1,721	7,550	0
	2008	14,900		4,527	8,826	0
	2009	1,400		1,021	7,185	0
	2010	4,800		1,027	4,627	0
	2011	8,100	13,402	1,592	5,631	11
	2012	2,600	4,585	2,080	4,981	0
	2013	9,750	11,421	1,685	6,786	15
	2014	350	522	2,077	800	0
	2015	600	2,077	31	128	0

Appendix I2.-Pasagshak River sockeye salmon aerial survey and harvest estimates, 1968-2015.

System:

Pasagshak River

^a Sport harvests from the Statewide Harvest Survey.
 ^b Subsistence harvests from the ADF&G Division of Commercial Fisheries database, Westward Region.


с Commercial harvests from the ADF&G Division of Commercial Fisheries database statistical area 259-43. Prior to 2004, statistical areas were not split out, and it is impossible to separate harvest among systems.

Appendix I3.-Pasagshak River sockeye salmon escapement and escapement goals, 1968-2015.

System: Pasagshak River

Species: Sockeye salmon

Observed escapement by year (solid circles for aerial surveys, Xs for weir counts) and SEG.

APPENDIX J. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR SALTERY LAKE SOCKEYE SALMON

Appendix J1.–Description of stock and escapement goal for Saltery Lake sockeye salmon.

System:Saltery LakeSpecies:Sockeye salmon

Description of stock and escapement goals

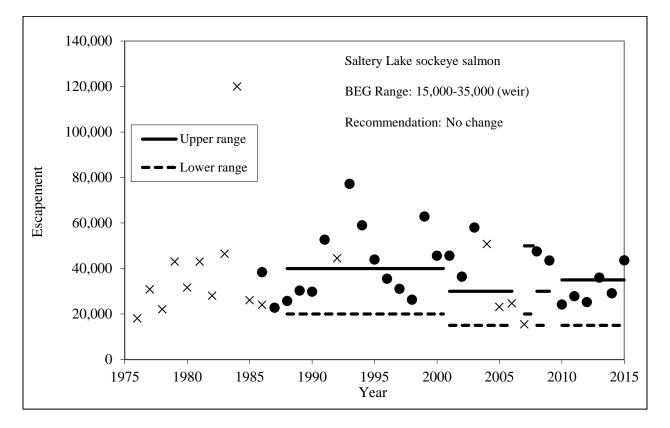
Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Commercial purse seine, sport, and subsistence
Current escapement goal:	BEG: 15,000–35,000 (2011)
Recommended escapement goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement	
enumeration:	Aerial surveys: 1976–1986, 1992, 2004–2007
	Weir counts: 1986–1991, 1993–2003, 2008–2015
Data summary:	
Data quality:	Fair for aerial surveys, good for weir counts
Data type:	Aerial surveys from 1976–1986, 1992, 2004–2007, weir counts from 1986– 1991, 1993–2003, and 2008–2015. Harvest data are available from 1976–2009. Limnology data from 1994 to 2009.
Data contrast:	Weir data: 3.4
Methodology:	Ricker spawner-recruit, zooplankton model
Autocorrelation:	None
Comments:	None

System: Saltery Lake

Species: Sockeye salmon

Data available for analysis of escapement goals

Year	Peak Survey	Weir Counts
1976	18,000	wen Counts
1970	30,800	—
1977	22,000	—
1978	43,000	_
1979		
1980	31,600 43,000	_
1981	28,000	_
1982	46,400	—
1985	120,000	—
1984	26,000	—
1985	24,000	38,314
1980	24,000	22,705
1987	_	25,654
1988	_	
	_	30,237 29,767
1990 1991	_	52,592
1991	-	52,592
1992	44,450	-
1995	_	77,186
1994	_	58,975 43,859
1995	—	45,859 35,488
1990	_	31,016
	_	26,263
1998 1999	_	62,821
2000	—	45,604
2000	_	45,604
2001	—	
2002 2003	_	36,336 57,993
2003	- 50 721	57,995
2004 2005	50,721	—
2003	23,078 24,631	—
2008	15,382	—
2007	15,562	-
2008 2009	-	47,467 43,468
	_	
2010	_	24,102
2011 2012	_	27,803
	_	25,155
2013	_	35,939
2014	_	29,047
2015	-	44,796


Note: Escapement numbers since 2004 have number of fish removed for egg-take subtracted from total escapement.

Appendix J3.-Saltery Lake sockeye salmon escapement and escapement goals, 1976-2015.

System: Saltery Lake

Species: Sockeye salmon

Observed escapement by year (circles are weir counts, Xs are aerial surveys)

APPENDIX K. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR UGANIK LAKE SOCKEYE SALMON

Appendix K1.–Description of stock and escapement goal for Uganik Lake sockeye salmon.

System:Uganik LakeSpecies:Sockeye salmon

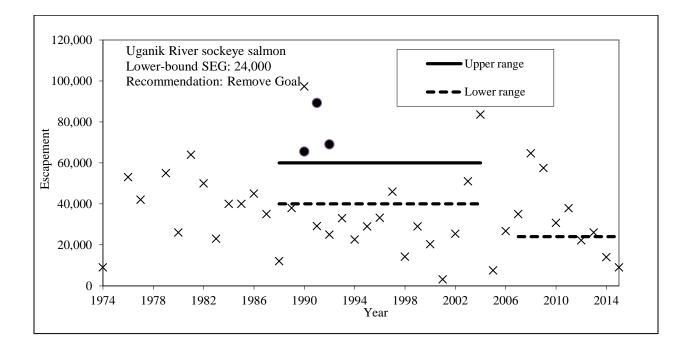
Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine and gillnet
Current escapement	
goal:	Lower-bound SEG: 24,000 (2008)
Recommended	
escapement goal:	Elimination
Optimal escapement	Emmation
goal:	None
Inriver goal:	None
-	
Action points:	None
Escapement	
enumeration:	Weir counts, 1928–1932, 1990–1992.
	Aerial surveys, 1974, 1976–1977, 1979–2015.
Data summary:	
Data quality:	Fair for aerial surveys (glacially-fed lake has variable water visibility); good for weir enumeration.
Data type:	Fixed-wing aerial surveys, weir escapement estimates from 1990 to 1992 include some escapement age data. No stock-specific harvest information is available. Limnology data from 1990, 1991, 1996, and 2009.
Data contrast:	All survey data 1974 to 2015: 31.4
Methodology:	15th to 75th percentile (Bue and Hasbrouck unpublished)
Comments:	None
commonto.	

System: Uganik Lake

Species: Sockeye salmon

Data available for analysis of escapement goals


Year	Peak Survey	Weir Counts
1928	_	15,282
1929	_	24,913
1930	_	9,814
1931	_	6,777
1932	_	25,808
1974	9,000	_
1976	53,000	_
1977	42,000	_
1979	55,000	_
1980	26,000	_
1981	64,000	_
1982	50,000	_
1983	23,000	_
1984	40,000	_
1985	40,000	_
1986	45,000	_
1987	35,000	_
1988	12,000	_
1989	38,000	_
1990	97,300	65,551
1991	29,100	89,304
1992	25,000	69,015
1993	33,000	-
1994	22,600	_
1995	29,000	_
1996	33,200	_
1997	45,900	_
1998	14,250	_
1999	29,000	_
2000	20,310	_
2000	3,100	_
2002	25,400	_
2002	51,000	_
2003	83,600	_
2001	7,500	_
2005	26,700	_
2000	35,000	_
2007	64,700	_
2000	57,500	_
2009	30,700	_
2010	37,900	—
2011 2012	22,200	_
2012	26,000	—
2013	14,000	_
2014	9,000	—
2013	9,000	

Appendix K3.–Uganik Lake sockeye salmon escapement and escapement goals, 1974–2015.

System: Uganik Lake

Species: Sockeye salmon

Observed escapement by year (circles are weir counts, Xs are aerial surveys)

APPENDIX L. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR UPPER STATION RIVER SOCKEYE SALMON

Appendix L1.–Description of stock and escapement goal for Upper Station River sockeye salmon.

	_	
System:		Upper Station River
Species:		Sockeye salmon

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine and gillnet
Current escapement goal:	Early-run SEG: 43,000–93,000 (2011)
1 0	Late-run BEG: 120,000–265,000 (2005)
Recommended escapement	
goal:	No change
Optimal escapement goal:	Early run: 25,000 (1999)
	•
Inriver goal:	None
Action points:	None
Escapement enumeration:	Weir counts, 1969–2015 (early run) and 1966–2015 (late run)
Data summary:	
Data quality:	Excellent for weir counts 1966–2015; fair for harvest and age data.
Data type:	Weir counts from 1966 to 2015 with escapement age data during weir counts. Harvest estimates with age data 1970–2015. Limnology information 1990–1993, 1995, 1999, 2000, and 2009 through 2015.
Data contrast:	Weir data, all years: early (16.5), late (25.9)
Methodology:	Ricker spawner-recruit models, smolt biomass as a function of zooplankton biomass, and euphotic volume models.
Autocorrelation:	Significant in late run (lag-1)
Comments:	Although spawner-recruit models are significant for both the early and late run, the late-run model has a strong nonstationary process occurring in addition to significant autocorrelation (lag-1).

Appendix L2.–Upper Station River early-run sockeye salmon escapement and harvest estimates, 1969–2015.

System: Upper Station River early-run

Species: Sockeye salmon

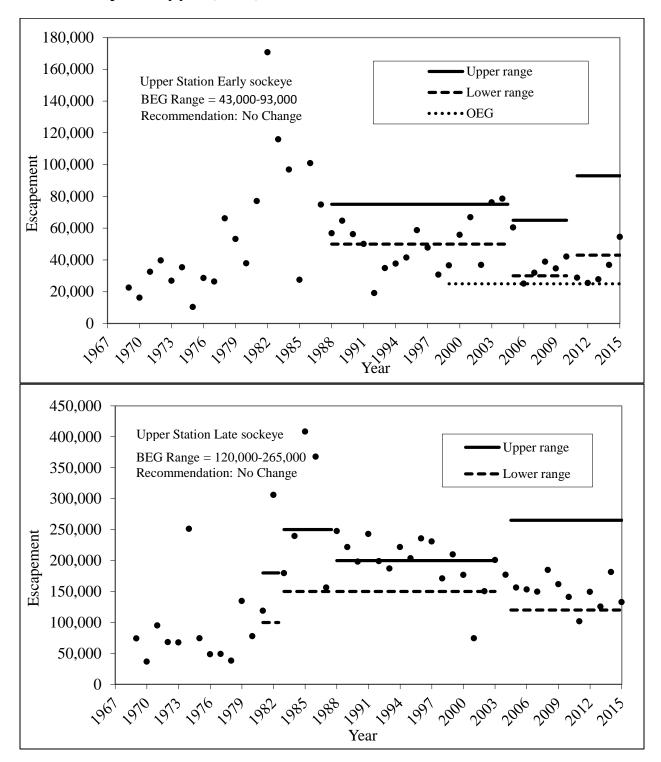
Data available for analysis of escapement goals

Year	Weir Counts	Commercial Harvest
1969	22,509	—
1970	16,168	—
1971	32,529	—
1972	39,613	_
1973	26,892	_
1974	35,319	—
1975	10,325	_
1976	28,567	—
1977	26,380	_
1978	66,157	—
1979	53,115	—
1980	37,866	—
1981	77,042	—
1982	170,610	30,217
1983	115,890	27,800
1984	96,798	19,994
1985	27,408	6,364
1986	100,812	113,562
1987	74,747	70,072
1988	56,724	67,896
1989	64,582	59,389
1990	56,159	106,647
1991	50,026	119,764
1992	19,076	22,622
1993	34,852	51,996
1994	37,645	57,727
1995	41,492	170,502
1996	58,686	154,617
1997	47,655	18,735
1998	30,713	82,582
1999	36,521	51,457
2000	55,761	87,265
2001	66,795	91,895
2002	36,802	0
2003	76,175	24,215
2004	78,487	190,627
2005	60,349	95,717
2006	24,997	7,432
2007	31,895	5,877
2008	38,800	60,392
2009	34,585	46,623
2010	42,060	13,105
2011	28,759	22,874
2012	25,487	34,700
2013	27,712	29,502
2014	36,823	10,517
2015	54,473	11,631

Appendix L3.–Upper Station River late-run sockeye salmon escapement and harvest estimates, 1966–2015.

System: Upper Station River late-run

Species: Sockeye salmon


Data available for analysis of escapement goals

Year	Weir Counts	Commercial Harvest
1966	36,154	_
1967	66,999	_
1968	15,743	_
1969	74,150	_
1970	36,833	_
1971	95,150	_
1972	68,351	_
1973	67,826	_
1974	251,234	_
1975	74,456	_
1976	48,650	_
1977	49,001	_
1978	38,126	_
1979	134,579	_
1980	77,718	_
1981	118,900	_
1982	306,161	345,943
1983	179,741	361,991
1984	239,608	328,309
1985	408,409	522,561
1986	367,922	1,025,016
1987	156,274	384,337
1988	247,647	754,836
1989	221,706	485,347
1990	198,287	512,468
1991	242,860	514,467
1992	199,067	219,371
1993	187,229	258,283
1994	221,675	235,186
1995	203,659	383,973
1996	235,727	666,349
1997	230,793	288,226
1998	171,214	185,086
1999	210,016	358,673
2000	176,783	136,471
2000	74,408	60,620
2001	150,349	9,367
2002	200,894	211,844
2003	177,108	336,745
2004	156,401	124,324
2005	153,153	62,296
2007	1.10 700	11000
2007 2008	149,709 184,856	44,032 237,865
2008	161,736	187,403
2009	141,139	63,319
2010	101,893	68,875
2011 2012	101,893	64,332
2013	125,573	33,656
2014	181,411 132,864	12,893 53 803
2015	152,804	53,803

Appendix L4.-Upper Station River early-run sockeye salmon escapement and escapement goals, 1969-2015.

System:Upper Station RiverSpecies:Sockeye salmon

Observed escapement by year (circles)

Brood									Age								Total	Return/
Year	Esc.	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	3.1	1.4	2.3	3.2	3.3	2.4	Return	Spawner
1975	10,325	0	0	0	0	1,458	208	0	6,393	14,783	0	0	8,738	485	0	0	32,065	3.1
1976	28,567	0	0	0	133	9,722	0	0	10,438	47,090	0	0	27,139	0	0	0	94,522	3.3
1977	26,380	0	0	0	0	32,041	243	0	48,850	94,081	0	0	35,526	634	0	0	211,375	8.0
1978	66,157	0	243	243	1,809	28,948	0	0	32,354	70,735	0	0	19,660	0	37	0	154,029	2.3
1979	53,115	0	0	0	0	4,124	0	0	17,554	65,300	0	46	14,870	38	142	0	102,074	1.9
1980	37,866	0	317	0	2,341	11,937	0	0	4,000	7,165	38	0	7,259	0	25	0	33,082	0.9
1981	77,042	0	0	0	542	2,832	1,498	0	4,370	85,872	0	43	23,861	0	0	0	119,018	1.5
1982	170,610	0	2,472	234	1,006	113,439	781	0	75,684	37,220	0	360	18,131	70	0	0	249,398	1.5
1983	115,890	0	285	1,220	1,181	5,491	1,205	0	11,396	87,555	0	0	41,723	217	0	0	150,273	1.3
1984	96,798	0	109	0	3,443	2,118	66	0	1,792	46,879	0	0	14,103	113	60	0	68,683	0.7
1985	27,408	0	1,476	4	2,865	2,314	22,466	0	6,714	86,949	0	0	42,895	633	64	0	166,380	6.1
1986	100,812	0	35	5,680	449	51,361	936	0	36,048	83,179	60	18	8,248	340	408	0	186,763	1.9
1987	74,747	0	2,134	46	1,022	2,027	3,849	0	726	30,417	27	0	25,242	779	57	0	66,326	0.9
1988	56,724	0	17	0	71	82	852	0	1,607	35,640	210	206	7,282	1,072	0	0	47,038	0.8
1989	64,582	0	450	404	5,823	8,751	6,313	0	5,539	67,810	0	0	34,127	0	0	0	129,217	2.0
1990	56,159	0	1,497	578	0	6,275	3,414	0	19,145	82,269	0	0	6,839	361	6	0	120,384	2.1
1991	50,026	0	407	3,258	20,467	46,391	6,815	0	57,478	131,931	0	0	27,274	0	0	0	294,021	5.9
1992	19,076	52	2,338	223	5,878	5,959	3,583	0	3,435	24,099	0	0	7,268	0	0	0	52,835	2.8
1993	34,852	219	669	605	2,423	5,189	2,741	0	11,812	31,749	0	0	5,168	1,229	0	62	61,866	1.8
1994	37,645	0	229	994	4,887	53,607	1,320	0	7,176	33,104	0	0	17,361	570	0	0	119,248	3.2
1995	41,492	0	185	2,467	5,857	33,691	1,497	360	44,415	44,608	0	492	20,938	689	92	0	155,291	3.7
1996	58,686	0	79	177	2,723	30,487	1,973	0	81,164	51,987	4	25	15,238	281	0	0	184,138	3.1
1997	47,655	0	422	45	0	972	2,438	0	558	11,566	34	0	7,233	795	2,006	0	26,069	0.5
1998	30,713	0	0	6	0	145	6,264	0	418	45,950	0	0	16,490	8	0	0	69,281	2.3
1999	36,521	0	0	2,598	328	27,894	6,080	0	34,497	81,382	0	360	38,405	626	28	0	192,198	5.3
2000	55,761	0	780	10,912	7,338	122,434	2,623	69	59,315	40,862	69	121	9,843	139	235	28	254,768	4.6
2001	66,795	0	1,131	1,123	3,856	6,472	5,116	0	4,335	15,475	0	24	13,764	0	0	0	51,298	0.8
2002	36,802	82	532	382	574	1,295	42	36	4,890	2,815	0	0	8,604	0	0	36	19,289	0.5
2003	76,175	0	75	502	88	10,903	3,245	0	9,334	34,250	0	106	13,258	86	0	0	71,846	0.9
2004	78,487	0	191	1,553	6,398	36,836	3,258	0	25,750	32,372	0	0	4,211	0	0	0	110,570	1.4
2005	60,349	0	233	281	0	5,884	3,446	0	3,904	42,706	64	0	9,733	130	0	2	66,385	1.1
2006	24,997	0	0	269	0	1,815	2,367	0	4,513	24,439	5	28	14,943	620	0	4	49,002	2.0
2007	31,895	0	71	26	136	3,578	4,849	0	3,112	28,723	0	16	16,779	0	0	0	57,291	1.8
2008	38,800	0	0	978	52	10,317	2,056	0	10,703	21,609	5	0	2,534	0	0	0	48,254	1.2
2009	34,585	0	108	226	2,336	2,764	2,772	0	2,354	30,938	4	0	7,963	0			49,466	1.4
2010	42,060	0	0	227	0	1,784	6,735	0	2,353	45,458	89						56,646	1.3
2011	28,759	0	80	132	0	1,376	7,241										8,829	0.3
2012	25,487	0	0	1,625													1,625	0.1
2013	27,712	0																
2014	36,823																	
2015	54,473																	

Appendix L5.-Upper Station River early-run sockeye salmon brood table. Shaded years excluded from the analysis due to fertilization influence.

Brood									Age								Total	Return/
Year	Esc.	0.1	0.2	1.1	0.3	1.2	2.1	0.4	1.3	2.2	3.1	1.4	2.3	3.2	3.3	2.4	Return	Spawner
1975	74,456	901	3,021	0	0	61,142	1,132	0	36,479	76,157	0	0	5,228	0	0	0	184,060	2.5
1976	48,650	0	10,190	0	36,479	38,399	2,560	0	11,501	141,154	0	0	10,336	940	0	0	251,559	5.2
1977	49,001	0	640	0	3,137	52,279	1,046	0	66,714	312,897	0	0	9,732	0	0	0	446,444	9.1
1978	38,126	0	82,601	1,046	90,205	134,367	4,698	0	55,146	217,342	0	0	26,755	2,638	0	0	614,798	16.1
1979	134,579	0	31,947	0	63,256	71,366	0	0	103,020	339,950	0	736	10,850	360	280	0	621,765	4.6
1980	77,718	0	124,890	0	56,178	35,951	2,131	0	21,758	55,472	399	0	16,555	965	223	0	314,522	4.0
1981	118,900	0	1,294	0		157,249	12,280	1,007	149,158	345,506	0	0	14,809	0	0	879	700,035	5.9
1982	306,161	0	644,017	5,129	324,600	364,312	5,029	117	92,824	231,963	0	0	5,168	2,042	0	0	1,675,201	5.5
1983	179,741		182,514	0	135,177	23,242	1,682	0	53,195	92,799	0	0	30,036	0	1,488	0	525,000	2.9
1984	239,608		37,733	528		187,451	5,064	0	21,543	224,033	0	0	23,712	4,642	0	0	597,438	2.5
1985	408,409		562,757	,	309,775	34,924	12,374	0	40,759	179,839	0	578	45,289	6,140	0	0	1,196,706	2.9
1986	367,922	1,449	72,415	1,953		291,815	5,610	678	116,039	451,917	0	0	17,721	1,579	1,289	6	1,056,851	2.9
1987	156,274	0	68,016		113,821	12,899	127	0	17,053	104,995	0	225	27,470	15,072	39	0	360,212	2.3
1988	247,647	0	9,222	216	27,793	76,583	1,000	0	71,330	80,102	177	133	4,037	1,244	0	0	271,836	1.1
1989	221,706		169,158	1,125	85,530	83,807	12,864	142	53,928	184,067	308	0	21,693	0	0	0	613,023	2.8
1990	198,287	1,432	56,992		115,907	27,747	7,728	444	17,591	237,284	0	0	4,315	0	67	0	473,411	2.4
1991	242,860	6,744	51,810	4,858	163,283	73,541	6,484	160	44,507	712,676	31	0	20,546	0	0	0	1,084,640	4.5
1992	199,067	4,913	61,018	1,108	15,733	58,923	12,611	79	6,302	279,349	0	0	7,189	156	192	26	447,599	2.2
1993	187,229	5,186	46,015		114,817	35,842	45,256	444	10,769	199,820	191	278	27,883	5,350	0	0	497,539	2.7
1994	221,675	1,417	10,206	6,322	23,167	90,488	17,439	44	25,603	293,322	80	0	6,069	968	0	0	475,125	2.1
1995	203,659	233	3,020	3,340		179,562	24,492	0	13,017	251,855	0	254	14,264	307	247	20	493,960	2.4
1996	235,727	277	1,972	6,536	1,335	35,606	4,057	0	15,478	88,856	121	1	4,856	2,282	0	1,500	162,877	0.7
1997	230,793	0	347	0	916	2,842	11,901	0	1,932	129,206	1,984	130	8,502	17,554	1,942	0	177,256	0.8
1998	171,214	0	0	89	0	2,511	13,979	0	3,281	219,890	25,325	0	13,190	890	0	0	279,155	1.6
1999	210,016	0	279	2,323	672	80,315	15,939	0	20,091	313,886	19	346	40,906	5,360	465	9	480,610	2.3
2000	176,783	96	34,433	5,197		122,248	4,045	98	30,388	181,491	0	31	16,677	986	187	165	432,436	2.4
2001	74,408	0	522	215	1,701	5,696	8,310	0	7,078	77,172	0	78	9,900	300	0	0	110,971	1.5
2002	150,349	411	2,421	3,965	7,179	94,543	8,085	0	21,609	95,473	0	0	13,730	0	0	235	247,650	1.6
2003	200,894	43	888	1,667	337	51,307	7,446	0	16,131	256,511	0	357	15,308	548	0	0	350,545	1.7
2004	177,108	669	5,264	1,535	24,845	99,160	7,094	0	29,761	255,957	181	0	5,577	1,457	185	0	431,685	2.4
2005	156,401	139	2,828	2,423	3,067	20,933	20,082	0	6,256	171,458	153	0	8,694	3,150	0	4	239,187	1.5
2006	153,153	0	931	1,561	177	10,327	8,207	0	5,267	126,317	182	74	3,988	6,115	530	0	163,677	1.1
2007	149,709	218	59	787	287	12,235	11,858	0	10,286	140,872	46	276	8,824	241	0	0	185,989	1.2
2008	184,856	0	0	2,217	349	40,340	7,761	0	10,180	104,940	943	0	5,639	0	0	0	172,369	0.9
2009	161,736	376	2,236	1,527	5,784	8,537	16,762	0	3,954	171,268	0	0	23,034	250			233,727	1.4
2010	141,139	58	149	2,064	38	9,380	3,245	0	4,197	115,614	24						134,769	1.0
2011	101,893	0	7	533	5,790	26,119	7,436										39,885	0.4
2012	149,325	0	1,699	1,927														
	125,573	579																
2014	181,411																	
2015	132,864																	

Appendix L6.–Upper Station River late-run sockeye salmon brood table. Shaded years excluded from the analysis due to fertilization influence.

APPENDIX M. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR AMERICAN RIVER COHO SALMON

Appendix M1.–Description of stock and escapement goal for American River coho salmon.

System: American River

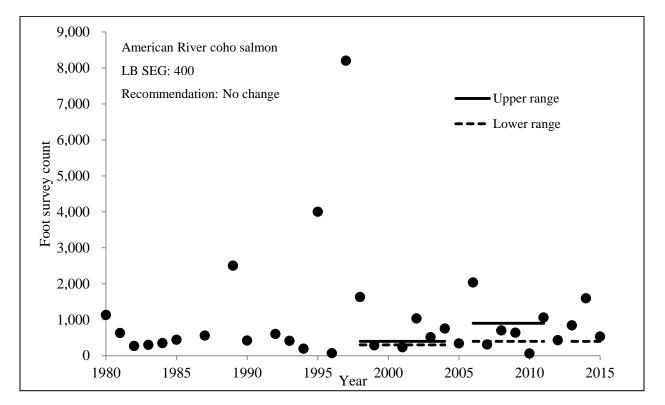
Species: Coho salmon

Regulatory area: Management division: Primary fishery: Current escapement goal: Recommended escapement goal: Optimal escapement goal: Inriver goal: Action points: Escapement enumeration: Data summary: Data quality:	 Kodiak Management Area – Westward Region Sport and Commercial Sport, commercial, and subsistence Lower-bound SEG: 400 (2011) No change None None None Foot surveys, 1980–present with no surveys in 1988, 1989, and 1991. All survey data is good.
Data type:	Foot surveys are conducted annually and inriver harvest of the recreational fishery are estimated annually through the Statewide Harvest Survey. Although there is no stock-specific harvest information available for subsistence and commercial fisheries, annual catch data are available for Kalsin Bay (statistical area 259-23).
Data contrast: Methodology:	All survey data 1980 to 2015: 141.4 Theoretical stock-recruit analysis with average foot surveys and average harvest (recreational, commercial and subsistence) from 1980–2003 was used to specify the SEG that potentially maximizes yield give uncertainty in the productivity of this stock. Alpha-parameter values in the stock-recruit analysis ranged from 4 to 8.
Autocorrelation: Comments:	None None

System: American River

Species: Coho salmon

Data available for analysis of escapement goals


* 7	
Year	Foot Survey
1980	1,130
1981	627
1982	266
1983	300
1984	350
1985	439
1986	_
1987	555
1988	_
1989	2,500
1990	419
1991	—
1992	600
1993	412
1994	194
1995	4,000
1996	69
1997	8,200
1998	1,627
1999	284
2000	_
2001	233
2002	1,034
2003	511
2004	753
2005	339
2006	2,033
2007	307
2008	700
2009	639
2010	58
2011	1,061
2012	427
2013	841
2014	1,595
2015	530

Appendix M3.-American River coho salmon escapement and escapement goals, 1980-2015.

System: American River

Species: Coho salmon

Observed escapement by year (foot surveys)

APPENDIX N. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR BUSKIN RIVER COHO SALMON

Appendix N1.–Description of stock and escapement goal for Buskin River coho salmon.

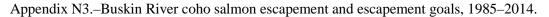
System:Buskin RiverSpecies:Coho salmon

species. Cono sanno

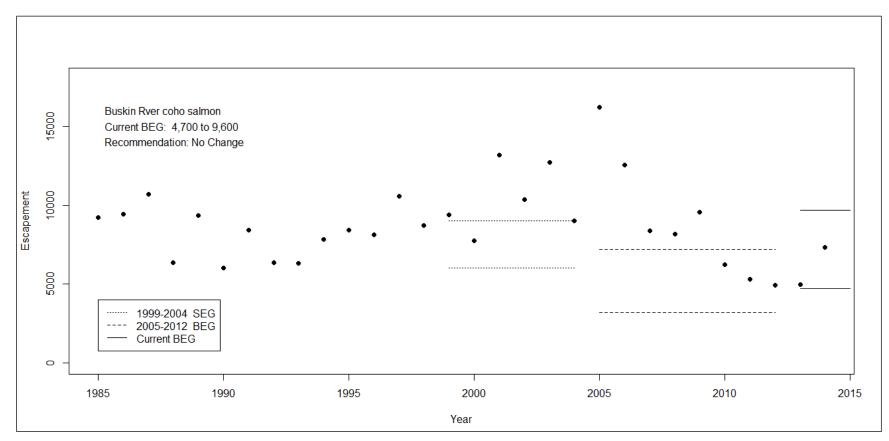
Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and commercial
Primary fishery:	Sport, commercial, subsistence
Current escapement goal:	BEG: 4,700–9,600 fish (2014)
Recommended escapement goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Weir counts, 1985 to present
Data summary:	-
Data quality:	Reasonable escapement and harvest data.
Data type:	Weir estimates, harvest estimates, age composition.
Data contrast:	All survey data 1989 to 2015: 3.3
Methodology:	A Bayesian stock-recruit analysis was conducted on brood table information from escapement and return data from 1989-2015; results include 90% credibility interval for S_{MSY} and a 90% optimum yield profile.
Autocorrelation:	There was some positive autocorrelation (median $\phi = 0.49$) with 90% credibility interval of 0.018-0.86
Comments:	None

System: Buskin River

Species: Coho salmon


Data available for analysis of escapement goals

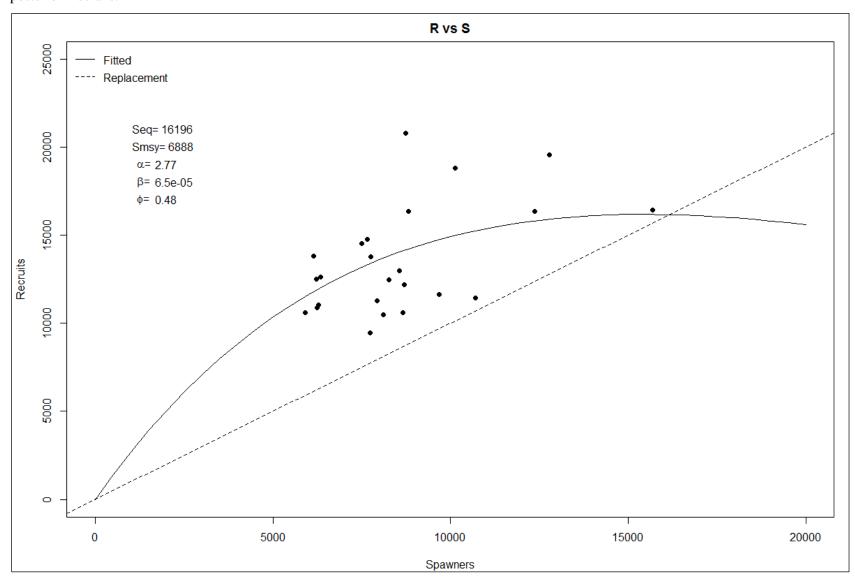
				Harvest		
Year	Escapement	Weir Count	Sport ^a	Subsistence ^b	Commercial ^c	Total Run
1980	_	_	2,643	_	_	_
1981	_	_	2,269	_	_	_
1982	_	_	2,431	_	_	_
1983	_	_	2,307	_	_	_
1984	_	_	1,871	_	_	_
1985	9,213	9,474	2,178	2,554	666	14,611
1986	9,477	9,939	4,098	2,541	1,065	17,151
1987	10,727	11,103	3,133	1,742	2,334	17,936
1988	6,365	6,782	3,474	1,586	254	11,679
1989	9,356	9,930	4,782	1,302	0	15,440
1990	6,039	6,222	1,521	1,774	1	9,335
1991	8,434	8,929	4,121	1,481	15	14,051
1992	6,358	6,535	1,474	1,907	0	9,739
1993	6,318	6,813	4,125	1,720	7	12,170
1994	7,855	8,146	2,429	2,167	15	12,466
1995	8,438	8,694	2,132	1,285	224	12,079
1996	8,141	8,439	2,481	1,263	0	11,885
1997	10,582	10,926	2,864	1,383	0	14,829
1998	8,742	9,062	2,669	1,394	9	12,814
1999	9,383	9,794	3,422	1,320	3	14,128
2000	7,737	8,048	2,589	1,717	0	12,043
2001	13,214	13,494	2,332	1,421	0	16,967
2002	10,349	10,649	2,497	1,517	0	14,363
2003	12,754	13,150	3,302	1,242	6	17,304
2004	9,016	9,599	4,860	1,481	95	15,452
2005	16,235	16,596	3,010	2,414	0	21,659
2006	12,560	13,348	6,567	1,567	763	21,457
2007	8,375	9,001	5,215	1,193	757	15,540
2008	8,176	9,028	4,259	1,165	0	13,600
2009	9,583	10,624	5,207	874	138	15,802
2010	6,239	6,808	2,847	679	0	9,765
2011	5,298	6,026	3,640	287	197	9,422
2012	4,906	5,291	1,926	984	10	7,826
2013	4,974	5,959	4,926	611	40	10,551
2014	7,335	8,413	5,388	1,537	1	14,261
2015	NA	4,341	NA	824	13	NA


^a Sport harvests from the Statewide Harvest Survey.

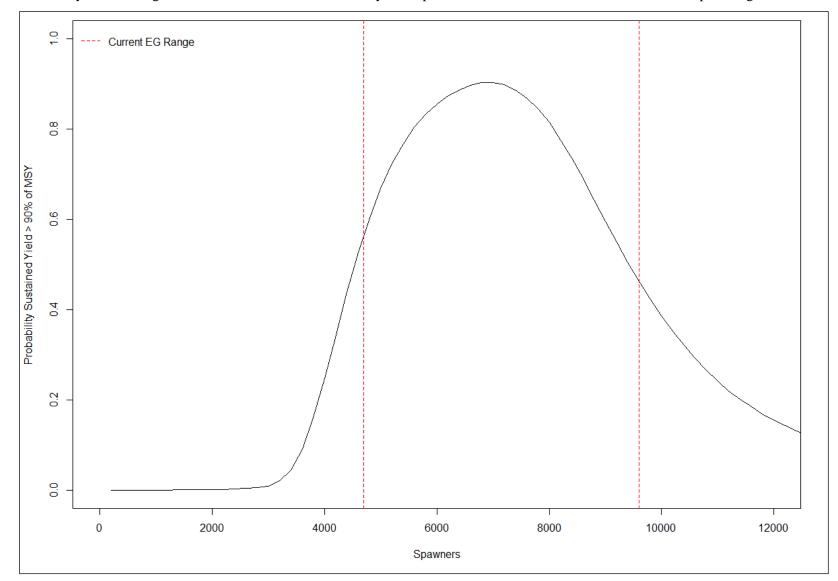
^b Subsistence harvests from the ADF&G Division of Commercial Fisheries database, Westward Region.

^c Commercial harvests from the ADF&G Division of Commercial Fisheries database.

System:Buskin RiverSpecies:Coho salmon



Brood						Age C	ass						Return/
Year	Escapement	1.0	1.1	1.2	2.0	2.1	2.2	3.0	3.1	3.2	4.1	Return	Spawne
1989	9,356	0	2,275	0	213	8,774	0	0	648	0	0	11,910	1.3
1990	6,039	0	2,143	38	40	8,082	37	38	262	0	0	10,640	1.8
1991	8,434	0	3,431	0	229	8,938	44	0	1,049	0	69	13,759	1.6
1992	6,358	0	2,767	0	37	8,215	0	0	1,517	0	0	12,537	2.0
1993	6,318	37	2,578	0	0	10,139	55	69	1,265	44	44	14,232	2.3
1994	7,855	0	2,897	0	138	9,074	177	110	2,392	0	0	14,788	1.9
1995	8,438	0	2,310	0	0	9,079	160	44	917	0	0	12,510	1.5
1996	8,141	0	2,303	0	44	8,733	42	40	42	0	0	11,205	1.4
1997	10,582	0	2,153	0	40	8,526	0	42	422	0	0	11,183	1.1
1998	8,742	0	8,106	0	210	11,641	0	47	1,375	0	0	21,379	2.4
1999	9,383	0	2,159	0	94	11,846	0	89	2,137	0	0	16,325	1.7
2000	7,737	0	3,683	0	311	9,653	0	0	1,325	0	0	14,970	1.9
2001	13,214	0	3,624	0	0	14,969	0	0	1,135	0	0	19,729	1.5
2002	10,349	38	5,233	0	66	15,200	0	28	141	0	0	20,705	2.0
2003	12,754	66	5,039	0	55	11,954	0	0	258	0	0	17,372	1.4
2004	9,016	0	2,883	0	492	9,153	0	64	705	0	0	13,297	1.5
2005	16,235	70	4,061	0	64	12,782	0	0	185	0	0	17,163	1.1
2006	12,560	0	2,013	0	302	7,602	0	124	1,047	0	0	11,087	0.9
2007	8,375	0	1,483	0	371	6,805	95	0	95	0	91	8,941	1.1
2008	8,176	0	1,570	0	0	7,158	0	95	273	0	0	9,097	1.1
2009	9,583	0	191	0	191	8,931	0	0	223	0	0	9,536	1.0
2010	6,239	0	1,185	0	365	11,810	0	0	960	0	0	14,320	2.3
2011	5,298	0	1,671	n/a	0	n/a		n/a					
2012	4,906	0	n/a		n/a								
2013	4,974												
2014	7,335												
2015	NA												


Appendix N4.–Buskin River coho salmon brood table, 1989–2014.

System: Species:

Buskin River Coho salmon

Appendix N5.– Ricker spawner-recruit function fitted to Buskin River coho salmon data, 1989 to 2012 brood years. Parameter estimates are posterior medians.

Appendix N6.–Optimal yield profile obtained by fitting an age-structured spawner-recruit model to Buskin River coho salmon data, 1989-2015. Probability of achieving at least 90% of maximum sustained yield is plotted. Vertical lines show recommended escapement goal.

APPENDIX O. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR OLDS RIVER COHO SALMON

Appendix O1.–Description of stock and escapement goal for Olds River coho salmon.

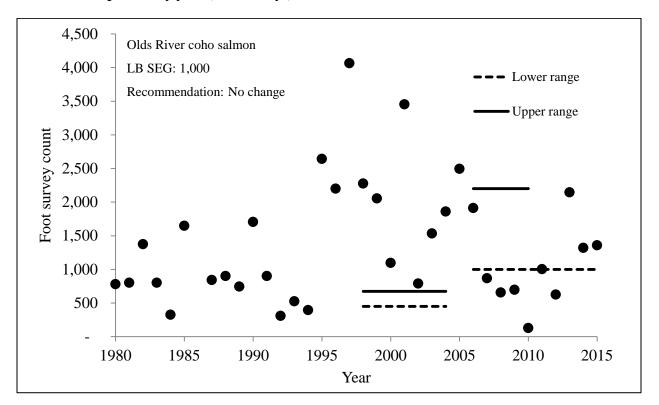
System: Olds River

Species: Coho salmon

Regulatory area: Management division: Primary fishery: Current escapement goal: Recommended escapement goal: Optimal escapement goal: Inriver goal: Action points:	Kodiak Management Area – Westward Region Sport and Commercial Sport, commercial, and subsistence Lower-bound SEG of 1,000 fish (2011) No change None None None
Escapement enumeration:	Foot surveys, 1980 to present with no surveys in 1981, 1983, 1988, and 1991.
Data summary:	
Data quality:	Mark–recapture work conducted in 1997 and 1998 (Begich et al. 2000) indicated foot surveys in the Olds River represent 69% to 104% of point estimates of abundance and were within the 95% confidence interval of estimated abundance in 1998.
Data type:	Foot surveys are conducted annually and inriver harvest of the recreational fishery are estimated annually through the Statewide Harvest Survey. Although there is no stock-specific harvest information available for subsistence and commercial fisheries, annual catch data are available for Kalsin Bay (statistical area 259-24).
Data contrast:	All survey data 1980 to 2015: 32.0
Methodology:	Theoretical stock-recruit analysis with average foot surveys and average harvest (recreational, commercial, and subsistence) from 1980 to 2003 was used to specify the SEG that potentially maximizes yield give uncertainty in the productivity of this stock. Alpha- parameter values in the stock-recruit analysis ranged from 4 to 8.
Autocorrelation:	No significant autocorrelation of foot survey counts.
Comments:	None

System: Olds River

Species: Coho salmon


Year	Foot Survey
1980	780
1981	800
1982	1,375
1983	800
1984	325
1985	1,648
1986	_
1987	842
1988	900
1989	743
1990	1,706
1991	900
1992	308
1993	525
1994	395
1995	2,642
1996	2,200
1997	4,064
1998	2,276
1999	2,054
2000	1,097
2001	3,454
2002	790
2003	1,534
2004	1,860
2005	2,495
2006	1,912
2007	868
2008	656
2009	697
2010	127
2011	1,003
2012	624
2013	2,145
2014	1,320
2015	1,357

Appendix O3.–Olds River coho salmon escapement and escapement goals, 1980–2015.

System: Olds River

Species: Coho salmon

Observed escapement by year (foot surveys)

APPENDIX P. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR PASAGSHAK RIVER COHO SALMON

Appendix P1.-Description of stock and escapement goal for Pasagshak River coho salmon.

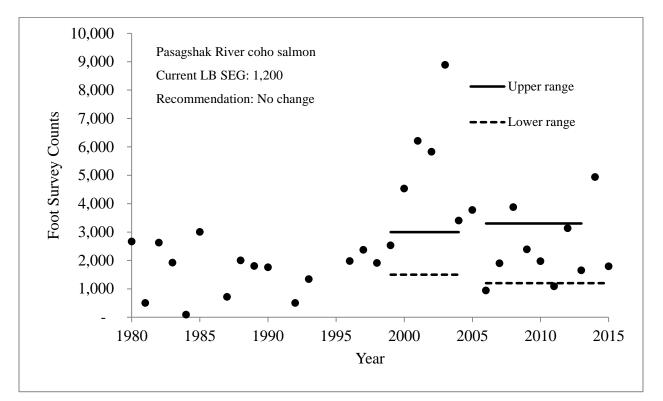
System:Pasagshak RiverSpecies:Coho salmon

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Sport and Commercial
Primary fishery:	Sport, commercial, and subsistence
Current escapement goal:	Lower-bound SEG: 1,200 fish (2011)
Recommended escapement goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Foot surveys, 1980-present with no surveys in 1985, 1988, 1989, 1991, 1992, 1994, and 1995.
Data summary:	
Data quality:	Fishery managers have indicated that foot surveys in the Pasagshak River since 1996 likely represent most of the actual escapement to the system.
Data type:	Foot surveys are conducted annually and inriver harvest of the recreational fishery are estimated annually through the Statewide Harvest Survey. Although there is no stock-specific harvest information available for subsistence and commercial fisheries, annual catch data are available for statistical area 259-41.
Data contrast:	All survey data 1980 to 2015: 98.7
Methodology:	Theoretical stock-recruit analysis with average foot surveys and average harvest (recreational, commercial, and subsistence) from 1980 to 2003 was used to specify the SEG that potentially maximizes yield give uncertainty in the productivity of this stock. Alpha- parameter values in the stock-recruit analysis ranged from 4 to 8.
Autocorrelation:	Significant autocorrelation of foot survey counts at lag 1 (0.55)
Comments:	None

System: Pasagshak River

Species: Coho salmon

Data available for analysis of escapement goals


YearFoot Survey19802,664198150019822,62119831,92019849019853,0001986-198771419882,00019891,80019901,7571991-199250019931,3371994-1995-19961,97319972,37119981,90619992,52520004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385		
1981 500 1982 $2,621$ 1983 $1,920$ 1984 90 1985 $3,000$ 1986 - 1987 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1991 - 1992 500 1993 $1,337$ 1994 - 1995 - 1996 $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$		· · · · ·
1982 $2,621$ 1983 $1,920$ 1984 90 1985 $3,000$ 1985 $3,000$ 1986 - 1987 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1991 - 1992 500 1993 $1,337$ 1994 - 1995 - 1996 $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$	1980	2,664
1983 $1,920$ 1984 90 1985 $3,000$ 1985 $3,000$ 1986 $ 1987$ 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1991 $ 1992$ 500 1993 $1,337$ 1994 $ 1995$ $ 1996$ $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$	1981	
1984 90 1985 $3,000$ 1986 - 1987 714 1987 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1991 - 1992 500 1993 $1,337$ 1994 - 1995 - 1996 $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$	1982	
1985 $3,000$ 1986 - 1987 714 1987 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1991 - 1992 500 1993 $1,337$ 1994 - 1995 - 1996 $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$	1983	1,920
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1984	90
1987 714 1988 $2,000$ 1989 $1,800$ 1990 $1,757$ 1990 $1,757$ 1991 - 1992 500 1993 $1,337$ 1994 - 1995 - 1996 $1,973$ 1997 $2,371$ 1998 $1,906$ 1999 $2,525$ 2000 $4,526$ 2001 $6,209$ 2002 $5,825$ 2003 $8,886$ 2004 $3,402$ 2005 $3,773$ 2006 937 2007 $1,896$ 2008 $3,875$ 2009 $2,385$	1985	3,000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1986	_
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1987	714
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1988	2,000
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1989	1,800
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1990	1,757
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1991	_
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1992	500
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1993	1,337
19961,97319972,37119981,90619992,52520004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1994	_
19972,37119981,90619992,52520004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1995	_
19981,90619992,52520004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1996	1,973
19992,52520004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1997	2,371
20004,52620016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1998	1,906
20016,20920025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	1999	2,525
20025,82520038,88620043,40220053,773200693720071,89620083,87520092,385	2000	4,526
20038,88620043,40220053,773200693720071,89620083,87520092,385	2001	6,209
20043,40220053,773200693720071,89620083,87520092,385	2002	5,825
20053,773200693720071,89620083,87520092,385	2003	8,886
200693720071,89620083,87520092,385	2004	3,402
20071,89620083,87520092,385	2005	3,773
20083,87520092,385	2006	937
2009 2,385	2007	1,896
	2008	3,875
	2009	2,385
2010 1,971	2010	1,971
2011 1,083	2011	1,083
2012 3,132	2012	3,132
2013 1,648	2013	1,648
2014 4,934	2014	4,934
2015 1,790	2015	1,790

Appendix P3.-Pasagshak River coho salmon escapement and escapement goals, 1980-2015.

System: Pasagshak River

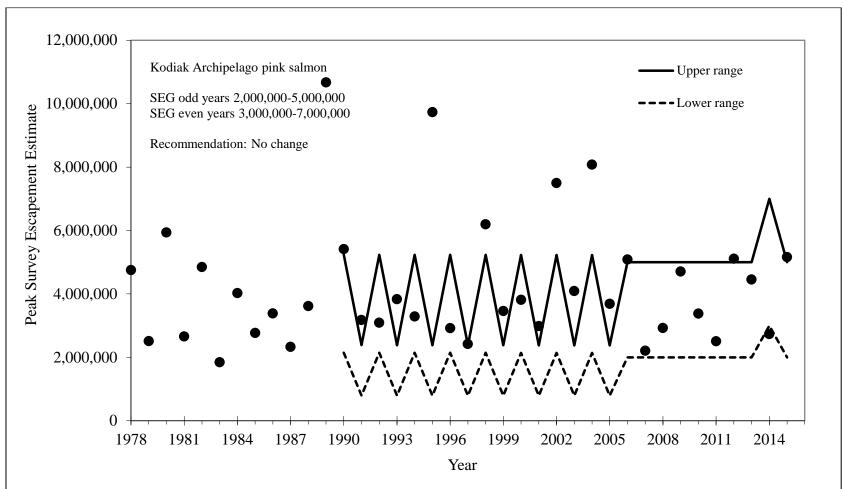
Species: Coho salmon

Observed escapement by year (foot surveys)

APPENDIX Q. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK ARCHIPELAGO PINK SALMON

Appendix Q1.–Description of stock and escapement goal for Kodiak Archipelago pink salmon.

System:Kodiak ArchipelagoSpecies:Pink salmon


Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine and gillnet
Current escapement goal:	SEG Odd Years: 2,000,000–5,000,000 (2011)
	SEG Even Years: 3,000,000–7,000,000 (2011)
Recommended escapement goal:	No change
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Aerial Survey, 1968–2015
	Weir counts, 1976–2015
Data summary:	
Data quality:	Fair
Data type:	Fixed-wing aerial surveys from 1968 to 2015 with peak counts used as an index of spawning escapement. Index streams are flown annually with peak counts from streams summed annually to produce a single index for the archipelago after combination with weir counts.
Data contrast:	Peak aerial surveys, all years 1976–2015: 7.0
Methodology:	Ricker Model
Autocorrelation:	None
Comments:	An expansion factor of two (2) was used on pink salmon escapement aerial survey data and combined with Karluk and Ayakulik escapement data. The resultant Ricker model was significant ($P = 3.9x10-5$). The resultant S _{MSY} estimate was corrected for Karluk and Ayakulik weir counts and weighted peak aerial survey data.

System: Kodiak Archipelago

Species: Pink salmon

Data available for analysis of escapement goals

Year	Peak Survey	Harvest
1978	4,752,564	14,767,000
1979	2,513,297	10,445,000
1980	5,939,637	16,726,000
1981	2,655,869	9,362,000
1982	4,845,754	7,318,000
1983	1,846,583	4,289,000
1984	4,025,164	10,228,000
1985	2,766,941	3,607,000
1986	3,383,518	10,356,000
1987	2,331,221	3,898,000
1988	3,614,253	12,207,000
1989	10,668,567	182,000
1990	5,412,594	4,569,000
1991	3,175,610	14,136,000
1992	3,093,014	2,415,000
1993	3,832,171	20,577,000
1994	3,290,790	5,917,000
1995	9,730,506	37,636,000
1996	2,920,544	2,458,000
1997	2,420,679	9,096,000
1998	6,193,925	15,225,000
1999	3,460,986	7,459,000
2000	3,813,914	6,139,000
2001	2,984,844	6,042,000
2002	7,494,477	11,308,000
2003	4,088,412	8,360,000
2004	8,074,963	17,171,100
2005	3,688,158	16,061,700
2006	5,086,372	26,636,025
2007	2,208,678	16,307,004
2008	2,924,708	6,018,025
2009	4,707,894	18,077,949
2010	3,378,483	5,473,019
2011	2,506,714	14,221,904
2012	5,111,049	13,807,487
2013	4,450,711	16,229,772
2014	2,733,282	4,743,500
2015	5,151,731	27,284,122

Appendix Q3.–Kodiak Archipelago pink salmon indexed escapement and escapement goal ranges, 1978–2015.

System: Kodiak Archipelago

Species: Pink salmon

APPENDIX R. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK MAINLAND PINK SALMON

Appendix R1.–Description of stock and escapement goal for Kodiak Mainland pink salmon.

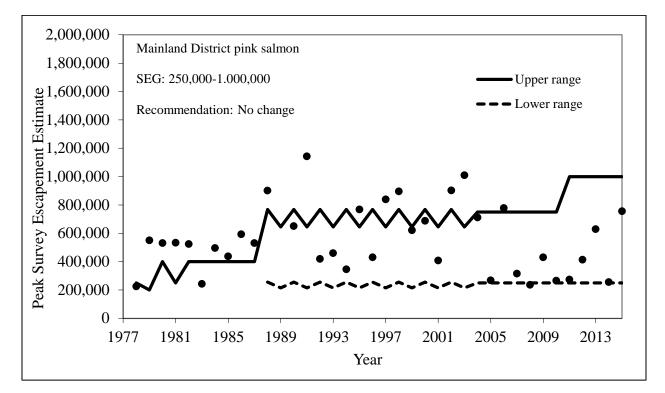
System:Kodiak MainlandSpecies:Pink salmon

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine
Current escapement	
goal:	SEG: 250,000–1,000,000 (2011)
Recommended	
escapement goal:	No change
Optimal escapement	č
goal:	None
Inriver goal:	None
Action points:	None
Escapement	Aerial Survey, 1968–2015
enumeration:	
Data summary:	
Data quality:	Fair
Data type:	Fixed-wing aerial surveys from 1968 to 2015 with peak counts used as an index of spawning escapement. 16 streams are flown annually with peak counts from streams summed annually to produce a single index for the district.
Data contrast:	Peak aerial surveys, all years 1978–2015: 17.7
Methodology:	Ricker Model
Autocorrelation:	Present (lag-1), but borderline significant
Comments:	An expansion factor of two (2) was used on pink salmon escapement aerial survey data and coupled with harvest estimates. The resultant Ricker model was significant ($P = 6.3 \times 10^{-5}$). The resultant S _{MSY} estimate was corrected for expanded aerial survey information.

Appendix R2.-Kodiak Mainland pink salmon aggregate escapement and harvest estimates, 1978-2015.

System: Kodiak Mainland

Species: Pink salmon


Data available for analysis of escapement goals

-	8	
Year	Peak Survey	Harvest
1978	225,000	237,000
1979	550,000	623,000
1980	530,000	287,000
1981	533,000	271,000
1982	524,000	582,000
1983	243,000	184,000
1984	495,000	345,000
1985	437,000	261,000
1986	593,000	806,000
1987	530,000	226,000
1988	901,000	1,748,000
1989	3,977,000	0
1990	650,000	876,000
1991	1,142,000	1,166,000
1992	419,000	190,000
1993	459,000	1,366,000
1994	345,000	194,000
1995	768,000	696,000
1996	430,000	50,000
1997	839,000	728,000
1998	895,000	559,000
1999	621,000	384,000
2000	687,000	117,000
2001	407,000	398,000
2002	902,000	323,000
2003	1,009,000	173,000
2004	711,555	283,600
2005	268,050	473,812
2006	778,200	899,213
2007	315,300	617,342
2008	236,500	652,238
2009	430,100	631,800
2010	265,650	141,308
2011	273,500	249,245
2012	413,325	97,687
2013	620,680	204,611
2014	254,650	154,841
2015	754,600	787,280

Appendix R3.-Kodiak Mainland pink salmon indexed escapement and escapement goals ranges, 1978-2015.

System: Kodiak Mainland

Species: Pink salmon

APPENDIX S. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR KODIAK CHUM SALMON

Appendix S1.–Description of stock and escapement goal for Kodiak chum salmon.

System:Kodiak ArchipelagoSpecies:Chum salmon

Description of stock and escapement goals

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine
Current escapement goal:	Lower-bound SEG: 151,000 (2008)
Recommended escapement	
goal:	Lower-bound SEG: 101,000
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Aerial Survey, 1967–2015
Data summary:	
Data quality:	Fair
Data type:	Fixed-wing aerial surveys available from 1967 to 2015. Data used in analysis represents indicator streams and years with a complete survey dataset from 1978 to present. No stock-specific harvest information is available.
Data contrast:	Aerial surveys, 1978–2015: 7.2
Methodology:	15th to 75th percentile (Bue and Hasbrouck unpublished)
Criteria for SEG:	High contrast, low exploitation
Comments:	Seventeen area-wide systems were chosen to represent an indexed escapement goal: Uganik River 253-122, Terror River 253-331, Uyak River 254-202, Zachar River 254-301, Spiridon River 254-401, Sturgeon River 256-401, Deadman River 257-502, Sulua Creek 257-603, N. Kiliuda Creek 258-206, W. Kiliuda Creek 258-207, Midway Creek 258- 521, Barling Creek 258-522, American River 259-231, Olds River 259- 242, Kizhuyak River 259-365, Saltery River 259-415, and Eagle Harbor 259-424.

System: Kodiak Archipelago

Species: Chum salmon

Data available for analysis of escapement goals

_		
• 7	Kodiak Archipelago	Number of Systems
Year	Aggregate	Surveyed
1967	106,884	18
1968	124,400	17
1969	57,230	43
1970	26,350	22
1971	170,557	26
1972	283,645	67
1973	203,663	55
1974	81,960	28
1975	149,839	42
1976	134,258	32
1977	368,943	59
1978	321,498	52
1979	410,851	75
1980	417,718	57
1981	498,790	77
1982	563,010	59
1983	560,838	90
1984	368,177	63
1985	292,180	64
1986	369,217	48
1987	154,643	49
1988	337,856	34
1989	722,702	74
1990	237,568	51
1991	532,522	50
1992	253,646	54
1993	152,787	44
1994	174,935	53
1995	230,848	41
1996	150,103	41
1997	129,685	40
1998	120,377	34
1999	266,264	54
2000	284,040	41
2000		36
2001	192,068 211,080	43
2002		43 36
	217,525	30 24
2004	127,755	
2005	141,850	24
2006	419,000	41
2007	166,060	43
2008	83,040	36
2009	177,490	52
2010	160,290	43
2011	192,400	42
2012	159,825	44
2013	284,799	41
2014	138,489	47
2015	308,376	48

Appendix S3.–Kodiak Archipelago chum salmon peak aerial survey counts, in selected indicator streams, 1978–2	015.
--	------

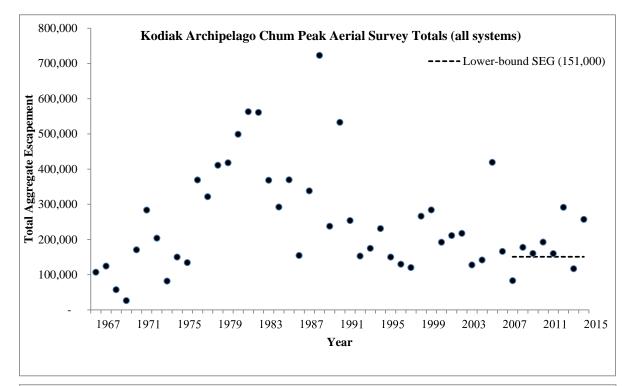
System:	Kodiak Archipelago
---------	--------------------

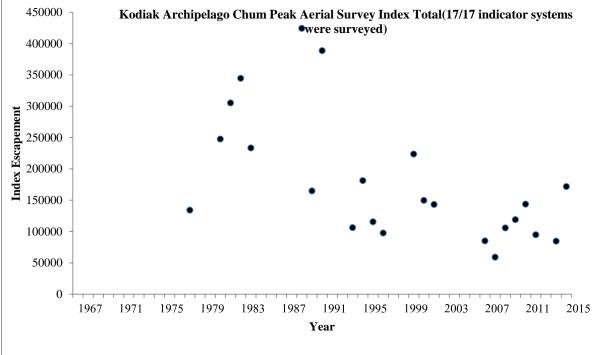
Species: Chum salmon

																		<u> </u>
Year	253-122 Uganik River	253-331 Terror River	254-202 Uyak River	254-301 Zachar River	254-401 Spiridon River	256-401 Sturgeon River	257-502 Deadman River	257-603 Sulua Chum Creek	258-206 N. Kiliuda Creek	258-207 W. Kiliuda Creek	258-521 Midway Creek	258-522 Barling Creek	259-231 American River	259-242 Sid Olds	259-365 Kizhuyak River	259-415 Saltery River	259-424 Eagle Harbor	Total Index
1978	4,000	3,000	8,000	6,000	8,000	57,300	10,000	6,000	3,500	3,000	2,700	1,500	4,000	6,000	4,000	5,000	2,000	134,000
1979	2,000	5,000		2,500	21,000	97,000	2,000	2,900	300	11,000	1,000	3,000	5,000	6,000	31,000	3,200	6,900	-
1980				10,000	11,000	44,000	75	24,000	3,500	20,000	20,000	2,000	4,000	8,500	21,000	1,200		-
1981	8,000	5,000	1,500	18,000	7,000	72,000	15,000	9,000	4,400	32,000	20,000	3,000	2,500	500	35,000	7,000	7,600	247,500
1982	30,000	12,900	3,000	40,000	38,000	55,000	8,000	8,000	7,200	8,200	10,000	12,000	3,000	42,000	12,000	8,000	8,000	305,300
1983	25,000	10,050	40,000	20,000	40,000	74,000	40,000	31,000	3,000	2,200	12,000	9,000	10,000	11,000	3,170	5,000	9,000	344,420
1984	10,000	<i>,</i>	10,000	12,000	21,000	80,000	10,000	12,000	4,000	9,000	5,000	5,000	8,400	15,000	9,000	10,000	3,000	233,400
1985	5,000		10,000	24,600		1,500	10,000	20,000	13,000	11,300	16,000	3,000	10,400	8,000	7,000	6,000	7,000	-
1986	250	- ,		15,600	67,000	92,000	1,100	600	1,800	1,400	12,000	5,000	4,000	8,000	55,000	189	4,500	-
1987	15,000	<i>,</i>	10,000	5,000		12,200	16,000	8,700	2,400	3,160	1,100	5,800	800	4,500	8,500	250	12,000	-
1988	20,000		25,000	75,000	15,000	53,200	10,000	50	5,000	20,000		500	8,000	15,000	27,500		500	-
1989	53,000	<i>,</i>	57,600	80,000	32,000	5,000	22,000	5,500	1,800	34,000	2,300	10,000	11,000	1,400	55,500	15,000	15,000	424,100
1990	8,000	5,000	,	12,800	5,000	90,000	1,500	1,800	25	4,400	7,350	6,350	8,000	4,000	2,300	270	2,100	164,895
1991	11,823		60,000	11,400	22,100	47,500	52,500	20,250	200	19,500	63,900	21,800	12,000	10,000	1,480	17,000	15,000	388,653
1992	30,000	15,000	,	30,000	16,900	41,000	8,000	3,800	7 000	1,500	1,000	5,000	4,500	3,000	6,400	250	4,100	-
1993	10,000	6,100	2,500	20,000	5,000	1,300	7.500	4,500	5,000	3,500	3,000	2,800	2,000	7,000	500	3,000	11,000	-
1994	10,000	5,000	,	12,800	10,300	10,000	7,500	9,000	3,500	2,000	1,750	5,500	3,250	5,000	4,200	500	8,000	106,300
1995	14,000	16,000	- ,	23,000	22,000	32,000	17,000	20,000	200	1,500	3,500	500	8,000	1,500	8,000	103	1,000	181,303
1996	35,000 20.000	15,000	3,100	15,000	8,000	6,820 2,200	5,100	2,500 800	10	900 500	5,600	7,500	2,500	100	3,900 5,000	5	4,600	115,635
1997	20,000	15,000	3,500	20,000	3,400	3,200	3,000	800	500	500	3,500	2,500	6,000	1,500	5,000	6,000	3,200	97,600

-continued-

Appendix S3.–Page 2 of 2.


Year		253-331 Terror River	254-202 Uyak River	254-301 Zachar River	254-401 Spiridon River	256-401 Sturgeon River	257-502 Deadman River	257-603 Sulua Chum Creek		258-207 W. Kiliuda Creek	258-521 Midway Creek	258-522 Barling Creek	259-231 American River	259-242 Sid Olds	259-365 Kizhuyak River	259-415 Saltery River	259-424 Eagle Harbor	Total Index
1998		5,000	5,000	10,000	3,650	24,093	1,000	4,000		100	3,000	5,200	800	1,000	1,800	1,500	1,600	-
1999	7,000	15,000	2,000	20,000	8,500	71,610		7,500	6,500	5,200	7,700	12,600		2,000	300	2,500	7,100	-
2000	40,000	,	15,000	28,000	16,500	14,331	33,800	4,800	3,800	11,000	3,000	9,000	1,500	1,500	10,800	2,500	18,000	223,531
2001	18,000	15,000	17,650	20,700	3,000	500	10,500	5,000	50	400	4,500	5,000	8,000	5,500	23,900	1,000	11,100	149,800
2002	8,000	2,000	10,000	11,500	6,500	55,700	2,000	700	6,000	9,000	5,600	6,000	5,000	2,000	1,400	6,900	4,800	143,100
2003	6,000	13,600	3,000	9,200	4,500	12,900	8,300	24,000	3,000	5,100	15,000	5,600	500	1,700	23,000		2,600	-
2004	4,000	15,600	5,000	2,100		10,100	5,000		20,000	5,000	8,000	10,000			4,000		250	-
2005	5,000	1,700	8,000	5,600	13,400	2,000	6,700	35,000		15,000		1,000		7,000	1,500	6,000	6,000	-
2006		6,600	2,600	17,000	5,000	14,500			60,000	35,000	12,000	27,000	3,300	5,500	10,100	14,000	12,000	-
2007	1,800	8,400	4,500	5,000	7,900	300	5,900	6,600	1,400	4,900	3,400	14,600	8,200	8,550	200	1,500	1,900	85,050
2008	9,000	4,500	6,000	2,500	11,200	4,000	2,500	1,400	500	200	2,800	6,900	700	980	1,000	700	4,200	59,080
2009	1,600	4,800	4,500	9,400	23,500	750	14,000	6,700	3,200	3,500	4,000	3,500	5,400	3,100	12,400	600	4,800	105,750
2010	9,200	3,600	2,000	2,200	10,700	8,400	4,200	5,000	2,200	4,200	7,500	29,000	4,300	6,200	8,700	2,400	9,200	119,000
2011	15,000	3,700	9,850	34,300	8,300	8,400	8,200	6,300	7,000	6,900	9,600	4,500	4,800	2,300	3,600	2,500	8,300	143,550
2012	5,100	7,000	8,800	3,600	5,100	9,100	9,600	700	3,400	9,700	6,000	8,000	3,500	3,200	7,200	1,900	3,000	94,900
2013	3,800	5,000	3,800	16,600	300		8,800	10,500	8,000	10,600	17,000	19,600	400	2,300	6,600	3,900	1,900	-
2014	1,600	7,000	8,500	8,500	6,600	1,200	12,100	3,000	2,500	6,000	7,500	8,500	400	1,900	3,800	1,600	4,000	84,700
2015	10,000		11,800	28,000	15,000	1,100	19,000	9,600	4,500	2,500	13,400	8,000	10,500	3,200	5,300	6,200	12,900	171,800


Note: Systems not successfully surveyed in a survey year are blacked out. If 1 or more system in a survey year was not successfully surveyed, the Total Index was not calculated and is noted with a dash.

Appendix S4.-Kodiak Archipelago chum salmon escapement and escapement goals ranges, 1967-2015.

System: Kodiak Archipelago

Species: Chum salmon

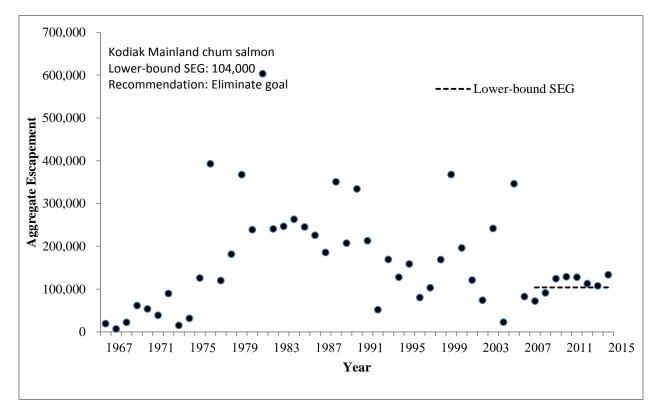
APPENDIX T. SUPPORTING INFORMATION FOR ESCAPEMENT GOALS FOR MAINLAND DISTRICT CHUM SALMON

Appendix T1.–Description of stock and escapement goal for Mainland District chum salmon.

	-		
System:	Kod	diak Mainland District	
Species:	Chu	um salmon	
Description of sto	ock and escapemer	nt goals	

Regulatory area:	Kodiak Management Area – Westward Region
Management division:	Commercial Fisheries
Primary fishery:	Commercial purse seine
Current escapement goal:	Lower-bound SEG: 104,000 (2008)
Recommended escapement	
goal:	Eliminate goal
Optimal escapement goal:	None
Inriver goal:	None
Action points:	None
Escapement enumeration:	Aerial Survey, 1967–2015
Data summary:	
Data quality:	Fair
Data type:	Fixed-wing aerial surveys available from 1967 to 2015
Methodology:	Percentile
Comments:	Timing of surveys no longer align with peak chum salmon escapement because effort is limited by funding and focus in on sockeye and pink salmon.

System: Kodiak Mainland District


Species: Chum salmon

Data available for analysis of escapement goals

Year	Aggregate Escapement Index	Number of Streams Surveyed
1967	19,250	6
1968	7,000	4
1969	22,200	8
1970	61,500	9
1971	53,710	21
1972	38,800	15
1973	89,650	25
1974	15,300	7
1975	31,720	10
1976	125,910	23
1977	392,590	41
1978	119,870	23
1979	181,510	31
1980	367,250	28
1980	238,860	35
1982	603,148	39
1982	240,610	37
1985	246,450	30
1985	263,100	23
1985	245,175	25
1980	225,600	30
1987	185,800	6
1989	350,400	23
1989	207,200	15
1990	334,100	21
1991	213,100	19
1992	51,790	19
1993	169,100	19
1994	127,900	21
1995	158,850	20
1990	80,300	11
1997	103,050	16
1998	168,700	21
2000	367,650	21 25
2000	196,100	20
2001	120,975	16
2002		23
2003	73,800 241,645	25 16
2004 2005		5
2005	22,500 346 140	5 26
	346,140 82,600	20 21
2007 2008	,	21 20
	72,000	20 28
2009	91,106	
2010	124,500	30
2011	128,700	27
2012	127,850	27
2013	112,700	31
2014	107,431	29 17
2015	133,200	17

Appendix T3.–Kodiak Mainland	chum salmon escapement and	d escapement goals ranges,	1967–2015.

Species: Chum salmon

